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Abstract Lithogenic material deposited as dust is one of the major sources of trace metals to the ocean,
particularly in the tropical and subtropical Atlantic. On the other hand, it can also act as a scavenging surface
for iron. Here we studied this double role of lithogenic material in the marine iron cycle by adding a new
scheme for describing particle dynamics into a global biogeochemistry and ecosystem model including
particle aggregation and disaggregation of two particle size classes and scavenging on both organic and
lithogenic particles. Considering the additional scavenging of iron on lithogenic particles, the modeled
dissolved iron concentration is reduced significantly in the tropical and subtropical Atlantic, bringing the
model much closer to observations. This underlines the necessity to consider the double role of dust
particles as iron source and sink in studies on the marine iron cycle in high dust regions and with
changing dust fluxes.

1. Introduction

Lithogenic material, carried by the atmosphere and deposited as dust, is a major source of trace metals to the
ocean (Duce & Tindale, 1991; Guieu et al., 2014; Jickells et al., 2005). Especially for iron, which is an important
micronutrient for phytoplankton (Geider & La Roche, 1994), the input of dust has been hypothesized to be an
important driver of marine primary and export production on time scales ranging from subseasonal (Bishop
et al., 2002) to glacial-interglacial (Martin, 1990). Other external sources of iron have over the last decade been
shown to be important as well and also to outweigh dust deposition regionally (Elrod, 2004; Resing et al.,
2015; Tagliabue et al., 2010; Wadley et al., 2014). In the tropical and subtropical Atlantic, which receives at least
half of the global deposition flux of dust to the oceans (Mahowald et al., 1999), however, dust is very likely to
be the dominant source of iron to the surface ocean, and its influence is clearly reflected in the distribution
of dissolved iron (Measures et al., 2008; Sarthou et al., 2007; Ussher et al., 2013). The dominant role of dust as
iron source to the Atlantic has also been confirmed by studies of the stable isotopic composition of dissolved
and particulate iron (Conway & John, 2014; Revels et al., 2015).

Iron, on the other hand, is very insoluble in seawater (Liu & Millero, 2002) and has a strong tendency to
adsorb onto particle surfaces present in seawater, in a process called scavenging. Scavenging occurs predom-
inantly via the formation of colloidal nanoparticles that subsequently aggregate onto larger sinking particles
(Honeyman & Santschi, 1989; Rose & Waite, 2007). Dust deposition, besides being a source of iron, also is a
source of particles and hence scavenging surface; this explains why the addition of dust can also lead to a
decrease of dissolved iron (Wagener et al., 2010).

In most circumstances in the open ocean, suspended particulate matter is dominated by biogenic particles,
while lithogenic particles are only a minor fraction. This, however, is not necessarily true in the high dust
regions downwind of the Sahara, where a substantial fraction of the particles can be of lithogenic origin
(Lam et al., 2015; Ohnemus & Lam, 2015). It is primarily in these regions that dust may play a double role both as
source and sink of dissolved iron (Ye et al., 2011). Quantifying this double role, however, is made difficult by the
fact that the concentration of dust particles in the ocean is shaped by intensive aggregation-disaggregation
processes (Ohnemus & Lam, 2015; Ye et al., 2011), which complicate the estimation of lithogenic particle
concentration directly from dust deposition.

In this study, we attempt to quantify the effect of dust both as a source and a sink for iron in the Atlantic
Ocean by means of a global biogeochemical model. Different descriptions of the iron sink by scavenging have
been applied in global iron models: some still use a first-order uniform scavenging rate, and some make it
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dependent on concentration of biogenic particles (Tagliabue et al., 2015). There are also models (e.g., Aumont
et al., 2015), which include a scavenging term on lithogenic particles but make drastic assumptions on the
dynamics of lithogenic particles, namely, a uniform constant sinking speed and no aggregation. Our model
takes into account a complex cycle of lithogenic particles including aggregation and disaggregation, as well
as adsorption of iron onto both biogenic and lithogenic particles. We take advantage of the fact that with the
international GEOTRACES effort, there is a growing database of both dissolved and particulate trace element
concentration measurements that we use to test our model predictions. Specifically, we aim to (1) investigate
the influence of aggregation and disaggregation the distribution of lithogenic material, (2) check whether
the inferences based on our model on this role are compatible with earlier hypotheses based on observa-
tions (Barrett et al., 2012) and one-dimensional modeling (Barkmann et al., 2010; Ohnemus & Lam, 2015),
(3) quantify the role of the lithogenic particle pool as additional scavengers for iron in the Atlantic, and (4)
check whether inclusion of a simple scheme for lithogenic particles and their role as scavengers decreases
model-data mismatch for dissolved iron in high dust flux regions.

To this end, we have added a new scheme for describing lithogenic particle dynamics (section 2) into our
global biogeochemistry and ecosystem model REcoM (Hauck et al., 2013). The aggregation model is fairly sim-
plistic compared to those described, for example, in Jackson and Burd (1998) and Burd (2013), but allows for
horizontal transport of particles, in contrast to the one-dimensional models of Ohnemus and Lam (2015) and
Barkmann et al. (2010). In section 3.1, we compare the predictions made with this model with a number of
recent studies on particulate trace metals in the Atlantic; in section 3.2, we investigate how well the aggre-
gation rates that we obtain from our model compare to published rate estimates based on thorium mea-
surements; we then study modeled distributions of dissolved iron both with and without inclusion of the
scavenging role of lithogenic material (section 3.3); and finally, we discuss the model results and their short-
comings (section 4) and draw conclusions on the role of lithogenic particles in the cycling of iron in the Atlantic
(section 5).

2. Model Description
2.1. The Physical and Biogeochemical Model
The ocean circulation model that we use to calculate the transport of all tracers through advection and dif-
fusion is a nearly global setup of the Massachusetts Institute of Technology circulation model (Marshall et al.,
1997), spanning the latitude range from 80∘N to 80∘S at a zonal resolution of 2∘ and a meridional resolution
between 0.39∘ and 2∘ . In the vertical it has 30 layers, increasing in thickness from 10 m at the surface to 500 m
below a depth of 3,700 m. The model includes a dynamic sea ice model (Losch et al., 2010), and we use the
Gent-McWilliams parameterization for turbulent tracer and momentum fluxes (Gent & McWilliams, 1990) and
a bottom boundary layer scheme (Campin & Goosse, 1999) for improving the representation of overflows.

To this physical model setup we have coupled a marine ecosystem and biogeochemical model, REcoM2,
described in detail in Hauck et al. (2013) and Hauck and Völker (2015). REcoM2 describes two phytoplankton
classes, diatoms and nondiatoms; a generic zooplankton; and one class of organic sinking particles which
is assumed to be aggregates with a sinking speed that increases with depth (Kriest & Oschlies, 2008).
The model for phytoplankton growth is based on a quota approach (Geider et al., 1998) and allows for vari-
able cellular C:N:Chl:(Si,Fe) stoichiometry (Schartau et al., 2007). The iron cycle in the model is driven by dust
and sedimentary inputs of iron, biological uptake and remineralization, and scavenging onto particles.

2.2. Lithogenic Particles in the Model
We have two lithogenic particle classes: fine dust Ps and the lithogenic part in aggregates Pl (Figure 1).
Concentrations in the model are in mg m−3. We assume that the dust that is deposited is mostly fine, <1 μm
diameter, so it sinks only slowly on its own, with a constant sinking speed ws of 0.2 m d−1.

We consider two types of particle aggregation: the aggregation between dust particles with a second-order
mass specific aggregation rate kc1

and that between dust and biogenic aggregates with kc2
which is kept in

a fixed ratio to kc1
. We chose a ratio of 3:1 based on the ratio of the rate constants calculated using a size

spectrum model for the curvilinear coagulation kernels by Burd (2013) and the model parameters in Ye et al.
(2011), which simulated the effect of dust addition on iron cycling in a mesocosm experiment.

The aggregates in our model sink as a whole, that is, we assume the same sinking speed wl for the lithogenic
part of aggregates as for detritus which increases linearly with depth, with 20 m d−1 at the surface and 50 m d−1
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Figure 1. Lithogenic particles and their sources and sinks in the model.

at 1,000 m. When detritus is remineralized with a (temperature-dependent) rate kr , part of the lithogenic
material is released again in the form of fine dust particles, in such a way that the lithogenic fraction in the
aggregates is conserved, for example, at the same rate as the remineralization. Furthermore, we have an
additional term for disaggregation, with a disaggregation rate kdiss.

Taken together, the model equations for the two components are thus (symbolizing advection and diffusion
terms for simplicity by Fs and Fl)

𝜕

𝜕t
Ps = Fd − kc1

⋅ Ps
2 − kc2

⋅ (Pl + rC∶mD) ⋅ Ps +
(

kr + kdiss

)
Pl −

𝜕

𝜕z

(
wsPs

)
+ Fs (1)

𝜕

𝜕t
Pl = kc1

⋅ Ps
2 + kc2

⋅ (Pl + rC∶mD) ⋅ Ps −
(

kr + kdiss

)
Pl −

𝜕

𝜕z

(
wlPl

)
+ Fl. (2)

The source of small particles from dust deposition Fd is zero everywhere except in the first layer, where it is the
dust deposition flux (in mg m−2 d−1) divided by the first model layer depth. Organic detritus D (in mmol C m−3)
is converted into mass units with the conversion factor rC∶m = 24 g biomass mol C−1 (assuming that carbon
is half the biomass).

Based on an extensive sensitivity study with respect to aggregation and disaggregation rates (sections A1
and A2), we use a value of 2.6 ⋅ 10−2 (mg/m3)−1 d−1 for the aggregation between small particles (kc1

) and a
disaggregation rate of 2.5 d−1 (kdiss). In section 3.2, we calculate the first-order aggregation rates in the model
raggr = kc1

⋅ Ps + kc2
⋅ (Pl + rC∶mD) and compare them with estimates made using thorium data.

Organic complexation of dissolved iron is considered in the model, using a constant ligand concentration of
1 μmol m−3. Iron that is not bound to organic ligand undergoes adsorption onto surfaces of both detritus
(biogenic particles) and lithogenic particles including dust particles and the lithogenic part of aggregates.
Different scavenging rate constants are assumed for these two kinds of particles: 1.56 ⋅ 10−2 (mmol C/m3)−1

d−1 for scavenging onto biogenic particles, resulting from former sensitivity studies (Hauck et al., 2013) and
7.5 ⋅ 10−4 (mg/m3)−1 d−1 for scavenging onto lithogenic particles, adapted from our 1-D model for a dust
addition experiment (Ye et al., 2011).

2.3. Model Experiments and Setup
Model experiments were started from a state of rest and a temperature and salinity distribution interpolated
from the World Ocean Atlas 2009 (Antonov et al., 2010; Locarnini et al., 2010). Dissolved inorganic nitrogen
and silicate were also taken from the World Ocean Atlas, dissolved inorganic carbon, and alkalinity from Global
Ocean Data Analysis Project (Key et al., 2004). Model output from Aumont et al. (2015) was used as initial
dissolved iron. All other variables of the ecosystem model were initialized with small constant values.

After initialization, model runs were integrated for 100 years, enough to get the iron cycle and the particle
concentrations into a cyclostationary state. Model output from the last 10 years was taken for analysis. Model
runs were driven by the daily (except for monthly precipitation) normal year atmospheric forcing fields from
the coordinated ocean research experiments (CORE) (Large & Yeager, 2008); a climatology of monthly dust
deposition fields was taken from Mahowald et al. (2005). We assume that dust contains 3.5% of iron and an
immediate dissolution of iron from deposited dust particles with a solubility of 2%.
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Figure 2. Lithogenic suspended particulate matter (annual average in mg m−3) at the (a) surface and vertically averaged below (b) 2,000 m depth.

Two model runs are presented in this paper: one with (“+Lith”) and one without (“−Lith”) the scavenging effect
of lithogenic particles. In addition, 40 sensitivity runs have been performed with respect to processes affecting
the particle cycle. Their parameter values and results of some of them can be found in sections A1 and A2.

3. Results
3.1. Particles and Particulate Iron Concentrations
The concentration of lithogenic suspended particles, that is, the sum of lithogenic material in dust and in
larger aggregates (Ps + Pl), at the ocean surface shows elevated values only in regions directly under the dust
plumes downwind of the major deserts, especially the Sahara (Figure 2a). Somewhat elevated values are also
found in the Arabian Sea, near Patagonia and Australia, but do not extend as far into the open ocean as in
the Atlantic. In the rest of the ocean, lithogenic particle concentrations are generally negligible compared to
biogenic particles. This pattern indicates a relatively short residence time of the slow-sinking dust particles at
the surface compared to the time scales of horizontal advection and a rapid removal through aggregation.
At depth, the fine fraction dominates the lithogenic particles, leading to a longer residence time of the
lithogenic iron. The lateral advection of this fine dust fraction results in a slightly more homogenous distribu-
tion than at the surface (Figure 2b). The highest concentrations, nevertheless, are found in the vicinity of the
main dust deposition regions.

The modeled distributions of lithogenic particles can be compared to concentrations of particulate iron (pFe)
that were measured on two occupations of the CLIVAR A16N cruise (Figure 3d) in the Atlantic in summer 2003
and 2013 (Barrett et al., 2012, 2015) and along a Polarstern cruise in winter 2005 (Pohl et al., 2011). All three
cruises found elevated values of pFe under the Saharan dust plume, with typical surface values under the
plume ranging between 2 and 8 μmol m−3 (Pohl et al., 2011), 2.4 to 3.4 μmol m−3 (Barrett et al., 2012), and 2 to
7 μmol m−3 (Barrett et al., 2015). The modeled maximum surface pFe concentration is in the same range but
located some degrees to the north of the observations (Figure 3a), probably caused by the difference between
the climatology of dust deposition used in the model and the individual dust events during the cruises.

In the vertical, Barrett et al. (2012, 2015) both generally find a subsurface minimum at depths between 100
and 200 m, where concentrations are lower by 1–2 μmol m−3 under the dust plume than at the surface
(Figure 3b). They ascribe this to the rapid export of particles in aggregates. Below this minimum, there is a
maximum between the equator and 20∘N, with mean values calculated between 200 m and 1,000 m depth of
3.4μmol m−3 in 2003 and 4.3μmol m−3 in 2013. Barkmann et al. (2010) also showed similar profiles of modeled
and observed dust concentrations in the Arabian Sea.

We find a very similar pattern in the model (Figure 3a) with highest concentrations of 4–6.5 μmol m−3 at
the surface under the Saharan dust plume (5–25∘N), followed by a rapid decrease to a subsurface mini-
mum between 100 and 200 m. The concentrations are lower by 1–2.5 μmol m−3 (∼20–40%). This is mainly
caused by strong particle aggregation that is reflected in the distribution of coarse lithogenic iron (Figure 3c).
The coarse fraction of pFe reaches 35% at the subsurface minimum of total pFe. The subsurface minimum of
total pFe is less clear around 20∘N, since particle aggregation between dust and large particles is much weaker
in the subtropical gyre due to the low concentration of biogenic particles. Below the subsurface minimum,
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D) A16N cruise track

Figure 3. Particulate iron (μmol Fe m−3) along the CLIVAR A16N section in the tropical and North Atlantic: (a) modeled iron contained in all lithogenic particles,
(b) measured particulate iron provided by Pamela Barrett, (c) modeled iron contained in the lithogenic part of aggregates only, and (d) the cruise track of A16N.
Color scales of the modeled data are different.

remineralization and disaggregation slow down the export of particles and lead to an increase of pFe up to
4.5 μmol m−3. Here we ignore the iron scavenged on the particle surface and contained in living organisms
because of their minimal contribution to the total particulate iron in the water column compared to iron in
the lithogenic particles. In regions without significant input of lithogenic particles, the role of scavenged and
biological particulate iron must be taken into account.

One discrepancy between the observed and modeled pattern of pFe is that the observed pFe concentration
at the surface under dust plume is lower than that at the deep maximum, whereas the highest concentration
is found at the surface in the model, independent of the aggregation rates used in the model (section A2).
One possible reason could be that we use monthly averaged dust deposition fields in the model. Dust depo-
sition brings lithogenic particles to the ocean surface intermittently. Particle aggregation is described in the
model with quadratic functions and thus acts nonlinearly on the distribution of deposited lithogenic particles.
By averaging the deposition flux monthly, we miss the intermittent high input of dust particles by individ-
ual dust events and thus may have weakened the subsequent transport of lithogenic particles into the ocean
interior by particle aggregation. This could also explain the lower fraction of coarse lithogenic particles in
our model than in the measurements by Ohnemus and Lam (2015) (section A3). The second reason could
be that the dust deposition fields by Mahowald et al. (2005) may overestimate the deposition in the eastern
tropical North Atlantic Ocean (Anderson et al., 2016). Another reason could be the simplicity of the particle
dynamics in the model, for example, the uniform sinking velocity of all kinds of aggregates at the same depth,
independent of their composition and size. If this is appropriate for aggregates mainly consist of lithogenic
particles remains to be examined if more data on the vertical distribution of lithogenic particles become
available.

3.2. Aggregation and Disaggregation Rate
Rate constants of particle aggregation and disaggregation have been estimated in a few studies from mea-
surements of particle-reactive metals, in particular, thorium. Globally, the estimated first-order aggregation
rates range from 0.02 to 640 y−1 and disaggregation rates from 16 to 5,000 y−1 (Lam et al., 2015). For a
direct comparison with these estimates, we calculated a quasi first-order total aggregation rate raggr for small
particles from the modeled aggregation rates that depends on the concentration of small and large particles:

raggr = kc1 ⋅ Ps + kc2 ⋅
(

Pl + rC∶mD
)
. (3)

Our model represents a similar but wider range of aggregation rates, and the disaggregation rate is within
the range of the estimates (Table 1). One should, however, be cautious when comparing model rates and
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Table 1
Comparison of Model Rate Constants (y−1) With Some Published Estimates

raggr rdisag Region Study

0.01–1800 900 Global Our model

2.5–12.3 148–788 Northwest Pacific Nozaki et al. (1987)

3.72–642.4 150–3,760 Northeast Pacific Clegg and Whitfield (1991)

0.8 400 Northeast Pacific Murnane (1994)

0.02–49 16–4,996 Eastern equatorial Pacific Clegg et al. (1991)

1.1–33.2 126–407 North Atlantic Cochran et al. (1993)

8–18 580–2,690 North Atlantic Murnane et al. (1994)

2–76 156–524 North Atlantic Murnane et al. (1996)

Note. raggr: aggregation rate and rdisag: disaggregation rate.

estimates because (1) all the thorium-based models used to estimate these rate constants assume first-order
kinetics for aggregation between small particles, whereas we assume second-order kinetics for aggregation
between small particles and for aggregation between small particles and aggregates; (2) different assump-
tions and methods have been used to solve for the rate constants, for example, direct or least squares
methods, resulting in relatively high uncertainties and limited comparability within the estimates; (3) the com-
pilation by Lam et al. (2015) mainly covers the North Atlantic, the equatorial, and North Pacific. More data sets
would be needed for a comparison of the geographic pattern. Therefore, we roughly compare the range of
the model values with the estimates and do not further constrain the model with these rate constants.

The ratio of disaggregation to aggregation rate has been used to illustrate the dominant process in particle
dynamics, for example, lower ratios could indicate formation of large particles and higher vertical particle
flux (Lam et al., 2015). At the surface, the ratio of disaggregation to aggregation rates in the model basically
follows the inverse pattern of the global primary production (Figure 4a): the highest ratios are found in the
subtropical gyres and lower values in regions with high biological productivity. This is not surprising because
higher abundance of biological particles accelerates the formation of aggregates, leading to higher vertical
flux through the water column. The ratio in the North Atlantic Gyre is significantly lower than that in other
gyres, because the atmospheric input and the advective transport of dust particles contribute to the verti-
cal particle flux via aggregation. And the higher productivity there also results in a higher flux of particulate
organic matter.

In vertical, the ratio of disaggregation to aggregation rate increases with depth (Figure 4), caused by the
dropoff of the productivity-driven aggregation away from the surface. This vertical variability is consistent
with the majority of the estimates based on thorium data (Lam et al., 2015) and the modeling study by
Ohnemus and Lam (2015).

Figure 4. Ratio of disaggregation to aggregation rate in the model averaged in the upper (a) 100 m and between (b) 500 and 1,000 m.
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Figure 5. Change of dissolved iron concentration (μmol Fe m−3) in +Lith relative to −Lith at the (a) surface and (b) 2,000 m depth. Color scales of the two plots
are different.

3.3. Effect of Lithogenic Particles on Dissolved Iron
We illustrate the effect of lithogenic particles on the distribution of dissolved iron by showing the difference
in dissolved iron between a run including (+Lith) and a run excluding (−Lith) the role of lithogenic material as
iron scavengers (Figure 5). Surface concentrations of dissolved iron in +Lith are lower mainly in the high dust
deposition regions. The largest decrease up to 2.5 μmol m−3 in +Lith relative to −Lith is found in the North
Atlantic basin center around ∼15∘. There is no significant effect close to the African coast where the highest
dust deposition takes place. The high biological productivity near the coastal upwelling leads to both a high
biological iron uptake and a high abundance of biogenic particles that can act as iron scavengers (section 4.3
and Figure 8). The excess iron there is already low and the additional scavenging onto lithogenic particles is,
therefore, weaker than in the center of the basin. At depth, the two runs also show a significant difference
which is much more widespread, ranging from ∼0.5 μmol m−3 under the dust plume in the Atlantic and
Arabian Sea to ∼0.2 μmol m−3 along the spreading path of the North Atlantic Deep Water to relatively small
changes in the deep Pacific.

4. Discussion
4.1. Modeled and Observed Dissolved Iron
We compare the model results with measured surface concentrations of dissolved iron in the Atlantic Ocean
(Figure 6). In the absence of scavenging by lithogenic particles, iron is scavenged only by biogenic particles.
One would therefore expect high concentration of dissolved iron in the tropical and subtropical North
Atlantic where much iron is deposited by dust events, but scavenging is low due to relatively low biological
productivity, which is indeed observed in−Lith (Figure 6a). Iron concentrations in this region are also elevated
in the observations but far from the magnitude found in −Lith.

In +Lith (Figure 6b), iron concentrations in the tropical and subtropical Atlantic are much closer to the
observations. Dust deposition leads to an increase of dissolved iron up to ∼1 μmol m−3 higher than the
rest of the Atlantic Ocean. At the same time, the deposited fine lithogenic particles provide a large surface
for iron adsorption and particle aggregation, increasing net scavenging loss and limiting the accumulation
of dissolved Fe found in −Lith. Therefore, the enhancement of dissolved iron here is not as intensive as in
−Lith. The observed iron concentrations along the northwestern African coast are not as high as in the open
ocean downwind the Saharan desert. This pattern is also reflected in our model and caused by high biologi-
cal uptake and abundance of both lithogenic and biogenic particles in the coastal region. Directly under the
Saharan dust plume, however, modeled concentrations are still a bit higher than observed. A possible reason
could be that most measurements took place in summer when the surface iron is fairly exhausted due to
phytoplankton growth, whereas we compare it to the annual average of dissolved iron. Another reason could
be that the iron input due to wet deposition predominantly consists of colloidal iron (Ussher et al., 2013).
Without considering the colloidal pumping (Honeyman & Santschi, 1989), our model might miss an impor-
tant loss process of dissolved iron, particularly in regions with high wet deposition fluxes or riverine input.
Furthermore, a uniform solubility of 2% is applied in the model for calculating the iron input from dust
deposition. Using different solubilities of iron for desert-derived and anthropogenically influenced dust and
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Figure 6. Dissolved iron concentration (μmol Fe m−3) in the upper 50 m in the (a) −Lith and (b) +Lith run. Colored dots
indicate measured values from an update of the data compilation by Tagliabue et al. (2012).

considering different degrees of atmospheric processing (Baker & Croot, 2010; Bonnet & Guieu, 2004) might
bring the model closer to observations.

4.2. Residence Time of Dissolved Iron
The bioavailability of iron to phytoplankton growth depends not only on the sources of iron but also its res-
idence time in the mixed layer. In some field studies in the Atlantic Ocean, the residence time of dissolved
iron has been calculated from the atmospheric input and iron inventories in surface waters: Jickells (1999)
reported residence times between 214 and 291 days in the upper 100 m in the Sargasso Sea; longer residence
times in the near surface waters were found by Croot et al. (2004), increasing from 280 days to 10.5 years
from east to west along a transect at 10∘N in the equatorial Atlantic; for the tropical and subtropical Atlantic,
residence times on the order of months were estimated by Bergquist and Boyle (2006), with some months for
the North Atlantic and up to over a year for the South Atlantic; and Ussher et al. (2013) reported values from
0.4 to 13 years, using data from Atlantic Meridional Transect cruises, and revealed a similar disparity between
the North and South Atlantic Ocean. The difference between these estimates is partly caused by their dif-
ferent assumptions on Fe solubility from dust particles, which ranged from 1 to 10%. Other factors like the
seasonality of dissolved iron concentrations and atmospheric input may also play a role.

We calculate the mixed layer residence time of dissolved iron 𝜏res based on the inventory of dissolved iron
Femld and its total sinks in the maximum winter mixed layer, which consists of the adsorptive removal by small
lithogenic particles and large aggregates Sscav and the removal by phytoplankton uptake Supt:

𝜏res =
Femld

Sscav + Supt
. (4)

The modeled mixed layer residence time for the Atlantic Ocean ranges from shorter than 1 day to over 10 years
(Figure 7a), comparable to the estimates in field studies. The pattern of residence time is similar to that of the
ratio of disaggregation to aggregation rate at the surface (Figure 4a): longer residence times are associated
with lower vertical flux of particles. One exception is at the high latitudes. Relatively long residence times
from 1 year to over 10 years are found to the north of ∼45∘N and to the south of ∼70∘S in the Atlantic sector
of the Southern Ocean, which results from deep or complete winter mixing. The increasing trend from east
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Figure 7. Annual averaged residence time of dissolved iron in the mixed layer: (a) 𝜏res in +Lith (years in a logarithmic
scale) and (b) the ratio of 𝜏+Lith

res to 𝜏
–Lith
res (%).

to west along 10∘N, found by Croot et al. (2004), is well reproduced in the model. In the South Atlantic Gyre,
the highest value exceeds 30 years, whereas in the North Atlantic Gyre it ranges between 3 and 6 years.
This is comparable to the north-south difference of 1 order of magnitude demonstrated by Bergquist and
Boyle (2006) and Ussher et al. (2013). They ascribe this to high atmospheric input of iron (associated with
particles and colloids), high annual productivity, and high particulate organic carbon flux in the North Atlantic.

Comparing to −Lith, the residence time in +Lith is strongly reduced in the tropical and subtropical ocean,
particularly in the North Atlantic (Figure 7b). The relative pattern between the north and south gyres is also
found in −Lith (not shown here), in other words, the north-south difference is rather determined by the
stronger biological uptake and scavenging onto biogenic particles relative to the mixed-layer dissolved iron
than by the higher scavenging onto lithogenic particles in the North Atlantic. Just around 30∘N in the western
part of the subtropical North Atlantic, the residence time in +Lith is slightly longer than that in −Lith. In this
region, the concentration of dissolved iron is lower in +Lith (Figure 6), leading to a reduction in biological
uptake and abundance of biogenic particles. This in turn lowers the scavenging removal by biogenic particles.
Since the additional scavenging onto lithogenic particles does not affect this region considerably (Figure 2),
the residence time increases due to the decrease of the biogenic sinks.

The scavenging loss of iron does depend not only on the abundance of sinking particle but also on the amount
of iron that is not bound by organic ligands. The model assumption on ligand is therefore crucial for deter-
mining the scavenging rate constant. In another model run including a prognostic description of the ligand
cycle following Völker and Tagliabue (2015) (not shown), the scavenging rate constant for lithogenic particles
needs to be increased strongly to keep the modeled iron concentration within the range of the observations.
This dependence of the scavenging loss on ligand variability should be taken into account when comparing
residence times of iron in different iron models.

4.3. The Double Role of Dust as Iron Source and Scavenger
Dust deposition has been widely considered as one of the most important external iron sources for the ocean,
although the importance of other iron sources like sediments and hydrothermal vents has been recognized
during the last decade (e.g., Elrod, 2004; Resing et al., 2015; Tagliabue et al., 2010). To quantify the contribution
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Figure 8. Annual averaged source and sinks of dissolved iron (μmol Fe m−3 d−1) in the upper 100 m: (a) iron input by
dust deposition, (b) iron loss by scavenging onto lithogenic particles, (c) iron loss by scavenging onto biogenic particles,
and (d) iron loss by phytoplankton uptake.

of dust deposition to the global iron budget, it is crucial to take into account the role of the deposited particles
in scavenging of dissolved iron, in addition to the total deposition flux and solubility of iron from dust particles.
We pointed out in Ye et al. (2011) that dust deposition could even act as a net sink of dissolved iron in regions
with high iron concentrations if the scavenging removal exceeds the iron input by dust deposition. In this
study, this double role of dust particles has been studied in a 3-D global biogeochemical model, and here we
show a quantitative comparison of iron input from dust and the main sinks of iron in the model (Figure 8).
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In general, iron input by dust is higher than iron loss by lithogenic scavenging in most parts of the Atlantic
(Figures 8a and 8b). But it is worthy to note that dust particles remove iron at a rate in a comparable order
of magnitude to that of the iron input by dust. In some regions in the western part of the subtropical North
Atlantic, dust deposition could even act as a net sink of dissolved iron. It should, however, be taken into
account that we could overestimate the scavenging loss at the surface by assuming an immediate iron dis-
solution from dust. Biogenic scavenging in most parts of the Atlantic is higher than lithogenic scavenging
(Figures 8b and 8c), except in the gyres where the biological activity is low. Due to high input of lithogenic
particles by Saharan dust events, lithogenic scavenging in the tropical and subtropical North Atlantic exceeds
both biogenic scavenging and phytoplankton uptake and becomes the largest iron sink. In total, dissolved
iron is rather removed by physical (scavenging onto all the sinking particles) than biological processes
(phytoplankton uptake) (Figure 8d). Only about 1/5 of iron consumed by phytoplankton sinks out of the upper
100 m which results in a even smaller net biological removal.

4.4. Impact on Marine Productivity
Including the lithogenic scavenging in the model mainly changes the surface concentration of dissolved iron
in the high deposition regions where biological productivity is limited rather by other nutrients than iron.
A decrease of ∼3% is still found in the global net primary production and export production, particularly
in the high-nutrient low-chlorophyll regions, for example, the equatorial Pacific and Southern Ocean. This
demonstrates that lithogenic scavenging has a global effect on marine productivity, even if the amplitude of
the total change is small.

The double role of dust as iron source and scavenger is particularly important for assessing the impact of
changing dust flux on the marine iron cycle and productivity, for example, during the glacial periods. Ice cores
indicate that dust deposition during glacial periods increased by a factor up to 25 comparing to interglacial
periods (Lambert et al., 2008; Petit et al., 1999). The enhanced atmospheric iron input has been proposed to
cause an increase in marine productivity and export production, contributing to the reduction in the glacial
atmospheric CO2 (Martin, 1990). However, to what extent this higher dust supply could explain the difference
in atmospheric CO2 depends rather on the increase in bioavailable iron than that in the total iron source. Using
models considering varying dust fluxes and the biogeochemical cycle of iron but ignoring the concurrent
input of lithogenic particles and aggregate formation, one might overestimate the iron supply for marine
biota during glacial periods. If this has a significant effect on marine CO2 uptake remains to be investigated
in future modeling studies.

5. Conclusions

In this study, we quantify the double role of dust particles both as a source and a sink of iron in the
Atlantic Ocean, by including aggregation of two size classes of particles and disaggregation and differentiated
scavenging rates of iron on bogenic and lithogenic particles in a global biogeochemical model. This enables
a better description of the spatial variability of the scavenging loss of iron.

Sinking particles in the model are dominated by lithogenic material in regions under dust plumes, for example,
the tropical and subtropical Atlantic Ocean, whereas they mainly consist of organic material in the rest of
the world ocean. By considering scavenging onto lithogenic particles, modeled dissolved iron concentrations
and residence times are significantly reduced in the tropical and subtropical Atlantic Ocean, bringing the
model much closer to the observations. In the comparison of the iron source from dust with the different
sinks, we show that dust deposition acts as a net iron source in most regions of the Atlantic Ocean; under
dust plumes, the iron supply by dust and removal by scavenging onto dust particles are of a comparable
order of magnitude, and the biogenic and lithogenic scavenging together is the dominant removal process
of dissolved iron compared to biological uptake. These model results underline the necessity to consider the
double role of dust particles as iron source and sink in global biogeochemical models of iron. With the growing
GEOTRACES database of paired iron and thorium measurements, particularly in the particulate phase, we
could better prove our assumptions on aggregation and disaggregation rate constants and further quantify
the role of lithogenic particles in the marine iron cycle.

This study focuses on the double role of dust particles in the tropical and subtropical North Atlantic. Other
sources of iron (and lithogenic particles) could also be important, for example, nepheloid layers (Lam et al.,
2015) and hydrothermal vents (Tagliabue et al., 2010). A significant fraction of iron delivered by these sources
(including dust deposition) is in the colloidal size (Bergquist & Boyle, 2006; Lam et al., 2015; Ussher et al., 2013;
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Table A1
Parameter Values Changed in Sensitivity Runs (A)

Run kc2 kc1 kdiss ws Name

01 - - - 0.2

02 0.0 - - 0.2

03 3.9E−5 - - 0.2

04 3.9E−3 - - 0.2

05 3.9E−4 – - 1.0

06 3.9E−4 - - 5.0

07 7.8E−3 - - 0.2

08 1.9E−2 - - 0.2

09 7.8E−3 - - 1.0

10 1.9E−2 - - 1.0

11 3.9E−2 - - 0.2

12 7.8E−2 - - 0.2

13 3.9E−2 - - 1.0

14 7.8E−2 - - 1.0

15 7.8E−2 - - 0.2

16 1.6E−1 - - 0.2 1 × aggr

Note. kc2: aggregation rate between dust and large particles ((mg/m3)−1

d−1); kc1: aggregation rate of dust particles ((mg/m3)−1 d−1); kdiss: dis-
aggregation rate (d−1); ws: sinking velocity of dust particles (m d−1); “-”:
process not included in the model; and “Name” shows runs used in the
comparison (Figure A1).

Yücel et al., 2011). Considering these sources of iron in the model could on the one hand require a stronger
scavenging, but on the other hand, with the colloidal pumping as an additional removal pathway of dissolved
iron, one would need a smaller scavenging rate of free iron to reproduce observed dissolved iron distribution.
For a holistic understanding of the role of lithogenic particles in the global iron cycle, more processes deliv-
ering lithogenic particles and iron should be included in models, for example, sediment resuspension and
hydrothermal input.

Appendix A

A1. Sensitivity Runs With Respect To Processes Affecting the Particle Cycle
In total, 40 sensitivity runs have been performed with respect to processes affecting the particle cycle
(Tables A1 and A2). A qualitative comparison of some selected runs is presented in section A2.

A2. Selected Sensitivity Runs With Respect To Particle Aggregation and Disaggregation
Five selected sensitivity runs are compared to illustrate the effect of different processes on the particle
distribution qualitatively (Tables A1 and A2).

Considering the aggregation between dust and large particles only and ignoring disaggregation (“1 × aggr”),
the concentration of particulate iron (pFe) decreases with depth throughout the water column (Figure A1).
The decrease is stronger at the surface due to the aggregation with biogenic particles.

By considering the same aggregation and disaggregation additionally (“1 × aggr + disaggr”), the surface pFe
becomes much higher because a part of the small dust particles is released from fast-sinking large aggregates.
pFe increases considerably below its subsurface minimum (down to 1,000 m), as the concentration of bio-
genic particles decreases with depth rapidly and the loss of lithogenic particles through aggregation is thus
diminished. In the deep ocean, disaggregation dominates the cycle of lithogenic particles.

If considering an additional aggregation among the small dust particles (“2 × aggr + disaggr”), pFe is sig-
nificantly reduced at the surface where the aggregation among dust particles is at highest. A subsurface
minimum is found at a similar depth as in 1 × aggr + disaggr. Below that, pFe increases again and reaches a
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Table A2
Parameter Values Changed in Sensitivity Runs (B, Continued)

Run kc2 kc1 kdiss ws Name

17 1.6E−1 - 1.0E−2 0.2

18 1.6E−1 - 2.0E−2 0.2

19 1.6E−1 - 5.0E−2 0.2

20 1.6E−1 - 1.0E−1 0.2

21 1.6E−1 - 2.0E−1 0.2

22 1.6E−1 - 5.0E−1 0.2

23 1.6E−1 - 1.0 0.2

24 1.6E−1 - 2.0 0.2 1 × aggr + disaggr

25 1.0E−1 - 1.0 0.2

26 0.5E−1 - 1.0 0.2

27 2.0E−1 - 1.0 0.2

28 3.0E−1 - 1.0 0.2

29 3.0E−1 - 1.0 0.2

30 3.0E−1 - 1.0 0.2

31 3.0E−1 - 5.0 0.2

32 7.8E−2 2.6E−2 1.0 0.2

33 3.1E−2 1.0E−2 1.0 0.2

34 1.6E−2 5.2E−3 1.0 0.2

35 7.8E−2 2.6E−2 1.5 0.2

36 7.8E−2 2.6E−2 2.0 0.2 2 × aggr + disaggr

37 7.8E−2 2.6E−2 2.5 0.2 2 × aggr + higher disaggr

38 1.6E−1 5.2E−2 2.5 0.2 2 × higher aggr + higher disaggr

39 1.6E−1 5.2E−2 3.0 0.2

40 3.1E−1 1.0E−1 3.0 0.2

Note. kc2: aggregation rate between dust and large particles ((mg/m3)−1 d−1); kc1: aggre-
gation rate of dust particles ((mg/m3)−1 d−1); kdiss: disaggregation rate (d−1); ws : sinking
velocity of dust particles (m d−1); -: process not included in the model; and Name shows runs
used in the comparison (Figure A1).

Figure A1. Iron contained in all lithogenic particles (μmol Fe m−3) in the model at ∼10∘N along the CLIVAR
A16N section.
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Figure A2. Modeled ratio of the coarse to total lithogenic particles (%) near Cape Verde. Black line: annual mean and
gray area: seasonal variations.

deep maximum between 400 and 500 m. In the deep ocean, pFe just slightly decreases with depth, which is
controlled by the balance between aggregation and disaggregation of lithogenic particles.

Using a higher disaggregation rate (“2 × aggr + higher disaggr”) and both a higher aggregation and a higher
disaggregation rate (“2 × higher aggr + higher disaggr”), we can change the absolute concentrations of pFe
and just to some degree the form of its profile, for example, increasing the disaggregation rate leads to the
formation of a clearer subsurface minimum. However, in all the sensitivity runs including two aggregation
processes and disaggregation, the surface maximum of pFe is higher than its deep maximum. The possible
explanations are presented in section 3.1.

The run presented in the manuscript as +Lith is equal to 2 × aggr + higher disaggr.

A3. Coarse Fraction of Lithogenic Particles
Ohnemus and Lam (2015) showed that about 10–60% of pFe in the upper 500 m near Cape Verde consists of
coarse lithogenic particles. In the +Lith run, the coarse fraction at the same location is 5–35% with significant
seasonal variations (Figure A2). The highest fractions are found in spring, when both the dust deposition flux
from Mahowald et al. (2005) and the abundance of biogenic particles are high. In vertical, a subsurface maxi-
mum of the coarse fraction between 50 and 100 m is consistent with the pattern in Ohnemus and Lam (2015).
Our modeled coarse fraction is, however, lower than the observed one, which could be probably explained
by the difference between the strength of particle aggregation after individual dust events and that driven
by monthly averaged deposition (see section 3.1).
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