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Abstract 

The study investigates the dynamic response of a viscously damped two adjacent single degree-of-freedom (2-ASDOF) system 
coupled by a connection that includes an inerter element. The dynamical model of a pair of simple oscillators coupled with various 
connection elements is synthetic but also representative to describe different classes of structures (i.e. contiguous buildings, 
adjacent walls and frames and so on). The specific kind of connection fundamentally alters the dynamic behavior of the entire 
system. Coupling elements typically studied are springs, dampers, linear or non-linear, passive, semi-active or active, e.g. [1,2]. 
The inerter is a novel device able to generate a resisting force, proportional to the relative acceleration of its terminals, equivalent 
to a force produced with an apparent (inertial) mass two orders of magnitude greater than its own physical (gravitational) mass [3].  
In this study, a non-conservative connection, realized with a spring-inerter-viscous damper elements, adjusted in parallel, is 
considered as linking scheme for the 2-ASDOF system. In order to perform modal analysis, the first order state-space representation 
is adopted and the modal equations for the viscously damped system are derived. By solving the eigenvalue problem, the attention 
is focused on how modal parameters, i.e. the natural frequencies, the modal damping ratios and modes are affected by the 
connection. The system is then subject to harmonic base excitation and frequency response functions are depicted showing the 
influence of the link (through spring stiffness, inertance and damping coefficient) on the dynamic response. From the analysis with 
the different linking schemes, it emerges that the specific kind of connection influences the system dynamic characteristics. 
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1. Introduction 

In recent decades, many researchers have studied, in the context of vibrations control, the dynamics of a pair of simple 
oscillators coupled with various connection elements [4-6], since such model is a synthetic but also representative to 
describe different classes of structures (i.e. contiguous buildings, adjacent walls and frames and so on). The specific 
kind of connection fundamentally alters the dynamic behavior of the entire system. In early 2000s, Smith [3] proposed 
a novel device, named inerter, able to generate a resisting force, proportional to the relative acceleration of its 
terminals, equivalent to a force produced with an apparent (inertial) mass two orders of magnitude greater than its 
own physical (gravitational) mass. In the same context, the authors already studied the structural configuration 
represented by a primary single degree of freedom (SDOF) structure equipped with a classical linear tuned mass 
damper (TMD) with mass linked to the primary system via a spring-damper and linked to the ground via an inerter 
[7]. 

This paper studies the dynamics of a novel two degree-of-freedom (2-DOF) system consisting of two adjacent 
single degree-of-freedom (2-ASDOF) systems coupled by a connection that includes an inerter. The first order state-
space representation for a viscously damped system linked by a spring-damper-inerter elements adjusted in parallel is 
derived. By solving the eigenvalue problem, the system’s frequencies, modal damping ratios and complex modes are 
obtained. Moreover, by considering a dynamic action represented by harmonic base excitation, frequency response 
functions are depicted showing the influence of the link parameters on the dynamic response. 

2. Equations of motion  

The system shown in Fig.1 is defined by stiffness 𝑘𝑘𝑖𝑖, mass 𝑚𝑚𝑖𝑖, and viscous damping coefficient 𝑐𝑐𝑖𝑖 with, for the 
uncoupled case, natural frequencies 𝜔𝜔𝑖𝑖 = √𝑘𝑘𝑖𝑖/𝑚𝑚𝑖𝑖 and damping ratio 𝜉𝜉𝑖𝑖 = 𝑐𝑐𝑖𝑖/(2𝑚𝑚𝑖𝑖𝜔𝜔𝑖𝑖)  𝑖𝑖 = 1,2. The linking element 
is defined by stiffness 𝑘𝑘, inertance 𝑏𝑏 and viscous damping coefficient 𝑐𝑐. 
 

 

Fig. 1. Mechanical model.  

The following non-dimensional parameters are introduced for the structures, i.e. frequency ratio 𝜈𝜈 = 𝜔𝜔2/𝜔𝜔1 and 
mass ratio 𝜇𝜇 = 𝑚𝑚2/𝑚𝑚1 and for the link, i.e. stiffness ratio 𝜆𝜆 = 𝑘𝑘/𝑘𝑘1, inertance ratio  𝛽𝛽 = 𝑏𝑏/𝑚𝑚1 and damping ratio 
𝜉𝜉 = 𝑐𝑐/(2𝑚𝑚1𝜔𝜔1).  

The governing equations of motion for the system subject to base excitation can be written into the first-order state 
space form as 

𝒛̇𝒛(𝑡𝑡) = 𝑨𝑨𝑨𝑨(𝑡𝑡) + 𝑩𝑩𝑒𝑒(𝑡𝑡) 
𝒚𝒚(𝑡𝑡) = 𝑪𝑪𝑪𝑪(𝑡𝑡)  + 𝑫𝑫𝑒𝑒(𝑡𝑡) 

(1) 

where 𝒛𝒛(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡) 𝑢𝑢2(𝑡𝑡)   𝑢̇𝑢1(𝑡𝑡)   𝑢̇𝑢2(𝑡𝑡)]𝑇𝑇  is the state vector, 𝑒𝑒(𝑡𝑡) is the applied input and 𝒚𝒚(𝑡𝑡)  is the output 
vector; the state space or system matrix A and the input influence matrix B are estimated as: 

𝑨𝑨 = [ 𝟎𝟎 𝑰𝑰
−𝑴𝑴−𝟏𝟏𝑲𝑲 −𝑴𝑴−𝟏𝟏𝑳𝑳]        𝑩𝑩 = [𝟎𝟎 −𝑴𝑴−𝟏𝟏𝑴̃𝑴𝝉𝝉]𝑇𝑇   (2) 

The mass 𝑴𝑴 and 𝑴̃𝑴, damping 𝑳𝑳 and stiffness 𝑲𝑲 matrices are respectively: 

𝑴𝑴 = 𝑚𝑚1 [1 + 𝛽𝛽 −𝛽𝛽
−𝛽𝛽 𝜇𝜇 + 𝛽𝛽]  𝑴̃𝑴 = 𝑚𝑚1 [1 0

0 𝜇𝜇] (3a) 

𝑳𝑳 = 𝑚𝑚1𝜔𝜔1 [2(𝜉𝜉1 + 𝜉𝜉 ) −2𝜉𝜉
−2𝜉𝜉 2(𝜉𝜉2𝜈𝜈𝜈𝜈 + 𝜉𝜉)] 𝑲𝑲 = 𝑚𝑚1𝜔𝜔1

2 [(1 + 𝜆𝜆) −𝜆𝜆
−𝜆𝜆 (𝜈𝜈2𝜇𝜇 + 𝜆𝜆)] (3b) 
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𝝉𝝉 = [1 1]𝑇𝑇 is the influence vector. Finally,   is the influence output matrix and  is the feed-through matrix which 
can vary depending on the assumed output vector. 

From this general position, different sub-cases can be obtained if in the link (Fig. 1) we consider de-activated one 
or more elements. In this study, we will consider the 2-ASDOF system in which the damping is located only in the 
connection (𝑐𝑐1 = 𝑐𝑐2 = 0, 𝑐𝑐 ≠ 0). Two cases will be considered: undamped connection (spring-inerter elements) and 
damped connection (spring-inerter-dashpot elements).  

3. Modal analysis 

By considering null the force vector in the Eq. (1), the solution has the exponential form 𝒛𝒛(𝒕𝒕) = 𝒆𝒆𝝀𝝀𝝀𝝀𝒛𝒛. For non-
conservative systems, the algebraic eigenvalue problem is 𝑨𝑨𝑨𝑨 = 𝝀𝝀𝝀𝝀  with eigenvalues 𝝀𝝀𝒊𝒊 and eigenvectors 𝒛𝒛𝒊𝒊, 𝒊𝒊 =
𝟏𝟏, 𝟐𝟐. The eigenvalues that come in complex conjugate pairs 𝝀𝝀𝒊𝒊, 𝝀̅𝝀𝒊𝒊 = 𝜶𝜶𝒊𝒊 ± 𝒋𝒋𝝎𝝎𝒊𝒊  with 𝒊𝒊 = 𝟏𝟏, 𝟐𝟐 indicate sub-critically 
damped oscillatory modes. The pseudo modal frequency 𝛀𝛀𝒊𝒊 and the pseudo modal damping factor 𝜼𝜼𝒊𝒊 associated to the 
i-th mode are evaluated as 𝛀𝛀𝒊𝒊 = √𝝀𝝀𝒊𝒊𝝀̅𝝀𝒊𝒊  and 𝜼𝜼𝒊𝒊 = −𝑹𝑹𝑹𝑹(𝝀𝝀𝒊𝒊)/√𝝀𝝀𝒊𝒊 𝝀̅𝝀𝒊𝒊 with 𝒊𝒊 = 𝟏𝟏, 𝟐𝟐.    Concerning the eigenvectors, they 
have been normalized as shown in [8]. In the following figures, the eigenvectors with the introduced normalization 
have been reported. Modal frequencies are ordered from the lowest to the highest and the modal damping factors are 
ordered as the modal frequencies. Results are presented at first considering the undamped connection and then the 
damped one.   

Undamped connection (𝝃𝝃 = 𝟎𝟎) 
The maps for the dimensionless frequencies defined as 𝛾𝛾𝑖𝑖 = Ω𝑖𝑖/𝜔𝜔1  with 𝑖𝑖 = 1, 2, versus the frequency ratio  are 

depicted in Fig. 2, given the values of 𝜇𝜇= 0.2, 𝛽𝛽 =0.1, and two assumed values for the elastic element 𝜆𝜆 = 𝜈𝜈2𝛽𝛽and 
𝜆𝜆 = 𝛽𝛽. Each map indicates admissible and not-admissible zones (grey painted background) for the frequencies. These 
zones, for each case, do not vary irrespectively of the values assumed by the system and connection parameters. In 
each plot, in the admissible zones, three regions are indicated, which are representative of a behavior observed also 
for the 2-ASDOF system considering activated in the connection only one element at once (the spring or the inerter 
only). Region I indicates the admissible domain for the frequencies associated to a system that behaves as connected 
with an inerter element only. Region III indicates the admissible domain for the frequencies associated to a system 
that behaves as connected with a spring element only. Between Region I and III there are transition curves that separate 
the two subdomains, obtained as special solutions for particular values of the connection coefficients which are in turn 
𝜆𝜆 = 𝜈𝜈2𝛽𝛽 and 𝜆𝜆 = 𝛽𝛽and define another region, named Region II. This latter region indicates the admissible domain 
for the frequencies associated to a system that exhibits a behavior mixed associated to a connection with both spring 
and inerter elements. Each region for frequency 𝛾𝛾1 matches with the corresponding one relative to frequency 𝛾𝛾2.  

Figure 3 (a) illustrates the plots of the mode shapes for assigned parameters of the 2-ASDOF system in case of 
connection with spring-inerter elements. Since the system is conservative, the modes are natural and real. The first 
natural mode has both masses in phase whereas the second one has masses out of phase. 

Damped connection (𝝃𝝃 ≠ 𝟎𝟎) 
The frequencies maps versus the frequency ratio  are depicted in Figure 2 having assumed 𝜉𝜉 = 0.1 in case of 

connection with spring-inerter-viscous damper elements, with the other parameters as indicated for the undamped 
connection. The curves that delimitate the three regions are overlapped to those obtained for the undamped system, 
this means that, in the parameters range examined, modal frequencies are not significantly affected by the value 
assumed by the viscous damper element and these only depend on the spring and the inerter coefficients.  

Figure 3 (a)-(b) illustrates the real and imaginary part respectively of the complex mode shapes, for assigned 
parameters of the 2-ASDOF system. The real component of the complex mode shows the first one with masses out of 
phase and the second one with masses in phase. The imaginary part has non-null components for both the modes only 
in correspondence of the first DOF.  

Figure 4 illustrates the maps of the pseudo modal damping factors versus the frequency ratio 𝜈𝜈, given the values of             
𝜇𝜇 = 0.2, 𝛽𝛽 = 0.1, 𝜉𝜉 = 0.1 and two assumed values for the elastic element 𝜆𝜆 = 𝜈𝜈2𝛽𝛽 and 𝜆𝜆 = 𝛽𝛽. Both pseudo modal 
damping factors assume value smaller than the unity denoting oscillatory motion. 
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connection with spring-inerter-viscous damper elements, with the other parameters as indicated for the undamped 
connection. The curves that delimitate the three regions are overlapped to those obtained for the undamped system, 
this means that, in the parameters range examined, modal frequencies are not significantly affected by the value 
assumed by the viscous damper element and these only depend on the spring and the inerter coefficients.  

Figure 3 (a)-(b) illustrates the real and imaginary part respectively of the complex mode shapes, for assigned 
parameters of the 2-ASDOF system. The real component of the complex mode shows the first one with masses out of 
phase and the second one with masses in phase. The imaginary part has non-null components for both the modes only 
in correspondence of the first DOF.  

Figure 4 illustrates the maps of the pseudo modal damping factors versus the frequency ratio 𝜈𝜈, given the values of             
𝜇𝜇 = 0.2, 𝛽𝛽 = 0.1, 𝜉𝜉 = 0.1 and two assumed values for the elastic element 𝜆𝜆 = 𝜈𝜈2𝛽𝛽 and 𝜆𝜆 = 𝛽𝛽. Both pseudo modal 
damping factors assume value smaller than the unity denoting oscillatory motion. 
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Fig. 2. Domain (a) 𝛾𝛾1 − 𝜈𝜈 and (b) 𝛾𝛾2 − 𝜈𝜈, for connection with spring-inerter-viscous damper elements.  

  

Fig. 3. Natural modes for conservative system (𝝃𝝃 =0) and complex modes for non-conservative system (𝝃𝝃 ≠0) (a) real part (b) imaginary part. 

 
Fig. 4. Domain 𝜂𝜂 − 𝜈𝜈  for connection with spring-inerter-viscous damper elements. 

For 0 < 𝜈𝜈 < 1, 𝜂𝜂1 assumes relative high values, for 𝜆𝜆 = 𝜈𝜈2𝛽𝛽 it increases until the unity with a cusp and then 
decreases, for 𝜆𝜆 = 𝛽𝛽 it decreases with the frequency ratio ν. 𝜂𝜂1 curves in the region 0 < 𝜈𝜈 < 1 have a continuous 
behavior with the corresponding 𝜂𝜂2curves in the region ν > 1, and these latter two curves are almost overlapped in 
this region, decreasing with the frequency ratio monotonically. In the range 0 < 𝜈𝜈 < 1, 𝜂𝜂2 curves are almost similar 
for  𝜆𝜆 = 𝜈𝜈2𝛽𝛽 and 𝜆𝜆 = 𝛽𝛽, with low values, decreasing with ν until zero around ν = 1. In terms of frequencies, in this 
point, in fact the two coupled frequencies become one, equal to the first uncoupled one. 𝜂𝜂2 curves in the region 0 <
𝜈𝜈 < 1 have a continuous behavior with the corresponding 𝜂𝜂1 curves in the region 𝜈𝜈 > 1, and these latter two curves 
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in this region become different, increasing until a constant value. At the end of the frequency range examined, all 
curves tend to have a similar value.  

4. Dynamic response  

When the system is subject to harmonic base excitation with frequency 𝜔𝜔𝑓𝑓, it is possible to represent the response 
in the frequency domain by means of the frequency response function (FRF). For the state-space model defined in Eq. 
(1), the frequency response function 𝑯𝑯(𝑗𝑗𝑗𝑗) is evaluated as: 

𝑯𝑯(𝑗𝑗𝑗𝑗) = 𝒚𝒚(𝑗𝑗𝑗𝑗)
𝑒𝑒(𝑗𝑗𝜔𝜔) = 𝑫𝑫 + 𝑪𝑪(𝑗𝑗𝑗𝑗𝑰𝑰 − 𝑨𝑨)−𝟏𝟏𝑩𝑩 (4) 

where 𝒚𝒚(𝑗𝑗𝑗𝑗) and 𝑒𝑒(𝑗𝑗𝑗𝑗) are the Fourier transform of the output vector and the input respectively.   
The attention is focused on one SDOF response only and the FRF of the relative displacement |𝐻𝐻𝑢𝑢1| as a function 

of the frequency ratio 𝜌𝜌defined as 𝜌𝜌 = 𝜔𝜔𝑓𝑓/𝜔𝜔1 is plotted. 
The objective is to observe how the response varies with the parameters of the connection.  In all the figures, FRF 

estimated for the system without considering coupling (SDOF) and in case of a rigid connection (RC) are reported as 
well for comparison purposes. Results are presented firstly for the undamped connection and then for the damped one. 

Undamped connection (𝝃𝝃 = 𝟎𝟎) 
For the 2-ASDOF linked with spring-inerter elements it was observed that the FRF shows an anti-resonance point 

in correspondence of the first SDOF system frequency (𝜌𝜌 = 1) for specific values of the connection coefficients (𝛽𝛽 
and 𝜆𝜆) related to 𝜇𝜇 − 𝜈𝜈 couples. The analytic expression of the values to be assumed by the link parameters in order 
to obtain the anti-resonance point is given as: 

𝜆𝜆 = 𝛽𝛽 − 𝜇𝜇
1 + 𝜇𝜇 (𝜈𝜈2 − 1); ∀𝜈𝜈 ≠ 1 (5) 

By observing Eq. (5) it can be noticed that, the value to assign to the spring coefficient in order to obtain anti-
resonance, for 0 < 𝜈𝜈 <  1 is always  𝜆𝜆 > 0 for each assumed 𝛽𝛽 and 𝜇𝜇; differently, for ν > 1 we obtain 𝜆𝜆 ≥ 0 only if  
𝛽𝛽 ≥ 𝜇𝜇(𝜈𝜈2 − 1)/(1 + 𝜇𝜇). As a result, there exists a minimum value to be assumed by the inerter coefficient in order 
to have the anti-resonance condition. This is 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 0  for 0< ν < 1, and 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇(𝜈𝜈2 − 1)/(1 + 𝜇𝜇) for ν > 1. 

Figure 5 (a) shows |𝐻𝐻𝑢𝑢1| in the range 0< ν < 1, having assumed 𝜇𝜇 = 0.2, 𝜈𝜈 = 0.5, 𝛽𝛽 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 0 and 𝛽𝛽 = 0.5 and 
setting 𝜆𝜆  according to Eq. (5). Figure 5 (b) shows |𝐻𝐻𝑢𝑢1|  in the range ν  > 1, having assumed 𝜇𝜇  =0.2, 𝜈𝜈 = 0.5 ,                   
𝛽𝛽 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 0.5 and 𝛽𝛽 =1 and setting 𝜆𝜆 according to Eq. (5). In the figures, the response in case of no-connection 
(SDOF) shows the well-known amplification curve for an undamped SDOF system with maximum at 𝜌𝜌 = 1. When a 
rigid connection is considered (RC), the maximum amplification of the FRF moves to left in the range 0 < 𝜈𝜈 <  1, to 
right in the range  ν > 1. When the connection with spring-inerter elements is considered, the FRFs show two 
amplifications and the anti-resonance point at 𝜌𝜌 = 1. Generally, when coupling is assumed, the FRF always shows 
fixed points: they are located by intersection of the FRF of the RC case (green line) with the FRF of the other cases 
(blue or red lines). By observing Fig. 5a and 5b, it can be noticed that the two fixed points move close by increasing 
𝛽𝛽.  

Damped connection (𝝃𝝃 ≠ 𝟎𝟎) 
Figure 5 (c)-(d) shows |𝐻𝐻𝑢𝑢1| when the connection element includes also viscous damping (𝜉𝜉 ≠ 0), in the range  

0 < 𝜈𝜈 < 1 and ν > 1, respectively. The fixed points are present also in case of viscous damping. All curves are below 
the 𝜉𝜉 = 0  curve outside the two fixed points. The anti-resonance point disappears, even if the response in the 
neighborhoods of 𝜌𝜌 = 1 is still very low. The two maximum amplifications of the 2-ASDOF system are reduced if 
compared with the undamped case. By increasing the damping ratio 𝜉𝜉, the first resonance frequency moves towards 
right for 0 < 𝜈𝜈 <  1 and toward left for ν > 1 and the amplification decreases. After a certain value of 𝜉𝜉, the FRF 
shows one amplification only (see Fig. 5 (c)); for this value of the damping ratio, the maximum amplification is 
observed in correspondence of the first fixed point. After that value, the amplification of the response starts to increase 
again. As a result, it is possible to select a suitable value for the damping ratio in order to obtain a very small 
amplification of the response. In the cases reported a good choice could be 𝜉𝜉 = 0.1. 
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Fig. 5. Frequency response plots for structure 1: (a)-(b) for the undamped system, (c)-(d) for the damped system. 

5. Conclusions 

The study investigated the dynamic response of the structural configuration represented by a 2-ASDOF system 
coupled by a link that includes an inerter element. A non-conservative connection, realized with a spring-dashpot-
inerter elements adjusted in parallel is considered as linking scheme. The attention focused on how modal parameters 
or the 2-ASDOF system, i.e. natural frequencies, modal damping ratios and modes varied with the connection 
coefficients. From the analysis with the different linking schemes, it emerged that the specific kind of connection 
influences the system dynamic characteristics. The system is then subject to base harmonic excitation and frequency 
response functions are depicted showing the influence of the link parameters on the dynamic response. By assuming 
an undamped connection, it is possible to obtain the anti-resonance point by properly selecting the spring and inerter 
coefficients. When coupling is assumed (RC, undamped and damped connection), there exist fixed points. By 
conveniently choosing the connection coefficients, it is possible to obtain a very small response in the neighborhoods 
of the resonance of the primary structure considered uncoupled. 
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in this region become different, increasing until a constant value. At the end of the frequency range examined, all 
curves tend to have a similar value.  

4. Dynamic response  

When the system is subject to harmonic base excitation with frequency 𝜔𝜔𝑓𝑓, it is possible to represent the response 
in the frequency domain by means of the frequency response function (FRF). For the state-space model defined in Eq. 
(1), the frequency response function 𝑯𝑯(𝑗𝑗𝑗𝑗) is evaluated as: 

𝑯𝑯(𝑗𝑗𝑗𝑗) = 𝒚𝒚(𝑗𝑗𝑗𝑗)
𝑒𝑒(𝑗𝑗𝜔𝜔) = 𝑫𝑫 + 𝑪𝑪(𝑗𝑗𝑗𝑗𝑰𝑰 − 𝑨𝑨)−𝟏𝟏𝑩𝑩 (4) 

where 𝒚𝒚(𝑗𝑗𝑗𝑗) and 𝑒𝑒(𝑗𝑗𝑗𝑗) are the Fourier transform of the output vector and the input respectively.   
The attention is focused on one SDOF response only and the FRF of the relative displacement |𝐻𝐻𝑢𝑢1| as a function 

of the frequency ratio 𝜌𝜌defined as 𝜌𝜌 = 𝜔𝜔𝑓𝑓/𝜔𝜔1 is plotted. 
The objective is to observe how the response varies with the parameters of the connection.  In all the figures, FRF 

estimated for the system without considering coupling (SDOF) and in case of a rigid connection (RC) are reported as 
well for comparison purposes. Results are presented firstly for the undamped connection and then for the damped one. 

Undamped connection (𝝃𝝃 = 𝟎𝟎) 
For the 2-ASDOF linked with spring-inerter elements it was observed that the FRF shows an anti-resonance point 

in correspondence of the first SDOF system frequency (𝜌𝜌 = 1) for specific values of the connection coefficients (𝛽𝛽 
and 𝜆𝜆) related to 𝜇𝜇 − 𝜈𝜈 couples. The analytic expression of the values to be assumed by the link parameters in order 
to obtain the anti-resonance point is given as: 

𝜆𝜆 = 𝛽𝛽 − 𝜇𝜇
1 + 𝜇𝜇 (𝜈𝜈2 − 1); ∀𝜈𝜈 ≠ 1 (5) 

By observing Eq. (5) it can be noticed that, the value to assign to the spring coefficient in order to obtain anti-
resonance, for 0 < 𝜈𝜈 <  1 is always  𝜆𝜆 > 0 for each assumed 𝛽𝛽 and 𝜇𝜇; differently, for ν > 1 we obtain 𝜆𝜆 ≥ 0 only if  
𝛽𝛽 ≥ 𝜇𝜇(𝜈𝜈2 − 1)/(1 + 𝜇𝜇). As a result, there exists a minimum value to be assumed by the inerter coefficient in order 
to have the anti-resonance condition. This is 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 0  for 0< ν < 1, and 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇(𝜈𝜈2 − 1)/(1 + 𝜇𝜇) for ν > 1. 

Figure 5 (a) shows |𝐻𝐻𝑢𝑢1| in the range 0< ν < 1, having assumed 𝜇𝜇 = 0.2, 𝜈𝜈 = 0.5, 𝛽𝛽 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 0 and 𝛽𝛽 = 0.5 and 
setting 𝜆𝜆  according to Eq. (5). Figure 5 (b) shows |𝐻𝐻𝑢𝑢1|  in the range ν  > 1, having assumed 𝜇𝜇  =0.2, 𝜈𝜈 = 0.5 ,                   
𝛽𝛽 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = 0.5 and 𝛽𝛽 =1 and setting 𝜆𝜆 according to Eq. (5). In the figures, the response in case of no-connection 
(SDOF) shows the well-known amplification curve for an undamped SDOF system with maximum at 𝜌𝜌 = 1. When a 
rigid connection is considered (RC), the maximum amplification of the FRF moves to left in the range 0 < 𝜈𝜈 <  1, to 
right in the range  ν > 1. When the connection with spring-inerter elements is considered, the FRFs show two 
amplifications and the anti-resonance point at 𝜌𝜌 = 1. Generally, when coupling is assumed, the FRF always shows 
fixed points: they are located by intersection of the FRF of the RC case (green line) with the FRF of the other cases 
(blue or red lines). By observing Fig. 5a and 5b, it can be noticed that the two fixed points move close by increasing 
𝛽𝛽.  

Damped connection (𝝃𝝃 ≠ 𝟎𝟎) 
Figure 5 (c)-(d) shows |𝐻𝐻𝑢𝑢1| when the connection element includes also viscous damping (𝜉𝜉 ≠ 0), in the range  

0 < 𝜈𝜈 < 1 and ν > 1, respectively. The fixed points are present also in case of viscous damping. All curves are below 
the 𝜉𝜉 = 0  curve outside the two fixed points. The anti-resonance point disappears, even if the response in the 
neighborhoods of 𝜌𝜌 = 1 is still very low. The two maximum amplifications of the 2-ASDOF system are reduced if 
compared with the undamped case. By increasing the damping ratio 𝜉𝜉, the first resonance frequency moves towards 
right for 0 < 𝜈𝜈 <  1 and toward left for ν > 1 and the amplification decreases. After a certain value of 𝜉𝜉, the FRF 
shows one amplification only (see Fig. 5 (c)); for this value of the damping ratio, the maximum amplification is 
observed in correspondence of the first fixed point. After that value, the amplification of the response starts to increase 
again. As a result, it is possible to select a suitable value for the damping ratio in order to obtain a very small 
amplification of the response. In the cases reported a good choice could be 𝜉𝜉 = 0.1. 

 

6 Michela Basili, Maurizio De Angelis, Daniele Pietrosanti/ Procedia Engineering 00 (2017) 000–000 

  

  
Fig. 5. Frequency response plots for structure 1: (a)-(b) for the undamped system, (c)-(d) for the damped system. 

5. Conclusions 

The study investigated the dynamic response of the structural configuration represented by a 2-ASDOF system 
coupled by a link that includes an inerter element. A non-conservative connection, realized with a spring-dashpot-
inerter elements adjusted in parallel is considered as linking scheme. The attention focused on how modal parameters 
or the 2-ASDOF system, i.e. natural frequencies, modal damping ratios and modes varied with the connection 
coefficients. From the analysis with the different linking schemes, it emerged that the specific kind of connection 
influences the system dynamic characteristics. The system is then subject to base harmonic excitation and frequency 
response functions are depicted showing the influence of the link parameters on the dynamic response. By assuming 
an undamped connection, it is possible to obtain the anti-resonance point by properly selecting the spring and inerter 
coefficients. When coupling is assumed (RC, undamped and damped connection), there exist fixed points. By 
conveniently choosing the connection coefficients, it is possible to obtain a very small response in the neighborhoods 
of the resonance of the primary structure considered uncoupled. 
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