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ABSTRACT

Rotz, Kevin L. PhD, Purdue University, May 2016. Monotonicity Formulas for Dif-
fusion Operators on Manifolds and Carnot Groups, Heat Kernel Asymptotics and
Wiener’s Criterion on Heisenberg-type Groups . Major Professor: Nicola Garofalo,
Donatella Danielli.

The contents of this thesis are an assortment of results in analysis and sub-

Riemannian geometry, with a special focus on the Heisenberg group Hn, Heisenberg-

type (H-type) groups, and Carnot groups.

As we wish for this thesis to be relatively self-contained, the main definitions

and background are covered in Chapter 1. This includes basic information about

Carnot groups, Hn, H-type groups, diffusion operators, and the curvature dimension

inequality.

Chapter 2 incorporates excerpts from a paper by N. Garofalo and the author, [42].

In it, we propose a generalization of Almgren’s frequency function N : (0, 1) → R

for solutions to the sub-elliptic Laplace equation ∆Hu = 0 in the unit ball of a

Carnot group of arbitrary step. If the function u has vanishing discrepancy, then the

frequency is monotonically non-decreasing, and we are able to prove a form of strong

unique continuation for such functions.

Chapter 3 grew out of the author seeking parabolic montonicity formulas in the

same vein as Almgren’s frequency. These include two types of monotonicity formulas,

those of Struwe- and Poon-type [72], [67]. If a diffusion operator L on a complete

manifold M satisfies the curvature dimension inequality CD(ρ, n), then we are able

to prove that for solutions to Lu = ut in M × (0, T ), Struwe’s energy monotonicity

holds, at least for time values close enough to T . We introduce a new condition, C(ω)

where ω ∈ C1(0, T ), related to the Hessian of the heat kernel, and are able to prove

a Poon-type frequency monotonicity formula when taking into account a weighting



x

factor depending on ω. We also give examples of manifolds satisfying C(ω), the most

interesting of which includes the Ornstein-Uhlenbeck operator. Monotonicity of the

weighted frequency also implies a form of strong-unique continuation.

In Chapter 4, we derive asymptotics for the heat kernel on H-type groups and

generalize a gradient bound from a paper of Garofalo and Segala [43] to these groups.

This gradient bound in turn implies a strong Harnack inequality and Wiener criterion

similar to those found in [31] and [43].
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1. Introduction and Definitions

1.1 Carnot groups

1.1.1 Step r Carnot groups

Definition 1.1.1 A Carnot group of step r is a Lie group G which is diffeomorphic

to RN for some N ∈ N, and whose Lie algebra g can be decomposed as follows:

1. There exists an r ∈ N, r ≥ 2 such that g = V1 ⊕ · · · ⊕ Vr

2. [Vj, Vj] = Vj+1, j = 1, . . . , r − 1

3. [Vj, Vr] = 0, j = 1, . . . , r

We will write dimVj = nj, so that N =
∑r

j=1 nj.

As such G are necessarily nilpotent, the exponential mapping exp : g → G is

an analytic diffeomorphism (see Theorem 1.2.1, [24]). We may therefore uniquely

identify each point in G with an element of g. Fix a basis B = {ejm : j = 1, . . . , r, m =

1, . . . , nj}, where ejm ∈ Vj, j = 1, . . . , n, and let 〈·, ·〉 be an inner product on g which

makes B into an orthonormal basis.

Definition 1.1.2 Let g ∈ G, and suppose that

exp−1(g) =
r∑
j=1

nj∑
m=1

xjme
j
m

where xj = (xjm) ∈ Rnj , j = 1, . . . , r are the components of r tuples in Euclidean

spaces of different dimensions. We define the exponential coordinates of g with respect

to the basis B as the N-tuple

x = (x1, . . . , xr), xj ∈ Rnj .
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When the basis has already been fixed, we will just call these the exponential

coordinates of g. We will often identify g with its exponential coordinates.

As a consequence of exp being a diffeomorphism, we can lift the Lebesgue measure

on g to a bi-invariant Haar measure on G, which we denote by dg.

As G is a Lie group, for each fixed g ∈ G, the left-translation mapping Lg : G→ G

is smooth. We define the vector fields Xj
m on G by pushing forward the basis B,

(Xj
m)g = (Lg)∗e

j
m,

where (Lg)∗ is the differential of Lg. The inner product 〈·, ·〉 on g extends to TG by

requiring Xj
m form an orthonormal basis at each g ∈ G. More formally, we define

〈·, ·〉g = (Lg−1)∗〈·, ·〉. (1.1)

If S is an orientable, C2 hypersurface in G, we define the horizontal normal NH

and H-perimeter measure σH by

NH = projV1 ν =

n1∑
j=1

〈ν,X1
j 〉X1

j (1.2)

dσH = |NH | dσ, (1.3)

where ν is the outward unit normal and σ = HN−1 is the N−1-dimensional Hausdorff

measure of S. See [27] for relevant details. Note that NH is simply the projection of

ν onto V1. If S is the level set of some C2 function f , then

NH =
∇Hf

|∇f |
, dσH =

|∇Hf |
|∇f |

dσ.

Given Ω ⊂ G open and u : Ω→ G smooth, we define the sub-Laplacian of u by

∆Hu =

n1∑
j=1

(X1
j )2u,

and the horizontal gradient of u as

∇Hu =

n1∑
j=1

(X1
j u)X1

j .
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Using the inner product, one finds

|∇Hu|2 =

n1∑
j=1

(X1
j u)2.

Thanks to Hörmander’s theorem [50], the sub-Laplacian on a Carnot group is

always C∞ hypoelliptic. In addition, there exists a fundamental solution Φ(g) for

−∆H that left-inverts −∆H . That is,

−∆H(Φ ◦ Lg−1) = δg

in the sense of distributions (see [16]). By hypoellipticity, Φ is smooth away from the

group identity e.

Assign to each layer Vj the formal degree j. Given u ∈ Vj, we define for λ > 0 the

family of non-isotropic dilations ∆λ : g→ g by the formula,

∆λu = λju.

This induces a mapping δλ : G→ G,

δλ = exp ◦∆λ ◦ exp−1 .

The action θ : R×G→ G given by

θt(g) = δet(g)

defines a one-parameter group of acting on G. The infinitesimal generator Z of θ is

given by the formula (see [18], chapter IV, section 3)

(Xu)(θt(g)) =
d

dt
(u ◦ θt(g)).

If we call r = et, then unraveling the definitions and using the chain rule we have

(Zu)(δrg) = r
d

dr
(u ◦ δr(g)), r > 0. (1.4)

In exponential coordinates, one has

δλ(x1, x2, . . . , xr) = (λx1, λ
2x2, . . . , λ

rxr)
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so that

Z = 〈x1,∇x1〉+ 2〈x2,∇x2〉+ · · ·+ r〈xr,∇xr〉, (1.5)

where ∇xj denotes the Riemannian gradient with respect to the variables x1
j , . . . , x

nj
j ,

that is,

∇xju =
∂u

∂x1
j

∂

∂x1
j

+ · · ·+ ∂u

∂x
nj
j

∂

∂x
nj
j

.

The Riemannian divergence of Z is known as the homogeneous dimension of G, and

is given by

Q = divZ =
r∑
j=1

jnj.

We refer the reader to Proposition 5.3.12 of [16] for a proof of the following.

Proposition 1.1.1 Let G be a Carnot group and Φ be the fundamental solution of

−∆H with pole at e. Then Φ is homogeneous of degree 2 − Q with respect to the

dilations (δλ)λ>0.

Euclidean space Rn can be viewed as a Carnot group of step 1. Indeed, it is a

commutative Lie group with group action x◦y = x+y and its Lie algebra is isomorphic

to Rn. Its sub-Laplacian and horizontal gradient are the usual Laplacian and gradient

on Rn. The group dilations are given by δλ(x) = λx, and the homogeneous dimension

Q agrees with the topological dimension. Theorems which hold for Carnot groups of

arbitrary step also hold for Rn.

Remark 1.1.1 In the present work, we will often assume that r = 2. In that case

we make the following simplifications to the notation: dimV1 = n, dimV2 = m; the

basis B will be written B = {e1, . . . , en, ε1, . . . , εm}, with ej ∈ V1, j = 1, . . . , n and

εk ∈ V2, k = 1, . . . ,m; the exponential coordinates will be denoted (x, z), where x ∈ Rn

and z ∈ Rm; and the vector fields Xj
m will be denoted X1

j = Xj, j = 1, . . . , n, and

X2
k = Zk, k = 1, . . . ,m.
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1.1.2 The Heisenberg group, Hn

Definition 1.1.3 The n-dimensional Heisenberg-group Hn is Rn×Rn×R, and en-

dowed with the group law

(x′, y′, z′) ◦ (x, y, z) = (x+ x′, y + y′, z + z′ +
1

2
(〈x′, y〉 − 〈y′, x〉)), (1.6)

where x, x′, y, y′ ∈ Rn, z, z′ ∈ R, and 〈·, ·〉 is the usual inner product on Rn.

By computing the differential of left-translation by an element g = (x, y, z) and

pushing forward the standard basis elements of Rn × Rn × R, we get the following

representations of basis vectors for its Lie algebra h:

Xj = (Lg)∗ej =
∂

∂xj
− yj

2

∂

∂z
, j = 1, . . . , n

Yj = (Lg)∗en+j =
∂

∂yj
+
xj
2

∂

∂z
, j = 1, . . . , n

Z = (Lg)∗e2n+1 =
∂

∂z
.

We easily see that

[Xi, Yj] = δijZ, [V, Z] = 0, V ∈ h, (1.7)

Hence Hn is a step-two Carnot group with V1 = span{Xj, Yj : j = 1, . . . , n}, V2 =

span{Z}, and homogeneous dimension Q = 2n + 2. Figure 1.1 illustrates V1 in the

case n = 1.

We recall that, in the r = 2 case (c.f. [24], page 12) the Baker-Campbell-Hausdorff

formula reads

exp−1(expU expV ) = U + V +
1

2
[U, V ]. (1.8)

Taking

U =
n∑
j=1

(x′jXj + y′jYj) + z′Z

V =
n∑
j=1

(xjXj + yjYj) + zZ,
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Figure 1.1. The horizontal distribution spanned by X and Y in the
Heisenberg group H for various points in the xy-plane. Graphic pro-
duced in Python using matplotlib.

we have from (1.8) and (1.7)

exp−1(expU ◦ expV ) =
n∑
j=1

[(xj + x′j)Xj + (yj + y′j)Yj] + (z + z′)Z

+
1

2
[
n∑
j=1

(x′jXj + y′jYj) + z′Z,
n∑
k=1

(xjXj + yjYj) + zZ]

=
n∑
j=1

[(xj + x′j)Xj + (yj + y′j)Yj] + (z + z′)Z

+
1

2

n∑
j=1

(x′jyj − y′jxk)Z.

In particular, the group law (1.6) is already given in exponential coordinates.



7

If one takes the sums of the squares of the Xj and Yj, we get an exponential

representation of the sub-Laplacian:

n∑
j=1

(X2
j + Y 2

j ) =
n∑
j=1

(
∂2

∂x2
j

− yj
∂2

∂xj∂z
+
y2
j

4

∂2

∂z2
)

+
n∑
j=1

(
∂2

∂y2
j

+ xj
∂2

∂yj∂z
+
x2
j

4

∂2

∂z2
)

= ∆(x,y) +
r2

4

∂2

∂z2
+

∂

∂z
Θ

where we have denoted ∆(x,y) to be the Laplacian in the variables x and y, r2 =

|x|2 + |y|2, and Θ is the vector field defined by

Θ =
n∑
j=1

(xj
∂

∂yj
− yj

∂

∂xj
). (1.9)

1.1.3 Groups of Heisenberg type

Each step-two Carnot group comes with a mapping J : V2 → End(V1) defined by

〈J(z)x, x′〉 = 〈[x, x′], z〉

where we have denoted

x = x1e1 + · · ·xnen, x′ = x′1e1 + · · ·+ x′ne
′
n, z = z1ε1 + · · ·+ zmεm,

and 〈·, ·〉 is the left-invariant inner product defined in Section 1.1.1.

Definition 1.1.4 If the inner product 〈·, ·〉 can be chosen in such a way that for each

z ∈ V2 with |z| = 1 the mapping J(z) is an orthogonal mapping, then the group G is

said to be of Heisenberg-type (or H-type for short).

The mapping J is called the Kaplan mapping, and was considered by Kaplan

in [53]. It is useful, because it allows us to write down the left-invariant vector fields

and sub-Laplacian in terms of the Kaplan mapping:
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Lemma 1.1.1 If G is a group of Heisenberg-type, then in exponential coordinates

Xj =
∂

∂xj
+

1

2

m∑
`=1

〈J(ε`)x, ej〉
∂

∂z`
(1.10)

∆H = ∆x +
|x|2

4
∆z +

m∑
`=1

∂

∂z`
Θ`, (1.11)

where

Θ` =
n∑
j=1

〈J(ε`)x, ej〉
∂

∂xj
.

See [44] for the relevant calculations.

We note that the Heisenberg group itself is a group of Heisenberg-type, since J(ε)

is given by the block matrix

J(ε) =


j 0 · · · 0

0 j · · · 0
...

...
. . .

...

0 0 0 j

 ,

where 0 represents the 2× 2 zero matrix and j is a 2× 2 matrix

j =

0 −1

1 0

 .

In this case, m = ` = 1, and a simple computation shows that Θ1 = Θ, where Θ is

given above in (1.9).

Distances in groups of H-type

Let G be a group of H-type. There are two distinct (though comparable) ways to

quantify distances on G.

The Korányi gauge ρ : G→ [0,∞) is defined by

ρ(g) = (|x|4 + 16|z|2)1/4. (1.12)
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Introduced by Korányi in [55], the Korányi gauge gives a distance function dK :

G×G→ [0,∞) via the formula

dK(g, h) = ρ(g−1h) = ρ(h−1g).

A proof of the triangle inequality for dK can be found in [21].

Figure 1.2. The unit “gauge-sphere” in H, that is, {g ∈ H : ρ(g) = 1}.
The coloring is based on the Euclidean distance from the origin. The
portion {x > 0, y > 0} has been cut out to reveal more of the structure
of the ball. Graphic produced in MATLAB.

Another useful distance to consider is known as the Carnot-Carathéodory distance

(or CC-distance for short) and is defined as follows. We call a C1 curve γ : [0, 1]→ G

horizontal if, for each t ∈ [0, 1] its velocity vector γ̇ lies in V1, that is,

γ̇(t) ∈ span{(X1)γ(t), . . . , (Xn)γ(t)}.

The length of a horizontal curve γ is defined by the formula

LG(γ) =

ˆ 1

0

|γ̇(t)| dt,

where |a| = 〈a, a〉1/2 and the inner product is the one given in (1.1). The distance

dG,CC : G×G→ [0,∞) is then given by

dG,CC(g, h) = inf{LG(γ) : γ is horizontal , γ(0) = g, γ(1) = h}.
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Thanks to the Chow-Rashevsky theorem (see [22] or [70]), this is a true distance. The

length minimizing curves are called geodesics. In the Heisenberg group, geodesics are

spirals, as illustrated in Figure 1.3.

2.0
1.5

1.0
0.5

0.0 1.0

0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 1.3. A geodesic connecting (0, 0, 0) to (0, 0, π) in H. Graphic
produced with Python and the matplotlib library.

Although the Carnot-Carathéodory distance is defined on all Carnot groups in

the same way described above, H-type groups are distinguished in that it is possible

to write down the Carnot-Carathéodory distance for these groups exactly, see [12]

and [20] for Hn, and [30] for H-type groups. We define ν : [0, π]→ [0,∞] by ν(0) = 0,

ν(π) =∞, and

ν(θ) =
θ

sin2 θ
− cot θ = − d

dθ
(θ cot θ), 0 < θ < π.
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ν is a strictly increasing diffeomorphism. Let g = (x, z) ∈ G be given and θ = θg ∈

[0, π] be the unique solution to ν(θ) = 4|z|
|x|2 . Then

dG,CC(g, e) =


√

4π|z| if x = 0

|x| θ
sin θ

if x 6= 0.

(1.13)

Here, we use the convention θ
sin θ

= 1 when θ = 0. Often, we will write d(g) =

d(x, z) = dG,CC(g, e) whenever g = (x, z) in exponential coordinates.

Figure 1.4 shows CC-spheres of varying radii in the Heisenberg group. Notice that

the ball is “pinched” near the z-axis. This feature is more pronounced for spheres of

larger radii.

Figure 1.4. The Carnot-Carathéodory spheres {g ∈ H : dG,CC(g, e) =
r} of radii r = 1, 2, 3, 4. The portion {x > 0, y > 0} has been cut
out to reveal more of the structure of the ball. Graphic produced in
MATLAB.

ρ and dG,CC(·, e) give two different ways of measuring distance from the group

identity, however they are comparable in the following sense: there exists C ≥ 1 such

that for every g ∈ G,

C−1ρ(g) ≤ dG,CC(g, e) ≤ Cρ(g).
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Such inequality follows from the 1-homogeneity of dG,CC and ρ, together with the

compactness of the unit gauge balls.

As we will see in the next two sections, the Korányi gauge is connected to the

Green function for H-type groups, whereas the Carnot-Carathéodory distance is re-

lated to asymptotics of the heat kernel. The relation of the heat kernel and Carnot-

Carathéodory distance was studied extensively in [30] where Eldredge gave two-sided

Gaussian bounds away from the group identity. This connection is further cemented

in Chapter 4.

The fundamental solution on Carnot groups and the H-gauge

An interesting observation which leads to a formula for the fundamental solution

on H-type groups is the following.

Proposition 1.1.2 Suppose that f : [0,∞) → R and u = f ◦ ρ. Then u solves

∆Hu = 0 if and only if f satisfies

f ′′ +
Q− 1

ρ
f ′ = 0.

Before proving Proposition 1.1.2, we prove the following Lemma which is useful

not only here, but also later on in Chapter 2.

Lemma 1.1.2 Let G be of H-type. If u is any smooth function defined on a domain

Ω ⊂ G, then in all of Ω one has

〈∇Hu,∇Hρ〉 =
|x|2

ρ3
Zu+

1

2
〈J(∇zρ)x,∇xu〉 (1.14)

=
|x|2

ρ3
Zu+

4

ρ3
〈J(z)x,∇xu〉.

In particular, taking u = ρ and Ω = G one has

|∇Hρ|2 =
|x|2

ρ2
.
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Proof According to (1.10) we have

〈∇Hu,∇Hρ〉 =
n∑
j=1

(
∂u

∂xj
+

1

2

m∑
`=1

〈J(ε`)x, ej〉
∂u

∂z`
)(
∂ρ

∂xj
+

1

2

m∑
k=1

〈J(εk)x, ej〉
∂ρ

∂zk
)

=
n∑
j=1

∂u

∂xj

∂ρ

∂xj
+

1

2

n∑
j=1

m∑
k=1

∂u

∂xj
〈J(εk)x, ej〉

∂ρ

∂zk

+
n∑
j=1

m∑
`=1

〈J(ε`)x, ej〉
∂u

∂z`

∂ρ

∂xj

+
1

4

n∑
j=1

m∑
`=1

m∑
k=1

〈J(ε`)x, ej〉
∂u

∂z`
〈J(εk)x, ej〉

∂ρ

∂zk

= 〈∇xu,∇xρ〉+
1

2
〈J(∇zρ)x,∇xu〉+

1

2
〈J(∇zu)x,∇xρ〉

+
1

4

n∑
j=1

m∑
`=1

m∑
k=1

〈J(ε`)x, ej〉
∂u

∂z`
〈J(εk)x, ej〉

∂ρ

∂zk
. (1.15)

Note that

n∑
j=1

〈J(ε`)x, ej〉〈J(εk)x, ej〉 = 〈J(ε`)x, J(εk)x〉 = δ`k|x|2,

where the last equality holds by polarization and the H-type assumption. Hence

1

4

n∑
j=1

m∑
`=1

m∑
k=1

〈J(ε`)x, ej〉
∂u

∂z`
〈J(εk)x, ej〉

∂ρ

∂zk
=

1

4
〈∇zu,∇zρ〉|x|2. (1.16)

We easily see that

∇xρ =
|x|2

ρ3
x (1.17)

∇zρ =
8

ρ3
z, (1.18)

and therefore

〈J(∇zu)x,∇xρ〉 =
|x|2

ρ3
〈J(∇zu)x, x〉 =

|x|2

ρ3
〈[x, x], J(∇zu)〉 = 0. (1.19)

Inserting (1.16) and (1.19) into (1.15), we find

〈∇Hu,∇Hρ〉 = 〈∇xu,∇xρ〉+
1

4
|x|2〈∇zu,∇zρ〉+

1

2
〈J(∇zρ)x,∇xu〉. (1.20)
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On the other hand, from (1.17) and (1.18),

〈∇xu,∇xρ〉+
1

4
|x|2〈∇zu,∇zρ〉 =

|x|2

ρ3
〈∇xu, x〉+

2|x|2

ρ3
〈∇zu, z〉

=
|x|2

ρ3
Zu. (1.21)

Substituting (1.21) into (1.19), we arrive at (1.14).

By inspection, one easily sees that the Korányi gauge is homogeneous of degree 1

with respect to the dilations (δλ)λ>0 and therefore Zρ = ρ. Inserting this information,

together with (1.17) and (1.19) (with u = ρ) into (1.14), we find

|∇Hρ|2 =
|x|2

ρ2
,

completing the proof.

Proof of Proposition 1.1.2 (1.17) and (1.18) imply that for ` = 1, . . . ,m,

Θ`ρ =
n∑
j=1

|x|2xj
ρ3
〈J(ε`)x, ej〉

=
|x|2

ρ3

n∑
j=1

〈J(ε`)x, x〉

= 0

where we have again used [x, x] = 0. Also, we have

∆xρ =
|x|2

ρ7
[(n+ 2)ρ4 − 3|x|4]

∆zρ =
8

ρ7
(mρ4 − 24|z|2)

and therefore

∆Hρ =
|x|2

ρ7
[(n+ 2)ρ4 − 3|x|4 + 2mρ4 − 48|z|2)

=
|x|2

ρ7
[(Q+ 2)ρ4 − 3(|x|4 + 16|z|2))

= (Q− 1)
|x|2

ρ3
.
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If u = f ◦ ρ, then

∆Hu = f ′′(ρ)|∇Hρ|2 + f ′(ρ)∆Hρ

=
|x|2

ρ2
f ′′(ρ) + (Q− 1)

|x|2

ρ3
f ′(ρ)

from which the claim follows.

Using an integrating factor, it is easy to see that the general solution to the ODE

in Proposition 1.1.2 is given by

f(ρ) = c1ρ
2−Q + c2.

As we expect the Green function for the sub-Laplacian to decay to 0 at infinity, this

suggests that c2 = 0. In [53], Kaplan proved the following:

Theorem 1.1.1 Define C > 0 by

c−1
1 = n(Q− 2)

ˆ
G

dxdz

(|x|2 + 1)2 + 16|z|2)
Q+2
4

.

If G is of H-type, G = c1ρ
2−Q is a fundamental solution for −∆H with pole at e ∈ G..

In particular, this gives a formula for the Green function on the Heisenberg group.

However, this had previously been found in the special case of Hn by Folland in [35].

Theorem 1.1.1 motivates the following definition on Carnot groups of arbitrary

step.

Definition 1.1.5 Let G be any Carnot group and Φ : G \ {e} → (0,∞) the funda-

mental solution for −∆H with pole at e. We define the H-gauge ρ : G → R by the

formula

ρ(g) =

0 if g = e

Φ(g)
1

2−Q otherwise.

(1.22)

The H-gauge is a smooth function defined on all of G and, due to Proposition

1.1.1, homogeneous of degree 1 with respect to the dilations (δλ)λ>0. On groups of
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H-type, the H-gauge in (1.22) is a constant multiple of the Korányi gauge by Theorem

1.1.1; thus when G is of H-type, we will renormalize the H-gauge so that it agrees

with the Korányi gauge. Remarkably, the H-gauge behaves rather like the Korányi

gauge even on general Carnot groups as evidenced from the following (see Proposition

5.4.3 in [16]).

Proposition 1.1.3 Let G be any Carnot group. Let f : [0,∞)→ R be smooth. Then

∆Hρ = |∇Hρ|2
Q− 1

ρ
,

and thus

∆H(f ◦ ρ) = |∇Hρ|2[f ′′(ρ) +
Q− 1

ρ
f ′(ρ)].

The heat kernel for groups of H-type

Similar to the Laplacian −∆ in Rn, the sub-Laplacian −∆H is a generator for a

Markov process on G known as Brownian motion. The Brownian motion on G can

be approximated as follows: consider n independent one-dimensional fair random

walks (Si), i = 1, 2, . . . having step size
√
h, where h > 0. Call the jumps on the kth

step Sk = (S1
k , . . . , S

n
k ) ∈ Rn, so Sik = ±

√
h for i = 1 . . . , n. This not only gives a

discrete random walk in Rn by considering Xk = S1 + · · · + Sk at time kh, but also

one in the group G by treating gn = (Xn, 0) ∈ Rn+m as an element of the group in

exponential coordinates and letting

hn = gn ◦ gn−1 ◦ ... ◦ g2 ◦ g1.

denote a particle’s position at time kh. Then by letting h→ 0, we recover Brownian

motion on G.

The dilations (δλ)λ>0 means that the steps behave like
√
h in the horizontal di-

rections, but h in the second layer. Thus the process — and hence the heat flow
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Figure 1.5. Brownian motion for t ∈ [0, 1] starting at the origin.
Top: In the Heisenberg group H using the sub-Laplacian as generator.
Bottom: In R3 using the Laplacian as generator.

associated to the heat operator ∂t−∆H — tends to spread out more in the horizontal

directions since h is small. An illustration of this is given in Figure 1.5, and compared

with Brownian motion in R3. Notice how the Heisenberg Brownian motion does not

significantly rise or fall while it moves close to the y-axis. This reflects the fact that

Y = ∂y when x = 0.
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If u : G× (0,∞)→ R solves the heat equation and u(g, t) = v(ρ(g), t) for some v,

then v solves

|∇Hρ|2(vρρ +
Q− 1

ρ
vρ) = vt.

In the elliptic case, the absence of the vt term allows us to divide by |∇Hρ|2 and solve

the corresponding ODE, but this is no longer possible in the parabolic case. Thus

unlike the harmonic case, one cannot solve the heat equation directly to find the heat

kernel in terms of the Korányi gauge. In fact, the heat kernel on H-type groups is

more closely related to the Carnot-Carathéodory distance. This is graphically evident

from Figure 1.6, which shows a thermal cross-section of the Heisenberg heat kernel

when t = 1. The horizontal axis represents |x| (and reflected about the vertical axis),

and the vertical axis z.

Figure 1.6. Thermal diagram of the Heisenberg heat kernel at t = 0.1.
Compare to the CC-spheres given in Figure 1.4. Graphic produced in
Mathematica.
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Regardless of the qualitative similarity between Figures 1.4 and 1.6, it is not true

that pt(g, g
′) is Gaussian with respect to the Carnot-Carathéodory distance. However,

two-sided Gaussian bounds of the following form apply: there exists a constant M > 0

depending only on the homogeneous dimension

M−1t−Q/2 exp(−Md(g)2

t
) ≤ pt(g) ≤Mt−Q/2 exp(−Md(g)2

t
). (1.23)

(1.23) holds for all Carnot groups and, more generally, sum-of-squares operators sat-

isfying Hörmander’s condition, see [52]. If d is replaced by any other equivalent

homogeneous norm, e.g. the Korányi gauge, one gets a similar two-sided Gaussian

estimate, perhaps with a different constant M .

The most explicit formula available for the H-type heat kernel with pole at e is

given in exponential coordinates by

pt((x, z), (0, 0)) = (4πt)−Q/2
ˆ
Rm

exp(i〈2ξ
t
, z〉) exp(−|x|

2

4t
· 2|ξ|

tanh 2|ξ|
)(

2|ξ|
sinh 2|ξ|

)n/2 dξ.

(1.24)

(1.24) is attributed to Hulanicki [51] and Gaveau [45], see also [25], [69], and [30].

Due to the group structure of G and left-invariance of −∆H , we have pt(g
′, g) =

pt(g
−1g′, e). Therefore, we typically speak of the function pt(g) = pt(g, e).

Notice from (1.24) that pt(x, z) is homogeneous of degree −Q with respect to the

space-time dilations (x, z, t) 7→ (λx, λ2z, λ2t). Thus

pt(x, z) = t−Q/2p1(
x√
t
,
z

t2
).

This also implies that pt(x, z) solves the first-order PDE

Zpt + 2t∂tpt = −Qpt,

where Z is the usual generator of the non-isotropic dilations in (1.5). This will be a

helpful observation in Chapter 4.

1.2 Diffusion operators and the Γ calculus

Let M be a smooth manifold with smooth measure µ and an elliptic second order

diffusion operator L defined on smooth functions on M. We assume that L1 = 0 and
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that L is symmetric on C∞0 (M) with respect to the L2(M, µ) inner product. Many of

the definitions that follow can also be found in [5] and [7].

1.2.1 The carré du champ

Definition 1.2.1 The carré du champ is a symmetric first-order bilinear differential

operator defined on smooth functions, given by the formula

Γ(u, v) =
1

2
(L(uv)− uLv − vLu). (1.25)

The iteration of the carré du champ is a symmetric second-order bilinear differential

operator defined on smooth functions. It is defined similar to (1.25), but uses Γ as

the multiplication:

Γ2(u, v) =
1

2
(LΓ(u, v)− Γ(u,Lv)− Γ(Lu, v)). (1.26)

We write Γ(u) as short-hand for Γ(u, u), and similarly for Γ2. It is important to

note that Γ(u) ≥ 0 since L is a diffusion operator. This fact can be found in [5].

The definition of the carré du champ allows us to perform a version of integration

by parts whenever u or v is compactly supported:ˆ
M

Γ(u, v) =
1

2

ˆ
M

[L(uv)− uLv − vLu] dµ = −
ˆ
M
uLv dµ = −

ˆ
M
vLu dµ.

The last equality holds since L is assumed to by symmetric over C∞0 (M), whereasˆ
M
L(uv) dµ = 0

since the integration is performed over a compact set. In particular, we may take a

cutoff function which is identically equal to 1 on the domain of integration and use

the symmetry of the operator L. Since L(1) = 0, the formula follows.

The carré du champ can be used to extend L to a self-adjoint operator on D(L) ⊂

L2(M) via the Friedrichs extension. We briefly recall the construction. One defines

the Dirichlet form E and the Dirichlet norm ‖·‖E on C∞0 :

E(u, v) =

ˆ
M

Γ(u, v) dµ

‖u‖2
E = ‖u‖2

L2(M) + E(u, u).
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We let D(E) be the completion of C∞0 (M) with respect to this norm, which imbeds

into L2(M). The domain D(L) is then defined by the set of u ∈ D(E) such that there

exists a finite constant C = C(u) <∞ with

E(u, v) ≤ C ‖v‖L2(M)

for every v ∈ D(E). In this case, we define Lu by extending the integration by parts

formula
ˆ
M
vLu dµ = −

ˆ
M

Γ(u, v) dµ, u ∈ D(L), v ∈ D(E). (1.27)

We emphasize that D(L) ⊂ D(E) by definition.

1.2.2 The curvature-dimension inequality

Let M be an n-dimensional Riemannian manifold with metric g and Laplace-

Beltrami operator L = ∆. We recall the formula

∆(uv) = u∆v + v∆u+ g(∇u,∇v)

where ∇u is the Riemannian gradient of u, that is, ∇u = (du)], where ] : T ∗(M) →

T (M) is the musical isomorphism, see [59]. From this it follows that

Γ(u, v) = g(∇u,∇v). (1.28)

We also recall the Bochner formula [14],

Γ2(u) =
∥∥∇2u

∥∥2

HS
+ Ric(∇u,∇u), (1.29)

where ‖A‖HS is the Hilbert-Schmidt norm, ∇2u is the Hessian of u, and Ric is the

Ricci curvature tensor. If the Ricci curvature is bounded below in the sense of bilinear

forms by some ρ ∈ R, then by the Cauchy-Schwarz inequality,

Γ2(u) ≥ 1

n
(∆u)2 + ρg(∇u,∇u).

This observation for Riemannian manifolds motivates the following definition for ar-

bitrary manifolds with measure and diffusion operator.
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Definition 1.2.2 We say that the pair (M, L) satisfies the curvature-dimension in-

equality CD(ρ, n) for ρ ∈ R and n ∈ (0,∞] if, for each u ∈ C∞(M),

Γ2(u) ≥ 1

n
(Lu)2 + ρΓ(u). CD(ρ, n)

In CD(ρ, n), we treat 1
n

as 0 when n =∞.

Based on the discussion above, n-dimensional Riemannian manifolds with Ric ≥ ρ

satisfy CD(ρ, n). In fact, Bakry proved in [3] that an n-dimensional Riemannian

manifold satisfies CD(ρ, n) if and only if Ric ≥ ρ.

What is not so obvious is that there are other manifolds with diffusion operator

L satisfying CD(ρ, n). Many examples can be found in [5]. Two interesting ones:

• Bessel operator : Fix α ≥ 0. Let M = (0,∞), and define Lα = d2

dx2
+ α

x
d
dx

.

Then the pair M and L satisfy CD(0, α + 1). Notice that when α > 0, the

“dimension” part of the curvature-dimension inequality is strictly larger than

the topological dimension of M.

• Ornstein-Uhlenbeck operator : Fix ρ ∈ R. Let M = Rn and Lρ = ∆ − ρ〈x,∇〉.

The operator Lρ is the generator of a stochastic process given by a time-change

of Brownian motion. This pair satisfies CD(ρ,∞). Interestingly, if ρ 6= 0, one

can show that (M,Lρ) cannot satisfy CD(ρ′, n) for any choice of ρ′ when n is

finite – the operator is intrinsically infinite dimensional.

1.2.3 The heat semigroup for L

As L is a diffusion operator, it possesses a heat semigroup (Pt)t≥0 defined on

L2(M, µ) which satisfies the following properties, see [7].

• Pt+s = Pt ◦ Ps

• P0 = Id

• Pt is sub-Markov and positivity preserving, that is if 0 ≤ f ≤ 1 then 0 ≤ Ptf ≤ 1
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• There exists a smooth positive kernel pt : M×M→ (0,∞) such that

Ptf(x) =

ˆ
M
pt(x, y)f(y) dµ(y).

Furthermore, pt(x, y) = pt(y, x) since L is symmetric, and pt satisfies the

Chapman-Kolmogorov identity

pt(x, y) =

ˆ
M
pt(x, z)pt(z, y) dµ(z). (1.30)

1.2.4 Completeness for diffusion operators

Saying that a Riemannian manifold (M, g) is complete means to say that it is

complete as a metric space when the metric is the geodesic metric. Equivalently by

the Hopf-Rinow theorem, M is complete if it is geodesically complete, that is, every

maximally extended geodesic is defined on all of R [18]. A third, equivalent, notion

that applies to diffusion operators is the following:

Definition 1.2.3 We will say that the pair (M, L) is complete if there exists an

exhaustion sequence of functions {hn}∞n=1, such that (1) hn ∈ C∞0 (M) for each n, (2)

0 ≤ hn ≤ 1, (3) hn ↗ 1 pointwise as n→∞, and (4) ‖Γ(hn)‖L∞(M) → 0 as n→∞.

It is tempting to include the measure µ in the definition of completeness since the

L∞(M) norm is used, but this is unnecessary since the sequence hn is assumed to be

smooth.

For example, in Rn, one can construct an exhaustion sequence as follows. Let

un(x) =


1 |x| ∈ [0, n]

2− 1
n
|x| |x| ∈ [n, 2n]

0 |x| ∈ [2n,∞),

and define hn(x) as a mollified version of un(|x|). More generally on a Riemannian

manifold (M, g), one uses a mollified form of un(d(x,O)), where d(·, ·) is the Rieman-

nian geodesic distance induced by the metric g, and O is an arbitrary fixed point in

M.
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(a) (b)

Figure 1.7. (a): un(|x|), n = 1, 2, 3, 4 (produced in Mathematica). (b)
h2 in the exhaustion sequence for R2 (produced in MATLAB).

1.3 Layout of the remainder of this thesis

The remainder of this document contains three projects. Below is a short list

of the topics, including the portions of the present chapter required to follow the

indicated chapter.

• Chapter 2 – Almgren-type frequency on Carnot groups. This chapter refers

to Sections 1.1.1–1.1.3, excluding the Carnot-Carathéodory distance and heat

kernel on H-type groups.

• Chapter 3 – Struwe- and Poon-type functionals for symmetric diffusion opera-

tors. This makes use primarily of Sections 1.2.1 – 1.2.4, but also briefly works

with the heat kernel and heat semi-group on H-type groups (among other sub-

Riemannian manifolds) in Section 3.7. Thus we also recommend reading Section

1.1.3.

• Chapter 4 – Heat kernel asymptotics and Wiener criterion for groups of H-type.

As the chapter’s name suggests, Sections 1.1.1–1.1.3 are useful here, including

the Carnot-Carathéodory distance and heat kernel for H-type groups.
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2. Almgren-type frequency on Carnot groups

2.1 History of Almgren’s frequency

Let Br = {x ∈ Rn : |x| < r}. In [2], Almgren showed that the frequency of u

given by

N(r) =
r
´
Br
|∇u|2 dx´

∂Br
u2 dσ

=
rD(r)

H(r)
, 0 < r < R (2.1)

is monotonically non-decreasing in r when u is harmonic in BR. In [40] and [41],

Garofalo and Lin showed that monotonicity of Almgren’s frequency implies doubling

of the height function

H(r) =

ˆ
∂Br

u2 dσ,

which in turn implies the doubling of the integral of u2 over solid balls and the strong

unique continuation property (sucp) for the Laplacian. Recently, the frequency has

been applied to the thin obstacle problem, see [66] for this aspect.

Garofalo and Lanconelli [39] gave a definition of the Almgren’s frequency on

the Heisenberg-group Hn using the Korányi gauge and the horizontal gradient of

u. Specifically, they defined the height and Dirichlet energy by

Hu(r) =

ˆ
{ρ(g)=r}

u2 |∇Hρ|2

|∇ρ|
dH2n

Du(r) =

ˆ
{ρ(g)<r}

|∇Hu|2 dg,

where H2n is the Hausdorff measure of the set {ρ(g) = r}. Almgren’s frequency on

Hn is then still defined in terms of the height and Dirichlet functions by (2.1). Garo-

falo and Lanconelli were interested in sucp for the Heisenberg group. An important

quantity in their analysis was the vector field

Θ =
n∑
j=1

yj∂xj − xj∂yj , (2.2)
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which is the same vector field appearing in the sub-Laplacian ∆H given in (1.9).

In this chapter, we recall the main results of the paper [42] by the author and

Garofalo. There, the authors gave a definition of Almgren’s frequency on Carnot

groups of arbitrary step, and gave a sufficient condition for such frequency to be

monotonic. This condition became known as the function u having vanishing dis-

crepancy at the identity. They also studied the local boundedness of the frequency

and proved a sufficient condition for N to be locally bounded. Finally, a relation-

ship between discrepancy and one-parameter monotonicity formulas of Weiss- and

Monneau-type was established. In particular, these are monotonic if u has vanishing

discrepancy at e.

The layout of the chapter will be rather similar to [42].

2.2 Preliminaries: Almgren’s monotonicity in Rn

Before we begin, we would like to recall an outline of the proof of Almgren’s

monotonicity in Rn. This provides a basis for the proof in Carnot groups. Assume

throughout that u is classically harmonic.

1. Integrating by parts, one has

rD(r) =

ˆ
∂Br

uZu dσ,

where Zu = 〈x,∇u〉 is the generator of the (isotropic) dilations on Rn applied

to u.

2. By differentiating H(r), we arrive at the differential equation

H ′(r) =
n− 1

r
H(r) + 2D(r).

3. Using the Rellich identity and the co-area formula, the derivative of the Dirichlet

function is given by

D′(r) =
n− 2

r
D(r) + 2

ˆ
∂Br

(
Zu
r

)2 dσ. (2.3)
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4. Using the first three steps and inserting them into the logarithmic derivative of

N(r), the non-decreasingness of the frequency follows from the Cauchy-Schwarz

inequality.

The main steps of our study of Almgren’s frequency will follow along the same

lines. However, we will first prove an equivalent of Step 2, and Step 1 will follow from

the proof Step 2 with little effort. The quantity known as discrepancy comes into

play when completing the equivalent of Step 3. The final part of the proof, Step 4, is

given in Section 2.5.

2.3 The height, energy, and frequency on Carnot groups

Let G be a Carnot group of arbitrary step. If ρ denotes the H-gauge (Definition

1.1.5), we set for each r > 0

Br = {g ∈ G : ρ(g) < r}, Sr = {g ∈ G : ρ(g) = r}.

Br (respectively Sr) is called the gauge ball (respetively sphere) of radius r centered

at the identity.

Fix R > 0 and let u be a function defined on BR.

Definition 2.3.1 (a) The height integral of u at e is given by

H(u, r) =

ˆ
Sr

u2|∇Hρ| dσH (2.4)

where r ∈ (0, R).

(b) The Dirichlet integral of u at e is defined for r ∈ (0, R) by

D(u, r) =

ˆ
Br

|∇Hu|2 dg. (2.5)

(c) The frequency of u at e is the quotient

N(u, r) =
rD(u, r)

H(u, r)
(2.6)

for each r ∈ (0, R) such that H(u, r) 6= 0.
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See Chapter 1 for definitions of the relevant quantities such as ∇H , dg, and σH .

When the function u has been fixed or is otherwise understood, we write H(r), D(r),

and N(r).

Remark 2.3.1 One may object to dividing by the height functional in (2.6), as it is

not guaranteed a priori that H(r) 6= 0 on (0, R). We will, however, show in Corollary

2.5.1 that this is not a problem when ∆Hu = 0.

Remark 2.3.2 One may also define the height integral, Dirichlet integral, and fre-

quency at an arbitrary point g0 if u is defined in an open neighborhood of g0 by

replacing the H-gauge ρ with the quantity d(·, g0) = ρ(· ◦ g−1
0 ). However, by the left-

translation invariance of the Haar and H-perimeter measures, these can all be related

to height, Dirichlet, and frequency functionals at e. See [42] for details.

Remark 2.3.3 Let u : BR → R. Both the Haar measure and H-perimeter measure

of the gauge sphere scale well with respect to the dilations [27],

d(δλ(g)) = λQ dg

dσH(δλ(g)) = λQ−1dσH(g).

These behaviors are somewhat expected if one compares these quantities to how the

Lebesgue and Hausdorff measure of the ball and sphere dilate in Rn. Combining these

with the 0-homogeneity of |∇Hρ|, it follows that

N(u ◦ δλ, r) = N(u, rλ), λ ∈ (0,
R

r
).

It is because of this observation that we hereafter assume that R = 1.

2.4 First derivatives of height and energy; discrepancy

2.4.1 The derivative of the height function

The following lemma generalizes Step 2 of the Euclidean proof.
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Lemma 2.4.1 Assume that u is harmonic in B1. Then

2D(r) = rQ−1 d

dr
(r1−QH(r)). (2.7)

Equivalently, performing the differentiation,

H ′(r) =
Q− 1

r
H(r) + 2D(r). (2.8)

In order to prove Lemma 2.4.1, we need the following representation formula for

a function v involving the Green function having pole at e ∈ G (see [23]).

Lemma 2.4.2 Let r > 0, g ∈ G, and v ∈ C∞(G). Then

v(g) =

ˆ
Sr

v
|∇HΓ(·, g)|2

|∇Γ(·, g)|
dHN−1 −

ˆ
Br

∆Hv[Γ(g′, g)− r2−Q] dg′, (2.9)

where Γ(g, g′) is the fundamental solution of −∆H with pole at g′.

Proof of Lemma 2.4.1 Take g = e in (2.9). Recalling that ρ2−Q = Φ and Φ(g) =

Γ(g, e), we compute that

∇HΦ

Φ
= ρQ−2∇H(ρ2−Q) = ρQ−2(2−Q)ρ1−Q∇Hρ =

2−Q
ρ
∇Hρ.

and hence

|∇HΦ|
Φ

= (Q− 2)
|∇Hρ|
ρ

.

Notice that we have used the fact that Q ≥ 2. A similar formula holds for the length

of the Riemannian gradients. Consequently,

|∇HΦ|2

|∇Φ|
=
|∇HΦ|2/Φ2

|∇Φ|/Φ
Φ

=
(Q− 2)2|∇Hρ|2/ρ2

(Q− 2)|∇ρ|/ρ
ρ2−Q

=
(Q− 2)|∇Hρ|2

|∇ρ|
ρ1−Q

Inserting this into the representation formula (2.9),

v(e) =

ˆ
Sr

v
(Q− 2)|∇Hρ|2

|∇ρ|
ρ1−Q dHN−1 −

ˆ
Br

∆Hv[ρ2−Q − r2−Q] dg

= (Q− 2)r1−Q
ˆ
Sr

v|∇Hρ| dσH −
ˆ
Br

∆Hv[ρ2−Q − r2−Q] dg,
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where we have used the definition of the H-perimeter measure and the fact that ρ = r

on Sr. We now choose v = u2 to arrive at

u2(e) = (Q− 2)r1−Q
ˆ
Sr

u2|∇Hρ| dσH −
ˆ
Br

∆H(u2)[ρ2−Q − r2−Q] dg

= (Q− 2)r1−QH(r)− 2

ˆ
Br

|∇Hu|2[ρ2−Q − r2−Q] dg, (2.10)

where now we have used the definition of the height functional, the formula

∆H(u2) = 2u∆Hu+ 2|∇Hu|2,

and the fact that u is harmonic. We now differentiate each side of (2.10) with respect

to r:

(Q− 2)
d

dr
(r1−QH(r)) = 2

d

dr
(

ˆ
Br

|∇Hu|2[ρ2−Q − r2−Q] dg)

= 2

ˆ
Br

|∇Hu|2
d

dr
(−r2−Q) dg

= 2(Q− 2)r1−Q
ˆ
Br

|∇Hu|2 dg

= 2(Q− 2)r1−QD(r).

Note that the surface term vanishes when taking the derivative since the integrand is

zero when ρ = r.

2.4.2 The derivative of the Dirichlet function

We next wish to establish an analogue of Step 3 for Carnot groups. However, in

doing so we need a replacement for the Rellich identity. The proof of the following

for an arbitrary domain is from [44].
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Proposition 2.4.1 Assume that u and ζ are a smooth function and vector field de-

fined in a neighborhood of Br. Then one has

2

ˆ
Sr

ζu〈∇Hu,NH〉dHN−1 +

ˆ
Br

div ζ|∇Hu|2 dg

= 2
n∑
i=1

ˆ
Br

Xiu[Xi, ζ]u dg + 2

ˆ
Br

ζu∆Hu dg +

ˆ
Sr

|∇Hu|2〈ζ, ν〉 dHN−1

(2.11)

In (2.11), div is the Riemannian gradient and ν the Riemannian unit normal. NH

was defined previously in (1.2).

It should be noted that Proposition 2.4.1 holds with less stringent regularity re-

quirements: ζ only need be C1, Br and Sr = ∂Br may be replaced with an arbitrary

bounded open C1 domain Ω and ∂Ω, and u can be taken to belong to the Folland-Stein

class Γ2(Ω) (see [36]). However, the statement given is sufficient for our purposes by

hypoellipticity.

We wish to take ζ = Z. In doing so, we need to use the following properties for

Z, which may be found in [26]:

Lemma 2.4.3 Let Z be the generator of the non-isotropic dilations (δλ)λ>0.

(i) divZ = Q

(ii) For i = 1, . . . , n, [Xi,Z] = Xi.

Combining Proposition 2.4.1 and Lemma 2.4.3, one arrives at:

Lemma 2.4.4 Assume that u is harmonic on the unit gauge ball. Then

D′(r) = 2

ˆ
Sr

Zu
r
〈∇Hu,∇Hρ〉

dHN−1

|∇ρ|
+
Q− 2

r
D(r). (2.12)

Proof According to the co-area formula,

D(r) =

ˆ r

0

(

ˆ
ρ=t

|∇Hu|2
dHN−1

|∇ρ|
) dt,
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whence

D′(r) =

ˆ
Sr

|∇Hu|2
dHN−1

|∇ρ|
. (2.13)

We now take ζ = Z in Proposition 2.4.1, using Lemma 2.4.3 and the fact that ν = ∇ρ
|∇ρ| :

2

ˆ
Sr

Zu〈∇Hu,NH〉dHN−1 + (Q− 2)

ˆ
Br

|∇Hu|2 dg =

ˆ
Sr

|∇Hu|2Zρ
dHN−1

|∇ρ|
.

(2.14)

As ρ is homogeneous of dimension 1, Zρ = ρ = r on Sr. Combining this fact with

the definition of D(r), (2.13), and (2.14) show that

2

ˆ
Sr

Zu〈∇Hu,NH〉dHN−1 + (Q− 2)D(r) = rD′(r).

Finally, we use the definition of the horizontal normal (using again that ν = ∇ρ
|∇ρ|) to

conclude the proof.

2.4.3 Discrepancy at the group identity

When observing the derivative of the Dirichlet functional in Rn (2.3), the ideal

situation to be in would be if

D′(r) =
Q− 2

r
D(r) + 2

ˆ
Sr

(
Zu
r

)2|∇Hρ| dσH

=
Q− 2

r
D(r) + 2

ˆ
Sr

(
Zu
r

)2|∇Hρ|2
dHN−1

|∇ρ|
. (2.15)

Introducing and removing the surface integral in (2.15) from our formula (2.12) gives

D′(r) =
Q− 2

r
D(r) + 2

ˆ
Sr

(
Zu
r

)2|∇Hρ|2
dHN−1

|∇ρ|
(2.16)

+ 2

ˆ
Sr

Zu
r

(
〈∇Hu,∇Hρ〉 −

Zu
r
|∇Hρ|2

)
dHN−1

|∇ρ|
. (2.17)

Comparing this ideal situation with (2.12), we introduce the following quantity:
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Definition 2.4.1 Let u : B1 → R. The discrepancy of u (at the identity e) is given

by

Eu := 〈∇Hρ,∇Hu〉 −
Zu
r
|∇Hρ|2.

With Definition 2.4.1 in mind, Lemma 2.12 reads as follows:

D′(r) =
Q− 2

r
D(r) + 2

ˆ
Sr

(
Zu
r

)2|∇Hρ| dσH + 2

ˆ
Sr

Zu
r
Eu

dHN−1

|∇ρ|
(2.18)

2.5 Properties of the frequency function

We are now in a position to study closer the frequency of a harmonic function u, in

particular its well-definedness and monotonicity properties in regard to discrepancy.

Our first goal is to show that it is safe to divide by the height function when u 6≡ 0.

Proposition 2.5.1 Assume that ∆Hu = 0 in BR. Then

rD(r) =

ˆ
Sr

uZu|∇Hρ| dσH . (2.19)

Proof Ironically, our starting point is to differentiate the height function. As ρ is

homogeneous of degree 1, |∇Hρ|2 is homogeneous of degree 0. On the other hand,

recalling how the H-perimeter measure of the gauge sphere dilates (see Remark 2.3.3),

if we write g = δr(ĝ) where ĝ = δ1/r(g) ∈ S1, we see

H(r) =

ˆ
Sr

u2(g)|∇Hρ|(g) dσH(g)

= rQ−1

ˆ
S1

u2(δr(ĝ))|∇Hρ|(ĝ) dσH(ĝ).

Hence if we differentiate and use the fact that Z is the generator of the dilations

(δλ)λ>0, specifically (1.4),

d

dr
(r1−QH(r)) =

ˆ
S1

2u(δr(ĝ))
d

dr
(u(δr(ĝ)))|∇Hρ|(ĝ) dσH(ĝ)

=
2

r

ˆ
S1

u(δr(ĝ))(Zu) ◦ δr(ĝ)|∇Hρ|(ĝ) dσH(ĝ)

= 2r−Q
ˆ
Sr

u(g)(Zu)(g)|∇Hρ|(g) dσH(g). (2.20)
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But we know from (2.7) that

d

dr
(r1−QH(r)) = 2r1−QD(r). (2.21)

From (2.20) and (2.21) follows the proposition.

Proposition 2.5.1 implies the following.

Corollary 2.5.1 Assume that ∆Hu = 0 in BR. If H(r0) = 0, then u ≡ 0 on Br0.

Proof If H(r0) = 0 for some r0 ∈ (0, R), then u ≡ 0 on Sr0 . Then D(r0) = 0 by

Proposition 2.5.1. But then by (2.5), ∇Hu ≡ 0 on Br0 . As g is generated by V1, this

means that u must be constant in Br0 . Finally, since u = 0 on Sr0 , it follows that

u ≡ 0 in Br0 .

We hereafter assume that u 6≡ 0 on Br for any r ∈ (0, R) in which case N is

well-defined on (0, R). A consequence of Proposition 2.5.1 is the following.

Corollary 2.5.2 Assume that u is harmonic and homogeneous of degree κ with re-

spect to (δλ)λ>0. Then N(r) ≡ κ.

Proof If u is homogeneous of degree κ, then Zu = κu. This, (2.19), and the

definition of H(r), N(r) give the statement.

Theorem 2.5.1 Let u : B1 → R be harmonic on a Carnot group of arbitrary step.

Assume in addition that u has vanishing discrepancy. Then r 7→ N(r) is monotoni-

cally non-decreasing in the unit interval.

Proof The logarithmic derivative of u is given by

N ′(r)

N(r)
=

1

r
+
D′(r)

D(r)
− H ′(r)

H(r)
.
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We use Lemmas 2.4.1 and 2.4.4 (specifically (2.18) which relates D′(r) to the discrep-

ancy of u) to find

N ′(r)

N(r)
=

1

r
+
Q− 2

r
+

2

D(r)

ˆ
Sr

(
Zu
r

)2|∇Hρ|2
dHN−1

|∇ρ|

+
2

D(r)

ˆ
Sr

Zu
r
Eu

dHN−1

|∇ρ|
− Q− 1

r
− 2D(r)

H(r)

=
2

r2D(r)H(r)

[
H(r)

ˆ
Sr

(Zu)2|∇Hρ|2
dHN−1

|∇ρ|

+ rH(r)

ˆ
Sr

ZuEu
dHN−1

|∇ρ|
− r2D(r)2

]
. (2.22)

By Cauchy-Schwarz and Proposition 2.5.1,

(rD(r))2 = (

ˆ
Sr

uZu|∇Hρ| dσH)2

≤ (

ˆ
Sr

u2|∇Hρ| dσH)(

ˆ
Sr

(Zu)2|∇Hρ| dσH)

= H(r)

ˆ
Sr

(Zu)2|∇Hρ| dσH (2.23)

Inserting (2.23) into (2.22),

N ′(r)

N(r)
≥ 2

rD(r)

ˆ
Sr

ZuEu
dHN−1

|∇ρ|
.

Thus if Eu ≡ 0, it follows that N ′(r) ≥ 0.

2.6 Analysis of discrepancy

In view of the original result of Almgren and Theorem 2.5.1, one might expect

that every function has vanishing discrepancy in the case where G = Rn, n ≥ 3.

Although Theorem 2.5.1 gives only a sufficient condition for Almgren’s monotonicity,

it is in this case necessary as well, as demonstrated by the following.

Proposition 2.6.1 Let G = Rn with the usual group structure. If u : B1 → R, then

u has vanishing discrepancy at e.
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Proof Recall that (see e.g. [33]), up to a multiplicative constant, the H-gauge ρ(x) =

|x|. The proof is then a simple computation.

Theorem 2.5.1 is not worth much if the class of functions having vanishing discrep-

ancy is empty. Thus the next proposition shows that there exist in general functions

having vanishing discrepancy.

Proposition 2.6.2 The function g 7→ ρ(g) has vanishing discrepancy at e. In par-

ticular, any function depending only on the H-gauge distance of g to the identity also

has vanishing discrepancy at e.

Proof Due to the fact that Φ is homogeneous of degree 2 − Q with respect to the

dilations (δλ)λ>0, ρ is homogeneous of degree 1. This means that Zρ = ρ, in which

case

Eρ = 〈∇Hρ,∇Hρ〉 −
Zρ
ρ
|∇Hρ|2 ≡ 0.

The rest follows from the chain rule.

2.6.1 Discrepancy in H-type groups

In general, it is impossible to have an explicit representation of discrepancy with-

out knowing the fundamental solution. As mentioned in Theorem 1.1.1, such formula

was provided by Folland for Hn and Kaplan for the case of H-type groups – a constant

multiple of the (2 − Q)th power of the Korányi gauge. As such, up to rescaling the

domain of the frequency, we may assume that the gauge being used is the Korányi

gauge, that is,

ρ(x, z) = (|x|4 + 16|z|2)1/4

in exponential coordinates.

Let G be a group of H-type (see Section 1.1.3 for the definition and notation).

Lemma 2.6.1 gives a representation of the discrepancy of a function at e.
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Lemma 2.6.1 If u : B1 → R, then

Eu =
4

ρ3
〈J(z)x,∇xu〉 (2.24)

=
4

ρ3

m∑
`=1

z`Θ`u. (2.25)

In particular, u has vanishing discrepancy if and only if

〈J(z)x,∇xu〉 =
m∑
`=1

z`Θ`u ≡ 0.

Proof We recall Lemma 1.1.2, which states that for any u defined in the unit gauge

ball

〈∇Hu,∇Hρ〉 =
|x|2

ρ3
Zu+

1

2
〈J(∇zρ)x,∇xu〉

|∇Hρ|2 =
|x|2

ρ2
.

Combining these equations yields

〈∇Hu,∇Hρ〉 =
Zu
ρ
|∇Hρ|2 +

1

2
〈J(∇zρ)x,∇xu〉.

Hence by definition of discrepancy,

Eu := 〈∇Hu,∇Hρ〉 −
Zu
ρ
|∇Hρ|2 =

1

2
〈J(∇zρ)x,∇xu〉.

In view of (1.18), we arrive at (2.24). To get (2.25), we write z =
∑m

`=1 z`ε`, ∇xu =∑n
k=1(∂xku)ek and use the definition of Θ` given in the proof of Lemma 1.1.1.

A consequence of Lemma 2.6.1 and the discussion at the end of Section 1.1.3

produces the following corollary. This shows that our generalization of Almgren’s

frequency also properly generalizes that of Garofalo and Lanconelli from [39].

Corollary 2.6.1 Let G = Hn. A function u has vanishing discrepancy at e if and

only if Θu = 0, where Θ is given in (2.2).
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Lemma 2.6.1 also gives us a way to produce many more examples of functions

with vanishing discrepancy in H-type groups.

Definition 2.6.1 Let G be of H-type and u : B1 → R.

(a) If there exists v : [0,∞) × Rm → R such that u(x, z) = v(|x|, z) in exponential

coordinates, then we say that u has cylindrical symmetry.

(b) Assume that G = Hn for some n and set rj = |xj + iyj|, j = 1, . . . , n. If

u(x, y, z) = v(r1, . . . , rn, z) for some function v, then u is said to be polyradial.

(c) Fix U, V ∈ V1, the first layer of the Lie algebra of G. Define

fUV (x, z) = 〈J(z)x, U〉〈x, V 〉 − 〈J(z)x, V 〉〈x, U〉.

If u is in the envelope of functions generated by the functions fUV , then u is said

to be a generalized polyradial function.

Note that cylindrical functions are always polyradial in the case of G = Hn.

Proposition 2.6.3 Suppose that u is any of the types of functions in Definition 2.6.1.

Then u has vanishing discrepancy at e.

Proof First, suppose that u has cylindrical symmetry and write r = |x|. Then

∇xu =
1

r

∂v

∂r
x,

hence from (2.24)

〈J(z)x,∇xu〉 =
1

r

∂v

∂r
〈J(z)x, x〉 = 0.

For polyradial functions, it is simpler to use Corollary 2.6.1 than (2.24). As Θ

and the rj are independent of z ∈ R, it suffices to show that Θrj = 0 for j = 1, . . . , n.

But

Θrj =
n∑
i=1

(xi
∂rj
∂yi
− yi

∂rj
∂xi

)

= xj
yj
rj
− yj

xj
rj

= 0.
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Finally, we prove that generalized polyradial functions have vanishing discrepancy

by showing that each fUV has vanishing discrepancy. By the product rule,

∇xfUV = −〈x, V 〉J(z)U + 〈J(z)x, U〉V − 〈J(z)x, V 〉U + 〈x, U〉J(z)V.

hence

〈J(z)x,∇xfUV 〉 = −〈x, V 〉〈J(z)x, J(z)U〉+ 〈J(z)x, U〉〈J(z)x, V 〉

− 〈J(z)x, V 〉〈J(z)x, U〉+ 〈x, U〉〈J(z)x, J(z)V 〉

= −〈x, V 〉〈J(z)x, J(z)U〉+ 〈x, U〉〈J(z)x, J(z)V 〉.

Now, for any W,W ′ ∈ V1 we have

〈J(z)W,J(z)W ′〉 = |z|2〈W,W ′〉

〈J(z)W,W ′〉 = −〈W,J(z)W ′〉.

Thus

〈J(z)x,∇xfUV 〉 = −|z|2〈x, V 〉〈x, U〉+ |z|2〈x, U〉〈x, V 〉

= 0.

We now appeal to the second half of Lemma 2.6.1.

2.7 Strong unique continuation property for Carnot groups

Having studied the frequency and its derivative, we can now focus on the question

of unique continuation on Carnot groups. In Rn, the arguments we are about to

follow were first introduced by Garofalo and Lin in [41]. Let us start with the relevant

definition.

Definition 2.7.1 Let u be harmonic in B1. We say that u vanishes to infinite order

at e if for each k,

ˆ
Br

u2 dg = O(rk) as r → 0+.
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The proof of Garofalo and Lin first uses the frequency function to prove that the

height function satisfies a doubling condition, that is, H(2r) ≤ CH(r), where C > 0

is a constant independent of r (but depending on u). Then, via the coarea formula,

this doubling can be transferred to the solid integrals of u2 over balls. Finally, an

inductive argument is used to show that if u vanishes to infinite order, its L2-norm

over B1 – hence u itself – must be identically zero.

First, let us prove that the height function satisfies a doubling condition when u

is harmonic and has vanishing discrepancy.

Lemma 2.7.1 Assume that u is harmonic on B1 and fix 0 < r0 < 1. Assume also

that u has vanishing discrepancy. There exists a constant C1 = C1(r0, u,Q) such that

for any 0 < r ≤ 1
2
r0, we have

H(2r) ≤ 22N(r0)+Q−1H(r). (2.26)

Proof Let us begin by rewriting (2.7) as

d

dr
(ln r1−QH(r)) =

2D(r)

H(r)
=

2N(r)

r
.

If we integrate between r and 2r, we find that

ln
21−QH(2r)

H(r)
= 2

ˆ 2r

r

N(t)

t
dt

≤ 2N(r0)

ˆ 2r

r

1

t
dt

= 2N(r0) ln 2.

In the middle line, we have used the non-decreasingness of the frequency to majorize

N(t) by N(2r), then by N(r0). By rearranging this inequality, we find that we can

take C1 = 22N(r0)+Q−1.

At this point, we would like to transfer the doubling property from the height

function to the integrals of u2 over the solid balls. However, the weighting factor
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|∇Hρ|2
|∇ρ| inside of the height integrals poses an obstacle. Rather, integrating (2.26)

from 0 to r, we obtain by the coarea formulaˆ r

0

H(2t) dt =

ˆ r

0

ˆ
∂B2t

u2|∇Hρ|2
dHN−1

|∇ρ|

=
1

2

ˆ
B2r

u2|∇Hρ|2 dg
ˆ r

0

H(t) dt =

ˆ
Br

u2|∇Hρ|2 dg,

and hence ˆ
B2r

u2|∇Hρ|2 dg ≤ 22N(r0)+Q

ˆ
Br

u2|∇Hρ|2 dg,

which is not quite what we want. It is of course possible to bound

sup
Br

|∇Hρ|2 = sup
B1

|∇Hρ|2 =: C2

since |∇Hρ| is homogeneous of degree 0 with respect to (δλ)λ>0 and the unit ball is

compact, from this we obtainˆ
B2r

u2|∇Hρ|2 dg ≤ C3

ˆ
Br

u2 dg (2.27)

for some constant C3. However, removing |∇Hρ|2 inside the left-hand side of this

inequality takes some work. The way to deal with this is to introduce the following

mean value operators.

Definition 2.7.2 Fix a continuous function u on G. Given r > 0 and g0 ∈ G, we

define Mru(g0) by

Mru(g0) =
Q− 2

Q
r−Q

ˆ
Br

u(g)|∇Hρ(g ◦ g−1
0 )|2 dg.

We should emphasize the importance of the dependence of Mru(g0) on the point

g0 as this will be crucial in removing the factor of |∇Hρ|2 from the left-hand side of

(2.27).

If u is a harmonic function, we recall by the representation formula (2.9) (and an

appropriate repetition of the first part of the proof of Lemma 2.4.1)

u(g) = (Q− 2)r1−Q
ˆ
Sr

v
|∇Hρ(h−1 ◦ g)|2

|∇ρ(h−1 ◦ g)|
dHN−1(h).
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Hence integrating from 0 to r and using the coarea formula,

u(g) =
Q− 2

Q

ˆ
Br

v|∇Hρ(h−1 ◦ g)|2 dh = Mru(g). (2.28)

This equality is valid for any harmonic u and r > 0.

We need to use the following lemma:

Lemma 2.7.2 Let v ≥ 0 be a continuous function on G. There exist positive con-

stants C̃, λ,Λ depending only on the group G such that for every r > 0 one can find

g0 ∈ G such that the following hold:

(a) g0 ∈ Sλr

(b) Mrv(g) ≤ C̃MΛrv(g0) for all g ∈ Br

(c) Mrv(g0) ≤ C̃MΛrv(g) for all g ∈ Br.

The proof of Lemma 2.7.2 can be found in [15], specifically Lemma 3.1. The

important part is that the constants λ,Λ and C are all independent of u, r. The

power of Lemma 2.7.2 is that it allows us to compare the averages over balls of a

function v to averages over nearby balls of comparable radii.

We now prove the following.

Lemma 2.7.3 Assume that u is harmonic on B1. Then there exists a constant C4 >

0 depending only on G such that for every r > 0 one has

C−1
4

ˆ
Br

u2 dg ≤
ˆ
Br

u2|∇Hρ|2 dg ≤ C4

ˆ
Br

u2 dg.

Proof As previously mentioned, the second inequality follows from the compactness

of the unit ball and 0-homogeneity of |∇Hρ|2, that is,

ˆ
Br

u2|∇Hρ|2 dg ≤ max
B1

|∇Hρ|2
ˆ
Br

u2 dg

Conversely,

ˆ
Br

u2 dg ≤ |Br| sup
Br

u2 = rQ|B1| sup
Br

u2,
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where we have denoted by |Br| the Haar measure of the gauge-ball of radius r. Choose

g1 ∈ Br such that

u(g1)2 = sup
Br

u2.

For every α > 0 (to be fixed presently) we have from (2.28)

|u(g1)| = |Mαru(g1)| ≤Mαr|u|(g1),

the second inequality following from the defintion of the mean value operators as an

integral.

We now apply Lemma 2.7.2 to get positive constants C̃,Λ, λ and a g0 ∈ Bαr.

Combining parts (b) and (c) of that Lemma, we find

|u(g1)| ≤Mαr|u|(g1) ≤ C̃MΛαr|u|(g0) ≤ C̃2MΛ2αr|u|(e), g1 ∈ Bαr.

As we have control over α > 0, we choose α = Λ−2. Then,

ˆ
Br

u2 dg ≤ |B1|rQ sup
Br

u2

= |B1|rQu(g1)2

≤ |B1|rQC̃4(Mr|u|(e))2

= |B1|rQC̃4(r−Q
Q− 2

Q

ˆ
Br

|u(g)||∇Hρ(g)|2)2 dg)2

≤ |B1|C̃4(
Q− 2

Q
)2r−Q(

ˆ
Br

|∇Hρ|2 dg)(

ˆ
Br

u(g)2|∇Hρ(g)|2 dg)

= |B1|2C̃4(
Q− 2

Q
)2 max

B1

|∇Hρ|2
ˆ
Br

u(g)2|∇Hρ(g)|2 dg.

We thus take C4 = maxB1 |∇Hρ|2 max{1, |B1|2C̃4(Q−2
Q

)2} to conclude.

We can now prove the strong unique continuation property for Carnot groups.

Theorem 2.7.1 Let u be harmonic on B1 with vanishing discrepancy. If u vanishes

to infinite order at e ∈ G, then u ≡ 0 on all of B1.
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Proof Fix r0 ∈ (0, 1). Combining Lemmas 2.7.1 with 2.7.3 we infer the existence of

a constant C5 > 0 depending on u, r0, and G such that for every r ∈ (0, r0]

ˆ
Br

u2 dg ≤ C5

ˆ
B2−1r

u2 dg.

Beginning with r = r0, we have by induction that for each j ∈ N and any arbitrary

γ > 0,

ˆ
Br0

u2 dg ≤ Cj
5

ˆ
B

2−jr0

u2 dg

= Cj
5 |B2−jr0 |γ|B2−jr0|−γ

ˆ
B

2−jr0

u2 dg

= Cj
5 |B1|γ(2−jr0)Qγ|B2−jr0|−γ

ˆ
B

2−jr0

u2 dg

= (2−QγC5)j|Br0|γ|B2−jr0|−γ
ˆ
B

2−jr0

u2 dg.

At this point, we choose γ = lnC5

Q ln 2
so that

ˆ
Br0

u2 dg ≤ |Br0|γ|B2−jr0 |−γ
ˆ
B

2−jr0

u2 dg (2.29)

for each j ∈ N. In particular, since u vanishes to infinite order at e, the right-hand

side of (2.29) converges to 0 as j → ∞. Consequently, u ≡ 0 in Br0 . Finally, since

r0 ∈ (0, 1) was arbitrary, we conclude that u ≡ 0 in B1.

Remark 2.7.1 We should mention that the proof of Lemma 2.7.1 truly only depends

on the local boundedness of the frequency of u. Hence, it is possible to prove a

version of Theorem 2.7.1 where one removes the assumption of vanishing discrepancy

and replaces it with the assumption that the frequency of u belongs to L∞loc(0, 1). More

generally, if we assume the following growth condition on the discrepancy of u:

|Eu| ≤
f(ρ)

ρ
|∇Hρ|2|u| in B1.

where f is a positive Dini-integrable function defined on (0, 1), then the frequency is

locally bounded. This aspect is explored more fully in Section 7 of [42].
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2.8 One parameter Weiss-type monotonicity formulas for Carnot groups

Let u be harmonic in the unit gauge ball of a Carnot group G. Fix κ > 0, and set

Wκ(r) = r2−2κ−QD(r)− κr1−Q−2κH(r)

=
r1−2κ−Q

H(r)
(N(r)− κ), 0 < r < 1.

Theorem 2.8.1 Let u be harmonic on the unit gauge ball. If in addition u has

vanishing discrepancy, then r 7→ Wκ(r) is monotonically non-decreasing.

Proof By computation,

d

dr
Wκ =

2−Q− 2κ

r
r2−2κ−QD(r) + r2−2κ−QD′(r)

− κ(1−Q− 2κ)

r
r1−Q−2κH(r)− κr1−Q−2κH ′(r)

= r2−2κ−Q
[
D′(r)− Q− 2

r
D(r)− 2κ

r
D(r)

+
2κ2

r2
H(r) +

κ(Q− 1)

r2
H(r)− κ

r
H ′(r)

]
.

Inserting (2.8) and (2.18),

d

dr
Wκ = r2−2κ−Q

[
2

ˆ
Sr

(
Zu
r

)2|∇Hρ| dσH + 2

ˆ
Sr

Zu
r
Eu

dHN−1

|∇ρ|
− 2κ

r
D(r)

+
2κ2

r2
H(r)− 2κ

r
D(r)

]
.

Recalling the definition of H(r) =
´
Sr
u2|∇Hρ| dσH , and (2.19),

d

dr
Wκ = r2−2κ−Q

[
2

ˆ
Sr

(
Zu
r

)2|∇Hρ| dσH + 2

ˆ
Sr

Zu
r
Eu

dHN−1

|∇ρ|

+
2κ2

r2

ˆ
Sr

u2|∇Hρ| dσH −
4κ

r2

ˆ
Sr

uZu|∇Hρ| dσH
]

= 2r−2κ−Q
[ ˆ

Sr

(Zu)2|∇Hρ| dσH + r

ˆ
Sr

ZuEu
dHN−1

|∇ρ|

+ κ2

ˆ
Sr

u2|∇Hρ| dσH − 2κ

ˆ
Sr

uZu|∇Hρ| dσH
]

= 2r−2κ−Q
[ ˆ

Sr

(Zu− κu)2|∇Hρ| dσH + r

ˆ
Sr

ZuEu
dHN−1

|∇ρ|

]
.

Eu ≡ 0, W ′κ(r) is the integral of a perfect square, hence Wκ is non-decreasing.
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Corollary 2.8.1 Assume that u is harmonic with vanishing discrepancy. Then Wκ

is constant if and only if u is homogeneous of degree κ with respect to the dilations

(δλ)λ>0.

Proof Wκ is constant if and only if Zu = κu on Sr for every r ∈ (0, 1).
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3. Struwe- and Poon-type functionals for symmetric

diffusion operators

3.1 Introduction

In [72], M. Struwe studied a weighted energy for solutions to ∆u = ut in Rn×(0, T ),

given by

ex(t) = (T − t)
ˆ
Rn
|∇u|2(y, t)pT−t(x, y) dy

where u solves ∆u = ut, x ∈ Rn is fixed, and pt(x, y) is the heat kernel on Rn with pole

at (y, 0) ∈ Rn× (0,∞). Provided that the gradient of u is unformly bounded in both

space and time variables, Struwe proved that his weighted energy is monotonically

decreasing in t, and then used this result to prove partial regularity of weak solutions.

During the course of the computation of the derivative of Struwe’s energy, one finds

that

1

2
e′(t) = −(T − t)

ˆ
M
pT−t[∆u+ 〈∇ ln pT−t,∇u〉]2 dy +G(t), (3.1)

where G(t) is defined by

G(t) = −(T − t)
ˆ
Rn

[
1

2(T − t)
gij + (ln pT−t)ij]pT−tuiuj dy. (3.2)

and g = (gij) is the standard Euclidean metric on Rn. The crucial aspect of the proof

is that the Euclidean heat kernel satisfies the following differential equation:

(ln pt)xixj +
1

2t
δij = 0 (3.3)

so that G(t) ≡ 0 and the derivative of Struwe’s energy is the negative of the integral

of a perfect square.

When tracing (3.3), one finds ∆pt + n
2t

= 0, which is the optimal case of the Li-

Yau inequality found in [62] when the Ricci curvature of the manifold is non-negative.
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Thus one may begin to expect that, given curvature assumptions, a differential matrix

inequality similar to (3.3) exists. This fact was discovered and proven by R. Hamilton

in [47]. Specifically, he proved that, for compact connected Riemannian manifolds

which are Ricci parallel and which possess weakly-positive sectional curvatures, the

heat kernel for the Laplace-Beltrami operator satisfies

(ln pt)ij +
1

2t
gij ≥ 0.

Hamilton then immediately used this matrix inequality to extend Struwe’s monotonic-

ity result to Riemannian manifolds with those same curvature assumptions in [48],

replacing the Euclidean aspects of Struwe’s result with their appropriate Riemannian

ones.

A few years later, C. Poon worked on a parabolic version of Almgren’s frequency

function in [67] for Rn. Using computations performed in [72] and the Cauchy-Schwarz

inequality, Poon proved that the function

n(t) = (T − t)
´
Rn |∇u|

2(y, t)pT−t(x, y) dy´
Rn u

2(y, t)pT−t(x, y) dy

is monotonically non-increasing whenever u solves the heat equation in Rn × (0, T )

and is uniformly bounded and possesses uniformly bounded derivatives. Again, (3.3)

played a crucial role, but Poon remarked that such computations would still work in

the manifolds considered by Hamilton.

Our present work is to use the semigroup and carré du champ Γ(·, ·) (see Definition

1.2.1) to extend the definition of Struwe’s energy and Poon’s frequency to smooth

connected manifolds M with elliptic diffusion operator L and a measure µ with respect

to which L is symmetric over C∞0 (M). We are able to prove the following in Section

3.4.3.

Theorem 3.1.1 Fix T > 0 and x ∈M. Suppose that (M,L) is complete and satisfies

the curvature-dimension inequality CD(ρ, n) for some ρ ∈ R. Suppose that u ∈ D(L)

solves the heat equation Lu = ut on M× (0, T ) and set

e(t) = (T − t)PT−tΓ(u).
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Then e is monotonically non-increasing on (Tm, T ), where Tm = max{T + 1
2ρ
, 0} if

ρ < 0 and Tm = 0 if ρ ≥ 0. In particular, if ρ ≥ 0, then e is non-increasing on all of

(0, T ).

For the definition of CD(ρ, n) and completeness, we refer the reader to Definitions

1.2.2 and 1.2.3.

For general diffusion operators satisfying CD(ρ, n), although there is a notion of

Hessian, there is no known analogue of Hamilton’s matrix Harnack inequality. For

Poon’s frequency monotonicity, we do not currently know of a way to get around this,

and we suspect that Poon’s frequency may not be decreasing in this case. Instead, we

introduce a new Hessian condition C(ω) which generalizes Hamilton’s matrix Harnack

inequality to smooth connected manifolds with diffusion operator L. This condition,

given in Definition 3.2.2, is satisfied in many cases, including some cases where the

triple (M,L, µ) satisfies the curvature dimension inequality CD(ρ, n) such as the

Ornstein-Uhlenbeck operator. In Definition 3.5.1, we give modifications of the Struwe

and Poon functions which, in Section 3.5.2, are shown to retain their monotonicity

properties when u solves the heat equation, and, in case M = Rn, L = ∆, and µ is

the Lebesgue measure, reduce to the Euclidean originals. Specifically, we prove that

e(t) = eω(T−t)PT−tΓ(u)

n(t) = eω(T−t)PT−tΓ(u)

PT−t(u2)

are monotonically non-increasing under C(ω) and CD(ρ, n). See Theorems 3.5.1 and

3.5.2 for specifics.

3.2 Preliminaries

Let M be a connected manifold with elliptic diffusion operator L and measure µ

with respect to which L is symmetric in C∞0 (M) with the L2-norm. We will denote this

by the triple (M,L, µ). We may study the associated heat equation for T ∈ (0,∞],

Lu = ut, in M× (0, T ). (3.4)
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Throughout, we will assume that the manifold M is complete and satisfies the

curvature dimension inequality. See Definitions 1.2.3 and 1.2.2 in Chapter 1 for the

definitions and discussions of these properties.

We begin with a definition from [5].

Definition 3.2.1 Given u, v, w smooth, the Hessian of the function u is given by

the formula

Hu(v, w) =
1

2
[Γ(v,Γ(u,w)) + Γ(w,Γ(u, v))− Γ(u,Γ(v, w)] . (3.5)

Above, Γ(·, ·) is the carré du champ of Definition 1.2.1.

The reason for the name Hessian is clear if one looks at the Riemannian and

Euclidean cases, for

Hu(v, w) = ∇2u(∇v,∇w) Riemannian manifolds

Hu(v, w) = 〈∇2u∇v,∇w〉 Euclidean space

where∇2u is the Hessian tensor of u (or Hessian matrix ( ∂2u
∂xj∂xi

)1≤i,j,≤n) in Rn) and∇v,

is the Riemannian (Euclidean) gradient of v (likewise for w), and 〈·, ·〉 is the standard

inner product on Rn. As with the carré du champ, we will write Hu(v, v) = Hu(v)

for short.

Let us now introduce the following new Hessian condition.

Definition 3.2.2 Let M be a smooth manifold with diffusion operator L and sym-

metric measure dµ. Let S be a subset of smooth functions defined on M, x0 ∈ M,

and ω(t) : (0,∞) → R be a C1 function. We will say that M satisfies the condition

C(ω, x0) for the set S if for every u ∈ S, the inequality

Hln pt(x0,·)(u, u) +
1

2
ω′(t)Γ(u) ≥ 0, (3.6)

holds on all of M. In terms of the carré du champ, (3.6) reads

Γ(u,Γ(u, ln pt))−
1

2
Γ(ln pt,Γ(u)) +

1

2
ω′(t)Γ(u) ≥ 0.

If (3.6) holds for each x0 ∈ M and S = C∞(M), then we shall simply say that M

satisfies C(ω).
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In Section 3.3, we give examples of manifolds and operators which satisfy C(ω, x0).

Remark 3.2.1 In Rn, (3.6) is in fact equality when ω(t) = ln t. We will give more

examples of manifolds satisfying C(ω) below in Section 3.3.

Remark 3.2.2 Assume M is a Lie group and L is left-invariant with respect to left-

translation – that is, L(u◦Lg) = (Lu)◦Lg for each g ∈M. Due to the left-invariance

of the heat kernel pt, the condition C(ω, x0) for some x0 ∈M implies that C(ω) holds.

We are now ready to define the various functions of interest throughout this paper.

Definition 3.2.3 (Height, Struwe energy, and Poon functions) Fix a solution to

(3.4) and (x0, T ) ∈M× (0,∞).

(a) The height function h : (0, T )→ R of u at x0 by

hx0(t) = h(t) = PT−t[u
2](x0),

provided that this quantity makes sense, for example, if u ∈ Lp(M) for some

p ∈ [1,∞].

(b) Struwe’s energy function ex0 : (0, T ) → R of u is a weighted version of the

Dirichlet energy and is given by the formula

ex0(t) = e(t) = (T − t)PT−t[Γ(u)](x0),

provided that this quantity makes sense.

(c) We define Poon’s frequency function nx0 : (0, T ) → R of u at x0 ∈ M by the

quotient

nx0(t) = n(t) =
e(t)

h(t)
.

provided both h and e make sense and h(t) 6= 0 in (0, T ).

Finally, we define a weighting factor which will become useful when studying

C(ω, x0) manifolds.
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Definition 3.2.4 If M satisfies C(ω, x0), define the weight ηx0(t) = η(t) by

η(t) =
eω(t)

t
.

In Section 3.5, we will work with the function η to prove monotonicity of the

functions η(T − t)ex0(t) and η(T − t)nx0(t) whenever M satisfies C(ω, x0). We will

show below that in the case where M = Rn, L = ∆, and µ is the Lebesgue measure,

η(t) = 1, thus this result encompasses original counterparts found in [72] and [67].

3.3 Examples of manifolds satisfying and CD(ρ, n) and C(ω, x0)

The purpose of this section is to provide motivation for the definition of the Hessian

condition C(ω, x0). Our first example is the simplest of all.

Example 3.3.1 (Rn with Laplacian) Suppose that M = Rn, µ the Lebesgue measure,

and L = ∆. The heat kernel is well-known, and satisfies

(ln pt(x, y))ij = −δij
2t
.

Hence regardless of the function u and the point x ∈ Rn, we find

〈∇2
y ln pt(x, y)∇yu,∇yu〉 = − 1

2t
|∇yu|2.

As mentioned above, we have

Γ(u,Γ(ln pt, u))− 1

2
Γ(ln p,Γ(u)) = 〈∇2 ln pt(x, y)∇u,∇u〉

since the derivatives commute. This shows that (Rn,∆, dx) satisfies C(t 7→ ln t). The

generalized and modified Struwe and Poon functions e, n agree with their original

counterparts, and the weighting factor is η(t) = 1.

Example 3.3.2 (Hamilton’s manifolds) More generally, let M be a compact Rie-

mannian manifold which is Ricci parallel and whose sectional curvatures are weakly

positive. It remains true that

Γ(u,Γ(ln pt, u)− 1

2
Γ(ln pt,Γ(u)) = ∇2(ln pt)(∇u,∇u),
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where ∇2pt is the Hessian tensor of pT−t. As previously mentioned, Hamilton proved

in [47] that the components of the Hessian tensor satisfy

∇2(ln pt)ij +
gij
2t
≥ 0

in relation to the metric g. Thus as in the Euclidean case we may take ω(t) = ln t

in C(ω) for each x0 ∈ M. Also as before, the generalized and modified Struwe and

Poon functions agree with their Riemannian counterparts in [67] and [47], and the

weighting factor is η(t) = 1.

The following example is one that motivated and inspired the definition of the

Hessian inequality C(ω, x0). We will use it as a concrete model to demonstrate the

theorems of this chapter.

Example 3.3.3 (Ornstein-Uhlenbeck operator on Rn) Let again M = Rn. Fix ρ ∈ R,

and let L = Lρ be the Ornstein-Uhlenbeck operator,

Lρu = ∆u− ρ〈x,∇u〉. (3.7)

The derivatives in (3.7) are taken with respect to x, and, in contrast to (3.12) below,

the inner product with ∇u involves the same variable as the differentiation. The

appropriate measure for this operator is

dµ(x) = e−ρ
‖x‖2

2 dx,

and the heat kernel is a modification of the Mehler kernel (see [5] for the case where

ρ = 1),

pt(x, y) = (
ρeρt

4π sinh(ρt)
)1/2 exp

(
−ρ‖x‖

2 + ‖y‖2 − 2〈x, y〉eρt

4eρt sinh(ρt)

)
. (3.8)

It is well-known that the triple (Rn,L, dµ) satisfy CD(ρ,∞). In fact, if ρ 6= 0, then

(Rn,L, dµ) cannot satisfy CD(ρ, n) for any finite n.

Let us also show that (Rn,L, dµ) also satisfies C(ω) for some function ω. One

may easily compute

Γ(u, v) = 〈∇u,∇v〉



54

and hence

Γ(u,Γ(u, ln pt))−
1

2
Γ(ln pt,Γ(u)) = 〈∇2 ln pt∇u,∇u〉.

But from (3.8)

(∇2 ln pt)ij = −ρ δij
2eρt sinh(ρt)

, (3.9)

so that

Γ(u,Γ(u, ln pt))−
1

2
Γ(ln pt,Γ(u)) + ρ

Γ(u)

2eρt sinh(ρt)
= 0.

Therefore, if we choose

ω(t) = ln

(
1− e−2ρt

2ρ

)
.

then the operator L satisfies C(ω). The corresponding weighting factor is given by

η(t) =
1− e−2ρt

2ρt
.

Note that, in the limit as ρ→ 0, we have

lim
ρ→0

η(t) = 1.

Thus the modified Struwe and Poon’s functions reduce to their Euclidean counterparts

in the limit. This is expected since the operator and measure dµ reduce to the

Laplacian and the Lebesgue measure, respectively.

Remark 3.3.1 In the previous example, the function

f(x) =
x

ex sinhx

is a decreasing function of x. Therefore, if ρ′ ≤ ρ, we have

−ρ
2eρt sinh(ρt)

≥ −ρ′

eρ′t sinh(ρ′t)
.

In particular, if ρ ≥ 0, we may take

ω(t) = ln t.

The modified Struwe and Poon functions reduce to the original Struwe and Poon

functions for the Ornstein-Uhlenbeck operator with parameter ρ ≥ 0.
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Example 3.3.4 (Doob’s h transform)

Let M be a Riemannian manifold with Riemannian measure λ and Laplace-

Beltrami operator ∆, and assume that (M,∆, dλ) satisfies C(ω, x0) for some x0 ∈M.

Suppose that there exists a smooth function h : M→ (0,∞) satisfying

∆h+ αh = 0

and define

L = ∆− 2〈∇h
h
,∇·〉,

dµ = h2 dλ. (3.10)

If pt is the heat kernel for (M,∆, λ), then the heat kernel for L is given by Doob’s

h-transform (see chapter 9 of [46]):

p̃t(x, y) = eαt
pt(x, y)

h(x)h(y)
. (3.11)

Obviously, we have

∇2 ln p̃t = ∇2 ln pt −∇2 lnh.

where the derivatives are taken with respect to the y variable. If

−∇2 lnh(y) ≥ −1

2
βg

in the sense of bilinear forms for some β ∈ R, and if (M,∆, dx) satisfies (3.6), then

(M,L, dµ) satisfies C(ω̃, x0), with

ω̃(t) = ω(t) + βt.

Let us compare the two Struwe energies for the operators ∆ and L. We denote e

the Struwe energy for (M,∆, dλ) and ẽ the Struwe energy for (M,L, dµ), both at x0,

and similarly for η and η̃. We have

ex0(t) = (T − t)
ˆ
M
|∇u|2pT−t(x0, ·) dλ

ẽx0(t) =
eα(T−t)

h(x0)
(T − t)

ˆ
M
|∇u|2pT−t(x0, ·)h dλ,
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where in the second line we have used (3.10) and (3.11). Also,

η(t) = eω(t), η̃(t) = η(t)eβt.

Let us give an example of such h. If M = Rn, we can fix a point z ∈ Rn and define

h(x) = e〈x,z〉. Such function satisfies

∆h− |z|2h = 0

and

∇2 lnh = 0.

Thus the operator L given by

Lu = ∆u− 2〈z,∇u〉 (3.12)

together with the measure dµ(x) = e2〈x,z〉dx satisfies C(t 7→ ln t). We would like to

emphasize that – contrary to the Ornstein-Uhlenbeck operator – the derivatives are

all taken with respect to the variable x; z is fixed and independent of x. The Struwe

energy for a solution to Lu = ut is given by

ex0(t) = (T − t)e−〈z,x0〉−|z|2(T−t)
ˆ
Rn
|∇u|2pT−t(x0, y)e〈z,y〉 dy.

where pt is the usual Euclidean heat kernel.

Example 3.3.5 (The Bessel operator with parameter α) Let M = (0,∞) and let

α ≥ 0. The Bessel operator with parameter α is given by

Bα =
d2

dx2
+
α

x

d

dx
, x > 0.

This operator is symmetric with respect to the measure dµ = yα dy. If we set

n = α + 1, then the triple (M,Bα, dµ) satisfies CD(0, n). The heat kernel for this

operator is explicitly known (see for example Exercise 3.8 of [7]), and is given by

pt(x, y) = (2t)−n/2
(xy

2t

)−ν
Iν(

xy

2t
) exp(−x

2 + y2

4t
), (3.13)
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where Iν is the modified Bessel function of the first kind and of order ν and ν = n
2
−1.

Let us show that (M,Bα, dµ) also satisfies the Hessian condition C(ω). We begin

by writing

ln pt(x, y) = f(x, t) + ln(z−νIν(z))− y2

4t

where f(x, t) is a function depending only on x and t and z = xy
2t

. When differentiat-

ing,

∂2

∂y2
ln pt(x, y) = − 1

2t
+
x2

4t2
d2

dz2
ln
(
z−νIν(z)

)
We now use a result from [65]: the function z 7→ z−νIν(z) is logarithmically convex

whenever ν > −1
2
, and when ν = −1

2
,

z−1/2I−1/2(z) =

√
2

π

cosh z

z

which is easily seen to be logarithmically convex. Thus

∂2

∂y2
ln pt(x, y) ≥ − 1

2t
, ν ≥ −1

2
. (3.14)

Therefore, as in the Euclidean case we may take ω(t) = ln t. The generalized Struwe

energy is then

ex0(t) = (T − t)
ˆ ∞

0

|∇u|2(y, t)pT−t(x0, y)yαdy,

where pt is given in (3.13).

Remark 3.3.2 We should note that when α = n− 1 ∈ N0, the Bessel operator cor-

responds to the radial part of the Laplacian on Rn, or equivalently as the generator of

the stochastic process (‖Bt‖)t≥0, where (Bt)t≥0 is an n-dimensional Brownian motion.

In such case, one may integrate out the angular dependence of the height function h

and Struwe energy ex using polar coordinates centered at x together with the identity

ˆ
Sn−1

e〈ζ,ω〉 dσ(ω) = |ζ|1−
n
2 (2π)n/2In

2
−1(|ζ|).



58

Thus in this case, the monotonicity of e could be surmised directly from Struwe’s

original result in [72]. The novelty in this example is that C(t 7→ ln t) even holds

when α ≥ 0 is not an integer, i.e. when Bα does not correspond to the radial part of

the Laplacian.

Example 3.3.6 (Radial functions on the hyperbolic model spaces Hn)

Let Hn be the model hyperbolic manifold, which as a manifold is given by Rn and

endowed with the metric (written in polar coordinates (r,Ω) ∈ R+ × Sn−1)

g = dr2 + sinh2 rgSn−1 .

Here, gSn−1 is the usual metric on the (n− 1)-sphere. In this coordinate system, the

Laplace-Beltrami operator ∆ and Riemannian measure dλ are given by (see [46])

∆ =
∂2

∂r2
+ (n− 1) coth r

∂

∂r
+

1

sinh2 r
∆Sn−1

dλ = sinhn−1 r drdΩSn−1 ,

where ∆Sn−1 and dΩSn−1 are the Laplacian and Riemannian measure on Sn−1.

Let pnt (x, y) denote the heat kernel for Hn with pole at x ∈ Hn. Formulas for

pnt (x, y) are known explicitly, and pnt is always a function of the geodesic distance r

between the points x and y. Therefore we write pnt (x, y) = pnt (r(x, y)). Then the heat

kernels satisfy the following recurrence relation for n ≥ 1:

pn+2
t (r) = − 1

2π
e−nt

1

sinh r

∂

∂r
pnt (r) (3.15)

where

p1
t (r) = (4πt)−1/2 exp(−r

2

4t
) (3.16)

p2
t (r) =

√
2

(4πt)3/2
e−

1
4
t

ˆ ∞
r

se−
s2

4t

√
cosh s− cosh r

ds. (3.17)

According to [28], (3.15) is due to Millson in an unpublished paper, while (3.17) can

be found in [64]. From the recurrence relation, the next odd-dimensional heat kernel

is given by

p3
t (r) = (4πt)−3/2 r

sinh r
e−

r2

4t
−t. (3.18)
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Fix a point x ∈ Hn and suppose that u : Hn → R is a function of the radial

distance from the point x, i.e. u(y) = v(d(x, y)) for some function v : [0,∞) → R.

Then, denoting r = d(x, y), one can compute

H(ln pt)(u, u) = (ln pt)rru
2
r.

Since Γ(u) = u2
r, in order get a lower bound for H(pt)(u, u) in terms of u2

r whenever

u is radial at x, it suffices to find a lower bound on (ln pt)rr.

If n = 1, then H1 is isometric to R with the usual metric, so nothing interesting

happens, i.e. H1 satisfies C(t 7→ ln t). For the n = 3, a little computation based on

(3.18) cedes the equation

(ln p3
t )rr = csch2 r − 1

r2
− 1

2t
,

whose minimum occurs at r = 0:

min
r≥0

(ln p3
t )rr = −1

3
− 1

2t
.

Thus we see that, over the set S of radial functions at x0, H3 satisfies C(ω, x0) over

S with

ω(t) = ln t+
2

3
t.

Computations of higher odd-dimensional hyperbolic manifolds give other interest-

ing lower bounds on the second logarithmic radial derivative of the heat kernel. We

list the first few here:

min
r≥0

(ln p5
t )rr = − 1

2t
− 4

5
+

2

5(2t+ 3)

min
r≥0

(ln p7
t )rr = − 1

2t
− 9

7
+

32t+ 30

7(16t2 + 30t+ 15)

min
r≥0

(ln p9
t )rr = − 1

2t
− 16

9
+

288t2 + 392t+ 140

9(96t3 + 196t2 + 140t+ 35)

min
r≥0

(ln p11
t )rr = − 1

2t
− 25

11
+

12288t3 + 19680t2 + 10920t+ 2100

11(3072t4 + 6560t3 + 5460t2 + 2100t+ 315)
.
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The pattern appears to be, for n ≥ 3 odd,

min
r≥0

(ln pnt )rr = − 1

2t
− (n− 1)2

4n
+

P ′n(t)

nPn(t)
(3.19)

where Pn(t) is a polynomial of degree n−3
2

. However, at this time the author does not

know a general formula for Pn(t), or even a recursive relationship between them. If

(3.19) does hold in general, then the odd-dimensional hyperbolic spaces are found to

satisfy C(ω, x0) for radial functions at x0, where

ω(t) = ln

(
t

Pn(t)2/n

)
+

(n− 1)2

2n
t.

Remark 3.3.3 If u is a radially symmetric function on Hn, then after a long com-

putation we find that

Γ2(u) = u2
rr + (n− 1) csch2 ru2

r ≥ 0.

Thus if we restrict our attention to radial functions, we have the curvature-dimension

condition CD(0,∞) for Hn.

3.4 Monotonicity results for manifolds satisfying CD(ρ, n)

3.4.1 Some heat kernel bounds

Before we begin the analysis of the derivatives of the height function h, it is

necessary to establish a few heat kernel bounds. The purpose of this section is twofold:

(1) For each fixed x ∈ M, and t > 0, y 7→ pt(x, y) is bounded, and (2) under the

assumption CD(ρ, n), for each fixed x ∈ M and t > 0, y 7→ Γ(pt)(x, y) is bounded.

The results of this section allow us to integrate by parts when we compute h′, h′′ in

Section 3.4.2.

Because of completeness, for each 1 ≤ p <∞, the heat semigroup is an Lp(M, µ)

contraction. Therefore, for each t > 0, Pt maps L1(M) to itself. Furthermore, since

u(x, t) = Ptf(x) solves the Cauchy problem in M,Lu = ut in M× (0,∞)

u(x, 0) = f(x)
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the function x 7→ Ptf(x) is continuous, hence Ptf(x) always defined and finite when

f ∈ L1(M).

Heat kernel bound in one variable

The following is an exercise from [46] in the Riemannian case. We give a proof

for diffusion operators case for the sake of completeness.

Lemma 3.4.1 Let M be complete. For every x ∈M and for every t > 0, the function

y 7→ pt(x, y) is bounded.

Proof For simplicity, set f(y) = pt(x, y) and suppose that f is not bounded on

M. Then for each n ∈ N, there exists a yn ∈ M such that f(y) = n. Since f(y) is

continuous, the set {yn}n≥1 must be discrete. Therefore, for each n, there exists an

rn > 0 such that

f(y) ≥ n− 1

2
on B(yn, rn), B(yn, rn) ∩B(ym, rm) = ∅, n 6= m.

We consider the function

g(z) =
∞∑
n=1

1

n2µ(B(yn, rn))
1B(yn,rn)(z).

One may easily check that ‖g‖L1(M) =
∑∞

n=1
1
n2 <∞. But

Ptg(x) =
∞∑
n=1

1

n2µ(B(yn, rn))

ˆ
B(yn,rn)

f(y) dµ(y)

≥
∞∑
n=1

1

n2µ(B(yn, rn))

ˆ
B(yn,rn)

(n− 1

2
) dµ(y)

=
∞∑
n=1

n− 1
2

n2

which is a divergent series. This contradicts the continuity of the mapping x 7→ Ptg(x)

since g ∈ L1(M).
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Next, we use the heat kernel bound in one variable to get a uniform bound on

y 7→ Γ(pt)(x, y) for fixed x ∈M, t > 0.

In [54], B. Kim proved that, if M satisfies the generalized curvature dimension

inequality CD(−K, ρ2, κ, d) introduced in [9], then any bounded positive solution u

to the subelliptic heat equation Lu = ut on M × (0,∞) satisfies a modification of

Hamilton’s gradient estimate [47] on M× (0,∞):

tΓ(lnu(x, t)) ≤ (1 +
2κ

ρ2

+ 2Kt) ln(
‖u‖∞
u(x, t)

). (3.20)

In this present situation, we may take κ = 0, ρ2 = 1, and d = n if M satisfies CD(0, n)

(note that n =∞ is valid since (3.20) does not depend on d). In fact, the choice of ρ2

is arbitrary, since it appears in the generalized curvature dimension inequality only

with the ΓZ term, which we take to be zero in our case. Hence we have the following.

Lemma 3.4.2 Fix x ∈ M, t > 0 and suppose that M satisfies CD(ρ, n) with ρ ≤ 0.

Then

Γy(pt(x, y)) ≤ 1

t
(1− 2ρt)

2M

e3/2
pt(x, y).

In particular, y 7→ Γy(pt)(x, y) is bounded on M.

Proof For simplicity, let pt(x, y) = u(y, t). Let M = ‖u(·, t)‖L∞(M) < ∞ by the

previous lemma. u solves the heat equation, so by Hamilton’s estimate (3.20),

Γ(u(y, t)) ≤ 1

t
(1− 2ρt) ln(

M

u(y, t)
)u2(y, t)

Consider the function f : [0,M ]→ [0,∞) given by

f(s) = ln(
M

s
)s2.

We have the bound

f(s) ≤ 2M

e3/2
s

for s ∈ [0,M ]. Therefore

Γ(u(y, t)) ≤ 1

t
(1− 2ρt)

2M

e3/2
u(y, t) (3.21)

in which case the boundedness of y 7→ Γ(pt)(x, y) follows from that of y 7→ pt(x, y).
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3.4.2 Derivatives of the height function

We are now ready to compute the first and second derivatives of the height function

h. The key ingredients are the exhaustion sequence {hn}n≥1 of Section 1.2.4 and the

heat kernel estimates of the previous section.

Proposition 3.4.1 Let M be complete and satisfy CD(ρ, n). Suppose that Lu = ut

and that u ∈ D(L) for each t ∈ (0, T ). Then the first and second derivatives of the

height function h are given by

h′(t) = −2PT−t[Γ(u)](x) (3.22)

h′′(t) = 4PT−t[Γ2(u)](x). (3.23)

In particular, h is a decreasing function. If ρ ≥ 0, then h is also convex.

Proof We begin with a preliminary observation. Due to Proposition 3.3.17 in [5],

the assumptions of completeness and CD(ρ, n) together with u ∈ D(L) imply that

u2, Γ(u), and Γ2(u) belong to L1(M) for each t ∈ (0, T ).

Let {hn}∞n=1 ⊂ C∞0 (M) be an exhaustion sequence. Then by differentiation,

∂tPT−t[u
2hn] = PT−t[2uhnLu− L(u2hn)]

= PT−t[2uhnLu− u2L(hn)− hnL(u2)− 2Γ(u2, hn)]

= −2PT−t[Γ(u)hn]− PT−t[u2L(hn) + 2Γ(u2, hn)]. (3.24)

Focusing on the term PT−t[Γ(u2, hn)], the Cauchy-Schwarz inequality implies

PT−t[Γ(u2, hn)] =

ˆ
M

2uΓ(u, hn)pT−t dµ

≤ 2

ˆ
M
|u|
√

Γ(u)
√

Γ(hn)pT−t dµ

≤ 2
∥∥∥√Γ(hn)

∥∥∥
L∞(M)

ˆ
M
|u|
√

Γ(u)pT−t dµ

≤ 2
∥∥∥√Γ(hn)

∥∥∥
L∞(M)

√
PT−t[u2]

√
PT−t[Γ(u)]
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which converges to 0 as n→∞. On the other hand,

|
ˆ
M
u2L(hn)pT−t dµ| = |

ˆ
M

Γ(hn, pT−t)u
2 dµ+

ˆ
M

Γ(hn, u
2)pT−t dµ|

≤ |
ˆ
M

Γ(hn, pT−t)u
2 dµ|+ |PT−t[Γ(hn, u

2)]|

≤ ‖Γ(hn)‖1/2
L∞(M) ‖Γ(pT−t(x, ·))‖1/2

L∞(M) ‖u‖
2
L2(M)

+ |PT−t[Γ(hn, u
2)]|

which converges to zero as n → ∞ by the first part of the proof and Lemma 3.4.2.

This proves (3.22).

To prove (3.23), we again use the exhaustion sequence,

∂tPT−t[u
2hn] = PT−t[hn∂tΓ(u)− L(Γ(u)hn)]

= PT−t[2hnΓ(u,Lu)− L(Γ(u))hn − Γ(u)Lhn − 2Γ(Γ(u), hn)]

= −2PT−t[Γ2(u)hn]− PT−t[2Γ(Γ(u), hn) + Γ(u)Lhn]. (3.25)

where we have used the facts that ∂tΓ(u) = 2Γ(u, ut) and that u solves Lu = ut.

Using the inequality

Γ(Γ(u)) ≤ 4Γ(u)(Γ2(u)− ρΓ(u))

when L satisfies CD(ρ, n) (see, for example, section C.6 of [5]), the Cauchy-Schwarz

inequality implies that

PT−t[
√

Γ(Γ(u)] ≤ 2(PT−t[Γ(u)]PT−t[Γ2(u)− ρΓ(u)])1/2 <∞.

Hence we get

|PT−t[Γ(Γ(u), hn)]| =
ˆ
M

√
Γ(Γ(u))

√
Γ(hn)pT−t dµ

≤
∥∥∥√Γ(hn)

∥∥∥
L∞(M)

ˆ
M

√
Γ(Γ(u))pT−t dµ

which converges to 0 as n→∞. For the last term in (3.25), we integrate by parts to

get

PT−t[Γ(u)Lhn] = −
ˆ
M

Γ(hn,Γ(u))pT−t dµ−
ˆ
M

Γ(hn, pT−t)Γ(u) dµ

which can be treated in a similar fashion to the computation of h′.
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Remark 3.4.1 If M is a complete Riemannian manifold with Ricci curvature boun-

ded from below, then Proposition 3.4.1 holds for functions of the type u = Ptf , where

f ∈ L2(M).

Remark 3.4.2 A natural question to ask following Proposition 3.4.1 is whether h

is logarithmically convex if M satisfies CD(0, n) for some n. We posit that this is

not the case, even in Euclidean space. As a counter-example, consider the function

f(x) = sinx on M = R and set u(x, t) = Ptf(x) = e−t sinx. If we fix x0 = 0 and

consider h = h0, then one may compute

h(t) = e−2T sinh(2(T − t)).

However, this function is not logarithmically convex. We find that

d2

dt2
lnh(t) = −4 csch2(2(T − t)).

In fact, the height function in this case turns out to be logarithmically concave!

Corollary 3.4.1 One may express the energy and frequency functions in terms of

the height function and its derivatives. Namely, for u ∈ D(L),

e(t) = −1

2
(T − t)h′(t) (3.26)

n(t) = −1

2
(T − t)h

′(t)

h(t)
. (3.27)

3.4.3 Small-time monotonicity for generalized Struwe function on mani-

folds satisfying CD(ρ, n)

We can now prove Theorem 3.1.1, that is, our generalization of Struwe’s energy

is monotonically decreasing in time.

Proof of Theorem 3.1.1 Differentiating (3.26) and using Proposition 3.4.1, we

have

e′(t) = −PT−tΓ(u)− 2(T − t)PT−tΓ2(u). (3.28)
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By the assumption CD(ρ, n), Γ2(u) ≥ ρΓ(u) and hence, by the sub-Markov property

of the semi-group, one has

e′(t) ≤ −[1 + 2ρ(T − t)]PT−tΓ(u). (3.29)

Because PT−tΓ(u) ≥ 0, a sufficient condition for e′ ≤ 0 is

1 + 2ρ(T − t) ≥ 0.

If ρ ≥ 0 this is always true. Otherwise, it happens whenever t ≥ T + 1
2ρ

.

Remark 3.4.3 In the case of Riemannian manifolds, Theorem 3.1.1 removes the

restriction of being Ricci parallel, and relaxes the curvature assumption from having

weakly positive sectional curvatures to merely having non-negative Ricci curvature.

We also relax compactness to completeness, but as compensation require more of the

function u.

Remark 3.4.4 We would also like to remark that Struwe used the monotonicity of

the function E(r) = e(T − r2). Monotonicity of e(t) for values of t near T implies

that of E near 0, and this is enough.

3.4.4 Monotonicity for generalized Poon frequency on Riemannian man-

ifolds

In [67], Poon proved that the frequency function n is monotonically decreasing

in the space Rn. After proving the theorem, he remarks that by following the same

steps as in the Euclidean case, one may extend the theorem to Hamilton’s manifolds

(i.e. compact, Ricci parallel, weakly positive sectional curvatures). Here, we flesh out

a few more details of his proof in this case using the height function.

Theorem 3.4.1 Let M be a complete Riemannian manifold having weakly positive

sectional curvatures and which is Ricci parallel. Then for each solution u to the heat

equation, the frequency n is monotonically decreasing.
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Proof By differentiating Definition 3.2.3(c), the theorem will follow if

h(t)e′(t) ≤ h′(t)e(t). (3.30)

Inserting the result of Proposition 3.4.1, (3.30) is equivalent to

h(t)e′(t) ≤ −1

2
(T − t)(h′(t))2. (3.31)

But if we write Definition 3.2.3(a) as an integral involving the heat kernel and

differentiate, we have

h′(t) =

ˆ
M

[−∆pT−tu
2 + 2pT−tu∆u] dµ

=

ˆ
M

[2u〈∇u,∇pT−t〉+ 2pT−tu∆u] dµ

= 2

ˆ
M
upT−t[

〈∇pT−t,∇u〉
pT−t

+ ∆u] dµ

≤ 2(

ˆ
M
u2pT−t dµ)1/2(

ˆ
M
pT−t[

〈∇pT−t,∇u〉
pT−t

+ ∆u]2 dµ)1/2

= 2
√
h(t) ·

√
2G(t)− e′(t)

2(T − t)
, (3.32)

where we have use the Cauchy-Schwarz inequality and (3.1) in the fourth and fifth

lines, respectively. (3.2) and pT−t > 0 imply that G(t) ≤ 0. This fact and (3.32)

together imply (3.31).

We would like to state that, at the moment, we do not know whether the assump-

tions in Theorem 3.4.1 are optimal, i.e. whether or not if one may relax the assump-

tions to those of Theorem 3.1.1 or even to Riemannian manifolds with Ric ≥ ρ. We

strongly suspect that on Riemannian manifolds, because the asymptotics of the heat

kernel depends on the sectional curvatures of the manifold (see, for instance, [71]),

that the assumptions are the best that one could hope for. However, furnishing a pos-

sible counter-example has proven to be difficult. Even in the model hyperbolic space

H3, for which the heat kernel at the vertex is known explicitly, the values (Ptu)(x)

can only easily be computed at the vertex of the hyperboloid, whereas to compute

the height function h one needs Ptu on all of H3.
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To finish this section, we would like to state a sufficient condition for monotonicity

of the frequency.

Proposition 3.4.2 If the height function h is logarithmically convex, then n is mono-

tonically decreasing.

Proof Combining equations (3.22), (3.29), and (3.31), we find that n is decreasing

if and only if

(T − t)
[
(h′(t))2 − h(t)h′′(t)

]
≤ −h(t)h′(t).

But this is easily seen to be true because the left-hand side is negative by logarithmic

convexity, and the right-hand side is positive because h ≥ 0, h′ ≤ 0.

3.5 Monotonicity results for manifolds satisfying C(ω, x0)

As shown in the previous section, the fact that Poon’s frequency is monotonically

decreasing on manifolds of Hamilton-type is a direct result of Hamilton’s matrix

Harnack inequality. A replacement for this inequality is given by C(ω, x0), and under

this assumption, we show in this section that the Struwe and Poon functionals can

be reweighted to retain their monotonicity properties.

Definition 3.5.1 (Weighted Struwe energy and Poon frequency for L). Assume the

triple (M,L, µ) satisfies C(ω, x0). Fix a solution to Lu = ut on M × (0, T ). Define

the weighted Struwe energy and Poon frequency on (0, T ) by

ex0(t) = η(t)ex0(t) = eω(T−t)PT−t[Γ(u)](x0)

nx0(t) = η(t)nx0(t) = eω(T−t)PT−t[Γ(u)](x0)

hx0(t)
,

provided all of the quantities make sense. Above, hx0, ex0 and nx0 are the usual

functions given in Definition 3.2.3 and η = ηx0 is from Definition 3.2.4,
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3.5.1 An integration by parts identity

Before we begin the analysis of e and n, we need to prove that we can still perform

the required integration by parts. The first is a simple consequence of integrating by

parts.

Lemma 3.5.1 Fix t > 0 and x ∈ Rn. If u ∈ C∞0 (Rn), then

Pt[Γ2(u)](x) =

ˆ
Rn
pt(x, ·)[Lu+ Γ(u, ln pt(x, ·))]2 dµ

+

ˆ
Rn
pt(x, ·)Hln pt(u, u)(x, ·) dµ. (3.33)

In (3.33), all derivatives are taken with respect to the variable of integration.

The goal of this section is to extend (3.33) to functions u ∈ D(L). The main idea

of the proof is to show that each of the integrals in (3.33) are continuous under the

topology of D(L), then appeal to the fact that C∞0 (Rn) is a core for D(L) since the

operator is essentially self-adjoint. Lemma 3.5.2 is the first step in this direction.

Lemma 3.5.2 Let t > 0 and x0 ∈M be fixed. Assume that L is a complete diffusion

operator on M with measure µ, which satisfies CD(ρ,∞).

(a) The bilinear operator Γ2 extends to a continuous bilinear operator on D(L)×D(L)

which satisfies

ˆ
M

Γ2(u) dµ =

ˆ
M

(Lu)2 dµ

for each u ∈ D(L).

(b) Consider the linear mapping T = Tx0,t : D(E)→ L2(M) given by

Tu =
√
pt(x0, ·)Γ(u, ln pt(x0, ·)),

where the derivatives are taken with respect to the variable y. Then T is contin-

uous.
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(c) Consider the symmetric bilinear mapping B = Bx0,t : D(E)×D(E)→ L1(M),

B(u, v) =
1

2
(Hpt(x0,·)(u, v) +Hpt(x0,·)(v, u))

If either y 7→ Γ2(pt)(x0, y) or y 7→ pt(y, y) is bounded, then B is continuous.

Remark 3.5.1 One of the two conditions in part (c) are met in many different

cases. For example, the heat kernel for the Ornstein-Uhlenbeck operator satisfies

y 7→ Γ2(pt)(x, y) ∈ L∞(Rn) (but if ρ > 0, pt is not bounded on the diagonal). On

the other hand, pt is bounded on its diagonal in many examples, including Euclidean

space (more generally, on Carnot groups), and under various assumptions, e.g. ultra-

contractivity or the Faber-Krahn inequalitiy with Λ(v) = cv−2/n (see [46] Corollary

15.17).

Proof of Lemma 3.5.2 Part (a) is Proposition 3.3.16 in [5].

For (b), we have

‖Tu‖2
L2(M) =

ˆ
M
ptΓ(u, ln pt)

2 dµ

=

ˆ
M

ptΓ(u)Γ(ln pt) dµ

≤ ‖ptΓ(ln pt)‖L∞(M)

ˆ
M

Γ(u) dµ

≤ ‖ptΓ(ln pt)‖L∞(M) ‖u‖
2
D(E) .

Since we assume CD(ρ,∞), we have the Hamilton bound (3.20),

Γ(ln pt) ≤
1

t
(1− 2ρt) ln(

‖pt‖L∞(M)

pt
),

whereas the function f : [0,M ] → [0,∞) given by f(s) = s ln(M
s

) achieves its maxi-

mum value of M
e

at s = M
e

. In particular,

ptΓ(ln pt) ≤
1

t
(1− 2ρt)

‖pt‖L∞(M)

e
= C(x0, t) <∞,

where C(x0, t) is a constant depending on x0, t
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To prove (c), we can polarize and show continuity on the diagonal since B is

symmetric and bilinear. For this, we have the following bound (equation (3.3.7)

in [5])

Hpt(u, u)2 ≤ [Γ2(pt)− ρΓ(pt)]Γ(u)2.

Thus

‖B(u, u)‖L1(M) ≤
∥∥∥√Γ2(pt)− ρΓ(pt)

∥∥∥
L∞(M)

E(u).

This proves (c) in the case where y 7→ Γ2(pt)(x0, y) is bounded on M.

On the other hand, assume that pt is bounded on the diagonal. By the Chapman-

Kolmogorov equation (1.30),

Bx0,2t(u, u) =

ˆ
M

ˆ
M
pt(x0, z)H

y
pt(z,y)(u, u) dµ(z) dµ(y), (3.34)

where Hy
pt(z,y) means the derivatives are taken with respect to the variable y. Assum-

ing the curvature-dimension equality, we have (see equation (3.3.7) of the book by

Bakry, Gentil, and Ledoux)

Hy
pt(z,y)(u, u) ≤

√
Γy2(pt(z, y))− ρΓy(pt(z, y))Γy(u),

where Γy and Γy2 denote derivatives with respect to y. Combining this with (3.34)

and the Cauchy-Schwarz inequality,

|Bx0,2t(u, u)| ≤
√
p2t(x0, x0) (3.35)

×
ˆ
M

Γy(u)(

ˆ
M

[Γy2(pt(z, y))− ρΓy(pt(z, y))] dµ(z))1/2 dµ(y),

where we have used

ˆ
M
pt(x0, z)

2 dµ(z) = p2t(x0, x0).

Therefore, if we knew that

sup
y∈M

ˆ
M

[Γy2(pt(z, y))− ρΓy(pt(z, y))] dµ(z) <∞,



72

we would be done. Since we assume CD(ρ, n), it is sufficient to prove that

sup
y∈M

ˆ
M

Γy2pt(z, y) dµ(z) = sup
y∈M

ˆ
M

(Lypt(z, y))2 dµ(z) <∞.

We now use the spectral resolution and follow along the lines of proof of Theorem

7.6 in [46]. Specifically, we can argue as in equation (7.22) from there to find that

‖LPtf‖L2(M) ≤
1

t
e−1 ‖f‖L2(M) .

Since pt(z, y) = (Pt/2pt/2(·, y))(z), it follows with f = pt/2(·, y) that

ˆ
M

(Lypt(z, y))2 dµ(z) ≤ 1

t
e−1
∥∥pt/2(·, y)

∥∥
L2(M)

=
1

t
e−1pt(y, y). (3.36)

Combining (3.35) and (3.36), we have

|Bx0,2t(u, u)| ≤ 1

t
e−1
√
p2t(x0, x0)E(u, u) sup

y∈M
pt(y, y).

Thus if y 7→ pt(y, y) is bounded on M, we are done.

By the chain rule,

ptHln pt(u, u) = Hpt(u, u)− ptΓ(ln pt, u)2

= Hpt(u, u)− (Tu)2.

We combine this with Lemma 3.5.2 to arrive at the following:

Proposition 3.5.1 Fix t > 0 and x ∈ Rn. If u ∈ D(L), then

Pt[Γ2(u)](x) =

ˆ
Rn
pt(x, ·)[Lu+ Γ(u, ln pt(x, ·))]2 dµ

+

ˆ
Rn
pt(x, ·)Hln pt(x0,·)(u, u) dµ. (3.37)

3.5.2 Monotonicity for reweighted Struwe energy

Theorem 3.5.1 (Modified Struwe monotonicity) Fix x0 ∈ M and assume that

L satisfies CD(ρ, n), C(ω, x0) over a set S. Let pt denote the heat kernel for L with
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pole at (x0, 0). Assume that u ∈ S solves the heat equation (3.4) on M× (0, T ), and

that for each t ∈ (0, T ), u ∈ D(L). Then

ex0(t) = η(T − t)ex0(t) = eω(T−t)PT−t[Γ(u)](x0)

is a non-increasing function of t.

Proof The computations are similar to those in [72] and [47]. Due to Proposition

3.4.1, we can write

e(t) = −1

2
eω(T−t)h′(t).

Then

e′(t) =
1

2
ω′(T − t)eω(T−t)h′(t)− 1

2
eω(T−t)h′′(t)

=
1

2
eω(T−t)[h′(t)ω′(T − t)− h′′(t)]

= −2eω(T−t)[
1

2
ω′(T − t)PT−tΓ(u) + PT−tΓ2(u)].

Writing PT−tΓ(u) =
´
Rn pT−tΓ(u) dµ and combining with Proposition 3.5.1,

e′(t) = −2eω(T−t)
ˆ
M

[
1

2
ω′(T − t)Γ(u) +Hln pT−t(u, u)]pT−t dµ (3.38)

− 2eω(T−t)
ˆ
M
pT−t[Lu+ Γ(u, ln pT−t)]

2 dµ. (3.39)

Thus by the assumption C(ω, x0),

e′(t) ≤ −2eω(T−t)
ˆ
M
pT−t[Lu+ Γ(u, ln pT−t)]

2 dµ ≤ 0. (3.40)

3.5.3 Monotonicity for reweighted Poon frequency

Theorem 3.5.2 (Modified Poon monotonicity) Assume that (M,L, µ) satisfies

CD(ρ, n) and C(ω, x0) over S, and suppose that u ∈ S satisfies the conditions of

Theorem 3.5.1. Then

nx0(t) = eω(T−t)PT−t[Γ(u)](x0)

PT−t[u2](x0)

is monotonically non-increasing in t.
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Proof As in Theorem 3.5.1, the computations are similar to that of their Euclidean

counterparts. n is decreasing as soon as

−h(t)e′(t) ≥ −e(t)h′(t). (3.41)

As in Theorem 3.4.1, one can show (via integration by parts) that

h′(t) = 2

ˆ
M

[Lu+ Γ(u, ln pT−t)]upT−t dµ. (3.42)

Applying the Cauchy-Schwarz inequality we see that

(h′(t))2 ≤ 4(

ˆ
M
u2pT−t dµ)(

ˆ
M
pT−t[Lu+ Γ(u, pT−t)]

2 dµ). (3.43)

Using (3.40), we identify the right-hand side of (3.43) as being

4(

ˆ
M
u2pT−t dµ)(

ˆ
M
pT−t[Lu+ Γ(u, pT−t)]

2 dµ) ≤ −2e−ω(T−t)e′(t)h(t). (3.44)

Chaining (3.43) and (3.44) together and multiplying by 1
2
eω(T−t) yields

1

2
eω(T−t)(h′(t))2 ≤ −e′(t)h(t).

Finally, recalling that e(t) = −1
2
eω(T−t)h′(t), we arrive at (3.41).

Strong unique continuation for solutions of Lu = ut

As in [67], which was modeled off of the elliptic case in [40], one may use the

reweighted Poon frequency to establish a form of unique continuation. In what fol-

lows, we fix x0 ∈M and set

Hx0(r) = H(r) = h(T − r2) =

ˆ
M
u2(y, T − r2)pr2(x, y) dµ(y)

Ex0(r) = E(r) = e(T − r2) = exp(ω(r2))

ˆ
M

Γ(u)(y, T − r2)pr2(x, y) dµ(y)

Nx0(r) = N(r) =
E(r)

H(r)
.

each of which are defined whenever T − r2 ∈ (0, T ), that is, whenever r ∈ (0,
√
T ).

Since N(r) = n(T −r2) and n is decreasing, it follows that N is an increasing function

of r.
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Lemma 3.5.3 Assume that H(r0) = 0. Then H(r) ≡ 0 for 0 ≤ r < r0.

Proof If H(r0) = 0, then necessarily u(y, T − r2
0) ≡ 0 for all y ∈ M. Since u solves

the heat equation, it follows that u(y, t) ≡ 0 for all y ∈ M and t ∈ (T − r2
0, T ). If

0 < r < r0, then u(y, T − r2) ≡ 0, hence H(r) = 0.

Henceforth, we assume that H(r) 6= 0 for any r ∈ (0,
√
T ), so that the frequency

N is well-defined on the interval (0,
√
T ).

Fix r0 ∈ (0,
√
T ). Then we have

H ′(r) = −2rh′(T − r2) = 4r exp(−ω(r2))E(r)

hence

H ′(r)

H(r)
= 4r exp(−ω(r2))N(r) ≤ 4r exp(−ω(r2))N(r0).

Integrating now each side for r ∈ (0, r0), we arrive at

ln
H(r0)

H(r)
≤ 4N(r0)

ˆ r0

r

s exp(−ω(s2)) ds,

which is equivalent to

H(r) ≥ H(r0) exp

(
−4N(r0)

ˆ r0

r

s exp(−ω(s2)) ds

)
. (3.45)

We therefore get the following theorem.

Theorem 3.5.3 Suppose that u is a solution to Lu = ut in M× (0, T ) satisfying the

conditions of Theorem 3.5.2. Suppose that there exists a constant C such that for

each k ∈ N,

H(r) ≤ C exp(−k
ˆ √T
r

s exp(−ω(s2)) ds). (3.46)

Then u ≡ 0.

Proof If 0 < r0 <
√
T , then (3.46) still holds for each k if we integrate on the

interval (r, r0) rather than (r,
√
T ). This contradicts (3.45) for k large enough, hence

H(r0) = 0. By Lemma 3.5.3, H vanishes on (0, r0), hence u vanishes for t ∈ (T−r2
0, T ).

Letting r0 ↗
√
T finishes the proof.
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Example 3.5.1 (Unique continuation for Ornstein-Uhlenbeck) Let us give a specific

example of this theorem. Consider the Ornstein-Uhlenbeck operator, as in Example

3.3.3. We recall that

ω(t) = ln

(
1− e−2ρt

2ρ

)
In this case, one can easily compute that

ˆ r0

r

s exp(−ω(s2)) ds =
1

2
ln

(
1− e2ρr2

1− e2ρr20

)
,

and therefore (3.46) reads

H(r) ≤ C

(
1− e2ρr2

1− e2ρT

) k
2

, k = 1, 2, . . .

In the limit where ρ0 → 0, this reads

H(r) ≤ C(
r√
T

)k, k = 1, 2, . . . ,

from which we recover Poon’s unique continuation theorem for the Laplacian in Rn.

3.6 A sub-Riemannian Struwe energy for manifolds satisfying the gener-

alized curvature dimension inequality

We now discuss the monotonicity of Struwe’s energy function in the sub-Riemann-

ian setting. As evidenced in Theorem 3.1.1, Struwe’s energy monotonicity (without

the correction factor η(t)) follows if Γ2(u) is non-negative. In the sub-Riemannian

setting, this is no longer always true. For example, the first difficulty in studying the

energy function in the setting of Carnot groups is when one computes the analogue

of the Bochner identity for the Heisenberg group Hn:

Γ2(u) =
∥∥∇2

Hu
∥∥2

HS
+
n

2
(Zu)2 + 2〈∇Hu, Jb∇HZu〉,

where ∇2
Hu is the symmetrized horizontal Hessian, e.g. if n = 1, ∇2

Hu is given by

∇2
Hu =

 X2u (XY + Y X)u

(XY + Y X)u Y 2u

 ,
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and Jb is the usual complex structure on T1,0(Hn), see [29]. The non-negativity or

even boundedness of Γ2(u) is no longer guaranteed because of the presence of the final

term involving J − b. A possible replacement criterion for sub-Riemannian manifolds

having transverse symmetries is the generalized curvature dimension inequality of

Baudoin and Garofalo, denoted CD(ρ1, ρ2, κ, d). See [9] for the original definition,

which we recall in Defintion 3.6.1 below.

In this section, we propose a modified energy function esub on sub-Riemannian

manifolds M with transverse symmetries which possesses two important properties:

(1) it reduces to the original definition in the case of Riemannian manifolds, and (2) if

M satisfies the generalized curvature dimension inequality, then esub is monotonically

decreasing on (0, T ). We then compare this sub-Riemannian Struwe energy function

with the Struwe energy function associated to the tamed Riemannian metric. In the

case of the Heisenberg group Hn, we show that these in general are two different

functions.

The set-up is identical to [9]. Let M be a smooth manifold having a smooth

measure µ and a smooth (sub-)elliptic operator L such that (a) L1 = 0 and (b) L is

symmetric over C∞0 (M) with respect to µ. As in the Riemannian case, we define the

carré du champ and its iteration Γ2 by Definition 1.2.1:

Γ(u, v) =
1

2
(L(uv)− uLv − vLu)

Γ2(u, v) =
1

2
(LΓ(u, v)− Γ(v,Lu)− Γ(u,Lv)).

We further assume that M has a first-order, bilinear, symmetric differential operator,

ΓZ , for which

ΓZ(uv, w) = uΓZ(v, w) + vΓZ(u,w).

We assume that ΓZ(u) ≥ 0, that M is complete in the sense of Hypothesis 1.1 in [9],

and the following commutativity relation: given u ∈ C∞(M),

Γ(u,ΓZ(u)) = ΓZ(u,Γ(f)).
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The iteration of ΓZ , denoted ΓZ2 , is given by

ΓZ2 (u, v) =
1

2
(LΓZ(u, v)− ΓZ(u,Lv)− ΓZ(v,Lu)).

The Heisenberg group Hn satisfies CD(0, n
2
, 2n, 1) with respect to L = ∆H (the

sub-Laplacian on Hn) and ΓZ(u, v) = ZuZv, where Z is the Reeb vector field. More

generally on step-two Carnot groups, we may write ΓZ(u, v) as

ΓZ(u, v) =
k∑
i=1

ZiuZiv (3.47)

for some vector fields Zi ∈ V2, where V2 is the second layer of the Lie-algebra and

k = dimV2.

We assume the following new hypothesis about functions on M× I, where I is a

(possibly unbounded) sub-interval of R: for each u, v ∈ C∞(M× I),

∂

∂t
ΓZ(u, v) = ΓZ(u, vt) + ΓZ(ut, v). (3.48)

We should emphasize that (3.48) is a perfectly reasonable assumption considering

(3.47).

Definition 3.6.1 We say that M satisfies the generalized curvature dimension in-

equality CD(ρ1, ρ2, κ, d) with respect to L and ΓZ if there exist ρ1 ∈ (−∞,∞), ρ2 > 0,

κ ≥ 0, and 0 < d ≤ ∞ such that for each ν > 0 and each u ∈ C∞(M), we have

Γ2(u) + νΓZ2 (u) ≥ 1

d
(Lu)2 +

(
ρ1 −

κ

ν

)
Γ(u) + ρ2ΓZ(u). (3.49)

In the case of a Riemannian manifold, (3.49) with L = ∆, κ = 0, ΓZ = 0,

d = n = dimM, reads

Γ2(u) ≥ 1

n
(∆u)2 + ρ1Γ(u),

which is exactly the original curvature dimension inequality that follows from the

Bochner identity and a lower bound ρ1 on the Ricci curvature tensor.

We are now in a position to introduce a modified energy function.
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Definition 3.6.2 Let M satisfy CD(ρ1, ρ2, κ, d). Fix x ∈M, and T > 0. Let u solve

the heat equation Lu = ut in M × (0, T ), and assume that u, Γ(u), Γ2(u), ΓZ(u)

and ΓZ2 (u) are all uniformly bounded. We define the sub-Riemannian energy function

esub : (0, T )→ R by

esub(t) = esub,x(t) =
1

2
(T − t)PT−t[Γ(u)](x) + κ(T − t)2PT−t[Γ

Z(u)](x). (3.50)

Remark 3.6.1 If M is a Riemannian manifold with Ricci curvature which is bounded

below by ρ, then M satisfies CD(ρ, 1, 0, n) and hence (3.50) reduces down to Struwe’s

original energy function.

The following theorem uses the generalized curvature dimension inequality and

partially generalizes Theorem 3.1.1.

Theorem 3.6.1 Fix x ∈ M. Let M satisfy CD(ρ1, ρ2, κ, d), where ρ1 ≥ 0. Then

t 7→ esub is monotonically decreasing.

Proof By computations similar to Proposition 3.4.1

∂tPT−t[Γ(u)] = −2PT−t[Γ2(u)]. (3.51)

Furthermore,

∂tPT−t[Γ
Z(u)] = PT−t[−LΓZ(u) + ∂tΓ

Z(u)]

= PT−t[−LΓZ(u) + 2ΓZ(u,Lu)]

= −2PT−t[Γ
Z
2 (u)]. (3.52)

where in the second line we have used (3.48). From (3.50), (3.51), (3.52), we get

e′sub(t) = PT−t

[
−1

2
Γ(u)− (T − t)Γ2(u)− 2κ(T − t)ΓZ(u)− 2κ(T − t)2ΓZ2 (u)

]
= −(T − t)PT−t

[
Γ2(u) +

1

2(T − t)
Γ(u) + 2κ(T − t)ΓZ2 (u)

]
(3.53)

− 2κ(T − t)PT−t[ΓZ(u)]

≤ −(T − t)PT−t
[
Γ2(u) +

1

2(T − t)
Γ(u) + 2κ(T − t)ΓZ2 (u)

]
(3.54)
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by ΓZ(u) ≥ 0 and the sub-Markov property.

We now break into two cases.

• κ = 0: Then (3.54) reads

e′sub(t) ≤ −(T − t)PT−t[Γ2(u)].

CD(ρ1, ρ2, 0, d) and ρ1 ≥ 0 imply that

Γ2(u) + νΓZ2 (u) ≥ 0, ν > 0.

By choosing ν as small as we want, this means that Γ2(u) ≥ 0 pointwise. Thus

e′sub(t) ≤ 0 follows from the positivity-preserving property of the semi-group.

• κ > 0: In this case, as a result of ρ1 ≥ 0 and ρ2 > 0, CD(ρ1, ρ2, κ, d) yields

Γ2(u) + νΓZ2 (u) +
κ

ν
Γ(u) ≥ 0 (3.55)

Choosing ν = 2κ(T − t) > 0 in (3.55),

Γ2(u) + 2κ(T − t)ΓZ2 (u) +
1

2(T − t)
Γ(u) ≥ 0. (3.56)

e′sub(t) ≤ 0 now follows from (3.54), (3.56), and, once again, the positivity-

preserving property.

Remark 3.6.2 There is one somewhat dissatisfying aspect of Theorem 3.6.1: if κ >

0, there does not appear to be a way to extend this to the case where ρ1 < 0, which

would be the analogue of Theorem 3.1.1. Using CD(ρ1, ρ2, κ, d) in this case, we find

that

Γ2(u) +
1

2(T − t)
Γ(u) + 2κ(T − t)ΓZ2 (u)

≥
(

1

2(T − t)
+ ρ1 −

κ

ν

)
Γ(u) + (2κ(T − t)− ν)ΓZ2 (u)

We could force the right-hand side to be non-negative if we required

2κ(T − t) ≥ ν, and ν ≥ 2κ(T − t)
1 + 2(T − t)ρ1

,

but this is not possible whenever κ > 0 and ρ1 < 0.
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3.6.1 Comparison of the sub-Riemannian energy function with the tamed

energy function

The purpose of this section is to demonstrate that Theorem 3.6.1 does not follow

in an obvious way from Theorem 3.1.1. Throughout this section, we will let M be a

sub-Riemannian manifold with sub-Riemannian metric h and sub-Laplacian L. We

will also fix T > 0 and a solution to the heat equation Lu = ut on M× (0, T ). Let us

begin with the appropriate definition from [13].

Definition 3.6.3 A Riemannian metric g is said to tame a sub-Riemannian metric

h if h is the restriction of g to to the horizontal bundle.

For example, the Webster metric gθ on any CR manifold M tames its own restric-

tion to the Levi distribution H(M). More generally, if the tangent bundle can be

decomposed as T (M) = H ⊕ V , where H is the horizontal distribution of M, then

one may always tame the metric h by choosing any metric on V and making H and

V orthogonal. However, such completion is not unique and depends on the choice of

metric on V .

Fix a metric g which tames h and let L̃ denote the Laplace-Beltrami operator of

the tamed metric. This (now non-degenerate) elliptic operator has a corresponding

carré du champ, which we denote by Γ̃, and also an iteration, denoted Γ̃2.

The Laplace-Beltrami operator has a self-adjoint extension from C∞0 (M), the

Friedrichs extension. We let P̃t be the semigroup obtained from this self-adjoint

extension. Finally, we denote, for fixed x ∈ M, Struwe’s original energy function by

the usual notation, i.e.

ex(t) =
1

2
(T − t)P̃T−t[Γ̃(u)](x).

We would like to note that, if the Ricci curvature of the tamed metric is bounded

from below, then by Theorem 3.1.1 e(t) is decreasing whenever T − t is small.

Two obvious questions about e and esub are the following: is the monotonicity of

the sub-Riemannian energy function esub just a restatement of the monotonicity of
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the tamed energy function e (in other words, is e = esub?) If not, can we find a direct

comparison of the two energy functions?

We have the following proposition, which is a first step in answering the first

question.

Proposition 3.6.1 Suppose that u is of the form u(x, t) = (Ptf)(x) for some f ∈

L2(M). Then

lim
t→T−

esub(t)

T − t
=

1

2
Γ(PTf)

lim
t→T−

e(t)

T − t
=

1

2
Γ̃(PTf).

The proof is immediate based on the definitions. As a result, if Γ(PTf) 6= Γ̃(PTf),

then esub 6= e.

3.6.2 e and esub on the Heisenberg group Hn

Let gθ denote the Webster metric on Hn, see [29]. This metric tames the sub-

Riemannian metric defined on the horizontal bundle of the Heisenberg group. We will

denote a point g ∈ Hn by its exponential coordinates g = (x, y, z), where x, y ∈ Rn

and z ∈ R. If we consider the basis {Xj, Yj, Z : j = 1, . . . , n}, where

Xj =
∂

∂xj
− yj

2

∂

∂z
, Yj =

∂

∂yj
− xj

2

∂

∂z
,

then this set is orthonormal under gθ. Thus the corresponding Laplace-Beltrami

operator is given by

∆ =
∑
j

(X2
j + Y 2

j ) + Z2 = ∆H + Z2.

The completed carré du champ is given by

Γ̃(u, v) = Γ(u, v) + ΓZ(u, v).

As a result of Proposition 3.6.1, we have the following:
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Corollary 3.6.1 In general, esub(t) 6= e(t).

Proof Let f ∈ L2(Hn) and T > 0 be such that ΓZ(PTf) 6= 0. Since Γ(PTf) =

Γ̃(PTf) if and only if ΓZ(PTf) = 0, it follows that the corresponding sub-Riemannian

and tamed energies are not the same.

We would now like to find an explicit comparison between the sub-Riemannian

and tamed energy functions in terms of the heat kernel pt. Because Z2 and ∆H

commute, we can formally write

et∆HetZ
2

= et∆.

Thus one might expect the following.

Proposition 3.6.2 Let pt(x, y, z) denote the heat kernel of ∆H with pole at (0, 0),

see (1.24). Let ht(z) = (4πt)−1/2 exp(− z2

4t
). Then

p̃t(x, y, z) = [ht ∗ pt(x, y, ·)](z)

is the heat kernel for the Laplace-Beltrami operator ∆H + Z2.

Proof Let ∆(x,y,z) denote the Laplace-Beltrami operator with respect to the vari-

ables (x, y, z), ∆H,(x,y,z) the sub-Laplacian with respect to the variables (x, y, z), and

∆(x,y) denote the Euclidean Laplacian with respect to the variables (x, y). By differ-

entiating under the integral,

(∆(x,y,z) − ∂t)p̃t(x, y, z) =

ˆ
R

[
pt(x, y, ζ){∆(x,y,z)ht(z − ζ)− ∂tht(z − ζ)}

+ ht(z − ζ){∆(x,y,z)pt(x, y, ζ)− ∂tpt(x, y, ζ)}

+ 2Γ(x,y,z)(ht(z − ζ), pt(x, y, ζ))
]
dζ (3.57)

Simple calculations show that

(∆(x,y,z) − ∂t)ht(z − ζ) =
x2 + y2

4
∂2
zht(z − ζ) =

x2 + y2

4
∂2
ζht(z − ζ). (3.58)
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On the other hand, looking at the pt part under the integral,

∆(x,y,z)pt(x, y, ζ) = ∆(x,y)pt(x, y, ζ)

= (∆H,(x,y,ζ))pt(x, y, ζ)− r2

4
∂2
ζpt(x, y, ζ)

= ∂tpt(x, y, ζ)− r2

4
∂2
ζpt(x, y, ζ) (3.59)

Thus, inserting (3.57) and (3.59) into (3.58), one has

(∆(x,y,z) − ∂t)p̃t(x, y, z) =
r2

4

ˆ
R

[
pt(x, y, ζ)∂2

ζht(z − ζ)− ht(z − ζ)∂2
ζpt(x, y, ζ) dζ

+ 2

ˆ
R

Γ(x,y,z)(ht(z − ζ), pt(x, y, ζ))
]
dζ

= 2

ˆ
R

Γ(x,y,z)(ht(z − ζ), pt(x, y, ζ)) dζ

after integrating by parts on the first term. To take care of this last term, we note

that

X(x,y,z)pt(x, y, ζ) = ∂xpt(x, y, ζ)

Y(x,y,z)pt(x, y, ζ) = ∂ypt(x, y, ζ)

∂zpt(x, y, ζ) = 0

and also

X(x,y,z)ht(z − ζ) = −y
2
∂zht(z − ζ)

Y(x,y,z)ht(z − ζ) =
x

2
∂zht(z − ζ)

thus

Γ(x,y,z)(ht(z − ζ), pt(x, y, ζ)) = (−y
2
∂zht(z − ζ))(∂xpt(x, y, ζ))

+ (
x

2
∂zht(z − ζ))(∂ypt(x, y, ζ))

=
1

2
∂zht(z − ζ) (x∂y − y∂x) pt(x, y, ζ)

= 0
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since pt is radial in (x, y). Thus p̃t at least solves the Riemannian heat equation. To

finish, note that letting t → 0+, we have ht → δ0 in D ′(R), and pt → δ0 in D ′(R3).

Thus because the convolution of Dirac deltas is another Dirac delta, we get p̃t → δ0

in D ′(R3).

The previous proposition allows us to write the tamed energy function on Hn in

terms of the sub-Riemannian heat kernel. Writing g = (x, y, z),

e(t) =
1

2
(T − t)

ˆ
Hn

[Γ(u) + ΓZ(u)](g)(

ˆ
R
hT−t(z − ζ)pT−t(x, y, ζ) dζ) dg

whereas the sub-Riemannian energy is given by

esub(t) =
1

2
(T − t)

ˆ
Hn

[Γ(u) + 2(T − t)ΓZ(u)](g)pT−t(g) dg.

3.7 Struwe’s energy monotonicity on sub-Riemannian manifolds

We end this chapter by briefly commenting on a few special cases where Struwe’s

energy function is monotonic for sub-classes of functions on sub-Riemannian mani-

folds. As mentioned in the previous section, Struwe’s energy function e is monoton-

ically non-increasing if Γ2(u) is non-negative. While this is not true in general, one

can impose additional restrictions on the function u to achieve Γ2(u) ≥ 0.

This section is primarily motivated from an explicit computation of Γ2(u) that

the author performed for cylindrical functions on the Heisenberg group Hn (see Defi-

nition 2.6.1(b)). Later, the author learned that such computations had already been

performed for Hn, [68], and that similar results existed in the literature for SU(2), [8],

and SL(2,R), [17]. Now, we show that such results hold on even more general spaces

– the CR unit sphere S2n+1, H-type groups, and the anti-de Sitter spaces – if one

restricts to functions which have cylindrical symmetries when the notion of having

cylindrical symmetry is appropriately defined.
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3.7.1 Cylindrically invariant functions on the CR Sphere, S2n+1, and SU(2)

The (2n+ 1)-dimensional unit sphere is a strictly-pseudoconvex CR manifold and

posesses a corresponding sub-Riemannian structure. In [10], Baudoin and Wang used

the fibration S2n+1 → CPn induced from the action of the unit circle S1 on S2n+1 to

produce a coordinate system which makes the study of the heat kernel for the sub-

Laplacian of S2n+1 amenable. The authors showed that the so-called “cylindrical”

part of the sub-Laplacian is given by

∆̃H =
∂2u

∂r2
+ ((2n− 1) cot r − tan r)

∂u

∂r
+ tan2 r

∂2u

∂θ2
.

The carré du champ for cylindrically invariant functions is immediate from the qua-

dratic form of the sub-Laplacian:

Γ(u) = (
∂u

∂r
)2 + tan2 r(

∂u

∂θ
)2.

If one computes Γ2 for functions possessing this cylindrical invariance, one finds that

Γ2(u) = (
∂2u

∂r2
)2 + tan4 r(

∂2u

∂θ2
)2 − 2 sec2 r tan r

∂2u

∂θ2

∂u

∂r

+ (sec2 r + (2n− 1) csc2 r)(
∂u

∂r
)2 + 2 sec2 r(sec2 r + (n− 1))(

∂u

∂θ
)2

+ 4 sec2 r tan r
∂u

∂θ

∂2u

∂r∂θ
+ 2 tan2 r(

∂2u

∂r∂θ
)2

= (
∂2u

∂r2
)2 + 2(n− 1)[csc2 r(

∂2u

∂r2
)2 + sec2 r(

∂u

∂θ
)2]

+

(
tan2 r

∂2u

∂θ2
− 2 csc(2r)

∂u

∂r

)2

+ 2

(
sec2 r

∂u

∂θ
+ tan r

∂2u

∂r∂θ

)2

≥ 0.

Setting n = 1, we recover the result of Baudoin and Bonnefont in [8], where the

authors proved that cylindrically invariant functions on SU(2) possess the positive

curvature property.
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3.7.2 Cylindrically invariant functions on the anti-de Sitter spaces H2n+1

and SL(2,R)

Using the universal covering of SL(2,R), Bonnefont in [17] introduced cylindrical

coordinates on SL(2,R) and showed that the heat kernel is only depends on the radial

component of these coordinates. In fact, if u is radial

Γ2(u) = (
∂2u

∂r2
)2 + (

2

sinh 2r

∂u

∂r
− tanh2 r

∂u

∂z2
)2 + 2(

1

cosh2 r

∂u

∂z
+ tanh r

∂2u

∂r∂z
)2

More generally, on the n-dimensional anti-de Sitter spaces, which we denote by

H2n+1, Wang gave a representation of the cylindrical component of the sub-Laplacian

in [73]:

∆̃H =
∂2

∂r2
+ ((2n− 1) coth r + tanh r)

∂

∂r
+ tanh2 r

∂2

∂θ2
.

As in the S2n+1 case, the carré du champ of a cylindrically invariant function is

immediate from the quadratic form of the sub-Laplacian:

Γ(u) = (
∂u

∂r
)2 + tanh2 r(

∂u

∂θ
)2.

A long computation also shows that

Γ2(u) = (
∂2u

∂r2
)2 + tanh4 r(

∂2u

∂θ2
)2 − 2 sech2 r tanh r

∂u

∂r

∂2u

∂θ2

+ ((2n− 1) csch2 r − sech2 r)(
∂u

∂r
)2 + 2 tanh2 r(

∂2u

∂r∂θ
)2

+ 2 sech2 r(sech2 r + n− 1)(
∂u

∂θ
)2 + 4 sech2 r tanh r(

∂u

∂θ
)(
∂2u

∂r∂θ
)

= (
∂2u

∂r2
)2 + 2(n− 1)

[
sech2 r(

∂u

∂θ
)2 + csch2 r(

∂u

∂r
)2

]
+ (tanh2 r

∂2u

∂θ2
− 2

sinh(2r)

∂u

∂r
)2 + 2(sech2 r

∂u

∂θ
+ tanh r

∂2u

∂r∂θ
)2

≥ 0.

Similar to how setting n = 1 in the S2n+1 case recovers the SU(2) case, if we here set

n = 1 we recover the SL(2,R) case.
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3.7.3 Cylindrically symmetric functions on H-type groups

See Definition 2.6.1 for the definition of cylindrical functions. The fact that

Γ2(u) ≥ 0 for cylindrically symmetric u was first noted by Bakry, Baudoin, Bonnefont

and Chafäı in [4] for the case n = 1. Later, Qian extended this to the n-dimensional

Heisenberg group Hn in [68]. In the proposition below, we give an extension of this

property to H-type groups.

Proposition 3.7.1 Let G be of Heisenberg-type. If u has cylindrical symmetry, then

Γ2(u) ≥ 0.

It is easily seen that the vector fields Θ` annihilate cylindrically symmetric func-

tions, ` = 1, . . . ,m. Thus, whenever u is cylindrical, (1.11) reads

∆Hu = ∆xu+
|x|2

4
∆zu, u cylindrically symmetric. (3.60)

Before proving Proposition 3.7.1, we need a few lemmas.

Lemma 3.7.1 Let G be a group of Heisenberg type. Then dimV2 < dimV1.

Proof Our starting point is Remark 18.1.6 in [16]: there exists a Heisenberg-type

group with n = dimV1 and m = dimV2 if and only if m < ρ(n), where ρ(n) is the

Radon-Hurwitz number given by

ρ(n) = 8p+ q,

when n is written as n = k24p+q, where k ≥ 1 is odd and 0 ≤ q ≤ 3. We will show

that ρ(n) ≤ n for all n, from which it follows that necessarily m < n.

Note that, if x ≥ 1, we have the bound

8x ≤ 16x − 8,

which follows by basic calculus. Hence for p ≥ 1,

ρ(n) = 8p+ q ≤ 8p+ 3 ≤ 16p − 5 ≤ 24p2q ≤ n.



89

On the other hand, if p = 0, then instead the bound 2x ≥ x for x ≥ 0 gives

ρ(n) = q ≤ 2q ≤ n.

Lemma 3.7.2 Let G be of Heisenberg-type. If u has cylindrical symmetry, then so

do |∇Hu|2 and ∆Hu.

Proof Repeating the calculations in Lemma 1.1.2, specifically (1.15) and (1.16), we

have for any smooth u defined on a subset of G that

Γ(u) = |∇Hu|2 = |∇xu|2 + 〈J(∇zu)x,∇xu〉+
|x|2

4
|∇zu|2.

If u(x, z) is any cylindrically symmetric function, then ∇xu = x
|x|

∂u
∂|x| , hence

〈J(∇zu)x,∇xu〉 = 0.

From this we infer that

|∇Hu|2 = |∇xu|2 +
|x|2

4
|∇zu|2 (3.61)

∆Hu = ∆xu+
|x|2

4
∆zu, (3.62)

which are obviously cylindrically symmetric since u is.

Proof of Proposition 3.7.1 In the computations that follow, we assume that u has

cylindrical symmetry. By combining Lemma 3.7.2 (specifically (3.61)) with (3.60),

we find

Γ2(u) =
1

2
∆H(|∇Hu|2)− 〈∇Hu,∇H∆Hu〉

=
1

2
(∆x +

|x|2

4
∆z)(|∇xu|2 +

|x|2

4
|∇zu|2)

− 〈∇xu,∇x(∆xu+
|x|2

4
∆zu)〉 − |x|

2

4
〈∇zu,∇z(∆xu+

|x|2

4
∆zu)〉

=
1

2
∆x|∇xu|2 − 〈∇xu,∇x(∆xu)〉+

|x|4

16

(
1

2
∆z(|∇zu|2)− 〈∇zu,∇z∆zu〉

)
+

1

2
∆x(
|x|2

4
|∇zu|2) +

1

2

|x|2

4
∆z|∇xu|2 − 〈∇xu,∇x(

|x|2

4
∆zu)〉

− |x|
2

4
〈∇zu,∇z∆xu〉.
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Using the standard Bochner formula on Euclidean space,

Γ2(u) =
∥∥∇2

xu
∥∥2

HS
+
|x|4

16

∥∥∇2
zu
∥∥2

HS
+

1

2
∆x(
|x|2

4
|∇zu|2) (3.63)

+
1

2

|x|2

4
∆z|∇xu|2 − 〈∇xu,∇x(

|x|2

4
∆zu)〉 − |x|

2

4
〈∇zu,∇z∆xu〉, (3.64)

where ∇2
xu and ∇2

zu are the Euclidean Hessians with respect to the variables x and

z. Similar calculations to the Euclidean Bochner formula show that

1

2
∆z|∇xu|2 =

∥∥∇2
xzu
∥∥2

HS
+ 〈∇xu,∇x∆zu〉

1

2
∆x|∇zu|2 =

∥∥∇2
xzu
∥∥2

HS
+ 〈∇zu,∇z∆xu〉 (3.65)

1

2
∆x(
|x|2

4
|∇zu|2) =

1

2

|x|2

4
∆x|∇zu|2 +

n

4
|∇zu|2 + 〈∇x(

|x|2

4
),∇x|∇zu|2〉

where ∇2
xzu is the n×m matrix

∇2
xzu =


∂2u

∂x1∂z1
· · · ∂2u

∂x1∂zm
...

. . .
...

∂2u
∂xn∂z1

· · · ∂2u
∂xn∂zm

 .

Combining equations (3.65) with (3.64) and simplifying, we find that

Γ2(u) =
∥∥∇2

xu
∥∥2

HS
+
|x|4

16

∥∥∇2
zu
∥∥2

HS
+
|x|2

2

∥∥∇2
xzu
∥∥2

HS

+
n

4
|∇zu|2 + 〈∇x(

|x|2

4
),∇x|∇zu|2〉 −∆zu〈∇xu,∇x(

|x|2

4
)〉. (3.66)

By the Cauchy-Schwarz inequality

|x|4

16

∥∥∇2
zu
∥∥2

HS
≥ |x|

4

16m
(∆zu)2, (3.67)

and by completing the square, one has

|x|4

16m
a2 − ab = m

(
|x|2

4m
a− 2

|x|2
b

)2

− 4m

|x|4
b2. (3.68)

Taking a = ∆zu and b = 〈∇xu,∇x(
|x|2
4

)〉 in (3.68) and combining with (3.66) and

(3.67) gives us the inequality

Γ2(u) ≥
∥∥∇2

xu
∥∥2

HS
+m

(
|x|2

4m
∆zu−

2

|x|2
〈∇xu,∇x(

|x|2

4
)〉
)2

− 4m

|x|4
〈∇xu,∇x(

|x|2

4
)〉2

+
|x|2

2

∥∥∇2
xzu
∥∥2

HS
+
n

4
|∇zu|2 + 〈∇x(

|x|2

4
),∇x|∇zu|2〉 (3.69)
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We now use the function v for which u(x, z) = v(|x|, z). Denoting r = |x|, it

follows that ∥∥∇2
xu
∥∥2

HS
= v2

rr +
n− 1

r2
v2
r∥∥∇2

xzu
∥∥2

HS
= |∇zvr|2

〈∇x(
r2

4
),∇xu〉 =

1

2
rvr (3.70)

|∇xu|2 = v2
r

uxi =
xi
r
vr.

Inserting these formulas into (3.69) gives

Γ2(u) ≥ v2
rr +

n− 1

r2
v2
r +m

(
r2

4m
∆zv −

1

r
vr

)2

− m

r2
v2
r

+
r2

2
|∇zvr|2 +

n

4
|∇zv|2 +

1

2
r(|∇zv|2)r

= v2
rr +

n− 1−m
r2

v2
r +m

(
r2

4m
∆zv −

1

r
vr

)2

+
r2

2
|∇zvr|2 +

n

4
|∇zv|2 + r〈∇zv,∇zvr〉. (3.71)

We complete the square once more:

n

4
|a|2 + r〈a, b〉 =

n

4
|a+

2r

n
b|2 − r2

n
|b|2

for any two vectors a, b ∈ Rm+n. Taking now a = ∇zv and b = ∇zvr and inserting

into (3.71), we find after simplifying that

Γ2(u) ≥ v2
rr +

n− 1−m
r2

v2
r +m

(
r2

4m
∆zv −

1

r
vr

)2

+
n− 2

2n
r2|∇zvr|2 +

n

4
|∇z(v +

2r

n
vr)|2 (3.72)

whenever u is cylindrical. In particular, since n ≥ 2 and m < n by Lemma 3.7.1,

We would like to emphasize that the assumption that u is cylindrical is important

to the computation. In equation (3.69), there are two terms that are possibly negative,

however the equations (3.70) provide ways of combining those terms with other non-

negative terms, which results in all positive terms.
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The property of cylindrical symmetry is one that is preserved by the semigroup.

Indeed, the heat kernel pt posesses cylindrical symmetry, see (1.24), and this implies

the preservation of this property by the semi-group. Thus Corollary 3.7.1 applies to

heat solutions of the form u = Ptf where f ∈ L2(G) is cylindrically symmetric.

We end by briefly commenting on the case where the function u does not have

vanishing discrepancy. In the case of H1, one can compute

Γ2(u) =
∥∥∇2

xu
∥∥2

HS
+

(
r2

4
uzz −

1

r2
(xux + yuy)

)2

− 1

r4
(xux + yuy)

2

+
1

2
[uz + (xuxz + yuyz)]

2 −Θuz(∆Hu)

+ 2Γ(uz,Θu)− 1

2
uzzΘ

2u (3.73)

If Θu 6= 0, then the last three terms may be positive or negative, and we lose all

control over the sign of Γ2(u).

Corollary 3.7.1 Let G be of Heisenberg type and u : G × (0, T ) → R be a solution

to the sub-elliptic heat equation ∆Hu = ut which is also a cylindrical function in the

space variables, i.e. u(x, z, t) = v(|x|, z, t). Then if u ∈ D(∆H), the Struwe’s energy

associated to u

e(t) = (T − t)PT−t[|∇Hu|2](g)

= (T − t)
ˆ
G
|∇Hu|2(g′)pT−t(g, g

′) dg

is a monotonically non-increasing function of t.

Proof By Proposition 3.7.1, we see that ∆H satisfies CD(0,∞) for cylindrical func-

tions, hence by (the proof of) Theorem 3.1.1, Struwe’s energy is decreasing for all

t ∈ (0, T ).

Remark 3.7.1 One can of course make similar statements about the non-increasing-

ness of Struwe’s energy for cylindrical functions on the sub-elliptic model spaces S2n+1

and anti-de Sitter spaces.



93

4. Heat kernel asymptotics and Wiener criterion for groups

of Heisenberg-type

4.1 Statement of the problem

Let pet : Rn → (0,∞) denote the Euclidean heat kernel with pole at 0 ∈ Rn, that

is,

pet (x) = (4πt)−n/2 exp(−|x|
2

4t
).

We obviously have

∇ ln pet = − x
2t
, ∂t ln pet = − n

2t
+
|x|2

4t2
.

Thus, given Θ > 1, the bound

|∇ ln pet |2 ≤ Θ∂t ln pet (4.1)

holds if and only if

|x|2 ≥ 2nΘ

Θ− 1
t.

In [31], Evans and Gariepy connected the bound (4.1) to a strong Harnack in-

equality. This Harnack inequality was vital to their proof of Wiener’s criterion for

the heat equation. This bound was extended to parabolic operators with smooth

variable coefficients by Garofalo and Lanconelli in [37], and Garofalo and Segala gave

the first proof of Theorem 4.1.1 in the sub-Riemannian setting in the case of the

Heisenberg group Hn [43].

Let G be a group of Heisenberg-type with Lie algebra g = V1 ⊕ V2. We let

pt : G × (0,∞) → R be the heat kernel with pole at the group identity e associated

to the sub-elliptic heat equation, ∆Hu = ut. We prove the following theorem.
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Theorem 4.1.1 Given Θ > 1, there exists δ > 0 depending on dimV1, dimV2, and

Θ such that

|∇H ln pt|2 ≤ Θ∂t ln pt (4.2)

whenever 0 < t ≤ δρ(x, z)2. Here ρ(x, z) denotes the Korányi gauge.

As an application, we briefly indicate in section 4.6 how Theorem 4.1.1 can be used

to develop a corresponding extension of the strong Harnack inequality and Wiener

criterion to H-type groups, see in particular Theorems 4.6.1 and 4.6.2.

4.2 Preliminary reductions to Theorem 4.1.1

Let G be a step-two Carnot group of Heisenberg-type. We write g = V1 ⊕ V2

for the Lie algebra. Since the Kaplan mapping J : V2 → End(V1) induces a complex

structure on first layer, V1 is necessarily even-dimensional. Thus we write 2n = dimV1

and m = dimV2, hence the homogeneous dimension is Q = 2n+ 2m.

Let X1, . . . , X2n be a basis for V1 and Z1, . . . , Zm be a basis for V2, and 〈·, ·〉 a

left-invariant inner product making the collection of these vector fields orthonormal.

In exponential coordinates, we will write g = (x, z), where we have identified x =

x1X1 + · · ·+ x2nX2n, z = z1Z1 + · · · zmZm.

As mentioned in Section 1.1.3, explicit formulas for the heat kernel exist, which

we now recall:

pt(x, z) = 2m(4πt)−Q/2
ˆ
Rm

exp(i〈ξ
t
, z〉) exp(−|x|

2

4t
· |ξ|

tanh |ξ|
)(
|ξ|

sinh |ξ|
)n dξ, (4.3)

We note that the integrand of (1.24) differs from that of (4.3), due to our change of

notation dimV1 = 2n and the change of variables ξ 7→ 1
2
ξ.

By inspection, pt is homogeneous of degree −Q with respect to the non-isotropic

space-time dilations (δ̃λ)λ>0 on G× (0,∞) given by

δ̃λ((x, z), t) = (δλ(x, z), λ
2t),
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where (δλ)λ>0 is the usual one-parameter group of dilations on a Carnot group. Thus

we have for every t > 0

pt(x, z) = t−Q/2p1 ◦ δ1/
√
t(x, z).

Also, 1
t
ρ(x, z) = ρ ◦ δ1/t(x, z). Due to these observations, we can turn Theorem 4.1.1

into an equivalent statement for p1: Given Θ > 1, there exists δ > 0 such that

d(x, z) ≥ 1
δ

implies

|∇Hp1|2 ≤ −
Θ

2
p1(Qp1 + Zp1). (4.4)

In (4.4), Z is the usual generator of the non-isotropic dilations (δλ)λ>0, i.e.

Z = 〈x,∇x〉+ 2〈z,∇z〉.

Note that (4.4) is quadratic in p1 on each side. Since

p1(x, z) = 2m(4π)−Q/2
ˆ
Rm

exp(i〈ξ, z〉) exp(−|x|
2

4
· |ξ|

tanh |ξ|
)(
|ξ|

sinh |ξ|
)n dξ,

we ignore the factor of 2m(4π)−Q/2 in front of the integral representation of p1 and

work instead with the function

h(x, z) =

ˆ
Rm

exp(i〈ξ, z〉) exp(−|x|
2

4
· |ξ|

tanh |ξ|
)(
|ξ|

sinh |ξ|
)n dξ. (4.5)

Considering all of these observations, Theorem 4.1.1 will follow from the following.

Proposition 4.2.1 Theorem 4.1.1 is equivalent to the following statement: Given

Θ > 1, there exists δ > 0 such that ρ(x, z) ≥ 1
δ

implies

|∇Hh|2 ≤ −
Θ

2
h(Qh+ Zh). (4.6)

Since the Carnot-Carathéodory distance and Korányi gauge are equivalent, one

could also state Theorem 4.1.1 for the Carnot-Carathéodory distance d(x, z), albeit

with a different δ. However, due to the equivalence of the distances, these theorems

would imply each other. Therefore we will use the distances d and ρ interchangeably

in the proof presented below.
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Set r = |x| and s = |z|. By an abuse of notation, we will often write h(x, z) =

h(r, s) since the function h is invariant under orthogonal translations in the horizontal

and vertical variables. By this, we mean that if O1 : R2n → R2n and O2 : Rm → Rm

are orthogonal transformations, then h(O1x,O2z) = h(x, z). It should be emphasized,

however, that h is not invariant under orthogonal transformations of R2n+m.

The proof we give of Theorem 4.1.1 is reminiscent of that of [43], broken into the

following steps and cases:

Figure 4.1. The various regions of study and their subcases.

• Step 1: |z|
|x|2 is bounded (dark gray in Figure 4.1). This step uses an m-

dimensional version of the method of steepest descent, specifically Theorem

1.1 of [34].

• Step 2: |z|
|x|2 is unbounded. Step 2 must be further into two cases: when m is

odd and m is even.
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– Case 1 (m odd): We are able to use a formula in [30] which relates the

integral representation of h over Rm to a sum of one-dimensional Fourier

integrals. This allows us to, by breaking into four sub-cases, use techniques

from [43] on estimating residues to give asymptotics for each of the terms

in the summation and relate those back to p1 itself:

∗ Subcase (a): |z|
|x|2 and |x|2|z| large (medium gray in Figure 4.1)

∗ Subcase (b): |z|
|x|2 and |x|2|z| bounded (light gray red in Figure 4.1)

∗ Subcase (c): |z|
|x|2 and x = 0 (vertical dashed line in Figure 4.1)

– Case 2 (m even): As the formula for p1 makes sense for any pair of nat-

ural numbers n,m (regardless of whether or not an H-type group of the

corresponding dimensions actually exists), we use a method of descent ar-

gument to add in an auxiliary dimension to the center. The asymptotics

derived in Case 1 apply, and we then remove the extra dimension by using

an observation from [30] which relates the case of the center having dimen-

sion m+1 to the case where the center has dimension m. The bound (4.6)

then follows from the asymptotics in the same way as in Case 1.

We will make use of Theorem 4.2.1 below on multiple occasions to directly derive

asymptotics in two of the regions (Step 1 and Step 2, sub-case 1). For its proof,

see [34] (specifically, Theorem 1.1 on page 417 and Proposition 1.1 on page 418),

or “saddle point method” in [49]. It is a higher-dimensional analogue of the special

contours chosen in [43].

Theorem 4.2.1 Let γ ⊂ Cm be an m-dimensional smooth, compact, real manifold

with boundary, and λ a large, positive parameter. Assume that f(ζ) and S(ζ) are

holomorphic in a neighborhood of γ. Define

F (λ) =

ˆ
γ

f(ζ)eλS(ζ) dζ,
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Assume that maxγ ReS(ζ) is attained at a single point ζ0 ∈ γ, and that ζ0 is a non-

singular saddle point, that is, ∇S(ζ0) = 0 and det(∇2S(ζ0)) 6= 0. Then

F (λ) = (
2π

λ
)m/2(det(−∇2S(ζ0)))−1/2 exp(λS(ζ0))[f(ζ0) +O(λ−1)].

Let f and g be two functions, and g 6= 0. We write f(w) ∼ g(w) as w → ∞ to

mean

lim
w→∞

f(w)

g(w)
= 1.

By carrying out our expansions in the various regions of interest, we come to the

following lemma which is the major stepping stone in the proof of Theorem 4.1.1.

Lemma 4.2.1 Let G be a group of H-type. Then as d(x,z)√
t
→∞, we have the following

asymptotic relations:

(a) |z|
|x|2 bounded:

|∇Hpt|2 ∼
d(x, z)2

4t2
p2
t , Zpt ∼ −

d(x, z)2

2t
pt,

∂pt
∂|z|

∼ −θ
t
pt

If we avoid the paraboloid 4|z|
|x|2 = ν(π

2
) = π

2
, then also

∂pt
∂|x|

∼ − cos θ
d(x, z)

4t
pt.

(b) |z|
|x|2 →∞, |x|2|z|/t2 →∞:

∂pt
∂|x|

∼ d(x, z)

4t
pt,

∂pt
∂|z|

∼ −π
t
pt

(c) |z|
|x|2 →∞, |x|2|z|/t2 bounded, x 6= 0:

∂pt
∂|x|

∼ d(x, z)

4t

In(

√
π|x|2|z|
t

)

In−1(

√
π|x|2|z|
t

)
pt,

∂pt
∂|z|

∼ −π
t
pt

(d) x = 0:

∂pt
∂|x|

= 0,
∂pt
∂|z|

∼ −π
t
pt.
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In Lemma 4.2.1 part (a), the asymptotics provided for ∂pt
∂|x| are only valid if we

avoid θ = π
2

since cos θ vanishes along this paraboloid. However, the asymptotics

given in part (a) for |∇Hpt|2 and Zpt and ∂pt
∂|z| work for any value of θ assuming |z|

|x|2

is bounded.

We should point out that asymptotics for pt itself derived in steps 1 and 2 exist

already in the literature, see [60] for H-type groups, and [61] for the Baouendi-Grushin

operator for (x, z) ∈ Rn × R,

B1 = ∆x +
|x|2

4

∂2

∂z2
,

when |z|
|x|2 is bounded. The author would like to thank F. Baudoin for bringing the

work of H.-Q. Li, especially [60], to his attention. Our method of expansion differs in

some places from that of Li’s. For example, instead of using properties of the Bessel

functions and the representation of pt due to Randall in [69], we follow the methods

of [43] and apply the saddle-point theorem to the m-dimensional integral (4.5) in the

case where ν(θ) is bounded. The present work also requires asymptotic expansions of

the derivatives of pt,
∂pt
∂|x| and ∂pt

∂|z| as in Lemma 4.2.1, and these are a new contribution

of this chapter.

4.3 Step 1: 0 ≤ ν(θ) ≤M

We begin by assuming that ν(θ) = 4|z|
|x|2 ≤ M (recall the definition of ν given in

Section 1.1.3). In this case,

|x| ≤ ρ(x, z) ≤ (1 +M2)1/4|x|,

so the Korányi gauge, Carnot-Carathéodory distance, and r = |x| are all equivalent

distances. It is therefore sufficient to prove Theorem 4.1.1 for |x| ≥ 1
δ

for some δ > 0.

We also note that ν is strictly increasing function of θ, it follows that 0 ≤ θ ≤ θ0 =

ν−1(M).
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The main goal of this section is to derive the following asymptotics for h and its

derivatives in this region:

h(x, z) ∼ (
8π

|x|2
)m/2(det−∇2

ζS(0, θ, ẑ))−1/2(
θ

sin θ
)n exp(−d(x, z)2

4
)

∂h

∂r
∼ −r

2

θ

tan θ
h

∂h

∂s
∼ −θh,

where S is a function which we will define presently in (4.8).

The flow of the argument is similar to the one presented in [43]. The major

difference is use of Theorem 4.2.1 since we are now dealing with a higher-dimensional

integral. In order to use Theorem 4.2.1, we adopt the notation and procedure of [30].

Since h is the inverse Fourier transform in ξ of a function only depending on |ξ|, the

result only depends on s = |z|. Thus we may write

h(r, s) =

ˆ
Rm

exp[
r2

4
ϕ(ζ, θ, ẑ)]f0(ζ) dζ,

where ẑ ∈ Sm−1 is an arbitrary fixed point and

ϕ(ζ, θ, ẑ) = i〈ζ, ẑ〉ν(θ)−
√
ζ2

tanh
√
ζ2

(4.7)

f0(ζ) = (

√
ζ2

sinh
√
ζ2

)n.

In (4.7),
√
· is a holomorphic square root such that

√
ζ > 0 for positive real ζ and

Im
√
ζ ≥ 0. Also, we have denoted ζ2 = 〈ζ, ζ〉 is the usual bilinear inner product on

Rm, extended to Cm. We emphasize that it is not the complex inner product on Cm.

In using the bilinear inner product, ϕ and f are holomorphic on their domains.

By Lemma 5.4 in [30], it is possible to shift the integration to the complex hyper-

plane ζ + iθẑ ∈ Cm:

h(r, s) =

ˆ
Rm

exp[
r2

4
ϕ(ζ + iθẑ, θ, ẑ)]f0(ζ + iθẑ) dζ.

Set

S(ζ, θ, ẑ) = ϕ(ζ + iθẑ, θ, ẑ)− ϕ(iθẑ, θ, ẑ) = ϕ(ζ + iθẑ, θ, ẑ) +
θ2

sin2 θ
, (4.8)
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so that

h(r, s) = exp(− r2θ2

4 sin2 θ
)

ˆ
Rm

exp[
r2

4
S(ζ, θ, ẑ)]f0(ζ + iθẑ) dζ

By Lemma 5.4 in [30], we can focus on integrating over a ball of radius ε, for some

ε > 0:

h(r, s) = exp(− r2θ2

4 sin2 θ
)

{ˆ
B(0,r)

exp[
r2

4
S(ζ, θ, ẑ)]f0(ζ + iθẑ) dζ +O(r−2m)

}
. (4.9)

It is important to note that the function O(r−2m) and r > 0 are uniform in θ, ẑ. We

are almost ready to apply Theorem 4.2.1.

Lemma 4.3.1 If ζ 6= 0, then

ReS(ζ, θ, ẑ) < ReS(0, θ, ẑ) = 0.

Proof By Lemma 5.7 of [30], for any ζ 6= 0,

Re

√
(ζ + iθẑ)2

tanh
√

(ζ + iθẑ)2
>

θ

tan θ
.

Therefore

ReS(ζ, θ, ẑ) = Re(i〈ζ + iθẑ, ẑ〉ν(θ) +
θ2

sin2 θ
)− Re

√
(ζ + iθẑ)2

tanh
√

(ζ + iθẑ)2

< −θν(θ) +
θ2

sin2 θ
− θ

tan θ

= 0.

Lemma 4.3.2 The function ζ 7→ S(ζ, θ, ẑ) has a saddle point at ζ0 = 0. Further-

more,

(
2

3
)m ≤ det(−∇2

ζS(0, θ, ẑ)) ≤ (ν ′(θ))m,

the lower bound being uniform in θ, ẑ. Thus the saddle point is non-singular.
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Proof It is equivalent to show the same for ϕ(ζ, θ, ẑ) at ζ0 = iθẑ. Differentiating ϕ,

∇ζϕ = iν(θ)ẑ − iν(−i
√
ζ2)ζ̂

∇2
ζϕ = −iν(−i

√
ζ2)

Im√
ζ2

+
i

2
√
ζ2
ν(−i

√
ζ2)ζ̂ ⊗ ζ̂ − ν ′(−i

√
ζ2)ζ̂ ⊗ ζ̂ .

where Im is the m×m identity, ζ̂ = ζ√
ζ2

, and a⊗ b is the m×m matrix with entries

aibj, 1 ≤ i, j ≤ m whenever a, b ∈ Cm. Obviously, ∇ζϕ(iθẑ, θ, ẑ) = 0. Also,

−∇2
ζϕ(iθẑ, θ, ẑ) =

ν(θ)

θ
Im −

ν(θ)

θ
ẑ ⊗ ẑ + ν ′(θ)ẑ ⊗ ẑ

This is a fully real matrix. If ξ ∈ Rm is any non-zero vector, then

〈−∇2
ζϕ(iθẑ)ξ, ξ〉 =

ν(θ)

θ
|ξ|2 + (ν ′(θ)− ν(θ)

θ
)〈ẑ, ξ〉2.

It is easy to check that

ν ′(θ) ≥ ν(θ)

θ
≥ 2

3
.

with equality if and only if θ = 0 in each case. Thus by Cauchy-Schwarz,

2

3
|ξ|2 ≤ 〈−∇ζϕ(iθẑ)ξ, ξ〉 ≤ ν ′(θ)|ξ|2.

Therefore, the eigenvalues of −∇2
ζϕ(iθẑ, θ, ẑ) are all larger than 2

3
, uniformly in θ, ẑ.

Proof of Theorem 4.1.1 when ν(θ) is bounded Combining Lemmas 4.3.1 and

4.3.2, the integral in (4.9) is ready to have Theorem 4.2.1 applied to it, with γ =

B(0, ε), λ = r2

4
, ζ0 = 0, and f = f0. Thus, since sin θ

θ
≤ 1 for all θ ∈ R,

h(r, s) = exp(− r2θ2

4 sin2 θ
)(

8π

r2
)m/2(det−∇2

ζS(0, θ, ẑ))−1/2(
θ

sin θ
)n
{

1 +O(r−2)
}

= exp(−d(x, z)2

4
)(

8π

r2
)m/2(det−∇2

ζS(0, θ, ẑ))−1/2(
θ

sin θ
)n
{

1 +O(r−2)
}
.

We would like to emphasize that the O(r−2m) part in (4.9) may either absorbed into

O(r−2) or ignored completely since m ≥ 1, and because det−∇2S(0, θ, ẑ) and θ
sin θ
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are bounded uniformly in θ, ẑ (recall that 0 ≤ θ ≤ θ0 < π). In the second line, we

have also used d(x, z) = θ
sin θ
|x| (recall (1.13)) when x 6= 0.

As

∂h

∂r
= −r

2

ˆ
Rm

exp[
r2

4
ϕ(ζ, θ, ẑ)]f0(ζ)(

√
ζ2

tanh
√
ζ2

) dζ,

∂h

∂s
=

ˆ
Rm

exp[
r2

4
ϕ(ζ, θ, ẑ)]f0(ζ)(i〈ζ, ẑ〉) dζ,

we can use the same arguments as above to show that

∂h

∂r
= −r

2
h

{
θ

tan θ
+O(r−2)

}
∂h

∂s
= h

{
−θ +O(r−2)

}
∼ −θh

as r →∞. Above, we have used the notation f ∼ g as w →∞ to mean limw→∞
f(w)
g(w)

=

1 for the ∂h
∂s

. We have also crucially used the fact that ν(θ) – hence θ and θ
tan θ

– are

bounded functions. It is tempting to write ∂rh ∼ − r
2

θ
tan θ

h, but this is only valid if

θ0 = ν−1(M) < π
2
, otherwise the function θ

tan θ
may vanish.

Because of the symmetry of the function h (i.e. it only depends on r = |x| and

s = |z|), we have that

|∇Hh|2 = (
∂h

∂r
)2 +

r2

4
(
∂h

∂s
)2

Zh = r
∂h

∂r
+ 2s

∂h

∂s

= r
∂h

∂r
+
r2

2
ν(θ)

∂h

∂s
.

It thus follows that as r →∞,

|∇Hh|2 ∼
d(x, z)2

4
h2 (4.10)

Zh ∼ −d(x, z)2

2
h, (4.11)

In (4.10) we have used the Pythagorean identity, and in (4.11) we have used the fact

that ν(θ) is bounded. We have again used (1.13) to write the right-hand side of (4.10)
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and (4.11) in terms of the Carnot-Carathéodory distance. In order to prove Theorem

4.1.1 for this case, it is sufficient to prove

d(x, z)2

4
≤ −Θ

2
(Q− d(x, z)2

2
)

as r →∞. This may be rearranged to

d(x, z)2 ≥ 2QΘ

Θ− 1
, (4.12)

as r → ∞. Given Θ > 1, (4.12) obviously holds for large enough r and d(x, z).

Since the Carnot-Carathéodory distance and Korányi distance are equivalent metrics,

Theorem 4.1.1 follows in the case where ν(θ) = 4|z|
|x|2 is bounded.

Remark 4.3.1 The region where ν(θ) is bounded is the most “Euclidean-like.” In

Rn, the Carnot-Carathéodory distance agrees with the usual Euclidean distance. Thus,

for example, there is a clear comparison of (4.10) and (4.11) with their Euclidean

counterparts:

|∇p1|2 =
|x|2

4
p1

Zp1 = 〈x,∇p1〉 = −|x|
2

2
p1.

Even (4.12) is reminiscent of the Euclidean requirement for Theorem 4.1.1 to hold.

Remark 4.3.2 Fix a, b ∈ R and u ∈ Sm−1. One may show that the eigenvalues of a

matrix of the form M = aIm + bu ⊗ u are λ1 = a + b and λ2, . . . , λm = a. In fact,

assuming u = (u1, . . . , um) with u1 6= 0, an eigen-basis for M is given by

ξ1 = u, ξk = (−uk
u1

, 0, . . . , 0, 1, 0, . . . , 0), k = 1, . . . ,m− 1,

where in ξk, k = 2, . . . ,m, the 1 is taken to be in the the kth position. Hence,

− det∇2S(0, θ, ẑ) = (
ν(θ)

θ
)m−1ν ′(θ).

Using this observation and the asymptotic expansion of h(x, z) = 2−m(4π)Q/2p1(x, z)

given above, we obtain the asymptotic expansion of p1 given in Theorem 1.4 of [60].
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4.4 Step 2: ν(θ) unbounded, m odd

We now study the case where ν(θ) is allowed to diverge to infinity. In [43], Garofalo

and Segala shifted the contour of (4.3) from R to R + 3π
2
i using the residue theorem,

showed that the integral over R + 3π
2
i is negligible, and gave asymptotics for the

residue of the integrand at ζ = iπ. However, as we are now integrating over Rm,

we first have to reduce to one-dimensional integrals if we wish to apply this type of

argument.

The key is to use the following formula for h, valid for m odd and z 6= 0:

h(x, z) =

m−1
2∑

k=0

cm,k|z|k−m+1 Re

ˆ
R

exp(iρ|z| − |x|2ρ
4 tanh ρ

)(
ρ

sinh ρ
)n(−iρ)k dρ. (4.13)

Here, the cm,k are non-negative constants depending on m and k:

cm,k =


1 if m = 1, k = 0

0 if m ≥ 3, k = 0

(2π)
m−1

2 2k−
m−1

2

( m
2
−1

m−1
2
−k

)
if m ≥ 3, k = 1, . . . , m−1

2
.

Note that cm,k > 0 when m ≥ 3 and k ≥ 1, and cm,m−1
2

= (2π)
m−1

2 , m ≥ 1.

(4.13) can be found in [30] and [60], and is arrived at by integrating out the angular

dependence of the heat kernel formula. The resulting integral involves Bessel functions

Jm/2−1. Then, by writing Jm/2−1 = Re(Jm/2−1 + iYm/2−1) = ReH
(1)
m/2−1, where H

(1)
ν is

the Hankel function of the first kind of order ν, and applying a closed-form formula

for H
(1)
m/2−1 when m is odd (see Section 3.3 of [63]), one arrives at (4.13).

We note that in fact the integrals in (4.13) are fully real. Indeed, when k = 2`+ 1

is odd, we have

exp(iρs)(−iρ)k = (−1)`+1 sin(ρs)ρ2`+1 + i(−1)` cos(ρs)ρ2`+1.

Due to the fact that exp(− r2ρ
4 tanh ρ

) is even in ρ, the imaginary part integrates to zero

since cos(ρs)ρk is odd in ρ. If, on the other hand, k = 2` is even, then

exp(iρs)(−iρ)k = (−1)` cos(ρs)ρ2` + i(−1)` sin(ρs)ρ2`.
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Again, the imaginary part is odd in ρ, so it integrates out to zero. Thus, we drop the

Re in (4.13).

We write

h(x, z) =

m−1
2∑

k=0

cm,k|z|k−m+1hk(x, z), (4.14)

where we have denoted

hk(x, z) =

ˆ
R

exp(ϕ(ρ, x, z))fk(ρ) dρ

ϕ(ρ, x, z) = iρ|z| − |x|2ρ
4 tanh ρ

fk(ρ) = (
ρ

sinh ρ
)n(−iρ)k (4.15)

We will use the same abuse of notation with the hk’s as we do with h itself and write

hk(x, z) = hk(r, s), similarly ϕ(ρ, x, z) = ϕ(ρ, r, s). By the chain and product rules,

we can compute

∂h

∂r
= −r

2

m−1
2∑

k=0

cm,ks
k−m+1

ˆ
R

exp(ϕ(ρ, x, z))(
ρ

sinh ρ
)n(−iρ)k

ρ

tanh ρ
dρ (4.16)

∂h

∂s
=

m−1
2∑

k=0

(k −m+ 1)cm,ks
k−mhk(r, s)−

m−1
2∑

k=0

cm,ks
k−m+1hk+1(r, s) (4.17)

As we are now interested in what happens to h when the quantities |z||x|2 and

|z|
|x|2 are of various sizes, we will write throughout this entire case

R =
r2

4
, µ =

√
R

πs
=

√
1

πν(θ)
, λ =

√
πRs.

Since ν(θ) = 4|z|
|x|2 is taken to be large, we have

4|z| ≤ ρ(x, z)2 = (|x|4 + 16|z|2)1/2 = 4|z|(1 +
1

ν(θ)
)1/2.

Therefore, in order to prove Theorem 4.1.1 for this region, it is suffucient to let

s = |z| → ∞.
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4.4.1 Sub-case 1: µ→ 0+ and λ→∞

Our main goal of this section is to prove the following.

Proposition 4.4.1 As µ → 0+ and λ → ∞, we have the following asymptotic rela-

tions.

h(x, z) ∼ π(2π)
m−1

2

√
π

λ
(
µ

λ
)
m−1

2 µ1−n exp(−d(x, z)2

4
)

∂h

∂s
∼ −πh

∂h

∂r
∼
√
π|z|h.

We note that ρ 7→ ϕ(ρ, x, z) and the fk in (4.15) are meromorphic in a neighbor-

hood of the strip Ω = {z ∈ C : Im z ∈ [0, 3π
2

]}, each with singularities at ρ = iπ.

Thus by the residue theorem, we have

hk(r, s) =

ˆ
Im ρ= 3π

2

exp(ϕ(ρ, x, z))fk(ρ) dρ+ 2πiResiπ[exp(ϕ(·, x, z))fk]

ˆ
R

exp(ϕ(ρ, x, z))fk(ρ)
ρ

tanh ρ
dρ =

ˆ
Im ρ= 3π

2

exp(ϕ(ρ, x, z))fk(ρ)
ρ

tanh ρ
dρ

+ 2πiResiπ[exp(ϕ(·, x, z))fk
·

tanh ·
]

Let us first get asymptotics for the residue terms. This is a generalization of the

discussion in Step 2, Case 1 of [43]. Many of the same ideas are still present, but we

apply Theorem 4.2.1 instead of estimating the residue directly.

Lemma 4.4.1 Let g be a meromorphic function near z = iπ and having a pole of

order ` at iπ for some ` ≥ 0. Set

F (ρ) = exp(iρs− r2ρ

4 tanh ρ
)(

ρ

sinh ρ
)ng(ρ). (4.18)

Then

Res[F ; iπ] = − i
2

c−`
(−iπ)`

µ−`−n+1 exp(−d(x, z)2

4
)

√
π

λ
(4.19)

× {1 +O(µ) +O(λ−1)}
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as µ→ 0+ and λ→∞, where c−` is the −` coefficient in the Laurent series expansion

of g near iπ, i.e.

c−` = lim
z→iπ

(z − iπ)`g(z).

Proof We have

Res[F ; iπ] = iπRes[F (iπ(1 + ·)); 0]

= iπ
1

2πi

ˆ
Cµ

F (iπ(ζ + 1)) dζ

=
1

2
(−1)n exp(−πs)

×
ˆ
Cµ

exp(−πζs− r2(1 + ζ)

4 tanπζ
)(
π(1 + ζ)

sin πζ
)ng(iπ(1 + ζ)) dζ (4.20)

where we have followed the notation of [43] and written Cµ = {−µeiζ : −π ≤ ζ ≤ π|}.

By peeling off the singularity at ζ = 0 inside the phase of (4.20), we may write

Res[F ; iπ] = − i
2

exp(−πs− r2

4
)

×
ˆ π

−π
exp[λψ(ζ, µ)](

π(1− µeiζ)
sin πµeiζ

)ng(iπ(1− µeiζ))µeiζ dζ, (4.21)

where ψ(ζ, µ) = 2 cos ζ − µq(πµeiζ) and

q(z) =
z − π
tan z

+
π

z
− 1 (4.22)

is holomorphic in a neighborhood of zero, and having a simple zero at 0. Since we

assume that that g has a pole of order ` at iπ, we have the expansion

g(iπ(1− w)) = w−`(
c−`

(−iπ)`
+ wA(w))

where A is holomorphic near w = 0 and c−` is the −`-coefficient in the Laurent

expansion of g near iπ. This in turn implies that

(
π(1− w)

sin πw
)ng(iπ(1− w))w = w−`−n+1(

c−`
(−iπ)`

+ wB(w))
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for a suitable B holomorphic function near 0. Hence

ˆ π

−π
exp[λψ(ζ, µ)](

π(1− µeiζ)
sin πµeiζ

)ng(iπ(1− µeiζ))µeiζ dζ

=

ˆ π

−π
exp[λψ(ζ, µ)](µeiζ)1−`−n(

c−`
(−iπ)`

+ µeiζB(µeiζ) dζ

= µ1−`−n c−`
(−iπ)`

ˆ π

−π
exp[λψ(ζ, µ)](eiζ)1−`−n dζ

+ µ2−`−n
ˆ π

−π
exp[λψ(ζ, µ)](eiζ)2−`−nB(µeiζ) dζ (4.23)

We now wish to apply Theorem 4.2.1 to (4.23). Claim: The mapping ζ 7→ ψ(ζ, µ)

has a non-degenerate critical point (which depends on µ and we thus denote by ζ(µ))

when

ζ(µ) =
i

2
ln(

π

ν(θ)(π − θ)2
)

for 0 < θ ≤ π, the value of ζ(0) = 0 being defined as a left-hand limit when θ = π.

Above, we have used the fact that a value of µ = 1√
πν(θ)

may be put into one-to-one

correspondence with a value of θ ∈ [0, π], i.e. θ = θ(µ) = ν−1( 1
πµ2

).

To prove the claim, we note that

ψζ(ζ, µ) = −2 sin ζ − iµ2πeizq′(µπeiζ). (4.24)

Now,

exp(iζ(µ)) = (π − θ)
√
ν(θ)

π
=
π − θ
µπ

, (4.25)

and because of the identity

2 sin(
i

2
lnx) = i(x1/2 − x−1/2), x > 0,

we have

2 sin(ζ(µ)) = sin(
i

2
ln(

π

ν(θ)(π − θ)2
)) = i(

1

π − θ

√
π

ν(θ)
− (π − θ)

√
ν(θ)

π
). (4.26)
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Combining (4.24)–(4.26) and recalling that µ =
√

1
πν(θ)

ψζ(ζ(µ), µ) = i((π − θ)
√
ν(θ)

π
− 1

π − θ

√
π

ν(θ)
)− i(π − θ)

√
1

πν(θ)
q′(π − θ)

=
i

(π − θ)
√
πν(θ)

[
(π − θ)2ν(θ)− π − (π − θ)2q′(π − θ)

]
. (4.27)

From (4.22),

q(z) =
z

tan z
+ π cot z +

π

z
− 1,

therefore, recalling that ν(θ) = − d
dθ

(θ cot θ),

q′(z) = −ν(z)− π csc2 z − π

z2
.

Since ν(π − θ) = π csc2 θ − ν(θ) and csc2(π − θ) = csc2 θ, it follows that

q′(π − θ) = −ν(π − θ)− π

(π − θ)2

= ν(θ)− π

(π − θ)2
. (4.28)

From (4.27) and (4.28), we conclude that ψζ(ζ(µ), µ) = 0.

We can also compute ψ(ζ(µ), µ) in a comparable fashion. Similar to before, we

have the identity

2 cos(
i

2
lnx) = x1/2 + x−1/2, x > 0.

Thus

ψ(ζ(µ), µ) = 2 cos ζ(µ)−

√
1

πν(θ)
q(µπeiζ(µ))

=
1

π − θ

√
π

ν(θ)
+ (π − θ)

√
ν(θ)

π
−

√
1

πν(θ)
q(π − θ)

=
1√
πν(θ)

[
π

π − θ
+ (π − θ)ν(θ)− q(π − θ)

]
.

Inasmuch as λ = r2

4

√
πν(θ) and q(π − θ) = θ cot θ + θ

π−θ , it follows that

λψ(ζ(µ), µ) =
r2

4

[
π

π − θ
+ (π − θ)ν(θ)− q(π − θ)

]
=
r2

4

[
1 + πν(θ)− θ2

sin2 θ

]
.
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Finally, recall that ν(θ) = 4|z|
|x|2 , implying

λψ(ζ(µ), µ) =
r2

4
+ πs− d(x, z)2

4
, (4.29)

where we’ve used – as in Step 1 – the fact that the Carnot-Carathéodory distance

satisfies d(x, z) = |x| θ
sin θ

when x 6= 0.

As for the non-degeneracy of ζ(µ), we simply note that ζ(0) is obviously non-

degenerate since ψ(ζ, 0) = 2 cos ζ, thus for µ sufficiently small ζ(µ) is also non-

degenerate.

We may connect ±π with a C2 path contained in the Reψ(ζ, 0) < 2 except when

ζ = 0. By continuity we can, for µ small enough, still connect −π to π with a C2

path γ = γµ contained in the region Reψ(ζ, µ) < Reψ(ζ(µ), µ), except at ζ(µ), and

such that γµ(0) = z(µ). Refer to Figure 4.2 for some sample paths.

Figure 4.2. Sample paths connecting −π to π contained in the region
Reψ(ζ, µ) ≤ Reψ(ζ(µ), µ), with equality only at the critical point of
the mapping ζ 7→ ψ(ζ, µ).
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We may thus apply Theorem 4.2.1 with S(ζ) = ψ(ζ, µ), ζ0 = ζ(µ) and γ = γµ to

each of the integrals above to obtainˆ π

−π
eλψ(ζ,µ)eikζ dζ =

ˆ
γµ

eλψ(ζ,µ)eikζ dζ

= (
2π

λ
)1/2(−ψζζ(ζ(µ), µ))−1/2eλψ(ζ(µ),µ)[eikζ(µ) +O(λ−1)] (4.30)

But for small µ we have

ζ(µ) = ζ(0) +O(µ) = O(µ)

eikζ(µ) = eikζ(0) +O(µ) = 1 +O(µ)

ψζζ = −2 cos ζ +O(µ2)

therefore ψζζ(ζ(µ), µ) = −2 +O(µ). Hence by the binomial expansion,

(−ψζζ(ζ(µ), µ))−1/2 = 2−1/2 +O(µ). (4.31)

Combining (4.31) with (4.30), we find thatˆ π

−π
eλψ(ζ,µ)eikζ dζ = (

π

λ
)1/2eλψ(ζ(µ),µ)(1 +O(µ) +O(λ−1)).

Inserting this into (4.23) and combining with (4.21) and remembering that µ → 0+

and B is bounded on Cµ uniformly in ζ ∈ [−π, π] and µ� 1, we arrive at

Res[F ; iπ] = − i
2

c−`
(−iπ)`

µ−`−n+1 exp(−πs−R + λψ(z(µ), µ))

√
π

λ
(4.32)

× {1 +O(µ) +O(λ−1)}.

Finally, we use (4.29) in (4.32) to arrive at (4.19).

The next lemma from [30] shows that the integrals over the set {z ∈ C : Im z = 3π
2
}

are negligible when compared to the residue terms.

Lemma 4.4.2 There exists M > 0 such that whenever 4|z|
r2
≥M we have

ˆ
Im ρ= 3π

2

exp(ϕ(ρ, x, z))fk(ρ)g(ρ) dρ ≤ C exp(−d(x, z)2

8
)

provided |fk(ρ+ 3π
2
i)g(ρ+ 3π

2
i)| is an integrable function.
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Corollary 4.4.1 For each k ∈ N0,

hk(r, s) ∼ πk+1µ−n+1

√
π

λ
exp(−d(x, z)2

4
){1 +O(µ) +O(

1

λ
)}

as µ→ 0+ and λ→∞.

Proof Take g(ρ) = (−iρ)k in Lemma 4.4.1, with ` = 0 and c0 = g(iπ) = πk. By

Lemma 4.4.2 the integral along Im ρ = 3π
2

is negligible compared to the residue term

as s→∞. Thus

hk(r, s) ∼ 2πiRes[exp(ϕ(·, x, z))(
·

sinh ·
)n(−i·)k]

∼ πk+1µ1−n
√
π

λ
exp(−d(x, z)2

4
)

as µ→ 0+ and λ→∞.

Remark 4.4.1 Note that in the case where m = 1, it follows that k = 0 in the series

expansion of h(r, s). Setting k = 0 in Corollary 4.4.1 reproduces (2.42) of [43].

Corollary 4.4.2 For each k ∈ N0, as µ→ 0+ and λ→∞,
ˆ
R

exp(ϕ(ρ, x, z))(
ρ

sinh ρ
)n(−iρ)k

ρ

tanh ρ
dρ ∼ −πk+1µ−n

√
π

λ
exp(−d(x, z)2

4
).

Proof As in the previous corollary, the integral along Im ρ = 3π
2

is negligible, there-

fore
ˆ
R

exp(ϕ(ρ, x, z))(
ρ

sinh ρ
)n(−iρ)k

ρ

tanh ρ
dρ

∼ 2πiRes[exp(ϕ(·, x, z))(
·

sinh ·
)n(−i·)k ·

tanh ·
; iπ].

Again apply Lemma 4.4.1, this time with g(ρ) = ρ
tanh ρ

(−iρ)k. Then ` = 1 since tanh ρ

has a pole of order 1 at iπ. This means

c−1 = lim
ρ→iπ

(ρ− iπ)
ρ

tanh ρ
(−iρ)k

= iπk+1.

Inserting this information into Lemma 4.4.1 finishes the proof.
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We can now produce asymptotics for h and its derivatives. Combining (4.14) with

our asymptotics for hk, and noting that s = λ
πµ

,

h(r, s) =

m−1
2∑

k=0

cm,ks
k−m+1hk(r, s)

=

m−1
2∑

k=0

cm,ks
k−m+1

ˆ
Im ρ= 3π

2

exp(ϕ(ρ, x, z))fk(ρ) dρ

+ πm
√
π

λ
µ1−n exp(−d(x, z)2

4
)

×
m−1

2∑
k=0

cm,k(
µ

λ
)m−k−1{1 +O(µ) +O(

1√
λ

) +O(λ−∞)}

as µ→ 0+ and λ→∞. By Lemma 4.4.2, the first summation is negligible compared

to the second as s becomes large. In the second summation, the dominating term will

be when m− 1− k is minimized, that is, when k = m−1
2

. In this case, we arrive at

h(r, s) ∼ πm(2π)
m−1

2

√
π

λ
(
µ

λ
)
m−1

2 µ1−n exp(−d(x, z)2

4
) (4.33)

as s→∞, µ→ 0+ and λ→∞ since cm,m−1
2

= (2π)
m−1

2 .

Now let us focus on ∂h
∂r

. We recall that

∂h

∂r
= −r

2

m−1
2∑

k=0

cm,ks
k−m+1

ˆ
R

exp(ϕ(ρ, x, z))(
ρ

sinh ρ
)n(−iρ)k

ρ

tanh ρ
dρ

= −r
2

m−1
2∑

k=0

cm,ks
k−m+1

ˆ
Im ρ= 3π

2

exp(ϕ(ρ, x, z))(
ρ

sinh ρ
)n(−iρ)k

ρ

tanh ρ
dρ

− r

2

m−1
2∑

k=0

cm,ks
k−m+12πiRes[exp(ϕ(·, x, z))(

·
sinh ·

)n(−i·)k ·
tanh ·

; iπ].
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Again by Lemma 4.4.2, the integral parts in the first summation are negligible. Com-

bining this with Corollary 4.4.2,

∂h

∂r
= O((

µ

λ
)−∞) +

r

2

m−1
2∑

k=0

cm,k(
λ

πµ
)k−m+1πk+1µ−n

√
π

λ
exp(−d(x, z)2

4
)

× {1 +O(µ) +O(
1√
λ

) +O(λ−∞)}

= O((
µ

λ
)−∞) +

r

2
πmµ−n

√
π

λ
exp(−d(x, z)2

4
)

×
m−1

2∑
k=0

cm,k(
µ

λ
)m−1−k{1 +O(µ) +O(

1√
λ

) +O(λ−∞)}.

As before, the dominating term in the summation will be the k = m−1
2

term, hence

∂h

∂r
∼ r

2
πm(2π)

m−1
2 µ−n

√
π

λ
(
µ

λ
)
m−1

2 exp(−d(x, z)2

4
)

∼ r

2µ
h.

The second asymptotic follows from (4.33).

Finally, to estimate the ∂h
∂s

term, we can again apply Lemma 4.4.2 to get that the

dominating terms are the residues. Hence by Corollary 4.4.1,

∂h

∂s
=

m−1
2∑

k=0

(k −m+ 1)cm,ks
k−mhk(r, s)−

m−1
2∑

k=0

cm,ks
k−m+1hk+1(r, s)

= O((
µ

λ
)−∞) + πµ1−n exp(−d(x, z)2

4
)

√
π

λ

×
[ m−1

2∑
k=0

(k −m+ 1)cm,ks
k−mπk{1 +O(µ) +O(

1√
λ

) +O(λ−∞)}

−
m−1

2∑
k=0

cm,ks
k−m+1πk+1{1 +O(µ) +O(

1√
λ

) +O(λ−∞)}
]

= O((
µ

λ
)−∞) + πm+1µ−n+1 exp(−d(x, z)2

4
)

√
π

λ

×
[ m−1

2∑
k=0

(k −m+ 1)cm,k(
µ

λ
)m−k{1 +O(µ) +O(

1√
λ

) +O(λ−∞)}

−
m−1

2∑
k=0

cm,k(
µ

λ
)m−1−k{1 +O(µ) +O(

1√
λ

) +O(λ−∞)}
]
.
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As µ is small and λ large, the leading terms in the summations again come from the

case when k = m−1
2

. However, this time the leading term only occurs in the second

summation. Thus,

∂h

∂s
∼ −πm+1(2π)

m−1
2 µ1−n(

µ

λ
)
m−1

2

√
π

λ
exp(−d(x, z)2

4
). (4.34)

We now collect our asymptotics. As s→∞, µ→ 0+ and λ→∞,

∂h

∂s
∼ −πh (4.35)

∂h

∂r
∼ r

2µ
h (4.36)

Remark 4.4.2 If m = 1, then since

∂h

∂r
=
∂R

∂r

∂h

∂R
=
r

2

∂h

∂R
,

(4.35) and (4.36) recover equations (2.46) in [43].

Recall, we wish to show that

|∇Hh|2 ≤ −
Θ

2
h(Qh+ Zh),

which is equivalent to

(
∂h

∂r
)2 +

r2

4
(
∂h

∂s
)2 ≤ −Θ

2
h(Qh+ r

∂h

∂r
+ 2s

∂h

∂s
) (4.37)

since

|∇Hh|2 = |∇xh|2 +
r2

4
|∇Hh|2

Zh = 〈x,∇xh〉+ 2〈z,∇zh〉

on H-type groups.

By (4.35) and (4.36), (4.37) is equivalent to asymptotically having

r2

4
(

1

µ2
+ π2) ≤ −Θ

2
(Q+

r2

2µ
− 2sπ).

But πs = λ
µ

and r2

4
= µλ, so this reduces to

(µ2π2 + 1)

1− µ(1 + Q
2λ

)
≤ Θ. (4.38)

In the limit as µ → 0+ and λ → ∞, the left-hand side of (4.38) converges to 1. As

Θ > 1 is fixed, (4.38) obviously holds if λ, 1
µ

are large enough.
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4.4.2 Sub-case 2: µ→ 0+ and λ bounded

We now assume that λ is bounded (yet still µ → 0+). Let us first prove the

following two lemmas.

Lemma 4.4.3 Let n be a non-negative integer. Then for real z,

In(z) =
1

2π

ˆ π

−π
ez cos θeinθ dθ, (4.39)

where In is the modified Bessel function of the first kind of order n.

Proof We start with (3.6.1) of [63] for integer n:

Jn(z) =
1

2π
i−n

ˆ π

−π
eiz cos θeinθ dθ.

We have by definition of the modified Bessel function of the first kind that, for integer

n,

In(−z) = i−nJn(−iz) =
1

2π
(−1)n

ˆ π

−π
ez cos θeinθ dθ.

To conclude, we just note that In(−z) = (−1)nIn(z) for integer n (this is evident

from the series expansion given in section 3.1 of [63]).

Lemma 4.4.4 Let g be as in Lemma 4.4.1, and F be defined as in (4.18). Then if

λ > 0 is bounded,

2πiRes[F ; iπ] ∼ 2π2µ1−n−` c−`
(−iπ)`

In+`−1(2λ) exp(−πs−R).

Proof Arguing as in Lemma 4.4.1,

2πiRes[F ; iπ] = π exp(−πs−R)

×
ˆ π

−π
exp(λψ(ζ, µ))(

π(1− µeiζ)
sin(πµeiζ)

(g(iπ(1− µeiζ)))(µeiζ) dζ.

(4.40)
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Recall that ψ(ζ, µ) = 2 cos ζ − λµq(πµeiζ). Because λ is bounded, we may Taylor

expand and write

exp(λψ(ζ, µ)) = e2λ cos ζ exp(−λµq(πµeiπ)) = e2λ cos ζ(1 + µC(µ,R, ζ))

for some uniformly bounded function C. Also, we have as in Lemma 4.4.1

π(1− w)

sin πw
g(iπ(1− w))w = w−`−n+1(

c−`
(−iπ)`

+ wB(w))

for a function B holomorphic near 0. Therefore

ˆ π

−π
exp(2λ cos ζ − µλq(πµeiζ))(π(1− µeiζ)

sinπµeiζ
)ng(iπ(1− µeiζ))µeiζ dζ

=

ˆ π

−π
exp(2λ cos ζ)(1 + rC(µ,R, ζ))(µeiζ)−`−n+1(

c−`
(−iπ)`

+ µeiζB(µeiζ)) dζ

= µ−`−n+1 c−`
(−iπ)`

ˆ π

−π
exp(2λ cos ζ)ei(1−n−`)ζ(1 + rD(µ,R, ζ)) dζ

for a suitable function D which is uniformly bounded for µ � 1, R > 0, and ζ ∈

[−π, π]. By this and Lemma 4.4.3, we conclude that

ˆ π

−π
exp(2λ cos ζ − µλq(πµeiζ))(π(1− µeiζ)

sin πµeiζ
)ng(iπ(1− µeiζ))µeiζ dζ

= 2πµ1−n−` c−`
(−iπ)`

In+`−1(2λ)(1 +O(µ))

as µ→ 0. Combining this with (4.40) finishes the proof.

Remark 4.4.3 It would be nice to have a geometric interpretation of the asymptotic

in Lemma 4.4.4 as in Step 1 and Step 2, Case 1, Sub-case 1. However at this time

the author is not aware of a way to do this.

Corollary 4.4.3 For λ > 0, we have the following asymptotic relations.

h ∼ 2πm+1(2π)
m−1

2 µ1−n(
µ

λ
)
m−1

2 In−1(2λ) exp(−πs−R)

∂h

∂s
∼ −2πm+2(2π)

m−1
2 µ1−n(

µ

λ
)
m−1

2 In−1(2λ) exp(−πs−R)

∂h

∂r
∼ rπm+1(2π)

m−1
2 (

µ

λ
)
m−1

2 µ−nIn(2λ) exp(−πs−R).
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Proof Each of the relations is an application of Lemmas 4.4.2 and 4.4.4. For h,

we use the functions g(ρ) = (−iρ)k for k = 0, 1, 2, . . . , m−1
2

to obtain asymptotics for

each hk:

hk(r, s) ∼ 2π2+kµ1−nIn−1(2λ) exp(−πs−R).

Then, in the expression (4.14), the dominating term is again when k = m−1
2

since s

is large. Hence

h(r, s) ∼ 2π2+m−1
2 (2π)

m−1
2 µ1−ns−

m−1
2 In−1(2λ) exp(−πs−R)

= 2πm+1(2π)
m−1

2 µ1−n(
µ

λ
)
m−1

2 In−1(2λ) exp(−πs−R)

as µ→ 0+. As before, we’ve used cm,m−1
2

= (2π)
m−1

2 .

Finding the asymptotics for ∂h
∂s

is very similar, although as in sub-case 1, the

dominating term only happens in the second summation of (4.17).

Finally, for the asymptotics of ∂h
∂r

, we use now the functions g = gk,

gk(ρ) = (−iρ)k
ρ

tanh ρ
, k = 0, 1, . . . ,

m− 1

2
.

Each has a simple pole at iπ. Here, c−1 = iπ1+k. Once again, the k = m−1
2

term

dominates, hence from (4.16) and Lemma 4.4.4,

∂h

∂r
∼ −r

2
(2π)

m−1
2 s−

m−1
2 [2π2µ−n

c−1

(−iπ)
In(2λ) exp(−πs−R)]

= −r
2

(2π)
m−1

2 (
λ

πµ
)−

m−1
2 [2π2µ−n

iπ1+m−1
2

(−iπ)
In(2λ) exp(−πs−R)]

= rπm+1(2π)
m−1

2 (
µ

λ
)
m−1

2 µ−nIn(2λ) exp(−πs−R)

As a consequence, we arrive at

∂h

∂s
∼ −πh (4.41)

∂h

∂r
∼ r

2µ
(
In(2λ)

In−1(2λ)
)h (4.42)
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We should emphasize that the second asymptotic relation relies crucially on the fact

that In−1(2λ) has no zeroes since R, hence λ, is taken to be strictly positive.

Now returning to (4.6), our desired estimate requires that

r2

4r2
((

In(2λ)

In−1(2λ)
)2 + µπ2) ≤ −Θ

2
(Q+

r2

2µ
(
In(2λ)

In−1(2λ)
)− 2πs)

as µ→ 0+ and s→∞. This rearranges into having

( In(2λ)
In−1(2λ)

)2 + µ2π2

1− Qµ
2λ
− µ( In(2λ)

In−1(2λ)
)
≤ Θ. (4.43)

Taking into account the bound

In(2λ)

In−1(2λ)
< 1, λ > 0,

see (3.16.3) of [63], (4.43) would hold if we had

1 + µ2π2

1− Qµ
2λ
− µ
≤ Θ. (4.44)

Finally, recalling that µ
λ

= 1
πs

, it is obvious that, given Θ > 1, (4.44) holds provided

µ is small enough and s is large enough.

Remark 4.4.4 It is interesting to point out that one can compare the asymptotics in

sub-case 3 to those for sub-case 2. Due to the asymptotic behavior [1],

Iν(z) ∼ ez√
2πz

, z ∈ R, z →∞,

it follows that

In(2λ)

In−1(2λ)
∼ 1

as λ→∞. This allows us to compare (4.42) with (4.36). However, in deriving (4.42)

we use the boundedness of λ, whereas (4.36) uses Theorem 4.2.1 which specifically

requires λ to be large. Therefore this comparison is only formal.
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4.4.3 Sub-case 3: x = 0

This case is perhaps the simplest of them all. We are led to estimate

2πiRes[exp(i · s)( ·
sinh ·

)n(−i·)k; iπ]

= −2π2(−1)ne−πs Res[exp(−π · s)(π(·+ 1)

sin π·
)n(π(·+ 1))k; 0]

for k ∈ N0. The estimate for these is given in the following lemma.

Lemma 4.4.5 Let k ∈ N0. Then

2πiResiπ[exp(i · s)( ·
sinh ·

)n(−i·)k] = 2πn+k+1e−πs
1

(n− 1)!
sn−1

{
1 +O(

1

s
)

}
as s→∞. In particular,

hk(0, z) ∼ 2πn+k+1e−πs
1

(n− 1)!
sn−1

as z →∞.

Proof Write

(
π(ζ + 1)

sin πζ
)n(π(ζ + 1))k =

∞∑
j=−n

cjζ
j = ζ−n

∞∑
j=0

cj−nζ
j

as a Laurent series expansion about 0. Then since

exp(−πsζ) =
∞∑
`=0

(−πs)`

`!
ζ`,

it follows from the formula for multiplication of power series that

exp(−πζs)(π(ζ + 1)

sin πζ
)n(π(ζ + 1))k = ζ−n(

∞∑
j=0

cj−nζ
j)(

∞∑
`=0

(−πs)`

`!
z`)

=
∞∑
m=0

(
m∑
j=0

(−πs)j

j!
cm−j−n)ζm−n

The residue term occurs whenever m = n− 1. Therefore

2πiResiπ[exp(iζs)(
ζ

sinh ζ
)n(−iζ)k] = −2π2(−1)ne−πs

n−1∑
j=0

(−π)i

j!
c−1−js

j

= 2πn+1e−πs
1

(n− 1)!
c−ns

n−1(1 +O(
1

s
))

as s→∞. To finish, we just note that c−n = πk.
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Corollary 4.4.4 As s→∞,

h(0, z) ∼ 2πn+m+1
2 (2π)

m−1
2 e−πs

1

(n− 1)!
sn−1−m−1

2 (4.45)

∂h

∂s
(0, z) ∼ −2πn+m+1

2
+1(2π)

m−1
2 e−πs

1

(n− 1)!
sn−1−m−1

2 . (4.46)

In particular,

∂h

∂s
(0, s) ∼ −πh(0, s). (4.47)

Proof Once again, we use (4.14), (4.17), and Lemma 4.4.2, together now with

Lemma 4.4.5. In both (4.14) and (4.17), the leading term still occurs when k = m−1
2

since s is large. In (4.17), the largest power of s occurs in the second summation,

hence the negative and extra factor of π. In both (4.45) and (4.46), we have as before

used cm,m−1
2

= (2π)
m−1

2 .

Remark 4.4.5 To mimic Step 1 and sub-case 1, we can put more geometric content

in Corollary 4.4.4 by noting that d(0,z)2

4
= π|z|. Hence we can write (4.45) and (4.46)

as

h(0, z) ∼ 2πn+m+1
2 (2π)

m−1
2

1

(n− 1)!
sn−1−m−1

2 e−
d(0,z)2

4

∂h

∂s
(0, z) ∼ −2πn+m+1

2
+1(2π)

m−1
2

1

(n− 1)!
sn−1−m−1

2 e−
d(0,z)2

4

Proof of Theorem 4.1.1 when x = 0 and ν(θ) is unbounded Since x = 0,

|∇Hh| = 0. Thus if we wish (4.6) to hold, we need

0 ≤ −Θ

2
(Q− 2sπ),

which is true whenever s > Q
2π

, regardless of Θ > 1.

4.5 Step 2: ν(θ) unbounded, m even

Having established Theorem 4.1.1 for H-type groups with odd (topological) di-

mension, we turn our attention to the even case. Our specific point of injection will
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be the asymptotic relations (4.35)–(4.36) (sub-case 1), (4.41)–(4.42) (sub-case 2), and

(4.47) (sub-case 3). As soon as we show that these remain valid for m even, the rest

of the argument remains the same.

Before continuing, we employ the following notation. We assume that m is even

throughout. Given z ∈ Rm+1, we write z = (z′, zm+1) where z′ ∈ Rm. Similarly, we

write

λ =

√
π|x|2|z|

4
, λ′ =

√
π|x|2|z′|

4

µ =

√
|x|2

4π|z|
, µ′ =

√
|x|2

4π|z′|

i.e. λ (respectively, µ) is the same as defined in Step 2, Case 1, and λ′ (respectively

µ′) is the corresponding quantity of one fewer vertical dimension.

Remark 4.5.1 Obviously, 1
λ
≤ 1

λ′
(respectively µ ≤ µ′), thus a function which is

O( 1
λ
) (respectively O(µ)) is automatically O( 1

λ′
) (respectively O(µ′)). We also note

that λ ∼ λ′, µ ∼ µ′ for fixed zm+1 as |z′| → ∞.

The method we employ is based off of observations in section 7 of [30]. Specifically,

let hn,m denote the function h which is a multiple of p1 on Rn × Rm, that is,

hn,m(x, z) =

ˆ
Rm

exp[i〈λ, z〉 − |x|
2

4

|λ|
tanh |λ|

](
|λ|

sinh |λ|
)n dλ, x ∈ Rn, z ∈ Rm.

Then since F{1} = 2πδ0 in the sense of tempered distributions, we have by Fubini’s

theorem

hm,n(x, z) =
1

2π

ˆ
R
hn,m+1(x, (z, zm+1)) dzm+1. (4.48)

Proposition 4.5.1 The results of Step 2 also holds for H-type groups with even-

dimensional center.
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Proof Assume that m is even. The arguments in Section 4.3 are valid if 4|z|
|x|2 is

bounded, so assume that 4|z|
|x|2 is unbounded. Then as |z′| → ∞,

∂hn,m
∂|z′|

=
1

2π

ˆ
R

∂hn,m+1

∂|z′|
dzm+1

=
1

2π

ˆ
R

∂hn,m+1

∂|z|
∂|z|
∂|z′|

dzm+1

=
1

2π

ˆ
R

∂hn,m+1

∂|z|
|z′|
|z|

dzm+1

∼ −1

2

ˆ
R
hn,m+1(x, (z, zm+1))

|z′|
|z|

dzm+1

where we have used (4.35), (4.41), or (4.47) – whichever is appropriate – in the final

line. The use of ∼ is justified by (4.48) and Remark 4.5.1. For fixed zm ∈ R, |z| ∼ |z′|

as |z′| becomes large. Thus by the dominated convergence theorem,

∂hn,m
∂|z′|

∼ −1

2

ˆ
R
hn,m+1(x, z) dzm+1

= −πhn,m(x, z′)

as |z′| → ∞.

For ∂hn,m
∂|x| , we split into two cases, one where λ′ →∞ and one where λ′ is bounded.

In the former case, for |z′| → ∞ and the dominated convergence theorem

∂hn,m
∂|x|

=
1

2π

ˆ
R

∂hn,m+1

∂|x|
dzm+1

∼ 1

2π

ˆ
R

|x|
2µ
hn,m+1(x, z) dzm+1

∼ 1

2π

ˆ
R

|x|
2µ′

hn,m+1(x, z) dzm+1

=
|x|
2µ′

hn,m(x, z′)
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where in the second line we have used (4.36), and the third the fact that µ ∼ µ′ as

|z′| → ∞. In the case where λ′ is bounded, we instead get

∂hn,m
∂|x|

=
1

2π

ˆ
R

∂hn,m+1

∂|x|
dzm+1

∼ 1

2π

ˆ
R

|x|
2µ
hn,m+1(x, z)

In(2λ)

In−1(2λ)
dzm+1

∼ 1

2π

ˆ
R

|x|
2µ′

hn,m+1(x, z)
In(2λ′)

In−1(2λ′)
dzm+1

=
|x|
2µ′

In(2λ′)

In−1(2λ′)
hn,m(x, z′).

Here, we have used (4.42) in the second line, µ ∼ µ′, λ ∼ λ′ as |z′| → ∞, together

with the fact that the quotient In
In−1

is continuous and bounded for positive arguments.

4.6 Strong Harnack inequality and Wiener’s criterion for H-type groups

As an application of Theorem 4.1.1, we can now extend two theorems to groups

of Heisenberg-type. Since this theory is well-known for the elliptic case, we take an

expository approach and refer the reader to the relevant proofs when appropriate.

First, we need some notation. For brevity, we denote the heat operator HH =

∆H − ∂t. Solutions to HHu = 0 are called caloric functions. Throughout, we let

G ⊂ G× R be an open bounded set.

Definition 4.6.1 The Dirichlet problem for G and HH is the following: given ϕ :

∂G→ R continuous, find a u which is caloric in G and such that u|∂G = ϕ.

Given ϕ ∈ C(∂G), such u always exists in the sense of Perron-Wiener-Brelot-

Bauer, and is defined as follows (see [11], [31]):

HG
ϕ (g, t) = inf

K
{v(g, t)}

where K is the set of so-called supertemperatures v satisfying

lim inf
G3(g,t)→(g0,t0)

v(g, t) ≥ ϕ(g0, t0) for every (g0, t0) ∈ ∂G.
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Furthermore, u = HG
ϕ is smooth in G. However, the function u may not be continuous

up to the boundary.

Definition 4.6.2 We say that (g0, t0) ∈ ∂G is HH-regular if for every ϕ ∈ C(∂G),

the Perron-Wiener-Brelot-Bauer solution HG
ϕ always continuously takes up the values

of ϕ, that is,

lim
G3(g,t)→(g0,t0)

HG
ϕ (g, t) = ϕ(g0, t0).

Definition 4.6.3 The heat ball (or HH-ball) centered at (e, 0) ∈ G× (0,∞) and of

radius r is the set Ωr defined by

Ωr = {(g, t) ∈ G× (−∞, 0) : pt(g) > (4πr)−Q/2}.

The corresponding heat sphere (or HH-sphere) centered at (e, 0) of radius r is the

boundary of Ωr together with the point (e, 0), that is,

∂Ωr = {(g, t) ∈ G× (−∞, 0) : p−t(g) > (4πr)−Q/2} ∪ {(e, 0)}.

Remark 4.6.1 It is also possible to define the HH-ball and HH-sphere centered at

any point (g, t) ∈ G×R by using the group’s left-translation and the usual translation

in R for the time component.

Remark 4.6.2 By the two-sided Gaussian estimates in (1.23), the heat-balls for G

are always trapped between two Gaussian heat-balls.

Assume that three positive constants β, γ, δ depending on the homogeneous di-

mension have been fixed in such a way that if we define

Qr = {(g, t) ∈ Ωr : t > −γr
2
}

Ir = {(g, t) ∈ Ωr : σ = −γr
2
, ρ(g, t)2 ≤ βr

2
}

then Ωδr ⊂ Q2r, and there exists a time gap between Ωδr and I2r proportional to r.

The situation is illustrated in Figure 4.3(a). We have the following strong version of

the Harnack inequality:
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(a) Arrangement of heat balls in Theorem 4.6.1.

A1

AΛ

A
Λ

2

A
Λ

3

»

He,0L

(b) The Aλk rings.

Figure 4.3. The vertical dimension is time, the horizontal is g ∈ G.

Theorem 4.6.1 There exists positive Λ depending only on the homogeneous dimen-

sion of G such that if u ∈ C(Q2r \ {(0, 0)}) is a positive caloric function in Q2r,

then
 
I2r

u(g,−γr) dg ≤ Λ inf
Ω(3/4)δr

u. (4.49)

The proof of Theorem 4.6.1 follows in the same way as [43] to which we refer the

interested reader. See also [31] and [56]. The key step – which is most relevant to the

current discussion and follows from Theorem 4.1.1 – is the construction of a specific

comparison function v : G × (−∞, 0) → R which is supercaloric in the set Ωδ and

below a space-time paraboloid.

More specifically, the following lemma is key.

Lemma 4.6.1 Define for x ≥ 0 and (g, t) ∈ Ωδ

ψ(x) = tan−1(x+ 16)− tan−1(16)

v(g, t) = ψ ◦ ln
[
(4πδ)Q/2p−t(g))

]
.



128

Then there exists a constant λ0 > 0 such that HHv(g, t) ≥ 0 whenever −λ0ρ(g)2 ≤

t < 0 and (g, t) ∈ Ωδ.

Proof In what follows, ψ, ψ′, and ψ′′ are always evaluated at ln((4πδ)Q/2p−t(g)).

Obviously,

∂tv = ψ′∂t ln p−t (4.50)

whereas if f : R→ R is C2, then due to the formula

∆Hf(u) = f ′(u)∆Hu+ f ′′(u)|∇Hu|2,

we have

∆Hv = ψ′∆H ln(p−t) + ψ′′|∇H ln(p−t)|2

= ψ′(
∆Hp−t
p−t

− |∇Hp−t|2

p2
−t

) + ψ′′
|∇Hp−t|2

p2
−t

= −ψ′∂tp−t
p−t

+ (ψ′′ − ψ′) |∇Hp−t|2

p2
−t

(4.51)

= −ψ′∂t ln p−t + (ψ′′ − ψ′)|∇H ln p−t|2. (4.52)

Note that in (4.51), we’ve used the fact that pt solves the heat equation on G×(0,∞),

therefore p−t solves the backward heat equation on G× (−∞, 0). Combining (4.50),

(4.52) with the definition of the heat operator HH , we find

HHv = (ψ′′ − ψ′)|∇H ln p−t|2 − 2ψ′∂t ln p−t. (4.53)

Note that ψ′′ − ψ′ < 0 for every x ∈ R. Thus HHv ≥ 0 if and only if

|∇H ln p−t|2 ≤
2ψ′

ψ′′ − ψ′
∂t ln p−t. (4.54)

Using the substitution τ = −t > 0, this reads

|∇H ln pτ |2 ≤
2ψ′

ψ′ − ψ′′
∂τ ln pτ . (4.55)
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By virtue of the fact that we are restricting attention to (g, t) ∈ Ωδ, the argument

inside of ψ′, ψ′′ satisfies ln[(4πδ)Q/2p−t] ≥ 0. Furthermore,

inf
x≥0

2ψ′(x)

ψ′(x)− ψ′′(x)
=

2ψ′(0)

ψ′(0)− ψ′′(0)
=

514

298
=: Θ > 1. (4.56)

By Theorem 4.1.1 and (4.56), there exists λ0 > 0 such that (4.55) holds when 0 <

τ = −t ≤ λ0ρ(g)2 and (g, t) ∈ Ωδ, hence so do (4.54) and (4.53).

Before stating the Wiener criterion, we need two more definitions. The first is

simply a set definition, see Figure 4.3(b), whereas the second is a parabolic version

of a quantity often found in potential theory.

Definition 4.6.4 Fix λ ∈ (0, 1). We define the ring-like sets Aλk , k ∈ N by the

formula

Aλk = Ωλk \ Ωλk+1 .

Definition 4.6.5 Let F ⊂ G×R be a closed set, and M+(F ) the set of non-negative

Radon measures having support in F . Given µ ∈ M+(G × R), the heat-potential of

µ, Γµ : G× R→ [0,∞), is defined by the integral

Γµ(g, t) =

ˆ
G×(−∞,t)

pt−t′(g
′ ◦ g−1) dµ(g′, t′).

The heat capacity (or thermal capacity) of F is then given by

capHH (F ) = sup{µ(G× R) : µ ∈M+(F ),Γµ ≤ 1}.

The definition of heat capacity is in direct analogy to the classical Wiener capacity

in Rn (see, for example [58], Section 4). Let G : Rn ×Rn → (0,∞] denote the Green

function for an elliptic operator and set

Γµ(x) =

ˆ
Rn
G(x, y) dµ(y)

when µ ∈M+(Rn). The Wiener capacity of a closed set is then defined by

cap(F ) = sup{µ(Rn) : µ ∈M+(F ),Γµ ≤ 1}.
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Capacity offers a way to “measure” subsets of G × R which are in some sense

small – such as the ring-like sets Aλk when k becomes large. However, it should be

noted that the heat capacity is only an outer measure, not a true measure.

We can now state the Wiener criterion for H-type groups.

Theorem 4.6.2 Let G ⊂ G × R be open and bounded and (e, 0) ∈ ∂G. The point

(e, 0) is HH-regular if and only if for every 0 < λ < 1 the series

∞∑
k=1

λ−kQ/2 capHH (Gc ∩ Aλk)

is divergent.

Figure 4.4. The Wiener criterion.

The proof of Theorem 4.6.2 follows mutatis mutandis from the proof given in [43].

For the details of the proof, we refer the interested reader to said paper. Instead, we

outline the main ideas present in the proof of Theorem 4.6.2.

Key to the proof is that the heat capacity behaves in many ways similar to the

elliptic 2-capacity, the properties of which are well-known and can be found in [32].
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These are, in particular: the ability to construct a heat equilibrium measure VK for

any compact set K; capHH is monotonic with respect to set inclusion; and capHH is

homogeneous of degree Q with respect to the space-time dilations δ̃λ on G×R. This

latter property is due to the aforementioned −Q-homogeneity of the heat kernel pt

for H-type groups.

Also important to the proof is the following equivalences to regularity which sim-

plifies the geometry greatly. Suppose that we have fixed a constant M depending

only on the homogeneous dimension. More precisely, M comes from two-sided Gaus-

sian bounds on pt with respect to the Korányi gauge, see (1.23) and the comments

following it. We define the space-time cylinders

Cr =

{
(g, t) ∈ G× R : ρ(g)2 ≤ 4πQM1+2/Q

2e
r, t ∈ (−4πM2/Q, 0)

}
.

Both of the conditions in Theorem 4.6.2 are equivalent to the following two state-

ments:

• (e, 0) is regular for G if and only if there exists r > 0 such that VCr\G(e, 0) = 1.

• (e, 0) is regular for G if and only if for every r, c > 0, (e, 0) is regular for the set

G ∪ C̊r ∩ (Ωc
r \ ∂Ωr)

For the first equivalence, one may see [11], [19], or [57]. For the second, we refer

to [38].
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5. Summary, Conclusions, and Future Work

The extension of Almgren’s frequency monotonicity in Chapter 2 has given an inter-

esting measure of the non-commutativity of step-r Carnot groups, r ≥ 2, that is, the

discrepancy vector field in Definition 2.4.1. The growth properties of the discrepancy

of a function u are tied to the strong unique continuation property in such setting.

Whether discrepancy appears in other contexts remains to be seen.

One may ask the question of whether Struwe’s and Poon’s monotonicity formulas

of Chapter 3 hold on Carnot groups if u has vanishing discrepancy. At this point,

there is no clear answer to this question. The main difficulty lies in the fact that

the heat kernel is not Gaussian with respect to the H-gauge ρ as is the case in Rn,

whereas discrepancy is a quantity whose very definition depends on the H-gauge.

Although Section 3.7.3 gives an extension of Struwe’s energy monotonicity for a sub-

class of functions having vanishing discrepancy on H-type groups, the proof given

relies crucially on the fact that Γ2(u) ≥ 0 for such functions, something which is not

true for discrepancy-free functions in general. Moreover, this proof does not in an

obvious way give Poon’s monotonicity.

A result which is somewhat “close” to that of Poon and Struwe and which takes

into account discrepancy is the following. Assume that u solves the degenerate

parabolic PDE

∆Hu = |∇Hρ|2ut on G× (0, T ) (5.1)

and define for (g, t) ∈ G× (0, T )

fg(t) = (T − t)
ˆ
G
|∇Hu|2(g′)Φ(g−1 ◦ g′, T − t) dg′

hg(t) =
fg(t)´

G u(g′)2Φ(g−1 ◦ g′, T − t) dg′
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where

Φ(g, t) = (4πt)−Q/2 exp(−ρ(g)2

4t
)

is a modification of the Euclidean heat kernel. If G is a polarizable Carnot group in

the sense of Z. Balogh and J. Tyson (see [6]), in other words if the ∞-sub-Laplacian

of the H-gauge ρ satisfies

∆H,∞ρ =

dimV1∑
i,j=1

XjρXiρXiXjρ = 0,

and in addition u has vanishing discrepancy at the origin, then fe and he are both

monotonically non-decreasing functions. All H-type groups are polarizable, but these

are the only known examples of polarizable Carnot groups. Balogh and Tyson have

produced an example of a non-polarizable Carnot group. This result is dissatisfying

as the PDE (5.1) has no appearance or application in the literature (outside of the

case Rn in which it reduces after a time-rescaling to the usual heat equation ∆u = ut).

Another interesting question is whether CD(ρ, n) implies a Hessian inequality

C(ω). Attempts at proving such a result have been fruitless. In [47], Hamilton shows

that a certain bilinear form is a heat super-solution, that is,

(∂t −∆)N ≥ 0, N = Hess ln pt +
1

2t
g

in the sense of matrices, then uses the maximum principle to conclude. As no metric

is available for CD(ρ, n) and the Hessian is defined by its action on functions rather

than vector fields, one instead is led to consider the quantity

(∂t − L)N, N = Hln pt(u, u) +
1

2
ω′(t)Γ(u), (5.2)

where u is a smooth function and ω′ is to be determined. In (5.2), there are many

terms that are seemingly uncontrollable by just CD(ρ, n), for example,

Γ(u,Γ2(u, ln pt)).

It may be that the Hamilton matrix Harnack inequality need not hold globally in

order for Poon’s frequency monotonicity to hold. Using tools developed in Chapter 4,
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preliminary analysis indicates that the eigenvalues of ∇2
H ln p1(·, e) are asymptotically

at least −1
2

outside of a gauge ball centered at e ∈ H. This indicates that, at

least far from the group identity, the Hamilton matrix Harnack inequality holds (or

equivalently C(t 7→ ln t) holds). We would like to study this further in the future and

what the implications of such asymptotic behavior are.

Other suggested problems to work on are the following: J. Tyson has suggested

studying whether Almgren’s frequency monotonicity can be adjusted for the (perhaps

sub-elliptic) p-Laplacian

∆pu = div(|∇u|p−2∇u), p > 1

Another question, suggested by D. Vassilev, is to study Almgren’s frequency in the

setting of CR manifolds, perhaps producing a similar quantity to discrepancy.
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[22] Wei-Liang Chow. Über systeme von linearen partiellen Differentialgleichungen
erster Ordnung. Math. Ann, 117(1):98–105, 1939.

[23] Giovanna Citti, Nicola Garofalo, and Ermanno Lanconelli. Harnack’s inequal-
ity for sum of squares of vector fields plus a potential. American Journal of
Mathematics, pages 699–734, 1993.

[24] L.J. Corwin and F.P. Greenleaf. Representations of Nilpotent Lie Groups and
Their Applications: Basic theory and examples. Number v. 1 in Cambridge
studies in advanced mathematics. Cambridge University Press, 1990.

[25] Jacek Cygan. Heat kernels for class 2 nilpotent groups. Studia Mathematica,
3(64):227–238, 1979.

[26] Donatella Danielli and Nicola Garofalo. Geometric properties of solutions to
subelliptic equations in nilpotent Lie groups. Lecture Notes in Pure and Applied
Mathematics, pages 89–106, 1997.

[27] Donatella Danielli, Nicola Garofalo, and Duy-Minh Nhieu. Sub-Riemannian cal-
culus on hypersurfaces in Carnot groups. Advances in Mathematics, 215(1):292–
378, 2007.

[28] Amédée Debiard, Bernard Gaveau, and Edmond Mazet. Théoremes de com-
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