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ABSTRACT 

Peterson, Brittany F. Ph.D., Purdue University, May 2016. Investigating Physiological 
Collaborations between a Lower-Termite and its Symbionts. Major Professor: Michael E. 
Scharf. 
 
 This project was completed in an effort to better understand the contributions of 

symbiotic microbes to the biology of Reticulitermes flavipes, the eastern subterranean 

termite. Lower-termites, like R. flavipes, house symbionts from all three domains of life 

within their hindgut paunch. This intimate association is reflected in nearly every aspect 

of termite biology. Here, I investigate these physiological collaborations as they relate to 

digestion and immunity. My efforts focused on 1) quantifying the role of bacteria in wood 

digestion within the termite gut, 2) evaluating the role of symbionts in protection against 

pathogens, and 3) identifying gene products that bacterial symbionts contribute to naïve 

and pathogen-challenged termites. Bioassays coupled with in vitro enzyme assays, gene 

expression analysis, and symbiont population estimations show that termites with 

reduced gut fauna have less lignocellulolytic potential. Using a suite of antimicrobial 

compounds, bacterial contributions (direct or indirect) to wood digestion were calculated 

on average at ~23-50%. Apart from digestive potential, termite gut symbionts were also 

implicated in pathogen-resistance. Defaunated workers were 2-3X more susceptible to 

fungal infections and had significantly altered the expression of endogenous, immune-

associated genes in response to challenge with the bacterial entomopathogen, Serratia 

marcescens.  

Using recombinant enzymes, in vitro assays, and bioassays, two protist-derived 

glycosyl hydrolase family 7 (GHF7) enzymes showed promise as a potential mechanism 

for symbiont-derived, anti-fungal defense in R. flavipes. These signatures of symbiont-
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mediated immunity/protection were further explored using RNAseq to capture a 

snapshot of the termite holobiont transcriptional response following pathogen challenge. 

This strategy served as a means of pinpointing critical taxa and physiological roles of 

microbes in this system by taking a global, metatranscriptomic approach. Differential 

expression analysis identified a bacterially-encoded amidohydrolase that may be 

important for anti-fungal defense.  

Overall, this project has significantly expanded our perspective on the importance 

of microbes in termite physiology as a whole. With examples from digestion and immunity, 

this research lays the groundwork for future explorations of termite-symbiota 

collaborations including, but not limited to, the collaborations described herein.  

 Together, these results highlight the importance of a holistic “systems biology” 

approach to understanding termite biology from the perspective of the termite’s intimate 

associations with microbes. Assessing termite and microbe responses in isolation (as 

independent systems) may not provide an accurate account of the collaborative nature 

of this relationship. Additionally, my findings emphasize the importance of considering 

both organismal (termite and microbe) and sub-organismal (cellular and molecular) level 

processes when investigating physiology, symbiosis, and the link between them.  
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__________________________ 

†Parts of this chapter are published in, “Peterson, B.F., and Scharf, M.E., 2016. Lower termite associations 
with microbes: Synergy, protection, and interplay. Frontiers in Microbiol. 7, 422. 

 

CHAPTER 1. LOWER TERMITE ASSOCIATIONS WITH MICROBES: SYNERGY, 
PROTECTION, AND INTERPLAY† 

 
 Abstract 

Lower-termites are one of the best studied symbiotic systems in insects. Their ability to 

feed on a nitrogen-poor, wood-based diet with help from symbiotic microbes has been 

under investigation for almost a century. A unique microbial consortium living in the guts 

of lower termites is essential for wood-feeding, host and symbiont cellulolytic enzymes 

synergize each other in the termite gut to increase digestive efficiency. Because of their 

critical role in digestion, gut microbiota are driving forces in all aspects termite biology. 

Social living also comes with risks for termites. The combination of group living and a 

microbe-rich habitat makes termites potentially vulnerable to pathogenic infections; 

however, the use of entomopathogens for termite control has been largely unsuccessful. 

One mechanism for this failure may be symbiotic collaboration; i.e., one of the very 

reasons termites have thrived in the first place. Symbiont contributions are thought to 

neutralize fungal spores as they pass through the termite gut. Also, when the symbiont 

community is disrupted pathogen susceptibility increases. These recent discoveries have 

shed light on novel interactions for symbiotic microbes both within the termite host and 

with pathogenic invaders. Lower-termite biology is therefore tightly linked to symbiotic 

associations and their resulting physiological collaborations. 

 Introduction 

The close association of lower termites with microbes is fundamental to their biology. For 

the last century, understanding the intricacies of the relationship between termites and 

their gut symbionts, i.e. the termite holobiont, has been a major focus of termite research. 
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The majority of this work emphasizes both the complexity and novelty of functions carried 

out to process lignocellulose within the termite gut (reviewed in Brune 2014). For decades, 

termite wood digestion has been a quintessential example of symbiotic collaboration; 

however, symbionts have also been associated with a myriad of other functions in this 

system (reviewed in Ohkuma 2008). For example, in addition to synergistic digestive 

collaboration, symbionts of lower termites have also been shown to play protective roles 

against pathogens both in vivo and ex vivo (Rosengaus et al. 1998, Chouvenc et al. 2009, 

Chouvenc et al. 2013, Rosengaus et al. 2014). This interaction between the termite 

symbiotic consortium and potential pathogens adds a layer of interplay within this 

already-complex microbial community. Here we summarize the diversity and roles 

symbionts play in lower termites, highlight the broad implications of both topics for 

understanding termite biology and symbiotic evolution, and emphasize how a holistic 

approach to studying termite biology is necessary to encompass the impact of this 

obligate symbiotic association.  

Lower termites are distinct from higher-termites in that they form relationships 

with both eukaryotic and prokaryotic symbionts within their digestive tracts (Eutick et al. 

1978). While the diversity, abundance, and functionality of these symbionts fluctuates 

from species to species, an association with symbionts is ubiquitous and connected with 

much of the biology of termites. Fundamental defining aspects of lower termites, from 

eusociality to niche occupation, are impacted by their obligate association with microbes. 

Disruption of this community impacts termite physiological function, fitness, and 

survivorship (Cleveland 1924, Thorne 1997, Rosengaus et al. 2011, Rosengaus et al. 2014, 

Peterson et al. 2015, Sen et al. 2015). Lower termites house protists (unicellular 

eukaryotes), bacteria, and archaea all within the one-microliter environment of their 

hindgut, many of which are never found outside of this association. Restricted to their 

association with termites, these symbionts are exposed to and must tolerate a variety of 

chemical and biological stressors in the termite gut microenvironment. As the host 

termite feeds, forages, grows, and encounter pathogens, its symbiota are impacted. Thus, 

termites cannot be studied without also considering their symbionts. Characterizing and 
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cataloging these microbes poses many challenges because most are unable to be cultured 

with traditional techniques due to their fastidious nature. This gut microenvironment 

boasts organismal and metabolic diversity which rivals some of the better studied macro-

ecosystems. Approaching the termite holobiont as a fully-functional, multifaceted 

ecosystem allows for concentration on individual species or processes and on the larger 

collaborative nature of the gut microenvironment. 

 

 Characterizing the Lower Termite Gut Consortium 

The key division between lower and higher termite species is the respective nature of 

their symbiotic partners. While both retain prokaryotic symbionts, lower termites also 

have flagellated protists living in their guts which is an ancestral trait shared with wood-

feeding cockroaches, Cryptocercus spp. (Stingl and Brune 2003, Lo and Eggleton 2011, 

Brune and Dietrich 2015).  These protists belong to two groups: the oxymonads and the 

parabasalids. Originally described as parasites, protists were first found associated with 

termites over a century ago (Leidy 1877). Since this original observation, roughly 500 

termite-associated protist species have been described (reviewed in Ohkuma and Brune 

2011). As technology advances we are continually able to improve our understanding of 

the players and complexity of the termite gut community. In fact, new species of protistan 

symbionts are continually described from lower termite guts (Brugerolle and Bordereau 

2004, Gile et al. 2012, James et al. 2013, Tai et al. 2013, Radek et al. 2014), and the 

breadth of their diversity is thought to be drastically underestimated in general (Harper 

et al. 2009, Tai and Keeling 2013). That being said, lower termites are thought to possess 

anywhere from a few to a dozen protist species as symbionts that maintain tight 

phylogenetic associations with their hosts (Tai et al. 2015). 

As has happened with protist symbionts, our understanding of the bacterial 

consortium composition in lower termites is constantly evolving as methodologies and 

analyses improve. Early estimates from the eastern subterranean termite, Reticulitermes 

flavipes, numbered bacteria per gut in the millions, which seems to be a conservative 
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approximation at best (Schultz and Breznak 1978). Using culture-independent, cloning 

based methods, several groups have estimated the guts of lower termite species to 

contain anywhere from 222-1,318 ribotypes of bacteria (Hongoh et al. 2003a, Hongoh et 

al. 2003b, Shinzato et al. 2005, Yang et al. 2005, Fisher et al. 2007). With the onset of 

next-generation sequence technologies this number has only grown. More recently, the 

gut lumen content of R. flavipes workers was described to contain over 4,761 species-

level phylotypes of prokaryotic symbionts, with over 99% being bacteria (Boucias et al. 

2013). The majority of these identified phylotypes are unique to the termite gut, having 

never been reported elsewhere and not having close-relative sequences available in 

databases. Coptotermes gestroi has been estimated to house 1,460 species of bacteria 

using Illumina technology (Do et al. 2014). These estimates vary for a variety of possible 

reasons, including local environment, study locus, methodological limitations/caveats, 

sampling strategy, diet, genetic background, and termite species. While identifying the 

microbial players within this system is an important step, describing the functions and 

interplay between them will be equally necessary for understanding termite biology and 

evolution.  

 Symbiotic Collaboration in Termite Digestion and Nutrition 

Apart from cataloging symbiont diversity, much of termite research has focused on their 

associations with the symbiotic microbes which aid in wood digestion. Feeding on this 

lignin-rich, nitrogen-poor diet requires a suite of enzymes both to catalyze its breakdown 

and supplement its nutritional deficiencies. Termites and their symbionts complement 

each other’s capabilities in this way. Termites contribute several highly active enzymes 

important to this process including endogenous cellulases (β-1, 4-endoglucanase, β-

glucosidase) and lignin/phenolic detoxifiers (aldo-keto reductase, laccase, catalase, 

cytochrome p450s) (Scharf et al. 2010, Zhou et al. 2010, Raychoudhury et al. 2013, Sethi 

et al. 2013a). Protists in the hindgut of lower termites have been credited with the 

contribution of several important glycosyl hydrolases (GHFs 5, 7, 45) which aid in 

cellulolytic activity and are important in hydrogen cycling (Ohtoko et al. 2000, Inoue et al. 
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2005, Inoue et al. 2007, Todaka et al. 2010, Sethi et al. 2013b). Based on transcriptomic 

studies, protists possess many more potentially important cellulases (Todaka et al. 2007, 

Tartar et al. 2009). Also, both the termite host and protist symbionts possess proteases 

which may be important for utilizing bacteria as sources of nitrogenous compounds (Sethi 

et al. 2011, Tokuda et al. 2014). Although both protists and bacteria possess many 

hemicellulases (Inoue et al. 1997, Tartar et al. 2009, Tsukagoshi et al. 2014), termite 

endogenous cellulases have been shown to have hemicellulase activity as well (Scharf et 

al. 2010, Scharf et al. 2011, Karl and Scharf 2015). However, despite this apparent 

hemicellulolytic redundancy, protists, bacteria, and archaea in the hindgut paunch clearly 

all contribute significantly to the overall efficiency of wood digestion (Peterson et al. 

2015).  

 While protists are mainly responsible for lignocellulolytic activity, the prokaryotic 

community provides a more diverse subset of services in the termite gut. Spirochetes, the 

most conspicuous bacterial group in lower termite guts, are capable of diverse metabolic 

processes including acetogenesis, nitrogen fixation, and degradation of lignin phenolics 

(Lilburn et al. 2001, Graber and Breznak 2004, Lucey and Leadbetter 2014). The isolation 

and maintenance of pure cultures of several species of spirochetes from lower termite 

guts has been a powerful tool for describing their metabolic capabilities and collaborative 

potential within the community as a whole (Leadbetter et al. 1999, Lilburn et al. 2001, 

Salmassi and Leadbetter 2003, Graber et al. 2004, Graber and Breznak 2004, Graber and 

Breznak 2005, Dröge et al.  2006, Rosenthal et al. 2011).  

 Another major component of lower termite microbiota are the bacteria which are 

intimately associated with gut flagellates as intracellular endosymbionts (Stingl et al. 2005, 

Noda et al. 2009). There are four phyla of bacterial endosymbionts found within protist 

cells: Elusimicrobia, Bacteroidetes, Proteobacteria, and Actinobacteria (Hara et al. 2004, 

Noda, et al.  2005, Stingl et al. 2005, Strassert et al. 2012). These groups have been found 

to ferment glucose, synthesize amino acids, produce cofactors, fix nitrogen, and recycle 

nitrogenous wastes (Noda et al. 2007, Hongoh et al. 2008a, Hongoh et al.  2008b, Ohkuma 

and Brune 2011, Strassert et al.  2012, Zheng et al. 2015). Methanobrevibacter, a 
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methanogenic archaeal genus common across termite-associated flagellates, contribute 

methane to the gut environment using hydrogen that is present in copious amounts in 

the gut lumen as a product of cellulose metabolism (Shinzato et al. 1999, Tokura et al. 

2000, Hara et al. 2004, Hongoh and Ohkuma 2011). This adds another level of complexity 

to termite gut ecology by creating a tripartite symbiosis: prokaryotes within protozoa 

within termites.   

 Apart from archaea associated with termite gut flagellates, representative 

Methanobacteriaceae are also associated with the microaerobic termite gut lining 

(Leadbetter and Breznak 1996, Ohkuma et al. 1999, Brune 2011). Together with the 

flagellate endosymbiota, the large amount of methane created by termite digestion can 

be attributed to archaea which are typically associated with the hindgut lining (Brune 

2011, Hongoh and Ohkuma 2011).  In sum, the microbes present in lower termite guts 

comprise a diverse ecosystem capable of nitrogen cycling, carbohydrate metabolism, 

methanogenesis, amino acid biosynthesis, hydrogen turnover, and consequently, 

complementing deficiencies of the host. 

In addition to the contributions of individual organisms, the host fraction (foregut, 

midgut, and salivary glands) and the symbiont fraction (hindgut) of the termite digestive 

system have been shown to work synergistically (Scharf et al. 2011). While both fractions 

have lignocellulolytic activity, combining protein extracts from both the host and 

symbiont fractions results in more sugar release in vitro than the sum of the parts. 

Additionally, recombinant host and symbiont enzymes have been shown to work 

efficiently in vitro to liberate glucose and pentose sugars from wood (Sethi et al. 2013b). 

Hence, wood digestion is truly the result of successful collaboration between termites 

and their hindgut symbionts. This collaborative physiological functionality is a driver in 

termite success and niche occupation, and it should continue to be a major focus to 

understand termite holobiont biology and ecology as we go forward. 
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 Symbiont-Pathogen Interplay 

Social living and foraging in microbe-rich environments puts termite workers at risk to 

encounter pathogens and creates the potential for epizootic events within termite 

colonies. Though the relationship between termites and their symbionts is often 

perceived to be purely nutritional, there is growing evidence that gut microbiota have 

infection-buffering potential. However, termites also have evolved complex hygienic 

behaviors to mitigate the spread and persistence of pathogenic agents (i.e. fungal conidia) 

within colonies (Rosengaus et al. 1998, Rosengaus et al. 2011, Gao et al. 2012). Termites 

have been frequently observed to auto- and allogroom conidia from the bodies of 

themselves and nestmates. Passage through the alimentary canal and symbiont-filled 

hindgut effectively neutralizes fungal conidia (Chouvenc et al. 2009). Termites with 

perturbed gut microbiota, by oxygenation or chemical means, display a marked increase 

in susceptibility to fungal pathogens such as Metarhizium anisopliae and Beauveria 

bassiana (Boucias et al. 1996, Ramakrishnan et al. 1999, Rosengaus et al. 2014, Sen et al. 

2015). One biochemical mechanism has been linked to this anti-fungal gut phenomenon 

in the form of symbiont-derived β-1, 3-glucanase activity (most likely protist) that is able 

to act on fungi and prevent their germination (Rosengaus et al. 2014). Similarly, the 

inhibition of this antifungal enzyme activity, β-1, 3-glucanase, results in a marked increase 

in termite susceptibility to a variety of pathogens (Bulmer et al. 2009) and is conserved 

evolutionarily from woodroaches to termites (Bulmer et al. 2012).  

 As mentioned above, grooming and hygienic behavior play an important role in 

termite immunity. Termites also participate in proctodeal trophallaxis as a means to 

replenish symbionts, nutrients, and chemical signals amongst individuals in the colony 

(Suarez and Thorne 2000, Machida et al. 2001). This is another means by which symbionts 

and potential pathogens may interact, but it does not seem to play an important role in 

immune priming (Mirabito and Rosengaus 2016). 

Lastly, outside of the termite body, symbiotic bacteria provide additional protection. 

Termites build elaborate nest structures from fecal material to house their colonies. As 
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with hindgut populations, these nest materials contain varying degrees of microbial 

abundance and richness dependent upon the species of termite (Rosengaus et al. 2003). 

This material contains diverse kinds of bacteria but has comparatively less fungus 

(Rosengaus et al. 2003, Manjula et al. 2015). The nests of one species of subterranean 

termite, Coptotermes formosanus, are commonly laden with symbiotic Actinobacteria 

demonstrated to have antifungal activity ex vivo in nest walls (Chouvenc et al. 2013). This 

finding extends symbiont-mediated protection from the termite gut outside into the nest 

material, in at least one species. 

 Concluding Remarks 

Lower termite symbioses with microorganisms are unmistakably integral to termite 

biology. Hindgut microbial communities are tightly linked with termite digestion of wood 

and play important roles in supplementing this nutrient-poor food source. Symbionts 

catalyze reactions involved in the breakdown of all three major components of wood 

(cellulose, hemicellulose, and lignin phenolics) and supplement this diet by synthesizing 

other important nutrients. However, outside of the classic role for termite symbionts in 

digestion and nutrition, there is increasing recognition that they buffer the impacts of 

environmental stressors to their hosts. In particular, both protists and bacteria have been 

found to provide anti-fungal defenses in lower termites (Chouvenc et al. 2013, Rosengaus 

et al. 2014). Even fitness is impacted by the interconnectivity between termites and their 

symbionts (Rosengaus et al. 2011). Recent discoveries emphasize that despite nearly a 

century of studying the obligate relationships between lower termites and microbes, 

there are still many facets of this complex association which are yet to be understood. 

Lower termites provide an important model for studying persistent, multi-layer 

symbioses. 

It is also important to consider the role that symbiota play in other animal systems 

for the purpose of formulating relevant questions to probe, interrogate and eventually 

understand the termite holobiont. Recent discoveries in other models highlight 

microbiota as playing more active roles in host physiology, development, and behavior. 
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These roles extend further than the bounds of the intestinal walls, affecting a range of 

processes from immune system development/maturation to mood and pain perception 

(Sommer and Backhed 2013). The broad influence of gut microbiota found in these other 

systems can serve as an excellent guide to generate hypotheses for testing in the termite 

system.  

Moving forward, based on recent and emerging trends, it will be imperative to 

consider all components of the termite holobiont when investigating aspects of termite 

biology. Understanding the role of symbiotic microbes in the physiological processes of 

digestion and immunity represent some of the first steps toward a better understanding 

of the broader functionality of the lower termite consortium. Viewing any of these 

interactions within the termite holobiont as discrete may be an oversimplification. 

However, as methodologies and analyses advance, our ability to understand the functions 

of the consortium as a whole will continue to improve, as will our understanding of the 

roles of individual taxa in the system, and collaborations between host and symbiota. 

Efforts to characterize the holobiont in the presence and absence of stressors, both biotic 

and abiotic, using comprehensive omics-based approaches are likely to be major 

hypothesis-generating endeavors. However, the key to doing this successfully will involve 

careful sample preparation and carefully constructed analysis pipelines to limit taxonomic 

biases whenever possible. These big data approaches will in turn become a springboard 

into understanding symbiotic association, trends and commonalities, which may help to 

begin building models for the compartmentalization, complementation, and 

collaboration between lower termites and their symbiota. 

Understanding the extent, bounds, and ramifications of these associations will be 

necessary to move towards a fuller appreciation of lower termite biology. Ultimately, 

studying the collective function and interplay between all members of this symbiosis in 

response to environmental challenges and in periods of stasis will shed light both on the 

micro-ecosystem that is a termite gut and the super-organism that is a termite colony.  
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 Dissertation Scope and Statement of Objectives 

Recently, advances have been made toward understanding lower termite-microbe 

interactions. The central goal of this dissertation was to develop a better understanding 

of the collaborative nature of the termite symbiotic consortium. My central hypothesis 

was that R. flavipes and their symbiotic partners collaborate physiologically to accomplish 

basic tasks such as digestion and immunity. Taking a more holistic view of the termite 

system in this way, while making certain questions more challenging to address, has the 

payoff of being able to capture the true nature of this symbiosis as a whole. To accomplish 

my overall goal, the termite holobiont was interrogated using a combination of bioassays, 

enzyme assays, classic microbiology, and gene expression analyses (including next-

generation sequencing).  Because it is a classic model of symbiosis, investigating the 

intricacies of termite-microbe associations can lead to transformative advances in our 

understanding of animal-bacterial mutualisms. Ultimately, characterizing the diverse 

roles of symbionts in the termite hindgut provides the potential for development of novel 

pest-control approaches, creative applications to the biofuel industry, biomedical 

advances, and a deeper appreciation for the evolution of symbiosis.  

The specific aims of this dissertation were to 1) determine the impact of 

prokaryotic symbionts on termite digestion efficiency, 2) investigate pathogen specificity 

and potential mechanisms of symbiont-mediated immune defense, and 3) identify 

symbiotic contributions in response to pathogen challenge using metatranscriptomics. In 

sum, these objectives link the mechanistic contributions of different symbiotic groups to 

termite homeostasis and biology, and also emphasize the collaborative nature for the 

termite gut consortium with its host. Using a variety of organismal, molecular, and “omics” 

methods, this work takes an interdisciplinary approach to clarifying the diversity of 

functions microbes carry out within the termite holobiont. 
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‡ This chapter is published as a whole in, Peterson, B.F., Stewart, H.L., and Scharf, M.E., 2015. 
Quantification of symbiotic contributions to lower termite lignocellulose digestion using antimicrobial 
treatments. Insect Biochem. Mol. Biol. 59, 80-88. 

CHAPTER 2.  QUANTIFICATION OF SYMBIOTIC CONTRIBUTIONS TO LOWER-TERMITE 
LIGNOCELLULOSE DIGESTION USING ANTIMICROBIAL TREATMENTS‡ 

 Introduction 

The wide variety of microbial niches on Earth has led to a tremendous diversity of 

prokaryotes that essentially occupy and exploit all available microenvironments. As a 

result, bacteria and archaea are frequently found living in symbiosis with other organisms. 

Animal-microbe symbioses are ubiquitous throughout nature. From the vectoring of plant 

and animal pathogens to housing co-evolved, intracellular mutualists, insects (the most 

diverse and populous group of animals) form a wide variety of symbioses with microbes. 

The eastern subterranean termite, Reticulitermes flavipes (Kollar), which hosts gut 

symbionts from all three domains of life, is a unique model system in which to study 

complex symbiotic interactions. This tripartite symbiotic system serves as an important 

model for understanding the co-evolution of interactions, physiologies, and specialization 

of animal-microbe relationships.  

The termite holobiont, consisting of the host and its associated microbes, is an 

obligate, synergistic system (Brune and Ohkuma, 2011; Scharf et al., 2011). Together 

these organisms work to digest lignocellulose, a complex, nitrogen-poor food source. 

Liberating monosaccharides from wood requires a cocktail of cellulases, hemicellulases 

and accessory enzymes (Sethi and Scharf, 2013). Metabolic collaboration between the 

termite host and its symbionts makes the hindgut an efficient bioreactor, capable of 

efficiently liberating sugar from cellulose and hemicellulose sequestered in lignocellulose 

(Reviewed in: Breznak and Brune 1994; Brune 2014; Brune and Ohkuma 2011; Ohkuma 

2003).  
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Though the co-evolution of these symbionts with their host is still unclear (Dietrich 

et al., 2014), it is well established that all termites are closely associated with a consortium 

of microbes which augment endogenous host physiology. Bacteria have been credited 

with a myriad of functions in the termite gut, from nitrogen fixation to fermentation 

(Breznak and Leadbetter, 2007; Lucey and Leadbetter, 2014; Stanton and Canale Parola, 

1980; Warnecke et al., 2007; Wyss et al., 1997). Given that there are over 4,000 species-

level OTUs of bacteria in the R. flavipes gut (Boucias et al., 2013), the potential for 

functional redundancy and interdependence is high. 

Although the diversity of the R. flavipes hindgut has been elucidated with the 

development of sequencing strategies, the importance of prokaryotic symbionts in 

lignocellulose digestion remains unclear (Boucias et al., 2013; Yang et al., 2005). This 

diversity is dominated by Spirochetes (25-55%), Elusimicrobia (11-25%), Firmicutes (10-

20%), and Bacteroidetes (5-15%) (Boucias et al., 2013; Yang et al., 2005). Spirochetes, the 

most abundant phylum in the hindgut, are credited with an array of metabolic capabilities 

including carbohydrate and aromatic ring metabolism, both of which could directly 

contribute to lignocellulose degradation (Lucey and Leadbetter, 2014; Stanton and Canale 

Parola, 1980; Wyss et al., 1997).  Elusimicrobia are important endosymbionts of 

cellulolytic protists in the hindgut of R. flavipes and other lower termites (Brune, 2012). 

Genomic sequencing efforts have shown that the Elusimicrobia are important for nitrogen 

fixation, but lack lignocellulase coding sequences (Hongoh et al., 2008). Additionally, 

cellulolytic Firmicutes have recently been isolated from the guts of other xylophagous 

insects (Hu et al., 2014, Mikaelyan et al., 2014). To date, the prokaryotic contribution to 

other metabolic processes such as acetogenesis, nitrogen fixation, fermentation, 

methanogenesis and amino acid synthesis within the termite holobiome has been 

empirically supported (Breznak, 2002; Graber and Breznak, 2004; Hongoh et al., 2008; 

Ohkuma et al., 1996; Wertz et al., 2012). Cultured bacteria from termite guts have also 

shown genomic evidence of vitamin synthesis capabilities (Graber and Breznak, 2004). A 

recent effort to mine the Coptotermes gestroi holobiome for cellulases shows the 

potential cellulytic roles for prokaryotes in lower termite systems (Do et al., 2014). 
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Despite their abundance, as well as phylogenetic and metabolic diversity, the relative 

importance of R. flavipes gut bacteria to wood digestion by the gut holobiome remains 

unknown.  

Proportionally greater research has focused on the eukaryotic members of the gut 

consortium, the protists. Termite gut protists are known to contribute many important 

enzymes like exoglucanases, endoglucanases and hemicellulases to the digestive process 

(Tartar et al., 2009; Todaka et al., 2007, 2010). These protist enzymes synergize with a 

number of highly-expressed enzymes, cellulolytic and otherwise, from the termite host 

(Coy et al., 2010; Scharf et al., 2010, 2011; Sethi et al., 2013a, 2013b; Zhou et al., 2010). 

However, the contributions of the prokaryotic symbionts to this process remain unclear.  

 Antimicrobial treatments have been an important tool for investigating other 

functions of microbiota in termites. Treatment with metronidazole in the higher termite 

Nasutitermes exitiosus showed that the removal of Spirochetes resulted in a reduction in 

lifespan (Eutick et al., 1978).  In R. flavipes, antibiotics were used to demonstrate the 

uricolytic activity of gut bacteria (Potrikus and Breznak, 1981). Nestmate recognition can 

be impeded by antibiotic treatment in lower termites (Matsuura, 2001; Kirchner and 

Minkley, 2003). Primary reproductives from R. flavipes and Zootermopsis angusticollis 

were found to have significant reductions in longevity, fecundity, and weight when 

treated with rifampin (Rosengaus et al., 2011). Finally, in the higher termite Nasutitermes 

takasagoensis, antibiotic treatment clarified the role of bacteria in lignocellulose 

digestion in a system lacking protists (Tokuda and Watanabe, 2007).  

The goal of this research was to quantify the importance of bacteria in 

lignocellulose digestion within the R. flavipes holobiont. We used antimicrobial 

compounds as a subtractive tool to test the hypothesis that, in addition to endogenous 

termite and protist-contributed enzymes, prokaryotic symbionts play a role in the 

lignocellulase potential of the R. flavipes hindgut. Four commercially available 

antimicrobials were used: 1) ampicillin, a cell wall synthesis inhibitor of gram-positive 

bacteria; 2) kanamycin, a broad-spectrum antibiotic causing misreading of mRNAs during 

translation; 3) metronidazole, an anti-protozoal/anti-anaerobe which binds DNA 
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preventing nucleic acid synthesis/replication; and 4) tetracycline, a broad-spectrum 

antibiotic which interferes with translation by preventing tRNA binding at the ribosome 

(Walker 1996). Treatment with each of these compounds resulted in distinct fluctuations 

in symbiont abundance, prokaryotic diversity, and lignocellulose saccharification 

potential. Most importantly, these findings show that removal of certain bacterial taxa 

lead to shifts in community composition that negatively and differentially impact the 

overall efficiency of lignocellulose breakdown. Specifically, disruption of the synergistic, 

tripartite symbiosis by antimicrobial treatment leads to a reduction of holobiont 

metabolism by 25-50%.  

 Materials and Methods 

2.2.1 Termite and Bioassay Setup 

R. flavipes termite colonies were collected from West Lafayette, IN and maintained in the 

laboratory with 24 hours of darkness on a diet of pine wood shims and brown paper 

towels. Three individual colonies were used as biological replicates in all studies. Large 

termite workers (third instar or later) were used in this study; workers lacked wing-buds 

and large mandibles. Sixty termites were placed in small, Petri dishes (Nunc, 33mm) 

sanded with 200 grit sandpaper. They were fed with a ~1cm disk of diet consisting of pine 

wood sawdust and shredded brown paper towel (50/50 w/w). Initially, the diet was 

treated with 200μL of one of 5 solutions based on treatment group: water (untreated 

group), 5% ampicillin (w/v), 5% kanamycin (w/v), 5% metronidazole (w/v), or 2.5% 

tetracycline (w/v). These concentrations were determined to be sublethal to termites 

based on extensive preliminary optimization studies. Diet disks were rewetted every 

other day with 100μL of the appropriate solution for a total holding period of seven days. 

After the seven day holding period, whole guts were dissected from the termites in 

sodium phosphate buffer (0.05M, pH 7.0).  

2.2.2 Bacterial Enumeration and Culturing 

To estimate bacterial abundance after antimicrobial treatment, twenty-five whole 

termite guts from each treatment were dissected, pooled, and homogenized in 750μL of 
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sodium phosphate buffer (0.05M, pH 7.0).  Of this homogenate, 100μL was used for serial 

dilutions which were plated in sextuplicate onto brain heart infusion agar and incubated 

at 37ºC either aerobically or anaerobically to determine the number of colony forming 

units (CFU) per treatment. Anaerobic conditions were made using a glass containing one 

BD GasPak EZ Anaerobe System with Indicator sealed with modeling clay (Franklin Lakes, 

NJ). Raw CFU counts were Log10 transformed prior to data analysis. 

2.2.3 Protist Cell Counting 

In order to estimate protist abundance, bioassays were repeated as described above with 

fifteen termite workers per assay dish. From each antibiotic treatment, 10 guts were 

dissected, trimmed to only the hindgut, and placed in 1mL of sodium phosphate buffer 

(0.05M, pH 7.0). Guts were then homogenized and the homogenate was transferred to a 

Sedgewick Rafter Counting Cell (SPI Supplies; West Chester, PA) for enumeration. Cells 

were counted using a phase contrast microscope under the 20X objective. Protist cell 

concentration in the hindgut was determined as described previously (Wheeler et al., 

2007). 

2.2.4 16S rDNA Clone Library Construction and Analysis 

Twenty-five whole guts were used for DNA extraction (Qiagen DNeasy Blood and Tissue 

Kit; Valencia, CA). The V3 hypervariable region of the 16S rRNA gene was amplified using 

universal primers:  U341F-CCTACGGGRSGCAGCAG and U519R-GWATTACCGCGGCKGCAG 

(modified from: Wang and Qian, 2009). Pools of 6 PCR reactions (20µL/reaction = 120µL 

total) per treatment per colony were created and concentrated using a standard sodium 

acetate/ethanol DNA precipitation protocol. The resulting ~180bp fragments were then 

cloned into the pGEM-T easy vector using the pGEM-T easy Vector System I (Madison, 

WI). White colonies were used for PCR screening with GoTaq Green Master Mix (Promega; 

Madison, WI) and standard M13 primers (Table S1). Clones containing the correct-sized 

insert were grown individually overnight in LB broth with ampicillin to make glycerol 

stocks for future sequencing. Ninety-six clones were picked for each treatment/colony. In 

total, 1,536 clones were sequenced. 
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Deep-well glycerol plates were inoculated from individual clone glycerol stocks and 

submitted for high-throughput Sanger sequencing by the Purdue University Genomics 

Core Facility. Resulting sequences were trimmed and compared to NCBI’s nucleotide 

sequence database to ascertain clone identity. Sequences were then compared across 

the treatment groups and replicates to identify unique sequences. An unexpected artifact 

of using degenerate 16S rDNA primers was the amplification of host 18s rDNA. As a result, 

the clone library from each treatment contained clones identifying as host. These host 

sequences were filtered out leaving only prokaryotic clones in the library for subsequent 

analyses. A total of 379 unique sequences were identified from an entire library of 1,475 

clones across all five treatments groups.  

To determine the completeness of clone libraries, data from each treatment were 

subjected to rarefaction analysis using Analytic Rarefaction freeware (version 1.3; S.M. 

Holland, University of Georgia, Athens, GA, USA, available from: 

http://strata.uga.edu/software/Software.html). 

2.2.5 Post-Hoc Determination of Bacterial: Host Genomic DNA Ratio 

qPCR was performed to determine the relative amount of bacterial and host genomic 

DNA (gDNA) in DNA samples used for clone library preparation. Primers amplifying a 

291bp fragment containing the V4 hypervariable region of the 16S rRNA gene were used 

as a proxy for bacterial gDNA abundance (Rubin et al., 2014; Table S1). Host DNA was 

quantified using primers specific to an apparent single-copy host gene, Actin 5C-1 (Table 

S1). Data were normalized to the Actin 5C-1 gene to determine the relative abundance of 

16S amplicons in each antimicrobial treatment-gDNA preparation. This relative 

abundance was then regressed against the percent prokaryote composition of each 

antimicrobial treatment’s clone library. 

2.2.6 RNA Extraction and qPCR 

After the 7-day bioassay, 20 whole guts including salivary glands were dissected from 

termite workers and stored at -80ºC in 150µL of RNAlater (Life Technologies; Grand Island, 

NY). Subsequently samples were thawed and RNAlater removed. Total RNA was extracted 
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using the SV Total RNA Isolation Kit (Promega; Madison, WI.) cDNA was synthesized from 

1µg of total RNA using the iScript cDNA synthesis kit (BioRad; Berkley, CA).  

Quantitative PCR (qPCR) was used to determine the expression level of various 

host, protist and candidate bacterial cellulase genes across treatments (Table S1). qPCR 

reactions were performed in a 20µL reaction containing: 1µL of cDNA template, 1µL each 

of forward and reverse gene specific primers (10µM), 10µL of iTaq Universal SYBR Green 

Supermix (Bio-Rad; Hercules, CA), and 7µL of nuclease-free water. Gene expression across 

treatments was normalized to the reference gene and to the untreated control.  

2.2.7 Termite Gut Protein Preparations 

After being subjected to the antimicrobial bioassay described above, twenty-five termite 

whole guts from each treatment were dissected, pooled, and homogenized in 750μL of 

sodium phosphate buffer (0.05M, pH 7.0).  The homogenate was centrifuged for 15 min 

at 14,000rcf at 4˚C and the supernatant collected for use in assays described below. This 

procedure was repeated across treatments for each of three termite colonies which 

served as biological replicates.  

2.2.8 In Vitro Saccharification Assays 

For these assays, 600μL of 100mM sodium acetate containing 10mM calcium chloride pH 

7.0, 150μL of native termite gut homogenate (5 gut equivalents) and pine sawdust (2% 

w/v) were combined in a 1.5mL microcentrifuge tube with a small pin hole in the lid. 

Tubes were incubated at 37˚C with shaking at 220rpm for 18hr, after which they were 

stopped with the addition of 15μL of 0.2M EDTA (Scharf et al., 2011). 

2.2.9 Monosaccharide Detection 

Monomeric glucose detection was performed as described previously, using a 

commercially available glucose detection kit (Wake Chemical; Richmond, VA.; Scharf et 

al., 2011). To detect D-xylose release from the degradation of hemicellulose, we used a 

commercially available kit, modifying the protocol for a microplate format (Megazyme; 

Wicklow, Ireland). Supernatant from in vitro assays (50μL) was combined with 242μL 

freshly mixed kit mixture (as prescribed in the manufacturer’s protocol) in each well and 
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an initial absorbance reading at 340nm was read after 5 minutes of orbital shaking using 

a microplate reader (BioTek PowerWave 340). Next, 5μL of solution 4 from the kit was 

added to each well, the plate was subjected to 6 addition minutes of orbital shaking, and 

a final absorbance reading was taken at 340nm. Three technical replicates were done for 

each treatment and assays were always run in parallel with buffer blanks that contained 

all reaction components except the protein supernatant. The concentration of D-xylose 

was then ascertained using the extinction coefficient of NADH at 340nm (6300/M/cm).   

2.2.10 Cellulase Activity Assays using Model Substrates 

Native gut homogenate described above was used in kinetic cellulase activity assays using 

p-nitrophenol-β-D-cellobioside (pNPC) and p-nitrophenol-β-D-glucopyranoside (pNPG) as 

substrates. For these assays, 10µL of native gut homogenate was combined with 90µL of 

6mM pNP(C or G) in 0.1M sodium phosphate (pH 7.0). Reactions were repeated in 

triplicate. Enzyme activity was read kinetically at 420nm every minute for 3 hours. 

Cellulase specific activity per termite was estimated using mean velocity for each 

treatment on both substrates.  

2.2.11 Antimicrobial Interference Assays 

To assess the extent to which antimicrobial compounds might inhibit termite gut cellulase 

activity in vitro (and interfere with colorimetric monosaccharide detection assays), 

additional assays were performed. To determine if antimicrobials interfered with native, 

control gut homogenate enzyme activity, twenty-five naive termites per treatment were 

dissected, their whole guts homogenized, and in vitro sawdust assays were set up as 

above except the buffer contained 5% (v/v) spike-in of a given concentrated antimicrobial 

solution. Ampicillin, kanamycin, and metronidazole concentrations tested include the 

following volume/volume spike-in concentration: 50%, 25%, 5%, 0.5%, 0.05%, 0.005%, 

0.0005%, and 0.00005%. Tetracycline concentrations tested were: 25%, 12.5%, 2.5%, 

0.25%. 0.025%, 0.0025%, 0.00025%, 0.000025%. After overnight incubation, glucose 

release was detected as before and percent inhibition calculated for each tested 

concentration relative to the water control. 
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Assays were also performed to determine the level at which antimicrobial 

compounds might potentially interfere with absorbance readings at 505nm. To do this, 

50μL of a given antimicrobial concentrated stock was combined with 200μL of glucose 

detection reagent and absorbance at 505nm was recorded for each of the concentrations 

listed above. No interference was detected in either case.  

2.2.12 Statistical Analyses 

Three biological replicates were performed for all studies using three individual termite 

colonies. All statistical analyses were performed using JMP 8. Differences across 

treatments and termite colonies (biological replicates) were evaluated using ANOVA (df=6, 

α=0.05) with Tukey HSD post-hoc analyses and an FDR-corrected α-value (α=0.002). 

Though not all data were normally distributed, ANOVA was still used due to its robust 

characteristics (Table S2). All error bars represent standard error of the mean (SEM).  

To assess which variables were most significantly correlated with saccharification, 

each measured variable (bacterial CFUs, protist cell counts, abundance of bacterial taxa 

in the clone library, gene expression of cellulases, and enzyme activity) a series of pairwise 

regressions were performed for glucose and xylose release individually (α=0.05). 

 Results 

2.3.1 Antimicrobial treatments significantly reduce symbiont load in the termite gut 

Four antimicrobial feeding treatments (ampicillin, kanamycin, metronidazole, and 

tetracycline) were used to experimentally induce dysbiosis in the termite gut and quantify 

changes in community ecology and digestion. To first determine if these antimicrobials 

could reduce bacterial populations, gut bacteria were isolated and quantified using 

traditional culturing techniques. The two broad-spectrum antimicrobials, kanamycin and 

tetracycline, significantly reduced the culturable community of bacteria isolated from the 

termite gut (Fig. 1A). Whereas, ampicillin, which targets gram-positive bacteria, and 

metronidazole, an antiprotozoan, did not significantly reduce the culturable bacterial 

community. Antimicrobial treatments also resulted in non-significant changes to the 

culturable, anaerobic community (Fig. S1). In addition to reductions in bacterial load, 
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kanamycin, metronidazole, and tetracycline treatments also impacted protist abundance 

significantly (Fig. 1B). Overall, all antimicrobial treatments significantly reduced the 

symbiont load, both bacteria and protists, in a seven-day feeding period (Fig. 1).  

2.3.2 16S sequencing captures antimicrobial impact on termite gut bacterial diversity 

Although results above show that the culturable community was reduced to some extent, 

the impact of antimicrobial treatments on community diversity was also verified. To 

characterize prokaryotic diversity, the community was surveyed using a 142 bp fragment 

of the 16S rRNA gene as a barcode (U341F-U519R; modified from (Wang and Qian, 2009)) 

and a library of 1,475 clones was assembled. Given the length of this fragment, only 

phylum-level identification of 16S sequences was possible. Biodiversity statistics 

demonstrate that the untreated group shows the most unique sequences (richness), 

prokaryotic sequence diversity (H’), and evenness (J = H’/Hmax) (Shannon and Weaver, 

1949; Morin, 1999; Fig. 2A). Despite having an intermediate number of unique sequences, 

the broad-spectrum antibiotic kanamycin has the least diversity and evenness (Fig. 2A); 

whereas, the tetracycline treatment has the fewest unique sequences, but moderate 

diversity and evenness (Fig. 2A). The kanamycin treatment clone library is dominated by 

a single, highly-abundant sequence belonging to the Bacteroidetes. Contrastingly, the 

tetracycline library is smaller, but more diverse than that of kanamycin. These trends are 

echoed by the modest slopes of rarefaction curves for the antimicrobial treatments. The 

chosen 16S fragment and cloning strategy were able to capture the majority of diversity 

remaining in the gut (Fig. 2B). Unlike all of the treated groups, the untreated rarefaction 

curve has a steeper slope implying that there is remaining diversity that was not captured 

(Fig. 2B). The trends suggested by these metrics are further supported when the 

prokaryotic reads from each treatment are compared side by side (Fig. 3). Thus, each 

antimicrobial treatment alters prokaryotic abundance and diversity uniquely, resulting in 

distinct phylum-level microbial profiles. 

As exhibited in the literature, Spirochetes, Elusimicrobia (TG1), Firmicutes and 

Bacteroidetes are the dominant prokaryotic groups in the R. flavipes gut, comprising 
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approximately three-quarters of the community (Boucias et al., 2013). There are shifts in 

all of these major groups in at least one of the four antimicrobial treatments. Most 

strikingly, our results show no clones belonging to the Spirochetes in any of the four 

antimicrobial treatments (Fig. S2A). Despite having relatively few prokaryotic clones, 

there is a significant increase in the proportion of Elusimicrobia in the tetracycline 

treatment (Fig. S2B), though there was not a corresponding increase in protist abundance 

(Fig. 1B). Both kanamycin and metronidazole groups have a reduction in the abundance 

of Firmicutes and an increase in Bacteroidetes clones, compared to the untreated, 

ampicillin and tetracycline groups (Fig. S2C, D). Other phyla fluctuated to differing degrees 

but lacked statistical significance (Figs. S2E-H). One key group that is absent, the 

Fibrobacters, was not detected in our dataset. 

Due to the promiscuous nature of universal primers, some antimicrobial 

treatments had a significant amount of termite 18s rDNA artifact in their libraries. This is 

likely a product of variable levels of bacterial DNA relative to host DNA in each individual 

sample (Fig. S3). This finding, although unanticipated, provides additional independent 

evidence of antimicrobial impacts on decreasing prokaryotic abundance and causing 

shifts in community composition.  

2.3.3 Termite saccharification potential and efficiency are reduced in association with 

antimicrobial induced microbiota shifts   

In vitro enzyme assays have been used previously to determine the lignocellulolytic 

potential of termite guts (Scharf et al., 2011; Sethi et al., 2013a, 2013b). In this study, 

following in vitro assays, glucose and xylose monosaccharide liberation were measured 

as indicators for cellulose and hemicellulose degradation, respectively. Glucose release 

was reduced by 23-47% across the antimicrobial treatments (Fig. 4). Xylose assays, 

alternatively, showed non-significant reductions of 30-52%, with kanamycin and 

metronidazole having the most dramatic affects (Fig. S4). These reductions in 

saccharification potential are due to the removal of prokaryotic and protist symbionts, 
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rather than inhibition or interference by antimicrobials with enzyme assays or 

colorimetric readings (Figs. S5). 

Cellulase activity was assessed using native gut homogenates in combination with 

the model substrates pNPC and pNPG. Exoglucanase activity (a protist-derived activity) 

was significantly impacted by kanamycin, metronidazole, and tetracycline treatments as 

indicated by activity on the pNPC substrate (Fig. 5). However, β-glucosidase activity (a 

host-derived activity), as measure by activity on pNPG, was not significantly impacted by 

antimicrobial treatment (Fig. 5).  

In addition to enzyme activity assessment, gene expression of several glycosyl 

hydrolase family (GHF) cellulases was evaluated following antibiotic treatment. Of the 

host and protist enzymes that have been previously characterized (Scharf at al., 2010; 

Sethi et al., 2013; Zhou et al., 2010), the transcript levels of the two host enzymes, GHF-

1 (β-glucosidase) and GHF-9 (β-1, 4-endoglucanase), do not change significantly with 

antimicrobial treatment (Fig. 6). GHF7-3, a protist exoglucanase, had a significant 

reduction in expression in the metronidazole and tetracycline treatments. We also 

selected four bacterial cellulase candidates: GHF-2 (β-galactosidase), GHF-26 (β-

mannosidase), GHF-42 (β-galactosidase), and GHF-43 (β-xylosidase) based on published 

metatranscriptomic data (Tartar et al., 2009). Each of these genes have unique expression 

patterns depending on antimicrobial treatment, further evidencing the impact that these 

treatments have on the cellulolytic potential present in the termite hindgut.  

 Discussion 

2.4.1 Key variables associated with efficient lignocellulose digestion 

The experiments presented here emphasize the roles and relative importance of each 

symbiotic taxon in the termite gut. Synergy between the host and the collective symbiont 

consortium has been demonstrated previously, as has the functionality of some key host 

and protist digestive enzymes, but the importance of prokaryotes in lignocellulolytic 

potential in the lower termite, R. flavipes, has been unclear (Scharf et al., 2011; Sethi et 

al., 2013a, 2013b; Tartar et al., 2009). In wood-feeding higher termites, which lack protists, 
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there is clear functional evidence of saccharolytic bacteria in the hindgut (Tokuda and 

Watanabe, 2007). Despite striking phylum-level similarities in the prokaryotic 

composition of the symbiont community between wood-feeding higher and lower 

termites (Boucias et al., 2013; Hongoh et al., 2003, 2006), the cellulolytic potential of 

bacteria in lower termites has been mostly unexplored relative to their eukaryotic 

counterparts.  

This study aimed to experimentally quantify the role of prokaryotic symbionts in 

lignocellulose degradation by a lower termite, as part of a tripartite symbiosis. We used a 

variety of antimicrobial compounds with diverse modes of action and target organisms in 

an effort to garner as much information about important symbiotic groups in this system 

as possible (Walker 1996). Impacts of these antimicrobials were measured via cellulase 

gene-expression levels, enzymatic activity, symbiont population shifts, and 

saccharification potential. In an effort to identify the variables which were most 

significantly impacting glucose liberation from complex lignocellulose, we performed a 

series of pairwise regression analyses (see Methods 2.12; Table 1). This evaluation 

showed that six tested variables were significantly correlated with glucose release, and 

from this information we are able to begin to elucidate prokaryotic roles in R. flavipes 

digestion. These six variables are abundance of all symbiont groups (aerobic CFUs, 

anaerobic CFUs, protist abundance), Spirochete presence in the 16S clone library, enzyme 

activity on the pNPC substrate, and gene expression levels of the candidate bacterial 

cellulase GHF-43. 

Most notably, as a result of antimicrobial-induced dysbiosis, we observed 23-47% 

reductions in glucose and 30-52% reductions in xylose liberated from lignocellulose in in 

vitro saccharification assays (Figs. 4 & S4).  Glucose release was significantly reduced in all 

treatment groups (Fig. 4). The most striking finding is in the metronidazole treatment. 

After treatment with metronidazole, termite guts had an estimated 1 protist cell/mL but 

had intermediate amounts of culturable bacteria compared to the other treatments, 

which is to be expected given metronidazole’s target organisms (Walker 1996; Fig. 1). 

However, despite being almost devoid of protists, glucose liberation was 74% of the 
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control which is significantly more than the kanamycin treatment, where termite guts 

were devoid of almost all symbionts (Figs. 1 & 4). The primary difference between these 

two treatments are their bacterial abundance and the diversity of residual bacteria (Figs. 

1, 2, 3, S1). This sheds the best light on the potential bacterial role in saccharolysis within 

the R. flavipes gut, and thus represents potentially seminal documentation of such a niche 

for bacterial symbionts in a lower termite. This also suggests that bacteria which 

dominate in metronidazole treated guts (i.e., Bacteroidetes, Proteobacteria, and 

Actinobacteria) would be the best candidates to consider for potentially useful cellulases. 

Gene expression levels of four candidate, bacterial cellulases highlight the complexity of 

this relationship. All four of these genes have significant fluctuations following 

antimicrobial treatment, which mirror the changes seen in the 16S library but still provide 

only limited resolution of the key contributors.  

In the antimicrobial treatments where monosaccharide release was not 

significantly impeded, symbionts not affected by a given treatment may be able to 

compensate for the removal of other consortium members due to functional redundancy 

within the remaining consortium. Most notably, niches previously occupied by dominant 

groups like Spirochetes are evacuated with antimicrobial treatment. This evacuation has 

the potential to make resources and nutrients available for other antimicrobial-tolerant 

members of the consortium with similar metabolic capabilities. This phenomenon is 

common in biofilms outside of the termite gut, and such redundancy is often thought to 

provide microbial communities with increased resilience in the face of natural 

perturbations (Yannarell et al., 2007). Evidence of this possibility may be found in 

tetracycline and metronidazole treatments, which express higher levels of some 

candidate bacterial cellulase genes (Fig. 6). 

 It is important to note that saccharification is not completely abolished with any 

antimicrobial treatment, which emphasizes the importance of host contributions to wood 

digestion. This agrees with the previous findings in Nasutitermes and Coptotermes that 

treatment with tetracycline did not eliminate cellulolytic activity on the model substrate 

carboxymethylcellulose (O'Brien et al., 1979). This idea is supported by stable expression 
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of a highly active host cellulase (Fig. 6) and accessory enzymes (laccase, catalase, p450s, 

aldo-keto reductase, etc.) (Coy et al., 2010; Scharf et al., 2010; Sethi et al., 2013b; Zhou 

et al., 2010). Together the host and symbionts work together with at least 1.6-fold synergy 

to saccharify complex lignocellulose (Scharf et al., 2011). Further, host cellulolytic activity 

following antimicrobial treatment is stable as evidenced by primarily host-derived 

endoglucanase activity (Figs. 5). Though the expression of candidate bacterial cellulase 

genes (GHF-2, 26, 42, and 43) is not eliminated, it is important to note that the identity of 

these genes is based on bioinformatic analysis (Tartar et al., 2009). There may be several 

organisms contributing to these contigs that may be responding differently to our 

treatments, and that cannot be detected using the present methods. Ultimately, the 

preservation of lignocellulolytic activity following antimicrobial treatment emphasizes 

that the remaining contributors to this process are still functioning.   

2.4.2 Symbiotic prokaryotes of note 

In addition to symbiont abundance and cellulase activity, cases of low abundance of 

Spirochetes in the clone library were significantly correlated with reduced 

monosaccharide liberation (Tables 1 & S3). Spirochetes are the dominant bacterial group 

in R. flavipes, making up about 40% of the native microbiota, and they are known to be 

saccharolytic, fermentative, and aromatic-metabolizing in other systems (Lucey and 

Leadbetter, 2014; Stanton and Canale Parola, 1980; Warnecke et al., 2007; Wyss et al., 

1997). Spirochetes are not strictly associated with lower termites, but appear to be tightly 

associated with xylophagous lifestyles (Otani et al. 2014). Additionally, there is evidence 

in lower termites that Spirochetes are closely associated with cellulolytic protists and may 

perform acetogenesis (Breznak and Leadbetter, 2006). Thus, a loss of these activities 

would be detrimental to the efficiency of the consortium as a whole. Whether the 

decrease in monosaccharide release observed in this study is directly or indirectly 

dependent on Spirochetes remains to be determined; however, the liberation of specific 

hindgut niches caused by the elimination of Spirochetes is definitely a contributor to the 

overall dysbiosis observed in the gut (Fig. 3). Ultimately, it is important to note that the 
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gram-positive, anaerobic Spirochetes are vulnerable to all the selected antimicrobial 

treatments (Walker 1996; Fig. 3). In addition to Spirochetes, we observed significant 

differential shifts in Elusimicrobia, Firmicutes, and Bacteroidetes following antimicrobial 

treatments (Fig. S2B-D, Fig. 3). 

In light of recent discoveries (Hu et al., 2014), Firmicutes may also be involved in 

glucose liberation particularly when considering their reduction in the kanamycin 

treatment (Fig. S2C). Reductions in xylose release, while not statistically significantly, 

coincide with reductions in the abundance of Elusimicrobia and Firmicutes in the gut (Figs. 

S2B, C & S3). All hemicellulase genes in R. flavipes have been attributed to hindgut 

symbionts (protists and bacteria) (Tartar et al., 2009), which agrees with the observed 

fluctuations in hemicellulose digestion with antimicrobial treatments seen here (Fig. 6). 

Additionally, microbiota composition has been found to vary significantly among termite 

colonies (Boucias et al., 2013), which may also be obscuring our interpretations of 

changes in hemicellulytic activity. 

One group not detected in this study, the Fibrobacters, was previously estimated 

as ~6% of the R. flavipes hindgut lumen bacterial community by cloning-independent 16S 

pyrosequencing (Boucias et al., 2013). However, another cloning-based project, using the 

synonymous species Reticulitermes santonensis, also failed to detect Fibrobacters (Yang 

et al., 2005). This suggests that detection of Fibrobacters is either method-dependent or 

their presence is influenced by environment (Boucias et al., 2013). Due to this potential 

limitation, we are unable to account for antimicrobial impacts on Fibrobacter populations. 

This is a possible caveat to our approach, i.e., due to the known cellulolytic nature of 

Fibrobacters in other systems (Lin and Stahl, 1995; Mikaelyan et al. 2014; Qi et al., 2007; 

Stewart and Flint, 1989; Tokuda and Watanabe, 2007). Conversely, this finding may 

suggest Fibrobacters as a potentially variable, facultative component of lower termite gut 

microbial consortia.  

In broader terms, this research demonstrates a significant role for bacteria in 

lower-termite wood-digestion. Lignocellulytic activity in the termite holobiont is a 

collaborative effort with all members (termite-host, protists, and prokaryotes) 



36 

 

contributing factors which maintain bioreactor efficiency. The host and protists both 

produce highly active digestive and accessory enzymes that collaborate in lignocellulose 

saccharification (Scharf et al., 2011; Sethi et al., 2013a, 2013b). The current study adds to 

our understanding of this system by showing the relative importance of prokaryotes to 

the digestive process, and highlights the potential for undiscovered, cellulolytic 

prokaryotes in the R. flavipes gut.  

2.4.3 Conclusions 

Although we cannot ascertain whether prokaryotic contributions to lignocellulolytic 

activity are direct or indirect based on these data, we can nonetheless conclude that 

prokaryotes are important to the digestive process. In light of these findings and work 

done in other organisms, we hypothesize that bacteria can directly metabolize 

carbohydrate and phenolic components of lignocellulose and indirectly supply the termite 

host and protists with essential nutrients absent in lignocellulose (i.e. nitrogen, vitamins, 

essential amino acids, etc.) (Lucey and Leadbetter, 2014; Rosengaus et al., 2011; Tartar et 

al., 2009; Tokuda and Watanabe, 2007). Finally, our cloning-based 16S strategy lays the 

groundwork for more comprehensive high-throughput metagenomic and 

metatranscriptomic studies that can specifically investigate the impact that the 

microbiome has on host physiology. Going forward, it will be critical to approach termite, 

and other animal symbioses from a collaborative perspective that considers all the key 

players (host, protozoa, prokaryotes, etc.) within the holobiont as contributors. The 

tripartite symbiotic system of lower termites provides an important example and model 

system for such investigations. 
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Figure 2.1 Symbiont abundance 7-days post antimicrobial treatments 

A. Antimicrobial treatments impact the abundance of culturable bacteria per termite gut 
in aerobic growth conditions B. Protist cell counts are reduced following antimicrobial 
treatment. Bars within graphs labeled with the same letters are not significantly 
different (Tukey HSD α=0.002). Error bars represent standard error (SEM). 
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Figure 2.2 Biodiversity metrics from sequencing 

A. Biodiversity metrics indicating the impact of antimicrobial treatments on termite gut 
prokaryote diversity: aNumber of unique sequences, bShannon-Weaver index (H’), 
cEvenness (J = H’ / Hmax). B. Rarefaction analysis of clone libraries created from each of 
the antimicrobial treatment groups pooled across three biological replicates. The slopes 
of the curves indicate the rate at which unique sequences were being discovered at the 
exhaustion of sampling efforts. 
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Figure 2.3 16S profiles of bacteria following antimicrobial treatments  

The average phylum level prokaryotic profile of each treatment based on clone libraries 
prepared using the V3 hypervariable region of the 16S rRNA gene. Asterisks (*) indicate 
a significant fluctuation (p < 0.05) in the indicated phylum in the given treatment group. 
“N” indicates the number of clones representing each treatment group. 
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Figure 2.4 In vitro glucose liberation from wood lignocellulose by control (untreated) 
and antimicrobial treated guts 

 Glucose liberation from pine sawdust by antimicrobial-treated termite guts in in vitro 
saccharification assays, as detected by colorimetric tests. Error bars represent standard 
error (SEM). 

 



41 

 

 
Figure 2.5 Cellulase activity on model substrates 

Cellulase activity following antimicrobial treatment using the model substrates pNPC 
and pNPG. Error bars represent standard error (SEM). Treatments abbreviated as 
untreated (Un), ampicillin (Amp), kanamycin (Kan), metronidazole (Met), and 
tetracycline (Tet). N.S. indicates no significant difference at α = 0.05. 
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Figure 2.6 Gene expression profiles of cellulase genes 7-days post antimicrobial 
treatment 

Gene expression analysis of three previously characterized cellulase genes from the 
termite host (GHF-1 and GHF-9) and protist symbionts (GHF-7) and four candidate 
bacterial cellulases (GHF-2, GHF-26, GHF-42, and GHF-43). Transcript levels are 
presented as fold-change relative to a reference gene and the control treatment group 
for each gene. Error bars represent standard error (SEM).Treatments abbreviated as 
untreated (Un), ampicillin (Amp), kanamycin (Kan), metronidazole (Met), and 
tetracycline (Tet).
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Table 2.1 Regression analysis of factors associated with glucose liberation.  

Pairwise linear regressions of glucose liberation (X-variable) with each of the tested 
variables (Y-variables) from this study, with respective p-value and R2 values shown. 
Variables above the line show a significant correlation with glucose liberation. 

X-
Variable Y-Variable 

p-
Value R2 

Adjusted 
R2 

Glucose Log CFU-Aerobic 0.0004 0.6349 0.0680 
Protist Abundance 0.0004 0.6345 0.6064 
Spirochetes 0.0030 0.5035 0.4653 
Gene Expression-GHF-43 0.0097 0.4139 0.3688 
Enzyme Activity-pNPC 0.0202 0.3501 0.3501 
Log CFU-Anaerobic 0.0218 0.3931 0.3379 
Bacteroidetes 0.0581 0.2493 0.1915 
Enzyme Activity-pNPG 0.0775 0.2203 0.1037 
Gene Expression-GHF-42 0.0846 0.2114 0.1508 
Gene Expression-GHF-2 0.1463 0.1552 0.0902 
Gene Expression-GHF-9 0.2450 0.1024 0.0333 
Gene Expression-GHF-7 0.3883 0.0577 -0.0147 
Actinobacteria 0.4142 0.0519 -0.0210 
Uncultured-Unknown 0.4182 0.0510 -0.0220 
Verrucomicrobia 0.4560 0.0434 -0.0301 
Firmicutes 0.4599 0.0427 -0.0309 
Gene Expression-GHF-26 0.5414 0.0294 -0.0453 
Proteobacteria 0.5935 0.0225 -0.0527 
Elusimicrobium 0.6246 0.0190 -0.0565 
Gene Expression-GHF-1 0.7608 0.0074 -0.0690 
Archaea 0.8271 0.0038 -0.0728 
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CHAPTER 3. SYMBIONT-MEDIATED PATHOGEN DEFENSE IN RETICULITERMES 
FLAVIPES 

 Introduction 

All animals form intricate associations with microorganisms present in their 

environment. These relationships range across a spectrum from beneficial for both 

parties (mutualism) to detrimental to one party while benefitting the other (parasitism). 

The most diverse group of animals, the insects, forms a myriad of relationships with 

microbes spanning this spectrum. Some of these relationships allow for animals to occupy 

specialized niches as seen in galling midges (Joy 2013), while others may be used 

as biocontrol against pests in agro-ecosystems like fungal control of whiteflies 

(Wraight et al. 2000, Santiago-Alvarez et al. 2005). Despite the importance and potential 

exploitation of these relationships, there is still much to understand about the 

evolutionary and physiological basis of these interactions. The interplay between insect 

hosts, symbionts, and physiological processes have co-evolutionary implications, and 

have recently been highlighted as a means to identify potential biomaterials for applied 

purposes, such as pest control (Ponton et al. 2012). 

Understanding the interplay between beneficial and detrimental microbes within 

a single insect is especially interesting from an ecological perspective. Documentation of 

symbiont-mediated protection against pathogenic and parasitic infection is widespread 

in insects (Scarborough et al.  2005, Haine 2008, Hedges et al. 2008, Brownlie and 

Johnson 2009, Feldhaar 2011, Hughes et al. 2011, Koch and Schmid-Hempel  2011). The 

classic example of this is found in the interaction between aphids, their facultative 

symbiont Regiella insecticola, and a fungal pathogen. Infection 

with R. insecticola increased aphid fitness, reduced susceptibility to a fungal pathogen, 
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and reduced pathogen transmission (Scarborough et al.  2005). In mosquitoes, the 

acquisition of the intracellular symbiont Wolbachia interferes with vectors of the human 

malaria parasite (Hughes et al. 2011). Gut symbionts can also play an important role in 

insect immunity; e.g., socially transferred symbiotic gut bacteria are known to protect 

bumble bees from the intestinal parasite Crithidia bombi (Koch and Schmid-Hempel 

2011). These examples emphasize the relevance of the resident microbes of insects for 

mitigating pathogen effects. 

Termites house a complex consortium of microorganisms in their guts, and as soil-

dwelling insects, live in very close contact to potential pathogens. To decrease the 

likelihood of disease outbreaks, termites use a combination of hygienic, social behaviors 

and innate immunity (Traniello et al. 2002, Cremer et al. 2007, Fefferman et al. 2007, 

Yanagawa et al. 2007, Chouvenc and Su 2010). The combination of these defenses likely 

contributes to failures in the use of fungal pathogens, like Metarhizium anisopliae, for 

control of termites except in combination with neurotoxins and/or 

pesticides, like imidacloprid (Ramakrishnan et al. 1999, Thorne and Breisch 2001, Sen et 

al.  2015). The primary route of entry for entomopathogenic fungi 

(i.e. M. anisopliae and Beauveria bassiana) is through the cuticle, so termites have 

evolved complicated grooming behaviors to remove spores from themselves and their 

nestmates (Yanagawa et al. 2008). Although termite symbionts are primarily thought to 

serve a nutritional function, there is compelling evidence that suggests the gut 

environment aids in pathogen neutralization/defense (Rosengaus et al. 1998, 

Yanagawa et al. 2008, Chouvenc et al. 2013, Rosengaus et al. 2014). Specifically, in 

Zootermopsis angusticollis protist symbionts appear to contribute a β-1, 3-glucanase 

which is active against M. anisopliae conidia and when β-1, 3-glucanases are inhibited 

termite susceptibility to the pathogen increases significantly (Hamilton et al. 2011, 

Rosengaus et al. 2014). Treatment with imidacloprid results not only in 100% termite 

mortality, but in drastic reductions in protist populations and in the 1000-fold down 

regulation of a protist enzyme, GHF 7-5 (Sen et al. 2015). It appears that symbiota likely 
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contribute to anti-fungal defenses in many termite species, and that β-1, 3-glucanase 

activity is linked with termite protection.  

In order to investigate the potential protective role mediated by termite symbiota, 

I aimed to determine if 1) symbiont-mediated immunity was dependent on pathogen type, 

2) termite endogenous anti-microbial pathways were impacted by defaunation, and 3) 

protist-derived GHF7s serve as a mechanism for symbiont-derived, anti-fungal activity. In 

bioassay experiments, I challenged both normally faunated and antibiotic treated 

termites with bacterial and fungal pathogens and observed signatures of symbiont-

mediated immunity in both to varying degrees. By measuring changes in 

immunocompetence from molecular to the whole-organism levels, I found that termite 

immune status is affected on a variety of levels by faunation state and pathogen type. 

Termites are more susceptible to fungal pathogens when symbiota (both protists and 

prokaryotes) are removed using the antibiotic kanamycin, and building upon previous 

works, I found that protist GHF7 enzymes reduce fungal germination in vitro and show 

potential to rescue the effects of defaunation on fungal susceptibility by termites in vivo. 

Together, these results corroborate previous findings that termite gut symbionts perform 

important functions outside of their stereotypical nutritional/digestive roles (Rosengaus 

et al. 2014), and supports the existence of a novel mechanism for anti-fungal, symbiont-

mediated protection via protist GHF7s. 

 Materials and Methods 

3.2.1 Termites, Pathogens, and Bioassay Setup 

R. flavipes termite colonies used in bioassay experiments were collected from West 

Lafayette, IN and maintained in the laboratory with 24 hours of darkness on a diet of pine 

wood shims and brown paper towels prior to bioassay. Three individual colonies were 

used as biological replicates in this study. Seventy termite workers were placed in small, 

Petri dishes (Techno Plastic Products Tissue Culture Dish 40) with a Whatman filter paper 

saturated with either 200μL of either water (control) or 5% kanamycin (w/v). Termites 

were fed on this diet for 48 hours. Kanamycin is a broad-spectrum antibiotic and has been 
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shown to reduce termite gut microbiota (Peterson et al. 2015). Termites were then 

transferred to new dishes for pathogen challenge. 

Pathogens used in bioassays were B. bassiana isolate #5477 and S. marcescens. S. 

marcescens was verified with 16S sequencing prior to use. For bacterial pathogen 

challenges, termites were fed on agar-based termite diet disks soaked in either 150μL of 

sterile 0.85% NaCl (control) or 8 x 108 cells /mL Serratia in 0.85% NaCl. For fungal 

pathogen challenges, termites were submerged in either 150μL 0.5% Tween 20 (v/v; 

control) or 1.25 x 104 B. bassiana conidia suspended in 150μL 0.5% Tween 20. Pathogen 

viability was verified by plating on Luria-Bertani agar (Serratia) or potato dextrose agar 

(Beauveria) at the time of inoculation. 50 termites were collected from each pathogen 

group 48-hours post-inoculation. These were dissected to provide whole-guts for 

bacterial enumeration, hemolymph for hemocyte enumeration, and carcasses for protein 

and RNA extraction. The remaining 20 workers were left in bioassay for an additional 5 

days, and mortality was recorded 7-days post inoculation (DPI). 

3.2.2 Gut Bacteria Enumeration 

To determine bacterial load of termites following antibiotic treatment and/or pathogen 

challenge, culturable bacteria were quantified. Whole-guts (25) dissected from termites 

were homogenized in 750μL of 50mM sodium phosphate buffer (pH 7.0). The gut 

homogenate was then diluted in water (10-1 -10-3 depending on treatment) and 100μL 

plated in triplicate onto brain heart infusion agar. These plates were grown at 37˚C 

overnight and the resulting colonies counted to calculate colony forming units (CFU) per 

termite gut equivalent. Additionally, triplicate plates from each treatment were grown at 

25˚C to allow us to calculate the percent of pathogen being cultured in pathogen 

challenged treatments, as S. marcescens has a red pigment when grown at 25˚C which 

distinguishes it from other normal, culturable gut flora. 

3.2.3 Hemocyte Enumeration 

Hemocytes were counted as a metric for cellular immune response. Hemolymph was bled 

from 10 workers by puncturing the lateral meta-thoracic segment with an insect pin. To 
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collect the hemolymph, a 5μL glass capillary tube was pre-loaded with 1μL of 

anticoagulation buffer (Willott et al., 1994) and touched to the bubble of hemolymph 

produced at the wound site. On average 0.2μL of hemolymph was collected from each 

termite resulting in a final dilution of 1:5 ratio of hemolymph to anticoagulation buffer. 

To image hemocytes, 10μL of diluted hemolymph was transferred on a hemocytometer 

(Hausser Scientific Co.; Horsham, PA) and visualized using a phase contrast microscope. 

Still images were captured using a camera apparatus connected to the microscope and 

the Olympus MicroSuite B3 Biological Suite software (Olympus; Melville, NY). Hemocytes 

were then counted using ImageJ freeware (available from:http://imagej.nih.gov/ij/). 

Hemocyte counts were compared between treatments using ANOVA with Tukey HSD 

post-hoc mean separation (α=0.05). 

3.2.4 Protein Analysis 

To look at global protein expression, twenty carcasses (thorax and abdomen minus gut) 

were homogenized in 100μL 50mM sodium phosphate buffer (pH 7.0). To extract total 

protein, homogenate was spun at 15,000 G for 10 minutes at 4oC and the supernatant 

collected. Protein was quantified using the Bradford method (ThermoScientific; 

Wilmington, DE). Protein samples (20µg) were then analyzed using 15% acrylamide SDS-

PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis).  

3.2.5 Quantitative Real-Time PCR 

As a means to quantify expression of a number of immune-associated genes, I used 

quantitative real-time PCR. Carcasses (thorax and abdomen minus gut) were stored in 150 

μL of RNAlater RNA Stablization Reagent (Qiagen; Germantown, MD) at -80oC until RNA 

was extracted. RNAlater was removed from samples by brief centrifugation and pipetting. 

RNA was extracted from 25 worker carcasses from each treatment group using the 

Promega SV Total RNA Isolation System and manufacturer’s instructions (Madison, WI). 

The quality and quantity of RNA was assessed using the ThermoScientific NanoDrop2000 

(Wilmington, DE). Then 1μg of good quality RNA from each sample was reverse 

transcribed using the Bioline SensiFAST cDNA Synthesis Kit (Taunton, MA). 
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 Quantitative Real-Time PCR (qRT-PCR) was performed using 20μL reactions with 

0.5mM final primer concentration per the manufacturer’s protocol (Bioline; Taunton, MA). 

Primer-pairs were designed against R. flavipes homologs of known immune-associated 

genes (Hussain et al., 2013; Table B.1). Cycle threshold values were recorded using the 

BioRad CFX96 Real-Time PCR Detection System (Hercules, CA). Gene expression was 

normalized to the reference gene, β-actin, (ΔCT) and then to the unchallenged treatment 

for each group (CC for control groups and AC for antibiotic treated groups for each colony; 

ΔΔCT). Fold changes between treatment groups were compared using a t-test for each 

gene (α=0.05). 

3.2.6 Data Normalization 

In order to determine the effect of faunation status on termite response to pathogens 

data from pathogen challenged groups in the above assays were normalized to their 

respective controls. For example, treatment effect was expressed as a proportion of the 

control effect or: Measured treatment effect ÷ Measured control effect = Normalized 

treatment effect. This normalization was done to data collected in paired sets per the 

experimental design. This includes termite mortality, hemocyte enumeration, immune 

gene expression, and protein profiles.  

3.2.7 Biochemical Characterization Enzyme Activity Assays 

A previous study tested the activity of these two enzymes, GHF7-5 and 7-6, on a variety 

of β-1, 4 glycosidic bonds and determined very weak activity (Sethi et al. 2013). I tested 

these enzymes against a variety of substrates containing β-1, 3 and β-1, 6 glycosidic bonds, 

which are present in fungal cell walls. In all I tested laminarin (β-1, 3 and β-1, 6), pustulan 

(β-1, 6), carboxymethylcellulose (β-1, 4), and carboxymethylcurdlan (β-1, 3) at a range of 

concentrations using 100mM, filter sterilized HEPES buffer pH 7.0. Enzymes (0.5µg) and 

substrates (0-1.25%) were incubated for 1 hour at 30oC. Then 10µL of enzyme/substrate 

solution was combined with 90µL of 3, 5-dinitrosalicylic acid (DNSA) stop solution in a 

microplate, accompanied by a glucose standard curve. The plate was submerged in boiling 

water for 10 min and then an endpoint reading was taken at 540nm. 
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 Additionally, these enzymes were tested for activity against four nitrophenol 

model substrates: o-nitrophenol-glucoside (oNPG), o-nitrophenol-cellobioside (oNPC), p-

nitrophenol-glucoside (pNPG), and p-nitrophenol-cellobioside (pNPC) at 6mM 

concentrations in 100mM, pH 7.0 HEPES buffer. These assays contained 95µL of substrate 

in buffer and 5µL (1µg/µL) enzyme and were read kinetically for 1 hour at 30oC. 

 GHF7-5 and 7-6 were also tested with 0.75% laminarin in 100mM sodium 

phosphate buffer at pH 7.0. Unlike the previous laminarin assay, 0.5 µg of each enzyme 

and the substrate were incubated for 10 min at 50oC. Then the samples were developed 

and measured as with the previous DNSA assay. 

3.2.8 Conidia Viability Experiments and Potency Bioassays 

To test the efficacy of recombinant GHF7-5 and GHF7-6 as antifungal enzymes, 1500µL of 

1 x 104 conidia/mL of either B. bassiana or M. anisopliae were suspended 0.5% Tween 20. 

These conidia were combined with 300 µL of 0.03µg/µL recombinant protein in HEPES (no 

enzyme controls contained only buffer) and 200µL 5mg/mL ampicillin in a 5mL Eppendorf 

tube with the cap sealed with Parafilm® (Beemis) and each sample type was repeated in 

triplicate. These suspensions were incubated a room temperature (25±2oC) for 24 hours 

shaking at 50 rpms. Then 100µL of each suspension plated on to potato dextrose agar 

plates containing 5mg/mL ampicillin in triplicate. After 96 hours at room temperature in 

the dark, plates were counted for CFUs. Supernatants of these assays were also subjected 

to DNSA assays to assess presence/abundance of reducing sugars in assays following 

incubation with GHF7s. For these assays, a mixture 100µL of conidia-free in vitro assay 

supernatant and 100µL of DNSA reagent was incubated and analyzed as described above. 

Three technical replicates were performed for each sample type.  

 Additionally, conidia suspensions were used to challenge termites to determine 

conidial potency following incubation. Groups of 10 termite workers, pre-treated with 5% 

kanamycin or water for 48-hours, were submerged in 150 µL one of the suspensions. 

Termite mortality was scored at 7-days post-inoculation.  
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 Results 

3.3.1 Whole organism bioassays show pathogen specific effects of symbiont removal 

For this project I was interested in the role for symbiota in pathogen defense. To do this I 

evaluated the effect of symbiont removal on termite survival after treatment with three 

entomopathogens. The experimental design allowed us to account for treatment specific 

mortality (i.e. antibiotic treatment) and assess the role of symbiont-mediated protection. 

Overall, removal of symbionts increases termite susceptibility to B. bassiana but does not 

significantly impact termites challenged by M. anisopliae or S. marcescens (Figure 3.1). 

Though, it should be noted that the biological trend suggests symbiota are more 

important for fungal pathogen defense than for protection against S. marcescens.  

 Although, S. marcescens treated termites do not suffer increased mortality, I did 

observe S. marcescens in the guts of both control and antibiotic treated termites, 48-

hours post-inoculation (Figure B.1). Regardless of treatment, pathogen challenged 

termites had increased CFUs/gut compared to their paired controls at levels higher than 

can be accounted for by the presence of S. marcescens (Figure B 1). 

3.3.2 Stereotypical host immune responses appear inconsistent  

Here it was hypothesized that removal of gut symbiota would result in a compensation 

effect from the endogenous host immune system. To test this hypothesis, I investigated 

the effect of antibiotic treatment on various typical immune system parameters such as: 

circulating hemocytes, increased protein-level immune responses, and corresponding 

increases in immune-associated gene expression. Overall, termite immune responses 

assessed here-in followed no discernable pattern. 

 Termites with reduced microbiota due to antibiotic treatment did not experience 

a rise in circulating hemocyte numbers in response to pathogen challenge (Figure 3.2). 

Both pathogens tested, B. bassiana and S. marcescens, elicited an increase of 2-2.5X in 

hemocytes in faunated termites (Figure 3.2). In contrast, defaunated termites only 

possessed ~1.5X increases in hemocytes when exposed to B. bassiana and even less when 

dosed with S. marcescens (Figure 3.2).  
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 At the protein level, I investigated the total protein profiles of my four treatment 

groups via SDS-PAGE to identify treatment or pathogen specific patterns of protein 

expression. Overall, no obvious patterns emerged and protein profiles seemed to vary 

more by colony than by treatment or pathogen type (Figure B.2).  

 In contrast, some host immune-associated genes were impacted by pathogen type. 

Defaunated termites challenged by B. bassiana had significant increases in expression of 

seven genes previously described to be associated with pathogen challenge (Hussain et 

al. 2013). Of the tested genes, asparaginyl endopeptidase-like cysteine peptidase (AEP), 

cathepsin O, calpain B, and metacaspase-like cysteine peptidase (MCP) all shared a similar 

pattern of being down-regulated in faunated termites and up-regulated in defaunated 

termites (Figure 3.3A). Termicin and 14-3-3 protein 1 (14-3-3) were induced regardless of 

faunation status; and hexamerin 2 (Hex2) was only differentially regulated in defaunated, 

B. bassiana challenged termites (Figure 3.3A). In contrast a pathogen-specific response to 

S. marcescens was only detected in AEP, where it was again up-regulated in defaunated 

and down-regulated termites but to a lesser degree than in the fungus treatment (Figure 

3.3B). 

 Three genes shared common expression patterns regardless of pathogen type. 

The host-derived heat shock protein 90 (HSP90) and glycosyl hydrolase family 7-3 (GHF7-

3) were up-regulated only in pathogen-challenged, defaunated workers (Figure 3.3C). 

Gram-negative bacterial binding protein, a key antimicrobial recognition protein, was up-

regulated in all treatments but to a greater extent in symbiont-depleted termites (Figure 

3.3C).  

3.3.3 GHF7-5 and 7-6 activity against β-1,3- and/or β-1,6-glycosidic bonds 

Using pure recombinant enzyme I tested GHF7-5 and 7-6 activity on a variety of substrates 

with varying incubation times and buffers. Ultimately, the best activity of this enzyme  

was with sodium acetate buffer at pH 7.0 incubated at 50oC for 10 min on 0.75% laminarin 

(Figure 3.4). The other reducing sugar assays did not show enzyme activity scaled with 

substrate concentration (B.3). Nitrophenol assays with HEPES buffer also failed to show 

activity.  
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3.3.4 Testing two protist glycosyl hydrolases for anti-fungal activity  

Again using recombinant enzymes for two protist-derived GHF7s, I tested the capacity of 

these enzymes to impede fungal development and in turn confer fungal protection to 

their host termites. Following in vitro incubation of fungal conidia with these enzymes, M. 

anisopliae show significant reductions in fungal colony forming units relative to a buffer 

control (Figure 3.5). B. bassiana showed some decrease in conidial success, however, 

there was a large amount of variation across replicates (Figure 3.5). Additionally, 

supernatant from in vitro assays of all enzyme-fungus combinations had detectable levels 

of reducing sugars present which were absent from buffer controls. This indicates the 

breakdown of polysaccharides in GHF-positive in vitro assays (Figure 3.6). 

3.3.5 Pre-treatment of fungal pathogenic agents with GHF7s attenuates some 

antibiotic-induced termite susceptibility 

The effect of pre-treatment of fungal conidia with GHF7s on subsequent termite survival 

was also evaluated. Defaunated termites which are subsequently challenged with GHF7 

pre-treated B. bassiana had higher survival than those challenged with buffer pre-treated 

B. bassiana conidia (Figure 3.7). Unfortunately, termite colony-to-colony variation was 

high in this experiment and limited my ability to draw conclusions from the M. anisopliae 

data.  

 Discussion 

3.4.1 Symbiota Serve a Protective, Anti-Fungal Role in Termites 

The goals of this study were multifaceted. First, I wanted to test the hypothesis that 

reduction in R. flavipes gut symbiota will increase pathogen susceptibility. My data show 

that, while this may be supported in regard to the fungal pathogens tested, antibiotic pre-

treatment did not influence termite susceptibility to S. marcescens (Figure 3.1). This 

corroborates results found in two similar studies. In Zootermopsis angusticollis, termites 

subjected to oxygenation treatment (to reduce symbiota) suffered higher mortality than 

their faunated counterparts when exposed to M. anisopliae (Rosengaus et al. 2014). R. 
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flavipes have also been shown to have increase susceptibility to low doses of M. 

anisopliae following treatment with imidacloprid, which reduces protist abundance in the 

hindgut (Sen et al. 2015). Imidacloprid did not increase S. marcescens susceptibility to the 

same extent, however (Sen et al. 2015). Thus, termite symbiota may serve an immuno-

protective role for their hosts when specifically challenged with fungal pathogens.  

3.4.2 Termites with Reduced Microbiota Are Able to Mount Some Immune Responses, 

While Others are Attenuated 

We measured a number of conventional immune responses in the termite following 

pathogen challenge with and without symbiota to determine if the host immune system 

compensates for any lost symbiont-mediated protection. Circulating hemocytes are often 

used as a barometer for the induction of cellular immunity (Lu and St. Leger 2016). In the 

present study, I observed a failure of defaunated, pathogen-challenged termites to induce 

increased circulating hemocytes compared to symbiota-intact controls (Figure 3.2). This 

result may indicate a couple of scenarios. One option could be that defaunated termites 

rely on cues from their symbiota to initiate cascades leading to increased hemocyte 

production, so removal of the symbionts and, thus this cue, slows or inhibits hemocyte 

induction/proliferation. In fact, in some insects host immune system maturation and 

circulating hemocyte abundance have been linked with symbiotic microbiota (Weiss et al. 

2011, Schmitz et al. 2012, Weiss et al. 2012). Another possibility is that the act of 

defaunation preemptively triggers an immune response. Hemocyte numbers are known 

to fluctuate throughout the lifecycle of insects (Jones 1962, Wheeler 1963). During the 

molting process insects shed their cuticle which includes the lining of their fore- and 

hindgut, also eliminating symbiota (Douglas 2011). Therefore, the loss of symbiota in the 

hindgut may trigger a pre-programmed response to up-regulate cellular and humoral 

immune mechanisms. In the present case, it seems to be the latter. Termites treated with 

antibiotics have more circulating hemocytes than control termites, showing that this is an 

antibiotic effect. The failure to induce greater circulating hemocytes seen in pathogen-

challenged, defaunated termites may be due to an already higher-than-normal titer.  
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 In addition to cellular immune response, I measured the relative expression of 

several endogenous, immune-associated genes in my treatment groups. The two 

pathogens tested shared consistent results across pathogens for two termite genes: 

GNBP1 and HSP90 (Figure 3.3C). GNBP1 is an enzyme which degrades pathogen cell walls 

by way of hydrolysis (Hamilton et al. 2011). Though it is usually associated with bacterial 

pathogens, there is parallel evidence of its up-regulation in response to fungal pathogen 

challenge in previous studies (Gao et al. 2012, Hamilton and Bulmer 2012, Hussain et al. 

2013). HSP90 is a chaperonin associated with many kinds of stress responses in termites, 

including pathogen challenges (Hussain et al. 2013, Sen et al.  2015). B. bassiana 

treatment induces the most numerous (7) pattern of predictable gene expression (Figure 

3.3A). Termicin and 14-3-3 are genes which have been associated with mediating direct 

interactions with pathogens (Bulmer et al. 2009, Ulvila et al. 2011, Hamilton & Bulmer 

2012). AEP, calpain B, cathepsin O, and MCP are all peptidases which have- previously 

been reported to be induced by pathogen challenge in Coptotermes formosanus (Hussain 

et al. 2013). These genes all follow the pattern of being down-regulated in control, B. 

bassiana treated termites and up-regulated in defaunated termites.  

S. marcescens treatment also caused an up-regulation in AEP expression, but to a 

lesser extent than in B. bassiana treated termites (Figure 3.3B). Again, faunated termites 

show down-regulation of this gene in pathogen-challenged termites and up-regulation in 

defaunated, pathogen-challenged termites. This discontinuity between my study and 

others could be due to my use of carcasses (thorax and abdomen minus gut) as my tissue 

sample for RNA extraction. The use of whole insects may have produced results more 

consistent with other studies.  

Despite these methodological pitfalls, I can say that defaunation is impacting 

termite immune functionality. However, both the induction of hemocytes upon removal 

of symbionts (even in the absence pathogen challenge) and the up-regulation of immune-

associated genes are consistent with my hypothesis that termites rely on endogenous 

immunity when symbiota are disrupted.  
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3.4.3 GHF 7-5 and 7-6 as Potential Symbiont-Derived, Anti-Fungal Enzymes 

Following the prior-identification of symbiont derived β-1, 3-glucanase activity as a means 

of anti-fungal defense (Rosengaus et al. 2014) and the result that the combination of M. 

anisopliae + imidacloprid treatment effects termite survival and down-regulation of 

GHF7-5 by 1000-fold (Sen et al. 2015), I decided to investigate the role of two protist 

GHF7s in anti-fungal defense. These particular enzymes, GHF7-5 and 7-6, had been 

previously characterized as having weak β-1, 4-glucanase activity, and as such were 

concluded as not likely to be not important for lignocellulose digestion (Sethi et al. 2013). 

While I tested a number of assay conditions and substrates, GHF7-5 and 7-6 only had 

strong activity with the substrate laminarin with sodium acetate buffer (Figure 3.4). 

Activity of these enzymes on the substrate laminarin is promising due to its homology to 

fungal cell walls (having β-1, 3 and β-1, 6-glucan linkages), in fact it has been used as an 

analog to trigger immune responses in vivo (Mullin and Goldsworthy 2006). However, this 

result may be considered dubious because of sodium acetate’s limited buffering capacity 

at pH 7.0, though other enzymes from the R. flavipes gut environment also operate 

optimally in this buffer (Scharf et al. 2011). Additionally, the reaction temperature (50oC) 

is not physiologically relevant for the termite gut.  

 That being said, the result that reducing sugars are being liberated from fungal 

conidia in vitro shows promise (Figure 3.6). Based on the contents of this in vitro assay, 

the only substrate with complex polysaccharides would be the fungal cell wall. Fungal cell 

walls often have varied arrangements of primarily β-1, 3 and β-1, 6 glucans latticed atop 

of a chitinous layer (Free 2013). Additionally, no reducing sugars were detectable in no-

enzyme control assays, strengthening the argument that GHF7-5 and 7-6 are responsible 

for this breakdown. Finally, the marked difference in abundance of reducing sugars 

between species of fungi may reflect differences in their cell wall glucan composition, 

which is known to vary drastically across fungi (Free 2013).  

 GHF7-5 and 7-6 also had varying impacts on the viability of conidia. Fungal conidia 

from both tested fungi exhibited some reduction in germination following incubation, 
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however as with the reducing sugars assay, M. anisopliae was significantly more inhibited 

by GHF7 pre-treatment than B. bassiana (Figure 3.6).  

 Perhaps contrary to these data, B. bassiana pre-treatment with GHF7-5 and 7-6 

seemed to more positively impact defaunated termite survival; whereas, there is no 

statistical effect of pre-treatment in M. anisopliae (Figure 3.7). There is considerable 

variability across termite colonies that may be impeding my ability to interpret these 

results. Colony-to-colony variability in termites is a confounding factor due to differences 

in genetic background, age, time in culture, and symbiont populations (Matsuura 2003, 

Boucias et al. 2013).  

 Overall, my efforts to pinpoint a role for GHF7-5 or 7-6 in protist-mediated anti-

fungal defense in R. flavipes proved difficult. While there are several interesting data 

points in this study, more work is required to elucidate the level of necessity and 

mechanism of GHF7-5 and/or 7-6 action on entomopathogens like M. anisopliae and B. 

bassiana.  

3.4.4 Conclusions 

The aims of this project were to 1) investigate symbiont roles in pathogen defense in R. 

flavipes workers, 2) determine if termite endogenous immune responses are sufficient 

for pathogen defense in the absence of symbiota, and 3) evaluate two protist-derived 

GHF7 enzymes as anti-fungal enzymes. I found that symbiont removal is more detrimental 

in the face of fungal pathogen than the tested bacterial pathogen. Endogenous termite 

immune responses also play a role in compensating for defaunation in pathogen-

challenge termites, though tissue selection for gene expression studies may have 

influenced these results. Finally, two protist glycosyl hydrolase enzymes, GHF7-5 and 7-6, 

show some signs of promise as potential mechanisms for anti-fungal activity against M. 

anisopliae and B. bassiana. In vitro, both enzymes impact M. anisopliae conidial viability 

and liberate reducing sugars, likely from digested fungal cell walls. In contrast, pre-

treatment with these enzymes seems to have more impact on termite survival in B. 

bassiana treatments. These results suggest that perhaps fungus-specific cell wall 

arrangements influence the impact of GHF7 activity. In general, these data support the 
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concept of symbiont-mediated pathogen defense in R. flavipes. GHF7-5 and 7-6 show 

potential as a means for this protection, but further study, including more complete 

biochemical characterization, is needed.  
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Figure 3.1 Changes in termite mortality following pathogen challenge 

Dark bars represent termites with intact gut fauna and light bars represent termites 
with reduced gut fauna following kanamycin treatment. Error bars represent SEM. Each 
paired treatment was compared using a t-test to determine the impact of symbiont 
remove on individual pathogen susceptibility (α=0.05). 
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Figure 3.2 Fold-change in circulating hemocytes  

Fold-change in hemocytes following pathogen challenge with B. bassiana (right) or S. 
marcescens (left). Error bars represent SEM. 
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Figure 3.3 Heat maps showing patterns of differential gene expression among 
treatments 

Gene expression patterns following pathogen challenge with either A) B. bassiana, B) S. 
marcescens, or C) common among both treatments. Each row represents a different 
immune-associated gene. Blue represents down-regulation of a gene and yellow colors 
represent up-regulation, the intensity of the color is indicative of the degree of 
differential expression. Results from t-test comparison of normal and antibiotic treated 
termites are listed to the right of each row (α=0.05).
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Figure 3.4 GHF7-5 and GHF7-6 activity on the substrate laminarin 

Activity of GHF7-5 (dark bar) and GHF7-6 (light bar) on 0.75% laminarin producing 
reducing sugars detected by DNSA. Error bars represent standard error across six 
technical replicates. 
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Figure 3.5 Fungal CFUs after pre-incubation with GHF7s 

Colony forming units counted 96-hours post-incubation with potential anti-fungal 
enzymes. White bars represent buffer only controls, black bars represent GHF7-5 
treated conidia, and gray bars represent GHF7-6 treated conidia. Error bars represent 
SEM. Bars with the same letter are not statistically different (α =0.05).
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Figure 3.6 Reducing sugars detected in in vitro assays 

Average reducing sugars released during in vitro assays detected with DNSA. Note no 
reducing sugars were detected (<0.000 mMol total at endpoint) in no enzyme controls.  
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Figure 3.7 Termite survival following challenge with fungal conidia  

A is M. anisopliae and B is B. bassiana pre-treated with buffer (control), GHF7-5, or 
GHF7-6. Dark bars represent termite workers with intact gut fauna and light bars 
represent termite works pre-treated with kanamycin. Error bars represent SEM. Each 
paired treatment was compared using a t-test to determine if conidial pre-treatment 
would rescue symbiont depletion (α=0.05).
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CHAPTER 4. NOVEL METATRANSCRIPTOME ANALYSIS REVEALS BACTERIAL SYMBIONT 

CONTRIBUTIONS TO LOWER TERMITE PHYSIOLOGY 

  Introduction 

The intimate association of termites and microbes is so tightly linked that often what it 

means to be a termite cannot be discussed without describing their symbiotic 

relationships. In the 1920’s L.R. Cleveland described this association and the necessity of 

these ‘parasites’ to termite survival (Cleveland 1923, Cleveland 1924). The discovery of 

protist-produced cellulases in lower termites and wood roaches as a means to thrive on 

a nitrogen poor, recalcitrant diet such as wood forever solidified termite symbiosis as the 

quintessential example of insect-microbe collaboration (Trager 1932). For decades, 

termites were thought to rely entirely on symbiota for the digestion of their food until a 

highly-active, highly-expressed, endogenous β-1, 4-glucanase was identified in a lower 

termite species (Watanabe et al. 1998). This finding shifted the perspective of this 

symbiosis from unidirectional to collaborative. As tools in molecular biology advanced, 

more and more cellulytic enzymes were identified from the symbiotic partners and hosts 

in all termite symbioses (Ohtoko et al. 2000, Tartar et al. 2009, Todaka et al. 2010, Zhou 

et al. 2010, Do et al. 2014, Yuki et al. 2015). The synergy demonstrated by these enzymes 

from lower termites begins to explain how the efficiency of this system led to such success 

(Scharf et al. 2011).  

 Termite research consistently addresses digestive symbioses, but lower termite 

literature has focused on protist-termite collaborations. Until recently, bacterial 

contributions to wood digestion in lower termites were largely disregarded (Brune and 

Dietrich 2015). However, bacteria are now known to play important roles in 
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nitrogen cycling, hemicellulose and aromatic compound degradation, and acetate 

metabolism which likely contribute to the maintenance of efficient cellulose digestion in 

the termite gut (Hongoh et al. 2008a, Hongoh et al. 2008b, Tartar et al. 2009, Lucey and 

Leadbetter 2014). Reduction in bacterial number and diversity have been linked to 

reduction in lignocellulytic activity (Peterson et al. 2015, Chapter 2). 

 Though the traditional, intuitive role for gut bacteria may be nutritional, gut 

microbiota can have profound impacts on their insect hosts.  Symbionts of stinkbugs have 

been shown to confer pesticide resistance to their hosts, Colorado potato beetles 

circumvent plant defenses with help from bacterial symbionts, and microbes appear to 

be at least partially responsible for rotation resistant populations of western corn 

rootworm (Kikuchi et al. 2012, Chu et al. 2013, Chung et al. 2013). These examples suggest 

that insect associated microbes may play more diverse roles than previously thought. 

Indeed, lower termite symbionts have recently been credited with contributing important 

anti-fungal enzymes which extend increased pathogen defense to their insect hosts. Beta-

1, 3-glucanases from protist symbionts have been identified as a source of fungal 

deactivation in the lower termites (Rosengaus et al. 2014). While symbiotic actinobacteria 

have been shown to provide anti-fungal functions within the nest walls of some 

subterranean termites (Chouvenc et al. 2009), there has been no mechanistic link 

between symbiotic gut bacteria and pathogen defense in lower termites. However, 

bacteria play important roles in ant and termite fungus farming mutualisms (Barke et al. 

2010, Visser et al.  2012). So it is reasonable to postulate that lower termite-associated 

gut bacteria are contributing to host physiology in more ways than just nutrition/digestion.  

This idea of “collaborative physiology” represents a joint effort by the members 

of the holobiont to accomplish basic physiological tasks, like digestion and immunity. 

Steps in assessing the extent and mechanisms of these collaborations require approaches 

which encompass the entire micro-ecosystem that is the termite gut. Assessing the 

holobiont allows for a more complete picture of functional capacity of individual 

members of the consortium but also sheds light on interspecific collaborations (Peterson 

and Scharf 2016, Chapter 1).  
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 Here I harnessed the power of next-generation sequencing to explore the 

contributions and potential collaborations of the termite host and its hindgut consortium. 

My aims for this project were two-fold: 1) to describe the composition of the gut 

holotranscriptome and 2) to identify potential mechanisms of bacterial-derived anti-

fungal defense to the fungal pathogen, Beauveria bassiana. Using a ribo-depletive library 

preparation strategy, I captured a transcriptome of the holobiont that included the often-

overlooked prokaryotic symbiota. My findings highlight the potential for extensive 

collaboration between symbiota and the host termite including an abundance of 

transcripts encoding bacterial nutrient and metabolite transporters, amino acid synthetic 

enzymes, and carbohydrate metabolism. Additionally, I identify a candidate mechanism 

for bacterially-mediated anti-fungal activity in the termite gut. Overall, this study provides 

a snapshot of the potential functions of bacteria in R. flavipes guts and begins to shed 

light on the extent to which collaboration between the host and its prokaryotic partners 

plays a role in defense against fungal entomopathogens.  

 Materials and Methods 

4.2.1 Termites and Pathogen Rearing 

R. flavipes termites used in this project were collected on the campus of Purdue University 

in West Lafayette, IN between May and July 2014. Colonies were reared in darkness at 

22±2⁰C with ~40% relative humidity and were provided with pine wood shims and brown 

paper towels as a food source. The pathogen used in this study was B. bassiana isolate 

#5477 which was cultured in darkness on potato dextrose agar (PDA) at room 

temperature. To collect conidia for bioassays, 10 to 12-day old B. bassiana culture plates 

were flooded with 5mL of filter sterilized 0.5% Tween-20. Conidial concentration was 

determined via hemocytometer and diluted to 1.25 x 104 conidia/mL for termite 

inoculation. 

4.2.2 Bioassay Setup & Dissections 

Groups of 30 termite workers were either submerged in a suspension of 1.25 x 104 

conidia/mL in 0.5% filter sterilized Tween 20 or Tween 20 alone for one minute. Termites 
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were transferred to 33mm plastic dishes containing 2cm2 of Whatman filter paper wetted 

with 100µL of deionized water. Bioassays were held at 28±2⁰C for 48hr in complete 

darkness in a growth chamber. Paired treatment groups (control and pathogen 

challenged) from 3 distinct termite colonies served as biological replicates. After 48hrs in 

bioassay, termite whole guts were dissected from 25 workers per treatment, submerged 

in RNAlater (ThermoFisher Scientific) and stored at -80⁰C.  

4.2.3 RNA Isolation & Library Preparation  

Samples were thawed on ice and all RNAlater aspirated leaving only termite gut tissue. 

This tissue was then homogenized in Promega SV Total RNA Isolation Kit lysis buffer and 

the manufacturer’s protocol followed to extract total RNA from all samples. RNA 

concentration and relative purity was quantified using a NanoDrop 2000 (ThermoFisher 

Scientific).  

 To reduce eukaryotic bias in library preparation, total RNA was ribodepleted 

rather than enriched for mRNAs. The metatranscriptome libraries were  prepared from 

total RNA using the Ovation Complete Prokaryotic RNA-Seq DR Multiplex System 1-8 

(NuGEN) with the addition of custom oligos targeting the 18S rRNA from eukaryotic 

species anticipated to be in the samples (termite, protists, and fungal pathogen; Table 

C.1). Total RNA (250ng) was used as starting material for the Ovation kit and cDNA was 

synthesized following manufacturer instructions. After second strand synthesis, cDNA 

samples were frozen overnight at -20⁰C.  

 After thawing, samples were sonicated using a Covaris E210 in Covaris #520045 

6x16mm microtubes using the parameters specified in the Ovation protocol (Intensity = 

5 not 5%) and transferred to fresh 200uL microtubes and stored overnight at -20⁰C.  

cDNA purification, end repair, barcode ligation, first strand selection, and first 

strand purification were performed per manufacturer’s protocol. At the strand selection 

II step, 1µL of the 100µM custom oligo mix was added to 16µL of Solution SS5 to deplete 

eukaryotic rRNAs from samples. Adapter cleavage was performed as specified in the kit 

manual. Library amplification master mix was made fresh per protocol instructions, but 

the thermocycler program was modified from the manufacturer’s protocol as follows: 
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95⁰C for 2 min, 20 cycles of 95⁰C for 30s, 60⁰C for 90s, and 65⁰C for 5 min. Bead 

purification of the amplified library was done with a multi-channel pipet to minimize 

incubation bias of the libraries.  

4.2.4 Metatranscriptome Sequencing, Assembly, Annotation, and Analysis 

A workflow summarizing the major steps in the metatranscriptome analysis is shown in 

Figure 4.1. Purified, indexed libraries were submitted to the Purdue University Genomics 

Core (PUGC) facility for quality control and sequenced in 1 lane on the Illumina HiSeq2500 

2x100 paired-end reads. Contigs of one control library containing the least rRNA reads 

were assembled de novo using Trinity 2.1.1 by PUGC, all other libraries were mapped to 

this assembly to produce a read count table. Any contigs with less than 10 reads across 

samples or identified by homology search as rRNA were filtered out. 

In an effort to annotate the contigs in a taxon specific way, a custom termite 

consortium database was built from existing data in the National Center for 

Biotechnology Information (NCBI) refseq protein database (bacteria, archaea, select 

protists, Table 4.1) and the Zootermopsis nevadensis official gene set (OGS), as this is the 

only termite genome available at present time (Terrapon et al. 2015). Contigs that were 

reciprocal best hits (RBH) with entries in this database at an e-value 1e-5, or less, were 

carried through for additional analysis. This ensured a conservative annotation of contigs 

in this assembly, though definitely limited detection of novel and redundant genes within 

the consortium. 

 To associate contigs with gene ontology (GO) terms, the Genbank identifiers from 

the list of RBH for each taxon group (bacteria, archaea, protists, and termite) were 

analyzed using the Uniprot retrieve/ID mapping function available online 

(www.uniprot.org/uploadlists/). Using the Bioconductor package for the R statistical 

software, edgeR differential expression analyses were done on read counts for all contigs 

to detect responses to the fungal pathogen (α and FDR = 0.05). To determine if any 

biological processes or molecular functions were enriched in a taxon group, lists of GO 

terms from each taxon group (bacteria, archaea, protists, or termite) were compared to 
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all GO terms in the gene set and enrichment was determined with a Fisher’s exact test in 

the topGO function in the Bioconductor package. 

4.2.5 Metatranscriptome Validation 

Quantitative real-time polymerase chain reaction (qPCR) was used as an independent 

validation of read count values used to generate the contigs for differential expression 

analysis. Contigs representing termite, bacteria, protist, up-regulated, down-regulated, 

and no change groups were selected for qPCR validation (Table C.2).  Using the cDNA 

samples generated as described previously, 1µL of cDNA, 1µL each of contig-specific 

forward/reverse primers, 7µL nuclease-free water, and 10µL of SensiFast SYBR no ROX 

master mix (Bioline) were combined for qPCR. After an initial denaturation step (10 min. 

at 95⁰C), 45 cycles of denaturing (30 sec. at 95⁰C), annealing (30 sec. at 50⁰C), and 

extension (30 sec. at 72⁰C) were performed with a real-time scan of fluorescence taken 

after each cycle.  The log ratio CT values were regressed against log ratio of counts per 

million values as a measure of congruency. Regression data were analyzed by the 

Spearman correlation method. 

4.2.6 Post-hoc Reactive Oxygen Species and Glutathione S-Transferase Activity Assays 

To validate findings in the metatranscriptome, additional assays were performed test the 

potential for oxidative stress and increased antioxidant enzyme activity in the termite gut 

following B. bassiana challenge. Reactive oxygen species (ROS) were detected using a 

modified FOX1A assay (Deiana et al. 1999). Bioassays were repeated and dissected as 

described above. A mixture of 100µL of termite gut homogenate containing 10 termite 

gut equivalents in 100mM sodium phosphate buffer was combined with 100µL nanopure 

water and 100µL of FOX1A reagent was incubated for 40 minutes in the dark. Endpoint 

absorbance was measured at 580nm and compared to a hydrogen peroxide standard 

curve to estimate reactive oxygen species concentration. This was repeated in triplicate 

for control and pathogen-challenged groups and all biological replicates.  

 Glutathione S-transferase (GST) activity was measured kinetically using 1-chloro-

2,4-dinitrobenzene (CDNB) as the substrate.  Freshly prepared 1mM CDNB in 100mM 

sodium phosphate buffer (pH 7.0) was combined with 10µl of gut homogenate with or 
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without 5mM reduced L-glutathione for a total reaction volume of 235µl. Absorbance was 

read kinetically for 10 minutes and mean velocity for all samples were calculated. The 

mean velocity of glutathione-plus samples was blank-corrected with their corresponding 

glutathione-minus controls. Specific activity was calculated using the extinction 

coefficient of CDNB of 9.5 mM-1 cm-1. 

 Both ROS and GST assays measurements were normalized per milligram of protein 

in each sample. Protein concentration of samples was estimated using the Pierce 

Coomassie Plus Bradford Assay Kit (Thermo-Fisher Scientific).  

 Results 

4.3.1 Ribodepletion effectively removes rRNA from the hyper-diverse termite gut  

In total, 2,107,824 contigs were assembled from a control termite gut holotranscriptome 

de novo (Table 4.2B). Sequences analyzed contained 1.2% rRNA reads and the average 

rRNA contamination across all samples was estimated at 12.33% (Table 4.2A). Of the 

assembled contigs 258,251 had an N50 length of 652 bases and average length of 704 

bases (Table 4.2B). After filtering out rRNA and contigs with <10 reads across samples 

1,511,386 contigs remained. Additionally, a cluster dendrogram based on a Pearson 

distribution and a multiple dimension scaling plot agree that samples cluster together 

based on treatment type (control vs. B. bassiana challenge) rather than colony (colonies 

nos. 18, 21, or 22) (Figure 4.2A&C).    

4.3.2 Summary of the Holotranscriptome 

In order to assign annotations to potential genes of interest, all assembled, filtered 

contigs were reciprocally BLASTed to determine putative function and taxonomic 

assignment (Figure 4.1). A total of 31,156 contigs had RBH with entries in the custom 

termite consortium database. Each of these annotations was associated with a taxonomic 

group: termite, protist, bacteria, or archaea (Figure 4.3). Of these, 21,269 contigs had hits 

in the Uniprot ID matching database. It should be noted that the protist and archaeal 

annotations are more incomplete due to a lack of information available in the NCBI RefSeq 

database regarding termite symbionts groups (archaea, bacteria, and specific protists). 

The bacterial and termite contigs, however, seem considerably more complete with 
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annotations in many critical biosynthetic, catabolic, transport, and stress response 

processes (Table 4.3). Additionally, some of these categories, like amino acid biosynthesis 

for example, appear to have signatures of complementation between the host termite 

and bacterial symbionts (Table 4.3).  

4.3.3 Differential gene expression analysis  

Using the edgeR analysis package, a total of 563 genes exhibited significant differential 

expression in response to fungal pathogen challenge (FDR p < 0.05). The majority of these 

contigs were annotated as host-origin, but some symbiont contigs were also impacted 

(Table 4.4). In total, 162 contigs were up-regulated and 401 were down-regulated (Table 

4.4). Of the differentially expressed contigs, only 223 contained Uniprot ID matches and 

225 had annotated GO terms. Relative expression observed in the metatranscriptome 

was validated using qPCR. Log CT ratios were correlated to Log CPM ratios between 

treatment and control samples (Figure 4.2D). Spearman’s correlation coefficient rho (ρ = 

- 0.69) shows a strong negative correlation (p = 0.008), as would be anticipated. 

 In general, the termite contigs up-regulated in response to B. bassiana challenge 

reveal the hallmarks of oxidative stress (Table 4.5). Thirty-one ribosomal proteins were 

up-regulated which has been associated with slowed or inhibited protein translation. 

Additionally, a mitochondrial peroxiredoxin and a GST were up-regulated 2.8-fold and 5.1-

fold respectively. Stress and immune-associated 10kDa heat shock protein and ferritin 

were up-regulated as well. Calcium (Ca2+), iron (Fe3+), zinc (Zn2+), and other generic metal 

ion binding GO terms were abundant in the pathogen up-regulated, termite contigs. 

Strikingly, several components of the oxidative phosphorylation (OXPHOS) pathway were 

up-regulated (subunits of complex I, complex III, and complex IV and cytochrome c), 

however; ATP synthase contigs were not differentially expressed.  

 Up-regulated protist contigs also have annotations associated with responses to 

stress; specifically oxidative stress. Of note, two protist contigs annotated as 3’-5’ 

exonucleases/DNA Polymerase I (DNA Pol I), which is associated with oxidative stress-

linked DNA repair. The signal cascade initiators Ca2+/calmodulin dependent kinase II 

(CAMK II) and mitogen-activated protein kinase 1 (MAPK1) were also up-regulated, and 



83 

 

may be involved in response to oxidative stress. The only bacterial contig with a named 

annotation in the up-regulated category is an amidohydrolase family 2. These enzymes 

have a wide-variety of catalytic capabilities, including activity against fungal metabolites. 

4.3.4 Beauveria bassiana challenge results in oxidative stress  

In addition to the up-regulation of contigs related to oxidative stress response, following 

48-hour challenge with B. bassiana, termite guts had increased ROS present (Figure 4.4). 

Additionally, GST activity is significantly higher by 1.15X in pathogen challenged guts than 

control guts (Figure 4.5). While the origin of ROS and antioxidant/detoxification activity 

cannot be identified using this method, it can still be concluded that the termite gut is 

under oxidative stress 48-hours after inoculation with B. bassiana.  

 Discussion 

4.4.1 Ribo-depletion produces a quality metatranscriptome assembly 

One of the goals of this project was to identify candidate genes facilitating symbiont-

mediated fungal pathogen defense in R. flavipes. To do this, a unique transcriptome 

preparation and analysis approach allowed for the ribodepletion of rRNA from total RNA 

rather than enriching (and potentially biasing) for mRNAs. A commercially available 

library preparation kit was modified to efficiently deplete all total RNA samples of 

anticipated prokaryotic and eukaryotic rRNAs. This strategy resulted in low rRNA content 

in the sequenced libraries and yielded a robust assembly of over 30,000 contigs. The 

contig annotation pipeline took a conservative approach to identifying termite, bacterial, 

protist, and archaeal sequences from a custom termite consortium database built from 

publically available information (Table 4.1). Though this pipeline likely misses novel 

transcripts and underestimates redundancies, this conservative approach produced 

contig annotations with reasonable confidence. Additionally, identifying 9,730 best 

reciprocal hits, out of the 14,610 annotated genes in the Z. nevadensis OGS (Terrapon et 

al. 2014), from gut tissue of worker termites in a different taxonomic family of Isoptera 

speaks to the quality of the assembly.  

 Contrastingly, the reference sequences for protist and archaeal symbionts proved 

to be inadequate for the purposes of this study. With only 248 and 174 RBH respectively, 
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undoubtedly important protist and archaeal contributions to this system have been under 

sampled as a whole and in reference to anti-fungal defense specifically. For instance, the 

absence of candidate protist-derived β-1, 3-glucanases, described to play a role in 

Metarhizium anisopliae neutralization (Rosengaus et al. 2014, Chapter 3), is one example 

of the consequence of this conservative strategy. However, the termite and bacterial 

libraries are more complete. From these annotated contigs I can ascertain a more 

complete picture of bacterial contributions to their termite host and the gut consortium 

as a whole. As described previously, bacterial symbionts appear to possess a complete 

amino acid biosynthetic toolkit (Table 4.3) (Mauldin et al. 1978, Nazarczuk et al. 1981, 

Husseneder et al. 2010, Tokuda et al. 2014). Additionally, the presence of nitrogen 

metabolism genes like nitrogenases, nitroreductases, and ureases corroborates the 

importance of bacterial symbionts for nitrogen recycling and fixation in the lower termite 

gut (Yamada et al. 2007, Hongoh et al. 2008a, Hongoh et al. 2008b, Hongoh et al. 2011, 

Wertz et al. 2012, Inoue et al. 2015). As with other recent studies in lower termites, this 

study corroborates that bacteria in R. flavipes guts possess a diversity of carbohydrate 

metabolism transcripts (Tartar et al. 2009, Do et al. 2014, Tokuda et al. 2014, Yuki et al. 

2015). These annotations include cellulases and hemicellulases, glycosyl transferases, 

carboxyesterases, and polysaccharide lyases and appear to be both complementary and 

redundant to those encoded by the host termite (Table 4.3). Once again, this suggests 

that bacteria of lower termites like R. flavipes play an active role in wood digestion (Do et 

al. 2014, Tokuda et al. 2014, Peterson et al. 2015 [Chapter 2], Yuki et al. 2015) and fails 

to support the idea that carbohydrate metabolism is completely restricted to flagellate 

digestive vacuoles precluding bacterial catabolism (Brune and Dietrich 2015).  

 In addition to anabolic and catabolic potential, the termite gut metatranscriptome 

is rich in bacterial transporters. These transporters, particularly ATP-binding cassette (ABC) 

transporters, shed light on a practical aspect of the termite gut symbiosis. With a total of 

787 annotated bacteria-derived transporters, including those responsible for all types of 

organic molecules and metal ions, the idea of a hypercollaborative R. flavipes gut 

environment with influx and efflux of all types of compounds between members of the 
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consortium is supported. ABC transporters have been noted as playing important roles in 

other insect-microbe relationships, particularly where metabolic partitioning is involved 

(Zientz et al. 2004, Wu et al. 2006, Snyder et al. 2010, Oakeson et al. 2014). Taken 

together, the complementary nature of the bacterial and termite contigs found in the gut 

metatranscriptome provides the foundation for a more complete view of this tripartite 

symbiosis.  

4.4.2 B. bassiana Challenge Results in Oxidative Stress 

Findings of this study indicate that, forty-eight hours post inoculation with B. bassiana 

conidia, the termite gut is experiences general oxidative stress. ROS estimation indicates 

a significant increase in pathogen challenged guts (Figure 4.4). Additionally, up-regulation 

in host antioxidant enzyme-coding genes for peroxiredoxin and GST, are corroborated at 

the protein-level with increases in GST enzyme activity (Table 4.5, Figure 4.5). One 

question this result raises is, what is the origin of the observed ROS? Presumably, any or 

all members of the consortium or the pathogen could produce free radicals. I propose, 

however, that the up-regulation of OXPHOS complexes I, III, and IV without corresponding 

up-regulation of ATP synthase may result in uncoupling-related proton leakage resulting 

in increased ROS (Kadenbach 2003). Production of ROS in response to pathogen challenge 

is a common defense strategy in eukaryotes, and coupled with more traditional immune-

associated pathways (West et al. 2011, Buchon et al. 2013), may serve as a mechanism 

for endogenous termite anti-fungal defense.  

 In line with the increased oxidative stress that was observed, many of the up-

regulated symbiont contigs are also associated with response to this type of damage. Two 

protist transcripts encoding protist signaling kinases, CAMKII and MAPK1, are up-

regulated and may be involved in triggering cascades responsible for coordinating stress 

responses like oxidative stress and pathogen challenge (Chen et al. 2009, West et al. 2011). 

Additionally, two 3’-5’exonuclease genes are also up-regulated. These genes encode 

enzymes like DNA Pol I, which is responsible for DNA repair and has been shown to be 

responsive to oxidative stress (Imlay 2013).  
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4.4.3 Amidohydrolase 2, a candidate for Symbiont-Mediated Anti-Fungal Response 

The primary aim of this project was to identify new candidate mechanisms of symbiont-

mediated anti-fungal defense. The specific hypothesis tested was that bacteria 

collaborate with the rest of the holobiont to combat invaders. An ideal candidate gene 

should be up-regulated in response to pathogen presence and its product possess 

putative functions which might contribute to defense. Following these criteria, our 

dataset contained just one candidate: amidohydrolase 2. This amidohydrolase is a 

bacterial gene up-regulated 3.4X 48-hours post-inoculation with B. bassiana. 

Amidohydrolases are a large family of diverse enzymes which are catalytically 

promiscuous (Siebert and Raushel 2005). These activities include hydrolysis, 

isomerization, and decarboxylation of diverse substrates (Siebert and Raushel 2005). 

Amidohydrolases are found across domains of life and are particularly of note in bacteria 

due to their role in antibiotic resistance (Siebert and Raushel 2005). Beta-lactamases, 

enzyme class 3.5.2.6, catalyze the deactivation of beta-lactam antibiotics like penicillin 

(Bush 1989). While B. bassiana does not produce penicillins, it is known to produce 

ooconidiain which it uses to evade insect anti-fungal defenses like prophenoloxidase (PPO) 

and antifungal peptides (Feng et al. 2015). If this amidohydrolase is capable of hydrolyzing 

the quinone ooconidiain, this could contribute significantly to defense against B. bassiana 

in the termite gut.  

 In addition to amidohydrolase, there are 15 symbiont (6 protist and 9 bacterial)  

contigs that exhibit significant fold-change in response to B. bassiana pathogen challenge. 

While these genes have no known function, the possibility that they possess important 

anti-fungal propertiescannot be excluded. Unforunatley, this possibility cannot be 

ascertained at the present time given the current information available in public 

repositories like NBCI’s RefSeq and Uniprot’s ID mapping databases. 

 Finally, there remains the possibility that key symbiont-derived enzymes 

associated with anti-fungal defense are expressed earlier or later in the infection timeline. 

I chose the 48-hour time-point based on a previous study that showed fungal pathogen-

induced changes to gene expression (Sen et al. 2015). However, that study was done with 
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a different fungus using vastly different microarray technology, and as such 48-hours 

post-inoculation may not be the optimum time-point for such observations.  

4.4.4 Conclusion 

In sum, this study represents the most complete metatranscriptome from R. flavipes to 

date, especially in regard to bacterial contributions. My findings shed light on the 

physiological collaboration in the termite gut consortium with regard to biosynthesis, 

catabolism, and transport of major organic molecules and ions. Notably, my data 

corroborate previous findings that bacteria possess the potential to play direct roles in 

nitrogen fixation, amino acid biosynthesis, and lignocellulose digestion.  

 Additionally, I propose a novel mechanism for bacterial-mediated anti-fungal 

defense by means of an amidohydrolase 2. The transcript for this gene is up-regulated 

3.4-fold 48-hours post-inoculation with B. bassiana and, based on the diversity in this 

enzyme class, may catabolize fungal metabolites which inhibit insect immune responses 

and have antibiotic activity. Coupled with previous findings of protist-derived anti-fungal 

defenses, this proposed model of antifungal defense highlights the collaborative nature 

of termite holobiont immune physiology (Figure 4.6).  
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Figure 4.1 Workflow of metatranscriptome annotation.  

Red numbers on the left of a given shape represent the number of contigs removed 
during that step and green numbers on the right of a given shape represent the number 
of contigs exiting the step. 

. 
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Figure 4.2 Quality control analyses of metatranscriptome. 

A) Cluster dendrogram based on a Pearson distribution of all contigs following 
normalization. Samples are labelled with a letter indicating their treatment (C = control, 
B = Beauveria) and colony number. B) Plot of Biological coefficient of variation vs. average 
logCPM each spot represents an individual contig. C)  Multiple dimension scaling plot 
showing distances in gene expression profiles across biological replicates and treatment 
groups. D) The correlation between logCT (CT of treatment/CT of control) vs. logFC 
(counts per million of treatment/counts per million of control), Spearman’s correlation 
coefficient rho (ρ) reported shows a strong negative correlation (p = 0.008).  
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Figure 4.3 Pie chart demonstrating taxon distribution in annotated contigs. 

Total proportions of the contigs from metatranscriptome annotated as belonging to 
each taxonomic group. Only those contigs which were RBH are included. 
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Figure 4.4 Detection of reactive oxygen species (ROS) following B. bassiana challenge. 

Bars represent measured reactive oxygen species in B. bassiana (dark bar) and no 
treatment control (light bar) termite worker guts. Error bars represent SEM.   
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Figure 4.5 Detection of glutathione S-transferase (GST) activity following B. bassiana 
challenge. 

Bars represent measured GST specific activity in B. bassiana (dark bar) and no treatment 
control (light bar) termite worker guts normalized to no-reduced glutathione blanks. 
Error bars represent SEM. 
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Figure 4.6 A proposed model of collaborative immune physiology. 

Protists, bacteria, and the termite host all contribute to neutralizing fungal invaders 
within the termite hindgut.
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Table 4.1 Summary table of custom termite consortium database. 

Database was constructed to annotate the metatranscriptome in a taxon specific manner. 
Archaeal, bacterial, and protist sequences were obtained from the NCBI RefSeq database 
and termite sequences were obtained from the Zootermopsis nevadensis official gene set 
(OGS). 

Composition of Custom Termite Consortium Database 
Group Source No. of Seqs.  

Archaea NCBI Archaea RefSeq 851,375 
Bacteria NCBI Bacteria RefSeq 44,100,533 
Protist NCBI RefSeq for Parabasalia, 

Oxymonadida, Diplomonadida, and 
Gregarinasina 

72,948 

Termite OGS for Zootermoposis nevadensis 14,610 
 Total Sequences 45,039,466 
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Table 4.2 Summary of sequencing and assembly statistics. 

A) Summary of sequencing statistics. * Indicates the library used for Trinity assembly 
which was selected because of low rRNA contamination. B) Summary of de novo Trinity 
assembly. Samples are labelled with a letter indicating their treatment (C = control, B = 
Beauveria) and colony number 

 
 

A B
Sample # Reads rRNA All No. Contigs 2,107,824

C18 97,357,292 3% N50 356
C21 96,954,778 6.30% Average Length 361

*C22 95,291,086 1.20% >500 bases No. Contigs 258,251
B18 75,834,616 21.50% N50 652
B21 83,141,808 14.90% Average Length 704
B22 58,954,982 27.30%

Sequencing Statistics Assembly Statistics
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Table 4.3 Summary of select putative bacterial and termite contig functions.  

Bacterial and termite contig putative functions based on reciprocal best hits and GO 
molecular function. * Some candidates possess multi-functional annotations. 

Functional Annotations of Contigs 

Category     Bacterial Termite 
Biosynthesis    
 Amino Acid  *143 11 

    Alanine  2 0 
    Arginine  15 0 
    Asparagine  3 1 
    Cysteine  3 0 
    Glutamine  2 1 
    Glycine  2 1 
    Histidine  28 0 
    Isoleucine  7 0 
    Leucine  6 0 
    Lysine  16 0 
    Methionine  18 3 
    Phenylalanine 2 0 
    Proline  9 1 
    Pyrrolysine  1 0 
    Serine  5 1 
    Threonine  5 0 
    Tryptophan  6 0 
    Tyrosine  3 0 
    Valine  5 0 
    Other  22 3 
 Vitamin  29 0 
    Thiamine  27 0 
    B6  2 0 
 Fatty Acid  33 12 
 Lipid  5 2 
 Cellular Structure  50 8 
    Phospholipid 16 8 

     Peptidoglycan 34 0 
Metabolism    
 Carbohydrate 276 88 

    Glycosyl Hydrolases 204 34 
    Glycosyl Transferase 67 39 
    Polysaccharide Lyase 3 7 
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Table 4.3 Continued   
    Carbohydrate Esterase 2 8 
 Chitin  2 33 
 Nitrogen  32 7 
    Amidohydrolase 14 3 
    Nitrogenase 6 0 
    Nitroreductase 9 0 
    Urease  9 0 
    Other  8 4 
 Protein  *207 *228 
    Aminopeptidases 15 9 
    Aspartic-type Peptidases 6 9 
    Carboxypeptidases 18 30 
    Cysteine-type Peptidases 12 24 
    Dipeptidase 11 12 
    Metallopeptidases 43 61 
    Serine-type Peptidases 76 81 
    Threonine-type Peptidases 1 12 

     Other Peptidases 31 19 
Transport     
 ABC Transporters 355 2 

    Amino Acid  27 0 
    Urea  4 0 
    Carbohydrate 42 0 
    Metal Ion  26 0 
    C4-dicarboxylate 5 0 
    Multidrug  13 0 
    Excinuclease 6 0 
    Other  232 2 
 Other MFS Transporters 37 11 

  Other Transporters 163 191 
Stress Regulation    

 
Antioxidant/Detoxification 
Enzymes 69 71 

    Aldo/Keto Reductase 7 1 
    Alkyl Hydroperoxide Reductase 8 0 
    Catalase  1 1 
    Cytochrome Oxidase P450s 0 31 
    Desulfoferrodoxin 4 0 
    Ferredoxin  27 0 
    Glutaredoxin 0 3 
    Glutathione Peroxidase 1 2 
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Table 4.3 continued   
    Glutathione S-Transferase 5 6 
    Peroxidase  0 6 
    Peroxidasin  0 3 
    Superoxide Dismutase 0 3 
    Thioredoxin 7 14 
    Other  9 1 
 Chaperonin  15 16 

  Other   3 4 
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Table 4.4 Summary of differentially expressed contigs. 

Differentially expressed contigs from each taxon based on RBH annotations. Significantly 
up- and down-regulated contigs from each taxon were determined at α/FDR = 0.05. 

Summary Statistics Table for Metatranscriptome RNAseq 

Taxon # ↑ No Change # ↓ 
Termite 134 9,339 258 
Protist 18 228 2 

Bacteria 10 20,852 141 
Archaea 0 174 0 

Total 162 30,593 401 
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Table 4.5 Summary of up-regulated contigs.  

Significantly up-regulated contigs at 48-hours post-inoculation with B. bassiana. 
Annotation and taxon based on RBH to the custom termite consortium database. Fold-
change represents Log2 CPM Treatment/CPM Control as calculated by edgeR. 

Up-Regulated Contigs in Response to B. bassiana Challenge 

Annotation Fold-Change Taxon 
   Amidohydrolase 2 3.43 Bacteria 
   Peroxiredoxin-mitochondrial 2.81 Termite 
   Glutathione S-transferase (GST) 5.10 Termite 
   Ferritin 2.85 Termite 
   10kDa Heat shock protein 3.40 Termite 
   Cytochrome b-c1 subunit 10  3.91 Termite 
   Cytochrome b-c1 subunit 7 3.04 Termite 
   Cytochrome b-c1 subunit 9 4.30 Termite 
   Cytochrome c 2.83 Termite 
   Cytochrome c oxidase subunit 6B 2.98 Termite 
   Cytochrome c oxidase subunit 6C 3.13 Termite 
   Cytochrome c oxidase subunit 7C 2.93 Termite 
   NADH dehydrogenase 1 alpha subunit 3.60 Termite 
   3'-5' exonuclease 2.82 Protist 
   3'-5' exonuclease/DNA Polymerase I 3.25 Protist 
   Ca2+/calmodulin dependent kinase II (CAMKII) 4.15 Protist 
   Mitogen-activated protein kinase 1 (MAPK1) 3.49 Protist 
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CHAPTER 5. CONCLUSION 

The findings presented in this dissertation represent efforts to better understand the 

extent and nature of collaborative physiological interactions between Reticulitermes 

flavipes workers and their gut symbionta. With some confidence I can say that this 

research highlights ways in which Reticulitermes termites and their symbionts interact 

that have never been previously described. Using a integrative approaches, including 

diverse laboratory techniques, and bioinformatic analyses, has allowed me to 1) quantify 

bacterial contributions en masse to termite lignocellulytic activity; 2) propose new 

gene/enzyme candidates for symbiont-mediated immunity to fungal pathogens; 3) 

develop a novel method to study prokaryotic and eukaryotic metatranscriptomes 

simultaneously, and 4) produce a bacterial transcriptome for the first time in lower 

termites. Combining the use of antimicrobial compounds, 16S sequencing, and traditional 

enzyme assays, I have shown that bacterial symbionts contribute to at least 23% of the 

efficiency in R. flavipes hindgut digestion (Chapter 2). And in light of Chapter 4, these 

contributions are likely both direct via cellulase and hemicellulase activity and indirect via 

nitrogen cycling, vitamin and amino acid biosynthesis, and shuttling of nutrients across 

the gut lumen (Figure D.1). Additionally, R. flavipes workers likely rely on their symbiota 

for pathogen defense based on data produced from bioassays, in vitro fungal germination 

assays (Chapter 3), and next-generation metatranscriptomics (Chapter 4). While the 

direct mechanisms of this protection remain to be clarified, this project puts forth two 

viable candidate mechanisms. These candidates, protist-derived glycosyl hydrolase family 

7 enzymes and a bacterial-derived amidohydrolase 2 enzyme, contribute to a new model 

of termite collaborative immunity. In this model, termites contribute endogenous anti- 
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fungal responses like hemocytes, antimicrobial peptides, and reactive oxygen species; 

bacterial symbionts contribute enzymes which may be active against fungal metabolites; 

and protist symbionts contribute enzymes which break down fungal cell walls (Figure 4.6). 

Together the data presented here support the hypothesis that R. flavipes workers and 

their symbionts collaborate physiologically to accomplish both digestion and pathogen 

defense. These results also shed light on the complexity of these interactions, and lay a 

solid the foundation for future studies of the termite holobiont as a model system for 

collaborative physiology. 
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APPENDIX A SUPPLEMENTAL INFORMATION FROM PETERSON ET AL. 2015 

 

Figure A.1 Antimicrobial treatments impact the abundance of culturable bacteria per 
termite gut in anaerobic growth conditions. Error bars represent standard error (SEM). 
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Figure A.2 A comparison of each of the dominant bacterial phyla in the termite gut (A. 
Spirochetes, B. Elusimicrobia, C. Firmicutes, and D. Bacteroidetes, E. Proteobacteria, F. 
Actinobacteria, G. Uncharacterized, and H. Archaea) which did not have significant 
fluctuations following antimicrobial treatment based on 16S rRNA gene clones (ANOVA; 
Tukey HSD). Error bars represent standard error (SEM) 
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Figure A.2 continued 
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Figure A.3 A post-hoc comparison of the ratio of the 16S rDNA amplicon normalized to a 
host single copy gene library from each treatment group.
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Figure A.4 Xylose liberation from pine sawdust in in vitro saccharification assays as 
detected by colorimetric tests. Error bars represent standard error (SEM). 
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Figure A.5 A. The extent of antimicrobial inhibition of in vitro saccharification assays at 
various concentrations. The dashed line represents 50% inhibition. B. The extent to 
which antimicrobial compounds absorb at 505nm at varying concentrations. Error bars 
represent standard error (SEM).
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Table A.1 Primer information which was utilized in this study 

Target Sequence (5'-3') Annealing (⁰C) Source Use in This Study 

Bacterial 16S  U241F CCTACGGGRSGCAGCAG 50 Wang & Qian, 2009 16S rDNA Clone Library 
Bacterial 16S U519R GWATTACCGCGGCKGCTG 50 Wang & Qian, 2009 16S rDNA Clone Library 
M13 F GTAAAACGACGGCCAG 55 Life Technologies Clone Screening/Sequencing 
M13 R CAGGAAACAGCTATGAC 55 Life Technologies Clone Screening/Sequencing 
Bacterial 16S U515F GTGTGCCAGCMGCCGCGGTAA 50 Rubin et al., 2014 16S Amplicon qPCR 
Bacterial 16S U806R GGACTACHVGGGTWTCTAAT 50 Rubin et al., 2014 16S Amplicon qPCR 
Actin 5C-1_ qPCR_F TCTGGTAGGACCACTGGTAT 50 This study Single Copy Host qPCR 
Actin 5C-1 qPCR_R GTATCCACGCTCCGTCAAA 50 This study Single Copy Host qPCR 
Calmodulin qPCR_F CAGCTGACTGAGGAACAGAT 50 This study Reference Gene Expression qPCR 
Calmodulin qPCR_R CGCCATCATTGTCAGGAAT 50 This study Reference Gene Expression qPCR 
Cell-1 qPCR_F TCACAAGCAAGCAGGCATAC 50 Zhou et al., 2007 Gene Expression qPCR 
Cell-1 qPCR_R ATGAGAGCAGAATTGGCAGC 50 Zhou et al., 2007 Gene Expression qPCR 
GHF7-3 qPCR_F TATGGTGGCGGATACTGTGA 50 Sethi et al., 2013 Gene Expression qPCR 
GHF7-3 qPCR_R ACAGCTAATGCTGCCCTGTT 50 Sethi et al., 2013 Gene Expression qPCR 
β-Glu-1 qPCR_F TGCTTCTTCATGGCTCAGAGT 50 Scharf et al., 2010 Gene Expression qPCR 
β-Glu-1 qPCR_R TGGTCTCCAGGTTGTGTATCC 50 Scharf et al., 2010 Gene Expression qPCR 
GHF-2 qPCR_F GCACAACCGCAGTTATGGTC 50 This study Gene Expression qPCR 
GHF-2 qPCR_R GCCCCAGATCGTGATGAAGA 50 This study Gene Expression qPCR 
GHF-42 qPCR_F GCTATGGGCAGACAAAGGGT 50 This study Gene Expression qPCR 
GHF-42 qPCR_R TTGTCACTGCGAAGTCCTGG 50 This study Gene Expression qPCR 
GHF-43 qPCR_F CGAGAGATTGTCGGGTGATT 50 Karl, 2014 Gene Expression qPCR 
GHF-43 qPCR_R CCAGAACCACTGAGCTCCTC 50 Karl, 2014 Gene Expression qPCR 
GHF-26 qPCR_F CACCATGCACCATCTGAAAC 50 Karl, 2014 Gene Expression qPCR 
GHF-26 qPCR_R TTGGTATCCGGGTGATGATT 50 Karl, 2014 Gene Expression qPCR 
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Table A.2 Summary of All Statistical Comparisons  

Glucose  Log10 Aerobic CFU Counts GHF-2 Gene Expression 
W= 0.2361    W= 0.2252    W= 0.0004     

Source df F ratio p-value Source df F ratio p-value Source df F ratio p-value 
Model 6 9.1067 0.0032 Model 6 14.9229 0.0006 Model 6 5.2923 0.0173 

Treatment 4 13.4973 0.0012 Treatment 4 21.6798 0.0002 Treatment 4 6.4428 0.0128 
Colony 2 0.3255 0.7313 Colony 2 0.1331 0.2990 Colony 2 2.9913 0.1072 

Xylose Log10 Anaerobic CFU Counts GHF-42 Gene Expression 
W= 0.1573    W= 0.3810    W=  0.0939   

Source df F ratio p-value Source df F ratio p-value Source df F ratio p-value 
Model 6 7.9783 0.0049 Model 6 3.8282 0.0635 Model 6 6.1231 0.0113 

Treatment 4 4.6287 0.0314 Treatment 4 5.3243 0.0355 Treatment 4 9.1033 0.0045 
Colony 2 14.6775 0.0021 Colony 2 0.5500 0.6035 Colony 2 0.1628 0.8525 

pNPC Activity GHF-1 Gene Expression   GHF-43 Gene Expression 
W= 0.0018    W= 0.0086    W=  0.0010   

Source df F ratio p-value Source df F ratio p-value Source df F ratio p-value 
Model 6 8.2893 0.0044 Model 6 1.5620 0.2729 Model 6 4.3757 0.0296 

Treatment 4 12.3531 0.0017 Treatment 4 0.5313 0.7169 Treatment 4 6.4878 0.0125 
Colony 2 0.1618 0.8533 Colony 2 3.6234 0.0758 Colony 2 0.1513 0.8620 

pNPG Activity GHF-7 Gene Expression   GHF-26 Gene Expression 
W= 0.3344    W= 0.0384    W<  0.0001   

Source df F ratio p-value Source df F ratio p-value Source df F ratio p-value 
Model 6 0.8817 0.5484 Model 6 3.7241 0.0453 Model 6 7.8054 0.0053 

Treatment 4 1.1150 0.4133 Treatment 4 5.3918 0.0210 Treatment 4 10.9802 0.0025 
Colony 2 0.4151 0.6737 Colony 2 0.3887 0.6901 Colony 2 1.4559 0.2889 

Protist Abundance GHF-9 Gene Expression   Actinobacteria 16S Clones 
W= 0.0041    W= 0.0441    W= 0.0015    

Source df F ratio p-value Source df F ratio p-value Source df F ratio p-value 
Model 6 22.4198 0.0007 Model 6 1.9950 0.1800 Model 6 1.3761 0.3291 

Treatment 4 33.5916 0.0003 Treatment 4 0.2546 0.8989 Treatment 4 2.0495 0.1800 
Colony 2 1.0060 0.4200 Colony 2 5.4758 0.0318 Colony 2 0.0294 0.9711 
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Table A.2 Summary of All Statistical Comparisons (continued)  

Archaea 16S Clones   Spirochete 16S Clones 
W< 0.0001    W< 0.0001    

Source df F ratio p-value Source df F ratio p-value 
Model 6 1.2959 0.3572 Model 6 23.0821 0.0001 

Treatment 4 1.1348 0.4056 Treatment 4 34.1231 <0.0001 
Colony 2 1.6180 0.2570 Colony 2 1.0000 0.4096 

Bacteroidetes 16S Clones   Unknown 16S Clones 
W= 0.0007    W= 0.0519    

Source df F ratio p-value Source df F ratio p-value 
Model 6 5.5127 0.0154 Model 6 0.8536 0.5644 

Treatment 4 7.5534 0.0080 Treatment 4 1.2045 0.3799 
Colony 2 1.4314 0.2942 Colony 2 0.1519 0.8615 

Elusimicrobia 16S Clones   Verrucomicrobia 16S Clones 
W= 0.0152    W< 0.0001    

Source df F ratio p-value Source df F ratio p-value 
Model 6 5.6029 0.0147 Model 6 1.0000 0.4852 

Treatment 4 7.4601 0.0083 Treatment 4 1.0000 0.4609 
Colony 2 1.8885 0.2129 Colony 2 1.0000 0.4096 

Firmicutes 16S Clones     
W= 0.7747        

Source df F ratio p-value     
Model 6 3.8836 0.0406     

Treatment 4 4.7784 0.0290     
Colony 2 2.0940 0.1856     

Proteobacteria 16S Clones     
W= 0.0172        

Source df F ratio p-value     
Model 6 1.3669 0.3322     

Treatment 4 2.0219 0.1841     
Colony 2 0.0570 0.9450     
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Table A.3 Regression Analysis of Factors Associated with Xylose Liberation Pairwise 
linear regressions between xylose liberation (X-variable) and other variables tested in 
this study (Y-Variables), with respective p-value and R2 values shown. Variables above 
the line show a significant correlation with xylose liberation. 
X-Variable Y-Variable p-Value R2 Adjusted R2 
Xylose Protist Abundance 0.0385 0.2895 0.2349 

Enzyme Activity-pNPC 0.0470 0.2702 0.2141 
Gene Expression-GHF-43 0.0729 0.2266 0.0671 
Firmicutes 0.0924 0.2025 0.1411 
Enzyme Activity-pNPG 0.1554 0.1489 0.0835 
Gene Expression-GHF-42 0.1705 0.1393 0.0731 
Log CFU-Aerobic 0.2365 0.1059 0.0371 
Log CFU-Anaerobic 0.2639 0.1119 0.0312 
Bacteroidetes 0.3382 0.0707 -0.0008 
Spirochetes 0.3426 0.0695 -0.0021 
Elusimicrobium 0.3576 0.0655 -0.0065 
Gene Expression-GHF-1 0.4037 0.0542 -0.0186 
Actinobacteria 0.5752 0.0248 -0.0502 
Gene Expression-GHF-26 0.6652 0.0149 -0.0609 
Gene Expression-GHF-7 0.7085 0.0111 -0.0650 
Proteobacteria 0.7381 0.0089 -0.0673 
Archaea 0.7667 0.0070 -0.0694 
Uncultured-Unknown 0.9004 0.0013 -0.0756 
Verrucomicrobia 0.9678 0.0001 -0.0768 
Gene Expression-GHF-2 0.9756 0.0001 -0.0768 
Gene Expression-GHF-9 0.9905 0.0000 -0.0769 
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APPENDIX B SUPPLEMENTAL INFORMATION FROM CHAPTER 3 
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Figure B.1 Quantification of culturable bacteria from whole termite guts 48-hours post-
inoculation with S. marcescens. Hashed sections of the bars represent the portion of the 
culturable community that was S. marcescens in the pathogen challenged groups, 
indicated by pink/red colored colonies. Bars with the same letter are not statistically 
different (α =0.05). Water treated, Blank treated (CC), Water treated, Pathogen 
challenged (CP), Antibiotic treated, Blank treated (AC), and Antibiotic treated, Pathogen 
challenged (AP). 
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Figure B.2 Protein profiles following pathogen challenge 
4-20% gradient SDS-PAGE gels of 20µg of carcass total protein per lane stained with 
Coomassie following A) B. bassiana and B) S. marcescens. Numbers indicate colony 
number of the biological rep. Within each biological rep the samples are arranged CC, 
CP, AC, AP.  
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Figure B.3 A) GHF7-5 and B) GHF7-6 activity on various substrates across a concentration 
range from 0-1.25%.  Endpoint absorbance was measured at 540nm following reaction 
with DNSA stop solution.  
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Table B.1 Primers used in Chapter 3. Many were adapted from Hussain et al. 2013  

Primers used in Chapter 3 

Primer Name Sequence (5'-3') Use 
14-3-3_F GCGGCAGTTATTGAAAAGGA qPCR 
14-3-3_R GCGATAGTAATCGGCCTTCA qPCR 
AEP_F GTGGCCTCGTAATGGTGAAC qPCR 
AEP_R CGGGTACTTGGACACGTCTT qPCR 
CalpainB_F GACCGAGTGCTGACAAAACA qPCR 
CalpainB_R CTTTTGTACGTGTGCCATCG qPCR 
CathepsinO_F AAATCCAAAAGATGGGCAAC qPCR 
CathepsinO_R AGAGCTCTCCTCCAGGAACA qPCR 
Ferritin2_F TGAGGAGTGTTCGTGGTGAG qPCR 
Ferritin2_R GGCATCAATCGCTCCATATT qPCR 
GNBP1_F AGATCGGGCGAATAACTCCT qPCR 
GNBP1_R TTTGCCTCCTGGATTCTCTG qPCR 
GNBP2_F ATGCGGTCTCTTGCGATACT qPCR 
GNBP2_R TTCCCAGTTACCACCTCCTG qPCR 
Hex2_F ACGGAAGACGTTGGACTCAG qPCR 
Hex2_R GAGGACCTGCTGGATCTTGT qPCR 
HSP90_F CAATTGCTCGATCAGGAACA qPCR 
HSP90_R TTTTCCCTGCTTCACTTTCC qPCR 
Lyso_F AAGCGATGGACGTGAGAAAT qPCR 
Lyso_R CGTTTATTGCGTCGGTTTTT qPCR 
Lyso-P_F CTGTTTCTTGGTCATTGTG qPCR 
Lyso-P_R ATATCTGTCGTTTATCTG qPCR 
MCP_F TCAACACTCCACGCAAGAAG qPCR 
MCP_R ACAGACCGTCCAACAGGAAG qPCR 
Termicin_F CTGGTCGTAGTGTGCGTGTT qPCR 
Termicin_R TGTGCGTACGGTCATCATCT qPCR 
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APPENDIX C SUPPLEMENTAL INFORMATION FROM CHAPTER 4 

Table C.1 Custon ribo-depletion primers developed in conjunction with NuGen to 

deplete the anticipated eukaryotic members of the termite holobiont and the fungal 

pathogen in treatment samples.  

Primer Name Primer Sequence 
>1_EF363230|_0 ATGCATGTCTCAGTGCAAGC 
>2_EF363230|_70 TGGTTCCTTAGATGGTGGACA 
>3_EF363230|_140 GACGGAAGGGACGCTTTTAT 
>4_EF363230|_210 GTTTGCCTTGGTGACTCTGAA 
>5_EF363230|_280 CTGTCGATGGTAGGCTCTGC 
>7_EF363230|_420 ACGGGGAGGTAGTGACGAA 
>8_EF363230|_490 ATCCATTGGAGGGCAAGTCT 
>9_EF363230|_560 AAGCTGTTGCGGTTAAAAAGC 
>10_EF363230|_630 CCCGTCGGTGTTTAACTGG 
>11_EF363230|_700 AGCGGTAACGTTCTCACACC 
>12_EF363230|_770 CCGGCACGTTTACTTTGAAC 
>13_EF363230|_840 TGAATACCGAGTGCATGGAA 
>14_EF363230|_910 TCCCCGAGGTAATGATCAAA 
>15_EF363230|_980 CGAAAGCATTTGCCAAGAAT 
>16_EF363230|_1050 TTCGAAGGCGATCAGATACC 
>17_EF363230|_1120 CCGAAGTTCCTCCGATGAC 
>19_EF363230|_1260 CTCAACACGGGAAACCTCAC 
>20_EF363230|_1330 GTGGAGCGATTTGTCTGGTT 
>21_EF363230|_1400 AGTCGCATCCGGTATCCTTT 
>22_EF363230|_1470 CTTCTAGCCGCACGAGATTG 
>23_EF363230|_1540 CTGAAGGAATCAGCGTGTCC 
>24_EF363230|_1610 TGAACCTCCTTCGTGCTAGG 
>26_EF363230|_1750 CTTCGATTCCACTGGGAAGA 
>28_AB032204|_0 GCCATGCAAGTGCTAGTTCA 
>29_AB032204|_70 ACACGCTCAGAACCCATTTG 
>30_AB032204|_140 GACATGACCTTATAGGCGTACCA 
>31_AB032204|_210 TGTAGGCTATCACGGGTAACG 
>33_AB032204|_350 CAAGATCGGCGGATAGGTT 
>35_AB032204|_490 GCTAATCGCGTTCCAATGTT 
>36_AB032204|_560 CTGAATGACTCAGCACGGTATG 
>38_AB032204|_700 GGATGCGAAAGCGTTTACCT 
>39_AB032204|_770 GACGGAGCGTTGTGCTATTG 
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>40_AB032204|_840 AGGCCTATTGGGGAACTACG 
>41_AB032204|_910 TCAACGCGGAGAAACTTACC 
>42_AB032204|_980 TGACTGACCGGCTAAAGACC 
>43_AB032204|_1050 GGTGATTCGTGAAGCGATTT 
>45_AB032204|_1190 GCTGCACGCGTTCTACAAT 
>46_AB032204|_1260 CCTGAGAGGGTTTGCTACTCC 
>47_AB032204|_1330 TCCCTTGTAAGCGTACGTCAA 
>49_AB032205|_70 ACCCGCAAGGGTACTAAAGG 
>50_AB032205|_140 GTTAAGGTGAGGACGTGACCA 
>51_AB032205|_210 CCTATCAGCTTGTCCGCAGT 
>52_AB032205|_280 TGAGAGACAGCGGCTATTCC 
>53_AB032205|_350 CAACGAAGGAGGTGGTAACG 
>54_AB032205|_420 TGTGGGGTAACCTAGGAGAGG 
>55_AB032205|_490 AAGCTCGGATAGAGCGTTCA 
>56_AB032205|_560 CGTGACCAAATCAGAATGCTT 
>57_AB032205|_630 TCAGATCAAAGAGAGCCATCG 
>58_AB032205|_700 GAAACGAATGCGAAAGCATC 
>59_AB032205|_770 GGGTAGTTGCGGCCTTAAAC 
>60_AB032205|_840 AGCGAAAGCTTGAGTCGTTG 
>62_AB032205|_980 TGATTTTTGGTGGTGCATGG 
>63_AB032205|_1050 CGTGGATTGATCTGTCATGC 
>64_AB032205|_1120 GTTTAAGCAGGCGGAAGAGG 
>66_AB032205|_1260 AGCGTAGTTGGGATTGACGA 
>67_AB032205|_1330 CAACATTGCGCGTTGAATAC 
>68_AB032206.1|_0 AAGGAAGCACACTTCGGTCA 
>69_AB032206.1|_70 TGGTTTTAAATGGATAGCAGAGGT 
>70_AB032206.1|_140 ATGCGATTGTTTCTCCAGAAGT 
>72_AB032206.1|_280 CCATATCTACGGGTAGCAGCA 
>73_AB032206.1|_350 TCGGAGGAGGTAATGACCAG 
>74_AB032206.1|_420 CGTCGTGAAATCTAGCAGAGG 
>75_AB032206.1|_490 AACGCCCGTAGTCTGAACTG 
>76_AB032206.1|_560 TCCATTCGTTCACTGCGAAT 
>77_AB032206.1|_630 TGAGAATCATCGGGGGTAGA 
>79_AB032206.1|_770 GATCAAGGGCGAGAGTAGGAG 
>80_AB032206.1|_840 CAAAATAGCAGTTTCGCAGGA 
>81_AB032206.1|_910 TTGAAGGAATTGACGGAAGG 
>83_AB032206.1|_1050 GGTTGACCTGTCTAGCGTTGA 
>84_AB032206.1|_1190 TCCGTGATGTCCTTTAGATGC 
>85_AB032206.1|_1260 CGACAGGGCACGCTACTCT 
>86_AB032206.1|_1330 CCAGGAATCCCTTGTAAATGTG 
>88_AY137594|_70 ACCGTCCATGCATGCTTTA 
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>90_AY137594|_210 CAGGGTTCGATACCGGAGAG 
>91_AY137594|_280 ATGAGAAATGGCGACCATCA 
>92_AY137594|_350 CTTCGGTTCGACAATTGGAA 
>95_AY137594|_560 TCGGTTGAGGGTTGATTCAT 
>98_AY137594|_770 TCGCAGCTGAACACATTAGC 
>99_AY137594|_840 TGTAGTTTCCCGGCTTTGTC 
>101_AY137594|_980 GACTGTCGGGGGCATTAGTAT 
>104_AY137594|_1190 GCGTTAAGTTTTCGGGTTCA 
>107_AY137594|_1400 TGGTGCATGGTCGTTCTTAGT 
>108_AY137594|_1470 AAAGTGTTGTGGCATGGTCA 
>112_AY137594|_1750 TTACGTCCCTGCCCTTTGTA 
>114_AY137592|_0 GTGCGTAAAAGCCTGACTGC 
>115_AY137592|_70 GGAAGGGCCGTGTTTATTAGA 
>116_AY137592|_140 AATCGTCGTATCGACCTTGTG 
>120_AY137592|_420 CCGCGGTAATTCCAGCTCTA 
>122_AY137592|_560 CTCATTGGCGCTGAGATTG 
>123_AY137592|_630 TGGTCCACTTTGGTGTGGTT 
>125_AY137592|_770 GGACATCAGTGGGGTACTCG 
>126_AY137592|_840 GATGGCAGCTTGTTTGGTG 
>127_AY137592|_910 ATGCATCCGTTTTGTTGGTT 
>130_AY137592|_1120 GGATTGGGGGTTGACCTTTA 
>139_AY137592|_1750 CGCTCCTACCGATGAATGAT 
>148_AY137593|_490 ATGGAGCTTTTCGTCCCTGT 
>149_AY137593|_560 TTTTTCGTCGTGGGTTGATT 
>153_AY137593|_840 TCTTTGTTGGGCAGGTTGTT 
>160_AY137593|_1330 GTTCGGACACGGTGAGGAT 
>162_AY137593|_1470 GGGGTGGTTACCGTTCCTTA 
>163_AY137593|_1540 GGGGGAAGTGAGGCAATAAC 
>164_AY137593|_1610 GTTTGTCCTGGCTTGGAAGA 
>165_AY137593|_1680 GTGAACGCGGAATATCTCGTA 
>167_AY137593|_1820 CCGCGACAAAAGAGCAGTA 
>168_AY137595|_0 CGCAAACGCCCTACTATGTG 
>170_AY137595|_140 TCGTATCGACTTTTGTCGATTTT 
>171_AY137595|_210 CCTGACGTTAAGGTCGTGTCTT 
>172_AY137595|_280 GGCCACAATTGCTAAGGTGA 
>176_AY137595|_560 GGGTTTGCTGTCTGGATGTC 
>180_AY137595|_840 AGCTCGAAAGGGTTAATTGGTT 
>181_AY137595|_910 CGGGAGGAGAGGGGTAGAT 
>183_AY137595|_1050 TGCGAAAGCATTCTTCAAGG 
>185_AY137595|_1190 TTGGGGGTTGACTCAAATACA 
>191_AY137595|_1610 TGAACCGCACGCGTACTACT 
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>192_AY137595|_1680 CTGGGGATCGGTTTTTGTAAT 
>195_AF244903|_0 CCTGGTTGATCCTGCCAGT 
>197_AF244903|_140 ACATGCGCAAAATCCTGACT 
>198_AF244903|_210 GTCCTGCACCTTGGTGATTC 
>201_AF244903|_420 CCAACACACTGGGGAGGTAG 
>202_AF244903|_490 TGTAATTGGAATGGTCCGAACT 
>204_AF244903|_630 CCAGGGGACGGATATTTCTC 
>205_AF244903|_700 GGATTCGGAGCCTTTACTTTG 
>207_AF244903|_840 GCATTTGTATTGCGTCGTCA 
>210_AF244903|_1050 CAAACGACCCTTTCAGCACT 
>214_AF244903|_1330 CGAGACCTCAGCCTGCTAAC 
>215_AF244903|_1400 TGGTGGAAGTTTGAGGCAAT 
>219_AF244903|_1680 GTGGTTTGGTGGGAAGAACA 
>220_AF244903|_1750 CCGTAGGTGAACCTGCAGAA 
>224_AF244904|_210 ACGCGTCCTTTGGTGATTC 
>225_AF244904|_280 GGCTTGCCTTCGATGTATCA 
>226_AF244904|_350 TTTTGACGGGTAACGGAGAA 
>230_AF244904|_630 GGAGTTATGCTGCGGTCATT 
>233_AF244904|_840 TTTTGTTGGTTTTCGAGACGA 
>242_AF244904|_1470 CCGTCAACAAGCTCATCCTG 
>245_AF244904|_1680 TCCGATGAAATGCTTGGACT 
>249_AF244905|_140 CGGTGTAGTCGGCGCTTA 
>250_AF244905|_210 CCGCAAGGTTTCAGATTTGT 
>251_AF244905|_280 CTCGTATCTCGGCGATTCAT 
>254_AF244905|_490 CATGGCTTGTAATTGGAATGG 
>256_AF244905|_630 CGTAGTTGGATTTCGGAGGA 
>257_AF244905|_700 CTGAGTGGGGGTAGGGATTT 
>258_AF244905|_770 AAGCAGGCTTAACGCACCT 
>259_AF244905|_840 TTGTTGGTTTATAGGATTGGTCGT 
>262_AF244905|_1050 GGGATCGGAGGGTGTTAAAT 
>267_AF244905|_1400 ACATGGGGGAAGTTCTAGGC 
>268_AF244905|_1470 TGATGCCCTTAGATGTTCTGG 
>269_AF244905|_1540 TCGTTATCGTGATGGGGATT 
>272_AF244905|_1750 GGTTGTGATCGGATGAGAAGA 
>273_AF244906|_0 TGACACTGCGAAAAGCTCCT 
>274_AF244906|_140 CGAAAACCAGCGCTCTATGT 
>275_AF244906|_210 CTCGGTCGATTTTTCATTCAA 
>281_AF244906|_630 TTGATACGGGTTTGCTGGTC 
>282_AF244906|_700 CAGGGATTGCTTCGTCAATTA 
>283_AF244906|_770 GGTCCGGAAGGTTTACTTTGA 
>285_AF244906|_910 TCCTGTCGAGTGTTGGCTATC 
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>286_AF244906|_980 TTGCAGGGAGACAGGAATGT 
>288_AF244906|_1120 CGTTTATCATGGGCGTTTTC 
>294_AF244906|_1540 CGAAAGTGTCGTGGTGTTTTT 
>296_AF244906|_1680 CGCCTCAATGAGTTTGTGGT 
>298_AF244906|_1820 GTCCCTGCCCTTGTACACAC 
>299_AF244906|_1890 CAGGTGAAATGCTCGGATAGA 
>300_AF244906|_1960 GGAAGGAGAAGTCGTAACAAGGT 
>301_AF280633|_0 TACAGCGAAACTGCGAATGG 
>302_AF280633|_70 TGGATAACCGTGGTAATTCTAGAGC 
>303_AF280633|_140 CGACTTCGGAAGGGAGGTAT 
>305_AF280633|_280 GGTATTGGCCAAACATGGTC 
>306_AF280633|_350 TACATCCAAGGAAGGCAGCA 
>307_AF280633|_420 AGGGCTCTTTTGGGTCTTGT 
>310_AF280633|_630 CCTTTCCCTCTGTGGAACCT 
>311_AF280633|_700 TGCTCGAATACATTAGCATGGA 
>312_AF280633|_770 TTTCTAGGACCGCCGTAATG 
>315_AF280633|_980 TCGGCACCTTACGAGAAATC 
>317_AF280633|_1120 GCAGTAGCTCTGCTCCCAAA 
>318_AF280633|_1190 GGCGAACCAAAGTGCTAGTCT 
>319_AF280633|_1260 TTCTAAAACCAGTGTCACCAAGC 
>320_AF280633|_1330 ACGGGGAAGGTTCAGAGACT 
>321_AF280633|_1400 GCTCGCTCACACACTGCTTA 
>322_AF280633|_1470 CGGATTGGCAAGCTCAAATA 
>325_AF280633|_1680 GCCTGTATTGCTTTGGCAGT 
>327_AF280633|_1820 ATCTTGTGAAACTCCGTCGTG 
>328_AF280633|_1890 CAAGTCATCAGCTTGCGTTG 
>329_AF280633|_1960 ACCGATTGAATGGCTCAGTG 
>330_AF280633|_2030 CCGGAAAGCTCTCCAAACTC 
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Table  C.2  Primers used in this study for qPCR validation. Primers were designed using 

Primer3 program (http://frodo.wi.mit.edu/) or were adapted from previous studies. 

  

Primers used in Chapter 4 

Primer Name Sequence (5'-3') Use 
14-3-3-F GCGGCAGTTATTGAAAAGGA qPCR 
14-3-3-R GCGATAGTAATCGGCCTTCA qPCR 
Actin 5C-1- F TCTGGTAGGACCACTGGTAT qPCR 
Actin 5C-1-R GTATCCACGCTCCGTCAAA qPCR 
Aldo-keto reductase-F TGCTAGTCGTTCAGCATCCA qPCR 
Aldo-keto reductase-R GAATTAAGCAGGCCCAGACA qPCR 
Amidohydrolase 2-F GGTCGGGCTTAATTGTGAGA qPCR 
Amidohydrolase 2-R CAGAGAACAAACACGGCAAA qPCR 
Calmodulin-F CAGCTGACTGAGGAACAGAT qPCR 
Calmodulin-R CGCCATCATTGTCAGGAAT qPCR 
CalpainB-F GACCGAGTGCTGACAAAACA qPCR 
CalpainB-R CTTTTGTACGTGTGCCATCG qPCR 
Cell-1 qPCR-F TCACAAGCAAGCAGGCATAC qPCR 
Cell-1 qPCR-R ATGAGAGCAGAATTGGCAGC qPCR 
Cytochrome p450 9e2-F TGTCCACATAACGGCACAGT qPCR 
Cytochrome p450 9e2-R TCTGTGCTTTGCCTCACATC qPCR 
Ferritin2-F TGAGGAGTGTTCGTGGTGAG qPCR 
Ferritin2-R GGCATCAATCGCTCCATATT qPCR 
GHF-2 qPCR-F GCACAACCGCAGTTATGGTC qPCR 
GHF-2 qPCR-R GCCCCAGATCGTGATGAAGA qPCR 
Hypoxia Up-regulated-F ATGTTTTGGTGAGGCAGACC qPCR 
Hypoxia Up-regulated-R CACTGGGCACTAAAGCAGGT qPCR 
Nitroreductase-F GCTCTCGTTCCTGCGTTATC qPCR 
Nitroreductase-R GGATTTAGGATTGGGCAACA qPCR 
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APPENDIX D SUPPLEMENT SUMMARY MODEL 

 
 

Figure D.1 Model of nutrition/digestion collaborations in the lower termite hindgut. 
Functions ascribed to ‘protists’ and/or ‘bacteria’ are non-specific and may be applied to 
any number of species within the gut, for the sake of simplicity these broad categories 
are used in the model. 
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