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Abstract

Topology information of a multicast network benefits sig-
nificantly to many applications such as resource manage-
ment, loss and congestion recovery. In this paper we pro-
pose a new algorithm, namely binary hamming distance and
hop count based classification algorithm (BHC), to infer
multicast network topology from end-to-end measurements.
The BHC algorithm identifies multicast network topology
using hamming distance of the sequences on receipt/loss of
probe packets maintained at each pair of nodes and incor-
porating the hop count available at each node. We analyze
the inference accuracy of the algorithm and prove that the
algorithm can obtain accurate inference at higher proba-
bility than previous algorithms for a finite number of probe
packets. We implement the algorithm in a simulated net-
work and validate the algorithm’s performance in accuracy
and efficiency.

Key words: Multicast network, topology inference, se-
quence, hamming distance.

1 Introduction

For the efficient use of network resources, multicast has
become one of the most popular forms of communication.
Knowledge of multicast network topology can significantly
facilitate resource management, and can be applied to build
schemes for loss recovery and congestion control in the
context of multicast sessions supporting heterogeneous re-
ceivers [1, 4]. End-to-end measurements-based multicast
network inference becomes one of the most efficient and
effective approaches to obtain the information of the net-
work internal characteristics such as topology and loss per-
formance.

Much research on multicast topology inference from

end-to-end measurements can be found in [2, 3, 6, 7, 5, 8].
The key idea underlying the approach is that receivers shar-
ing common paths on the multicast tree associated with a
given source will see correlations in their packet losses or
delays. The multicast tree can thus be inferred based on the
shared loss or delay statistics on transmitted probe pack-
ets. The main advantage of the approach lies in its applica-
bility to inferring multicast trees requiring no support from
internal nodes. It permits however, identification of a logi-
cal multicast topology rather than the actual physical topol-
ogy in previous work. A long path with no branches would
be identified as a single logical link. Thus, all single-child
nodes are deleted in the inferred logical topology. It is ob-
vious that in practice this may not be an appropriate infer-
ence of the actual topology because there may exist many
nodes with only one child. Moreover, as we have presented
in [11], the prevalent method to estimate correlation used
in [2, 5, 6, 7, 9, 12] for siblings identification may produce
fault results. Therefore, we propose the usage of hamming
distance. Incorporating the hop count into the hamming
distance based classification proposed in [11], a new algo-
rithm, which is called the binary hamming distance and hop
count based classification algorithm(BHC) is proposed in
this paper. It can not only solve fault correlation existing
in current algorithms, but also identify the nodes and links
failed to be inferred in [7]. In this paper, the BHC algorithm
will be described in detail. We will also prove the superior-
ity of the BHC algorithm by both theoretical proof and sim-
ulation. Moreover, we extend the same idea on combining
hamming distance with hop count to general tree topology
inference so that our topology inference algorithm is gener-
alized.

The paper is organized as follows. In Section 2 a mathe-
matical model of multicast network is introduced. The BHC
algorithm for multicast topology inference is presented in
Section 3. Section 4 gives a theoretical analysis on infer-
ence accuracy of the algorithm. Section 5 presents the sim-
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ulation results of the algorithm. Extension of the algorithm
to the general trees is discussed in Section 6. Section 7 con-
cludes the paper.

2 Mathematical Model of Multicast Network

We begin with description of the mathematical model for
the real multicast network as presented in [7, 5]. In this
model, the physical multicast tree is represented by a tree
comprising actual network elements (the nodes) and com-
munication links connecting them.

Let T = (V, L) denote a multicast tree with node set V
and link set L. The root node 0 is the source of probe pack-
ets, and R ⊂ V denotes the set of leaf nodes representing
the receivers. A link is said to be internal if neither of its
endpoints is the root or a leaf node. Each non-leaf node k
has a set of children node d(k) = {di(k) | 1 ≤ i ≤ nk}
, and each non-root node k has a parent p(k) . The link(
p(k), k

) ∈ L is denoted by link k. Write j ≺ k if j is
descended from k, k = pr(j) if j is r-level descended from
k, where r is a positive integer. Let a(U) denote the near-
est common ancestor of a node set U ⊂ V . Nodes in U
are said to be siblings if they have the same parent, i.e.,
if f(k) = a(U), ∀k ∈ U . The subtree of T rooted at k
is denoted by T (k) =

(
V (k), L(k)

)
, and the receiver set

R(k) = R∩V (k). Figure 1 shows an example of multicast
tree model.

Figure 1. A multicast tree model

For each link an independent Bernoulli loss model is as-
sumed with each probing packet being successfully trans-
mitted across link k with probability pk. Thus the progress
of each probing packet down the tree is described by an in-
dependent copy of a stochastic process X = (Xk)k∈V as
follows. X0 = 1, Xk = 1 if the probing packet reaches
node k ∈ V and 0 otherwise. If Xk = 0, Xj = 0,∀j ∈
d(k). Otherwise, P [Xj = 1|Xk = 1] = pj and P [Xj =
0|Xk = 1] = 1 − pj = αj . Define p0 = 1. The pair (T, p)
is called a loss tree. PT,p denotes the distribution of X on

the loss tree (T, p). X
(i)
k denotes the loss measurement of

node k for ith probe packet. If 0 < pk < 1,∀k ∈ V \{0},
the loss tree is said to be a canonical tree. Any tree (T, p) in
non-canonical form can be reduced to a canonical tree [7].
Henceforth only canonical loss trees are considered in this
paper.

3 Binary Hamming Distance Classification
Algorithm

Topology inference for multicast network in binary tree
form is firstly considered for simplicity. Extension to gen-
eral trees will be described later. We begin the section with
a simple introduction on the previous algorithms. We then
give the detailed description of the BHC algorithm.

As the description in Section 2, X
(i)
k is 1 if the ith probe

packet reaches node k and 0 otherwise. Each node in the
network maintained a “0-1” sequence {X(i)

k }, 0 < i < n,
k ∈ V after n probe packets are sent. The sequence main-
tained by internal routers is obtained by ∨l∈R(k)X

(i)
l be-

cause the internal node is said to receive a probe packet
surely if any receiver descended from it receives the probe
packets. Based on all these “0-1” sequences, we can com-
pare the correlation among different nodes so as to recon-
struct the multicast network topology and infer the internal
link characteristics.

In the previous work such as [7, 6, 5, 9, 12], the prod-
uct of the probabilities of successful transmission on all the
links between the root 0 to node k, denoted by A(k) =
Πj�kpj , is used to infer the network topology. A(k) =
Πj�kpj is the product of the probabilities of successful
transmission on each link between k and the root 0. If the
probability of one probe packet is successfully transmitted
from the root to the nearest ancestor node of a receivers sub-
set is minimized, the receivers are considered as siblings.
That is, this approach identify the siblings by minimizing
the following equation.

A(i, j) =
P [∨l∈R(i)Xl = 1]P [∨l∈R(j)Xl = 1]

P [∨l∈R(i)Xl = ∨l∈R(j)Xj = 1]
. (1)

In practice, A(i, j) is estimated by A(n)(i, j) as follows:

A(n)(i, j) =

∑n
m=1 X

(m)
i · ∑n

m=1 X
(m)
j

n · ∑n
m=1 X

(m)
i · X(m)

j

, (2)

where X
(m)
k = ∨l∈R(k)X

(m)
l . Because we cannot get ac-

tual probability in Equation (1), it is estimated by the ob-
servation from n probe packets, eg., P [∨l∈R(i)Xl = 1] is

estimated by
∑n

m=1
X

(m)
i

n . As n goes to infinity, A(n)(i, j)
is consistent with A(i, j), i, j ∈ V . However, it is obvious
that the estimation causes bias with a finite number of probe
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packets. Even worse, A(n)(i, j) is used for determine ev-
ery siblings pair, the bias brought by estimation may cause
severe mistakes in topology inference. We addressed this
problem in [11] and then proposed a solution by applying
hamming distance.

As defined in [11], the hamming distance between nodes
p and q can be obtained by the following equation, where
“⊕” is the exclusive-OR operator.

Hd(u, v) =
n∑

m=1

X(m)
u ⊕ X(m)

v . (3)

The main reason why we apply hamming distance is that
hamming distance is the simplest and most efficient method
to identify the similarity and dissimilarity among different
bit sequences. We also apply hop count information to the
BHC algorithm because hop count provides level informa-
tion on topology structure which avoids failure in inferring
the single-child nodes in the network. Thus, we propose the
BHC algorithm as follows, where each node k is associate
with a hop count k·hop.

1. Input: The set of receivers R, number of probe packets
n, observed sequences at receivers (X(i)

k )i=1,···,n
k∈R ;

2. R′ := R, V ′ := φ, L′ := φ, h = maxk∈R(k.hop),
Wm = φ, (m = 1, · · · , h); //V ′ is the set of nodes
that was discovered; L′ is the set of discovered links,
Wm is a set of nodes with hop count value m, m is
initialized as the maximum value of hop count h for
all nodes in R.//

3. for k ∈ R, do
4. Wk.hop := Wk.hop

⋃{k}
5. while m > 1 do
6. while Wm 	= ∅ do
7. Let u be the first element in Wm; search for

v ∈ Wm to minimize Hd(u, v), (u 	= v);
8. if Hd(u, v) > δm then S = {u}, Set r to be u’s

virtual parent node; //Initially, sibling nodes set
S := ∅, δm is a given threshold.//

9. else S = {u, v}, Set r to be u and v’s
virtual parent node;

10. for i = 1, · · · , n do X
(i)
r := ∨l∈SX

(i)
l ;

11. r.hop := m − 1;
12. V ′ := V ′ ⋃ S; Wm := Wm \ S; Wm−1 :=

Wm−1

⋃{r};
13. for each l ∈ S, L′ := L′ ⋃{(r, l)};
14. S = ∅;
15. m := m − 1;
16. V ′ := V ′ ⋃{0}; L′ := L′ ⋃{0, r};
17. Output: Inferred topology (V ′, L′).

Firstly all the receivers are classified into different node
sets Wm (1 ≤ m ≤ h) according to their values of hop
count. The hamming distances of each node pair in Wm

are calculated. Inference begins with identifying siblings in
the node set with maximum value of hop count. The node
pair is identified to be siblings if its hamming distance is
minimal and less than the threshold. Remove the siblings
from the node set with the hop count being m and add the
parent node into the node set with hop count reduced by
1. The “0-1” sequence of the parent node is obtained by
“OR” operation of those of the siblings. When all nodes
in Wm are grouped decrease hop count value by 1. Repeat
the same procedure among the nodes in the node set Wm−1.
The algorithm ends when the hop count becomes 1.

4 Comparison of Inference Accuracy

Our algorithm and the previous algorithms can get the
consistent result with the real multicast network as the num-
ber of probe packets increases to infinity. With a finite num-
ber of probe packets, we will prove in this section that our
BHC algorithm can obtain accurate results with a higher
probability, because the hamming distance is found to be
superior to A(n)(i, j) used in [7, 6, 5, 12] in many cases.

Definition 1 Let s1 and s2 be two receivers that have a
common ancestor node i, s3 be a receiver for which node i
is not an ancestor, Wk is the node set with the hop count k.
Define s(i) as follows:

s(i) = {(s1, s2, s3) : ∀s1, s2, s3 ∈ Wk, 1 ≤ k ≤ h}

Definition 2 For (s1, s2, s3) ∈ s(i), let DH(s1, s2, s3) be
the difference of hamming distance between non-siblings
and siblings, and DA(s1, s2, s3) be the difference of
A(n)(·, ·) between non-siblings and siblings. That is,

DH(s1, s2, s3) = Hd(s1, s3) − Hd(s1, s2),

DA(s1, s2, s3) = A(n)(s1, s3) − A(n)(s1, s2).

Lemma 1 If min(s1,s2,s3)∈s(i)DH(s1, s2, s3) > 0, node
s1 and node s2 can be identified as siblings correctly. The
same holds for DA(s1, s2, s3).

Lemma 1 holds because the hamming distance or
A(n)(·, ·) of a node and its non-sibling nodes should be
greater than that of it and its siblings.

We denote by n1
si

the number of probe packets transmit-
ted from the root to node si successfully, and by n1

sisj
the

number of probe packets transmitted successfully from the
root to both nodes si and sj at the same time, i = 1, 2, 3.

Lemma 2 For (s1, s2, s3) ∈ s(i), if inequality (4) holds,
the hamming distance approach can identify the siblings
while A(n)(·, ·) cannot; if inequality (5) holds, A(n)(·, ·)
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can identify the siblings while the hamming distance ap-
proach cannot; in all other cases, both approaches can
identify siblings correctly.

1
2
(n1

s2
− n1

s3
) < n1

s1s2
− n1

s1s3
≤ n1

s1s3

n1
s3

(n1
s2

− n1
s3

), (4)

n1
s1s3

n1
s3

(n1
s2

− n1
s3

) < n1
s1s2

− n1
s1s3

≤ 1
2
(n1

s2
− n1

s3
), (5)

proof
Since Hd(s1, s2) = n1

s1
+ n1

s2
− 2n1

s1s2
and

A(n)(s1, s2) =
n1

s1
·n1

s2
n·n1

s1s2
, we have,

DH(s1, s2, s3) = n1
s1

+ n1
s3

− 2n1
s1s3

− (n1
s1

+ n1
s2

−2n1
s1s2

) (6)

= (n1
s3

+ 2(n1
s1s2

− n1
s1s3

)) − n1
s2

,

and

DA(s1, s2, s3) =
n1

s1
· n1

s3

n · n1
s1s3

− n1
s1

· n1
s2

n · n1
s1s2

(7)

=
n1

s1

n · n1
s1s2

· ((n1
s3

+
n1

s3

n1
s1s3

· (n1
s1s2

−

n1
s1s3

)) − n1
s2

).

¿From Lemma 1, we know that nodes s1 and s2 will
be identified as siblings if DH(s1, s2, s3) > 0 using the
hamming distance approach for any (s1, s2, s3) ∈ s(i). If
(s1, s2, s3) results in DH(s1, s2, s3) < 0, the hamming dis-
tance approach will fail to identify s1 and s2 as siblings
correctly. Similar conditions holds for A(n)(·, ·) approach.
Therefore, we can conclude that if any (s1, s2, s3) ∈ s(i)
results in DA(s1, s2, s3) < 0 while DH(s1, s2, s3) > 0,
the hamming distance approach is superior to the A(n)(·, ·)
approach in siblings identification, and vice versa. Lemma
2 describes the complete conditions based on equations (6)
and (7). �

Based on Lemma 1 and Lemma 2, we find that in most
cases, the performance of the hamming distance approach
and A(·, ·) approach are almost same according to our de-
tailed discussion on the receiving of nodes s1, s2 and s3.
However the occurrence of the hamming distance approach
outperforming A(·, ·) approach is more frequent than that
of A(·, ·) outperforming the hamming distance approach.
As we have found, if only links s1 and s2 are in the sim-
ilar condition, the hamming distance approach can surely
identify siblings correctly when A(·, ·) approach can do so.
What’s more, it can also identify siblings correctly while
A(·, ·) approach fails in some cases. For instance, when
both nodes s1 and s2 receive almost all probe packets while
node s3 loses many probe packets, and n1

s1s3
happens to be

equal to n1
s3

, the hamming distance approach can identify
siblings correctly while A(·, ·) cannot. When both nodes s1

and s2 lose many probe packets while s3 receives almost all

probe packets, and
n1

s1s3
n1

s3
< 1

2 , the hamming distance ap-

proach can also identify the siblings correctly which A(·, ·)
approach fails.

In very few cases, the hamming distance approach can-
not identify siblings correctly while A(·, ·) approach can.
This might happen only when links s1 and s2 are in dif-
ferent conditions which result in dissimilar sequences on
nodes s1 and s2. In a multicast network, only a few sib-
lings links may exhibit completely different performances.
Even if under this condition, it should be noted that in most
cases the hamming distance approach can also identify sib-
lings correctly as A(·, ·) approach does. Thus from all cases
discussed, we can see that the probability that the ham-
ming distance approach succeeds but A(·, ·) approach fails
is greater than the probability in the opposite situation. Val-
idation on this by simulation is given in Section 3.4.

Though obtaining an exact probability of hamming dis-
tance approach outperforming A(·, ·) approach is very dif-
ficult because it varies with different network connections
and conditions, we have seen from our analysis that with
a finite number probe packets, the hamming distance ap-
proach is more likely to work out the accurate topology than
A(·, ·). In another word, due to the greater probability of the
hamming distance approach outperforming A(·, ·) approach
in siblings identification, we may conclude that the use of
the hamming distance approach in the BHC algorithm can
result in better performance in inference accuracy.

5 Simulation Results

In this section, we validate the BHC algorithm by com-
paring it with HBLT which provides the best combination of
inference accuracy and computational efficiency among all
previous topology inference algorithms as [7, 6, 5, 12, 9].
The proof on the superiority of HBLT can be referred to
[9]. Therefore, the comparison between BHC and HBLT is
sufficient to justify the superiority of the BHC algorithm.

The simulation uses a network topology shown in Figure
2. Node 0 is the sender, nodes 1 − 10 are receivers. All the
links are configured at different capacities. Routers are set
low memories. The root node 0 generates probe packets in
a 20Kbit/s-1Mbit/s stream. Every probe packet comprises
one UDP request packet with 1000bytes.

Due to the low capacity and high IP background utiliza-
tion of links, multicast probe packets can be delayed or even
lost. Then for each receiver, the collected data is set to 1 if
the probe packet is received, otherwise 0. Both algorithms
work on the collected “0-1” sequences. From TTL field of
the probe packets obtained from receivers, hop count re-
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Figure 2. An Multicast Network Topology

quired by BHC and HBLT can easily be obtained.
To describe how close the inferred topology is to the

original physical network, we define similarity degree func-
tion as follows:

Definition 3 Define similarity degree to be α · s + β · p,
where s denotes the ratio of the number of nodes whose sib-
lings are identified correctly to the total number of nodes, p
denotes the ratio of the number of nodes whose parent nodes
are inferred accurately to the total number of nodes. α, β
are the weights of these two factors. When all the inferred
descendants of a node are similar to the real descendant of
the node, we say that the node is inferred correctly.

Let α = 0.5 and β = 0.5, then the compared result is
shown in Figure 3.

10
1

10
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10
3

10
4

0

0.2

0.4

0.6

0.8

1

BHC

HBLT

Figure 3. Similarity degree comparison of HBLT and
BHC when α = 0.5, β = 0.5

Figure 3 shows that 150 probe packets are enough for
BHC to get the accurate topology constantly. With the same
number of probe packets, however, HBLT cannot achieve
this in our simulated network. Our experiments show that
HBLT tends to infer accurate topology constantly when the
number of probe packets exceeds 3000. Therefore, we can
conclude that BHC can work out the accurate topology with
fewer probe packets than that needed by HBLT in our sim-

ulated network. That is, BHC is more efficient in topology
inference than the HBLT algorithm.

Figure 3 also validates our analysis on siblings identi-
fication by the hamming distance approach and A(·, ·) ap-
proach. It shows that the probability that hamming distance
approach outperforming A(·, ·) approach is greater than the
probability of the opposite situation.

6 Topology Inference for General Trees

It is more complicated to infer the topology for general
trees than the binary case. We introduce a threshold ε into
grouping the siblings set S. The set S is grouped if the ham-
ming distance between any pair of nodes in S is sufficiently
close to being minimal.

The grouping step starts by finding a pair of nodes {u, v}
that has the minimum hamming distance in S, then adjoin-
ing further elements to it provided the following inequality
is satisfied:

Hd(u, v′)(1 − ε) < Hd(u, v). (8)

Thus we replace line 9 of the BHC algorithm by the fol-
lowing steps so that topology inference for general trees can
be performed.

9a. else {S = {u, v};
9b. while there exists v′ ∈ Wm\S such that

Hd(u, v′)(1 − ε) < Hd(u, v) do
9c. S := S ∪ {v′}; }
9d. Set r to be the virtual parent node of all identified

siblings in S.

We set δm to lg m · n
k in order to avoid mistakenly iden-

tifying siblings due to the existence of two single nodes,
where k is the estimated expected number of branches of
the multicast network.

As presented in [7], the violation of the condition de-
scribed in inequality (15) has the interpretation that the an-
cestor a(U) is separated from a({u, v}) by a link with loss
rate at least ε. The convergence of the inferred topology to
the true topology is mainly influenced by ε. If only ε is less
than the internal link loss rates, the inferred topology will be
convergent to the true topology. However, the internal link
loss rates are unknown in advance. A small value of ε is
more likely to satisfy the above condition but at the cost of
slow convergence. A large value of ε, on the other hand, is
more likely to result in systematically removing links with
small loss rates which causes wrongly convergence. How-
ever, those links with high loss rates are accurately inferred
in both cases which is enough for many applications in prac-
tice. Thus, the choice of ε doesn’t pose a serious problem.
In order to obtain more accurate topology practically, we
envision the scheme of incorporating the link loss inference
into topology inference as we recently proposed in [10].
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7 Conclusion

An improved algorithm for multicast network topol-
ogy inference, the binary hamming distance and hop count
based classification algorithm (BHC), has been proposed in
this paper. With a finite number of probe packets, the topol-
ogy inferred by BHC has been proved to be more accurate
than those inferred by the previous algorithms. Through
simulation, it has also been shown that BHC significantly
outperforms the previous algorithms in efficiency. At the
end of this paper, the proposed algorithm has been extended
to topology inference for general trees.
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