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Communications

Hidden Markov Models Based on Symbolic Dynamics
for Statistical Modeling of Cardiovascular Control in
Hypertensive Pregnancy Disorders

V. Baier, M. Baumert, P. Caminal, M. Vallverdd, R. Faber, and
A. Voss*

Abstract—Discrete hidden Markov models (HMMs) were applied to
classify pregnancy disorders. The observation sequence was generated by
transforming RR and systolic blood pressure time series using symbolic
dynamics. Time series were recorded from 15 women with pregnancy-in-
duced hypertension, 34 with preeclampsia and 41 controls beyond 30th
gestational week.

HMMs with five to ten hidden states were found to be sufficient to charac-
terize different blood pressure variability, whereas significant classification
in RR-based HMMs was found using fifteen hidden states. Pregnancy disor-
ders preeclampsia and pregnancy induced hypertension revealed different
patho-physiological autonomous regulation supposing different etiology of
both disorders.

Index Terms—Blood pressure variability, cardiovascular control, heart
rate variability, hidden Markov model, preeclampsia, pregnancy induced
hypertension.

I. INTRODUCTION

Hypertensive pregnancy disorders are a leading cause of fetal and
maternal mortality [1]. The etiology of this maladaptation of the car-
diovascular system to pregnancy is unknown, but two mechanisms, the
immune maladaptation and the genetic imprinting have been discussed
[2], [3]. A new report of the Working Group on High Blood Pressure
in Pregnancy classified the relevant hypertensive pregnancy disorders
in: chronic hypertension, pregnancy-induced hypertension (PIH), and
preeclampsia (PE), whereby it is discussed whether preeclampsia is
pregnancy-induced hypertension plus proteinuria or is characterized by
its own etiology [4].

Heart rate and blood pressure variability (HRV and BPV) are gen-
erated by the rhythmic actions of cardiovascular hormones and neu-
ronal pathways on effector organs such as the heart, kidneys, and ves-
sels [5] and are independent predictors for sudden cardiac death after
acute myocardial infarction or chronic heart failure [6], [7]. Thus, they
also might reflect different cardiovascular patho-physiologies in preg-
nancy, like PIH and PE. Several studies investigated HRV and BPV in
normal pregnancy compared to nonpregnant women and women with
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PE [8], [9]. Since those studies were performed with parametric an-
alyzes of HRV and BPV measures, we propose a more complex ap-
proach here, based on the modeling of the cardiovascular system with
hidden Markov models (HMMs).

The theory of HMMs was introduced in the late 1960s by Baum and
colleagues [10]. They are statistical models where it is assumed that
the system being modeled generates a Markov process, i.e., a stochastic
process with the conditional probability distribution of future states de-
pending only on current state. The observation is a probabilistic func-
tion of the state that is not observable (hidden), but can be observed
through another set of stochastic processes that produce the sequence
of observations (e.g., RR and blood pressure time series). This type
of statistical modeling was applied to biomedical data, especially in
speech recognition [11] or bioinformatics [12], but only a few appli-
cations are published for modeling the hidden dynamics of the cardio-
vascular system [13]-[15].

Assuming the mentioned pregnancy disorders cause a change in the
dynamics of this biological system and consequently the physically
measured observation sequences, the statistical (linear and nonlinear)
properties have to be different. Therefore, we hypothesize that the
mathematical structure of HMMs can be used to describe patho-phys-
iological pregnancies and may be helpful in the discussion about a
different etiology of PE compared with PIH.

II. METHODS
A. Patients

We recruited 15 women with pregnancy-induced hypertension
(PIH), 34 women with preeclampsia (PE) and 41 pregnant controls at
the Department of Obstetrics and Gynecology, University of Leipzig,
between June 2000 and December 2002. All diagnoses at admission
were confirmed 6 weeks after delivery. The classification of the
hypertensive disorders is according to the National High Blood Pres-
sure Education Program Working Group on High Blood Pressure in
Pregnancy [16]. The investigation conforms to the principles outlined
in the Declaration of Helsinki. Local ethics committee approval and
informed consent of all subjects have been provided.

B. Data Acquisition and Preprocessing

Continuous blood pressure was recorded noninvasively via finger
cuff (100 Hz, Portapres model 2). All measurements were performed
over 30 minutes under standardized resting conditions between 8 AM
and 12 AM as described before [17]. Time series of beat-to-beat inter-
vals (BBI) and systolic blood pressure were automatically extracted,
and thereafter, visually inspected. To exclude ventricular premature
beats and artifacts, time series were filtered, using an algorithm based
on local variance estimation [18].

C. Symbolic Dynamics

HRYV and BPV analysis using symbolic dynamics has proven to be a
powerful tool to assess cardiovascular control [19]-[23]. The concept
of symbolic dynamics goes back to J. S. Hadamard [24] and allows
a simplified description of the dynamics of a system with a limited
amount of symbols. To obtain coarse-grained values of heart rate and
blood pressure, both time series were transformed into a symbol se-
quence that maps main features of the time series. Several methods for
symbol transformation of RR interval sequences have been proposed
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[e.g., [20] and [25]-[27]. For the development of Markov models the
following transformation by Kurths ez al. has been applied.

In X (1), BB and 2°F are n beat-to-beat values of BBI and SP,
respectively

X = {[;E:?Bl,;BiP]T} r € R. (1)
n=01,...,

Each time series in X is transformed in the symbol sequence Z (2)
defined as

Z = {Zn}n:(),l,uug S Ov 17273 (2)

using the following transformations:

0:p <azpn<(1+a)-p
1 +a)p <xp<oo 3)
TTY2:(1—a) g <an<p

3:0 <zpn<(1—a)-p

with ;¢ as mean of the time series and threshold values «®P" = 0.5 and
a®BY = 0.2. The choice of the threshold values is based on our ex-
perimental findings in previous studies. Small changes in the threshold
values do not influence the results considerably [21]. Furthermore, the
threshold value for systolic blood pressure time series has to be lower
than those for beat-to-beat time series because of the lower variance in
the blood pressure.

Subsequently, Z is subdivided into short sequences of words O with a
length of three symbols to assess cardiovascular short-term regulations.
The length of words is limited due to the requirement of a statistically
sufficient representation of each single word type.

D. Statistical Modeling of Cardiovascular Control in Pregnancies

The word sequences represent main information of the two phys-
ically measured time series as observations of a system with an un-
known number of regulatory sources. The theoretical description of
such a system can be achieved by statistical modeling of the word se-
quences. For this purpose discrete HMMs of ergodic topology were
developed for both pregnancy disorders PIH, PE and controls, respec-
tively. In this type of HMM every state of the model can be reach in
a single step from every other state of the model. The word sequences
are given as observation sequences O = {Oy, Oa, - - -, O7 } of the car-
diovascular system, where T is the number of words (observations).

The main characteristics of the HMMs are as follows.

N) Number of hidden states in the model. Individual states are de-
noted as S = {S51,52,---,S~} and the state at position t
as qt. For the modeling of the regulatory systems models with
N = {5.10, 15} were calculated.

M) Number of distinct observation (emission) symbols per state.
The symbol sequence results in an alphabet of size 4. Inves-
tigating the word sequence with different word lengths L, the
alphabet size increases with M = 4. Individual observation

symbols are stated as V' = {V1, Vo, -+, Vas}.
The initial state distribution m = {m; } of hidden states where
mi=Plp=25] 1Zi<N. “4)

The probability distribution of state transitions A = {a,,} where
aij = Plgeyr = Sjlge = 8], 1<4,j <N, (5)

The observation (emission) symbol probability distribution
B = {b;(k)}, in state j where

bi(k)=P[Viatt|g:=S,], 1<j<N. 1<k<M. (6

Given the observation sequence, the number of hidden states and
the number of observation symbols, the probability measures of each

TABLE 1
FOURFOLD TABLES WITH CLASSIFICATION RESULTS ACHIEVED BY
MODELING SYSTOLIC BLOOD PRESSURE TIME SERIES (SBP) FOR THE
PREGNANCY DISORDERS PE AND PIH BASED ON (A) 5, (B) 10, AND
(C) 15 HIDDEN STATES, RESPECTIVELY

A(SBP, 5) PE A(SBP, 5) PIH correct
PE 21 13 62%
PIH 3 12 80% A
Exact Fisher test: p=0.01
A(SBP, 10) PE A(SBP, 10) PIH correct
PE 31 3 91%
PIH 8 7 47% B
Exact Fisher test: p = 0.01
A(SBP, 15) PE A(SBP, 15) PIH correct
PE 34 0 100%
PIH 15 0 0% ©

Fisher test not applicable, because no word sequence
was assigned to model A(SBP, 15) PIH

model A(w, A, B) have to be calculated. Therefore, the initial state
probabilities were estimated by uniformly distributed random numbers
with Z,\; m; = 1. Initial A as well as initial B were estimated
by uniformly distributed random numbers with Z}Ll a;; = 1 and
22{:1 b;j(k) = 1. To find the optimal model parameters, the initial
probability parameters are then adjusted to locally maximize P(O|))
from the training sequences (all sequences) applying the iterative
Baum-Welch approach using the efficient forward-backward proce-
dure that is described elsewhere [28]. For these calculations the HMM
toolbox for Matlab [29] by Murphy was used.

Thus, based on the different number of hidden states N =
{5, 10, 15} and different time series X = {BBI, SBP} the statistical
modeling resulted in six models for both disorders. For convenience,
the compact notation A(X, N) is used. Subsequently, each of the 62
observed word sequences (15 PIH and 34 PE) were classified into
one of the two disorder models by 1) computing the probability of
the observation sequence given the model P(O|X(X, N)), and 2)
selecting the model with the highest probability.

E. Statistical Modeling of Gaussian White Noise

To evaluate the Markov models of cardiovascular control Gaussian
white noise processes were simulated. To meet the 30 minutes
recording length of the original data, ten realizations were generated
each consisting of 2000 values. Subsequently, symbol sequences were
computed as described above and used to 1) develop a separate Markov
model A\(Gauss, V) for Gaussian white noise process, and 2) test the
models of cardiovascular control developed with measured real data.

III. RESULTS

The results of the classification procedure are presented as fourfold
tables (Table I). In order to statistically evaluate these classification ta-
bles the exact probability test by Fisher was applied. The null hypoth-
esis is that there is no difference in the probability of an observation
sequence being classified into the one or the other model.

As can be seen from Table I models A(SBP, 5) based on the trans-
formed SBP time series with five hidden states revealed a significant
classification (p = 0.01; rejection of the null hypothesis). Here, 62%
of all PIH and 80% of all PE were classified in the correct model. Clas-
sification was also significant for models A(SBP, 10), at which 91%
PIH but only 47% PE were correctly identified. In the models with



142 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 1, JANUARY 2006

a higher number of hidden states A\(SBP, 15) the differentiation be-
tween the models becomes worse and, therefore, all pregnancies are
assigned to one model. The statistical modeling based on BBI reveals
no appropriate HMMs using five or ten hidden states, respectively,
(AM(BBL, 5) A(BBI, 10)). Solely model A(BBI, 15) was able to char-
acterize differences in the regulatory systems of heart rate, because
77% PE and 60% PIH could be identified (tables are not presented
for BBI-based models). The HMM best distinguishing between normal
pregnancies and hypertensive pregnancy disorders was a model based
on beat-to-beat interval time series with twelve hidden states. With this
settings 57% pregnancy disorders and 74% normal pregnancies were
correctly identified.

The proposed model A(SBP, 5) was also tested using surrogate data
of PIH and PE, i.e., with the same power spectral densities of the orig-
inal ones but with completely destroyed phase patterns. A significant
difference in the probability of surrogate data from PE being classified
into the one or the other model exists no longer, whereas the classifica-
tion of surrogate data from PIH remains the same as with the original
data. Therefore, it is suggested that nonlinear properties contribute to
the differentiation between the pregnancy disorders.

The HMMs modeled with the Gaussian white noise processes
differed significantly from those of both pregnancy disorders. The ten
simulated time series could be fully assigned to the respective models
(MGauss, 5) A(Gauss, 10) and A(Gauss, 15)). Neither were the
Gaussian sequences classified in one of the two pregnancy disorder
models, nor were a single word sequence from the pregnancy disorder
patients assigned to the Gauss model.

IV. DISCUSSION

In order to evaluate the cardiovascular control in women with PIH
in comparison to that of women with PE, we investigated HMMs of
heart rate and blood pressure time series. Ergodic HMMs of trans-
formed SBP time series with five to ten hidden states were found to be
sufficient to characterize the different blood pressure variability of PE
and PIH patients. The significant classification of these patients into
different HMMs for blood pressure variability suggests a differently
altered cardiovascular control, and therefore, a different patho-physi-
ology. Models based on the transformation of BBI revealed sufficient
classification using a higher number of hidden states, which seems to
point at more complex variations in heart rate than in blood pressure
signals. This agrees with the reported findings of different complexity
between both time series in normal subjects [30] as well as in heart
failure [31]. The tests with the models of Gaussian white noise pro-
cesses proved that the physiological models of the pregnancy disorders
have a deterministic structure, which is preserved through the transfor-
mation process (symbol coding).

Earlier analyzes by our group found a significantly increased periph-
eral blood pressure pulse [32] but no differences in HRV and BPV pa-
rameters except of mean systolic blood pressure that was increased in
PE [33]. It could be shown that the vascular system in PE is altered
due to the increased release of vasoconstrictive substances and an in-
sensitivity to vasodilative hormones, leading to a smaller blood volume
and increased peripheral resistance [34]. Since the HRV-based models
of PIH and PE also resulted in a significantly different classification
(higher number of hidden states), we suggest that the different patho-
physiology mainly affects the vascular regulation (i.e., blood pressure
control) and in consequence heart rate control. The classification results
discriminating CON and combination of PIH + PE are less impressive
but still significant. However, this phenomenon is in congruence with
our findings [34]showing that HRV differs significantly between PIH
and CON but not between PE and CON. Therefore, the global differ-
entiation between CON and hypertensive disorders in pregnancy is of

lower interest because of the different patho-physiological, regulatory,
and compensatory mechanisms in PE and PIH.

Our approach is based on the assumption that BBI and SBP time se-
ries are quasi-stationary ergodic processes (ensured through measure-
ment under standardized resting conditions) that can be used for statis-
tical modeling using ergodic HMMs. We used words of three succes-
sive symbols to characterize the short-term regulation in the cardiovas-
cular system, which results in 64 possible words (output symbols). For
this approach the data length of about 2000 sample points is assumed
to be sufficient for modeling purposes. Nevertheless, several regulatory
mechanism, e.g., vasomotoric activity, last over a longer period of heart
cycles. Therefore, further work requires either a longer period of data
recording or a different approach for symbol coding. However, it might
be problematic to increase the recording length because it is often not
reasonable for pregnant woman beyond 30th gestational week to be
measured for more then 30 min under resting conditions. It would also
be conceivable to use a different type of HMM topology e.g., a left-right
model in which the state index increases with time. But this should per-
form better if one is interested in modeling different stages of a disease.

In conclusion, the pregnancy disorders PE and PIH seem to have
a different pathophysiological blood pressure regulation that can be
characterized by HMMs of BPV based on symbolic dynamics. Hence,
the etiology of both disorders is assumed to be dissimilar.
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