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MICROPERFORATED FILMS

Light weight polymer films

• Hole diameter -- 0.1 mm

• Surface porosity -- 1%
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INTRODUCTION

• Microperforated films and sheets

➢ Many attractive functional attributes

➢ Fiber free

➢ Cleanable

➢ Lightweight

➢ Printable

➢ Easily tunable
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• Suggested by Maa in 1975

➢Cylindrical pore + End corrections 

➢Proposed different formulas for thermally

conducting and non-conducting boundaries

• Models needed for design and prediction

➢Film transfer impedance needed for 

transmission matrix calculations

➢Need to model non-cylindrical pores

➢Light weight films

Cross-section of a microperforated film Installed microperforated panels in the Great

Ape House of the Smithsonian National Zoo

Top view of a 

microperforated film

MICROPERFORATED FILMS
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MICROPERFORATED FILMS

• Perforated Films

Viscous 

Dissipation

Air space l

Material Parameters

• Surface porosity

(1%)

• Backing space 

depth

• Hole size (0.1 

mm)

• Hole depth (0.3 

mm)

α

• Complicating factors

➢ Flexibility of the film ➢ Non-cylindrical hole shapes

➢ Owing to low acoustic mass and 

relatively large viscous losses, 

absorption bandwidth can be 

relatively large. 

𝑓Herrick Labs, Purdue University 5



• Tuning: 𝒁𝒏 = 𝑹− 𝒋𝝆𝟎𝒄cot 𝒌𝒍 (approximate)

MICROPERFORATED FILMS

𝑘𝑙 =
𝜋

2

𝑓

𝑍𝑛

𝑅 = 𝜌0𝑐

• Peak absorption when imaginary 

impedance = 0

• Perfect absorption when 𝑅 = 𝜌0𝑐
at that frequency

• Depth of air cavity primarily 

controls tuning frequency

Viscous 

Dissipation

Air space l
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• Expanding the bandwidth

MICROPERFORATED FILMS

• Expand bandwidth by increasing the degrees of freedom: i.e., add more layers

Air 

space
l

α

𝑓

Air space l1

Air space
l2 α

𝑓

octave

m

m

m

Herrick Labs, Purdue University
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RANDOM INCIDENCE 

ABSORPTION MEASUREMENTS

Red Trays: 6×6×1, 6×6×2, 3×3×1, 3×3×2

• Backing trays make air space locally reacting

➢ Generally substantial improvement compared to unsegmented air space

Herrick Labs, Purdue University 8
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□ : 6” x 6” x 2”

: 3” x 3” x 2”

 : 6” x 6” x 1”

 : 3” x 3” x 1”

 : 2” unsegmented

+ : 1” unsegmented 

• Performance similar to glass fiber or foam in the speech 

interference range

RANDOM INCIDENCE 

ABSORPTION MEASUREMENTS
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APPLICATIONS

• Sport facilities
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• Operating rooms

APPLICATIONS
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• Restaurants

APPLICATIONS

Herrick Labs, Purdue University 1
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• Domestic Interiors

APPLICATIONS

Herrick Labs, Purdue University 1
3



Ryan A. Schultz, J. Stuart Bolton, Jonathan H. Alexander, Stephanie B. Castiglione, Tom P. Hanschen and Ed Bronikowski, 

“Improving the visitor experience – a noise study and treatment design for the Smithsonian National Zoological Park’s Great 

Ape House,” Proceedings of INTER-NOISE 2012, 8 pages, 2012.

APPLICATIONS

• National Zoological Park - Great Ape House (Washington DC)

Herrick Labs, Purdue University
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THE END

(just kidding)

Herrick Labs, Purdue University 1
5



Herrick Labs, Purdue University 1
6



Herrick Labs, Purdue University 1
7



Herrick Labs, Purdue University 1
8



Herrick Labs, Purdue University 1
9



End correction of the acoustic resistance is produced by the friction 

loss due to a part of the air moves along the baffle when the air flows 

into and out of the tube, and it may be found[7] that the additional part of 

the acoustic resistance is 2 2𝜔𝜌𝜂, if both sides of the tube are ended 

in infinite baffles.
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MAA MODEL (1975) - CYLINDRICAL
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d: hole diameter                 

f: frequency                       

t: hole depth                      

c: speed of sound             

μ: kinematic viscosity      

ν: thermal conductivity     

L: backing depth   

• Resistance

• Reactance

Contribution 

from hole End corrections (effect from flow over outer 

surface and convergence into and out of holes)
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boundary layer
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MAA MODELS

Models
Perforation 

constant
Resistance Reactance

1975 

High thermal conductivity 

model- Scientia Sinica

1975

Low thermal conductivity 

model- Scientia Sinica

1987 

Noise Control Engineering 

Journal

1998

Journal of Acoustical 

Society of America
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➢ d: hole diameter, f: frequency, t: hole depth, c: speed of sound, μ: kinematic viscosity, 

ν: thermal conductivity, η: viscosity coefficient (=μρ0)

Not much change 

in Reactance

Substantial change 

in Resistance
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Sample number

Hole diameter Hole depth
Number of 

holes per m2 t/d

Mass/area 

[kg/m2] Porosity [%]d [mm] t [mm]

2 0.185 1.27 6.20 x 105 6.8 9.8 1.7

3 0.41 0.406 3.03 x 105 1 3.2 4

4 0.413 0.813 6.07 x 105 2 5.9 8.1

Sample 2 (x100) Sample 3 (x100) Sample 10 (x100)

BRASS SAMPLES

Herrick Labs, Purdue University 2
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MEASUREMENTS AND PREDICTIONS 

FROM VARIOUS MAA MODELS

• There are 

significant 

differences on 

absorption 

predictions 

depending on 

model used

• Which one gives 

the most 

accurate 

prediction? 

• 87 NCEJ?
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d= 0.197 mm      

Num= 3.06x105

Porosity= 0.9 %

d= 0.41 mm        

Num= 3.03x105

Porosity= 4 %

d= 0.419 mm 

Num= 9.11x105

Porosity= 12.6 %

d= 0.645 mm     

Num= 6.11x105

Porosity= 20 %
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MODEL PERFORMANCE

• Observations

➢Absorption peak locations accurately predicted in all cases-
reactive part of model impedance is assumed to be accurate

➢Absorption peaks heights are not predicted accurately 
consistently by any of the models – so, resistive end 
correction is assumed to be inaccurate
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Brass sample 3 with 2 cm air backing space

98 JASA

87 NOISE-CONTROL

75 High therm. conductance

75 Low therm. conductance

test

d= 0.41 mm        

Num= 3.03x105

Porosity= 4 %
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TRANSFER IMPEDANCE OF 

MICROPERFORATED FILMS

– COMPLICATIONS

• Resistive end corrections

• Arbitrarily–shaped holes

• Thermal effects

• Fluid-structure interaction

Herrick Labs, Purdue University 2
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CFD APPROACH 

– INSPIRED BY C. K. W. TAM*

• Objective

By using computational fluid dynamics approach, calculate dynamic 

flow resistance for microperforated panel considering flow through 

one hole and compare with existing formulation

vin

P1 P2

1 2
f

in

P P
R

v




*C. K. W. Tam, H. Ju, M. G. Jones, W. R. Watson and T. L. Parrott, “A computational and experimental study of 

slit resonators.” Journal of Sound and Vibration, June 2005, Vol. 284, Issues 3-5, p. 947–984
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GEOMETRY AND ASSUMPTIONS

• Geometry of CFD model

➢ Incompressible flow in Fluent

➢ Mesh Interval : 0.005 mm, pressure-based, implicit formulation 

➢ the Green-Gauss node-based method

➢ SIMPLE for the pressure-velocity coupling method

➢ STANDARD for pressure

➢ SECOND-ORDER UPWIND for momentum

Pressure 

outlet
Velocity 

inlet

1 mm 1 mmt

d/2

0
.7

2
5

6
 m

m

Symmetry axis Symmetry axis
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• Inlet velocity was chosen to be a Hann windowed, 5 kHz 

half-sine wave having a maximum value of 1 mm/s in order 

to cover the frequency range up to 10 kHz

INLET VELOCITY AND PRESSURE

Herrick Labs, Purdue University 3
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MAA MODEL*

α = 2      when smooth end

α = 4      when sharp end

Dynamic flow resistance (R) is function of t, d, σ

Note that Rs → 0 as ω → 0 

Cylinder Surface

*Y. Guo, S. Allam and M. Abom. “Micro-perforated plates for vehicle applications.” 

Proceedings of INTER-NOISE 2008, Shanghai, China, 2008. 

Herrick Labs, Purdue University 3
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COMPARISON OF CFD WITH 

MAA MODEL

• Dynamic flow resistance and flow reactance (d=0.4064 mm,

t=0.4064 mm, σ=0.02)

Large difference in flow Resistance in low frequency range

Make α, which is defined by Guo et al., a function of 

frequency to fit with CFD results

Herrick Labs, Purdue University 3
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RIGID FILM – VISCOUS LOSSES

• Viscous energy losses are proportional to the shear 

rate squared

➢Losses are concentrated along perforation walls and at the inlet/outlet 
(resistive end correction)

➢Losses are symmetric front-to-back in linear regime (acoustic wave is incident 
from below)

➢Losses decrease as the frequency increases

Plots of the square root of viscous losses on a scale from 0 to 15
3mW

500 Hz 2,000 Hz 5,000 Hz 10,000 Hz

2
uEloss  


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RESISTIVE END CORRECTION

• Energy dissipation occurs within shearing fluid 

external to the hole – not on the solid surface 

adjacent to the holes

• Net result is that the resistive end correction is 

independent of frequency (unlike Maa ∝ 𝜔 Τ1 2)

• Resistive end correction remains finite at zero Hz 

Herrick Labs, Purdue University 3
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CFD MODEL – CONICAL HOLES

▪ Axisymmetric tapered holes shape

▪ FE code Comsol was used primarily

• Incompressible, isothermal, 2D axisymmetric

• Inlet:  Hann-windowed, 5 kHz half-sine (0.1 ms) - velocity

• Run 0.5 ms for accurate static flow resistance

• Maximum speed of 1 mm/s

• Represents infinite square array

Cylindrical 

center line

Herrick Labs, Purdue University 3
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COMPARISON WITH 

SAKAGAMI CASE
W

id
th

 o
f a

 d
u

c
t

• A pilot study on improving the absorptivity of a thick 

microperforated panel absorber, Sakagami et al.

▪ Three tapered holes
Herrick Labs, Purdue University 3
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SOURCE OF DISSIPATION

• Plots of shear rate
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RIGID FILM – THERMAL LOSSES

• Thermal energy losses are proportional to the temperature 

gradient squared

➢ Losses are concentrated over whole front surface, and only a little within the 

perforation

(unlike Maa who modeled thermal losses occurring within the perforation)

➢ Losses are asymmetric front-to-back (acoustic wave is incident from below)

➢ Losses increase with the frequency (Scale is 1/30th of viscous plots, so 1/900th

the energy loss)

2
T

T

k
E

kloss 

500 Hz 2,000 Hz 5,000 Hz 10,000 HzHerrick Labs, Purdue University 3
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RIGID FILM – LOSSES COMPARED AND 

EFFECTIVE ABSORPTION

• Thermal losses are significantly smaller than viscous losses 

( < 5% up to 10 kHz)

Thermal Loss – Percent 

of Total

Herrick Labs, Purdue University 4
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• Thermal boundary conditions (adiabatic vs. isothermal) 

are not significant for absorption

➢ Infinite film in free space

➢ Film in impedance tube with anechoic termination

  r1


r

1

Absorption is the fraction of 

normally incident acoustic 

intensity not reflected or 

transmitted by the film.

Herrick Labs, Purdue University

RIGID FILM – LOSSES COMPARED AND 

EFFECTIVE ABSORPTION

4
1



SUMMARY ON THERMAL LOSSES

• Thermal losses:
➢ Increase with frequency

➢ Occur over the full incident face of the film

➢ Contributions from within the perforations are 

negligible

➢ For moving films, losses occur on both sides of the 

film

but the total thermal loss is almost identical to that of 

a rigid wall

➢ Contribute to the acoustic resistance, but not the 

reactance

➢ Are less than 5% of the total energy loss for practical 

films below 10 kHz

➢ Have no significant effect on the predicted absorption

Herrick Labs, Purdue University 4
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FILM FLEXIBILITY – EQUATIONS OF 

MOTION AND VELOCITY CONDITIONS

pI: Pressure at source side

pII: Pressure behind the panel

ds: Displacement of solid part

df: Displacement of fluid part

ρs: Membrane mass per unit area

Rf: Flow resistance

D: Flexural stiffness

T: Tension

h’: Effective thickness

Ω: Porosity

Volume velocity continuity at x=0
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▪ Flexible panel case

▪ Panel motion important when 

𝑚𝑠 below 300 g/𝑚2
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FILM FLEXIBILITY

• 3-dimensional model
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Taewook Yoo, J. Stuart Bolton, Jonathan H. Alexander and David F. Slama, “Absorption of finite-sized micro-perforated panels 

with finite flexural stiffness at normal incidence,” Proceedings of NOISE-CON 2008, Dearborn, Michigan, July 28-31, 2008.

Herrick Labs, Purdue University 4
4



MEASUREMENT OF 

PLEXIGLASS SAMPLES

Sample 1 (x100) Sample 2 (x50) Sample 3 (x50)

d

(nominal)

[mm]

t

[mm]

ρs

[kg/m2]
N

Sample 1 0.254 1.588 1.584 722500

Sample 2 0.2667 1.588 1.627 291600

Sample 3 0.4064 1.588 1.631 160000
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COMPARISON BETWEEN PREDICTIONS 

AND MEASUREMENTS
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S1

S2 S3

d

(nominal)

[mm]

d

(adjusted)

[mm]

t

[mm]

D / 

loss factor

[N·m2]

T

[N]

ρs

[kg/m2]
N

S1 0.254 0.305 1.588
0.7/

0.07
0 1.584 72250

S2 0.2667 0.35 1.588
0.7/

0.07
0 1.627 29160

S3 0.4064 0.45 1.588
0.7/

0.07
0 1.631 16000
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FLEXURAL STIFFNESS EFFECT 
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➢ Depending on the 

flexural stiffness, the 

absorption 

performance can be 

enhanced with a 

proper loss factor

d

[mm]

t

[mm]

D

[N·m2]
loss factor in D

T

[N]

Mass/area

[kg/m2]
N

Size

[mm]

0.45 1.588
1, 0.6, 0.4, 0.3, 0.2, 0.1, 

0.01, 0.0001
0.05 0 0.1631 160000 63.5 x 63.5

• Significant when basis weight < 300 g/m2
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LIMP PERFORATED FILM – IMPEDANCE

• Mass Law impedance for limp impervious sheet added in 

parallel to the impedance of a rigid perforated plate predicts 

response very well (markers)

➢Resistance drops as mass decreases

➢Reactance changes in non-intuitive manner

➢Low-frequency has an increase of reactance with mass

➢High-frequency approaches rigid results more directly

mjZ

Zmj

ZZ

Z
Rigid

Rigid

SheetRigid

Film












11

1

Film Reactance – FSI models 

compared to formula

Film Resistance – FSI models 

compared to formula
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CONCLUSIONS – CFD MODELING

• Computational modeling of MPP’s has proven to be a powerful tool

• Has allowed identification of the correct origin of the resistive end 

correction

• Accurate calculation of transfer impedance of MPP’s with arbitrarily 

shaped holes

• For thermally conducting materials, thermal losses occur on surface 

of MPP (not within holes), but contribution to energy dissipation 

generally negligible

• Solid – phase motion influences MPP transfer impedance, but large 

disparity between solid and fluid velocities allows transfer 

impedance to be calculated by parallel addition of rigid MPP and 

flexible impermeable film
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DUCT LINING APPLICATION

DUCT
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Length of a cavity
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Surface Normal Impedance

𝑑 : Depth of a cavity (3.8 cm)

o Microperforated

Surface Normal Impedance

𝑑 : Depth of a cavity (3.8 cm)

o Fibrous

▪ HVAC systems
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FINITE ELEMENT MODEL 

APPROACHES

• Modeling microperforate as a rigid porous material 

➢ Attala and Sgard model is explicitly used to model

Flow resistivity Tortuosity

Correction length

Surface impedance with a finite-depth air cavity 

Viscous and thermal characteristic lengths

η : dynamic viscosity      σ : porosity     r  : radius   t  : thickness
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• Local and extended reaction treatments for fibrous material 

Local reaction case Extended reaction case

FINITE ELEMENT MODEL 

APPROACHES
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• Local and extended reaction treatments for microperforated 

material

Local reaction case Extended reaction case

FINITE ELEMENT MODEL 

APPROACHES
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• To match TL performance, create microperforated treatment 

having same surface normal impedance as fibrous layer in 

high performance band

Band of high performance

MATCHING FIBROUS 

PERFORMANCE
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COMPARISONS

• Microperforated material matching acoustical performance 

of fibrous material

NORMALIZED IMPEDANCE

• Least square error method is 

applied to match the both real and 

imaginary part of fibrous material 

by adjusting the parameters of 

microperforated material.

• 3.8 cm air backing  depth for 

microperforated material

•3.8 cm thick fibrous material
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• Transmission loss of duct linings

Local reaction treatment

(Analytical approach)
Local reaction treatment

(Finite element approach)

COMPARISONS
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CONCLUSIONS

• MPP’s first new noise control material in decades

• Good acoustic performance in a number of different 

applications with many attractive functional attributes

• Theoretical modeling is relatively simple but there are a 

number of practical complications

• Origin and magnitude of resistive end correction

• Hole geometry

• Panel flexibility

• Micro-scale CFD and finite elements offer a powerful tool 

for determining transfer impedances of realistic 

treatments

• MPP’s can be modeled at a macro scale as poroelastic

media
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