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Abstract

The use of multicast traffic as measurement probes is ef-

ficient and effective to infer network-internal characteris-

tics. We propose a new statistical approach to infer net-

work internal link loss performance from end-to-end mea-

surements. Incorporating with the procedure of topology

inference, we present an inference algorithm that can infer

loss rates of individual links in the network when it infers

the network topology. It is proved that the loss rate inferred

by our approach is consistent with the real loss rate as the

number of probe packets tends to infinity. The approach is

also extended to general trees case for loss performance in-

ference. Loss rate-based scheme on topology inference is

built in view of correct convergence to the true topology for

general trees.
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1 Introduction

How to measure network performance accurately plays

an important role on the successful design, control and man-

agement of networks. The existing approaches to evalu-

ating network performance are classified into three types:

(i) collecting statistics at internal nodes and using network

management packages to generate link-level performance

reports; (ii) characterizing network performance based on

end-to-end behavior of point-to-point traffic such as that

generated by TCP or UDP; (iii) inferring link-level loss be-

havior through multicast probe traffic as end-to-end mea-

surements.

The first approach requires the authorized access to a

wide range of internal nodes in an administratively diverse

network which can hardly be realized in practice. Intro-

ducing new measurement mechanisms into the nodes them-

selves is likewise difficult because it requires persuading

large companies to alter their products. Also, the compo-

sition of many such small measurements to form a picture

of end-to-end performance is not completely understood.

The second approach using the prevalent protocol can

collect link-level statistics from end-to-end point-to-point

measurements. It is, however, very costly to perform such

kind of unicast probe in a large-scale network.

Link-level loss and delay inference from multicast end-

to-end measurements has recently been proposed as an ef-

ficient approach to analyze network performance such as

[1, 2, 3, 7, 8]. The key idea underlying the third approach is

that multicast traffic introduces correlation in the end-to-end

measurements at receivers. This correlation can, in turn, be

used to infer internal network characteristics such as link

loss and link delay. The approach we propose, which is

mainly focused on loss performance inference, inherits the

advantage of the third approach. Compared with the prin-

cipal analytical tool MLEs used in [1, 3], our approach is

simpler and more efficient.

Incorporating the topology inference algorithm we re-

cently proposed in [9], we present an algorithm to estimate

the loss rate of all the individual links in the multicast net-

work using only statistical loss observations at receivers.

We also extend this approach to the general case. It is ob-

served that, based on the information of link loss rate, the

quality of multicast topology inference can be improved.
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The paper is organized as follows. In Section 2 the math-

ematical loss model of multicast network is described. Sec-

tion 3 derives the estimation method for loss rate on inter-

nal links and proposes an algorithm that can infer topology

and loss performance simultaneously. Extension of loss in-

ference to the general tree is discussed in Section 4, also

a scheme of topology inference based on loss inference is

given. Section 5 concludes the paper.

2 Description of The Loss Model

A physical multicast tree is represented by a tree model

comprising actual network elements (the nodes) and com-

munication links connecting them as cited in [6, 4, 5]. The

multicast tree model is denoted by T = (V,L) with node set

V , including the source node 0 and receiver set R ⊂ V and

link set L. A link is said to be internal if neither of its end-

points is the root or a leaf node. Each non-leaf node k has a

set of children node d(k) = {di(k) | 1 ≤ i ≤ nk}, and each

non-root node k has a parent p(k). The link
(
p(k), k

) ∈ L

is denoted by link k. Let a(U) denote the nearest common

ancestor of a node set U ⊂ V . Nodes in U are said to be sib-

lings if they have the same parent. The subtree of T rooted

at k is denoted by T (k) =
(
V (k), L(k)

)
, and the receiver

set R(k) = R ∩ V (k).
For each link an independent Bernoulli loss model is as-

sumed with each probing packet being successfully trans-

mitted across link k with probability pk. Thus the progress

of each probing packet down the tree is described by an

independent copy of a stochastic process X = (Xk)k∈V

as follows. X0 = 1, Xk = 1 if the probing packet

reaches node k ∈ V and 0 otherwise. If Xk = 0, Xj =
0,∀j ∈ d(k). Otherwise, P [Xj = 1|Xk = 1] = pj and

P [Xj = 0|Xk = 1] = 1 − pj = αj , where αj denotes

the probability of a probe is lost on link j. Define p0 = 1.

The pair (T, p) is called a loss tree. PT,p denotes the dis-

tribution of X on the loss tree (T, p). X
(i)
k denotes the loss

measurement of node k for ith probe packet. Thus for n

probe packets, the 0-1 sequence maintained on the node k

is denoted by {X(n)(k)}, k ∈ V .

3 Inference on Link-level Loss Performance

Multicast network in binary tree form is firstly consid-

ered for simplicity. From the “0-1” sequences observed at

receivers, we can infer the sequence maintained by internal

nodes in bottom up fashion. The approach to inferring the

link-level loss performance is proposed in the section based

on all the “0-1” sequences.

3.1 Approach to loss performance inference

If a probe packet reaches any node descended from node

i, it certainly reaches the node i. So we can simply deduce

the sequence of internal nodes by the Equation (1).

X(n)(i) = ∨l∈R(i)X
(n)(l) (1)

Among the sequence of a node i, the component of 0

means the correspondent probe packet is lost in the path

from the root to the node i. Comparing the sequence of the

node i with that of its siblings j, if j receives a probe packet,

but the node i hasn’t received, we consider the probe packet

is lost in the link i. Thus, those components of 0 in the se-

quence of the node i can be determined to be caused by loss

in link i if the correspondent components in the sequence of

node j is 1. Among those components whose correspondent

value of both the node i and j are 0, some are lost in the path

from the root to their parent node, others are lost in both the

links directly connecting the siblings at the same time. We

suppose γ to be the ratio of the number of 0 components in

the sequence caused by both links meanwhile other than by

their common links to the total number of 0 components.

Figure 1. A Transmission Model

The probability of a probe packet transmitted through the

link i successfully can be estimated as the ratio of the num-

ber of accepted probe packets at the node i to the number of

accepted probe packets at its immediate parent node. Ac-

cording to the above discussion, it can be denoted as the

following equations.

p̂i =
n1

i

n1
i + n1

j − n1
ij + γ · n0

ij

(2)
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=
n∑

k=1

X
(k)
i | [

n∑

k=1

X
(k)
i +

n∑

k=1

X
(k)
j −

n∑

k=1

X
(k)
i ∧ X

(k)
j

+ γ · (n −
n∑

k=1

X
(k)
i ∨ X

(k)
j )] (3)

Where n1
i denotes the number of probe packets transmit-

ted trough link i successfully, and n0
i denotes the number of

lost probe packets on link i. n1
ij is denoted the number of

probe packets transmitted successfully on both link i and j

at the same time. Likewise, n0
ij means the number of probe

packets lost on both link i and j at the same time.

Assume ps to represent the probability of transmitting

probe packets successfully from the root to the sibling’s par-

ent node as shown in Figure 1.

Firstly, we give the lemma to estimate ps on which cal-

culation of the loss rate on link i by the Lemma 2 is based.

Lemma 1 ps can be estimated by the following formula

p̂s =
n1

i · n1
j

n · n1
ij

(4)

Proof
We have known A(i, j) is estimated by A(n)(i, j) as

mentioned in[5].

A(n)(i, j) =
∑n

m=1 X(m)(i) · ∑n
m=1 X(m)(j)

n · ∑n
m=1 X(m)(i) · X(m)(j)

=
n1

i · n1
j

n · n1
ij

(5)

Because,

lim
n→∞n1

i /n = ps · pi

lim
n→∞n1

j/n = ps · pj

lim
n→∞n1

ij/n = ps · pi · pj

We have,

lim
n→∞A(n)(i, j) = lim

n→∞
n1

i · n1
j

n · n1
ij

= ps

Therefore, with finite probe packets we can use
n1

i ·n1
j

n·n1
ij

to

estimate ps. �

Lemma 2 If node i and j are siblings in the real multicast

network, the loss rate on link i and j denoted by α̂i and

α̂j respectively can be estimated on both of their “0-1” se-

quences.

α̂i = 1 − p̂i = 1 −
∑n

k=1 X
(k)
i ∧ X

(k)
j∑n

k=1 X
(k)
j

(6)

α̂j = 1 − p̂j = 1 −
∑n

k=1 X
(k)
i ∧ X

(k)
j∑n

k=1 X
(k)
i

(7)

Proof

Since node i and j are siblings in the real multicast net-

work, the number of lost probe packets observed at i and j

at the same time composes of those lost on the link from the

root to their parent node and those lost on both link i and j.

n0
ij = n(1 − ps) + nps(1 − pi)(1 − pj)

We denote γ · n0
ij in Equation (2) by Γ.

Γ = nps(1 − pi)(1 − pj) = n0
ij − n(1 − ps)

n0
ij can be obtained by the following equation.

n0
ij = n − (n1

i + n1
j − n1

ij)

ps can be estimated by (n1
i · n1

j )/(n · n1
ij) according to

Lemma 1.

Then, we derive the following formula for Γ.

Γ =
n1

i · n1
j

n1
ij

− (n1
i + n1

j − n1
ij) (8)

Thus, replacing Γ in Equation (2) with Equation (8), we

get the following equation to estimate pi.

p̂i =
n1

i

n1
i + n1

j − n1
ij + Γ

=
n1

ij

n1
j

=

∑n
k=1 X

(k)
i ∧ X

(k)
j∑n

k=1 X
(k)
j

Likewise, pj can be estimated as follows.

p̂j =
n1

ij

n1
i

=

∑n
k=1 X

(k)
i ∧ X

(k)
j∑n

k=1 X
(k)
i

Thus, loss rates of the link i and j can be determined as

Lemma 2 shows. �

When n increases to infinity,

lim
n→∞n1

ij/n = ps · pi · pj

lim
n→∞n1

j/n = ps · pj

Then, limn→∞ p̂i = pi.

Therefore, it can be concluded that the loss rate esti-

mated by Lemma 2 is consistent with the real loss rate for

each link as the number of probe packets goes to infinity.
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3.2 Algorithm on loss inference

Since we have deduced the formula on the loss rate of

a link with the prior knowledge of the sequence maintained

by the node, we can infer loss performance of all the links in

a multicast network. In the procedure of topology inference

as we presented recently in [9], the “0-1” sequences for each

node including those internal nodes have been obtained. So

it becomes convenient to infer the link loss rate with the

help of our deduced result. The following algorithm infer

not only the topology but also loss rate for all the links in

the network.

1. Input: The set of receivers R, number of probe packets

n, observed sequences at receivers(X(i)
k )i=1,···,n

k∈R ;

2. R′ := R, V ′ := R, L′ := φ, h = maxk∈R(k.hop),
Wm = φ, m = 1, · · · , h; // Wm is a set of nodes with

hop count value m, m is initialized as the maximum

value of hop count h for all nodes in R.//

3. for k ∈ R, do

4. for i = 1, · · · , m do

5. if (k.hop = i) then Wi = Wi

⋃{k};

6. Compute hamming distance (Hd(p, q)) of

each pair in Wi,

Hd(p, q) =
∑n

j=1 X
(j)
p ⊗ X

(j)
q ;

7. while m > 1 do

8. while Wm 	= φ do

9. search uq,wm
to minimize Hd(up,wm

, uq,wm
);

10. if Hd(up,wm , uq,wm) > δmthen U = up,wm ;

//δm is an experienced threshold to compare

correlation degree of a pair of nodes denoted

by hamming distance//

11. for i = 1 to n

Calculate n1
up,wm

=
∑n

i=1 X(i)(up,wm
),

n1
uq,wm

=
∑n

i=1 X(i)(uq,wm),
n1

up,wm uq,wm
=

∑n
i=1 X(i)(up,wm

) ·
X(i)(uq,wm);

12. Calculate loss rates of link up,wm and uq,wm ,

α̂up,wm
= 1 − n1

up,wm uq,wm

n1
uq,wm

,

α̂uq,wm
= 1 − n1

up,wm uq,wm

n1
up,wm

13. replace up,wm , uq,wm with U ; // U is the

parent node of up,wm , uq,wm //

14. for i = 1, · · · , n do X
(i)
U := ∨u∈UX

(i)
u ;

15. U.hop := m − 1;

16. V ′ := V ′ ⋃{U}; Wm := Wm \ U ;

Wm−1 := Wm−1

⋃
U ;

17. for each u ∈ U do L′ := L′ ⋃{(U, u)};

18. m:=m-1;

19. V ′ := V ′ ⋃{0}; L′ := L′ ⋃{0, U};

20. Output: Inferred topology and loss rate (V ′, L′, α̂)

Firstly all the receivers are classified into different node

sets Wm (1 ≤ m ≤ h) according to their values of hop

count. The hamming distances of each node pair in Wm

are calculated. Inference begins with identifying siblings in

the node set with maximum value of hop count. Calculate

the loss rate of the links connected to the identified siblings.

Then replace the siblings with their parent node and add the

parent node into the node set with hop count reduced by 1.

The “0-1” sequence of the parent node is obtained by “OR”

operation of those of the siblings. When all nodes in Wm

are grouped decrease hop count value by 1. Repeat the same

procedure among the nodes in the node set Wm−1. The

algorithm ends until the hop count becomes 1. After all, the

topology and loss rates of the inferred links are obtained.

4 Extension to General Trees

The approach to infer loss performance is extended to

general trees in the section, which requires priori knowledge

of the inferred topology too. Section 3.2 proposes the algo-

rithm that can infer the network topology and link loss rate

simultaneously. So we build a scheme as loss rate-based

topology inference where the procedure of topology infer-

ence can benefit from the loss rate inferred by our approach.

4.1 Link loss inference for general trees

Similarly to the deduction of Lemma 2, we estimate the

link loss rate of general trees by Lemma 3.

Lemma 3 The loss rate of link s1 can be estimated by α̂s1 .

α̂s1 = 1 − p̂s1 = 1 − n1
s1s2s3...sm

n1
s2s3...sm

(9)

Where s1, s2, . . . , sm are siblings.

Proof
As n increases to infinity,

lim
n→∞n1

s1s2s3
/n = ps · ps1 · ps2 · ps3
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lim
n→∞n1

s2s3
/n = ps · ps2 · ps3

Thus, limn→∞
n1

s1s2s3
n1

s2s3
= limn→∞ p̂i = pi �

As the number of probe packets go to infinity, the loss

rate estimated by p̂i is consistent with the real loss rate for

each link in general trees.

4.2 Loss rate-based topology inference

A parameter ε is introduced into grouping siblings in

general trees as discussed in [6, 9], which requires ε to be

less than all internal link loss rates such that the inferred

topology can be correctly convergent to the true topology.

However, the internal link loss rates are unknown in ad-

vance, which causes the wrongly inferred topology with

only the high loss rate links such as the discussion about

failure inference in [6].

Thus, with the help of the approach to loss rate infer-

ence we proposed above, a scheme is built to adjust ε timely

based on inferred loss rates.

The grouping step for topology inference starts by find-

ing a binary set {u1, u2} of minimal hamming distance

HD(·, ·) as defined in [9], then adjoining further elements

to it provided any other node pair {ux, uy} satisfies the in-

equality (10).

Hd(ux, uy)(1 − ε) < Hd(u1, u2) (10)

In the procedure of grouping siblings, loss rates of the

links are computed. But wrong grouping may exist due to

inappropriate choice of ε. So when the minimal loss rate

among all the links is less than ε, we change the value of

ε to be the minimal loss rate, and group the siblings again

according to the modified ε. The procedure is described as

follows.

1. Initiate ε, α̂min.

2. While α̂min < ε do

3. ε = α̂min

4. Group siblings according to inequality (10).

5. Compute the loss rates based on inferred topology,

denote the minimized loss rate as α̂min.

ε is initiated to be less than α̂min in the adjusting pro-

cedure, both with quite large values. So some pseud sib-

lings are grouped firstly, which will result in large loss rates.

Among them the minimal loss rate is nevertheless, less than

the initiated value. Then all the nodes will be grouped again

with smaller ε, some pseud siblings are removed in this

case, which consequently diminishes the minimal loss rate

inferred in the newly grouped tree. The nodes are grouped

again due to α̂min < ε. The procedure is repeated until ε is

adjusted to the appropriate value that satisfies the condition

ε is smaller than the loss rates of all links in the network.

Thus, the inferred topology can be quickly convergent to

the true topology with the appropriate ε. Lemma 4 demon-

strates the relationship between ε and the link loss rate.

Lemma 4 A large ε causes more pseud siblings grouped in

the inferred tree, which makes the loss rates of the links in

the network increased. On the other hand, a small ε can

remove some pseud siblings thus result in decreased loss

rates of the links.

Proof

Assume that s1 is identified to have m siblings including

itself and some likely pseud siblings. Then, let p̌s1(m) de-

notes the successfully accepting probability of link s1 under

the assumption of m siblings.

p̌s1(m) =
n1

s1s2s3...sm

n1
s2s3...sm

If a smaller ε causes a node removed into its siblings set

according to the inequality (10).

p̌s1(m − 1) =
n1

s1s2s3...sm−1
+ x

n1
s2s3...sm−1

+ y

Both x and y are integer. x is less than y due to the re-

moving of the node whose “0-1” sequence is much different

from those of other nodes. The hamming distance between

the sequences maintained by the removing node and other

nodes is far from those among other siblings, which leads x

to be less than y, and both are more than 0.

Thus,

p̌s1(m − 1) < p̌s1(m)

So a smaller ε leads the adjusting procedure to remove

some pseud siblings thus result in decreased loss rates of

the links. �

The loss rate-based topology inference can thus be more

accurate by adjusting ε than those inferred in [6, 9].
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5 Conclusion

A novel approach to inferring the network internal loss

performance has been proposed in this paper. Incorporat-

ing with the topology inference procedure we proposed re-

cently, we have presented an algorithm that infers link loss

rate and multicast topology simultaneously. It has been

proved that the estimated loss performance by our approach

is consistent with the real loss performance in the multi-

cast network. Moreover, we have extended the link loss

rate inference to general trees. Based on inferred loss rate,

a scheme for inferring correctly convergent topology has

been built.
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