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Abstract

The survivability of a network has assumed great impor-
tance in against of losing huge volumes of data due to a
link cut or node failure. Recently some scholars have pro-
posed some path restoration schemes which used two dis-
joint paths with multiple constraints to satisfy both the sur-
vivability and the QoS requirements. In this paper we will
study the issue of how to identify two paths that satisfy the
multiple QoS constraints imposed by network applications.
More specifically, we will focus on finding two link-disjoint
paths that satisfy the delay constraints at a reasonable to-
tal cost. We present two efficient approximation algorithms
with provable performance guarantees for this problem.

1 Introduction

As networks modernize and expand with the increasing
deployment of optical technology, the large bandwidth of-
fered by the optical fiber has brought tremendous potential
for exploitation. The number of services offered to cus-
tomers over a fiber network is proliferating, but the risk of
losing huge volumes of data due to a span cut or node fail-
ure (due to equipment breakdown at a central office or other
events such as fires, flooding, etc.) has also escalated. At the
same time, the wireless ad hoc network is developing very
fast and high quality video applications are expected to be-
come available in wireless ad hoc networks in near future.
But the unpredictable nature of the wireless environment is
easily prone to link failures (e.g. due to channel fading or
obstructions) and resulting path failures and data loss.

In both situations the survivability of a network has as-
sumed great importance. Survivability refers to the ability
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of a network to provide continuity of service with no disrup-
tion, no matter how much the network may be damaged due
to events such as link failures or node failures. Survivability
and QoS can be achieved by maintaining two disjoint QoS-
constrained paths to increase the probability that source can
reach the destination via another path as the network under-
goes topological changes, thus avoid a unreasonable loss of
service quality.

Although many works have been done to find multiple
node-disjoint or link-disjoint paths in a given network [2, 4],
the problem of finding two disjoint QoS-constrained paths
has got little attention. So far the best work done in this area
is due to [12, 13], in which the authors proposed 4 algo-
rithms to compute two delay-constrained link-disjoint paths
with minimum total cost. If there exist two disjoint paths
with delay less than D and total cost OPT , their algorithm
2DP-1 can find two paths with total delay less than 3D and
total cost (1.5+ε)OPT . Other algorithms proposed in [12]
can find two paths with total delay less than 2D(1 + 1/k)
and total cost k(1 + γ)(1 + ε)OPT .

In this paper we propose two new approximation algo-
rithms for this problem. Our first algorithm can find two
paths with total delay less than 2D(1 + 1/k) and reduce
the total cost to (4 log k + 3.5)OPT , but it is a pseudo-
polynomial algorithm. Our second algorithm is polynomial,
it reduces the time complexity to O(MN4 log k/ε), and the
cost is (4 log k + 3.5)(1 + ε)OPT .

The remainder of the paper is organized as follows. In
Section 2, we describe the problem and the network model.
In Section 3, we present our first approximation algorithm
to reduce the total cost. In Section 4, we improve the time
complexity of this algorithm and turn it into a polynomial
algorithm. Finally, we conclude the paper in Section 5.

2 Model and Problem Formulation

The QoS constraints in a network can be divided into
bottleneck constraints such as bandwidth, additive con-
straints such as delay or jitter and multiplicative constraints
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such as the packet loss rate or possibility. Bottleneck QoS
constraints can be efficiently solved by removing links that
violates the requirement. Multiplicative constraints can be
reduced to additive constraints by a logarithm transforma-
tion. So here we only consider two additive constraints and
we use delay and cost respectively to generically refer to
two different additive constraints for simplicity of exposi-
tion.

We adopt the same model as used in [12], in which the
network is represented by a directed graph G(V, E), where
V is the set of nodes and E is the set of links. The number of
network nodes and links are respectively denoted by N =
|V | and M = |E|. An (s, t)-path is a finite sequence of
distinct nodes P = (s = v0, v1, ..., t = vn), such that, for
0 ≤ i ≤ n − 1, (vi, vi+1) ∈ E. Here, n = |P | is the
number of nodes in P . A cycle is a path whose source and
destination nodes are identical.

Each link l ∈ E has a delay guarantee dl and a cost cl

which estimates the quality of the link in terms of resource
utilization. The delay D(P ) of a path P is the sum of the
delays of its links, i.e., D(P ) =

∑
l∈P dl. The cost C(P )

of a path P is defined to be the sum of the costs of its links,
i.e., C(P ) =

∑
l∈P cl. We shall assume that all parameters

(both delay guaranties and costs) are positive integers.
The following RSP Problem is a fundamental problem in

QoS routing.
Problem RSP (Restricted Shortest Path): Given a source

node s, a destination node t and a delay constraint D, find
an (s, t)-path P such that

1) D(P ) ≤ D, and 2) C(P ) ≤ C(P ) for any other
(s, t)-path P that satisfies D(P ) ≤ D.

Problem RSP is NP-hard [3], but it admits an FPTAS
with complexity of O(MN/ε) [11]. But it requires that
both the delay and the cost of each link must be pos-
itive. The algorithm in [10] has a time complexity of
O(MN(1/ε + log log N)), it requires that both the delay
and the cost of each link must be non-negative. Since in our
algorithms we may set the cost of a link as zero in the resid-
ual graph, we shall use the latter algorithm as a basic stone
and we shall refer to it as Algorithm RSP.

If we extend the Problem RSP to the case of two link-
disjoint paths, we will get the problem we want to solve:

Problem 2DP (2-Restricted Link Disjoint Paths): Given
a source node s, a destination node t and a QoS requirement
D, find two link-disjoint (s, t)-paths P1 and P2 such that:

1) D(P1) ≤ D and D(P2) ≤ D; 2) C(P1) +
C(P2) ≤ C(P 1) + C(P 2) for every other pair of link-
disjoint (s, t)-paths (P 1, P 2) that satisfy D(P 1) < D and
D(P 2) < D.

We denote by OPT the cost of an optimal solution to
Problem 2DP for (G, s, t,D). Problem 2DP includes Prob-
lem RSP as a special case; hence, it is NP-hard. In addition,
it was proved in [12] that it is intractable to find a solution

that does not violate the delay constraint of at least one of
the paths. Furthermore, in most cases, we cannot provide
an efficient solution without violating the delay constraint
in both primary and restoration paths. So we can formulate
a solution to Problem 2DP as a (α, β) − approximation.

Definition 1 ((α, β) − approximations) : Given an in-
stance (G, s, t, D) of Problem 2DP, an (α, β)-approximate
solution (P1, P2) to Problem 2DP is a solution for which:

1) D(P1) + D(P2) ≤ 2αD;
2) the total cost of two paths is at most β times more than

that of the optimal solution, i.e., C(P1)+C(P2) ≤ βOPT .
Let P1 be the primary path with minimum delay, we have

D(P1) ≤ αD and D(P2) ≤ 2αD. Problem 2DP can be
further extended to the following MCF problem:

Problem MCF (minimum constrained flow): Given a
source node s, a destination node t and a delay requirement
D, find an (s, t)-flow f such that:

1) |f | = 2; 2) D(f) ≤ 2D; 3) C(f) ≤ C(f̂)
for any other flow f̂ that satisfies |f̂ | = 2 and D(f̂) ≤ 2D.

Since Problem MCF is a relaxation of Problem 2DP, the
cost of the optimal solution to Problem MCF is no more
than that of Problem 2DP. In next section we will use MCF
in the process of computing and we will also use OPT to
denote the cost of its optimal solution for convenience.

3 A (1+ 1
k
, (4 log k+3.5))-Approximation Al-

gorithm for 2DP

In this section we present our approximation algorithm,
which achieves an approximation ratio of (1+ 1

k , (4 log k +
3.5)). The basic idea of the algorithm is to identify a flow
f from the source node s to the destination node t such
that f = 2 and the total delay and cost of the flow satisfy
some certain bounds, then we continuously find cycles with
negative delay and bounded cost in the residual graph and
augment f along these cycles. The algorithm stops when
D(f) ≤ 2D(1 + 1

k ).
The first step of the algorithm is to compute a flow f

from s to t that satisfies the delay constraint 3D and the
cost constraint (1.5+ ε)OPT . We use the algorithm 2DP-1
in [12] to achieve this.

The next step is to augment this flow in order to decrease
its delay to 2D(1 + 1

k ). To that end, we construct a resid-
ual network G(f) imposed by the flow f . Intuitively, the
residual network consists of links that can admit more flow.

Definition 3 (Residual Network) : Given a network G
with unit capacities and flow f , the residual network G(f)
is constructed as follows. For each link (u, v) ∈ G for
which f(u, v) = 0, we add to G(f) a link (u, v) of the
same delay and cost as in G. For each link (u, v) ∈ G for
which f(u, v) = 1, we add to G(f) a reverse link (v, u) to
G(f) with delay −d(v,u) and zero cost.
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In the residual graph G(f), we use algorithm MINDE-
LAY to find a cycle W that minimizes the delay-to-cost ra-
tio D(W )

C(W ) . There are dozens of algorithm for finding such a
minimum delay-to-cost ratio cycle, [9] is a good survey for
those algorithms. Next, we augment flow f along W . This
will decrease the total delay of f since the delay D(W ) is
negative, but generally it will increase the total cost of f
since the cost C(W ) must be positive. In case the nega-
tive cycle will bring huge cost penalty, we develop a new
algorithm FINALIMPROVE which can find a negative de-
lay cycle with bounded cost and delay-to-cost ratio. To find
a feasible negative cycle, FINALIMPROVE will guess an
estimation of OPT and call algorithm FCYCLE to check
whether there exists such a cycle or not for such a guess.
If FCYCLE fails, FINALIMPROVE will update the guess
toward a correct direction and will finally find a feasible
cycle. Then it augment the flow along this cycle and re-
peat the same process. FINALIMPROVE will stop when
D(f) ≤ 2D(1 + 1

k ).
The final step is to decompose the flow f into two paths

P̂1, P̂2 such that D(P̂1) ≤ D(P̂2). To do this we can adopt
the same method in [8]. The following are the detailed de-
scription of the approximation algorithm 2DisjointPaths-1
and its fellow algorithms.

Algorithm 1. 2DisjointPaths-1(G, s, t, D, k)
Input:

G: the directed graph G=(V,E) with {dl, cl}l∈E;
s : source node; t : destination node;
D: the delay constraint;
k : the approximation index;

Output: (P̂1, P̂2): An (1 + 1
k , 4 log k + 3.5)-

Approximation solution to Problem 2DP;
1 (P1, P2) ← 2DP-1(G, s, t, D, 1

N );
2 f0 ← {P1, P2};
3 if D(f0) ≤ 2D(1 + 1

k ) then
4 return (P1, P2) ;
5 f ← MINDELAY(G, f0, D, k)
6 Decompose f into P̂1, P̂2 with D(P̂1) ≤ D(P̂2);
7 return (P̂1, P̂2) ;

Algorithm 2. MINDELAY(G, f0, D, k)
Input:

G,k: the same as that in 2DisjointPaths-1;
f0 : the original flow;
D: the delay constraint;

Output: f : An improved flow with D(f) ≤ 2D(1 + 1
k )

for 2DP;
1 f ← f0;
2 while D(f) > 2D(1 + 1

k ) do
3 Construct the residual network G(f)

of G imposed by f :
4 Add to G(f) each link l in G with fl = 0;

5 for each link (u, v) ∈ G with f(u,v) = 1 do
6 Add a link (v, u) to G(f)

with d(v,u) = −d(u,v) and c(v,u) = 0;
7 Find a cycle W in G(f) which

minimizes D(W )/C(W );
8 f1 ← f , μ ← D(W )/C(W );
9 Augment flow f along W :
10 if C(f) > 2 ∗ C(f1) and C(f) > C(f0) then ;
11 f ← FinalImprove(G, f1, D, k, C(f0), C(f), μ);
12 return f ;

Algorithm 3. FINALIMPROVE(G, f1, D, k, C(f0), C(f), μ)
Input:

G,D,k: the same as that in MinDelay;
f1 : the flow to be improved;
C(f0) : the cost of the original flow by 2DP-1;
C(f) : the cost of the next flow with

D(f) ≤ 2D(1 + 1
k );

μ : the current minimum delay-to-cost ratio;
Output: f1: An improved flow with D(f1) ≤
2D(1 + 1

k ) for Problem 2DP;

1 LB ← 2D−D(f1)
μ ;

2 if C(f) ≤ LB then return f ;

3 OPT2 ← max{LB, C(f0)
2 , C(f1)

2 log k+2};

4 while D(f1) > 2D(1 + 1
k ) do

5 Construct the residual network G(f1):
6 Add to G(f1) each link l in G with f1

l = 0;
7 for each link (u, v) ∈ G with f1

(u,v) = 1 do
8 Add (v, u) with d(v,u) =−d(u,v)&c(v,u) =0;

9 W ← FCYCLE(G(f1),f1,OPT2,
2D−D(f1)

OPT2
);

10 while W = ∅ do
11 OPT2 ← 2 ∗ OPT2;
12 W ←FCYCLE(G(f1), f1,OPT2,

2D−D(f1)
OPT2

);
13 Augment flow f1 along W ;
14 OPT2 ← OPT2/2 ;
15 return f1 ;

Algorithm 4. FCYCLE(G, f2, OPT2, μ)
Input:

G: the residual graph; f2 : the flow under check;
OPT2 : the lower bound of OPT ;
μ : the delay-to-cost ratio;

Output: W , a negative cycle W with D(W )
C(W ) <μ or ∅.

1 for each link l ∈ G do
2 dl = dl − cl ∗ μ;
3 for each node g ∈ f2 do
4 W ← SCYCLE(G, g,OPT2, OPT2);
5 if W �= ∅ then return W ;
6 return ∅ ;
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Algorithm 5. SCYCLE(G, g, L, U )
Input:

G: the residual graph G=(V,E) with {dl, cl}l∈E;
g : the node under check;
L,U: the lower bound and upper bound of the cycle;

Output: W , a negative cycle W in G(f) or ∅.
1 S ← L

n+1 ;
2 for each l ∈ E do
3 define c̃l ≡ 	cl/S
 + 1;
4 Ũ ← 	U/S
 + n + 1;
5 for all v �= g do
6 D(v, 0) ← ∞;
7 D(g, 0) ← 0;
8 for i = 1, 2, ..., Ũ do
9 for v ∈ V do
10 D(v, i) ← D(v, i − 1);
11 for l ∈ {(u, v) | c̃(u,v) ≤ i} do
12 D(v, i)← min{D(v, i), dl+D(u, i− c̃l)};
13 if D(g, i) ≤ −1 then
14 return the cycle W in the path;
15 if there exist a negative cycle W in other paths
16 then return W ;
17 return ∅ .

Theorem 1 : If there exists a negative delay cycle W with
C(W ) ≤ U and passes node g ∈ V , algorithm SCYCLE
will find a feasible cycle W ′ with C(W ′) ≤ C(W ) + L.
The time complexity of SCYCLE is O(MNU/L).

Proof : In SCYCLE, the upper bound of cost for any cy-
cle W is C(W ) ≤ ŨS ≤ U + (n + 1)S = U + L. If
there is a negative cycle W and suppose it is the minimum
delay cycle at the cost C(W ). For all such negative delay
cycles, let’s consider about the one with the minimum cost
C(Wmin). Since Wmin is such a minimum negative de-
lay cycle, it should also be the minimum delay path from g
to itself at a cost of no more than C(Wmin). Then within
time C(Wmin) + nS ≤ C(Wmin) + L, D(g, C(Wmin))
will be no more than D(Wmin) . Since the delay dl of
a link l in G is a positive integer, D(W ) ≤ −1 and
lines 13, 14 in SCYCLE will find a negative cycle W ′ with
C(W ′) ≤ C(Wmin) + L ≤ C(W ) + L.

For the computational complexity, since Ũ = 	U/S
 +
n + 1 = O(NU/L) and for each 1 ≤ i ≤ Ũ each link
is examined at most once, so the time complexity of it is
O(MNU/L). �

Furthermore, SCYCLE may identify a negative cycle
when that cycle is not so far away from g on cost.

Theorem 2 : If there exists a negative delay cycle W with
C(W ) ≤ OPT2 and D(W )

C(W ) < μ in G, algorithm FCYCLE
will find it and return it back. The time complexity of FCY-
CLE is O(MN2).

Proof : In FCYCLE, only edges in flow f2 may have

a negative delay value. So any negative cycle must pass
at least one edge and two nodes in f2. We use algorithm
SCYCLE to check all nodes g ∈ f2, thus we will find a
negative cycle with C(W ) ≤ OPT2 if there exists one.

Now let’s check the delay-to-cost ratio of this cycle W .
After the modification of the delay of each link, we have
dl = dl − cl ∗ μ. Since W is a negative cycle,

∑
l∈W (dl −

cl ∗ μ) < 0. Alternatively,
∑

l∈W dl −
∑

l∈W cl ∗ μ =
D(W ) − C(W ) ∗ μ < 0, so D(W )

C(W ) < μ.
Since U = L = OPT2 when we call SCYCLE, its time

complexity should be O(MNU/L) = O(MN), and algo-
rithm SCYCLE will be called at most N times. It is evident
that the time complexity of FCYCLE is O(MN2). �

Theorem 3 : Let f be an (s, t)-flow in G such that f =2
and D(f) ≥ 2D, and let G(f) be the residual network of
G imposed by f . Then there exists a circulation f in G(f)
such that D(f) ≤ 2D − D(f) and C(f) ≤ OPT . In this
circulation there is a cycle W with D(W )

C(W ) ≤ 2D−D(f)
OPT .

Proof : See Lemma 2 and Corollary 1 in [12].�
Theorem 4 : Suppose that an algorithm A iteratively min-

imizes some value z such that z0 is the initial value of
z, zi is the value of z at the i-th iteration and z∗ is the
minimum objective function value. Furthermore, suppose
that the algorithm A guarantees that, for every iteration i,
zi−zi+1 > ζ(zi−z∗) for some constant ζ with 0 < ζ < 1.
Then, within 2x/ζ consecutive iterations z ≤ z∗ + z0−z∗

2x

and within 2 log(z0−z∗)
ζ iterations algorithm A terminates.

Proof : This can be easily followed from [8] (page 67).�
Theorem 5 : Algorithm MINDELAY will return a flow

f with delay D(f) ≤ 2D(1 + 1
k ) and cost C(f) ≤

(4 log k + 3.5)OPT . The time complexity of MINDELAY
is O(MN2OPT log k).

Proof : Algorithm MINDELAY includes two phases.
The first phase is from line 2 to line 9, which adopts the
same method in [12] to find a minimum delay-to-cost ra-
tio negative cycle and augment the flow along it. The sec-
ond phase is from line 11 to line 12, which uses algorithm
FINALIMPROVE to find a negative cycle with guaranteed
cost and delay-to-cost ratio. We suppose that the first phase
finds n1 cycles and the second phase finds n2 cycles. We
denote by Wi the i-th cycle which will be applied to f and
we use fi to denote the state of flow f before f was aug-
mented along Wi.

For each cycle Wi in the first phase, we have that
C(Wi) ≥ 1 and D(Wi)

C(Wi)
≤ 2D−D(fi)

OPT . Which implies that

D(fi) − D(fi+1) = W (i) ≥ −D(Wi) ≥ D(fi)−2D
OPT .

According to Theorem 4, within 2 log k
ζ = 2 log k

1/OPT =
2 log kOPT augment steps, it holds that D(f) ≤ 2D +
D(f0)−2D

k ≤ 2D(1 + 1
k ).

If C(Wi) = h > 1, we can replace Wi by h virtual unit
cost cycle W 0

i ,W 2
i , ..., Wh−1

i with D(W x
i ) = D(Wi)

C(Wi)
and
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C(W x
i ) = 1 for 0 ≤ x ≤ h − 1. For flow fx

i , it holds
that D(fx

i ) = D(f0
i ) + xD(Wi)

C(Wi)
< D(f0

i ) = D(fi), so

D(W x
i ) = μ(W x

i ) = D(Wi)
C(Wi)

≤ 2D−D(fi)
OPT ≤ 2D−D(fx

i )
OPT .

Thus these virtual unit cycles satisfy the improvement re-
quirement of Theorem 4 and the original n1 cycles can be
replaced by

∑n1
i=1 C(Wi) virtual unit cycles. Since within

2 log kOPT augment steps D(f) ≤ 2D(1 + 1
k ), it holds

that
∑n1

i=1 C(Wi) < 2 log kOPT .
Since there will be no more than n1 ≤ 2 log kOPT it-

erations in the first phase and the algorithm for finding the
minimum delay-to-cost ratio negative cycle dominates the
time complexity of each iteration. If we choose the bi-
nary search algorithm in [8] (page 152) whose complex-
ity is O(MN log(CD)), then the time complexity of the
first phase will be O(MN ·OPT log k log(CD)); but if we
choose the Burns algorithm in [6, 9] whose complexity is
O(N2M), then the time complexity of the first phase will
be O(MN2OPT log k). Here we use the latter one.

For each cycle Wj in the second phase, the following

Lemma1 proves that 1 ≤ C(Wj) ≤ 2OPT and D(Wj)
C(Wj)

≤
2D−D(fj)

2OPT for n1+1 ≤ j ≤ n1+n2. So the analysis will be
the same as in the first phase except that ζ = 1

2OPT . Com-
bine all cycles W0, ...,Wn1 ,Wn1+1, ..., Wn1+n2 together,
we can find that

∑n1+n2−1
i=1 C(Wi) < 4 log kOPT . Since

the cost of the last cycle will be no more than 2OPT , it
holds that

∑n1+n2
i=1 C(Wi) < (4 log k + 2)OPT . Thus the

total cost of flow f returned by algorithm MINDELAY is at
most (4 log k+2)OPT +C(f0) ≤ (4 log k+2+1.5)OPT .

Because the number of cycles identified in the second
phase will be no more O(log kOPT ), the time complexity
is O(MN2OPT log2k). But if we check more carefully,
we can find that the average number of calls to FCYCLE
for each cycle in the second phase will be around 2. This
is because the value of OPT2 in line 9 and line 12 of al-
gorithm FINALIMPROVE will change for no more than
2 log 2kOPT

OPT/(2+2logk) times. Thus a more precise bound for

the time complexity is O(MN2OPT log k). Combine the
two phases together, the total complexity of algorithm MIN-
DELAY is O(MN2OPT log k) + O(MN2OPT log k) =
O(MN2OPT log k). �

Lemma 1 : Let W be a cycle to be augmented in line 13
in algorithm FINALIMPROVE, then 1 ≤ C(W ) ≤ 2OPT

and D(W )
C(W ) ≤ 2D−D(fi)

2OPT . The time complexity to identify a

cycle is O(MN2 log k).
Proof : In the first three lines we set a lower bound for

the cost of the optimum solution. At first, since μ is the
current minimum delay-to-cost ratio for any negative cycle
in G(f), it holds that μ ≤ 2D−D(f)

OPT and OPT ≥ 2D−D(f)
μ .

Second, since algorithm 2DP-1 will return a flow f with
C(f) ≤ 1.5(1+ε)OPT , so C(f0)/2 is another loose lower

bound. The third bound C(f1)
2 log k+2 comes from the analysis

of the cost in the first phase.
By Theorem 3, there exists a cycle W which satisfies

D(W )
C(W ) ≤ 2D−D(f1)

OPT and C(W ) ≤ OPT . So if algorithm
FCYCLE cannot find a negative cycle with C(W ) ≤ OPT2

and D(W )
C(W ) ≤ 2D−D(f1)

OPT2
, then it must hold that OPT2 <

OPT . Because if OPT2 ≥ OPT , then 2D−D(f1)
OPT2

≥
2D−D(f1)

OPT and according to Theorem 2, FCYCLE will re-
turn a negative cycle back. On the other hand, if algorithm
FCYCLE finds a negative cycle with C(W ) ≤ OPT2, then
by Theorem 1 we have C(W ) ≤ U + L = 2OPT2. Since
in the previous iteration OPT2 < OPT , it follows that
C(W ) ≤ 2OPT .

Notice that when FINALIMPROVE is called, the first
phase has already found a cycle with cost no more than (k+
1)OPT and C(f) ≤ 2kOPT [12]. So the while cycle
at line 10 will run no more than O(log 2kOPT

OPT/(2+2logk) ) =
O(log k) iterations before it finds a cycle. And the time
complexity for each cycle is O(MN2 log k). �

Theorem 6 : Algorithm 2DisjointPaths-1 computes, in
O(MN2OPT log k) time, a (1 + 1

k , 4 log k + 3.5) approx-
imate solution for Problem 2DP.

Proof : The delay ratio 1 + 1
k follows from the above

analysis. Since the complexity of algorithm MINDE-
LAY is O(MN2OPT log k) while the complexity of al-
gorithm 2DP-1 is O(MN(log log N + 1/ε)), it holds
that the time complexity of algorithm 2DisjointPaths-1 is
O(MN2OPT log k) .�

4 Improve the Time Complexity

The above algorithm 2DisjointPaths-1 is a pseudo-
polynomial algorithm since its time complexity
O(MN2OPT log k) is proportional to the cost OPT
of the optimal solution. So it will not be very efficient
when OPT is very large. But a good news for a pseudo-
polynomial algorithm is that usually we may adopt some
cost scaling approach to reduce the time complexity and
turn it into a polynomial time approximate solution. We
can see such kind of technique in many approximation
algorithms [7, 10, 11], but here we can employ the method
used in [12] directly since the basic framework is the same.

Since the difficulty lies in the possible huge value of
OPT , which comes from the number of cycles to be found
and augmented. If we can scale it down to a reason-
able polynomial bound, then the time complexity of the
new algorithm will be polynomial. This is the basic idea
of algorithm 2DP-3 in [12] and our following algorithm
2DisjointPaths-2.

Algorithm 6. 2DisjointPaths-2(G, s, t,D, k)
1 (P1, P2) ← 2DP-1(G, s, t, D, 1

N );
2 f0 ← {P1, P2};
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3 if D(f0) ≤ 2D(1 + 1
k ) then

4 return (P1, P2) ;
5 L,U ← Bound(G, s, t, f, D);
6 Δ ← Lε

2N ;
7 for each link l ∈ E do
8 cl ← 	 cl

Δ
 + 1;
9 f ← MINDELAY(G, f0, D, k)
10 Decompose f into P̂1, P̂2 with D(P̂1) ≤ D(P̂2);
11 return (P̂1, P̂2) ;

Algorithm 2DisjointPaths-2 calls the procedure BOUND
to calculate the lower bound L and the upper bound U on
OPT with U/L ≤ 2N , its time complexity is O((M +
N log N) log N). For the details of the procedure BOUND,
please refer to [10, 12].

Theorem 7 : Algorithm 2DisjointPaths-2 computes, in
O(MN4 log k/ε) time, a (1 + 1

k , (4 log k + 3.5)(1 + ε))-
approximation solution for Problem 2DP.

Proof : Let OPT be the cost of the original optimal
solution f and let OPT ′ be the optimal solution f ′ in
the scaled network. Then the scaled cost of f will be
C ′(f) =

∑
ei∈f	(

cei

Δ 
 + 1) ≤ ∑
ei∈f	

cei

Δ 
 + 2N ≤
∑

ei∈f
cei

Δ + 2N = ei∈f cei

Δ + 2N = OPT
Δ + 2N =

OPT ·2N
Lε + 2N . Since U/L ≤ 2N and L ≤ OPT ≤ U ,

we have that 1 ≤ OPT
L ≤ 2N . Thus C ′(f) = OPT ·2N

Lε +
2N ≤ 2N + 4N2/ε. So for the optimal solution f ′ in
the scaled network, we have that OPT ′ ≤ 2N + 4N2/ε.
Thus the time complexity of algorithm 2DisjointPaths-2
is O((M + N log N) log N) + O(MN2 log k · N2/ε) =
O(MN4 log k/ε).

Now let’s consider the original cost of the returned flow
OPT ′. Since OPT ′ ≤ OPT

Δ + 2N , its original cost should
be no more than OPT ′ ∗ Δ ≤ (OPT

Δ + 2N)Δ = OPT +
Lε ≤ (1+ ε)OPT . So the delay of the final flow will be no
more than (4 log k + 3.5)(1 + ε)OPT . �

5 Conclusion

The major contribution of this paper are two approxima-
tion algorithms for finding two Delay-Restricted Link Dis-
joint Paths with minimum total cost. For any fixed ε > 0
and k > 0, the previous best result can find a solution that
violates the delay constraint by factors of at most 1 + 1/k
and 2(1+1/k) for the primary and restoration paths respec-
tively with cost k(1 + γ)(1 + ε) times more than the opti-
mum. Our first algorithm reduces the cost to 4 log k + 3.5
times of the optimum. Our second algorithm reduces the
time complexity to O(MN4 log k/ε) at the penalty of a
larger cost bound as (4 log k + 3.5)(1 + ε) times of the op-
timum. Furthermore, we introduce a new technique to find
a negative cycle with bounded cost and delay-to-cost ratio,
which can be applied to other similar problems.
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