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ABSTRACT

Suelzer, Joseph S. PhD, Purdue University, May 2016. Double Optical Feedback
and PT-symmetry Breaking Induced Nonlinear Dynamics in Semiconductor Lasers.
Major Professor: Gautam Vemuri.

A central aim of this research is to probe the nonlinear dynamics that arise in a

semiconductor laser due to optical feedback. We investigate two schemes of optical

feedback. The first scheme subjects the laser to optical feedback from two external

cavities (or two loops), wherein each cavity contains a spectral filter. Using two

filtered optical feedbacks, we experimentally demonstrate the ability to elicit and

control unique dynamics in the optical emission frequency (wavelength) of the laser.

These results are compared to a deterministic model describing the evolution of the

complex electric field and carrier density of the laser. As the feedback rate from one

cavity is increased, we observe a period doubling route in the frequency dynamics. To

determine the influence of quantum noise on the period doubling route, we examine

an augmented model of the rate equations which includes the effects of spontaneous

emission and shot noise. One of the more surprising results is that in the presence of

noise a larger feedback strength is required to induce chaotic dynamics. We find that

noise drives the system toward stable attractors and the effects of the time-delay on

the periodic dynamics are more pronounced.

The second scheme we use is a system consisting of two time-delayed, optically

coupled semiconductor lasers. We show that coupled lasers are an excellent test-bed

to study parity (P) and time-reversal (T) symmetry breaking. Not only do optically

coupled SCLs capture many of the characteristic signatures of PT symmetry breaking,

but the time-delay between the lasers introduces novel and surprising features. We

develop a simple PT model (analogous to a 2x2 Hamiltonian) that includes the effects

of the time-delay. By examining the eigenvalues of the PT model, we can predict the
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intensity fluctuations by scanning the PT parameter, i.e. the frequency difference

between the lasers. We experimentally observe the intensity fluctuations and find

excellent agreement with the rate equation model which includes the dynamics of the

carrier inversion and optical field.
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1. Introduction to Optical Feedback

This chapter gives a brief introduction to optical feedback in semiconductor lasers

by outlining the historical development for this field. Following this development, it

becomes clear how the original motivations, which were quite pragmatic, evolved to

broader and more fundamental studies. In particular, by using optical feedback in

semiconductor lasers, we discuss the ability to probe fundamental attributes of non-

linear dynamics. We outline some investigations that foster important applications

in photonics, and discuss how the content of our research fits within the fundamental

and applied studies.

1.1 Historical Introduction

The conception and development of the laser is a remarkable story. The statue of

Charles Townes commemorating his reflections on a park bench in 1951, the race to

build the first laser (along with ensuing legal wars), and the technological fruits of the

laser are fascinating reminders of the adventures within science. The story serves,

especially for the purpose of this thesis, as an illustrative example of how applied

and fundamental science can mutually foster progress on both sides. Shortly after

Mainman’s demonstration of the first optical laser, his assistant, Irnee D’aenens,

described the laser “as a solution looking for a problem.” Indeed, scientists have

discovered many “problems” over the last 60 years, and a testament to this is the

number of Nobel Prizes (19) related to the laser [1]. Irnee’s statement serves as an

overarching theme of this dissertation. In particular, the “problem” we investigate

is nonlinear dynamics, and the “solution”, or test-bed, we use to explore this field is

semiconductor lasers (SCLs) subject to optical feedback. As we review the important
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characteristics of SCLs and the features introduced because of optical feedback, it will

become clear why this system provides an excellent tool to probe nonlinear dynamics.

In 1962, a group from General Electric Research Laboratory published the first

observation of coherent infrared radiation from a GaAs p-n junction [2]. Less than

a month later, IBM researchers reported stimulated emission of radiation from the

same semiconductor material [3]. In the SCL, the optical gain was provided by

electron-hole recombination in the active region of the p-n junction. In this region,

the gain is controlled by the carrier density which is externally supplied by injecting

current across the semiconductor material. The ends of the semiconductor are cleaved

to create an optical cavity, thus providing the two necessary ingredients - gain and

feedback - for amplified stimulated emission. At this time, practical use of these SCLs

were limited. To achieve lasing, the semiconductor materials were immersed in liquid

nitrogen and supplied with a pulsed current lasting between 1 μs to 20 μs, which were

required because of the large threshold currents (> 8.5 kA/cm2) [2, 3].

Over the next decade, scientists and engineers were spurred by the demand to im-

prove commercial viability and laser performance [4]. In particular, successful efforts

were concentrated on developing cw emission at room temperature and increasing

efficiency. Much of the success is attributed to improvements on the design of the

SCL structure [1, 5]. The design improvements increased carrier confinement in the

active region and introduced a waveguide for the optical field [5]. This resulted in

lasers with an efficiency > 50% and an active region with dimensions on the order of

10μm [6]. Indeed, we shall see that these two characteristics contribute to the SCL’s

large gain per unit length, which is responsible for the extreme sensitivity to external

perturbations and incidentally makes it an excellent candidate to elicit nonlinear dy-

namics. Before we turn to this point, we look at fundamental characteristics of the

SCL that play a significant role in determining the dynamics which arise in SCLs due

to optical feedback.
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1.2 Characteristics of the SCL and optical feedback

In 1982, Charles Henry developed the theory of the linewidth of SCLs. At this

time, experimental measurements of the linewidth were found to be 30 times greater

than explained by current theories. Henry elegantly demonstrated that the linewidth

of a SCL is enhanced by the multiplicative factor 1 + α2 [7]. The α parameter, also

called the Henry factor, quantifies the coupling between the phase and amplitude of

the laser field. For a typical semiconductor laser, this value ranges between 2 and

7. Henry showed that α = ΔμR/ΔμI , where ΔμR is the change in the real part

of the refractive index and ΔμI is the change in the imaginary part of the refractive

index [7]. The changes in ΔμI and ΔμR are coupled through the carrier density which

affects both the gain and index of refraction. The dependence on the carrier inversion

n, can be expressed by,

α = −dχR(n)/dn

dχI(n)/dn
, (1.1)

where χ is the complex susceptibility and the subscripts R and I correspond to the

real and imaginary parts. Not only does α play a significant role in the spectral

characteristics, but it has a profound influence on the dynamics of SCLs.

To understand the effects that a non-zero α has the dynamics, we examine a

SCL subject to conventional optical feedback (COF). An experimental design using

COF consists of external reflector situated a distance L from the laser facet. The

reflector returns (or re-injects) a portion of the laser emission back to the SCL cavity.

Feedback temporarily increases the number of photons inside the laser cavity. The

additional photons in the active region of the SCL change the carrier density, or

inversion number. The change in carrier density affects both ΔμI and ΔμR, and

changes the gain, g(n), since the gain is directly proportional to ΔμI . Recalling that

μR is the real part of the refractive index, it should not surprise us that the phase is

altered due to ΔμR. We now examine the evolution and time-scales of these processes

in greater detail.
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Before the SCL returns to steady-state emission, the intensity and inversion un-

dergo damped relaxation oscillations (RO) that correspond to an exchange in energy

between the photons and carrier density inside the laser cavity. The period of the RO

typically last between 100 ps and 1 ns, corresponding to a frequency, νRO, between

10 GHz and 1 GHz. A linear stability analysis of the laser rate equations allows us

to express the RO frequency in terms of intrinsic SCL and operating parameters [8],

written as

νRO =
1

2π

√
ξIs
τp
, (1.2)

where ξ is the gain coefficient, τp is the photon lifetime, and Is is the intensity at

steady-state. We note that ξ and Is depend on the operating parameters, in particular

the injection current. The RO are damped with a rate given by

ΓRO =
1

τe
+ ξIs, (1.3)

where τe is carrier lifetime [8]. The RO and damping rate are two important time-

scales of the SCL. The photon and carrier lifetimes not only determine νRO and ΓRO,

but become an integral part of dimensional analysis of the rate equations that are

described in the next chapter. The RO represent one of the two important time-

signatures exhibited by COF dynamics.

The second signature, the time-delay τ , is present because of the finite propagation

length which is external to the SCL cavity, i.e. τ = 2L/(μc), where L is the distance

between the laser facet and external reflector and μ is the refractive index. From a

mathematical perspective this renders the system infinitely dimensional. This can be

understood in the following way:

� at time t, the SCL “feels” a field that was emitted at time τ earlier;

� at time t− τ , the SCL “felt” a field emitted at τ earlier;

� at time t− 2τ , the SCL “felt”. . . ad infinitum

In addition to adding unique features to a nonlinear system (i.e. SCL), the time-

delay introduces a degree of complexity in which some typical tools used in nonlinear
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analysis can no longer be applied. The ability to easily change the time-delay τ or

add multiple delays makes the system an excellent test-bed to probe time-delayed

dynamics. Up to this point we have discussed the dynamics in a general sense.

To better understand the contributions of our research to this field, it is helpful to

examine some of the fundamental and applied investigations that have acted as a

springboard for future studies.

1.3 Fundamental studies and applications of SCL dynamics

As early as the 1970’s systematic studies of SCLs subject to optical feedback

began to emerge [9–11]. Influenced by the rapidly developing field of telecommuni-

cations, special attention was given to the stability properties of SCL with optical

feedback [12–17]. However, it was soon recognized that optical feedback provided

the ability to elicit and sustain optical microwave oscillations, whose frequencies were

characterized by two time-signatures, the RO frequency and time-delay [10, 11, 14].

Several investigations demonstrated the presence of a dominant frequency that was

inversely proportional to the cavity length L [10,11]. By altering the length of an op-

tical fiber from 10 cm to 2 km, Ikushima and Maeda showed for a particular feedback

strength that the fundamental frequency was determined only by the round-trip time,

i.e. the fundamental frequency is f = c/2nL [11]. Although the investigations were

able to relate the observed microwave frequencies to the parameters of the external

cavity and SCL, no simple theory existed which allowed for an analytical analysis.

This changed in 1980 when Lang and Kobayashi (LK) extended the compound

cavity laser rate equations, which describe the complex electric field (E(t)) and carrier

inversion number (N(t)), to include an additive term accounting for the delayed

feedback field (E(t − τ)) [18]. Before we describe the LK-model in Chapter 2, we

would like to briefly discuss some of the fruits that arose from this study. In addition

to providing a rate equation model describing optical feedback, this seminal study

demonstrated that various phenomenon, including multistability and hysteresis, arise
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due to the interference between the cavity and feedback fields [18]. The effects were

analogous to those found in nonlinear Fabry-Perot resonators [18]. Although Lang

and Kobayashi only demonstrate a small number of features which are general to

nonlinear systems, this study opened an avenue which still continues to be a field of

intense study.

An example of this continued interest is a study from 1986 when Tkach and

Chraplyvy (TC) provided a systematic investigation classifying the effects of feedback

for varying feedback strength and cavity lengths [19]. The feedback strength was

varied over 8 orders of magnitude from -80 dB to -8 dB, and five regimes were found

with well-defined transitions [19]. From a our standpoint, the most interesting regimes

are the middle three wherein different dynamics can be induced. These dynamics

range from mode-hopping to coherence collapse [19]. Recently, the TC classification

has been revisited by Donati and co-workers. Because of the vast (and growing)

number of applications, Donati and co-workers were prompted to depict the regimes

wherein particular applications lie [20]. We will now look at some of the applied

research that has emerged from optical feedback.

1.3.1 Applied Research

The ability to probe different dynamical regimes using simple injection and optical

feedback schemes enables a wide range of applications from laser characterization

and linewidth reduction [21–23] to microwave generation [24–28]. Another dynamical

regime wherein optical feedback provides rich test-bed for applied and fundamental

research is chaotic waveforms. [29–31]. In particular, there has been a concentrated

effort on exploiting chaotic waveforms in two areas: random bit generation and chaotic

synchronization.

Random bit generation from a SCL is attractive because the “randomness” is

generated from a physical process. The random numbers generated by software,

unlike chaotic SCLs, employ sophisticated algorithms, which given the same initial
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kernel would produce an identical sequence of random numbers. A typical (simplified)

experiment induces chaotic dynamics via optical feedback and uses an analog to digital

converter to generate a sequence of bits. The “quality” of randomness and speed

(bits/s) can be improved by focusing on the feedback scheme or post-processing [31].

Using optical feedback, several studies have demonstrated random bit generation with

bit rates exceeding 100 Gb/s [31].

The second area of focus, chaotic synchronization, continues to remain attractive

both as means for encryption and to study the fundamental properties of time-delayed

synchronization [32–38]. Many interesting features have grabbed the attention of

researchers including a desire to increase the bandwidth of the chaotic signal [37,39],

observe anticipated synchronization [34, 36], and distinguish between general and

complete synchronization [40,41]. The generation stable chaotic synchronization has

shown great promise for applications outside of laboratory settings. An example is

the realization of chaotic synchronization over a 120-km optical fiber utilizing the

injection of semiconductor lasers. [42]. To make this a viable candidate for random

number generation or encryption, performance improvements are sought by increasing

the bandwidth and the stability of the chaotic signal.

1.4 Our Contribution

Optical feedback continues to provide a rich system for the study of nonlinear

dynamics. However one is essentially limited to two control parameters, the feed-

back strength and external cavity length. Motivated by the desire for greater control

over the dynamics, one can manipulate the optical feedback using various schemes.

A promising and intensely studied procedure involves spectrally filtering the optical

feedback. Filtered optical feedback (FOF) achieves control over the feedback which

is external to the laser. The filter’s response function is highlighted in Fig. 1.1. Ex-

amining Fig. 1.1, the key feature is that the transmission (or feedback intensity) is

frequency dependent. In addition, two key parameters emerge with the introduc-
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signatures are an essential characteristic in determining the “randomness” of the

chaotic signal. Ideally, for a truly random signal any time-delayed (or periodic)

features would be fully suppressed. In particular, it was recently demonstrated that

filtered optical feedback suppresses the time-delay signatures of the chaotic waveforms

[49]. The key to this suppression lies in the chromatic dispersion associated with the

filter since filters can provide not only a frequency dependent loss but also a frequency

dependent feedback delay [49]. In both examples, performance improvements are

sought by increasing the bandwidth and the stability of the chaotic signal. Thus,

a better understanding of the dynamics and the ability to achieve robust control

over optically-coupled systems is a main focus of our work. We demonstrate how

a second feedback cavity containing a spectral filter achieves greater control as well

as introducing some surprising features due to the second time-delay. We call this

system two FOF, since each of the two external cavities contain a spectral filter.

1.5 Outline

The bulk of our work can be divided into three parts: (i) experimental investi-

gations of frequency dynamics from two FOF, (ii) theoretical study of the effects of

quantum noise on the dynamics from two FOF, and (iii) experimental realization of

parity and time-reversal symmetry breaking using two mutually coupled SCLs. We

introduce the rate equations for optical feedback in Chapter 2, which provides the

“backbone” for the model of two FOF and the model of two optically coupled SCLs.

The experimental and numerical investigations are discussed in Chapter 3 and Chap-

ter 4, respectively. In Chapter 5, we introduce the context, PT symmetry breaking,

in which we study mutually coupled SCLs. We develop a model for time-delayed

PT symmetry breaking which anticipates surprising results due to the presence of

time-delay. The experimental observation of these results are discussed. Finally, a

summary and synthesis of our work is provided in Chapter 6.
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2. Rate equations for a semiconductor laser subject to

optical feedback

To obtain the SCL field rate equation, the starting point is Maxwell’s equations.

For most SCL materials, the material response is assumed instantaneous, since the

relaxation time (∼ 0.1 ps) of the polarization P is much faster than the photon and

carrier lifetimes. The polarization response is adiabatically eliminated. The complex

envelope E(t) of the optical field E(t) = E(t)e−iωt varies slowly so that the higher

order derivatives can be neglected. In addition, for many SCL designs it is appropriate

to assume a single transverse and lateral mode. Following the above prescription [5],

the single mode rate equation of the complex slowly varying electric field may be

written as
dE

dt
=

1

2
(1 + iα)ξN(t)E(t), (2.1)

where ξ is differential gain coefficient expressed in units of s−1 and N(t) is the carrier

density (n(t)) minus the threshold carrier density (nthr). To express the field rate

equation in this form, we have assumed the semiconductor material gain depends

linearly on the carrier density [17].

The first term in Eqn. (2.1) accounts for growth or decay of the field depending on

the sign of the adjusted carrier density N(t). The second term causes a phase shift

of the field due to the linewidth enhancement factor α. We recall that α quantifies

amplitude-phase coupling of the field which is expressed in Eqn. (1.1).

Lang and Kobayashi (LK) were the first to augment the field rate equation

(Eqn. (2.1)) to account for time-delayed feedback [18]. The LK rate equations can be

expressed by

dE

dt
=

1

2
(1 + iα)ξN(t)E(t) + κe−iωτE(t− τ). (2.2)
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The coupling term includes the explicit time-delay (E(t − τ)) as well the phase ac-

cumulation e−iωτ of the feedback field. The feedback rate is expressed by κ = ζ/τin,

where ζ2 is the power reflected by the external cavity relative to the power reflected

by the laser facet and τin is the round-trip time in the laser cavity.

We have not described the rate equation for the population inversion which is

expressed through the carry density N(t). The rate equation for N(t) is given by

dN

dt
= J − Jthr −

N(t)

T1
− [Γ0 + ξN(t)]|E(t)|2, (2.3)

where the difference between the pump rate and threshold is J−Jthr. T1 is the carrier

lifetime, and Γ0 is the photon decay rate. The first term, J − Jthr, adds carriers due

to the pump current; the second and third terms account for spontaneous decay and

depletion due to stimulated emission, respectively.

We now turn our attention to the effects on Eqn. (2.2) when the feedback field

is spectrally filtered. The primary function of the filter is a frequency dependent

reflectivity (or transmission). The response function, r(ω), of the filter is typically

assumed Lorentzian [43], i.e.

r(ω) =
Λ

Λ + i(ω − Δ)
, (2.4)

where ω is the instantaneous optical frequency, Λ is the half width at half maximum

(HWHM) of the filter and Δ is the detuning of the solitary laser frequency from the

center frequency of the filter. To determine the rate equation for the feedback field, we

outline the procedure described in Ref. [43]. First, the response r(ω) operates on the

Fourier components of the electric field E(ω). After this operation, the inverse Fourier

transform is applied in order to determine the time dependence of the feedback F (t).

This results in an integral expression of the field which is differentiated with respect

to time and the rate equation for the spectrally filtered feedback field is expressed by

dF

dt
= ΛE(t− τ)e−iω0τ + (iΔ − Λ)F (t). (2.5)

The feedback term κe−iωτE(t − τ) in Eqn. (2.2) is replaced by filtered field F (t, τ)

that is now described by Eqn. (2.5).
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Finally, to include the effects of quantum noise, the rate equations require a further

modification. This modification is an additive Langevin term that accounts for the

spontaneous emission and shot noise terms. These terms are described by LE(t) and

LN(t), respectively. Both noise sources are assumed to be Gaussian with zero mean.

Their autocorrelation functions are given by,

〈Re(LE(t))Im(LE(t′))〉 = 0, (2.6a)

〈Re(LE(t))Re(LE(t′))〉 = 〈Im(LE(t))Im(LE(t′))〉 = Rspδ(t− t′), (2.6b)

〈LN(t)LN(t′)〉 = Dδ(t− t′). (2.6c)

The rate of spontaneous emission is written as Rsp = βspCN
2, where βsp is the

fraction of spontaneous emission coupled into the dominant mode and C is a radiative

recombination rate [5]. The shot noise diffusion rate is given by D. The noise sources

LE and LN are derived quantum mechanically in order to arrive at their explicit

form and statistical properties [50]. Although the noise sources are correlated in a

SCL [50], we found that correlating sources resulted in no significant difference when

compared to uncorrelated noise [51]. Therefore, the analysis in Chapter 4 is done

with uncorrelated noise.

The final form of the rate equations are given by

dE

dt
=

1

2
(1 + iα)ξN(t)E(t) + κF (t, τ) + LE(t), (2.7a)

dN

dt
= J − Jthr −

N(t)

T1
− [Γ0 + ξN(t)]|E(t)|2 + LN(t), (2.7b)

dF

dt
= ΛE(t− τ)e−iω0τ + (iΔ − Λ)F (t). (2.7c)

These equations form the backbone of the model describing feedback from two spec-

trally filtered external cavities. This system is discussed in the next two chapters. To

describe optical coupling from a second SCL, which is found in Chapter 5, we rely on

a similar model that replaces the feedback term with a coupling term accounting for

the field from the neighboring SCL.
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3. Semiconductor Laser subject to two filtered optical

feedbacks

Main results of this chapter have been published in Ref. [52]

3.1 Introduction

Semiconductor lasers subject to optical feedback continue to fascinate researchers

across many disciplines. This attraction exists because the semiconductor laser is a

paradigm for nonlinear systems - capable of capturing a myriad of nonlinear dynam-

ical behaviors [53] (see references therein). Recently, there has been an interest in

using double or multiple optical feedbacks in which each feedback contains a different

time-delay [54–59]. The time-delays are produced by arranging the external optics

such that each cavity has a different length. Although multiple time-delays are an

interesting theoretical question, pragmatically more than two cavities is difficult to

implement. To induce dynamics a certain amount feedback strength is required [19].

A feedback system with multiple cavities introduces more optical elements and with

the additional elements greater losses occur. The attenuation of the feedback makes

it difficult to elicit dynamics. However, the implementation of two external cavities

has shown great promise [55, 56]. A second time-delay has demonstrated the ability

to suppress time-delay signatures in the optically induced dynamics [58]. This is of

particular interest for those who wish to apply the chaotic signal for encryption or

random number generation. For this reason, the ability to suppress the time-delay,

FOF has also gained attention.

As we mentioned in the Introduction of this dissertation, FOF primarily acts as

frequency dependent optical attentuator. In addition to the unique dynamics (FOs)

introduced because of the nonlinear response of the filter, the filter provides the ability
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to control sustained microwave oscillations [46]. In particular, the period of FOs can

be tuned by changing the bandwidth of the spectral filter [47]. The spectral filter

in Ref. [47] consists of a Fabry-Perot etalon made up of two plane mirrors with a

separation distance d. Since the bandwidth is expressed by δf = c/2df , changing the

separation between the filter’s mirrors inversely changes the bandwidth and hence the

frequency of the FO. This can be understood by noting that d (along with the finesse

f) increases the total time of the feedback field spent outside the SCL. The additional

control gained from the spectral filter, along with the features introduced by a second

cavity (i.e. second time-delay), motivated us to combine these two schemes. We

experimentally investigate a SCL subject to feedback from two external cavities each

containing a spectral filter. We call this system two FOF.

The inclusion of the second FOF provides the technical advantage of an extra

set of control parameters for the purpose of engineering and applications mentioned

earlier. In the frequency-oscillation regime, our system shows a rich control over the

frequency dynamics of the laser light. Our results show that the period of frequency

oscillations of the laser light is determined by the two time scales related to the two

feedback loops, and the frequency corresponding to this period is given by the average

of the fundamental frequencies of cavity 1 and cavity 2. The average frequency is

dependent on the relative feedback strength from the two cavities and corresponds

to the weight between them. A proper adjustment of the cavity lengths and other

related parameters leads to the oscillations at the frequency which represents the

average of the higher harmonics of cavity 1 and the fundamental frequency of cavity

2. The amplitudes of the frequency components in the single FOF can be controlled

by adding a second FOF, and in particular the amplitude of fundamental frequency

can be suppressed while the amplitude of the second harmonic becomes larger than

that of the fundamental frequency. A cascade of period doubling bifurcations leads

the dynamics to a chaotic state.

This chapter is organized as follows. The experimental set-up used to study the

laser dynamics with two FOFs is presented in Section 3.2, and the experimental proce-
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dure for the detection of the frequency fluctuations is given in Section 4.3. Section 3.4

contains the theoretical model and numerical details for describing the dynamics of

the two-FOF laser. The experimental and numerical results of controlled oscillations

in the frequency of the laser light are presented in Section 3.5. A period doubling

route to chaos through bifurcation analysis is also discussed. The summary of the

work is presented in Section 3.6.

3.2 Experimental Setup

The light is emitted by a commercial (Sharp LT027) Fabry-Perot (FP) type diode

laser (DL) with an average power of 7 mW at an operating current of 65 mA. When

the DL is free running, i.e., with no feedback, it is a single mode laser emitting at

780 nm. Beginning at the DL and following the path of light in Fig. 3.1, the light is

initially reflected by the beam splitter (BS1). The optical isolator (OI) provides an

isolation of approximately −28 dB, ensuring that undesired reflections do not return

to the laser facet. The first glass plate (G) reflects a portion of the light through the

diagnostic filter to a (Thorlabs DET10A) silicon photodiode (PDA) with a 1-ns rise

time. The diagnostic filter is used to convert frequency fluctuations into intensity

fluctuations. The half-wave plate (HWP1) and polarizing beam-splitter (PBS) allow

us to control the fraction of light that enters each cavity. HWP2 is introduced so that

light returning to the final OI has the same polarization as the emitted laser light in

order to achieve maximum feedback. The frequency selective FP filters consist of two

plane mirrors separated by a distance d. Each external cavity contains a glass slide

to reflect a portion of the light to PDB and PDC; both are silicon diodes (Thorlabs

DET210) with a 1-ns rise time. The light transmitted through the glass slides is

directed through the final OI before it is coherently fed back into the laser.

As mentioned in Section 3.1, there are three regimes depending on the value of

the spectral filter bandwidth relative to the relaxation oscillation frequency and the

external cavity mode spacing. The regime of maximum interest is where the spectral
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filter bandwidth lies between the external cavity mode spacing and the relaxation

frequency. The mirror reflectivity determines the finesse f , which is estimated by

counting the number of reflections when the mirrors are slightly misaligned. The

spectral filter bandwidth, δνf = c
2df

, is varied by changing either the mirror reflectivity

or spacing. The mirror reflectivity is changed by replacing one or both mirrors and

the spacing is modified by moving a translation stage which contains one of the

mirrors. The bandwidth of the spectral filters determines the permissible time-scale

of dynamics. In our experiments, the lengths of our external cavities are typically

between 400 cm and 150 cm, resulting in an external cavity mode spacing ranging

from 75 MHz to 200 MHz (and filter bandwidth which ranges from 0.75 GHz to 2

GHz). This is done to have approximately ten external cavity modes within our

spectral filter profile and in order to filter out the relaxation oscillations of the laser

which have a frequency of 4 GHz.

In addition to studying the frequency dynamics, the signals from the two photo-

diodes, PDB and PDC are sent to an oscilloscope. This allows us to view both filter

profiles simultaneously in order to compare the bandwidths and the free spectral

ranges.

3.3 Detection of frequency fluctuations

In order to observe the frequency dynamics, the laser light is directed to a pho-

todiode, PDA in Fig. 3.1. As mentioned in Section 3.2, the diagnostic filter converts

frequency fluctuations into intensity fluctuations. The diagnostic filter consists of

two plane mirrors with reflectivities that range between 70% to 90%. The diagnos-

tic filter is designed so that the bandwidth is approximately five times larger than

the cavity filters bandwidth. The larger bandwidth increases the likelihood that the

optical frequency of the laser will fall on the flank of the diagnostic filter profile. In

turn this provides a near linear conversion from frequency to intensity. The electronic

signal is amplified by a low noise amplifier (Mini-Circuits ZFL-500LN) and sent to an
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oscilloscope (Lecroy 9450A) with a 10 GS/s sampling rate which allows us to observe

the frequency dynamics in real time. The signal is also sent to a spectrum analyzer

(HP 8590B) allowing us to view the relative intensity noise (RIN) spectrum.

The frequency dynamics are first observed for each solitary cavity. We then look

for dynamics when two feedbacks are present. The dynamics are found by controlling

the amount of feedback, κ1 and κ2, and the detuning between the solitary laser

frequency and the filter center frequency, Δ1 and Δ2. The amplitude of the feedback

field to the DL is modified by placing a variable neutral density filter after the last

optical isolator. To vary the detuning, we note that once the DL is above a threshold

current, approximately 50 mA, there is a linear relationship between the current

applied and the optical frequency of the laser. We use an external ramp to scan the

pump current to the DL, thus controlling the optical laser frequency and hence the

detuning. In practice, once the range of current is roughly identified where dynamics

occur, the external ramp is turned off and we manually adjust the current to search

for other dynamics such as period doubling. Other parameters, such as cavity lengths

and the detuning between the filter center frequencies, are systematically explored to

determine distinct dynamics, shown in Figs. 3.2-3.8.

3.4 Theoretical model

In Chapter 2, we described the rate equations of a semiconductor laser with FOF

from a single cavity given by Eqn. (2.7). Our set-up (Fig. 3.1) consists of two external
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cavities each containing a Lorentzian filter, thus the normalized rate equations are

modified to include the second FOF and can be written as

dE

dt
= (1 + iα)N(t)E(t) + κ1F1(t, τ1)

+κ2F2(t, τ2), (3.1)

T
dN

dt
= J0 −N(t) − (1 + 2N(t))|E(t)|2, (3.2)

dF1

dt
= Λ1E(t− τ1)e

−iω0τ1 + (iΔ1 − Λ1)F1(t), (3.3)

dF2

dt
= ηΛ2E(t− τ2)e

−iω0τ2 + (iΔ2 − Λ2)F2(t), (3.4)

where α is the amplitude phase coupling, and J0 is the injection current (with the

threshold value subtracted out). κ1 and κ2 are the feedback rates, T is the ratio of

carrier lifetime to the photon lifetime, τ1 and τ2 are the delay times taken by the light

to cover the distance in the cavities 1 and 2, respectively. E(t − τ1) and E(t − τ2)

are the fields delayed by time τ1 and τ2, respectively. Λ1 and Λ2 are the half-width at

half-maximums of the two filters. Δ1 and Δ2 are the detunings of the filters center

frequencies with respect to the solitary laser frequency. ω0τ1,2 are the feedback phases

of the fields accumulated during the propagation of light in the cavities 1 and 2. For

simplicity, the interaction between the two filters is ignored. The optical feedbacks

can be controlled either by changing the feedback rates κ1 and κ2 or by tuning Δ1

and Δ2. Time t is measured in units of the photon life-time, which is taken to be 10

ps for a typical semiconductor laser. The introduction of time delay in the system

makes it infinite dimensional, therefore an analytical study is very difficult. Thus to

explore the dynamics of two FOF laser, we perform numerical simulation. Numerical

integration of the above equations is done using the Runge-Kutta fourth-order scheme

with a step size = 0.014 (in units of cavity photon life-time, equivalent to 0.14 ps) [?].

A small asymmetry has an effect similar to a change in the feedback rate, and in

the following, we set η ≈ 1. The scaled parameter values used in the simulation,

corresponding to the experimental conditions, are α = 5, T = 100, J0 = 3.5, and

ω0τ1,2 = −6π.
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In order to study the frequency oscillations of the laser dynamics, we write the

complex envelopes of the laser and feedback fields in the form

E(t) =
√
IL(t) eiφL(t), (3.5)

F1,2(t) =
√
IF1,2(t) eiφF1,2

(t), (3.6)

where IL and IF1,2 are the laser and feedback field intensities, and φL and φF1,2 are

their phases, respectively.

3.5 Experimental and numerical results

3.5.1 Controlled frequency oscillations

Experimentally, the length of each cavity is determined from the recorded RIN

spectra by allowing the feedback from each solitary cavity separately. Figures 3.2(a)

and (b) show the fundamental frequencies fext1 = 105.9 MHz and fext2 = 121.6 MHz

of cavity 1 and cavity 2, respectively, which correspond to the lengths of 283 cm and

247 cm, respectively. Once the fundamental cavity frequencies are determined, both

fields are fed back into the laser. As in the case for a single FOF in Refs. [44, 46]

where the period of oscillations of laser frequency is dominated by the delay time of

the single cavity, in two FOFs, the period of frequency oscillations is determined by

two time delays related to the feedback loops (the filters add a substantial frequency

shift of ∼ 1/Λ1,2 to the period of the frequency oscillations [47]). The frequency

corresponding to this period is given by the average of the fundamental frequencies of

cavity 1 and cavity 2. Figure 3.3(a) displays the RIN spectrum of the laser when the

two feedbacks are of approximately equal strengths. The dominant frequency, 114.8

MHz, corresponding to the peak in the spectrum (Fig. 3.3(a)) shows the average of

the two fundamental cavity frequencies (105.9+121.6)/2 = 113.8 MHz.

This average frequency is dependent on the ratio of the feedback strengths from

the two cavities. If the feedback from cavity 1 is larger than that from cavity 2,

the average frequency (112.4 MHz) shifts towards the fundamental frequency of cav-
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Figure 3.2. Experimentally measured RIN spectra when the feedback is
provided by only (a) cavity 1, and (b) cavity 2.



22

Figure 3.3. Experimentally measured RIN spectra depicting the change in
frequency oscillations as the ratio of feedbacks from the cavities is varied.
Spectra recorded (a) at approximately equal feedback strengths from the
two cavities, (b) when the feedback strength from cavity 1 is larger than
that from cavity 2, and (c) when the feedback strength from cavity 2 is
larger than that from cavity 1.
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ity 1, as shown in Fig. 3.3(b). Similarly, the average frequency, 116.9 MHz, shifts

towards the fundamental frequency of cavity 2, when the feedback from cavity 2 is

larger, as shown in Fig. 3.3(c). These experimental results are verified by numerical

results, which we reported in Ref. [52], and a good agreement between the theory

and experiment was found.

In Fig. 3.3(a), the frequency of 114.8 MHz has a small deviation from the average

frequency of (105.9+121.6)/2 = 113.8 MHz. This discrepancy arises due to the fact

that the number of external cavity modes of cavities 1 and 2 lying under the profiles

of filters 1 and 2 are not the same. Thus two FOF fields from the two cavities are not

equal, and hence the feedback amounts κ1F1 and κ2F2 are not the same. In partic-

ular, κ2F2 > κ1F1, and thus the average frequency shows a shift towards the higher

frequency side of cavity 2. In this case, the difference between the two fundamental

cavity frequencies is smaller than the difference between the higher harmonics, i.e.,

|fext1 − fext2| < |2fext1 − fext2| < |fext1 − 2fext2|. Then the two fundamental cavity

frequencies beat together inside the laser and determine the period of oscillations of

the laser frequency, and the frequency corresponding to this period represents the

average of the two fundamental cavity frequencies.

Now we change the cavity lengths so that the two fundamental cavity frequencies

are fext1 = 75 MHz and fext2 = 131 MHz. In this case |2fext1 − fext2| < |fext1 −
fext2| < |fext1 − 2fext2|. Then the beating between the second harmonic of cavity 1

and the fundamental frequency of cavity 2 determines the period of oscillations of the

frequency of the laser light. In Fig. 3.4, the frequency of 141.0 MHz corresponding

to the peak represents the average of the second harmonic, 150 MHz, of cavity 1 and

the fundamental frequency, 131 MHz, of cavity 2.

Again, if we change the cavity lengths so that the two fundamental cavity frequen-

cies are fext1 = 70.2 MHz and fext2 = 189.3 MHz, respectively, the third harmonic

of cavity 1 becomes much closer to the fundamental frequency of cavity 2. Then the

frequency of the system is given by the average of the third harmonic of cavity 1 and

the fundamental frequency of cavity 2, viz. the frequency of 201.7 MHz corresponding
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Figure 3.4. With the fundamental cavity frequencies fext1 = 75 MHz and
fext2 = 131.4 MHz and at equal feedback strengths from the two cavities,
a weighted average frequency between the second harmonic of cavity 1
and the fundamental frequency of cavity 2 is seen in the experimentally
observed spectrum with feedback rates κ1 = κ2 = 0.0045, time delays
τ1 = 1250, τ2 = 680, filter bandwidths Λ1 = Λ2 = 0.012, and detunings
Δ1 = Δ2 = −0.007.
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to the peak in Fig. 3.5 can be written as ≈ 3fext1+fext2
2

= 200.0 MHz. In this case,

|3fext1 − fext2| < |2fext1 − fext2| < |fext1 − 2fext2|. We observe in the simulations that,

in general, the laser selects the two frequencies whose difference is the smallest and

the induced frequency of the dynamics is the weighted average of these two frequen-

cies. This is confirmed in the experiments after changing the cavity lengths to make

2fext1 ≈ fext2 and 3fext1 ≈ fext2.

Figure 3.5. With the fundamental cavity frequencies fext1 = 70.2 MHz
and fext2 = 189.3 MHz, and at equal feedback strengths from the two cav-
ities, a weighted average frequency between the third harmonic of cavity
1 and the fundamental frequency of cavity 2 is seen in the experimentally
observed spectrum with feedback rates κ1 = κ2 = 0.0045, time delays
τ1 = 1341, τ2 = 445, filter bandwidths Λ1 = Λ2 = 0.012, and detunings
Δ1 = Δ2 = −0.007.

In addition to the fundamental frequency, there are also higher harmonics that

are induced in the single FOF. Figure 3.6 shows the RIN spectra when the laser is

subjected to a single FOF. The fundamental frequency, 75.1 MHz, and the second

harmonic are both present. Unique to two FOFs, the fundamental frequency is found

to be suppressed as the second feedback field is switched on, and also, the amplitude

of the second harmonic becomes larger than that of the fundamental frequency. This

is shown both experimentally in Fig. 3.7 and numerically in Ref. [52]. The ratio of

the amplitudes of the second harmonic to the fundamental frequency increases as the

ratio of feedback rates κ2 : κ1 increases.
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Figure 3.6. For the laser subject to a single FOF, (a) experimentally
measured frequency spectrum, and (b) numerically simulated matching
spectrum, with feedback rate κ1 = 0.01, time delay τ1 = 1248, filter
bandwidth Λ1 = 0.012 and detuning Δ1 = −0.013.

Figure 3.7. For the laser subject to two FOFs, experimentally measured
spectrum at the feedback ratio κ2 : κ1 = 1 : 4
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Single FOF studies have shown that in addition to frequency oscillations which are

determined by the external round trip time, oscillations corresponding to twice the

period are possible within certain regimes [46]. We have observed similar behaviors

for a two FOF system. After changing the cavity length in the experiment so that the

two fundamental cavity frequencies are 104 MHz and 119 MHz, we observe a weighted

average frequency of 108 MHz, as described earlier. In addition, we observe a peak

at 54 MHz, which corresponds to the period doubling behavior, shown in Fig. 3.8.

Numerically, this period doubling behavior is obtained by simulating the spectrum of

the frequency oscillations (φ̇F1) of the feedback intensity IF1 . The peak corresponding

to frequency f1 is the period doubled frequency of the weighted average f2.

Figure 3.8. Frequency spectra showing period doubling of the weighted
average frequency: experimentally measured with time delays τ1 = 862,
τ2 = 740, filter bandwidths Λ1 = Λ2 = 0.01, detunings Δ1 = Δ2 =
−0.007, and feedback rates κ1 = 0.016, κ2 = 0.008.

In contrast to the averaging between the fundamental and the higher harmonics,

there occurs a weighted average of the period doubled frequency of one cavity and the

fundamental of the other. Experimentally, this was observed for the cavity lengths

corresponding to the fundamental frequencies of 180.0 MHz and 122.4 MHz. Figure

3.9 shows the weighted average of the period doubled frequency of 90 MHz and the

fundamental of 122.4 MHz. This is numerically reproduced in Fig. 3.9. It is interesting

to note that this behavior is consistent with the generalization that the laser chooses
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Figure 3.9. Frequency spectra showing a weighted average at 110.2 MHz
between the fundamental of one cavity and the period doubled frequency
of the other cavity: experimentally observed with feedback rates κ1 =
0.003, κ2 = 0.0018, time delays τ1 = 734, τ2 = 222, filter bandwidths
Λ1 = 0.012, Λ2 = 0.003, and detunings Δ1 = Δ2 = −0.007.
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the frequency which results in the smallest difference between the frequencies present,

i.e., in this case |1
2
fext1 − fext2| < |fext1 − fext2| < |2fext2 − fext1|.

3.5.2 Bifurcation analysis

Figure 3.10. With time delays τ1 = 1333, τ2 = 793, feedback rate κ2 =
0.003, filter bandwidths Λ1 = Λ2 = 0.005, detunings Δ1 = Δ2 = −0.007,
and asymmetry parameter η = 1, the spectral bifurcation diagram of the
two-FOF laser as the feedback rate κ1 is varied: (a) the three-dimensional
view, and (b) the density map of the combined laser intensity spectra.

In order to explore the dynamics at different values of the parameters κ1 and

κ2, we use a bifurcation analysis. This study is performed by using the method

of spectral bifurcation diagram [60]. In this method, the diagram is composed by

combining the intensity spectra at different values of the parameter into a continuous

intensity histogram. The intensity of the peaks in each spectra is normalized to its

maximum value of 1. The parameters used in the simulation are τ1 = 1333, τ2 = 793

and κ2 = 0.003. We vary the feedback rate κ1 while the other parameters are kept

fixed. At the low value of κ1, the laser dynamics shows single period oscillations. A

further increase in κ1, e.g., to 0.005, causes a period doubling in the laser dynamics.

This period doubling continues up to the value of κ1 = 0.025, and after that a

period quadrupling occurs. This quadrupling behavior changes into the quasi-periodic

solution as κ1 is further increased. A further increase in the κ1, e.g., to ∼ 0.07, leads
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to the dynamics in the chaotic regime, as shown in Figs. 3.10(a) and 3.10(b). This

analysis suggests that there is a cascade of period doubling bifurcations, resulting in

a final chaotic state.

3.6 Conclusions

In a semiconductor laser subject to filtered optical feedback, we have shown that

a second feedback plays an important role in controlling the frequency oscillations

of the laser light. The period of oscillations of the frequency of the laser light is

determined by the time delays of the two feedback loops. The frequency corresponding

to this period represents the weighted average of cavity 1 and cavity 2. The average

frequency is dependent on the relative feedback from both cavities and corresponds

to the weight between them. A proper adjustment of the cavity lengths leads to the

oscillations at the frequency which represents the average of the higher harmonics of

one cavity and the fundamental frequency of the other cavity. In general, the laser

selects the two frequencies whose difference is the smallest and averages between

these two frequencies. We have also found that the amplitudes of fundamental and

second harmonic of single FOF are modified due to the addition of a second FOF,

and in particular, by varying the strength of the second feedback, the amplitude of

the fundamental frequency is suppressed while the amplitude of the second harmonic

becomes larger than that of the fundamental frequency. The ratio of the amplitudes

of the second harmonic and the fundamental frequency increases as the feedback ratio

κ2 : κ1 increases. A cascade of period doubling bifurcation is also found in the two-

FOF laser. Indeed, we further explore this bifurcation in the next chapter by including

the effects of quantum noise. The effects of noise were included in order to reconcile

a quantitative difference between the deterministic simulations and the experimental

bifurcation route. In addition, we examine the effects of noise for different bandwidth

and feedback strength regimes.
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As mentioned in the Introduction, semiconductor lasers with feedback have served

as model systems for chaotic cryptography, random number generation etc., and thus

the present study, which provides additional control parameters could be used to

investigate some of these applications. The technique of single filtered optical feedback

reported in [34,43,45,47] has been used to control and manipulate semiconductor laser

dynamics. Our present work with two filtered optical feedbacks has shown to lead

to a rich control over the laser dynamics. Thus the results presented in this paper

can be very useful for the development of an efficient technique to manipulate the

dynamical response of a semiconductor laser from the view point of engineering.
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4. Effects of Quantum Noise on the Dynamics

Main results of this chapter have been published in Ref. [61]

This chapter describes the numerical investigation on the influence of quantum noise

on the dynamics that arise in a semiconductor laser subject to two FOF. This is a

continuation of our experimental work described in the previous chapter, wherein a

period-doubling route to chaos was numerically observed. This chapter reconciles

the discrepancy between the deterministic simulations of a period-doubling route and

experimental results by including the effects of noise in the feedback model. We

demonstrate that in the presence of quantum noise the feedback strength required

to induce chaotic dynamics is greater than the deterministic value. In addition,

we discuss the effects of noise on dynamics for different filter bandwidths. Three

bandwidth regimes are explored, viz. a narrow, intermediate, and wide bandwidth.

In our investigation we change one bandwidth while the second remains constant.

Finally, we discuss our results to give an overall picture of the role of noise on the

dynamics.

4.1 Introduction

Recently, there has been an interest in the dynamics of a SCL subject to two

simultaneous FOFs [59, 62, 63]. The vast number of parameters available allows re-

searchers to explore many different avenues. Krauskopf and co-workers have reported

an exhaustive study of the bifurcations that arise in such systems [64, 65]. Not only

has a theoretical interest in two FOF gained traction, but this system is providing an

excellent test-bed for applied research. An interesting application recently reported

is the ability to study state-dependent switching in a photonic system consisting of

two FOF [63]. Martinez-Llinas (fix name) and co-workers observed that the system
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behaved as if it were subject to only one of the two external cavities depending on

the state of the system [63]. The model in Ref. [63] is identical to deterministic rate

equations we use in the previous chapter (see Ref. [52]).

We discussed in the previous chapter our experimental study on the frequency

dynamics in the light from the laser when subject to two FOFs [52]. Among the more

interesting observations was the generation of new frequencies in the system, and

the results were explained via a theoretical model that consisted of the usual Lang-

Kobayashi rate equations augmented to include two FOFs. The agreement between

experiments and theory was excellent.

One of the observations that emerged from our work was that the frequency of

laser light in a SCL subject to two FOFs follows a period-doubling route to chaos.

However, the feedback strength necessary for coherence collapse that was predicted by

the theoretical model was higher than what was observed experimentally. This mis-

match between theory and experiment inspired us to examine the role of unavoidable

quantum noise in the laser and its influence on the dynamics of the laser. To this end,

we have augmented the theoretical model with Langevin noise terms to account for

the spontaneous emission noise as well as inversion noise. To give one a picture of the

system studied, we show a schematic of the experimental design [Fig.4.1] highlight-

ing the key parameters accessible to experiment, which are detailed in the following

section.

4.2 Model

A semiconductor laser with FOF from a single cavity can be modeled with a set

of rate equations describing the time evolution of the slowly varying complex electric

fields, E(t) and F (t), of the laser and feedback field, respectively, and the carrier

inversion N(t) [43]. Our setup [Fig. 4.1], which includes two cavities, each with a
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Figure 4.1. The schematic shows a semiconductor laser (SCL) subject
to optical feedback from two external cavities. The outer cavity (1) is
formed by the SCL and the mirrors (M1, M2, and M3). The inner cavity
(2) is formed by the SCL, beam splitters (BS2 and BS3), and mirror (M3).
Each cavity contains a Fabry-Perot resonator acting as a spectral filter,
which can be modified by changing the reflectivity or spacing of the filter
mirrors. This in turn changes the bandwidth, Λ. The detuning, Δ, is
altered by adjusting the pump current. The delay-times, τ1 and τ2, are
increased or decreased by lengthening or shortening the cavities.

spectral filter, must therefore include two filtered feedback fields, F1(t) and F2(t),

resulting in the following description,

dE

dt
=

1

2
(1 + iα)ξN(t)E(t) + κ1F1(t, τ1) + κ2F2(t, τ2) + LE(t), (4.1a)

dN

dt
= J − Jthr −

N(t)

T1
− [Γ0 + ξN(t)]|E(t)|2 + LN(t), (4.1b)

dF1

dt
= Λ1E(t− τ1)e

−iω0τ1 + (iΔ1 − Λ1)F1(t). (4.1c)

dF2

dt
= Λ2E(t− τ2)e

−iω0τ2 + (iΔ2 − Λ2)F2(t), (4.1d)

where ξNE in the first term of Eq. (4.1a) accounts for the growth (or decay) when

the carrier inversion N(t) is above (or below) threshold, and ξ is the differential

gain coefficient. α is the linewidth enhancement factor which quantifies the phase-

amplitude coupling. The second (third) term in Eq. (4.1a) accounts for the feedback

field F1(t, τ1) (F2(t, τ2)), where κ1 (κ2) is the feedback rate and τ1 (τ2) is the time

delay due to the propagation of the feedback field in cavity 1 (2).
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The rate equation for the carrier inversion [Eq. (4.1b)] depends on the differ-

ence between the pump current J and the threshold current Jthr. The second term

[Eq. (4.1b)] accounts for the spontaneous decay, hence T1 is the carrier decay rate,

and the third term includes the stimulated emission, where Γ0 is the photon decay

rate.

Eqs. (4.1c) and (4.1d) are derived by assuming that the response function, r(ω),

of the filter is Lorentzian [43], i.e.

r(ω) =
Λ

Λ + i(ω − Δ)
, (4.2)

where ω is the instantaneous optical frequency, Λ is the half width at half maximum

(HWHM) of the filter and Δ is the detuning of the solitary laser frequency from

the center frequency of the filter. The explicit dependence on the time-delayed fields

E(t − τ1,2) is seen in Eqs.(4.1c) and (4.1d). The feedback phase accumulated due

to the propagation of the field through cavity 1 (2) is given by ω0τ1 (ω0τ2), which

we assume equal for the two cavities and fix at ω0τ1 = ω0τ2 ≡ θ. The spontaneous-

recombination noise terms are described by LE(t) and LN(t). Both noise sources are

assumed to be Gaussian with zero mean. Their autocorrelation functions are given

by,

〈Re(LE(t))Im(LE(t′))〉 = 0, (4.3a)

〈Re(LE(t))Re(LE(t′))〉 = 〈Im(LE(t))Im(LE(t′))〉 = Rspδ(t− t′), (4.3b)

〈LN(t)LN(t′)〉 = Dδ(t− t′). (4.3c)

The rate of spontaneous emission is written as Rsp = βspCN
2, where βsp is the

fraction of spontaneous emission coupled into the dominant mode and C is a radiative

recombination rate [5]. The shot noise diffusion rate is given by D. The noise sources

LE and LN are derived quantum mechanically in order to arrive at their explicit

form and statistical properties [50]. Although the noise sources are correlated in a

SCL [50], we found that correlating sources resulted in no significant difference when

compared to uncorrelated noise [51]. Therefore, the proceeding analysis is done with

uncorrelated noise.
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Eqs. (4.1) are integrated using a modified fourth order Runge-Kutta method. The

time step was varied from 0.1 ps to 10 ps in order to ensure consistent dynamical

behavior independent of the integration step size. The modified Runge-Kutta method

accounts for the Langevin noise source and avoids an infinite variance of the stochastic

terms following the stochastic Runge-Kutta algorithm outlined in Ref. [66]. At each

integration step, the noise terms are pulled from a matrix of normally distributed

random numbers generated via the randn() function in MATLAB. In order to account

for the time delayed fields, a history function is built by initially integrating Eqs. (4.1)

without feedback (κ1,2 = 0). The transient behavior is discarded and the history

function with a minimum integration time of 4τ1,2 is saved. The remaining parameters

and noise strengths for a typical edge emitting SCL are highlighted in Table 5.1.

We point out that this system contains a rich variety of parameters that are acces-

sible in an experiment. Adjusting the pump current J controls the optical frequency,

which in turn changes the detuning Δ1,2. Changing the filter mirror spacing or reflec-

tivity modifies the bandwidth Λ1,2, and the time delays τ1,2 are directly proportional

to the external cavity lengths L1,2. The feedback rates κ1,2 are controlled via a neutral

density filter inserted in each cavity.

4.3 Results: a period doubling route to chaos

This section describes the results of our work, but before doing so it is important

to point out that the 2FOF system has a large set of parameters, each of which can

influence the resulting dynamics. We have, therefore, focused on a limited set which

highlights the role of quantum noise. For example, we have chosen typical noise

strengths and have not varied the strength of the noise. Furthermore, we have fixed

the bandwidth of one of the filters to 1GHz, the so-called intermediate bandwidth

which lies between the external cavity mode spacing frequency and the laser relaxation

oscillation (RO) frequency, and varied the bandwidth of the second filter to study the

effects of filter bandwidth.
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Table 4.1.
The parameter values for a typical SCL which are used in the simulations

(unless otherwise specified).

Quantity Symbol Value

Linewidth enhancement factor α 5

Feedback rate field 1 κ1 Varies

Feedback rate field 2 κ2 0.8 GHz

Bandwidth of filter 1 Λ1 Varies

Detuning of filter 1 Δ1 Varies

Bandwidth of filter 2 Λ2 1.0 GHz

Detuning of filter 2 Δ2 −1.5 GHz

Delay-time field 1 τ1 14.28 ns

Delay-time field 2 τ2 7.93 ns

Phase accumulation θ 1.111

Differential gain coefficient ξ 5 × 103 s−1

Photon decay rate Γ0 1011 s−1

Carrier decay rate T1 1 ns

Threshold pump rate Jthr 1 × 1017 s−1

Pump rate J 1.5Jthr

Spontaneous emission rate Rsp 5 × 1012 s−1

Shot noise diffusion rate D 1.45 × 1016 s−1

We begin by describing the results of our calculations, shown in Fig. 4.2, which

exhibits a period doubling route to chaos of the frequency ω(t) of the laser wavelength

(instantaneous frequency) oscillations. The period doubling route is produced via the

bifurcation parameter κ1, which is the feedback rate of field 1. The color scheme

corresponds to the amplitude of the oscillations. All other parameters are fixed as

specified in Table 5.1 except the filter bandwidth and detuning, where Λ1 = 1 GHz
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and Δ1 = −0.5 GHz. Initially the feedback is solely from cavity 2 (κ2 = 0.8 GHz

and κ1 = 0 GHz). We calculate the time series for E(t), F1,2(t), and N(t). Using

the complex electric field E(t) we extract the phase φ(t), where φ(t) = arg(E(t)).

arg(z) is the typically defined complex argument of z. The frequency ω(t) of the

slowly varying complex electric field E(t) is found by calculating the time derivative

of the phase [ω(t) = φ̇(t)]. Finally, the numerical spectra are determined for E(t)

and ω(t) after discarding the transient behavior. The feedback rate κ1 is increased by

Δκ1 ≈ 0.32 GHz and this process is repeated over 32 iterations in order to arrive at a

final feedback rate of κ1 = 10 GHz. In the presence of noise, this procedure is averaged

over 1000 instances. These spectra are stitched together resulting in a period doubling

route to chaos shown in Fig. 4.2. Examining the deterministic period doubling map

[Fig. 4.2a], the first frequency (labeled fI) to emerge is 105 MHz corresponding to

the fundamental frequency from cavity 2 (f2 ≈ 1
τ2+1/Λ2

≈ 107 MHz). Note that the

fundamental frequency, which we label as ffun, for FOF is dependent on both the

delay time τ and the bandwidth Λ. κ1 is increased and a frequency (fII) of 130 MHz

is produced which corresponds to an average between the fundamental frequency of

cavity 2 and the second harmonic of cavity 1 (f2+2f1
2

≈ 125 MHz). A further increase

in κ1 results in a quasi period-doubling route to chaos. Examining the deterministic

case in Fig. 4.2a, it is clear that the onset of chaos begins at κ1 ≈ 4.5 GHz. When

noise is present, shown in Fig. 4.2b, the period doubling route for smaller frequencies

is drastically altered. The onset of chaos is delayed and a spread in the spectrum

does not emerge until κ1 ≈ 7 GHz. Not only is the chaotic regime shifted to a larger

feedback rate, but the frequency content is altered. The stochastic spectra, which

are extended to 5 GHz and shown in Fig. 4.2c, also depict a change near κ1 ≈ 4.5

GHz. The deterministic spectra (not shown) are very similar when depicted on the

same scale. One gains an insight into the mechanism for this delay by examining the

dynamics at different parameters in more detail.
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Figure 4.2. Deterministic (a) and stochastic [(b),(c)] density plots of the
period doubling route to chaos when the feedback strength κ1 from cavity
1 is increased. The bandwidth and detuning are fixed at Λ1 = 1 GHz and
Δ = −0.5 GHz, otherwise all other parameters are recorded in Table 5.1.
fI−IV are the frequencies discussed in this text which differ significantly in
the stochastic period doubling route. Note that (c) contains the stochastic
spectra extended out to 5 GHz.
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4.3.1 Influence of noise

Previous studies of a SCL subject to FOF demonstrated that noise influences

the dynamics substantially [51, 67]. They showed that multiple attractors exist for

the deterministic dynamics, and in the presence of noise some of the attractors no

longer survive [51]. The argument followed that noise helps determine whether a

particular attractor is stable, analogous to that of a perturbation acting on a system

at a maximum of a potential distribution. Other studies have shown that noise

induces jumps between stable attractors if the ratio of the noise strength to potential

barrier is large enough [67]. A good understanding of this behavior is gained via an

examination of the time-series in conjunction with the phase-portraits and rf spectra.

The previous studies investigated particular instances of a parameter space, while we

focus on the period-doubling route to chaos as the feedback strength is increased.

Using these tools with the addition of first return maps, the period doubling route

is traced along increasing feedback strength κ1. The return map is generated by

determining the maximum values (ωmax) for each oscillation in the time series ω(t).

Thus a series of maximum values is generated, and ω(max)n+1 is compared to the

previous value at ω(max)n.

Fig. 4.3 depicts four deterministic plots and four stochastic plots. When the

feedback strength is κ1 = 0 GHz, the three corresponding plots are the instantaneous

frequency ω(t) time series (a1 and b1), the phase plane of the frequency ωn and phase

difference η = φ(t)−φ(t−τ) (a2 and b2), and the rf spectrum of ω(t) (a3 and b3). We

note, when comparing the deterministic (a3) and stochastic (b3) rf spectra, that the

perturbation of noise does not affect the dominant frequencies in time-delay regime,

even though the time-series are clearly different. This difference is noted in the large

rf spectra (a4 and b4), where in the presence of noise (b4) the ROs are undamped.

However, as we increase the feedback strength κ1, noise plays a significant role in

determining the dominant frequencies.
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Figure 4.3. Deterministic (a) and stochastic (b) plots of the frequency
ω(t) time-series (1), the phase-plane of ωn and η (2), and the rf spectrum
(3) showing a fundamental frequency of ffun ≈ 123 GHz. The plots are
calculated when the feedback is injected solely from cavity 2 (κ1 = 0
GHz). The rf spectra (a4) and (b4) are extended out to 6 GHz in order
to depict the undamping of the ROs seen in the time-series (b1).
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Figure 4.4. Deterministic (a) and stochastic (b) plots of the frequency ω(t)
time-series (1), the phase-plane of ωn and η (2), and the RIN spectrum
(3) when the feedback strength is κ1 =0.32 GHz. The deterministic time-
series captures a transient behavior toward a steady-state behavior.
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Once the feedback from the first cavity is allowed (κ1 = 0.32 GHz), as shown

in Fig. 4.4, the deterministic and stochastic rf spectra [(a3) and (b3)] show clear

differences. The differences can be understood by examining the deterministic and

stochastic time series [(a1) and (b1)] and phase portraits [(a2) and (b2)]. From the

time series (a1), it is clear that the frequency ω(t) is always positive and ω(t) evolves

toward a steady-state. The movement toward a steady state (fixed point) is depicted

in the deterministic phase portrait (a2). The dominant frequency in the deterministic

spectrum (a3) is ∼ 125 MHz. In the presence of noise (b3), the peak at ∼ 125 MHz is

reduced and the peak at ∼ 337 MHz is enhanced. In addition, the frequency, shown in

the stochastic time series (b1), oscillates around ω = 0. We note that this shift in the

frequency toward ω = 0 is a general feature when noise is included in the simulations.

For this feedback strength (κ = 0.32 GHz), the shift occurs because the fixed point

no longer survives in the presence of noise. The absence of the fixed point is clearly

depicted when one compares the deterministic and stochastic return maps, shown in

Fig. 4.5. Examining the return map (Fig. 4.5), the deterministic maxima (blue circles)

show little variance and are centered at the fixed point, while the stochastic maxima

(red triangle) spread and are no longer centered at the same location. Instead, noise

drives the system toward higher frequencies coinciding with higher harmonics shown

in the rf spectrum of Fig. 4.4(b3).

At a feedback strength of κ1 = 0.97 GHz, the time-series in Fig. 4.6 shows periodic

oscillations with a period of 1/fRO = 400 ps, where fRO is the frequency of the

ROs. This behavior corresponds to the undamping of the ROs, which then become

the dominant feature. This undamping of the ROs is a well studied phenomenon

of a SCL subject to optical feedback, where the ROs are an exchange of energy

between the photons and the inversion carriers when the SCL is externally perturbed

[8, 50]. The frequency of these oscillations occur near fRO ≈ 2.5 GHz and varies

depending on the SCL design and parameters. The phase portrait [Fig. 4.6(a2)] shows

a periodic attractor, which does not survive in the presence of noise [Fig. 4.6(b2)].
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Figure 4.5. First return maps for feedback strength of κ1 =0.32 GHz
showing both the stochastic (red triangle) and deterministic (blue circle)
locations of ωmax.
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The extinction of this attractor allows the time-delay oscillations to influence the

global behavior seen in the stochastic rf spectrum [Fig. 4.6(b3)].

Signatures of the ROs in the dynamics occur at three instances along the bifur-

cation map of Fig. 4.2(a) at κ1 = 0.97 GHz (fIII on the map), κ1 = 3.1 GHz, and

κ1 = 3.5 GHz. Each instance displays the same behavior characterized by frequency

oscillations with a period of 1/fRO = 400 ps and the existence of a limit cycle in the

phase-portrait. However, in each case, this attractor no longer survives in the pres-

ence of noise. Noise drives the system toward periodic oscillations which are dictated

by the delay time and filter bandwidth.

Turning our attention to the period doubling maps [Fig. 4.2], we note that the

transition into chaotic deterministic dynamics begins at a feedback strength of κ1 ≈
4.5 GHz (fIV on the map), and in presence of noise the onset of a chaotic transition

is clearly delayed (κ1 ≈ 7.0 GHz). Fig. 4.7 displays this critical transition at a

feedback κ1 =4.52 GHz for the deterministic onset of chaos. The frequency ω(t) not

only oscillates with a period of 1/fRO but exhibits an envelope of slower oscillations

which are shown in the time series (a1) and spectrum (a2) of Fig. 4.7. The return

map in Fig. 4.8(a) suggests stable periodic oscillations demonstrated by the small

variance in the deterministic maximum values (blue circle) of the frequency ωmax.

Comparing this to the stochastic dynamics, the corresponding behaviors are very

different. Shown in Fig. 4.7(b2), the attractor no longer survives and the spectrum

[Fig. 4.7(b3)] greatly differs. The spectrum contains a period doubled frequency

located at fdom/2 = 62 MHz. Here we define fdom as the dominant frequency which

corresponds to the weighted average between the two fundamental frequencies of each

cavity. Once again, the dominant frequency in the presence of noise is dictated by

the FOF time scales (τ and Λ).

The return maps in Fig. 4.8 for feedback strengths κ1 =4.84 GHz [Fig. 4.8(b)] and

κ1 =5.16 GHz [Fig. 4.8(c)] provide an excellent representation of the difference be-

tween the deterministic and stochastic dynamical states. Comparing all three return

maps [Fig. 4.8a,b, and c], the stochastic maxima (red triangles) reveal a departure
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Figure 4.6. Deterministic (a) and stochastic (b) plots of the frequency
ω(t) time-series (1), the phase-plane of ωn and η (2), and the rf spec-
trum (3) when the feedback strength is κ1 =0.97 GHz. The deterministic
time-series and phase-portrait show periodic behavior with a frequency of
fRO ≈ 2.5 GHz, which is shown in the extended spectra (a4) and (b4).
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Figure 4.7. Deterministic (a) and stochastic (b) plots of the frequency
ω(t) time-series (a1 and b1), the phase-plane of ωn and η (a2 and b2),
and the rf spectrum (a3 and b3) when the feedback strength is κ1 =4.52
GHz.
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from the linear shape at smaller feedback strengths (see Fig. 4.5). The deterministic

maxima (blue circles) ωmax, however, require a larger feedback strength (κ1 =5.16

GHz) in order to replicate stochastic maps. It is not until κ1 =5.16 GHz [Fig. 4.8(c)]

that the two maps become similar.

However, the similarity in the return maps [Fig. 4.8(c)] does not guarantee that

the dynamical states will be identical. The difference between the stochastic and

deterministic dynamics is manifested in the period doubling routes shown in Fig. 4.2,

where two key differences standout. First, the lack of stable RO frequencies in Fig.

4.2(b) (stochastic), which are present in Fig. 4.2(a) (deterministic). An example of

the RO frequency in Fig. 4.2(a) is displayed by the marker fIII. Second, the onset of

chaos is delayed in Fig. 4.2(b) until a feedback strength of κ1 ≈ 7 GHz is reached.

To explain these differences, it appears that multiple mechanisms play a role. Not

only does noise limit the number of stable attractors, but noise drives the periodic

oscillations toward the dynamics influenced by the time-delay and filter bandwidth.

4.4 Effects of the filter bandwidth on the dynamics

We next turn our attention to the effects of the two filter bandwidths on the

dynamics. In a single FOF system, it is possible to identify three regimes depending

on the magnitude of the bandwidth Λ relative to the RO frequency fRO and relative

to the external cavity mode (ECM) spacing. The effects of the filter width on the

dynamics for each case have been outlined by Fischer [44], while other theoretical

work has characterized the mode structures for the different bandwidth regimes [47].

Our previous bifurcation analysis was done for bandwidths of equal magnitudes, Λ1 =

Λ2 = 1 GHz, which fall in an intermediate range. The intermediate range is where

Λ is large enough to include a number of ECMs yet smaller than the frequency of

the ROs. A narrow filter (Λ → 0) was shown to resemble optical injection [68], while

a wide filter (Λ → ∞) was shown to resemble conventional optical feedback (COF),

hence the latter case reduces to the standard Lang-Kobayashi rate equations [46].
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In general, the most interesting dynamics occur in the intermediate regime, because

in this regime the parameters of the filter (Λ and Δ) play an important role in

determining both the stability and control of the dynamics [44].

The use of two filters is advantageous not only because of the additional param-

eters introduced (τ2, Λ2, Δ2, etc.) but also because of the interplay between the two

fields which results in novel dynamics and the possibility of robust control over these

dynamics [52]. As stated earlier, we fix one filter Λ1 in the intermediate regime while

the other filter Λ2 is varied. In particular, we focus on two cases. The first is a narrow

filter Λ2 < δECM , where δECM is the frequency of the external cavity mode spacing.

The second is a wide filter, Λ2 > fRO. We achieve this by varying the bandwidth of

one filter over a large range from Λ2 = 0 → 20 GHz, while the second filter is fixed

at Λ2 = 1 GHz. We focus on these two cases in order to isolate the effects of both

noise and the bandwidth. A study could be done of the narrow-narrow, wide-wide, or

narrow-wide cases, but these would no longer contain any signatures of the spectrally

filtered feedback. Rather, they would resemble injection and COF.

4.4.1 Feedback from an intermediate and narrow filter

In practice, one is not able to reduce the bandwidth indefinitely, therefore we

restrict ourselves to the narrow filter where 0 < Λ < δECM . Experimentally, the

bandwidth of the filter can be modified by changing the mirror reflectivity of the

filter or the mirror spacing. We study this system by keeping Λ2 = 1 GHz while Λ1

and Δ1 are varied from 10 MHz to 50 MHz and -10 MHz to -50 MHz, respectively,

where 50 MHz is slightly larger than the SCL linewidth. Along each iteration of

the bandwidth, the detuning is varied such that the laser frequency lies at the same

position of the filter profile. Similar to the period doubling map, the spectra are

stitched together for different Λ1 and Fig. 4.9 shows the resultant density plots of the

intensities (1) IL(t), (2) IF1(t), and (3) IF2(t), where IL(t) = |E(t)|2, IF1(t) = |F1(t)|2,
and IF2(t) = |F2(t)|2.
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Figure 4.9. Deterministic (a) and stochastic (b) density plots of the am-
plitude of the spectrum as a function of changing bandwidth, Λ1. The
density plots correspond to the spectra for (1) IL(t), (2) IF1(t), (3) and
IF2(t). Λ2 is fixed at 1 GHz and the two feedback rates are kept constant
at κ1 = 3 GHZ and κ2 = 0.8 GHz.
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Initially, for the deterministic case, when Λ1 is small (0 MHz < Λ1 < 20 MHz), the

frequency of oscillations is fdom ≈ 110 MHz shown in Figure 4.9(a). This frequency of

110 MHz corresponds to the fundamental frequency of cavity 2. Using the parameters

in Table 5.1, we find that f2 ≈ 1/(τ2 + 1/Λ2) ≈ 112 MHz. When Λ1 is increased,

a frequency of 50 MHz emerges, which is a consequence of the spectrally filtered

feedback from cavity 1. The frequency of 50 MHz is an average between f1 and f2,

where f1 ≈ 1/(τ1 + 1/Λ1) ≈ 15 MHz. The average, weighted toward f1, is explained

by the larger feedback rate from cavity 1 (κ1 > κ2). The dependence of the weighted

average on the ratio of the feedback rates was reported in Ref. [52]. Continuing to

increase Λ1 results in a frequency of approximately 15 MHz, which is dominated by

f1. Upon further increase of Λ1 the ROs become dominant which is evident in the

time series plot in Fig. 4.11(a1). Note that these ROs are not present in Figs. 4.9(a2)

and 4.9(a3) because, Λ1 and Λ2 act as low pass filters. The same density plots are

then produced in the presence of noise shown in Fig. 4.9b. For all three plots in Fig.

4.9b, there is an absence of the broad 50 MHz frequency at a bandwidth of Λ1 = 32

MHz.

The deterministic time series for Λ1 = 32 MHz in Fig. 4.10(a1) shows the evolution

of IL(t) toward a steady-state value and the phase portrait (a2) shows this fixed

point attractor. Comparing this to the stochastic time series for Λ1 = 32 MHz in Fig.

4.10(b1), it becomes evident that noise drives the system out of the fixed point, which

was explained in our analysis above describing the period-doubling route to chaos.

Comparing Fig. 4.11(a1) and Fig. 4.11(b1), it is clear that the relaxation oscillations

are no longer the dominant frequency for the deterministic case at a larger bandwidth

of Λ1 = 50 MHz, rather the dominant frequency contains signatures of the FOF time

scale in the rf spectrum shown in Fig.4.11(b3).

Although Λ1 < δECM , we point out that the feedback from cavity 1 only resembles

optical injection when the bandwidth is Λ1 < 25 MHz. This is observed by noting

that the dynamics in the presence of cavity 1 alone, when κ2 = 0 GHz (not shown),

evolve to a steady-state fixed point for any bandwidth of Λ1 up to 25 MHz. Beyond
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Figure 4.10. (1) Intensity time series IL(t), (2) phase portraits (η, P ), and
(3) rf spectrum in the absence of noise (a) and in the presence of noise
(b) for a bandwidth of Λ1 ≈ 32 MHz and detuning Δ1 = −32 MHz.
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Figure 4.11. (1) Intensity time series IL(t), (2) phase portraits (ωn, η),
and (3) rf spectrum in the absence of noise (a) and in the presence of
noise (b) for a bandwidth of Λ1 = 50 MHz and detuning Δ1 = −50 MHz.
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a bandwidth of Λ1 = 25 MHz the dynamics become periodic and the period of

these dynamics depend on the filter bandwidth, thus no longer considered optical

injection. In summary, both the narrow-intermediate and intermediate-intermediate

cases show that particular attractors no longer survive and, in turn, drive the system

toward periodic oscillations determined by the a FOF time scales (τ and Λ). This

relationship, however, is for two particular feedback rates κ1 and κ2. A complete

picture becomes highly complex due to the amount of parameters Λ1,2, τ1,2,Δ1,2, κ1,2

which influence the dynamical behavior of this system.

4.4.2 Feedback from an intermediate and wide filter

We next investigate the effects of a competition between an intermediate filter

and wide filter. The dynamics of both cases have been intensely studied for the single

FOF case which showed that the stability and dynamics vary depending on the filter

width [44]. Knowing that the wide filter resembles COF, we expect to see only two

time signatures (τ and 1/fRO), instead of the influence of the bandwidth Λ found in

FOF dynamics.

To study this system, we fix both bandwidths at Λ1 = 20 GHz and Λ2 = 1 GHz

and detunings Δ1 = −5 GHz and Δ2 = −1.5 GHz. κ1 is varied while κ2 = 0.8 GHz

is fixed. κ1 is varied, rather than Λ1, because the period of elicited oscillations for

this two FOF system remain unaltered when Λ1 is increased. Fig. 4.12 contains the

spectra of the intensity of the laser IL(t) and the intensity of the light through filter 2,

IF2(t), when the feedback rate κ1 is varied. These two intensities were chosen because

the light through filter 1, IF1 , directly mimics IL(t) due to the wide filter and the

presence of the ROs, which are not as dominant in the dynamics of feedback from

filter 2.

Initially, the feedback is solely from cavity 2 (κ1 = 0 GHz). Therefore, the dy-

namics which arise are a consequence of the spectrally filtered (intermediate) feedback

from cavity 2, which are shown in Fig. 4.13 for feedback rates of κ2 = 0.8 GHz and
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Figure 4.12. Deterministic (a) and stochastic (b) density plots of the
amplitude of the spectrum as a function of the increasing feedback rate,
κ1. The spectra are calculated with the with the parameters mentioned
in Table 5.1 except the following: Λ1 = 20 GHz and Δ1 = −5 GHz. (1)
Spectra of the intensity of light from laser, IL(t) and (2) spectra from the
light through filter 2, IF2(t).
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κ1 = 0 GHz. It is clear that the rf spectra of the deterministic (a3) and stochastic

(b3) dynamics are very similar at this feedback strengths. The dominant frequency

f2 ≈ 112 MHz corresponds to the fundamental frequency of cavity 2. The higher

harmonics are also present with decreasing amplitudes. The feedback rate κ1 is in-

creased which enhances the second and third harmonic shown in both Fig. 4.12(a1)

and (a2). As the feedback rate increases, κ1 ≈ 0.32 GHz, a frequency at f ≈ 66 MHz

emerges. We note that this corresponds to the fundamental frequency from cavity 1

which is f1 ≈ 1/τ1, which has no signatures of the bandwidth (Λ1 = 20 GHz). A con-

tinued increase in κ1 results in the enhancement of the successive higher harmonics,

the second and third harmonic emerge, 2f1 and 3f1 respectively. The ROs appear in

the laser intensity, which is shown Fig.4.12(a1), while they are attenuated through

filter 2 shown in Fig. 4.12(a2).

The dynamics become more complicated and eventually evolve into the chaotic

regime as the feedback rate κ1 is increased. This is seen in all three subplots in

Fig. 4.13(c1) and Fig 4.13(d1) at feedback rate of κ1 = 1.7 GHz. The complicated

time series, the jumping between attractors in the phase portrait and the spread

in the rf spectrum all indicate the emergence of a chaotic regime. This behavior is

well known for COF systems as the feedback rate is increased eventually inducing

coherence collapse.

Comparing the deterministic [Fig. 4.12(a)] and stochastic [Fig. 4.12(b)] spectra

(density plots) for an increasing feedback strength (κ1), it is evident that noise plays

a significant role in determining which frequencies emerge. This is understood by

noting that the filter widths are larger, thus effectively reducing the spectral filtering

of the feedback fields. Initially, the frequency spectra are very similar when κ1 = 0

GHz shown in Fig.4.13(a3) and Fig. 4.13(b3). As κ1 is increased, two regions of

dissimilarity emerge. The first is a lack of the second and third harmonic found in

Fig. 4.12(b). Upon further investigation we found that these harmonics emerge as the

system evolves toward a steady state intensity. When the feedback rate is 0.1 GHz



58

0

2

4

� �
��
��
�
�	



(a1)

800 810 820 830
0

5

� �
��
��
�
�	



��� ����

(b1)

−5

0

5

10
x 10

−3

�
�

(a2)

�
�
�
�
��
��
� �

(a3)

0 0.5 1
−0.1

−0.05

0

0.05

0.1

�
�

����� �� �!��"� #$�%&�

(b2)

0 200 400

�
�
�
�
��
��
� �

'!�()��"* �+,-�

(b3)

0

1

2

. /
01
23
4
56
7

(c1)

800 810 820 830
0

5

. /
01
23
4
56
7

89:; <=>?

(d1)

−0.2

−0.1

0

0.1

0.2

@
A

(c2)

B
C
D
E
1 F
GH
E3

(c3)

0 0.5 1
−0.2

0

0.2

0.4

0.6

@
A

IJK>; L9M;N;=O; PQ<RS?

(d2)

0 200 400

B
C
D
E
1 F
GH
E3

TN;UV;=OW <XYZ?

(d3)

Figure 4.13. Three subplots are produced using the intensity of light
through filter 2, IF2(t). The times series (1), phase portrait ωn, η(t) (2),
and rf spectrum (3) are calculated for the feedback rates [(a) and (b)]
κ1 = 0 GHz and [(c) and (d)] κ1 = 1.7 GHz.
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< κ1 < 0.3 GHz, noise drives the system out of these fixed point solutions, which is

in good agreement with the previous analysis.

However, it is interesting to note that noise does not appear to delay the onset

of chaos in larger feedback regimes (κ1 > 1.5 GHz) shown in Fig. 4.12(b). A stark

difference between the former bandwidth regimes and the wide-intermediate regime is

that there is no averaging between the fundamental frequencies of the cavities, i.e. the

dynamics are dictated by cavity 2 (intermediate filter) or cavity 1 (wide filter). In the

presence of noise, two chaotic regimes emerge, when 0.3 GHz < κ1 < 0.55 GHz and

κ1 > 1.7 GHz [Fig. 4.12(b)]. For small feedback strengths (0.3 GHz < κ1 < 0.55 GHz)

when the RO dynamics emerge [Fig. 4.12(a)], instead of driving the system toward

periodic oscillations, the dynamics become chaotic [Fig. 4.12(b)]. In summary, the

presence of a large bandwidth does not filter the frequency content and thus permits

chaotic dynamics when the deterministic periodic (ROs) attractors no longer survive

in the presence of noise even for a smaller feedback rate (0.3 GHz < κ1 < 0.55 GHz).

4.5 Discussion and conclusion

In this paper, we have reported on a theoretical and computational investigation

of the effects of quantum noise on the complex dynamics that arise in the instanta-

neous optical frequency of a SCL that is subject to two filtered optical feedbacks. A

majority of the results deal with the situation where the bandwidths of both filters

through which the feedbacks are filtered are in the intermediate regime and wherein

the feedback strength from one cavity is kept fixed while the feedback strength from

the second cavity is varied. For these parameters, the most important observation

is that the feedback strength needed from the second cavity to produce coherence

collapse is significantly increased in the presence of noise. Our calculations indicate

that this is a general feature of two FOFs in the presence of noise, even though we

have displayed the results for one set of parameters. The physical origin of this in-

creased feedback needed to produce coherence collapse lies in the fact that some of the
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attractors in the deterministic model do not survive in the presence of noise. An im-

portant consequence of this is that the effects of the time-delay and filter bandwidth

are enhanced in the presence of quantum noise.

Most of the results that we report show the dynamics up to frequencies of a few

hundred MHz since these can be easily measured with standard detection components

with rise times of a few nanoseconds. In some representative cases we also show the

observed behaviors extended out to a few GHz, and the dominant theme to emerge

from these data is that as the feedback strength from the second cavity is increased,

the relaxation oscillations become the more dominant feature. In general, the results

indicate that the effect of noise is to destroy the periodic attractor related to the

relaxation oscillations and to enhance the effects of time-delay and filter bandwidth.

Typically, the effects of quantum noise will be most prominent when both filters

have bandwidths in the intermediate regime. For narrow filters, any relaxation os-

cillations that are undamped will be suppressed by the narrow filters and hence the

dynamics will be dominated by the time-delay of the feedbacks. For wide filters, sig-

natures of the time-delayed feedback will be suppressed by the relaxation oscillations.

It is only the intermediate regime in which noise can push the dynamics either towards

making the time-delay dynamics the dominant ones or the relaxation oscillations the

dominant ones, depending on feedback strengths.

This chapter also reports the laser frequency dynamics when one of the filters has

an intermediate bandwidth and the other is either much narrower or much wider.

In the former case, the effect of quantum noise is to once again drive the system

away from the deterministic fixed point. In addition, the relaxation oscillations are

suppressed and the time scale associated with the time-delayed feedback and the filter

bandwidth contribute to the dominant frequencies. In the case of one intermediate

filter and one wide filter, the spectral filtering of the feedback is reduced and as a

consequence one finds that the laser frequency goes into the coherence collapse regime

at about the same feedback levels in the presence of quantum noise as it does in the

deterministic case. Therefore, it is clear that the requirement for a higher feedback
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strength to induce coherence collapse in the presence of quantum noise arises only

when the filter bandwidths are in the intermediate regime, even though noise does

play a role in determining which deterministic attractors persist.

In summary, our work confirms that it is important to include the role of quantum

noise to accurately describe the frequency dynamics of a SCL subject to two FOFs.

The complexity and richness of this multi-parameter system raises some interesting

and important questions, such as the physical mechanisms that cause laser frequency

dynamics to be dominated by the time-delay and filter bandwidth in the two inter-

mediate filter case, the reasons for the return maps to deviate from a linear shape in

the presence of noise, the effects of correlated amplitude and inversion noise, and the

influence of different noise strengths and of other combinations of filter widths. We

hope to explore these, and other, questions in future studies.
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5. Parity-Time Symmetry Breaking in Delay Coupled SCLs

The two previous chapters discussed our investigations on the dynamics that arise

in a SCL due to two filtered optical feedbacks. In this chapter, we shift our focus

to a system comprising two optically coupled SCLs. Although the theoretical model

remains very similar, we now examine the optically induced dynamics of the SCLs

in a new context, parity (P) and time-reversal (T) symmetry breaking. Therefore, it

is important to understand the background of PT-symmetry and the connection to

optically coupled SCLs.

5.1 Introduction

Carl Bender and Stefan Boettcher demonstrated that non-Hermitian Hamiltoni-

ans, invariant under the combined operations of P and T, may have a set of entirely

real eigenvalues [69]. In particular, the eigenvalues can undergo a transition from

purely real to complex upon changing a parameter that controls the non-Hermiticity

of the Hamiltonian. These surprising results sparked a theoretical interest in PT-

symmetric systems. The implications of a non-Hermitian Hamiltonian on our un-

derstanding of quantum theory continue to be debated and studied in mathematical

physics [70–74]. However, considerable interest in PT-symmetric systems has gained

traction since the proposal and subsequent experimental realizations of PT-transitions

in optical materials. In particular, a flurry of experimental studies are showing that

the field of optics offers a rich test-bed to explore the notions of PT-transitions [75–81].

By advantage of the ability to steer the system into a region of interest, i.e. in a region

where the symmetry is broken or unbroken, these investigations are paving the way

toward applications in laser physics [82–84] and synthetic optical isolators [85] (see

references therein). Let us now take a closer look at what is meant by PT-transition.
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The studies assume the conventional definitions of P and T that respectively have

the effect of changing a right-handed system to a left-handed system (x → −x, y →
−y, z → −z) and reversing time, or motion (t→ −t) [86]. We remark that the effect

of T is of particular interest to us, since the system we investigate has an intrinsic time-

delay associated with the optically coupled fields. A time-delay is present because

of the finite distance L between the two SCLs, i.e. the light ‘seen’ by SCL1 was

emitted by SCL2 at an earlier time τ (τ = L/c). Indeed, we shall see that the

notion of reversing time produces surprising effects on the PT-transition. However,

to anticipate these effects, we now return to the introduction of a PT-transition.

When a Hamiltonian is invariant under a combination of P and T, the Hamil-

tonian commutes with the PT operator, i.e. [H,PT ] = 0, and is said to be PT-

symmetric. PT-symmetry breaking occurs when the eigenvalues transition from

purely real (termed below threshold) to complex (termed above threshold). The

transition marks the symmetry breaking of the eigensolutions. More precisely, the

eigensolutions below threshold commute with the PT operator, while the eigensolu-

tions above threshold no longer commute.

To gain an intuition for the features of PT-symmetry breaking, it is illustrative

to examine a two-state system, where the ‘Hamiltonian’ can be represented by a

2x2 matrix. Besides being a paradigm for experimental studies in PT-symmetry, we

will show in subsequent sections that a 2x2 PT-model can accurately describe our

experimental system of two optically coupled SCLs. A general ‘Hamiltonian’ for this

system can be expressed by

H =

⎛
⎝a b

c d

⎞
⎠ , (5.1)

where a, b, c, and d can be complex. In a two-state system, the form of P and T

can be expressed by P = ( 0 1
1 0 ) and T =⇒ i → −i. Using these definitions, one

can show that for H to remain invariant under the combined operations of P and T

([PT , H] = 0), the following restrictions must be met,

a = d∗ and b = c∗. (5.2)
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The meaning of terms (a, b, c, and, d) become clear as we examine the Schrödinger

equation of two state system written in matrix form,

−i�

⎛
⎝ψ̇1(t)

ψ̇2(t)

⎞
⎠ =

⎛
⎝a b

c d

⎞
⎠

⎛
⎝ψ1(t)

ψ2(t)

⎞
⎠ . (5.3)

We see that b and c couple the two states, ψ1(t) and ψ2(t). The role of a and d are

a little more complex. Let us suppose the states are uncoupled (b = c = 0). We can

then write the form of the solution to Eqn. (5.5) as e−idt, where we can replace with

d with a. Thus, the imaginary part of d (Im(d)) determines the exponential growth

or decay, and the real part of d (Re(d)) is the intrinsic resonant frequency of each

state. If we examine the simplest case, which is also the prototype for PT-symmetric

systems, then H is expressed by

H =

⎛
⎝−iγ κ

κ iγ

⎞
⎠ , (5.4)

where the real parameters κ and γ represent the coupling strength between the two

states and the intrinsic gain/loss strength of each state, respectively. We have re-

named the parameters in order to touch base with the conventional notation used

in PT optical systems. Up to this point we have not specified the system that H

describes. It is beneficial to examine a prototypical example in optics, not only for

illustrative purposes and to gain insight into the PT-characteristics, but also to con-

trast our PT-model describing time-delayed optically coupled SCLs. In this way, the

distinctive and novel features of coupled SCLs clearly emerge.

We turn now to the prototype comprising two optically coupled waveguides that

have been engineered to facilitate a balanced gain and loss in each channel. Light

propagating in each channel is evanescently coupled to the neighboring waveguide.

Hence the coupling term κ is tuned via the spacing between each waveguide. Each

channel has an intrinsic loss, however one arm is optically pumped to provide a

variable gain. An impressive feature of this system is that the optical field dynamics

are described by Eqn. (5.5), a 2x2 ‘Hamiltonian’,
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−i�

⎛
⎝ψ̇1(t)

ψ̇2(t)

⎞
⎠ =

⎛
⎝−iγ κ

κ iγ

⎞
⎠

⎛
⎝ψ1(t)

ψ2(t)

⎞
⎠ , (5.5)

where ψ1 and ψ2 represent the electric field envelopes in each channel. Knowing

the rate equations that govern the field dynamics, let us take a closer look at the

implications of PT-symmetry breaking and how one can experimentally observe the

transition.

It is straightforward to show that the eigenvalues of Eqn. (5.5) are λ1,2 = ±
√
κ2 − γ2.

By examining the eigenvalues along with the form of the solution (e−iλt), one can an-

ticipate the behavior indicated by a PT-transition. Below threshold (κ > γ), the

amplitudes undergo oscillations and above threshold (κ < γ) the amplitudes expo-

nentially grow or decay. This is the behavior Ref. [75] observed using balanced dual

gain/loss waveguides. In the next section, we will discuss the similarities and differ-

ences between a conventional PT-system (coupled waveguides) and optically coupled

SCLs - comparing both the model and experimental observations.

To understand how these distinctions emerge, we introduce the full model compris-

ing four coupled nonlinear rate equations that describe the electric field and carrier

number inversion of each SCL. We show the remarkable feature that the rate equations

reduce to a time-delayed 2x2 PT-model. The time-delayed PT-model is analyzed in

detail by examining the evolution of the eigenvalues as the PT parameters are varied.

We take a closer look at some key differences between the conventional PT-model

of coupled waveguides and the PT-model of optically coupled SCLs. The first and

most surprising is the effect of the time-delay on the PT-transition. We discuss the

counterintuitive notion of time reversal on delayed fields, and show that the frequency

detuning between the SCLs replaces the role of gain/loss in PT-optics.

After the analysis of the PT-model, we show the excellent agreement with the

simulations produced by the full rate equations. The experimental procedure is out-

lined, and we analyze the experimental observations by comparing them with the 2x2

PT-model and the simulations. The time-delay is varied in order to demonstrate the
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unique features that arise it. Finally, we discuss the connection between the phase

breaking/locking condition, typical of coupled oscillators, and the PT-transition that

occurs in coupled SCLs.

5.2 Rate Equations

The numerical simulations are done with the full rate equation model and time

averaged over 1ns to mimic the detector response time in experiments. The model

we employ assumes the SCLs are identical, except for their free running emission

frequencies (at threshold), and operate at nearly identical optical frequencies (ω1 ≈
ω2) [87]. The slowly varying electric fields are defined in a symmetric reference frame

θ = (ω1 +ω2)/2. The rate equations describing the normalized complex electric fields

E1,2 and the normalized excess carrier densities N1,2 may be written as follows:

dE1

dt
= (1 + iα)N1(t)E1(t) + iΔωE1(t) + κe−iθτE2(t− τ), (5.6a)

dE2

dt
= (1 + iα)N2(t)E2(t) − iΔωE2(t) + κe−iθτE1(t− τ), (5.6b)

T
dN1

dt
= J1 −N1(t) − (1 + 2N1(t))|E1(t)|2, (5.6c)

T
dN2

dt
= J2 −N2(t) − (1 + 2N2(t))|E2(t)|2, (5.6d)

where α is the linewidth enhancement factor, τ is the time delay in the coupling,

J1,2 ∝ I1,2/Ithr is the pumping current above threshold, and T = τs/τp is the ratio of

the carrier lifetime τs to photon lifetime τp. The two PT parameters, κ and Δω =

(ω1−ω2)/2, are the coupling strength coefficient and frequency detuning, respectively.

These are examined in more detail when we outline the experimental procedure. In

this way, it will become clear how we experimentally determine their numerical values

for the PT-model and simulations. The remaining normalized variables are described

in Chapter 2.

The derivation of Eqns. (5.6) follows a similar approach to the rate equations

describing optical feedback that were outlined in Chapter 2. In Eqn.(5.6a) and (5.6b),

the optical feedback term is modified to account for the mutual coupling between two
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SCLs. The second term (in Eqn.(5.6a) and (5.6b)) induces a phase shift that depends

linearly on the frequency detuning, Δω. There is linear dependence because the

higher-order coupling terms have been neglected. These approximations were shown

to be accurate for weak coupling strengths, typically less than 5% of optical power

coupled between SCLs [87]. The experimental conditions we employ fall within this

range. Eqns. (5.6) are known to accurately mimic a broad range of dynamical behavior

of coupled SCLs [88–91].

The parameter values used in the simulations are defined in Table 5.1. The stated

values correspond to those typical of the SCL used in our experiment [92]. We refer

to Eqns. (5.6) as the full-model in order to distinguish them from the simplified PT-

model introduced in the next section.

Table 5.1.
The parameter values for a typical SCL that are used in the simulations

(unless otherwise specified).

Quantity Symbol Value

Linewidth enhancement factor α 5

Coupling strength κ 0 - 0.2

Delay-time τ 0 - 500

Ratio of carrier to photon lifetime T 100

Pump rate J 0.01 - 0.10

We integrate Eqns. (5.6) using a modified fourth order Runge-Kutta method with

a step size that varies from 0.1ps to 10ps. The delay is accounted for by storing the

history at each step over a 4τ interval in order to calculate an interpolated history

function.

We emphasize that the gain and loss (±iγ) in conventional PT systems is now

replaced by the ±iΔω term. The detuning term (±Δω) accounts for frequency pulling

that is typical of coupled laser oscillators operating at different frequencies [93]. This



68

can be understood by examining Eqns. (5.6a) and (5.6b), wherein a phase shift in the

fields E1,2 is induced by the second term ±iΔωE1,2(t) in Eqns. (5.6a) and (5.6b). We

examine this in more detail in the following section.

5.3 Theoretical Results

To motivate the 2x2 PT-model, we begin with the simplest case. We arrive at

this case by using appropriate approximations of the relevant parameters, τ , N1,2,

and θτ . The restrictions on these parameters are gradually removed as we bring

the PT-model closer to the experimental and simulated parameter values. To show

the excellent agreement between the 2x2 model and simulations, we compare the

predicted dynamics for three cases:

5.3.1 τ = 0

We first consider the case of zero delay (τ = 0). Let us suppose that the SCLs

are uncoupled (κ = 0). The first term in Eqn. (5.6a) and (5.6b) accounts for the total

growth or decay of the fields E1,2 depending on the sign (±) of N1,2. When the SCLs

are operating in a steady-state, we expect the inversion above transparency to be

zero, N1,2 = 0. We make the approximation for small κ that N1,2 ≈ 0. The validity of

this approximation is discussed in Section 5.8. Using these approximations, we write

the time evolution of the electric fields in matrix notation as follows,⎛
⎝Ė1(t)

Ė2(t)

⎞
⎠ =

⎛
⎝iΔω κ

κ −iΔω

⎞
⎠

⎛
⎝E1(t)

E2(t)

⎞
⎠ . (5.7)

Contrasting this with Eqn. (5.5), we find two important differences.

First, the SCL model (Eqn. (5.7)) is missing an i from the LHS of the coupled

waveguide model (Eqn. (5.5)). The absence of i corresponds to a 90◦ rotation in the

complex plane, also called a Wick-rotation [94]. The absence of i also changes how

each term in the ‘Hamiltonian’ in Eqn. (5.7) affects the dynamics. For example, the
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diagonal terms no longer contribute to a growth or decay. Rather, ±iΔω determines

the frequency of oscillations when there is no coupling (κ = 0).

Second, the coupling term, κ, no longer determines the frequency of exchange

between channels (or SCLs). To understand this, let us suppose the diagonal elements

are zero (Δω = 0). In the coupled waveguide experiment, κ is the frequency at which

the channels exchange intensities (or energy), and the intensities are π out of phase.

Contrast this with the optically coupled SCLs, we find that κ contributes to a growth

in the intensities of the SCLs. Physically this can be understood in the following way:

a fraction of the emitted light from each SCL is injected into the neighboring SCL,

and the additional photons in the laser cavity contribute to the growth of the cavity

field. Given these differences we ask the question of whether coupled SCLs still retain

signatures of a PT-transition.

One can determine the eigenvalues by solving the following determinant,

det

⎡
⎣
⎛
⎝iΔω κ

κ −iΔω

⎞
⎠− �λ

⎤
⎦ = 0, (5.8)

which yields the result λ1,2 = ±
√
κ2 − Δω2. PT-symmetry breaking is indicated by a

transition of the eigenvalues from purely real to complex. To observe this transition,

we record the eigenvalues as we sweep Δω, while keeping κ fixed. The evolution of

the eigenvalues is depicted in Fig. 5.1(a), where the coupling strength is a constant

value of κ = 0.1 and the frequency mismatch is scanned from Δω = −0.2 → 0.2.

Thus we expect a PT-transition when κ = |Δω|. The effect of this transition on the

lasers intensities is seen by noting the form ( eλt) of the solution to Eqn. (5.5). When

|Δω| > κ, the eigenvalues are purely imaginary which indicates that the intensity of

the laser undergoes oscillations. Below threshold, |Δω| < κ, the eigenvalues are real,

and a growth or decay is expected. This behavior is similar to transitions reported,

and outlined in the Introduction, in PT-symmetric waveguides [75].

To demonstrate that the PT-model provides an accurate description of the global

behavior of the coupled SCLs, we compare the eigenvalue picture to the simulations

provided by the full rate equation model (Eqns.(5.6)). We now allow the carrier
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Figure 5.1. (a) Trajectories of the eigenvalues when κ = 0.1 for zero delay
(τ = 0). (b) Simulations of the SCL intensities (I1 and I2) when κ = 0.02
and P1 = P2 = 0.01 for zero delay (τ = 0). The solid blue line represents
the instantaneous intensities of SCL1 and SCL2 (same). The solid red
line is a rolling time average over 10 ns of the instantaneous intensities.

inversion (N1,2(t)) to temporally change. When the system is below PT-threshold

(κ > |Δω|), we no longer expect the approximation, N1,2 ≈ 0, to be accurate. The

eigenvalues below PT-threshold (κ > |Δω|) suggest an intensity growth (or decay).

This addition (or depletion) of photons from the steady-state will have an effect on

the carrier inversion (N1,2). To accurately describe the coupling between the inversion

and field below threshold, we rely on the rate Eqns. 4.1, which are integrated using a

similar method to that provided in Chapter 2. The same procedure (scanning Δω) is

followed which produced the eigenvalue plot shown in Fig. 5.1(a).

It is important to point out the difference between the two lines in Fig. 5.1(b).

The red line represents a rolling time-average of the two intensities (I1,2(t)), which

in this case are identical due to the symmetry of the system. We emphasize that

the remaining profiles are time-averaged as well. This is done in order to connect

the simulations to the experimental procedure, wherein the bandwidth of the photo-

diodes (10 MHz) and the sampling rate of the oscilloscope produce the effect of
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a time-average. In addition, this allows us to examine the global behavior of the

intensity evolution.

When examining Fig. 5.1(b) it is clear that the simulations agree well with PT-

model depicted by the evolution of the eigenvalues in Fig. 5.1(a). At large negative

detunings (−Δω), the intensities undergo oscillations with a frequency that is de-

pendent on
√
κ2 − Δω2. When κ > |Δω|, the oscillations cease, and the amplitudes

grow. The full-rate equations show that the inversion compensates and the intensity

decreases until the point κ < Δω, where oscillations once more begin. The frequency

of these oscillations are captured in Fig. 5.2, which is a spectrogram of intensity pro-

file. To accentuate the transition, the coupling strength was set to κ = 0.1 and the

detuning Δω was scanned. A rolling fft was calculated from similar instantaneous

(blue) intensity oscillations shown in Fig. 5.1(b). The amplitude of the spectra cor-

respond to the color scheme in Fig. 5.2. The frequency of the oscillations follows a

Figure 5.2. Spectrogram of instantaneous intensity oscillations taken from
the τ = 0 case in which κ = 0.1.

trajectory which agrees with the expected form of
√
κ2 − Δω2.
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5.3.2 τ = 100 and θτ = 2πm

Next, we include the effects of a non-zero delay (τ > 0). The delay is set to τ =

100. Now that the delay is nonzero, we can no longer ignore the phase accumulation,

e−iθτ , found in the third term of Eqns. (5.6a) and (5.6b). The SCLs are arranged so

that the phase accumulation is e−iθτ = 1. This is achieved by changing the cavity

length and average frequency of the two SCLs to ensure that θτ = 2πm.

In the presence of a delay field E1,2(t−τ), Eqns. (5.6a) and (5.6b) take the form of

delay differential equations (DDEs). Methods for solving delay differential equations

are similar to those proposed for ODEs in which one seeks exponential solutions

of the form eλt [95]. Using this form, we express the delayed terms in Eqn. (5.6)

as E1,2(t − τ) ∝ E(t)e−λτ . Examining Eqns. (5.6a) and (5.6b), the coupling term

now becomes κe−iθτe−λτE(t) = κe−λτE(t). Thus, an eigenvalue-like problem can be

expressed as

det

⎡
⎣
⎛
⎝ iΔω κe−λτ

κe−λτ −iΔω

⎞
⎠− �λ

⎤
⎦ = 0. (5.9)

As expected, the effects of the delay appear in the off-diagonal term, or coupling

strength. Furthermore, it is clear that if the eigenvalues are complex then the “oper-

ator” might no longer be PT-symmetric. Hence, we take a closer look at whether the

system still retains PT-characteristics with a finite delay. The movement of eigenval-

ues, shown in Fig. (5.3(a)), is comparatively more complex.

The eigenvalues still retain the PT-characteristics, namely there is a distinct tran-

sition near κ = |Δω|, where the imaginary component of the eigenvalue (λI) becomes

zero and the real part (λR) continues to grow until Δω = 0. The interesting behavior

occurs above threshold when |Δω| > κ. λR oscillates from positive to negative, while

λI follows a similar trajectory compared to the zero delay case (Fig. 5.1(a)) except for

a series of discrete steps. A similar staircase pattern has been experimentally observed

by measuring the frequency deviation between two coupled SCLs [96]. In addition,

Wuenshe et. al. reported that the intensities of the two lasers change continuously in

their phase difference from zero to π which may give rise to the discontinuities [96].
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Figure 5.3. (a) Trajectories of the eigenvalues when κ = 0.1 for finite
delay of τ = 0 and constant phase θτ = 2πn. (b) Simulations of the SCL
intensities (I1 and I2) for κ = 0.02, P1 = P2 = 0.01, and τ = 100 with
constant (πn) phase.

Remarkably, the λR oscillations are captured by the simulated time-averaged in-

tensities (I1,2avg) shown in Fig. 5.3(b). Where the average intensities were constant

for the zero delay case (Fig. 5.1(b)), oscillations are present in both intensities (SCL1

and SCL2) shown in Fig.5.3(b). The dashed green line, found in Fig. 5.3(b), marks

the PT-transtion (−Δω = κ = 0.02) for the simulated parameters. Oscillations are

induced above threshold ‖Δω| > κ. This behavior was suggested by the evolution

of λR in the presence of a delay, shown in Fig 5.3(a), where λR undergoes transitions

from positive to negative values.

By approaching this problem in the context of PT-symmetry breaking, we discover

these unexpected oscillations of λR which to our knowledge have never been reported.

However, in the PT-context two types of oscillatory dynamics arise. First, that non-

zero λI values give rise to periodic oscillations whose frequency change with Δω.

When Δω and κ are constant, these oscillations can be observed in the intensity time-

series. In comparison, the oscillations in λR, which we refer to as global oscillations,

are observed when Δω is scanned and the intensity profiles are recorded. Thus,
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one could observe these global oscillations by scanning Δω and time-averaging the

intensity to filter out the faster oscillations caused by λI .

5.3.3 τ = 100 and θτ varies

Finally, the effects of the phase accumulation are accounted for by allowing θ to

vary. This case is the last step toward developing a time-delayed PT-model that

mimics the experimental procedure. Indeed, we shall see that our experimental pro-

cedure for changing Δω, scanning the temperature to one laser, produces a change in

θ. Recalling that θ = (ω1 +ω2)/2, we achieve a θ variance by scanning one frequency

(e.g. ω1) and locking the other (e.g. ω2). To induce a PT-transition, we repeat the

same procedure as the previous two cases in which the coupling strength is set at

κ = 0.1 and Δω is scanned. The differences in the Hamiltonian between this case and

the former two cases are the off-diagonal elements, shown in Eqn. (5.10), that contain

an additional term, e−iθτ .

det

⎡
⎣
⎛
⎝ iΔω κe−λτe−iθτ

κe−λτe−iθτ −iΔω

⎞
⎠− �λ

⎤
⎦ = 0. (5.10)

It is worth noting that this term adds additional control over non-Hermicity of the

‘Hamiltonian’, i.e. by carefully manipulating either θ or τ one can vary e−iθτ from

real to purely imaginary. For the time being, we set this fact aside and will later

return to this when we discuss proposal for future directions.

The evolution of the eigenvalues are depicted in Fig. 5.4(a), which follow a similar

(albeit different) trajectory to the constant phase where e−iθτ = 1. Before we turn to

their differences, we still find the oscillations of λR and the discrete steps formed by

λI . A closer look, however, reveals that the frequency of the global (λR) oscillations

have increased compared to Fig. 5.3(a). A second difference depicted in Fig. 5.3(a) is

the juxtaposition between the discrete jumps formed by λR and the continuous ‘curve’

formed between Δω = −0.2 → −0.12 and Δω = 0.12 → 0.2. The ‘curve’ appears to

lay over the discrete jumps. In addition, Fig. 5.4(a) shows an asymmetry about the
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Figure 5.4. (a) Trajectories of the eigenvalues when κ = 0.1 for finite delay
of τ = 100 and varying phase θτ . (b) Simulations of the SCL intensities
(I1 and I2) for κ = 0.02, P1 = P2 = 0.01, and τ = 100 with varying phase
θτ .

λI = 0 axis. The asymmetry is introduced via the procedure of scanning only one

laser. It is remarkable that both features, the increased frequency and continuous

‘curve’, are captured by the simulations shown in Fig. 5.4(b). Shown in the red solid

line, the intensity of SCL2 (I2avg) undergoes global oscillations in the unbroken region

(|Δω| > κ). In the same region, the average intensity of SCL1 (I1avg) exhibits a steady

growth with no oscillations. The continuous ‘curves’, or evolution, of λR in Fig. 5.4(b)

predict the behavior of I1, while the discrete jumps of λR predict the behavior of I2.

Since the system is rendered infinitely dimensional due to the time-delay, writing

an analytic solution is nearly impossible outside of steady-state regimes. Therefore,

the simulations or bifurcation analysis is employed to gain insight into the dynamics.

However, we point out the remarkable predictive ability of the PT-model given the

complexity of the system.

This agrees well with the simplified PT-model which captures these characteristics.

In the next section, we experimentally verify these PT-transitions, as well as the
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effects of the time-delay on the global intensity. In particular, we explore the effects

of different time-delays on the period of the global intensity oscillations.

Before discussing the experimental results, we outline the method for determining

the eigenvalues. The zero delay (τ = 0) case is straightforward, and we use these

values for the initial “guess” when numerically solving the two finite delay cases. In

both cases, Eqns. (5.9) and (5.10), the determinant is calculated and then separated

into real and imaginary components from the ansatz λ = λR + iλI . Given the initial

“guess”, we solve the two coupled equations,

Δω2 + λ2R − λ2I − κ2e−2λRτ cos (2 (λI + θ) τ) = 0, (5.11a)

2λRλI + κ2e−2λRτ sin (2 (λI + θ) τ) = 0. (5.11b)

If the delay is zero (τ = 0), then the solutions are those determined by Eqn. (5.8).

When examining Eqns. 5.11, it becomes clear that more than one solution may exist.

We attempt to determine all the solutions by systematically varying the initial values.

Finally, we discard all solutions except those that are associated with the largest

positive and negative real eigenvalues, which ultimately determine the global behavior

after a long temporal evolution. The dependence of the eigenvalues on the phase θ

and time-delay τ are not straightforward. Therefore, we wait to discuss the effects of

the phase and time-delay until the experimental results have been presented.

5.4 Experimental Design

Figure 5.5 is a schematic of the experimental configuration consisting of two single

mode (HL7851G) semiconductor lasers (SCL1 and SCL2), an external cavity consist-

ing of two beam-splitting mirrors (BS1 and BS2) which optically couples the two

SCLs, and an external control of the coupling strength κ via the variable neutral

density filter (VND). The SCLs are identical, except for their free-running optical

frequencies and threshold pump currents. The transmission through the VND is

determined by an independent laser (L3) and photodiode (PD3) which allows us to

calibrate the experimental and theoretical coupling strength, κ ≡ (1 − r2) / (rτin) ξτp,
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strengths to the two lasers are equal, and a Farady-rotator (not shown) is placed in

the coupling beam path to ensure that self coupling is eliminated. The glass slides

(GS1 and GS2) independently reflect a portion (8%) of the intensity from SCL1 and

SCL2, and the measurement of the laser intensities is performed using two 1 GHz

photo-diodes (PD1 and PD2) in conjunction with a 1 GHz oscilloscope. The current

and temperature of the lasers are stabilized to an accuracy of 0.01 mA and 0.01 C,

respectively.

The two lasers are bidirectionally coupled to each other, and then the temperature

to SCL1 is scanned at a slow rate (< 10 Hz). The intensities of both lasers are

continuously monitored with photodiodes. The important parameters, κ and Δω, can

be varied experimentally via the VND and the temperature of SCL1, respectively.

It is important to point out that different behavior occurs if the coupling strength

is unequal or in the extreme case of uni-direction coupling. If the two lasers are

uncoupled, then the intensity of SCL2 remains a constant and the intensity of SCL1

decreases in proportion to the temperature increase. In case of unidirectional cou-

pling, the intensity of the “slave” follows an intensity profile identical to those reported

in injection studies [97, 98].

5.5 Experimental Procedure

In this section we discuss the experimental procedures used to vary the parameters

Δω and κ that induce a PT-transition.

5.5.1 Temperature Variation

We first begin by varying Δω. For our experimental laser diode near room tem-

perature, the optical emission frequency is proportional to the temperature of active

region. Since the experimental procedure requires that we change the temperature

of the SCL by less than 4◦C, it is safe to assume a linear dependence of the emission

frequency on the temperature. Ideally, one could simultaneously control the tempera-
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ture of both SCLs. This procedure would induce a frequency difference, and have the

ability to keep the optical phase accumulation (e−iθτ ) a constant. The temperature

controllers (Thorlabs TEC2000) allow you to externally control the set temperature.

However, this does not guarantee that the actual temperatures of the diodes follow

the same trajectory. This trajectory depends on the PID controller as well as the

mounting fixture of the diode.

The two mounts are not identical, and even with similar PID setting the two

temperatures follow different trajectories. One may be able to resolve this issue by

adjusting the PID controls such that they follow (almost) identical trajectories, or

purchase/build two identical mounts. As of now, only one SCL is adjusted. We

point out that the temperature variation creates an intensity change because the

threshold current necessary for lasing is dependent on the SCL temperature. The

temperature dependence of the optical frequency and intensity can be approximated

by the following linear relationships,

ω(T ) = ω0 − kTT, (5.12a)

I(T ) = Ithr + ηTT, (5.12b)

where kT = 20 GHz/C and ηT = 0.15 mW/C. kT is experimentally determined

by scanning the temperature of one SCL while monitoring the intensity through a

fixed 2 GHz free spectral range Fabry-Perot etalon. When n number of peaks are

observed through the etalon, the proportionality constant can then be determined by

the relationship, kT = (2 GHz)n/ΔT , where ΔT is the scanned temperature. In order

to determine ηT , the scanned temperature and the emitted laser light are recorded.

The linear relationship can be directly determined from this measurement ΔI/ΔT .

5.6 Experimental Results

Above the PT-threshold (|Δω| > κ), the PT-model and subsequent simulations

indicate that the inclusion of a finite time-delay causes global intensity oscillations

corresponding to fluctuations in the sign (±) of λR . In order to verify these oscilla-
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tions experimentally, we replicate the procedure of scanning the frequency detuning

(Δω) while keeping all other parameters constant. The typical experiment involves

operating the two SCLs at a constant injection current approximately 3% above their

respective threshold values. This guarantees the SCL remains above threshold when

the temperature is scanned. The injection current is tuned to a precision of 0.01 mA

to ensure that output power of each SCL is identical.

The optical spectrum of the uncoupled (free-running) SCLs are independently

measured by an HP 7554 optical spectrum analyser . The temperature to one laser is

scanned and recorded. Using Eqn. (5.12a) along with temperature measurements and

wavelengths, we calculate the frequency detuning, Δω. The temperature, coupling

strength, and the two intensities are simultaneously recorded resulting in an intensity

profile. The photo-diode is operated with a large load resistor in order to decrease the

bandwidth (< 1 GHz). This bandwidth, along with the scan rate of the oscilloscope,

act to time-average the intensity.

Figure 5.6(a) shows the experimental intensity profiles of SCL1 and SCL2 for a

cavity length of L = 27 cm (τ = 90). The temperature of SCL2 (blue) is scanned

while the intensities are recorded on separate photo-diodes. We normalize the mea-

sured intensity with respect to the minimum intensity value in order to contrast the

fractional growth of each SCL intensity. For the same parameter values, the sim-

ulations and eigenvalues are calculated and depicted in Fig. 5.6(b) and Fig. 5.6(c),

respectively. The PT-transition occurs at |Δω| ≈ κ = 0.02 indicated by the vertical

green line in the simulations (Fig. 5.6(b)).

We point out the experiment’s excellent agreement with the simulations and PT-

model, which depict the global intensity oscillations above the PT-threshold (|Δω| >
κ). Remember that the global oscillations correspond to the fluctuations of the real

components of the eigenvalues (λR) in the PT-model, shown in Fig. 5.6(c). These

oscillations exist because of the time-delay. We also find the PT-transition near

Δω ≈ 0.05 in the experimental profile marked by a global increase in the intensity of

both SCLs.
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Figure 5.6. Profiles recorded for a cavity length L = 27 cm, P1 = 41.5 mA,
P2 = 45.1 mA, and VND at 260◦

To investigate the effects of the time-delay, we arrange the cavity mirrors (BS1

and BS2) such that the external cavity length is L = 51 cm (τ = 170). It is worth

noting that, although the VND is fixed, the coupling strength (κ) varies with the

cavity length. This occurs because of the beam expansion, however slight, that is

present due to the elliptical beam shape of a SCL. Once more, we fix the coupling

strength at κ = 0.02 and vary the frequency detuning Δω via the temperature to

SCL1. The experimental and simulated profiles along with the eigenvalues are shown
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in Fig. 5.7. Comparing the experimental intensity profiles in Fig. 5.7 to the previous
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Figure 5.7. Profiles recorded for a cavity length L = 51 cm, P1 = 41.5 mA,
P2 = 45.1 mA, and VND at 260◦

case of a smaller time-delay (Fig. 5.6), we find two clear distinctions.

First, the frequency of the global oscillations increased with an increasing time-

delay. This can be observed by comparing the number of oscillations that occur in

a given frequency detuning range, for example between Δω = 0.05 → 0.15 shown

in Fig. 5.6 and Fig. 5.7. The dependence of λR on κ, shown in Eqn. (5.11), is quite

complex. However, an intuition for the dependence of the oscillations on τ can be
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gleaned by examining the eigenvalue evolution shown in Fig. 5.7(c). Above threshold,

|Δω| > κ, the imaginary eigenvalues (λI) vary linearly. λR in Eqn. (5.11b) must

fluctuate signs (±) in order to satisfy the equality. The RHS term, sin (2 (λI + θ) τ),

varies in sign, therefore the LHS term, 2λRλI , must vary in sign as well. This is

possible only if the sign of λR changes. In addition, it is clear that the frequency of

the RHS term depends linearly on τ .

Second, the amplitude of the oscillations decreases, which can be observed by com-

paring the two cases, Fig. 5.6 and Fig. 5.7. When τ = 180, the global oscillations vary

by approximately 4%, shown in Fig. 5.7, whereas the smaller delay (Fig. 5.6) shows a

variance of approximately 8%. These features are manifested in the simulations and

eigenvalues, shown in Fig. 5.7(b) and Fig. 5.7(c), respectively. The decrease in ampli-

tude is a consequence of the first difference, i.e. an increase frequency of the global

oscillations. As λR continues to increase, the amplitude of the intensity follows. This

increase continues until a change in sign is required. Thus, a larger Δω span results

in a larger amplitude of the intensity.

Furthermore, this trend continues as the cavity length (time-delay) is increased.

We show another example of the intensity profiles and eigenvalues for a cavity length

of L = 74 cm (τ = 240). Again, the frequency of the global oscillations increase while

the amplitude of the oscillations decrease when the time-delay is larger. Once more,

the experiments agree well with the simulations and PT-model shown in Fig. 5.8.

In general, these trends continue and we find in the limit of large delay that the

eigenvalues converge to the case of zero delay (τ = 0). The relationship between

the frequency of oscillations and τ can be experimentally verified up to a distance of

L ≈ 150 m, as beam divergence is unavoidable. An increasingly longer cavity results in

larger divergence and a decrease in the coupling strength. When approaching the limit

of zero delay (τ = 0), limiting constraints are the size optical components resulting

in a minimum cavity length of L ≈ 25 cm. These constraints can be improved by

optically coupling through fiber, but this results in challenges of its own. In the next
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Figure 5.8. Profiles recorded for a cavity length L = 74 cm, P1 = 41.5 mA,
P2 = 45.1 mA, and VND at 220◦

section, we examine an alternative method to elicit the PT-transition by varying the

coupling strength while keeping Δω constant.
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5.6.1 Varying the coupling strength

At first glance, the eigenvalues of the system, λ1,2 = ±
√
κ2 − Δω2, suggests that

either PT parameter, κ or Δω, can be varied to induce a PT-transition. We turn

our attention to the former case, wherein the coupling strength κ is scanned. To

gain an intuition for the difference in this procedure, we show the simulated intensity

profiles for zero delay (τ = 0) at five different frequency detunings (Δω). Examining
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Figure 5.9. Simulated intensity profiles and eigenvalues for varying cou-
pling strenth κ. The solid colored lines in (a) correspond to the intensity
profiles which are simulated for five different Δω of 0.01 (red), 0.02 (yel-
low), 0.03 (green), 0.04 (blue), and 0.05 (purple). The dashed vertical
lines indicate the onset of growth predicted by the PT-symmetric model.

Fig. 5.9, it is clear there is an excellent agreement between the simplified PT model

and the simulated rate equations for zero delay. The abrupt growth of the intensity

occurs at the predicted PT-symmetric location (|Δω| = κ), which is indicated by the

vertical dashed lines in Fig. 5.9. We remind the reader that the profiles represent the

time-average of the intensity while κ is scanned.

To explore the effects of a finite time-delay, we implement this procedure experi-

mentally such that Δω is fixed while the coupling strength (κ) is varied via the VND.

A third laser (SCL3) is directed through the VND at the same spatial location as
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the coupled beam but at different angles. The intensity of SCL3 is recorded. A re-

lationship between the recorded SCL3 intensity through the VND and the fractional

coupled power is determined. Intensity profiles are recorded while scanning the pa-

rameter κ. Figure 5.10 shows an example of the intensity profiles and eigenvalues for

a cavity length of L = 24 cm (τ = 85). The expected PT-transition, κ = |Δω|, for
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Figure 5.10. Varying κ and keeping Δω fixed

zero delay is indicated by the vertical (green) dashed line in the simulation profile

shown in Fig. 5.10(a). It is clear that the simulated intensities of the SCLs, shown in
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Fig. 5.10(a), grow before PT-transition. Figure 5.10(b) shows the experimental profile

which agrees well with the simulations. The eigenvalues, shown in Fig. 5.10(c), show

that the onset of growth is present at small coupling strengths, which is indicated by

the positive values of λR.

The discrete steps in Fig. 5.10(c) are distinguished from former eigenvalues when

Δω is scanned. Tracing the evolution of λR, it becomes apparent that the sign is not

required to change, i.e. moving left to right it is possible for λR to remain positive. In

addition, the step-size length, measured in terms of κ, changes as κ approaches the

frequency detuning, |Δω| = 0.2. Although this is present in the former case, where

Δω is varied, the change is more pronounced.

These differences arise because of the asymmetry introduced by the delay. The

time-delay is associated with the coupling term, which is represented by the off-

diagonal elements in the matrix notation (Eqn. (5.10). Due to the presence of the

eigenvalue, the off-diagonal term is no longer linearly dependent on κ since λ is κ

dependent. This gives rise to the non-reciprocal nature of the eigenvalues. In addition,

the effects of the time-delay are accounted for in the phase accumulation described by

the term e−iθτ . This term provides another avenue to explore in future studies. Before

discussing future outlooks, we examine the connection between the PT-transition and

phase locking/drifting of oscillators, in particular coupled semiconductor lasers.

5.7 PT-transition and Phase Locking

In the case of zero delay (τ = 0), Longhi noted that the PT-transition of a non-

linear PT-symmetric dimer is ultimately associated with the phase locking/drifting

condition of coupled lasers [94]. To connect the simplified PT-model to the phase

locking condition, one can begin by casting the complex electric fields into two com-

ponents containing a real amplitude and real phase modulation term, which takes the

following form,

E1,2(t) = A1,2(t)e
iφ1,2(t). (5.13)
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After inserting Eqn. (5.13) into the full rate equation model and separating the real

and imaginary components, we obtain the time evolution of the phases,

˙φ1,2(t) = αN1,2 ∓ Δω + κ
A2,1(t− τ)

A1,2(t)
sin(θτ + φ2,1(t− τ) − φ1,2(t)). (5.14)

Ultimately, we are interested in the phase locking/drifting condition. This can be

determined by finding the parameter space such that the locking condition, Δφ̇ = 0,

is satisfied. Eqn. (5.14) is used in order to write out the time derivative of the phase

difference, Δφ = φ1 − φ2,

Δ̇φ(t) = α(N1 −N2) − 2Δω + κ

(
A2(t− τ)

A1(t)
sin(θτ + φ2(t− τ) − φ1(t))

)

− κ

(
A1(t− τ)

A2(t)
sin(θτ + φ1(t− τ) − φ2(t))

)
.

(5.15)

We follow a similar approach used to motivate the 2x2 PT-model. We begin by

assuming the carrier inversions are negligible (N1,2 ≈ 0), and the time-delay is zero

(τ = 0). The lasers operate under identical conditions, which governs the equivalence

between the SCLs intensities (A1 = A2). This drastically simplifies Eqn. (5.15), which

reduces to

Δ̇φ(t) = −2Δω + 2κ sin(Δφ(t)). (5.16)

Thus the condition |Δω| < κ must be satisfied for phase locking to occur. We note

that Eqn. (5.16) corresponds to the Adler equation for coupled oscillators.

To highlight the effects of phase locking on the dynamics and the connection with

the PT-transtion, we examine two cases. All parameters are fixed, and the system

evolves in time. Above the PT-threshold, |Δω| > κ, we calculate the time-series of

the intensities (I1,2), phases (φ1,2), and carrier inversions (N1,2), which are shown in

Fig. 5.11. We point out that oscillating intensities (I1,2) are identical. The same is true

for the time series of the frequency difference Δφ̇. The oscillations are anticipated

since the eigenvalues above threshold are complex. The relationship between the

intensity and carriers are shown in Fig. 5.11, which captures the time dependence

of the inversions (N1,2(t)) and the exchange of energy between the intensity and

inversion, which are ≈ π out of phase. Below the PT-threshold, |Δω| < κ, the phase
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Figure 5.11. Simulated phase plane of the inversion N1 and intensity I1,
intensity time-series, and phase relationship time-series for identical pump
currents (P1 = P2 = 0.012) and zero delay (τ = 0). All parameters are
fixed. The top row corresponds to |Δω| = 0.020 > κ = 0.015 and the
bottom row when |Δω| = 0.020 < κ = 0.025
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is locked, indicated by the phase difference (Δφ̇ = 0) shown in Fig. 5.11(d). The

intensities and inversions are constant. All these observations are in good agreement

with the Wick-rotated PT-symmetric dimer mentioned in [94], wherein the connection

between the PT dimer and Adler equations are discussed.

In order to bring us one step closer to the experimental design, we scan the

frequency mismatch Δω but keep all other parameters fixed including the pump

currents at P1 = P2 = 0.012. Once more, we examine two time-scales in the dynamics;

one is the fast dynamics which show the frequency oscillations, and the second is the

steady-state behavior, which is found by calculating a moving time-average. Since

the experiment setup places a limit on both the detector speed and bandwidth of

the oscilloscope, the time average is the observed experimental phenomenon. We

show this behavior in the simulated intensity, inversion, and phase profiles for this

configuration in Fig. 5.12, where the blue profile corresponds to the fast dynamics and

the red profile the time average. As mentioned, κ is fixed at a value of 0.02, hence

we expect oscillations when |Δω| > κ and a phase locking/constant intensity when

|Δω| < κ. This is clearly depicted in Fig. 5.12 where the vertical red line corresponds

to the PT-symmetry breaking point. Moving from left to right, after this location

the phase is locked (Δφ̇ = 0) and the intensity does not oscillate, rather there is a

growth in the intensity. This growth occurs because of the additional photons from

the coupled SCL. This is also represented by the depletion of the inversion (N1,2 < 0)

in Fig. 5.12(b). Although the eigenvalues are not shown, we have performed this

analysis and it accurately captures the movement from the imaginary plane to the

real plane at the expected PT-transition.

To ensure that condition |Δω| = κ arises because of bi-direction coupling, we

examine the extreme case of uni-directional coupling, referred to as injection. Using

similar rate equations to those outlined in Section 2, one can show the condition,
√

1 + α2
√
Px/PL, must be satisfied for steady-state solutions to exist. In the case of

injection, |ν| is the is frequency difference between the master laser and slave laser. Px

and PL are the intensities the master and slave, respectively. Hence, the mechanism
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Figure 5.12. Simulated intensity profiles for fixed pump currents (P1 =
P2 = 0.015) when only the frequency mismatch Δω is scanned from -
0.05 to 0.05. The intensity, inversion, and phase profiles are simulated
for a coupling strength, κ = 0.025. The red vertical line represents the
theoretical PT transition.

for phase locking is different when considering optical injection. For injection, one

must take into account the dependence of the intrinsic coupling between the amplitude

and phase of light which is expressed by the α-parameter. In practice this implies that

the phase locking occurs at larger frequency detuning Δω compared to the coupled

oscillator model. When considering the coupled model, a dependence on α exists when

the carrier inversions are no longer equal (N1 �= N2), which can be seen in Eqn. (5.15).

As their difference (N1 − N2), the first term containing α becomes significant. We

discuss these effects in the next Section.
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5.8 Pump Current Variation

It is important to examine our initial experimental procedure, wherein the pump

current (in contrast to temperature) was modified to one of the SCLs. This procedure

provides a parameter space where the PT-model accurately describes the experimental

phenomenon and where the approximations used to arrive at the simplified model

breakdown. This section introduces the experimental procedure and compares the

results with the simulations and PT-model. We show what parameters lead to the

breakdown of the model and discuss their relevance to the previous sections.

The scanned pump current induces changes in the emitted laser intensity and

optical frequency. The dependence of the intensity and frequency on the adjusted

pump current (ΔP ), is given by Eqns. (5.17),

ω(ΔP ) = ω0 − kΔP, (5.17a)

I(ΔP ) = Ithr + ηsΔP, (5.17b)

where ω0 is the frequency at threshold, and ΔP is the pump current with the thresh-

old pump current subtracted. The slopes are intrinsic characteristics of the SCL, and

were determined to be k = 1.84 GHz/mA and ηs = 0.55 mW/mA. The variations

in the optical frequency were a desired effect since, ultimately, we wanted to control

the frequency difference (Δω) between the two lasers. However, the intensity changes

proved problematic. In order for the PT-symmetry breaking condition to hold, the

intensities of the two SCLs need to be approximately equal (I1 ≈ I2).

Fig. 3.2 shows a set of typical results for two different coupling strengths of (a)

κ = 0.0027 and (b) κ = 0.014. In Fig. 3.2, SCL1 is operated at 2% above threshold and

SCL2 is initially at 30% above threshold. The frequency detuning is large compared

to the coupling strength (|Δω| > κ). The pump current to SCL2 is then decreased

slowly (< 10 Hz) from P2 = 1.3 to P2 = 0.8, consequently decreasing the frequency

mismatch Δω. Figure 5.13 depicts the experimental and simulated intensities of both

lasers intensities, Int1 (blue) and Int2 (green), as the pump current P2 is decreased.

We show two cases for different coupling strengths to highlight the excellent agreement
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Figure 5.13. Experimental (top row) and numerical (bottom row) inten-
sities of SCL1 (blue) and SCL2 (green) when the coupling strength is
κ = 0.0027 (a,c) and κ = 0.014 (b,d). The pump current P2 is decreased
from P2 = 1.3 to P2 = 0.8. The vertical lines indicated the location when
Δω = κ (black dashed) and when phase breaking occurs φ̇(t) = Δω′ �= 0
(red solid).

between theory and experiment and to demonstrate the parameter window where the

system accurately mimics a PT-symmetric model. Examining Fig. 5.13, it is clear

that as P2 is decreased, the intensity of SCL2 decreases and the intensity of SCL1

remains constant until a critical pump current is reached when a sudden growth of

intensity occurs. This abrupt increase in intensity marks the PT-threshold. In order
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Figure 5.14. Experimental plot of the pump current value where the on-
set of growth begin for increasing coupling strength κ values, which are
marked with red diamonds. The blue circles correspond to the simulated
location where phase locking is broken (φ̇(t) �= 0). The green stars repre-
sent the theoretical PT-transition (κ = |Δω|).

to determine the phase breaking location, shown in Fig. 5.13(c) with the black dashed

line, we first calculated the phase which is extracted from the complex electrics fields

E1,2(t). The time derivative of the phase difference is calculated and we find when

this value is no longer zero (Δφ̇(t) �= .0). This data agrees well with the experiments

shown in Fig. 5.13(a). Finally, Fig. 5.14 also shows the predictions of the simplified

model, and it is clear that while the agreement is good at low coupling strengths,

there is a marked departure from the experiments and the predictions of the full

model at higher coupling strengths. It is, however, remarkable, that the full model

contains within it the PT-symmetric behavior information despite the full model not

being the typical PT-symmetric model.

We note that as κ becomes small (κ → 0) an experimental determination of the

injection current at which there is an abrupt intensity growth becomes harder to

detect because the magnitude of the intensity growth is too small detect. Hence, we
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are not able to check the exact convergence of the experimental and numerical results

at very small couplings. Since the numerical calculations are performed without

quantum noise, the PT-phase transition is easily detected in the simulation and is

manifested as an onset of growth in the intensity profile. Although the deviation from

the simplified theoretical PT-model appears when the coupling strength is large, the

presence of an EP is predictable at larger couplings because we have been able to

ignore the time delay between the SCLs. This approximation was valid because we

were interested in the global behavior (E1,2(t) = E1,2(t−τ)) before the onset of growth

and the implemented procedure produces rapid variations in the phase accumulation

θτ which are averaged out and hence have little affect on the onset of intensity growth.

There are a couple of important observations that one can make here - (i) for

weak coupling, the PT-threshold is reached when the intensities of SCL1 and SCL2

are equal, whereas for stronger coupling the intensities are not equal at the PT-

threshold, (ii) increasing the coupling strength increases the frequency detuning at

which the PT-threshold occurs. Qualitatively, at this point, the results suggest that

the PT-threshold is strongly effected by the strength of the optical coupling.

We now examine the eigenvalues of a modified PT-model that includes the affects

of a non-zero inversion (N1,2 �= 0). To obtain the eigenvalues shown in Eqn.(5.18),

Δω2 − κ2e−2λτ+2iθτ + λ2 − α2N2 + 2iαN2 +N2 − 2iαλN − 2λN = 0, (5.18)

the full set of rate equations were solved as J2 was scanned from 1.3Jthr to 0.8Jthr and

the array of N1,2 values were stored. These values of N1,2 were then inserted into the

rate equations for the electric fields at each step, n, that corresponds to a decrease in

the pump current P2. At each step of P2(n), the complex eigenvalues are determined

and stored. After scanning the pump current P2, a complete map of the eigenvalues is

produced, shown in Fig. 5.15, which displays both eigenvalues λ1,2 along the real and

imaginary plane. Figure 5.15(a) shows the eigenvalues when the feedback strength is

κ = 0.0027, and the color spectrum along each step corresponds to the pump current

P2(n) at that location. We start by examining the evolution of each eigenvalue λ1,2

individually shown in Fig. 5.15. We remind the reader that this figure represents the
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Figure 5.15. Same parameters as Fig. 5.13. Evolution of eigenvalues for
the two coupling strength κ = 0.003 (a) and κ = 0.017 (b). The color
profile corresponds to the pump current P2 which is directly proportional
to the frequency mismatch Δω. Each eigenvalue, λ1 and λ2, is shown
depicted separately in (a2,b2) and (a3,b3), respectively, and the superpo-
sition is found in (a1,b1). Note that the avoided crossing in (a), which
occurs for a pump current of P1 ≈ 1.05, occurs at λ ≈ 0, thus indicating
PT-symmetry breaking.

eigenvalues movement for the experimental and simulated profiles shown in Fig. 5.15

and Fig. 5.13(c), respectively.

Initially λ1 (a2) is purely imaginary (Im(λ1) ≈ 0.01 and Re(λ1) ≈ 0), which

corresponds to oscillatory behavior of the intensity. Since we are taking a time average

these oscillations are smoothed out resulting in the steady-state behavior shown in

Fig. 5.5a,c. As the pump current decreases, Im(λ1) decreases while the real part

remains zero (Re(λ1) ≈ 0). At the critical value when κ = |Δω|, λ1 becomes real and

Re(λ1) suddenly increases while the imaginary component is negligible (Im(λ1) ≈ 0),

which corresponds to the abrupt growth in the intensity. At this point, the PT-

symmtery is broken because the carrier densities become non-negligible. One sees this

by continuing to trace this evolution, where Re(λ1) becomes negative and eventually

returns to zero (Re(λ1) = 0). We note that Fig. 3.3c follows a similar trajectory

except the eigenvalue λ2 begins at a purely negative value. Figure 3.3(a1), which is
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a superposition of the two plots Fig. 3.3(a2,a3), shows an avoided crossing which is

typical of exceptional point (EP) behaviors. The EP occurs at the PT-symmetric

location λ1,2 = 0.

Turning our attention to Fig. 3.3b, which is produced when the coupling strength

is κ = 0.014, it is clear that the avoided crossing is still present, however the location

of the EP is slightly shifted from the PT-breaking transition (λ1,2 = 0). The abrupt

change in λ2, shown in Fig. 3.3b3, occurs at a complex value, i.e. λ2 has a non-zero real

component, rather than a purely imaginary value. This highlights our observation

that the PT-symmetric model (Eq. (5.5)) is valid for small feedback strengths κ.

The shift in the EP from the PT-symmetric case is a result of the non-negligible

carrier densities. Since the coupling strength is large, the expected intensity growth

should occur at a larger pump current P2. The larger values of P2 and κ creates

an asymmetry between the carrier densities (N1 �= N2) and N1 > 0. Therefore, the

approximations used to obtain the simplified model are no longer valid and Eq. (5.6)

no longer reduces to the PT model. However, it is interesting to note that even at

larger coupling strengths (κ > 0.004), the avoided crossing, which is typical of EP

behavior, continues to be present.

5.9 Conclusion

This chapter discussed the experimental realization of PT-symmetry breaking in

time-delayed optically coupled SCLs. Even with a time-delay, the system retained the

signatures of a PT-transition which were predicted by the modified PT-model. The

model we developed incorporated the delayed field by augmenting the standard PT-

model with a delayed term. The delayed term was included in the off diagonal term,

or coupling term, of the 2x2 model. We examined the unique features that emerged

because of the delay. In particular, the eigenvalues underwent discrete jumps as the

PT parameters were continuously scanned. We showed that the discrete jumps in

the real part of the eigenvalues were manifested as global intensity oscillations in the
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unbroken region. This unexpected result was confirmed by simulating the intensities

of the SCLs using the full rate equations model. In addition, we showed that the

frequency of the global oscillations depended linearly on the magnitude of the time-

delay. Overall, we highlighted the excellent features that coupled SCLs offer as a

test-bed for future PT studies, and possible avenues to explore which only a delayed

system can offer.
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6. Summary

This dissertation describes our investigations on the nonlinear dynamics that arise in a

semiconductor laser due to optical feedback. We implemented two schemes of optical

feedback. The first scheme subjects the laser to optical feedback from two external

cavities (or two loops), wherein each cavity contains a spectral filter. We referred

to this as two filtered optical feedback (FOF). Using two FOF, we experimentally

demonstrate the ability to elicit and control unique dynamics in the optical emission

frequency (wavelength) of the laser. We observe frequency oscillations whose period

primarily depends on a weighted average of the individual time-delays from each

cavity. The “weight” is determined by the ratio of feedback strength from each

cavity. These results are confirmed by a deterministic model describing the temporal

dynamics of the complex electric field and carrier density of the laser. In addition,

an analytic expression can be found which confirms the frequency dependence on the

feedback strength. We find that the period of the frequency oscillations are associated

with the filtered external cavity modes of the system. It would be worthwhile to

determine a more precise relationship between the elicited frequency oscillations and

cavity modes. This would allow one to understand all the significant parameters that

influence the period of oscillations.

We theoretically observe a period doubling route in the frequency dynamics as the

bifurcation parameter (feedback strength) is increased from one cavity. We attempted

to trace this route experimentally, but discovered a quantitative difference between

the deterministic simulations and experiments for the feedback strength required to

induce chaotic dynamics. This motivated us to determine the influence of quantum

noise on the period doubling route. We use a stochastic model which is a set of

coupled rate equations that include the effects of spontaneous emission and shot

noise. One of the more surprising results is that a larger feedback strength is required
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in order to induce chaotic dynamics. We find that noise drives the system toward

stable attractors. In the presence of noise, the effects of the time-delay on the periodic

dynamics are more pronounced. In addition, we examine the influence of noise when

the bandwidth of the filters are changed. These results help quantify the bandwidth

regimes in which noise plays a significant role in determining the final dynamical state.

In particular, when the bandwidth of the filter is larger than the RO frequency, RO

dominate the dynamics and the effects of noise are negligible.

The second scheme consists of two time-delayed, optically coupled semiconductor

lasers. We demonstrate that coupled SCLs are an excellent test-bed to study parity

(P) and time-reversal (T) symmetry breaking. Not only did optically coupled SCLs

capture many of the characteristic signatures of PT symmetry breaking, but the time-

delay between the lasers introduces novel and surprising features. We develop a simple

PT model that includes the effects of the time-delay. The PT model is analogous to

a 2x2 Hamiltonian in which the off-diagonal terms account for the coupling between

lasers, and the diagonal terms account for the intrinsic dynamics of each laser. By

examining the eigenvalues of the PT model, we can predict the global behavior of the

SCLs intensities by scanning the PT parameter, i.e. the frequency difference between

the lasers. The imaginary and real eigenvalues correspond to oscillations and growth

(or decay), respectively, in the intensity of the laser. We experimentally observe

intensity oscillations and intensity growth by scanning the temperature of one SCL

while recording the intensity of each SCL. The experimental intensity profiles show

excellent agreement with the movement of the eigenvalues that were predicted by the

PT model. In addition, we find agreement with the full rate equation model that

includes the dynamics of the carrier inversion and optical field.

The time-delayed PT model also provides viable avenues which have yet to be

experimentally explored. We indicated some of these avenues in Chapter 5, but

highlight some of the most promising. In particular, the ability to control the phase

accumulation of the coupled fields allows one to vary the off-diagonal elements of the

‘Hamiltonian’ from real to purely imaginary. This could effectively control the non-



101

Hermicity of the Hamiltonian. The effects of the time-delay on the optical frequency

have yet to be experimentally observed. A larger window of the time-delay (cavity

lengths) can be explored by changing the current free-space design to a fiber in which

the attenuation of the field amplitude is comparatively much smaller.
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Pere Colet, Ingo Fischer, Jordi Garćıa-Ojalvo, Claudio R. Mirasso, Luis Pes-
quera, and K. Alan Shore. Chaos-based communications at high bit rates using
commercial fibre-optic links. Nature, 438(7066):343–346, nov 2005.



105

[43] Mirvais Yousefi and Daan Lenstra. Dynamical behavior of a semiconductor laser
with filtered external optical feedback. IEEE Journal of Quantum Electronics,
35(6):970–976, 1999.

[44] A. P A Fischer, Mirvais Yousefi, D. Lenstra, Michael W. Carter, and Gautam
Vemuri. Experimental and theoretical study of semiconductor laser dynamics
due to filtered optical feedback. IEEE Journal on Selected Topics in Quantum
Electronics, 10(5):944–954, 2004.

[45] Alexis P. a. Fischer, Mirvais Yousefi, Daan Lenstra, Michael W. Carter, and
Gautam Vemuri. Filtered Optical Feedback Induced Frequency Dynamics in
Semiconductor Lasers. Physical Review Letters, 92(2):023901, 2004.
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