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Abstract

Since it is widely accepted that self-organization is
difficult to achieve using constructive or centrally
run algorithms a random hierarchy is proposed that
intrinsically facilitates self-organization. The ran-
dom hierarchy consists of each node in the network
independently choosing a rank at random such that
a mean 2(∆ − 1)∆i−1 nodes have rank i, where ∆
is a network wide hierarchy parameter. Each node
of rank i chooses the nearest node of rank i − 1 as
its leader which forms the hierarchy. The mean and
variance of the relevant properties is derived, for
example it is shown that each leader has a mean ∆
followers. Simulations were used to demonstrate the
effectiveness of the proposed hierarchy and a “bare-
bones” set of procedures where provided that may
be used to implement the hierarchy over a network
of autonomous nodes in a robust way.
keywords: self-organizing, hierarchy, randomness

1 Introduction

It is widely accepted that large systems cannot effi-
ciently operate if a single component of the system
is responsible for the global operation. Such oper-
ation is called centrally run and indeed, centrally
run operation is easier to implement since in this
case, a non-distributed alogorithm can be adapted
to a distributed platform with relative ease. How-
ever, it is empirically observed that the Internet is
not centrally run and indeed, it is reasoned that this
was necessary for its remarkably successful growth.
The Internet is said to be self-organizing in con-
trast to being centrally run. If other communica-
tion systems are to achieve comparable growth then
they must operate using similar principles of self-
organization.

But certain kinds of communication services,
such as virtual circuit switching, cannot provide

∗Some of this work was completed while the author was
at Griffith University.

high QoS if they adhere to protocols such as the
Internet Protocol (IP). This is because the IP does
not reserve resources in advance and does not dis-
tribute information at the Data Link Layer1. These
communication systems typically make use of dis-
tributed algorithms that distribute a relatively large
amount of topological information and this fact
leads to problem of scalability. For a distributed al-
gorithm to be scalable it must make use of a hierar-
chy. Distributed algorithms for self-organizing hier-
archies are non-trivial because of coherency and de-
cision deadlocking problems that severely frustrate
fast formation. For example, when a hierarchy ac-
cepts a new member, it must make sure that the
maximum number of members is not exceeded (the
hierarchy is only effective if different sub-hierarchies
have roughly the same membership size). If a node
of a hierarchy makes a decision to accept a new
member, the decision must be broadcast to all the
other nodes in the hierarchy. If two nodes make such
a decision at about the same time, then a coherency
problem is highlighted, where the membership may
increase above the maximum allowed. Selecting a
central or leader node to overcome this imposes a
different problem of leader selection. Even when
leader selection is achieved, aggregation of hierar-
chies into higher levels is problematic in the sense
that membership to super-hierarchies and leader ne-
gotiation can be frustrated by deadlock, where the
decision to aggregate is pending a joint decision with
a third party which in turn is pending the first de-
cision. It is clear that constructive algorithms are
not only non-trivial but perhaps totally infeasible
for large networks which cannot make use of a cen-
trally run control.
Dolev et al [6] give a thorough treatment re-

garding adaptive hierarchies. Unfortunately their
method requires that a central authority instigates
the initial hierarchy. The method of Krishnan et
al [11] for clustering arbitrary topologies to form
hierarchies also requires a centrally run algorithm.

1This work uses the OSI model.
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Related work involves embedding a virtual network
over a network which directly supports the con-
struction of virtual circuits and so leads to high
performance. Chlamtac et al [5] discuss Light-
nets as topologies for high-speed optical networks.
Their work investigates embeddings of the common
topologies such as the hypercube and torus. They
rigorously show the number of wavelengths required
in an arbitrary topology to embed the given topol-
ogy. Their algorithms operate off-line and the entire
network topology must be known for the embedding
to be computed. Early work in 1994 by Chlamtac
and Faragó [4] uses randomly generated paths to op-
timize a system of virtual paths in terms of capac-
ity. The thesis of Banerjee [3] shows extensive use
of linear integer programming techniques to provide
virtual networks for wavelength routing networks.
Later in 1996 Gerstel et al [8] show how to decom-
pose networks to embed a cost efficient virtual net-
work over arbitrary topology ATM networks. Again
their algorithms execute off-line. Recently, Afek and
Bremler-Barr [1] investigate virtual networks, for
MPLS technology, with analogy to a train network.
Their method requires modifying the basic technol-
ogy to include counters and the exact implemen-
tation is unclear. Varela and Sinclari [13] propose
an evolutionary computation which is strictly off-
line. Gawlick et al [7] provide an on-line method for
routing permanent virtual circuits but it requires a
centrally run authority which is not scalable to large
inter-networks. Gerstel and Segall [9] propose an on-
line dynamic maintenance scheme to provide opti-
mal virtual networks given a virtual path layout for
ATM networks. Dynamic maintenance can lead to
disruptions of existing virtual circuits/virtual paths.
Their method is distributed but it requires circu-
lating a token throughout all nodes in the network
which makes it unscalable.

Recent work in the field examined the use of
randomness to overcome the complexity of self-
organizing hierarchies. Baccelli et al [2] investigate
the use of randomness for self organizing hierarchi-
cal multi-cast trees and their optimization. They
state that, because so called “core nodes” require
knowledge of the entire multi-cast group, their al-
gorithms are not scalable. Although they claim that
intermediate solutions can be envisaged, they do not
consider them in their work.

In this paper a relatively simple method for con-
structing a network wide hierarchy is proposed, an-
alyzed and simulated. Section 2 gives the mathe-
matical treatment and simulation results. Section 3
provides a “bare-bones” procedure for a distributed
algorithm. Section 4 provides some final comments
and future directions.

2 Random Hierarchy

Consider as input an arbitrary network G, with pa-
rameters n, d̂ = D̂(G) and k = K(G). Recall
that D̂(G) = 2|E(G)|

n where usually m = |E(G)| =
M(G). Assign to each node, u ∈ G, a rank using a
set of independent random variables ru. Let ru = ru
be a realization of the random variable for node u.
Consider a hierarchy where each node is assigned
its rank according to the following probability dis-
tribution:

P[ru = r] =
∆r∑κ
i=1 ∆i

=
∆r (∆ − 1)
∆κ+1 −∆

,

where ∆ is called the hierarchy parameter, κ =
�log∆ n� with ∆ ≤ n, and r = 1, 2, 3, . . . , κ over
all u ∈ G. The cost product κ∆ is minimized when
∆ = exp(1). ∆ may be constrained by the technol-
ogy limits or where required for different topological
properties to hold. Since n < ∆�log∆ n�+1 ≤ n∆,
∆�log∆ n�+1 ≈ n∆

2 and the number of nodes, tr, of
rank r is a b.r.v., it follows that:

M[tr] = 2(∆ − 1)∆r−1

S
2[tr] = (∆ − 1)∆r−1

(
2 − 1

n

) }
1 ≤ r ≤ κ.

(1)
For every u ∈ G consider the set Lu = { v | rv =
ru − 1 } and then construct the set L∗

u = { v |
v ∈ Lu, δ(u, v) = δ(u,Lu) }. Note that δ(x,X) =
min{ δ(x, v) | v ∈ X } is the distance from a node to
a set of nodes. If x ∈ X then δ(x,X) = 0. For each
node select a single leader, lu ∈ L∗

u, uniformly from
L∗

u, ie u chooses the nearest node of rank ru − 1 as
a leader. Define �H(V,E) with V

(
�H

)
= V (G) and

E
(
�H

)
=

{
(u, lu) | u ∈ V

(
�H

) }
.

It may be that lu = ∅. The choice is transmitted
to the leader (apart from in the case when it is null)
for the leader to maintain a list of followers. The list
is broadcast in the distributed algorithm to generate
a network wide hierarchy as explained in the next
chapter. Mechanisms to reduce the broadcast traffic
are also discussed. Each node in the set {u | ru =
r }, is said to have a number of followers of rank r+1.
All nodes of rank 1 must have the null leader since
no node has rank 0. A small example of a random
hierarchy is shown in Fig. (1) (without depicting
the null leader). The nodes rank from 1 to 3 and
each node has selected a leader as indicated by the
arrows. The connections of G are not shown but
some information about them can be inferred from
the leader selections since a leader is always selected
on the basis that it is closer than the other leaders.
The random hierarchy, �H, is thus a set of upward
directed trees with the root of each tree having rank
1 and in general the nodes on level i > 0, rank i. The
height of a tree is equal to the number of connections
traversed from a leaf node to the root.
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Figure 1: A randomly constructed hierarchy �H.

Lemma 1 The height of any component tree from
�H is at most κ− 1.

Proof A node of rank ru > 1 is at most ru − 1
traversals from a rank 1 node. No node has rank
greater than κ, so the height is no greater than κ−
1.✷

Let d+(u) = |{ (v, lv) | u = lv }| be the in degree
of node u ∈ �H and d−(u) = 1 the out degree so
that d(u) = d+(u) + d−(u). Node u is a descendant
of v if either u = v or u can be reached from v via
a directed path. Here, descendant is used to mean
closer to the root. Let Hu be the set of nodes for
which u is a descendant.

Lemma 2 M[d+(u)] = ∆ with S
2[d+(u)] = ∆ −

1
(∆−1)∆r−2 .

Proof Node u of rank r, will have probability
p = 1

M[tr ] for each node of rank r + 1 to select node
u as its leader. Each selection is independent of all
others. Thus d+(u) is a b.r.v. with mean M [tr+1] p
and variance M [tr+1] p(1 − p). Hence from Eq. (1)
for u of rank r,

M[d+(u)] = M

[
tr+1

tr

]
= ∆,

with

S
2[d+(u)] = M

[
tr+1

tr
− tr+1

t2r

]
= ∆− 1

(∆ − 1)∆r−2
,

✷

Lemma 3 For u of rank 1 (t1 
= 0), M [|Hu|] ≈ n
2∆

with S
2 [|Hu|] ≈ (∆−1)n

2∆2 .

Proof Using ∆κ ≈ (∆+1)n
2∆ and Eq. (1),

M [|Hu|] = M

[
κ∑

i=1

ti
t1

]
≈ n

2∆
,

and

S
2 [|Hu|] = M

[
k∑

i=1

ti
t1

− ti
t21

]
≈ (∆ − 1)n

2∆2
.

✷

Remark If t1 = 0 then there is no node of rank 1 and
as a consequence the hierarchy components of �H will
be smaller but more plentiful. The probability of a
rank r node not occurring among the n nodes is
(1− P[ru = r])n. Since

lim
n→∞

(
1− ∆r (∆ − 1)

∆κ+1 −∆

)n

≈ exp (−2∆r),

the probability decreases exponentially with a lin-
ear increase in ∆r which is itself increasing expo-
nentially. However, for values of say ∆r = 3 the
probability is about 0.002 which may be considered
significant. The use of the null leaders ensures that
such cases do not result in an invalid hierarchy. Ad-
ditional mechanisms are introduced (as shown later)
to avoid the use of null leaders in practice but these
mechanisms complicate the analysis. In what fol-
lows it is assumed that a null leader is not required.

2.1 Rank Spread

Constructive methods for constructing similar hier-
archies may attempt to distribute an exact num-
ber of ranks evenly throughout the network, ie, to
spread them out. Also, it may be stipulated that
the nodes of rank i be direct neighbors of their lead-
ers of rank i − 1. The random hierarchy does not
provide such a definitive result but is is possible to
estimate the “spread” of a set of nodes chosen at
random from G. To be specific, consider x nodes,
X = {u1, u2, . . . , ux} ⊂ V (G) chosen at random.
For any u ∈ X the average distance to the nearest
node v ∈ (X − u) over G is

φ(x) =
k∑

j=1

j

(
n− nj−1

x− 1

)(
n− 1
x− 1

)−1

(
1 −

(
n− nj

x− 1

)(
n− 1
x− 1

)−1
)

≈ k2

24n2
(n− 2x)2 , (4)

where recall that nj =
∑j

i=0 bi is the expected
neighborhood growth of the network (for arbitrary
G it would need to be given, computed on-line,
or estimated). The approximation should only be
used as a rough guide. It was computed by calcu-
lating

∑a
j=1 jy1y2 where a = k(1/2 − x/n), y1 =

(1 − c0)(j − 1)/(a − 1) + c0, y2 = (a − j)(a − 1)
and c0 = 1 − (

n−d̂−1
x−1

)(
n−1
x−1

)−1
. Fig. (2) shows the
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Figure 2: The expected separation φ(x) of x nodes
chosen at random from some G ∈ {Gn,m} with n =
100 and D̂(G) = 3.

exact φ(x) for some G ∈ {Gn,m} when n = 100,
D̂(G) = 3, and x ranges from 2 to 100. Intuitively,
limx→n φ(x) = 1. Indeed, we should find these
nodes on average to be the greatest possible distance
apart, since they are uniformly distributed over the
network.

2.2 Test Networks

Two specific networks were generated and substi-
tuted for G. The first was a random network with
283 nodes, called R283, average degree 3, and thus
diameter 2 log3 283 ≈ 10 (the measured diameter
is 12). The second, sample network, called S275,
shown in Fig. (3), was generated by uniformly dis-
tributing nodes in the unit square and choosing
edges at random such that no edge had a length
greater than 0.2. The S275 network has 275 nodes,
average degree of 3 and diameter 26.

Figure 3: A sample network S275.

Fig. (4) shows an example where nodes have
been plotted with shape indicating to which hier-
archy they belong to. In this case the hierarchy
was computed with ∆ = 3. Clearly the network is
divided into regions dominated by a particular hi-
erarchy. The example also shows that for instance
a rank 1 node may in fact have no followers as ex-
emplified by the lone node at position (0.45, 0.65).
Also see that some hierarchies do overlap as in the
top left and top right.
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Figure 4: An example random hierarchy in S275
with shape indicating to which rank 1 hierarchy each
node belongs.

3 Procedures for construction

Due to the simple randomized construction of �H the
hierarchy can be implemented in both a distributed
and robust way. The following procedures must be
implemented at every node: Node In, Receive
Node In Message, Receive Leader Response
Message, Receive Follower Joining Message,
Receive Follower Leaving Message,Node Ex-
its and Receive Leader Leaving Message. It is
assumed that error free transmission is available by
the underlying communication service.

Node In

1. Node u begins or resumes service.

2. Determines its rank ru either randomly (ac-
cording to the probability distribution ru) or
as input from a network administrator.

3. Initialize a table of leaders and a table of fol-
lowers.

4. Set the current leader to null, lu = ∅.
5. If ru = 1 initialize a table of peers.
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6. Broadcast ru to all other nodes using a Node
In message so that these nodes might select
it as a leader in the future and so that po-
tential leaders of u may respond. The extent
of this broadcast need only be proportional to
the rank, for example a rank 1 node would
need entire network coverage but a rank κ node
may need only to broadcast to its closest neigh-
bors. The next section explains how to limit the
broadcast distance appropriately.

7. Set timer for the case when no leader replies. If
the timer expires before a Leader Response
message is received, the node initiates a Node
Exit followed by Node In.

Receive Node In Message

1. Node u receives a Node In message from node
v of rank rv.

2. If rv = ru − 1 then treat the message as a
Leader Response.

3. If rv = ru = 1 then v becomes a peer of u.

4. If rv = ru+1 then u sends a Leader Response
message to v.

Receive Leader Response Message

1. Node u receives Leader Response message
from node v.

2. Add v to the table of leaders.

3. If v is closer to u than all other leaders in the
table, then set lu = v.

4. If the leader has changed, send a Follower
Leaving message to the old leader and a Fol-
lower Joining to the new leader.

Receive Follower Joining Message

1. Node u receives a Follower Joining message
from node v .

2. Add v to the table of followers.

Receive Follower Leaving Message

1. Node u receives a Follower Leaving message
from node v.

2. Remove v from the table of followers or from
the table of peers (depending on rv).

Node Exits

1. The node u is leaving the hierarchy.

2. Send a Follower Leaving message to either the
leader, lu, or each of the peer nodes.

3. Send a Leader Leaving message to each of the
followers.

Receive Leader Leaving Message

1. Node u receives a Leader Leaving message
from node v.

2. Remove v from the table of leaders.

3. Choose the closest leader from the table of lead-
ers and send a Follower Joining message.

4. If the table of leaders is empty, go to the broad-
cast step in the Node In procedure.

Note that the existing hierarchy structure may be
reconfigured when a new node enters due to nodes
having to switch leaders to the closer leader. Also
see that the use of a null leader is avoided using a
peer table for rank 1 nodes and that nodes failing
to find a leader will exit and enter until a leader is
found. The timer period may be randomly chosen
over an exponential distribution.

These procedures give a “bare-bones” approach
to establishing �H. In the next section is given a brief
discussion on just how the broadcast traffic can be
reduced.

3.1 Constraining the Broadcast Traf-
fic

For the random hierarchy to be generated within a
network, each node, u, of rank r + 1 is required to
choose the nearest leader of rank r. The φ(x) func-
tion gives an estimate of just how far away in the
network this leader is expected to be. For instance
φ

(
2(∆ − 1)∆r−1

)
is an estimate for the maximum

distance through a network that a node of rank
r will be from node u. Conversely, it is expected
that a node of rank r need only broadcast its rank
to those nodes within a distance φ

(
2(∆ − 1)∆r−2

)
since those nodes at a distance greater than this will
be expected to choose some other node of rank r as
their leader. This observation can be used to sig-
nificantly reduce the broadcast traffic required for
rank dissemination. This is because nodes of low
rank that must broadcast widely are few and nodes
of high rank that may broadcast locally are many.
The broadcast traffic is not studied in this work and
is left as a result of future research.

4 Conclusion

The Internet is said to be self-organizing in con-
trast to being centrally run. If other communi-
cation systems are to achieve comparable growth
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then they must operate using similar principles of
self-organization. Distributed algorithms for self-
organizing hierarchies are non-trivial because of co-
herency and decision deadlocking problems that
severely frustrate fast formation. This paper pro-
posed a relatively simple method for constructing
a network wide hierarchy based on randomness, di-
rectly facilitating self-organization. The mean and
variance of the hierarchy properties were computed.
Simulations were used to demonstrate the effective-
ness of the proposed hierarchy and a “bare-bones”
set of procedures where provided that may be used
to implement the hierarchy over a network of au-
tonomous nodes in a robust way.

It is seen that the variance of the hierarchy prop-
erties can be relatively large and so some work could
be continued to address this issue. As yet, the proce-
dures have not been simulated to reveal such things
as network traffic etc, however it was shown that
(necessary) network broadcasts can be limited us-
ing some knowledge of the networks neighborhood
growth structure. An extended study could be un-
dertaken to model and simulate these aspects.

A Random Graph Functions

Consider a network G ∈ {Gn,m} of average degree
d̂ = 2m

n and the function bε(u) for any u ∈ V (G)
being the number of nodes of distance ε from u.
Clearly b0 = 1. The set of graphs {Gn,m} contains
all graphs of n nodes with exactly m edges. If G is
chosen randomly from the set then it is known that
for every v ∈ G,

bi+1 = (n− ni)

1 −
(

1− d̂

(n− ni−2 − 1)

)bi


ni+1 = ni + bi+1

A derivation is given by Rose [12] which relies on the
existence of a Hamilton cycle. Another derivation
is given by Harwood and Shen [10] whereby such a
cycle is not required.
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