
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Charleston Library Conference 

Wrangle Your Data Like a Pro With the Data Processing Power of Wrangle Your Data Like a Pro With the Data Processing Power of 

Python Python 

Geoffrey P. Timms 
College of Charleston, timmsgp@gmail.com 

Jeremy M. Brown 
Mercer University Libraries 

Follow this and additional works at: https://docs.lib.purdue.edu/charleston 

 Part of the Library and Information Science Commons, and the Programming Languages and 

Compilers Commons 

An indexed, print copy of the Proceedings is also available for purchase at: 

http://www.thepress.purdue.edu/series/charleston. 

You may also be interested in the new series, Charleston Insights in Library, Archival, and Information 

Sciences. Find out more at: http://www.thepress.purdue.edu/series/charleston-insights-library-archival-

and-information-sciences. 

Geoffrey P. Timms and Jeremy M. Brown, "Wrangle Your Data Like a Pro With the Data Processing Power 
of Python" (2016). Proceedings of the Charleston Library Conference. 
http://dx.doi.org/10.5703/1288284316489 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please 
contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/127583254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/charleston
https://docs.lib.purdue.edu/charleston?utm_source=docs.lib.purdue.edu%2Fcharleston%2F2016%2Ftechtrends%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=docs.lib.purdue.edu%2Fcharleston%2F2016%2Ftechtrends%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=docs.lib.purdue.edu%2Fcharleston%2F2016%2Ftechtrends%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=docs.lib.purdue.edu%2Fcharleston%2F2016%2Ftechtrends%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.thepress.purdue.edu/series/charleston
http://www.thepress.purdue.edu/series/charleston-insights-library-archival-and-information-sciences
http://www.thepress.purdue.edu/series/charleston-insights-library-archival-and-information-sciences
http://dx.doi.org/10.5703/1288284316489


 

Technology and Trends  444 Copyright of this contribution remains in the name of the author(s).
https://doi.org/10.5703/1288284316489 

Wrangle Your Data Like a Pro With the Data Processing Power of Python 
 
Geoffrey P. Timms, Librarian for Marine Resources, College of Charleston/SCDNR/NOAA 
 
Jeremy M. Brown, Assistant Dean for Technical Services and Systems, Mercer University 
 
Abstract 
 
Management, delivery, and marketing of library resources and collections necessitate interaction with a plethora 
of data from many sources and in many forms. Accessing and transforming data into meaningful information or 
different formats used in library automation can be time consuming, but a working knowledge of a programming 
language can improve efficiency in many facets of librarianship. From processing lists to creating extensible 
markup language (XML), from editing machine-readable cataloging (MARC) records before upload to automating 
statistical reports, the Python programming language and third-party application programming interfaces (APIs) 
can be used to accomplish both behind-the-scenes tasks and end-user facing projects. Creating programmatic 
solutions to problems requires an understanding of potential. Here we summarize the data sources, flows, and 
transformations used to accomplish existing projects at Mercer University and the College of Charleston. 
Foundational programming techniques are explained and resources for learning Python are shared. 
 
Introduction 
 
Libraries generate and have access to more data 
than ever before, which presents exciting 
opportunities to take library services to new heights 
and enhance or personalize patrons’ experiences. All 
it takes is data transformation. There are many 
reasons why a librarian might seek to transform 
data: Perhaps to add value by presenting them in a 
different form, or to prepare them structurally for 
ingestion into a database or library automation 
system. Unfortunately, working with data can be a 
time-consuming process. Some tasks, such as 
documenting library use, may be demanded 
monthly. Others, such as processing e-resource 
usage data, may only be tackled annually but consist 
of great quantities of data. Whatever the reason, 
data transformation is undertaken to restructure, 
synthesize, or substitute data to achieve a higher 
level of utility. 
 
The transformation of data is part of a process that 
can be automated if data is available in a machine-
readable form and is of a predictable structure. 
Ideally, data should be accessible with an automated 
process, and the transformed data should be 
deliverable in an appropriate format and location 
automatically. However, this is not always 
technically possible, and human intervention may be 
required during the transformation process. 
Regardless, automated transformation can 

accomplish in fractions of seconds what may 
consume hours of a person’s time. 
 
Once one or more datasets are obtained, they must 
be ingested by a script and then organized in a 
manner suitable for the transformation process. The 
transformation itself may be as simple as 
rearranging the data or tidying them by removing 
superfluous data. Transformation may involve 
generating visual representations of data or using 
parts of the data to reference other information 
stored online, such as book cover art. Once 
transformed, the output is then delivered in the 
appropriate form, be it XML, HTML, or images for 
on-screen display; stored as data in an SQL database; 
or inserted into a file. The following examples of 
data transformation projects demonstrate the data 
sources and the output of new information. See 
Appendix for figures, data, and tables. 
 
Virtual New Bookshelf 
 

• Transformation summary: Bibliographic 
data transformed to XML for Web display. 

• Data input: Text file manually downloaded 
from library catalog (Table 1) consisting of 
record number, ISBN string, title, call 
number, and publication information for 
recently purchased books. 

https://doi.org/10.5703/1288284316489


 

445  Charleston Conference Proceedings 2016 

• Output: Write XML to an XML file (Figure 1), 
which is then styled using XSL for HTML 
display (Figure 2). 

 
Map of the Library Shelving Highlighting 
the Range for a Chosen Item 
 

• Transformation summary: Call number and 
location code used to create a visual map of 
the chosen item’s location. 

• Data input: 

o Catalog record for chosen item 
information (Figure 3). 

o SQL database tables including: 

 Range number, location code, call 
number of first book on range 
(Table 2). 

 Map coordinates of each range in 
each location code (Table 3). 

 Waypoints for each range in each 
location code (Table 4). 

o Base map image file for each floor 
showing all ranges. 

• Output: Return custom map image to the 
screen (Figure 4). 

 
Conversion of Monthly Transaction Logs to 
a Multisheet Excel Summary Report 
 

• Transformation summary: Transaction logs 
from ILL borrowing and lending, and 
reference analytics transformed to 
multisheet Excel workbook documenting 
multiple agencies’ use of the library. 

• Data input: CSV and Excel files manually 
downloaded monthly from Interlibrary  
Loan (ILLiad) (Table 5) and Reference 
Analytics. 

• Output: Excel workbook with three 
summary report sheets (Table 6). 

 
Foundational Programming Techniques 
 
Some programming techniques are fundamental to 
most of the projects that the authors have 
undertaken. Several are presented below. 

Variables, Dictionaries, and Lists 
 
In Python, as in most programming languages, we 
deal with data of various types: Among other types, 
there are integers (whole numbers), floating point 
numbers (such as 3.14), and strings (alphanumeric 
data of any length). Python detects the type of 
variable based upon the data that we put into it. For 
example: 
 
integer_value = 4 
string_value = ‘dog’ 
float_value = 3.14 
 
Frequently, we deal with data that makes sense to 
group together. For example, we need to make a list 
of similar values. This list could represent a row or a 
column of a spreadsheet, or it could simply be a list 
of values. In Python, we create a list with square 
brackets, separating the values by commas: 
 
a_list = [1, 3, 4, 5, ] 
 
Proper form dictates that we leave a trailing comma, 
in case we want to add another value. We could 
create an empty list in a couple of different ways:  
 
a_list = [] 
another_list = list() 
 
Lists are mutable, meaning they may be changed 
after creation, so we could take our list, and add an 
element to it: 
 
a_list.append(6) 
 
Or we could sort it: 
a_list.sort() # sorts in ascending order 
a_list.sort(reverse=True) # sorts in descending order 
 
To access data in our list, we simply call it by its 
position within the list: 
 
a_list[0] 
 
In our first list, which contained the values 1 through 
5, we would receive the first one, which is the 
number 1. Note that list indexes always begin with 
zero. 
 
Other times, we have data that belongs together but 
needs some amount of compartmentalization. In 



 

Technology and Trends  446 

Python, a useful data structure for that kind of data 
is a dictionary. In Python, a dictionary is a pair of 
data that is made up of a key and a value. Typically, a 
simple data type (such as a string or an integer) is 
used as the key, but the value could be anything. 
Curly braces denote the beginning and end of a 
dictionary. For example:  
 

 
 
In the above example, note that we have a mix of 
data types. We have three strings: name, surname, 
and given_name, followed by an integer (age) and 
then a list (children). Values that we store in 
dictionaries can be retrieved with the same syntax as 
the list uses: 
 

 
 
This would give us the list we stored:  
 

 
 
The thing to remember about dictionaries is that 
there is no guarantee that anything will be stored in 
any particular order. 
 
Iterating Over/Comparing Variables and Lists  
Iterating over a list allows us to examine each 
element in the list and potentially do something with 
it. Consider a case where we declare a list full of 
numbers and want to print each number on its own 
line: 

 
This “for” statement proceeds through a list and 
assigns a value to “item.” This is convenient when 
we just need to use the item and move on. If, 

however, we want to compare two lists of values to 
see how many times items in one list appear in 
another list, we must proceed differently. We 
declare two lists: a data list and a list with values to 
look for and count. Since the second list really has 
two items for each element (a value and a count), 
we could use a dictionary to keep these values 
separate, so we put together a list of dictionaries. 
 

 
 
Now that we have our data, we can prepare to look 
through our two lists. Because we have two lists, we 
will need to have two loops. This is called a nested 
loop because one loop is within the other loop: 
 

 
 
The first loop assigns each value of a_list to the 
variable “item.” Then, we immediately proceed into 
the data_list. We assign a value from data_list to the 
variable “r_item,” and then we compare the value of 
the item to r_item. We use the “equals” operator, 
which is a double equal sign (==). If the two integer 
values are equal, this returns true, and we then add 
one to item’s count argument. If the two items are 
not equal to each other, we don’t do anything. 
Instead, we just move on to the next element in 
data_list. When we have moved through all 45 
values in data_list, we print the values that we just 
stored in item, and then move on to the next item in 
a_list and repeat the comparison process. This 
renders the output: 

a_dictionary = { 
    ‘name’ : ‘Hans Mustermann’, 
    ‘surname’ : ‘Mustermann’, 
    ‘given_name’ : ‘Hans’, 
    ‘age’ : 35, 
    ‘children’ : [‘Frank’,’Annie’,’Jim Bob’,] 
                } 

a_dictionary[‘children’] 

[‘Frank’,’Annie’,'Jim Bob',] 

a_list = [1,2,3,4,5] 
 
for item in a_list: 
    print(item) 

data_list = [6, 5, 9, 1, 8, 2, 9, 7,  
             1, 4, 4, 2, 1, 9, 3, 1,  
             3, 5, 4, 7, 7, 2, 5, 1,  
             6, 7, 3, 2, 4, 9, 8, 3,  
             2, 5, 6, 6, 9, 7, 1, 8,  
             6, 1, 2, 8, 7]   
a_list = [ 
          {'value':1, 'count':0}, 
          {'value':2, 'count':0}, 
          {'value':3, 'count':0}, 
          {'value':4, 'count':0}, 
          {'value':5, 'count':0} 
          ] 

for item in a_list:
    for r_item in data_list: 
        if item['value'] == r_item: 
            item['count'] += 1 
        else: 
            pass # do nothing  
    print(item) 



 

447  Charleston Conference Proceedings 2016 

 
 
 
 
 
Reading and Writing Files (Input/Output)  
In practice, we encounter data files that contain lists. 
These could originate from Excel, or they could be 
reports from another system. Frequently, the data 
fields are separated by special characters, such as 
commas, tabs, or some other character. In this 
example, we are reading two lists of ISSN data. The 
task consists of the following steps: 
 

1. Read in all the lines of two files. 

2. Create results. 

3. Output this to a new file 
 

 
 
The code above gets us a file handle (L1) pointing at 
the data file. We point a CSV reader at that, 
configured to handle tab-delimited data. We create 
an empty list (list1) to store our data. The for loop is 
dense code: We are converting all lines in the file to 
a list. Each list here represents the rows in a 
spreadsheet, and each contains a sublist of column 
values. Because we only have one column of data, 
we can pop the only item off the sublist and append 
it to our results list, list1. This takes care of our  
input. 
 
Once we have processed our input, we will need to 
output the data. For this example, we have our 
output in a dictionary called finaldata, which we 
wish to store in a Microsoft Excel file. Using xlwt 
makes this almost as simple as the prior example: 
 
First, we create a workbook, and name a sheet in it. 
Then, we write our two column headings. Finally, we 
loop over our data set, writing our ISSN value in 
column 0 and our title in column 1. Then, we save 
the workbook. 

 
 
Regular Expressions (Pattern Matching)  
In our case study, we face data of varying formats. 
Really, the values are all the same, but punctuation 
and notation differ. As long as this is somewhat 
regular, we can anticipate this variance and obtain 
the data we need. Pattern matching is a very broad 
topic in itself, but it is simple to learn the basics and 
begin extracting data. 
 
Before we begin, it is important to realize that most 
every character we can type will match itself and 
become part of the pattern. A “2” generally matches 
a typed number two, for example. However, we 
need to be aware of some special characters that are 
used in the syntax of this powerful programming 
language: .^$*+?-{}[]()\|. These each have special 
meanings. 
 
Before we can start using regular expressions in 
Python, we need to import the library using an 
import statement: 
 
import re 
 
We can then proceed to use it in our subsequent 
code. We will focus on the convenience functions, 
re.sub() and re.match(). Consider the case of an 
ISSN. An ISSN is typically eight meaningful digits, 
except when the final character also happens to be 
an X. It could be written in several ways. Let us 
consider three cases: 
 

1. Written with a hyphen between two sets of 
four characters: 0022-510X.  

2. Written without the hyphen: 0022510X.  

3. There could be extra characters before or 
after our ISSN: ISSN: 0022-510X Journal of 
the Neurological Sciences. 

with open('input1.csv','rU') as L1: 
    reader = csv.reader(L1, delimiter="\t") 
    list1 = [] 
    for sublist in list(reader): 
        list1.append(sublist.pop()) 
        list1.pop(0)  #Remove the first row from 
list1, which is the column names 

wb = xlwt.Workbook()
Sheet1 = wb.add_sheet('Journals found in both 
lists') 
Sheet1.write(0,0, 'Linking ISSN-L') 
Sheet1.write(0,1, 'Title') 
n=1 
for issn,title in finaldata.items(): 
    Sheet1.write(n,0,issn) 
    Sheet1.write(n,1,title) 
    n+=1 

{'count': 7, 'value': 1} 
{'count': 6, 'value': 2} 
{'count': 4, 'value': 3} 
{'count': 4, 'value': 4} 
{'count': 4, 'value': 5} 



 

Technology and Trends  448 

An easy way to attack this problem is to detect 
which case we have and deal with that with an if/elif 
statement. However, we have to use the match 
function first. Match returns a match object if it does 
indeed match something, or if it matches nothing, it 
returns a value of None. If we receive a value of 
None, we know we did not get a match. 
 
Examining the first pattern, we see four digits in a 
row followed by a hyphen, followed by three digits 
and an X. That X could also be a digit, but this 
informs us as to how to write our pattern: 
 
re.match(r'(\d{4})-(\d{3}[0-9Xx])','0022-510X') 
 
The string itself specifies that we want two groups 
of characters: Four digits, a hyphen, and three 
digits followed by anything zero through nine, or 
an upper or lowercase X. The second value is our 
ISSN string. 
 
In our second case, perhaps we have data where we 
do not know if we have a hyphen or not. Both could 
be correct, but if we want to match that, we could 
use much the same search string, but then address 
the number of hyphens. We could have zero 
hyphens, or we could have a single hyphen. This 
statement detects either of those cases: 
 
re.match(r'.*(\d{4})\-{0,1}(\d{3}[0-9Xx])', '0022510X') 
 
Our third and final case is an ISSN with extra text 
before or after the ISSN. We can craft a search 
pattern that looks for any character (a period: .) any 
number of times (an asterisk: *), and include that 
before and after our search pattern: 
 
r'.*(\d{4})\-{0,1}(\d{3}[0-9Xx]).*' 
 
The next step is to clean up that regular expression. 
We can use the re.sub() function to do just that. Sub 
stands for substitution, and it allows us to use 
regular expressions to replace characters within a 
string. There are three arguments that we need to 
provide to this function:  
 

1. A pattern, which we have already seen in 
our handling of the match function. 

2. A substitution pattern, and finally 

3. A string to examine. 
 
The substitution pattern is really the only new 
thing here. In our regular expression that perfectly 
matches our three cases, we already have two sets 
of parentheses. Each set captures a portion of the 
ISSN, and each portion is exactly four characters. 
We could add that to a substitution call and cause 
it to reformat any of the three cases into our 
preferred format: 0022-510X, which looks like the 
following: 
 
re.sub(r'.*(\d{4})\-{0,1}(\d{3}[0-9Xx])',r'\1-\2','ISSN: 
0022-510X Journal of the Neurological Sciences') 

 
Using Data from APIs  
The acronym API is used very frequently in software 
circles. These days it seems that it has penetrated 
our conversations a little further, since many 
publishers and most systems vendors tell us they 
have their own APIs that we only need to reach out 
and use. API stands for application programming 
interface, and defined, an API provides a means for a 
programmer to write a program that uses their 
software. 
 
Since an API is essentially a way for us to 
communicate with another application, we need to 
know what data to send it and what to expect from 
the API when it gives us data back. In our next case 
study, we use the OCLC xISSN Web service 
(http://xissn.worldcat.org/xissnadmin/doc/api.htm). 
The documentation tells us that we can obtain 
journal metadata from the API (namely, we want the 
title that corresponds to the ISSN) if we query it 
using a URL of the form http://xissn.worldcat.org/ 
webservices/xid/issn/0022-510X?method= 
getEditions&format=json 
 
There are many ways to access URLs in Python. A 
popular one is to use the Requests library 
(http://docs.python-requests.org). 

 

http://xissn.worldcat.org/xissnadmin/doc/api.htm
http://xissn.worldcat.org/webservices/xid/issn/0022-510X?method=getEditions&format=json
http://docs.python-requests.org
http://xissn.worldcat.org/webservices/xid/issn/0022-510X?method=getEditions&format=json


 

449  Charleston Conference Proceedings 2016 

 
 
In this example, we first import the two libraries we 
need: requests and JavaScript Object Notation 
(JSON). Then we define a URL. Next, we create a 
requests object for our URL. This requests object 
fetches the data from the URL when we create it, so 
this is where we have done all the heavy lifting. At 
this point, we have all the data we need, but long 
blocks of JSON are somewhat tough to read. The 
next thing is to reformat the JSON so we can easily 
read it. We use Python’s built-in JSON library to sort 
the keys, indent each level four characters, and use a 
comma as a list separator and the colon as the 
assignment indicator.  
 
When we examine this output (Appendix, Figure 5) 
we see two data structures: stat and group. Inside 
“group,” we find our data. The trick to accessing this 
data is to pry the dictionary apart. If we want the 
title, we would have to access it from within the 
dictionary contained in list. This looks like so: 
 
r.json()['group'][0]['list'][0]['title'] 
 
This is because the title is contained by a dictionary 
and contained by a list, which is in a dictionary called 
“list,” which is a key in a dictionary contained within 
a list called “group,” which is a key in a dictionary. 
 
Case Study  
The following case study utilizes the above 
programming techniques. Initial data are provided in 
two differently formatted lists of ISSNs stored in two 
CSV files (Appendix, Table 7). One list (~11,000 ISSNs) 
represents a broad array of journals. The other list (49 
ISSNs) represents locally held titles. The lists are 
transformed into an Excel spreadsheet that presents 
the corresponding linking ISSNs (ISSN-Ls) and journal 
titles only for the ISSNs that occurred in both lists, 
using an OCLC API. The Python code is broken into 
discreet chunks called functions, representing each 
phase of the transformation. The full code can be 
found at 
http://libraries.mercer.edu/ursa/handle/10898/3687. 

Phase One 
 
The make_lists function opens each CSV file in turn, 
reads it as a tab-delimited structure, and puts its 
content into a list. 
 
Phase Two 
 
The clean_list function is called once for each list of 
ISSNs. Each list item is taken in turn and tested 
against a regular expression to see if a properly 
formed ISSN can be extracted. If so, it is reformatted 
and added to a new list. Otherwise, an error is 
reported, and the script moves to the next item. 
 
Phase Three 
 
The get_dupelist function compares both cleaned 
lists to find duplicate ISSNs using an internal method 
called “intersection.” To use this method, each list 
must be converted into sets. Sets differ from lists 
because they are unordered and can contain no 
duplicates. The intersection method results in a set 
of items found in both sets. This set is converted to a 
list for use in Phase Four. 
 
Phase Four 
 
The get_oclc function is used to create a dictionary 
of key:value pairs representing ISSN-L (the key) and 
journal title (the value) obtained from the OCLC API 
described earlier. For each ISSN in the list generated 
in Phase Three, the API URL is formed using the ISSN, 
and the request is sent. The ISSN-L and title are 
extracted from the response. 
 
Phase Five 
 
The write_sheet function creates an Excel workbook 
and sheet with column headings. It then iterates 
over the data dictionary to write the key:value pairs 
of ISSN-L and title to the spreadsheet. Once every 
dictionary item has been written, the spreadsheet is 
saved, and the operation is complete (Appendix, 
Table 8). 

import requests, json 
 
url = 'http://xissn.worldcat.org/webservices/xid/issn/0022-510X?method=getEditions&format=json' 
r = requests.get(url) 
formatted_json = json.dumps(r.json(), sort_keys=True, indent=4, separators=(',', ': ')) 
print(formatted_json) 

http://libraries.mercer.edu/ursa/handle/10898/3687
http://xissn.worldcat.org/webservices/xid/issn/0022-510X?method=getEditions&format=json


 

Technology and Trends  450 

Communicating With Systems People 
 
Realistically, most complex programming will be 
undertaken by those who already possess the 
experience to deliver programmatic solutions to 
particular problems. As such, a data transformation 
project will likely involve communication between 
detail-oriented programmers and other staff who 
may have a different perspective. In order to help a 
programmer deliver a solution to a problem, it is 
important to be ready to: 
 

• Explain what you want to accomplish. 

• Describe the desired end result in detail. 

• Detail data sources, formats, and locations. 

• Outline data transformations. 

• Discuss potential data anomalies. 

• Provide data samples. 
 
Participating in such a project provides the perfect 
opportunity to contribute to and learn about the 
solution put into place by the programmer. Such 
inquiry may also contribute to one’s own 
development as a novice programmer. Learning by 
doing is perhaps the best way to get started. 
 
Getting Started With Python 
 
Python may be installed and operated on a 
workstation or server. Python libraries may also be 
added in both these contexts. For Python to interact 
with SQL-based databases, software such as 
PostgreSQL, MySQL, or SQLite must also be installed. 
User interaction with Python may be undertaken in a 
variety of ways. An integrated development 
environment (IDE) is separate software used to 
make the creation, testing, and preservation of code 
as convenient as possible. Alternatively, Python may 
be developed and run from a command line 
interface, which is a less convenient method. 
 
Software 
 

• Python: https://www.python.org/ 

• Python’s built-in libraries: 
https://docs.python.org/3/library/ 

• Eclipse IDE: https://eclipse.org/ide/ 
• SQL databases 

o MySQL: https://www.mysql.com/ 
o SQLite: https://sqlite.org/ 
o PostgreSQL: 

https://www.postgresql.org/ 
 
Resources for Learning Python 
 

• A Byte of Python: 
https://python.swaroopch.com/ 

• Codecademy: 
https://www.codecademy.com/learn/python 

• Introduction to Programming with Python: 
http://opentechschool.github.io/python-
beginners/en/index.html 

• Python Practice Book: 
http://anandology.com/python-practice-
book/ 

• Stack Overflow discussion list: 
http://stackoverflow.com/questions/tagged
/python 

 
Conclusion 
 
Data transformation with Python may be achieved at 
various levels of complexity. At its simplest, we have 
cleaned and compared two lists of data and 
referenced an API. Our examples of more complex 
projects undertaken at our libraries recently 
demonstrate the potential for transformation of 
data into visual or graphical information. 
Successfully learning a programming language is 
within reach of self-motivated individuals who 
possess a curious and systematic mindset. Libraries 
that are fortunate enough to have programmers on 
staff will be better able to utilize these unique skills 
when nonprogrammer staff have a basic 
appreciation for the potential offered by 
programmatic solutions to library tasks and 
problems involving data. 

 
  

https://www.python.org/
https://docs.python.org/3/library/
https://eclipse.org/ide/
https://www.mysql.com/
https://sqlite.org/
https://www.postgresql.org/
https://python.swaroopch.com/
https://www.codecademy.com/learn/python
http://opentechschool.github.io/python-beginners/en/index.html
http://opentechschool.github.io/python-beginners/en/index.html
http://anandology.com/python-practice-book/
http://stackoverflow.com/questions/tagged/python
http://anandology.com/python-practice-book/
http://stackoverflow.com/questions/tagged/python


 

451  Charleston Conference Proceedings 2016 

Appendix 
 
Table 1. Bibliographic data exported from Library Management System. 

 
RECORD 
#(BIBLIO) 

STANDARD # TITLE CALL 
#(BIBLIO) 

PUB INFO

b26619878 1489976205, “9781489976208”, 
“9781489976215 (e-Book)” 

Protein NMR: Modern techniques and biomedical 
applications / Lawrence Berliner editor. 

QP551 .P7684 
2015 

New York: 
Springer [2015]. 

b26623754 9781493922901 (alk. paper),” 
1493922904 (alk. paper)”, 
“9781493922918 (e-Book)”, 
“1493922912 (e-Book)” 

RNA bioinformatics / edited by Ernesto Picardi. QH324.2 .R53 
2015 

New York: 
Humana Press 
[2015]. 

b2662381x 9780128025086, “0128025085” Emerging trends in computational biology 
bioinformatics and systems biology: Algorithms and 
software tools / edited by Quoc-Nam Tran & Hamid 
Arabnia. 

QH324.2 
.E455 2015 

Waltham, MA: 
Elsevier: Morgan 
Kaufman [2015]. 

b26625969 9781441979759 (pbk.), 
“1441979751 (pbk.) “ 

Numerical ecology with R / Daniel Borcard, Francois 
Gillet, & Pierre Legendre. 

QH541.15.S72 
B67 2011 

New York: 
Springer [2011]. 

b26652675 9781493925490, “1493925490”, 
“9781493925506 
(ebk.)”,”1493925504 (ebk.)” 

Proteomic profiling: Methods and protocols / edited 
by Anton Posch. 

QP551 .P7566 
2015 

New York: 
Humana Press 
[2015]. 

b26652687 0444633987,“9780444633989” Estuarine ecohydrology: An introduction / Eric 
Wolanski & Michael Elliott. 

QH541.15.E19 
W65 2016 

Amsterdam 
Netherlands: 
Elsevier [2016]. 

 
<?xml version='1.0' encoding='UTF-8'?> 
<xml><head_title>New Books for the Last Quarter</head_title><updated>updated November 02, 
2016</updated> 
<items> 

<item> 
<link name="link">http://libcat.cofc.edu/record=b2661987~S7</link> 
<isbn name="isbn">1489976205</isbn> 
<title name="title">Protein NMR : modern techniques and biomedical applications / Lawrence 

Berliner  editor.</title> 
<callno name="callno">QP551 .P7684 2015</callno> 
<pub name="pub">New York : Springer  2015.</pub> 
<code name="code">1</code> 

</item> 
<item> 

<link name="link">http://libcat.cofc.edu/record=b2662375~S7</link> 
<isbn name="isbn">1493922904</isbn> 
<title name="title">RNA bioinformatics / edited by Ernesto Picardi.</title> 
<callno name="callno">QH324.2 .R53 2015</callno> 
<pub name="pub">New York : Humana Press  [2015]</pub> 
<code name="code">2</code> 

</item> 
<item> 

<link name="link">http://libcat.cofc.edu/record=b2662381~S7</link> 
<isbn name="isbn">0128025085</isbn> 
<title name="title">Emerging trends in computational biology  bioinformatics  and systems 

biology : algorithms and software tools / edited by Quoc Nam Tran  Hamid Arabnia.</title> 
<callno name="callno">QH324.2 .E455 2015</callno> 
<pub name="pub">Waltham  MA : Elsevier : Morgan Kaufman  [2015]</pub> 
<code name="code">2</code> 

</item> 
 

Figure 1. XML output following transformation. 

http://libcat.cofc.edu/record=b2661987~S7</link
http://libcat.cofc.edu/record=b2662375~S7</link
http://libcat.cofc.edu/record=b2662381~S7</link


 

Technology and Trends  452 

 
 

Figure 2. Virtual bookshelf web page resulting from XML/XSL data. 
 
 
 
 

 
 

Figure 3. Catalog record excerpt for a book, showing location and call number. 
 
 
 



 

453  Charleston Conference Proceedings 2016 

Table 2. PostgreSQL data excerpt for shelf ranges showing collection and 
normalized call number for the first item on each shelf range. 

 
id shelf location call_start

24 24 T3mstk BX0877400S96000
25 25 T3mstk D00000200A70000
26 26 T3mstk D00052100H35000
27 27 T3mstk D00075700A64000
28 28 T3mstk D00080430L35700
29 29 T3mstk DA0022800L30000
30 30 T3mstk DA0039600A20000Y60000
31 31 T3mstk DA0053000N53000
32 32 T3mstk DC0010300S20000

 
 
 
 
 

Table 3. PostgreSQL data excerpt for shelf ranges showing collection location, map coordinates, 
arrowhead aspect (aisle), waypoints, and fill style. 

 
id shelf location coordinates aisle waypoints style

24 23 T3mstk [[133,287,135,287,135,384,133,384]] w [300,301] f 
25 24 T3mstk [[133,287,135,287,135,384,133,384]] e [300,301] f 
26 27 T3mstk [[147,73,149,73,149,132,147,132]] w [300,301,302,303] f 
27 32 T3mstk [[147,73,149,73,149,132,147,132]] e [300,301,302,303] f 
28 28 T3mstk [[147,160,149,160,149,257,147,257]] w [300,301,302] f 
29 31 T3mstk [[147,160,149,160,149,257,147,257]] e [300,301,302] f 
30 29 T3mstk [[147,331,149,331,149,384,147,384]] w [300,301] f 
31 30 T3mstk [[147,331,149,331,149,384,147,384]] e [300,301] f 
32 33 T3mstk [[161,73,163,73,163,132,161,132]] w [300,301,302,303] f 

 
 
 
 
 

Table 4. PostgreSQL data excerpt for waypoints  
 showing waypoint coordinates. 

 
id wpid waypointcoords
5 104 [302,226]
6 105 [302,210]
7 106 [302,83]
8 107 [415,83]
9 200 [315,409]
10 201 [315,400]
11 202 [315,340]
12 203 [315,315]
13 204 [315,245]

 
 

 



 

Technology and Trends  454 

 
 

Figure 4. Map of library third floor showing shelf range location following data synthesis and transformation. 
 

  



 

455  Charleston Conference Proceedings 2016 

Table 5. Edited excerpt of Interlibrary Loan borrowing transaction log. 
 

Request Type Transaction Status Transaction Date Status Department 

Article Request Finished 10/14/16 Staff NOAA Hollings Marine 
Laboratory 

Article Request Finished 10/13/16 Faculty Library 

Article Delivered to Web 10/25/16 Faculty GPMB/Grice Marine 
Laboratory 

Article Request Finished 10/29/16 Faculty NOAA CCEHBR Charleston

Article Request Finished 10/8/16 Faculty GPMB/Grice Marine 
Laboratory 

Article Request Finished 10/29/16 Faculty Library 
Article Request Finished 10/24/16 Faculty NOAA CCEHBR Charleston
Loan Cancelled by ILL Staff 10/12/16 Faculty Library 

Article Request Finished 10/24/16 Faculty NOAA CCEHBR Charleston
Article Request Finished 10/26/16 Staff NOAA CCEHBR Oxford

Article Delivered to Web 10/27/16 Faculty GPMB/Grice Marine 
Laboratory 

Article Request Finished 10/24/16 Faculty NOAA CCEHBR Charleston
 

 
Table 6. Interlibrary Loan borrowing summary report following data transformation. 

 
 Agency Oct

Requested 
 Book
 CofC 1
 SCDNR 0
 NOAA 0
 NOAA OCM 0
 NIST 0
 
 Article
 CofC 10
 SCDNR 0
 NOAA 12
 NOAA OCM 0
 NIST 0

Received 
 Book
 CofC 0
 SCDNR 0
 NOAA 0
 NOAA OCM 0
 NIST 0
 
 Article
 CofC 7
 SCDNR 0
 NOAA 10
 NOAA OCM 0
 NIST 0



 

Technology and Trends  456 

 
 
Figure 5. Output from OCLC xISSN API.  

 
 
 
 

Table 7. Sample of raw ISSN data from each of two CSV files. 
 

ISSNs Local Holding ISSNs
02652048 ISSN: 1387-974X
02506807 ISSN: 1110-662X
16101928 ISSN: 0022-3131
13684302 ISSN: 1103-8128
07415214 ISSN: 0257-9731
1721727X ISSN: 0368-492X
05874254 ISSN: 1383-469X
00014575 ISSN: 00297828
17588251 ISSN: 0015-7120
00218456 ISSN: 0742-4787

 
 

  

{ 
    "group": [ 
        { 
            "list": [ 
                { 
                    "form": "JD", # Digital Journal 
                    "issn": "1878-5883", 
                    "issnl": "0022-510X", # Linking ISSN 
                    "oclcnum": [ 
                        "473214202", 
                        "67256818", 
                        "39191656", 
                        "876153175" 
                    ], 
                    "peerreview": "Y", 
                    "publisher": "Amsterdam : Elsevier Science", 
                    "rawcoverage": "Began with v. 1, issue 1 (Jan./Feb. 1964).", 
                    "rssurl": "http://rss.sciencedirect.com/publication/science/4854", 
                    "title": "Journal of the neurological sciences" 
                }, 
            ], 
            "rel": "this" 
        } 
    ], 
    "stat": "ok" 
}   

http://rss.sciencedirect.com/publication/science/4854


 

457  Charleston Conference Proceedings 2016 

Table 8. Sample of the final ISSN-L and title data in Excel. 
 

Linking ISSN-L Title
1523-3790 Current oncology reports
1096-6218 Journal of palliative medicine
0014-4797 Experimental agriculture
0102-8650 Acta cirúrgica brasileira / Sociedade Brasileira para 

Desenvolvimento Pesquisa em Cirurgia 
1103-8128 Scandinavian journal of occupational therapy 
1387-974X Photonic network communications
1610-8167 Urban forestry & urban greening
0737-3937 Drying technology
1368-4221 The econometrics journal
1742-4755 Reproductive health RH

 
 


	Wrangle Your Data Like a Pro With the Data Processing Power of Python
	

	tmp.1508865863.pdf.k6T6L

