
 
 
 

 
 

         
 

       Copyright © 2006 IEEE. Reprinted from IEEE Transactions on 
Automatic Control, 2004; 49 (7):1046-1055 

 
This material is posted here with permission of the IEEE. Such 

permission of the IEEE does not in any way imply IEEE endorsement of 
any of the University of Adelaide's products or services.  Internal or 
personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or 
for creating new collective works for resale or redistribution must be 
obtained from the IEEE by writing to pubs-permissions@ieee.org. 

 
By choosing to view this document, you agree to all provisions of the 

copyright laws protecting it. 
 
 



1046 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 7, JULY 2004

RobustM -ary Detection Filters and Smoothers for
Continuous-Time Jump Markov Systems

Robert J. Elliott and W. P. Malcolm

Abstract—In this paper, we consider a dynamic -ary detec-
tion problem when Markov chains are observed through a Wiener
process. These systems are fully specified by a candidate set of
parameters, whose elements are, a rate matrix for the Markov
chain and a parameter for the observation model. Further, we
suppose these parameter sets can switch according to the state of
an unobserved Markov chain and thereby produce an observation
process generated by time varying (jump stochastic) parameter
sets. Given such an observation process and a specified collection
of models, we estimate the probabilities of each model parameter
set explaining the observation. By defining a new augmented state
process, then applying the method of reference probability, we
compute matrix-valued dynamics, whose solutions estimate joint
probabilities for all combinations of candidate model parameter
sets and values taken by the indirectly observed state process.
These matrix-valued dynamics satisfy a stochastic integral
equation with a Wiener process integrator. Using the gauge
transformation techniques introduced by Clark and a pointwise
matrix product, we compute robust matrix-valued dynamics for
the joint probabilities on the augmented state space. In these new
dynamics, the observation Wiener process appears as a parameter
matrix in a linear ordinary differential equation, rather than
an integrator in a stochastic integral equation. It is shown that
these robust dynamics, when discretised, enjoy a determinsitic
upper bound which ensures nonnegative probabilities for any
observation sample path. In contrast, no such upper bounds can
be computed for Taylor expansion approximations, such as the
Euler–Maryauana and Milstein schemes. Finally, by exploiting a
duality between causal and anticausal robust detector dynamics,
we develop an algorithm to compute smoothed mode probability
estimates without stochastic integrations. A computer simulation
demonstrating performance is included.

Index Terms—Jump Markov systems, -ary detection, martin-
gales, reference probability.

I. INTRODUCTION

ONE WELL-KNOWN application for estimation with
jump Markov systems is that of target tracking. Suppose

we wish to estimate the state of a moving object. One can
typically write down a single specific form of motion dynamics
for a moving object. However, in most tracking applications
the moving object will execute several distinct types of motion:
for example, constant velocity, or a turning maneuver. In
some scenarios one can assume the form of a law concerning
the switching between candidate sets of dynamics. In these
scenarios, a jump Markov system arises quite naturally. Here,
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the task of estimation is to jointly detect which motion dy-
namics are in effect and estimate the state. The generic tracking
problem just described is one of many applications for jump
Markov systems.

For linear Gauss–Markov systems, the default jump Markov
system algorithm is the so called interacting multiple model
algorithm (IMM) introduced by Blom [2]. The IMM provides a
scheme to compute both -ary detection probabilities and state
estimates. Recently two new algorithms have been proposed
for jump Markov systems in [1] and [14]. Both of these new
schemes, and the IMM, are for discrete time jump Markov
systems. In this paper, we consider continuous time jump
Markov systems, where a Markov chain is observed though
a Wiener process. The primary emphasis in our work is upon
robust dynamics to compute -ary detection probabilities.
However, once estimates of these probabilities are obtained,
one can readily compute state estimates by a variety of different
means.

The robust -ary detector dynamics we compute are easily
discretized in time to construct an approximate equation, not
unlike the Duncan–Mortenson–Zakai equation, whose solution
gives the unnormalized probability of a candidate model ex-
plaining an observation. The importance of these dynamics is
that the unnormalized probabilities can then be used to obtain
state estimates without stochastic integrations. By exploiting a
duality we compute the corresponding anticausal (backward)
dynamics, or the “dual” dynamics for the forward robust -ary
detector. Using both the forward and backward schemes we
present a general algorithm to compute smoothed estimates of
the -ary detector probabilities. This algorithm can readily be
specialised into the particular smoothing schemes known as:
fixed point, fixed interval and fixed lag smoothers.

This paper is organized as follows. In Section II, the dynamics
for the state process and the observation process are defined,
also our reference probability measure and Radon–Nikodym
derivative are described. In Section III, we briefly recall the
seminal results of [3], in the context of a Wonham filter.
In Section IV, there are three subsections. In Section IV-A,
we compute a standard -ary detection scheme for a fixed
systems; in Section IV-B, we compute -ary detection dy-
namics for a jump Markov system, these dynamics include
stochastic integrals against the observation sample path; and
in Section IV-C, we compute the corresponding robust -ary
detector dynamics, which do not include stochastic integration.
In Section V, we compute a discrete-time recursion for the
robust -ary detection dynamics and compute a deterministic
upper bound for the maximum grid step, ensuring a measure of
filter stability. In Section VI, we compute smoother dynamics
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for -ary detection. Finally, in Section VII, we present a
simulation, demonstrating the the performance of the detection
dynamics given in Section V.

II. SIGNAL MODELS

Initially, we suppose that all processes are defined on the mea-
surable space with probability measure .

A. State Process Dynamics

Suppose a state process is a finite state
time-homogeneous Markov chain evolving in continuous time.
It was shown in [5], that such processes admit convenient canon-
ical representations. Without loss of generality, we can take the
state space of as , where de-
notes a column vector in with unity in the th position and
zero elsewhere. The dynamics for this process are

(2.1)

where is a -martingale and
is a rate matrix.

B. Observation Process Dynamics

We suppose that the process is not observed directly, rather,
we observe a scalar valued process

(2.2)

Here, is a standard Wiener process and
, is a vector of the so called

drift coefficients, or levels for the Markov chain. Our results
can easily be extended to vector observations . For our

-fields, we write

(2.3)

(2.4)

C. Reference Probability

We have under the “real world” probability , dynamics of
the form

(2.5)

Suppose, however, that is a new(reference) measure, under
which remains a Markov chain with dynamics (2.1) and the
observation process is a standard Brownian motion indepen-
dent of .

Denote by

(2.6)

Then, has dynamics

(2.7)

Further

(2.8)

In the sequel, we will carry out our calculations under the refer-
ence measure for which our processes have dynamics

(2.9)

III. ROBUST STATE ESTIMATION FILTERS

In this section, we briefly recall the so called robust state esti-
mation filter presented in [3], and give a precise meaning to the
term “robust” in our context. Suppose a state process has dy-
namics given by (2.1) and an observation process has dynamics
given by (2.2). Write

(3.10)

The expectation operator denotes an expectation under the
reference measure . For a system with state dynamics (2.1)
and observation dynamics (2.2), the state estimation filter [19]
has dynamics

(3.11)

Remark 1: The state estimation filter given at (3.11) is a con-
tinuous time filter and to obtain it must be discretized in time.
One common technique to perform such a discretization is the
Euler–Maruyama approximation (see [11]). However, the sto-
chastic integral in (3.11) almost surely has sample paths of un-
bounded variation. Any observation path will have unbounded
variation.

Definition 1: Define a matrix-valued stochastic process
, where

(3.12)

with, .
It was shown in [3], that the transformed process ,

satisfies the linear ordinary differential equation

(3.13)

The fundamental importance of this result is that it provides a
means by which filtered estimates of the state process can be
obtained without recourse to stochastic integration. Further, in
[3] and [10] it was shown the quantity

(3.14)

defines a locally Lipschitz continuous version of the expectation
. In this paper, the term “robust” is used to describe

quantities (such as the expectation at (3.14)), which have Lips-
chitz continuous dependence upon the observation sample path.
The value of computing filters with this property is immediately
apparent when discretising filter dynamics in time.
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IV. -ARY DETECTION FILTERS

In this section, we first establish a basic detection filter for
a fixed dynamical system. Subsequently, we develop detector
dynamics for scenarios where model parameter sets switch
according to a known law.

A. -ary Detectors for a Fixed Dynamical System

Consider a system with state dynamics (2.1) and observation
dynamics (2.2). To denote a single candidate set of parameters
for a system of this type, we write , where

(4.15)

Suppose one has a “reasonable” set of candidate hypotheses
, and that one has an observation process be-

lieved to have been generated by one and only one of the models
. The -ary detection problem here is to compute the prob-

abilities for . To solve this problem
we use a vector-valued simple random variable which acts like
an -state “switch,” assumed random, yet fixed in one and only
one position. Our simple random variable takes values in a
state–space , where

...
...

(4.16)
The meaning of each value taken by is, .
Further, will not appear in our final dynamics; its role in our
calculations is simply that of an auxiliary variable.

Using we rewrite the Radon–Nikodym derivative defined
at (2.7) as

(4.17)

Remark 2: To interpret equation (4.17), one reads it as both
general and specific: general, in the sense that all models are
included by the sum over and specific, in the sense that one
and only one equation is in effect according to the state of .

Theorem 1: Write

(4.18)

The unnormalized probability process , satisfies the stochastic
integral equation

(4.19)

where is evaluated under the
probability measure , given that the hypothesis holds.

Proof of Theorem 1: We first note the semimartingale
form of the process

(4.20)

Conditioning both sides of (4.20) on , under the reference
measure , we get

(4.21)

Since the expectation in the integrand of equation (4.21) is taken
under the measure , and under this measure the observation
in the model (2.9) is an independent increment process, then we
may as well condition this integrand on , rather than on .

We first recall a version of Bayes’ rule (see [7])

(4.22)

By using this version of Bayes rule and the rules of conditional
probabilities, we see that

(4.23)

To compute the corresponding normalized probabilities,
, we simply normalize by taking

(4.24)

Remark 3: The dynamics for the -ary detection given pre-
viously include a stochastic integration. It is difficult to elim-
inate this stochastic integration when the problem is framed
as before. However, by considering an augmented state-space
model, including the state process and the auxiliary variable ,
one can compute detection filters which require no stochastic
integrations.

B. -ary Detectors for Jump Markov Systems

We now suppose that is itself a stochastic process with the
previously defined state space . The dynamics for the process

have the form

(4.25)

Here, is a rate matrix and is a
-martingale.

To facilitate computing detector dynamics for a jump Markov
system, we consider a new augmented state variable, taking
values in the product space .
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Write

(4.26)

Definition 2: Define a matrix-valued process
, where

...
...

. . .
...

(4.27)

Here, the process satisfies the dynamics (4.25) and the process
satisfies the dynamics (2.1). The state–space for the process
is the finite collection of matrices

...
. . .

...

...
...

. . .
...

...

...

...
. . .

...

...
...

...

(4.28)

Remark 4: The process takes values on a canonical basis
of matrix-valued indicator functions, each of which jointly in-
dicates a particular model hypothesis, and a particular value
taken by the state process. For example, any one of the states
of , at a certain time , will indicate one and only one
event of the form

(4.29)

where the indicator functions are taken over all pairs , with
and .

Using the process , our state dynamics, observer dynamics
and Radon–Nikodym derivative now read, respectively

(4.30)

(4.31)

(4.32)

The dynamics at (4.30)–(4.32) are again general, in the sense
that all candidate models are included, but specific, in the sense

that the process can take one and only one state value at any
time .

Theorem 2: Write

(4.33)

Define

...
...

. . .
...

(4.34)
The process , defined by (4.33), satisfies the dynamics

(4.35)

The symbol in equation (4.35) denotes a pointwise matrix
product, where for two matrices of the same dimensions, the
pointwise product is

(4.36)

Note that the binary operation , defined previously, is
commutative

(4.37)

Write

(4.38)

(4.39)

Recalling the numerator in Bayes’ rule (4.22), we note that

(4.40)

So, by computing the numerator in Bayes’ rule, we can readily
compute the normalizing denominator . The matrix
quantity , defined at (4.33), is an unnormalized probability, so,
the corresponding normalized probability for is computed by

(4.41)

To recover the normalized -ary detection probabilities from
the quantity , one computes

...
(4.42)

Proof of Theorem 2: Applying the product rule we see that

(4.43)
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Similarly

(4.44)

The last term in (4.44) can be simplified by noting

(4.45)

so

(4.46)

Using this simplification and rewriting (4.44) in terms of the
process , we get

(4.47)

Finally, conditioning both sides of (4.47) on , under the ref-
erence measure and using a version of Fubini’s theorem, we
get

(4.48)

Corollary 1: Suppose that ,
. Then

(4.49)

Corollary 2: Suppose that ,
. Then, the matrix , in the dynamics at (4.35), has

the form

...
...

. . .
...

(4.50)

C. Robust -Ary Detectors for Jump Markov Systems

Definition 3: Define a matrix-valued process

(4.51)

where

(4.52)

Each of the elements in is an exponential function and, there-
fore, each of these elements have well defined reciprocals.

Definition 4: The inverse of the matrix has the form

(4.53)

Theorem 3: Write

(4.54)

The process satisfies the linear ordinary differential equation

(4.55)

Proof of Theorem 3: To establish Theorem 3, we apply
the product rule to the process . First, we compute the
dynamics for the process . Each element of the matrix
has the form

(4.56)

Using the Itô rule, we get

(4.57)

It follows from (4.57), that the matrix satisfies the sto-
chastic integral equation

(4.58)



ELLIOTT AND MALCOLM: ROBUST -ARY DETECTION FILTERS 1051

Using the dynamics (4.58) and (4.55), we see that

(4.59)

Corollary 3: Suppose the rate matrix , in the dynamics
given at (4.25), is a zero matrix in . This condition
corresponds to a scenario where the process is a degenerate
stochastic process, here a simple random variable. The robust
dynamics for this scenario are

(4.60)

To recover the normalized -ary detection probabilities in this
scenario, one computes

...
(4.61)

Theorem 4: For the process , the quantity

(4.62)

defines a locally Lipschitz continuous version of the expectation
.

Theorem 4 is stated here without proof. Similar proofs are
given in [3] and [10].

V. DISCRETE-TIME DYNAMICS

A. Discrete-Time Filter

To compute a practical form of the filter given by Theorem
3, we choose a regular time partition to develop suboptimal dis-
crete-time dynamics for the process .

Consider a regular partition where the interval is dis-
cretized by

(5.63)

Here, , where for some . Using the
partition just described, we discretize the robust dynamics given
in Theorem 3. First, we rewrite the ODE given at (4.55) in its
corresponding integral equation form

(5.64)

Recalling , we compute discrete dynamics for
, by premultiplying on both sides of the approximation

at (5.64)

(5.65)

To simplify notation, for any time dependent quantity , we
write .

Write

(5.66)

Finally

(5.67)

B. Discretization Limits

For a partition of the interval , not necessarily regular,
we write

(5.68)

Each partition is strictly increasing, that is,
.
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Definition 5: A numerical implementation of dynamics at
(5.67), is said to be stable on the partition , if for each

, for each and for each
, the following inequality holds:

(5.69)

Theorem 5: The robust time-discretised dynamics at (5.67)
are stable on the partition , provided the following inequality
is satisfied:

(5.70)

Proof of Theorem 5: Consider an element of the matrix
, at row and column and write

(5.71)

Similarly, we write

(5.72)

The scalar quantity corresponds to an approximation,
in discrete-time (at time ), of the unnormalized probability

. Recalling the dynamics at (5.67),
we see that

(5.73)

In oder to satisfy the stability criterion given at Definition 5, the
left-hand side of the recursion at (5.73) must remain positive,
that is

(5.74)

Simplifying this inequality, we get

(5.75)

Since the off-diagonal elements of the two rate matrices
and , are always positive, then the terms including these
elements in (5.75) are both positive. So, to ensure that the
inequality at (5.75) is satisfied, all we need do and indeed
all we “can do,” is choose , such that the quantity

is nonnegative, that is

(5.76)

The corresponding global upper limit (over all pairs) is,
therefore,

(5.77)

Remark 5: It is interesting to note that the upper bound for
time discretization, given by Theorem 5, does not depend on
the drift vectors and only upon the the diagonal
elements of the rate matrices and .

Remark 6: To emphasise to value of Theorem 5, consider
a similar calculation, such as the calculation given to prove
this Theorem, but for an alternative time discretization of
the stochastic integral equation at (4.35), for example, the
Euler–Maryauana scheme, or the Milstein scheme. Omitting
the details, what one derives from such a calculation, is an
upper limit which depends upon the difference .
What this means, first, is that such a limit is clearly stochastic,
and secondly, it could be negative in sign and therefore mean-
ingless. In contrast, using the robust discretization at (5.67),
one has a deterministic upper limit which does not depend
upon any sample path, so the stability criterion in Definition 5
can be guaranteed.

VI. SMOOTHERS FOR JUMP MARKOV SYSTEMS

In this section, we use a novel idea to compute smoother dy-
namics without recourse to backward stochastic integrals. This
idea was first introduced for finite state process models in [12]
and [17], and subsequently, for continuous-state process models
in [9].

To compute smoothed estimates of the -ary detector prob-
abilities, we wish to evaluate the expectation

(6.78)
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Notation: The Radon–Nikodym derivatives and , are
defined, respectively, by

(6.79)

(6.80)

Note that , for .
For two matrices and of the same dimension , we

define an inner product by

(6.81)

Theorem 6: Suppose an observation is
generated by the dynamics at (2.1) and (2.2). Further, suppose
that a known collection of candidate parameters for this model,
that is, , where , can switch
according to a Markov process , whose dynamics are given
at (4.25). For any , , the conditional probability

, is given by

...

(6.82)

where satisfies the forward linear ordinary differential
equation

with

and the process satisfies the linear ordinary differential
equation

with

Remark 7: The dynamics for and , both depend on the
observation process , only through the matrices and .
Consequently, no stochastic integration is required to compute
the smoothed probability .

Proof of Theorem 6: Write

(6.83)

Using Bayes’ rule

(6.84)

Using repeated conditioning, we see that

(6.85)

Here, .
Define

(6.86)

and write

(6.87)

Then

(6.88)

Therefore

(6.89)

Note that

(6.90)

It follows from the calculation at (6.90), that the quantity
is invariant with respect to time , so

(6.91)

Remark 8: The process is not a matrix of unnormalized
probabilities, rather a quantity that incorporates the extra infor-
mation obtained from the observations collected from back to
.
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Fig. 1. True model process, H = 0 and H = 1, and the estimated mode probability E[h� ; fff i j Y ].

Recall the process . Define the process

(6.92)

We wish to establish dynamics for . By duality, we have

(6.93)

Given that the quantity is invariant to time, we see
that

(6.94)

Therefore

(6.95)

Remark 9: The algorithm presented in Theorem 6 is quite
general and can be used to construct any of the standard
smoothing schemes, referred to in the literature as: Fixed point
smoothers, fixed lag smoothers and fixed interval smoothers.
For example, to compute state estimates for the jump Markov
systems studied here, one might construct a fixed lag smoothing
scheme and thereby use smoothed/improved model probability
estimates to construct state estimates.

Remark 10: The discretization limits ensuring stability,
computed in Section V-B, also apply to the corresponding
discretization of the dynamics at (6.95).

Remark 11: The contributions of this article are considered,
in part, for scenarios with Markov modulated Poisson observa-
tions in [13].

VII. EXAMPLE

Our simulation considers a scenario in which two Wonham
filter model-parameter sets, jump only in their respective sets of
drift coefficients, that is

(7.96)
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(7.97)

The models and , jump according to the rate matrix

(7.98)

Further, this type of scenario corresponds to the dynamics given
in Corollary 1. An observation sample path was generated ac-
cording to the dynamics at (4.31). This path was generated on
the time interval , with . In Fig. 1, we plot an
estimated model probability against the true model state, here
we show just one of the estimated model probabilities, namely

.
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