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Abstract

In this paper, we address the problem of cache replace-
ment for transcoding proxy caching. First, an efficient cache
replacement algorithm is proposed. Our algorithm consid-
ers both the aggregate effect of caching multiple versions of
the same multimedia object and cache consistency. Second,
a complexity analysis is presented to show the efficiency of
our algorithm. Finally, some preliminary simulation exper-
iments are conducted to compare the performance of our
algorithm with some existing algorithms. The results show
that our algorithm outperforms others in terms of the vari-
ous performance metrics.

Key words: Transcoding, proxy caching, cache replace-
ment, multimedia, Internet.

1. Introduction

Web caching [21] has become one of the most impor-
tant technologies for improving network and system per-
formance by reducing user access latency, network traffic
and server load. To achieve such improvement, many tech-
niques have been utilized, such as cache replacement, object
placement, caching architecture, proxy placement, caching
protocol. In this paper, we focus on the problem of cache
replacement which is generated due to the limited cache
space. If the cache size is large enough, this problem be-
comes trivial since all objects can be stored in the cache
such that the total access cost is minimized. As a result,
cache replacement algorithms [1, 17] are used to determine
a suitable subset of web objects to be removed from the
cache to make room for a new web object. An overview of
web caching replacement algorithms can be found in [2].
However, the improvement of network performance, such
as access latency reduction achieved by caching web ob-
jects, does not come completely for free. maintaining cache
content consistence will also introduce additional overhead.
Consistency algorithms [3, 5, 13] are widely applied by

many proxy cache implementations to ensure a suitable
form of consistency for the cached objects.

Transcoding is used to transform a multimedia object
from one form to another, such as a different format or
different resolution, to adapt the object to the constraints
at the clients. It is most often used to convert video for-
mats (i.e., Beta to VHS, VHS to QuickTime, QuickTime to
MPEG), but it is also used to fit HTML files and graphics
files to the hardware constraints of mobile devices and other
Web-enabled products. These devices usually have smaller
screen sizes, smaller memory, and slower bandwidth rates.
In such cases, transcoding is performed by a transcoding
proxy server, which receives the requested document or file
and transcode it in accordance with the constraints at the
client.

Since transcoding proxies play an important role in the
functionality of web caching, transcoding proxy caching is
attracting more and more attention [6,7,10,12,15,18]. How-
ever, existing cache replacement algorithms cannot be sim-
ply applied to transcoding proxy caching because of the new
emerging factors in the environment of transcoding proxies,
such as the additional delay caused by transcoding, differ-
ent sizes and different reference rates for different versions
of a multimedia object, and the aggregate effect of the prof-
its of caching multiple versions of the same multimedia ob-
ject. In [8], the authors proposed an efficient cache replace-
ment algorithm for transcoding proxies, AE in short, which
selects objects to remove from the cache based on their gen-
eralized profit function one by one. When one object is re-
moved from the cache, the generalized profits for the rele-
vant objects will be revised. If the free space cannot accom-
modate the new object, another object with the least gener-
alized profit is removed until enough room is made for the
new object. However, this method is not optimal when there
is more than one object to be removed, as shown in the fol-
lowing example.

Example Suppose that there are two objects and
each object has three versions, i.e., the object set is
{o1,1, o1,2, o1,3, o2,1, o2,2, o2,3}, where oi,j denotes ver-
sion j of object i. The size set of all the objects is
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{3, 2, 1, 3, 2, 1}. We also assume that the generalized prof-
its of caching one or two versions of each object are shown
in Table 1. For example, the generalized profit of caching
o1,2 is 20, and the generalized profit of caching o2,1 and
o2,3 is 30.

o1,1 o1,2 o1,3 o2,1 o2,2 o2,3

18 20 16 16 18 18
o1,1, o1,2 o1,1, o1,3 o1,2, o1,3 o2,1, o2,2 o2,1, o2,3 o2,2, o2,3

29 25 28 26 30 28

Table 1. Generalized Profit

If an object with size 2 is to be inserted, it is obvious that
object o2,1 should be removed because it has the least gener-
alized profit, and its size is enough to accommodate the new
object. In this case, AE is efficient. If an object with size 4
is to be inserted, AE will first remove object o2,1 from the
cache, and then remove o1,3 from the cache because these
two are the ones with the least profits, and their total size is
enough to accommodate the new object. The lost profit by
removing these two objects is 32. We can see AE is not ef-
ficient in this case because the lost profit is 25 when o1,1

and o1,3 are removed. The main reason is that the aggregate
profit of removing multiple versions of the same multime-
dia object at the same time is not the simple summation of
that of removing each version separately as explained later.
�

In addition, the authors in [8] have not considered the in-
fluence of cache consistency on cache replacement. For ex-
ample, when the content of the server is updated, all the
cached versions should be updated as well so that the client
could access the same content as it accesses from the server.
This must lead to some additional cost for transferring the
updated content to the cache. In real application, some mul-
timedia data, such as images showing graphs about recent
stock market, will be updated frequently. Therefore, cache
consistency should be considered in a cache replacement al-
gorithm. Otherwise, an algorithm may make inappropriate
decisions as shown in the following example:

Example Assume that a multimedia object o1 has three
versions o1,1, o1,2, and o1,3. The relationship among differ-
ent versions of an object can be expressed by a weighted
transcoding graph [8]. Figure 1 shows the weighted
transcoding graph for o1, where o1,3 can be transcoded
from o1,1 and o1,2, o1,2 can be transcoded from o1,1 only,
and o1,1 is the original version. It should be noted that
not every o1,j1 can be transcoded to o1,j2 since o1,j1 may
not contain enough content information for the transcod-
ing to o1,j2 . The transcoding delay from one version to an-
other is the number near the edge in Figure 1. For example,

the transcoding delay from o1,1 to o1,2 is 6 ms. The trans-
mission delays of fetching o1,1, o1,2, and o1,3 from the
server are assumed to be 10 ms, 8 ms, and 5 ms, respec-
tively. The read rates for each version are assumed to be 3
and the update rates for each version are 6.

Figure 1. A Weighted Transcoding Graph

We analyze the following two cases. First, we consider
the cases where we do not have updates. Suppose we do not
have o1,1 in the cache. Then, if o1,1 is accessed, we trans-
mit o1,1 from the server. On the other hand, if we have o1,1

in the cache, and o1,1 is accessed, we need no cost. There-
fore, by caching o1,1, we can save the transmission cost of
o1,1, i.e., 10. Next, suppose o1,1 is not cached and o1,2 is
accessed. Then, the server transcode o1,1 to o1,2, and trans-
mit o1,2 to the client, which causes the delay of 6 + 8. On
the other hand, if o1,1 is cached, we can transcode o1,1 to
o1,2 on the client, which only causes the delay of 6. There-
fore, when o1,2 is accessed, the cost we can save by caching
o1,1 is 6 + 8 − 6. Similarly, when o1,3 is accessed, the cost
we can save by caching o1,1 is 4 + 5 − 4. Because the read
rate for each version is 3, in total, the profit of caching o1,1

is calculated by 3∗10+3∗(6+8−6)+3∗(4+5−4) = 69.
Just similarly, the profit of caching o1,2 is calculated by
3∗(6+8)+3∗(4+5−3) = 60. Here, 3 in 4+5−3 is the de-
lay for transcoding the cached o1,2 to o1,3. Thus, we should
cache o1,1 to achieve more profit in this case.

Second, we consider the cases with data updates. When
an object is updated at the server, and some versions of that
object have been cached by some proxies, the updated ob-
ject is transcoded into the corresponding versions at the
server, and those versions are sent to the proxies. There-
fore, caching an object causes the increase of the cost for
that transcoding and that transmission. However, transcod-
ing need to be done only once even when many prox-
ies are caching a version of the object. Therefore, in the
computation of the profit of each cached object, we ignore
the cost for the transcoding, and we include only the cost
for the transmission. Following this discussion, when we
have updates, the profit of caching o1,1 is calculated by
3 ∗ 10 + 3 ∗ (8 + 6 − 6) + 3 ∗ (5 + 4 − 4) − 6 ∗ 10 = 9
and the profit of caching o1,2 is calculated by 3 ∗ (8 + 6) +

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05) 

0-7695-2415-X/05 $20.00 © 2005 IEEE



3 ∗ (5 + 4 − 3) − 6 ∗ 8 = 12. Compared with the previ-
ous calculation, the terms 6 ∗ 10 and 6 ∗ 8, corresponding to
the costs for the cache maintenance, are added. In this case,
o1,2 should be cached to achieve more profit, while it was
oi,1 when we do not consider updates. �

In this way, the existence and the ratio of updates affect
the decision on what to cache; therefore, it is of particularly
theoretical and practical necessity to address the problem of
cache replacement for transcoding proxy caching by includ-
ing not only the new emerging factors in the environment of
transcoding proxies but also cache consistency. In this pa-
per, we propose an efficient cache replacement algorithm
for transcoding proxy caching, which integrates both the
new emerging factors and cache consistency. Specifically,
we formulate a generalized aggregate cost saving function
to evaluate the profit of caching multimedia objects. Our al-
gorithm evicts the objects in the cache with less generalized
aggregate cost saving to fetch a new object into the cache.
We evaluate our algorithm on different performance met-
rics through extensive simulation experiments and compare
our algorithm with other algorithms proposed in the litera-
ture. The algorithm proposed in this paper can be viewed as
an extension of our previous one proposed in [14]. To make
this paper complete, we repeat some description.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces object caching. We present a cache re-
placement algorithm for transcoding proxy caching and its
analysis in Section 3. The simulation and performance eval-
uation are described in Section 4 and Section 5, respectively.
Section 6 summarizes our work and concludes the paper.

2. Object Transcoding

Transcoding is used to transform a multimedia object
from one form to another, frequently trading off object fi-
delity for size, i.e., the process of converting a media file
or object from one format to another. Transcoding is often
used to convert video formats (i.e., Beta to VHS, VHS to
QuickTime, QuickTime to MPEG). But it is also used to fit
HTML files and graphics files to the unique constraints of
mobile devices and other Web-enabled products. These de-
vices usually have smaller screen sizes, lower memory, and
slower bandwidth rates. In this scenario, transcoding is per-
formed by a transcoding proxy server or device, which re-
ceives the requested document or file and uses a specified
annotation to adapt it to the client.

The relationship among different versions of a multi-
media object can be expressed by a weighted transcoding
graph [8]. An example of such a graph is shown in Fig-
ure 2, where the original version A1 can be transcoded to
each of the less detailed versions A2, A3, A4, and A5. It
should be noted that not every Ai can be transcoded to Aj

since it is possible that Ai does not contain enough con-

tent information for the transcoding from Ai to Aj . In our
example, transcoding can not be executed between A4 and
A5 due to insufficient content information. The transcod-
ing cost of a multimedia object from Ai to Aj is denoted
by wA(j1, j2). The number beside each edge in Figure 2 is
the transcoding cost from one version to another. For exam-
ple, wA(1, 2) = 6, and wA(3, 4) = 4. φA(i) is the set of all
the versions that can be transcoded from Ai, including Ai.
For example, φA(1) = {1, 2, 3, 4, 5}, φA(2) = {2, 4, 5},
and φA(4) = {4}. In this paper, we use GA to denote a
weighted transcoding graph.

Figure 2. An Example of A Weighted
Transcoding Graph

3. A Cache Replacement Algorithm

In this section we present an efficient cache replacement
algorithm for transcoding proxy caching. In Section 3.1, a
generalized aggregate cost saving function is defined to de-
termine the rule for evicting the cached objects to make
room for a new object if necessary. In Section 3.2, we
present a cache replacement algorithm and its analysis. Fi-
nally, we introduce the method of estimating the parameter
appearing in the algorithm.

3.1. Generalized Cost Saving Function

Let oi,j denote version j of object i and mi denote the
number of different versions of object i. di,j is the cost
of reading or writing oi,j from the server and ωi(j1, j2) is
the transcoding cost from version j1 to version j2 of ob-
ject oi. φi(j) is the set of all the versions of oi that can be
transcoded from oi,j , including oi,j itself.

First we calculate the cost saving of caching only one
version of an object (no other versions are cached). From
the standpoint of clients, an optimal cache replacement al-
gorithm should maximize the cost saving from caching mul-
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tiple copies of objects by considering both the read cost and
the update cost. Thus, the individual cost saving of caching
only oi,j is defined as follows.

Definition 1 CS(oi,j) is a function for calculating the in-
dividual cost saving of caching oi,j , while no other versions
of object i are cached.

CS(oi,j) =
�

x∈φi(j)

λi,x(ωi(1, x) + di,x − ωi(j, x)) − µidi,j (1)

In Equation (1), ωi(1, x) and di,x is the cost for transcod-
ing the original version to version x and sending it to the
client, which are saved by caching oi,j , and ωi(j, x) is the
additional cost of transcoding version j to version x at the
client, which is needed when caching oi,j . di,j is the addi-
tional cost of sending oi,j from the server to the cache upon
updates of oi so that the content of the cached version is
consistent with that of the server. Now we give an exam-
ple of the calculation of the individual cost saving.

As a matter of fact, there may be many versions of an
object that can be cached at the same time if this is benefi-
cial. In the following we discuss the aggregate cost saving
of caching multiple versions of an object. We define the ag-
gregate cost saving of caching multiple versions of an ob-
ject at the same time as below.

Definition 2 CS(oi,j1 , oi,j2 , · · · , oi,jk
) is a function for

calculating the aggregate cost saving of caching oi,j1 , oi,j2 ,
· · · , oi,jk

.

CS(oi,j1 , oi,j2 , · · · , oi,jk
) =

∑
y∈{j1,j2,··· ,jk}

 ∑
x∈Φi(y,S)

λi,x(ω(1, x) + di,x − ω(y, x)) − µidi,y




(2)

where Φi(y, S) is the set of the versions that should be
transcoded from oi,y when a set of versions S are cached.

If we use si,j to denote the size of oi,j , then we formu-
late the generalized aggregate cost saving function as fol-
lows:

CSG(oi,j1 , oi,j2 , · · · , oi,jk
)

= CS(oi,j1 , oi,j2 , · · · , oi,jk
)/

k∑
α=1

si,jα

(3)

It is easy to see that the generalized aggregate cost
saving function is further normalized by the total size of
oi,j1 , oi,j2 , · · · , oi,jk

to reflect the object size factor. The
rationale behind this normalization is to order the objects
by the ratio of aggregate cost saving to their total object
size. The generalized aggregate cost saving function defined
in Equation (3) explicitly takes into consideration the new
emerging factors in the environment of transcoding proxies.
Importantly, it also takes cache consistency into account.

3.2. A Cache Replacement Algorithm

In this section we propose an efficient cache replacement
algorithm for transcoding proxy caching based on the gen-
eralized aggregate cost saving function defined in Section
3.1. Suppose that there are l different multimedia objects
cached and the size of a new object to be cached is s, then
we should find a subset of objects O∗ ⊆ O that satisfies the
following conditions.

(1)
∑

oi,j∈O∗
si,j ≥ s.

(2) (∀O
′ ⊆ O that satisfies (1)) CSG(O∗) ≤ CSG(O

′
).

where O∗ = {o1,α1
1
, · · · , o1,α

r1
1

, · · · , ol,α1
l
, · · · , ol,α

rl
l
}

is the set of objects to be removed, O =
{o1,β1

1
, · · · , o1,β

c1
1

, · · · , ol,β1
l
, · · · , ol,β

cl
l
} is the set of ob-

jects cached, and CSG(O∗) =
l∑

i=1

CSG(oi,α1
i
, · · · , oi,α

ri
i

).

CSG(O
′
) can be similarly defined. Obviously, (1) is to

make enough room for the new object, and (2) is to
evict those objects whose generalized aggregate cost sav-
ing is minimal.

The problem of finding O∗ is NP hard, same as the pack-
ing problem. In the following, we present an algorithm that
computes an approximate answer of the problem efficiently
by decomposing the set of the candidate objects to be re-
moved into smaller sets and each such can be decided in
polynomial time.

Before we present the algorithm, we introduce some no-
tations. In the following, let R∗(i, k) denote the minimal
generalized aggregate cost saving of caching k versions of
object i and R∗(k) the minimal generalized aggregate cost
saving of the k objects to be removed. We can see that the
k objects to be removed can be k versions of a multime-
dia object or different versions of different multimedia ob-
jects. Thus, k can be decomposed as k = k1+k2+ · · ·+ka,
where a is the number of different objects to be removed
and 0 ≤ ki ≤ k is the number of versions of an object that
are in the set of the k objects to be removed. For example,
1 → {1+0}, 2 → {2+0, 1+1}, 3 → {3+0, 2+1, 1+1+1},
4 → {4 + 0, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1}, 5 →
{4+1, 3+1+1, 3+2, 2+1+1+1, 2+2+1, 1+1+1+1+1},
· · · . For the instance of k = 4, k can be the combination of
1 + 1 + 1 + 1, 1 + 1 + 2, 2 + 2, 1 + 3, and 0 + 4, where
1 + 1 + 1 + 1 means that the objects to be removed should
be the first four objects with minimal generalized aggregate
cost savings of caching one version, 1+1+2 means that the
objects to be removed should be the three objects, i.e., the
first two objects with minimal generalized aggregate cost
savings of caching one version and the last object with min-
imal generalized aggregate cost saving of caching two ver-
sions, etc. It can be easily proved that there are at most k2
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different such combinations in all. Therefore, we have

R∗(k) = min{R∗(1, k), R∗(2, k), · · · , R∗(l, k),
min

k=k1+k2+···+ka

{R∗(k1) + R∗(k2) + · · · + R∗(ka)}}

We denote the set of all the objects that achieves R∗(k)
by O∗(k) and their total size is S∗(k). Now we give an
example to show how to calculate R∗(k). For the case of
k = 3, we have the combination of 3 + 0, 1 + 2, and
1 + 1 + 1, each of which can be computed using the pre-
vious calculation results. For 3 + 0, we just choose three
versions from one object with minimal generalized aggre-
gate cost savings of caching three versions. For 1 + 2, we
choose the version from an object with minimal generalized
aggregate cost savings of caching one version and two ver-
sions from another object with minimal generalized aggre-
gate cost savings of caching two versions. When we calcu-
lated R∗(1) and R∗(2), they may be using a same version.
In this case, we select another version with minimal gen-
eralized cost saving that is not included. We denote the set
of versions calculated by R∗(1) and R∗(2) as O∗(1) and
O∗(2), respectively. In this case we will recalculate the set
of versions with minimal number of elements by another set
of versions of the same object with the same number of ele-
ments with more generalized aggregate cost saving. For ex-
ample, if o1,1 ∈ O∗(1) and o1,1 ∈ O∗(2), then we will re-
calculate O∗(1) , i.e., finding o1,j with the minimal general-
ized aggregate cost saving except o1,1 to represent o1,1. Al-
though this will be very costly in theory, the fact that the
number of objects we hope to remove in practice is very
small makes it feasible. We shall further study this issue in
our future work. Based on the above calculation, we finally
find how the k objects should be selected such that the gen-
eralized aggregate cost saving is minimized. In fact, there
may exist a replacement decision by removing more than
k objects and the generalized aggregate cost saving is less.
Thus, the minimization here is conditional, i.e., under the
condition that the minimal number of different objects is to
be removed.

With the above analysis, we can devise the pseudocode
of our algorithm as follows. In the algorithm, C is used to
hold the cached objects, Sc is the cache capacity, Su is the
cache capacity used, o is the object to be cached, and its size
is s.

Algorithm MOR (C,Sc, Su, o)
Input: C, Sc, Su, o
Output: O∗(n)
1. INSERT o INTO C
2. n = 0
3. S∗(n) = 0
4. WHILE Sc − Su − S∗(n) < s DO
5. n = n + 1
6. FOR i = 1 TO l DO
7. CALCULATE R∗(i, n)

8. CALCULATE R∗(n)
9. CHECK O∗(n) (make the n objects differ-
ent)

Regarding to the time complexity of this algorithm, we
have the following theorem.

Theorem 1 The time complexity of Algorithm MOR is
O(K(l + K) log (l + K)), where l is the total number of
different objects cached, K = k2 and k is the number of
objects to be removed.

Proof Suppose k objects are removed to make room for the
new object. The running time of Algorithm MOR mainly
depends on Steps 4, 6, 8, and 9. The running time of Step 6
is determined by computing R∗(i, n) for 1 ≤ i ≤ l. For ob-
ject i, calculating R∗(i, n) is to find the minimal general-
ized aggregate cost saving of caching n versions of object i.
Note that we should compute the aggregate profit of caching
n versions of object i, and then order them according to
the calculated profit. Thus, the running time for calculating
R∗(i, n) is O(C(mi; n) log C(mi;n)). Therefore, The run-

ning time of Step 6 is O(
l∑

i=1

C(mi; n) log C(mi; n)) since

there are l objects cached and C(mi;n) = mi!/(n!(mi −
n)!). The running time for Step 8 is O((l + n) log (l + n))
because we should order all l + n items to find the mini-
mal one among them. Thus, the total running time for Al-

gorithm MOR (Step 4) is O(
K∑

n=1

[(l + n2) log (l + n2) +

l∑
i=1

C(mi; n) log C(mi; n)]) = O(K(l + K) log (l + K))

since in general mi ≈ 10 and l is very very large, where
K = k2, k is the number of objects to be removed, l is
the number of different objects, and mi is the number of
versions of object i. Since the running time for Step 9 is
O(log l), the total running time for Algorithm MOR is
O(K(l + K) log (l + K)). Hence, the theorem is proven.
�

From Theorem 1, we know that the time complexity of
Algorithm MOR depends on k, i.e., the number of ob-
jects to be removed. In practical execution, we always stop
the execution of searching the objects to be removed to
make room for the new object when k reaches a certain
number. This is based on the fact that it is not beneficial
to remove many objects to accommodate only one object.
So the practical time complexity of Algorithm MOR is
O(l log l), which is the same as that of the algorithm pro-
posed in [8]. However, from the algorithm we know that
we have to search the entire cache for the other versions
of the object and then recalculate the generalized aggregate
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cost savings for them whenever we insert or evict an ob-
ject into or from the cache. Such operations are, in general,
very costly. Here, we save calculated results for later com-
putation, which will save a lot of computations. For exam-
ple, after we finish computing R∗(n), we save it using an ar-
ray. When we hope to compute R∗(n + 1), we do not need
to recalculate R∗(k) for 1 ≤ k ≤ n again by reading it from
the array directly.

4. Simulation Model

We have performed extensive simulation experiments to
compare the relative performance of our algorithm with ex-
isting cache replacement algorithms. The system configura-
tion is outlined in section 4.1, and existing cache replace-
ment algorithms used for the purpose of comparison are in-
troduced in Section 4.2.

4.1. System Configuration

We use the same system configuration and parameter es-
timation methods as we used in [14] in our simulation. To
generate the workload of clients’ requests, we model a sin-
gle server that maintains a collection of m multimedia ob-
jects. The multimedia objects are assumed to be videos.
The object popularity followed a Zipf-like distribution [4].
Specifically, the popularity of the ith video was proportional
to 1/iα. The default values of m and α were set to be 1000
and 0.75 respectively. The sizes of the videos followed a
heavy tailed distribution with the mean value of 12K Bytes
[16]. Although the average video size is assumed to be 12K
Bytes, we think that the size of each data will not affect the
relative performance of our algorithm as long as the distri-
bution of the ratio of the sizes to each other is the same. The
clients are divided into five classes and we assume that the
sizes of the five versions of each video are 100 percent, 80
percent, 60 percent, 40 percent, and 20 percent of the orig-
inal video size. The access probabilities of the clients are
described as a vector of < 0.2, 0.15, 0.3, 0.2, 0.15 >. The
transcoding relationship of the five versions is shown in Fig-
ure 3.

Figure 3. Transcoding Graph for Simulation

Regarding the transcoding rate, we set it, as in [6], to
be 20K bytes per second. The delays of fetching the videos
from the server are given by an exponential distribution. We
assume that there is no correlation between the video size
and the delay of fetching it from the server. This is justi-
fied by Shim et al. in [19].

The synthetic workloads are generated according to the
results on the web workload characterization [9, 16], which
are widely used for evaluating the performance of differ-
ent caching systems [8,20]. Table 2 lists the parameters and
their values used in the simulation.

Parameter Value
# of Objects 1000 objects

Delay of Exponential Distribution
Fetching Objects p(x) = θ−1e−x/θ (θ = 0.45 Sec)

Web Object Pareto Distribution
Size Distribution p(x) = aba

a−1 (a = 1.1, b = 8596)
Web Object Zipf-Like Distribution

Access Frequency 1
iα (i = 0.7)

Transcoding Rate 20KB/Sec

Table 2. Parameters Used in Our Simulation

4.2. Evaluated Algorithms

We include the following algorithms for evaluating our
proposed algorithm.

• LRU : Least Recently Used (LRU ) evicts the web ob-
ject which was requested the least recently. The cache
purges one or more least recently requested objects to
accommodate the new object if there is not enough
room for it.

• LNC − R [17]: Least Normalized Cost Replacement
(LNC − R) is an algorithm that approximates the op-
timal cache replacement algorithm. It selects for re-
placement the least profitable objects. The profit func-
tion is defined as profit(Oi) = (ci · fi)/si, where ci

is the average delay to fetch document Oi to the cache,
fi is the total number of references to Oi, and si is the
size of document Oi.

• AE [8]: Aggregate Effect (AE) is an algorithm that
formulates a generalized profit function to evaluate the
aggregate profit from caching multiple versions of an
object. The difference between AE and the solution
proposed in this paper lies in that AE removes the ob-
jects from the cache one by one, and our solution re-
moves the objects at the same time by considering the
aggregate effect of caching multiple versions of the
same object.
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5. Performance Evaluation

In this section, we compare the performance of our al-
gorithm with those algorithms introduced in Section 4.2
in terms of several performance metrics. The main perfor-
mance metrics employed in the simulation include: delay-
saving ratio (DSR), defined as the fraction of communica-
tion and server delays which is saved by fetching objects
from the cache instead of the server; request response ra-
tio (RRR), defined as the ratio of the access latency of the
target object to its size; object hit ratio (OHR), defined as
the ratio of the number of requests satisfied by the caches
as a whole to the total number of requests; and staleness ra-
tio (SR), defined as a fraction of cache hits which return
stale objects. Here “stale” means that the time that an ob-
ject was brought to the cache is less than the last-modified
timestamp corresponding to the request. In the following
figures, LRU , LNC − R, and AE denote the results for
the three algorithms, and OA denotes the results for the al-
gorithm proposed in Section 3.2. In the simulation, we only
include the implementation without consideration of cache
consistency.

5.1. Impact of Cache Size

In the first experiment set, we compare the performance
of different algorithms across a wide range of cache sizes,
from 0.04 percent to 15.0 percent of the total size of all the
objects. The relative cache size of 15 percent is very large in
the context of web caching due to the large network under
consideration [20].

The first experiment investigates DSR as a function of
the relative cache size and Figure 4 shows the simulation
results. As presented in Figure 4, we can see that our al-
gorithm outperforms the others. Specifically, the mean im-
provements of DSR over LRU , LNC − R, and AE are
9.5 percent, 21.6 percent, and 23.5 percent, respectively.
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Figure 4. Experiment on DSR and RRR

We also describe the results of RRR as a function of the
relative cache size in Figure 4. Clearly, the lower the RRR,
the better the performance. As we can see, all algorithms

provide steady performance improvement as the cache size
increases. We can also see that OA constantly improves
RRR compared to AE, others do not satisfy such crite-
rion. For RRR to achieve the same performance as OA, the
other algorithms need 1.4 to 5 times as much cache size.

Figure 5 also shows the results of OHR as a function of
the relative cache size for different algorithms. By comput-
ing the objects with minimal generalized aggregate cost sav-
ing to be removed, we can see that the results for our algo-
rithm constantly outperforms those of the others, especially
for smaller cache sizes. We can also see that OHR steadily
improves as the relative cache size increases, which con-
forms to the fact that more requests will be satisfied by the
caches as the cache size becomes larger.
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Figure 5. Experiment for OHR

5.2. Impact of Object Access Frequency

This experiment set examines the impact of object access
frequency distribution on the performance of different algo-
rithms. Figures 6, and 7 shows the performance results of
DSR, and OHR for the values of Zipf parameter α from
0.2 to 1.0. We can see that OA consistently provides the
best performance over a wide range of object access fre-
quency distributions. Specially, OA reduces or improves
DSR by 25 percent, 21 percent, and 11 percent compared
to LRU , by 18 percent, 15 percent, and 7 percent compared
to LNC − R, and by 15 percent, 10 percent, and 5 percent
compared to AE for Zipf parameters of 0.2, 0.6, and 1.0,
respectively; the default cache size used here (4 percent) is
fairly large in the context of caching due to the large net-
work under consideration (e.g. that of a regional ISP ).

6. Conclusions

In this paper, we proposed an efficient cache replacement
algorithm for transcoding proxy caching, which combined
both the new emerging factors in transcoding proxies and
cache consistency. The simulation results indicate that our
algorithm constantly achieve good performance than the al-
gorithms considered.
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