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ABSTRACT

Peters, Jeffrey C. PhD, Purdue University, May 2016. Electric Power and the Global
Economy: Advances in Database Construction and Sector Representation. Major
Professor: Thomas W. Hertel.

The electricity sector plays a crucial role in the global economy. The sector is

a major consumer of fossil fuel resources, producer of greenhouse gas emissions,

and an important indicator and correlate of economic development. As such,

the sector is a primary target for policy-makers seeking to address these issues.

The sector is also experiencing rapid technological change in generation (e.g.

renewables), primary inputs (e.g. horizontal drilling and hydraulic fracturing),

and end-use efficiency. This dissertation seeks to further our understanding of the

role of the electricity sector as part of the dynamic global energy-economy, which

requires significant research advances in both database construction and modeling

techniques. Chapter 2 identifies useful engineering-level data and presents a novel

matrix balancing method for integrating these data in global economic databases.

Chapter 3 demonstrates the relationship between matrix balancing method and

modeling results, and Chapter 4 presents the full construction methodology for

GTAP-Power, the foremost, publicly-available global computable general equilibrium

database. Chapter 5 presents an electricity-detailed computational equilibrium model

that explicitly and endogenously captures capacity utilization, capacity expansion,

and their interdependency – important aspects of technological substitution in the

electricity sector. The individual, but interrelated, research contributions to database

construction and electricity modeling in computational equilibrium are placed in the

context of analyzing the US EPA Clean Power Plan (CPP) CO2 target of 32 percent

reduction of CO2 emissions in the US electricity sector from a 2005 baseline by 2030.
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Assuming current fuel prices, the model predicts an almost 28 percent CO2 reduction

without further policy intervention. Next, a carbon tax and investment subsidies

for renewable technologies to meet the CPP full targets are imposed and compared

(Chapter 6). The carbon tax achieves the target via both utilization and expansion,

while the renewable investment subsidies lead to over-expansion and compromises

some of the possibilities via utilization. In doing so, this dissertation furthers our

understanding of the role of the electricity sector as part of the dynamic global

energy-economy.
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CHAPTER 1. INTRODUCTION

The electricity sector is crucial to the global economy. Electricity production and

consumption have been identified as important indicators and correlates of economic

development. Payne (2010) provides a comprehensive survey of research in individual

countries related to the causality between electricity production and economic growth.

The electricity sector is also a major consumer of fossil fuels. In fact, national

electricity sectors are major drivers of energy exports for some resource-intensive

countries (especially natural gas and coal exporters). The electricity sector also

accounts for roughly 40% of greenhouse gas (GHG) emissions in the United States

and 30% worldwide. It is no surprise then, that many countries have targeted the

electricity sector with policies meant to achieve both economic growth and GHG

mitigation targets. The sector is also experiencing rapid technological change in

generation technologies (e.g. advances in renewable energy), energy inputs (e.g.

horizontal drilling and hydraulic fracturing of shale deposits), and end-use efficiency.

Many important questions in global economic analysis revolve around the electricity

sector. How can we answer electricity-related questions when the surrounding

technology and economy are evolving at such a rapid pace? The specific question

investigated here is: how does the electricity sector respond to a carbon tax versus

regulation? A tax is known to be economically efficient, but political intractability

has instead led to alternative strategies (e.g. the Clean Power Plan). What does this

mean for the electricity sector? This is just one of the many possible applications of

the body of work presented here.
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1.1 Electric Power and the Global Economy

Electricity production and consumption have been linked as important indicators

and correlates of economic development. In a survey of over 100 countries representing

99% of the global economy, Ferguson et al. (2000) conclude that as a country’s wealth

increases, the proportion of electricity use to total energy use increases as well. They

also show that there is a stronger correlation between electricity use and wealth than

between total energy use and wealth. Beyond correlation, Payne (2010) provides

a comprehensive survey of research in individual countries related to the causality

between electricity and economic growth. Apergis and Payne (2011) show that for

low-income countries there is a unidirectional correlation from electricity production

to economic growth and a bidirectional causality in higher income countries. Because

of the evidence supporting this link, electricity production, sources, and access are

used as economic and environmental indicators by the World Bank (2012).

Most of the electricity growth internationally has come from developing countries.

The International Energy Agency (IEA) estimates that electricity output has

increased 81% worldwide from 1990 to 2010, and growth was higher in non-OECD

countries compared to OECD countries, 152% and 42% respectively (IEA, 2011) (see

Figure 1.1). Rapid electricity growth in developing countries increasingly relies on

coal, while natural gas has increased in industrialized countries as a result of fuel

switching efforts (Quadrelli and Peterson, 2007). In the United States, fuel switching

to gas has been driven to a large extent by falling domestic gas prices. In light of

the wide range of electricity generating technologies available, these trends are likely

driven by cost and policy considerations (i.e. relatively low costs of these fuels as

compared to other types of generation).

While electricity itself is largely produced and consumed domestically, the fuel

inputs (e.g. oil, coal, gas) are increasingly traded internationally (See Figure 1.2).

Petroleum only accounts for a small share of electricity generating fuels but is the

foremost traded commodity globally in US$ (United Nations, 2012). ‘Hard’ coal

accounts for about 40% of global electricity production and is increasingly being
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Figure 1.1.: Growth in electricity consumption worldwide. The circle diameter is
based on absolute growth, and color intensity is based on percentage growth. Source:
EIA (2015)

traded internationally (Haftendorn and Holz, 2010; United Nations, 2012). Also,

recent developments in shale oil and gas extraction have instigated serious discussions

around the world centered on expanding global trade and the resulting implications

for economic growth, GHG policy, and energy security (Egging et al., 2008; Paltsev

et al., 2005).

Environmental policies in the electricity sector and technological improvements

in energy production may result in changes in global electricity fuel trade. Many

developed countries have taken a stance against high carbon emitting (namely

coal-fired) generation or for renewable generation technologies. McCollum et al.

(2014) show that climate mitigation policies may impact fossil-fuel consumption,

trade, and prices over time. For example, despite having the largest share (28%)

of global coal reserves (EIA, 2015), the United States recently reduced the ceiling

on allowable carbon emissions of new power plants (Obama, 2013; EPA, 2015),

effectively ensuring no new coal plants are constructed unless currently uneconomic

carbon capture and sequestration measures are implemented. Thus, the inescapable
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Figure 1.2.: Global trade in energy products have been growing at a faster rate as
compared to non-energy products (in US$ relative to 1995 baseline). Source: GTAPv8
(Aguiar et al., 2012)

question is: where will all the US coal go and what will happen to the stranded

assets? In the United States, horizontal drilling and hydraulic fracturing has expanded

technically recoverable energy reserves (i.e. oil and gas). This technological shock

allowed the United States to surpass Russia as the world’s top gas producer and is

projected to be the top oil producer by 2020 (IEA, 2011). With US natural gas

prices roughly one-third that of world prices, exports appear opportune (Levi, 2012).

The inescapable question here is: how will the trade of these fuels shift electricity

production in the United States and around the world? These questions are not

limited to the United States; many other countries are facing domestic environmental

policies and shale oil and gas opportunities (Kuuskraa et al., 2013).

A significant shift in global trade of electricity fuels may have sweeping

implications concerning global carbon emissions. This requires investigating two

important economic margins of adjustment: bilateral sourcing of traded goods and

substitutability amongst energy inputs to electricity generation. First, disparate

regional allocations, technologies, and prices have an impact on climate mitigation

(Peters and Hertwich, 2008; Chen, 2009; Bushnell and Chen, 2009) when considering

cross border trade. It is necessary to analyze domestic production along with sources
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of imports and exports to capture such global implications. Second, ignoring several

operational considerations, electricity can be considered a homogeneous output with

various heterogeneous input technologies. Substituting fuels requires both economic

incentives and physical potential, which are dependent on the characteristics of the

technologies and operation in the electric power sector (Delarue and D’haeseleer,

2008). In the context of carbon mitigation, emissions from electricity production can

be reduced by decreasing output, increasing carbon efficiency of existing electric power

technologies, and/or substituting fuels to production (Soytas et al., 2007; Haszeldine,

2009).

This dissertation aims to further our understanding of the electricity sector as

part of the global economic landscape. The remainder of this chapter reviews relevant

literature and existing methodologies and then proposes specific research advances to

meet this aim.

1.2 Review of Relevant Literature and Models

Innumerable studies attempt to shed light on the impact of economic shocks on

the electricity sector. The bulk of attention in this particular review is placed on

methodologies which have a detailed representation or focus on electricity as well

as regional-global linkages. Even this subset of the relevant research entails a very

extensive literature. Models which have received recent attention in the context

of the research objectives of this study include: “bottom-up”, input–output, and

computable general equilibrium (CGE) models. The remainder of this section is

devoted to describing the structure, relevant research, advantages, and limitations

of each approach. It is easily seen in this review that climate change and carbon

mitigation are the primary foci for researchers studying global impacts of electricity

trade and policy.
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1.2.1 “Bottom-Up” Versus “Top-Down” Models

The distinction between “bottom-up” and “top-down” models is best described

by visualizing a hierarchy of the economy with the macro-economy at the top and

individual decision makers (e.g. agents, firms) near the bottom (see Figure 1.3).

Similarly, Hourcade et al. (2006) describe an “ideal” energy-economic model as having

the following three characteristics: i) technological explicitness, ii) macroeconomic

completeness, and iii) microeconomic realism (Hourcade et al., 2006, Figure 1).

Bottom-up models have the first two characteristics by pursuing detail at the

technology level and building up to analyze the macroeconomic impacts. Top-down

models have the latter two characteristics by starting with the macro-economy

and economically-consistent linkages between aggregate economic agents to analyze

impacts on the various sub-sectors (e.g. electric power).

Bottom-up models, also termed engineering (partial equilibrium) models, use a

wide array of information, technological parameters, and discrete decision-making to

explicitly represent both the demand and supply patterns in a particular sector. Such

detail for electricity includes, but is not limited to the following dimensions of electric

power supply and demand:

• electric appliance-level (e.g. refrigerator, air conditioning, electric vehicle)

consumption specifications,

• time-of-use (e.g. night/day, seasonal) changes in demand load patterns,

• dynamic capacity, technical, and resource availability constraints in supply load

patterns,

• base, peak, and intermediate power profiles,

• transmission and distribution costs and power losses, and

• cost and technology paths for existing and new technologies which reflect

learning, location, specific regulations/policy, and other information (Neij, 2008;

Lanz and Rausch, 2011).
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All of the above factors influence the selection of inputs and technologies used for

the ultimate production of electricity. The optimal selection is based on some given

objective (e.g. cost minimizing, welfare maximizing). This type of activity-based

analysis contrasts with the more aggregated production functions utilized in the

top-down models. In top-down models, the aggregate implications of cost-minimizing

behavior are summarized based on cost shares and elasticities of substitution amongst

inputs or aggregate technologies.

There are two basic types of bottom-up models: optimization and simulation.

Optimization models attempt to uncover the least cost or maximum surplus path of

producing electricity in a partial equilibrium framework (i.e. given exogenous input

prices). The MARKAL model offers a representative example of these models (Loulou

et al., 2004). Alternatively, simulation models attempt to capture the behavior of

individual economic agents (e.g. consumers, firms) involved in production explicitly

and may, or may not strictly follow specific economic assumptions (e.g. profit

maximization). In any case, they do not aim to maximize aggregate economic surplus

in the same way as do the optimization models. Examples include models which aim

for behavioral realism (Jaccard et al., 1996) and models which connect disparate

engineering-type systems via market mechanisms (Hodge et al., 2011).

Bottom-up models provide a great deal of sector-specific information, which

make them a powerful tool in modeling the electric power sector. However, they

typically have limited ability to capture economy-wide interactions, notably the lack

of endogenous price effects. Further, the models are often not linked to global trade,

which has been cited as an important aspect in analyzing economic shocks related

directly or indirectly (via energy inputs) to the electric power sector and the impact

of electricity production (e.g. CO2 emissions). For instance, Bataille et al. (2006)

highlights the importance of endogenous price feedbacks from market equilibrium

which may be ignored in strictly bottom-up models. Also, Chen (2009) and Bushnell

and Chen (2009) use a simulation model to show emission leakage across borders

in the context of carbon trading schemes. While bottom-up models may capture
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some trade pattern-related issues, other sectors which consume the energy inputs and

electricity are largely not considered and bilateral sourcing ignored, limiting the ability

to determine several economy-wide impacts. As trade in electricity fuels increases,

these effects may become increasingly relevant.

Top-down models incorporate regional differences and trade effects in determining

the impact of economic shocks in the electricity and energy sectors, sacrificing

operational detail for intersectoral, interregional, and economy-wide consistency.

1.2.2 Input–Output

Input–output (I–O) analysis is widely used to analyze inter-sectoral interactions.

They typically have limited economic detail (e.g. fixed input–output coefficients,

exogenous input prices, unlimited factor supply); however, they can provide a rich

description of how different sectors of the global economy are interrelated. Peters

and Hertwich (2008) use the Global Trade Analysis Project (GTAP) database for

87 countries and 57 industries to drive a multi-regional input–output table (MRIO).

They use this to conclude that emissions involved in trade have significant implications

in participation and effectiveness of global climate policies due to different regional

trade and emission impacts from specific policy designs. Yunfeng and Laike (2010)

explore CO2 emission leakage in China using I–O analysis and conclude that developed

countries transferred a large amount of pollution by offshoring manufacturing and

other carbon-intense industries to China. Although the study does not specifically

focus on electricity, they claim that every unit of energy used in China results in

more CO2 emissions than in developed countries because of coal-intensive electricity

generation (≈ 80% of total production). Weisser (2007) investigates electric power

specifically using life-cycle assessment, a variant of I–O which attempts to capture

GHG emissions over the production supply chain (resource exploration to electric

power production to waste management). Significant emissions (e.g. up to 25%) up-

and downstream of domestic electric power production process may occur outside of



10

legislative boundaries, offsetting policy effectiveness. These three studies show the

importance and effectiveness of MRIO analysis in regional boundary considerations

by capturing the electric power supply chain and offshoring of energy-intense industry.

I–O does a good job of capturing intersectoral and interregional characteristics of

the global economy in terms of quantities. In fact, West (1995) describes I–O models

as “bread and butter” models for regional economic impact analysis. However, I–O

models also have significant limitations in the case of electricity production and global

fuel trade including the use of linear functions and exclusion of price effects (similar

to bottom-up models). Various extensions of MRIO models overcome some, but not

all, of these limitations (e.g. full price effects). These limitations are significant in the

electric power sector, due to the extent of energy use and substitutability of energy

inputs.

1.2.3 Computable General Equilibrium (CGE)

Limitations of bottom-up and I–O models point to CGE models to include a

detailed representation of electricity with regional-global linkages. CGE models

determine both price and quantity changes endogenously in the wake of a given

exogenous shock to the global economy. They are built on I–O databases and therefore

capture intersectoral and interregional linkages; however, unlike I–O models, supply

and demand are equated through a market clearance condition. Production can be

characterized in a multitude of ways including nested Cobb-Douglas, CES, or Leontief

functions (as opposed to only Leontief-type in I–O) which can add sector-specific

details such as substitutability of inputs (West, 1995). CGE also allows for full

price effects (e.g. exogenously determined input prices) whereas bottom-up and

I–O typically assume prices are exogenous. Hazilla and Kopp (1990) and Bergman

(1991) conclude general equilibrium impacts, such as input prices, output prices,

and allocation of resources in the economy, can be “significant and pervasive” in the

context of environmental policy – a highly relevant finding in light of the theme of this
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dissertation. Substitutability of inputs, unique production structures, and strength

in capturing global trade patterns highlight CGE as an ideal foundation for many

applications related to global impacts focusing on the electricity sector.

However, DeCanio (2003) offers sobering critiques of CGE models used in climate

change analysis (although debate remains in regard to the gravity of these concerns

(Rutherford, 2005; Koomey, 2005)). First, CGE models require many parameters

and data (e.g. elasticities, value shares) which are difficult to estimate beyond

“best guesses” of experts. Many researchers question the reliability of CGE models

because of their sensitivity to these parameters. Second, CGE models are rarely

validated against past experience, leading many researchers to perceive these as

merely illustrative and not predictive tools. Beckman et al. (2011) compare historical

and GTAP-E (an energy-environmental CGE model) based predictions of petroleum

price distributions and conclude that the original, not econometrically estimated,

GTAP-E parameters were too elastic. This leads them to incorporate more recently

econometric estimations of energy demands, after which the model’s performance

is significantly improved. Third, the top-down nature of CGE models precludes

incorporating detailed information at the sector level. Considerations of the electric

power sector (e.g. technological feasibility, resource availability, dynamic operations),

which are explicitly incorporated in bottom-up models, are only implicitly addressed

in CGE models (Williams et al., 2012).

For example, the GTAP database is the predominant database for global CGE

modeling; however, there is only a single electricity sector which encompasses

production, collection, and distribution. Several researchers have independently

disaggregated the sector into various generating technologies and incorporated

specialized production structures for the electricity sector to mimic bottom-up electric

power considerations into the top-down nature of global CGE models (e.g. Burniaux

and Truong (2002), Paltsev et al. (2005), Wing (2006), Pant (2007), Château et al.

(2014)). Unfortunately, the disaggregation methods remain largely undocumented

and sector-specific detail untested against real-world observations. The foremost
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challenges in modeling electricity in the CGE framework are: i) data and methods

to construct an electricity-detailed CGE database, ii) a way to explicitly and reliably

incorporate key sector-specific considerations, and iii) methods for model validation.

1.2.4 Integrating Top-Down and Bottom-Up

As mentioned above, CGE modelers have increased the detail (and complexity) of

their production structures for certain commodities to capture unique technological

considerations of the sector. To support these efforts, insights from bottom-up models

can be used to enhance both the parameters and data. On the parameter side, Schäfer

and Jacoby (2005) adjust parameters in a top-down CGE model to reflect behavior

predicted by a bottom-up model (MARKAL). Similarly, Kiuila and Rutherford (2013)

demonstrate that estimates of elasticities of substitution from historical data may not

be valid under potential technological and policy changes. They propose methods for

approximating the elasticity of substitution between technologies from step functions

characteristic of bottom-up models.

Other researchers have explored methods to explicitly combine bottom-up and

top-down models in a single framework. The MARKAL-MACRO model (Manne

and Wene, 1992) combines the technological detail of the energy sector in the

MARKAL model (Loulou et al., 2004) with a simple general equilibrium from the

MACRO model (Manne and Richels, 1992) via exchange of energy output and energy

cost variables between the respective models. Similarly, Schäfer and Jacoby (2006)

create a single framework by exchanging prices, demand, and modes shares from

a CGE model with substitution elasticities from the MARKAL model. Böhringer

and Rutherford (2008) describe a complementarity formulation of the energy sector

which combines bottom-up technological detail and top-down economic considerations

within a single mathematical model. Because of complexity issues which may

make the approach intractable, Böhringer et al. (2009) decompose the original

complementarity formulation into separate top-down and bottom-up models, which
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are solved independently, and uses an iterative process termed “sequential calibration”

to obtain convergence of results from the two models.

1.3 A Path Forward: Adding Electricity-Detail in Computational Equilibrium

The primary purpose of this research is to advance our understanding of the

role of electricity in the global economic landscape by focusing on: i) economic

and technological considerations of the electricity sector, namely the substitutability

between specific generation technologies and ii) economy-wide linkages.

While bottom-up models have been enormously successful in the former goal, the

lack of price feedbacks and global trade rigor/richness leads to limitations in analyzing

intersectoral, interregional, and economy-wide effects. Also, by not capturing full

price effects or substitutability of generation technologies, input–output analysis

suffers from an inability to capture specific economic and technological considerations.

These limiting factors compromise the ability of both models to adequately model

the global economic implications of regional shocks considering electricity (e.g. trade

shifts, welfare changes, energy security perspectives).

CGE models capture full price effects with the intersectoral and interregional

linkages necessary for analyzing the stated goals of the research. Rigor and richness

in trade patterns (e.g. bilateral sourcing) provide an ideal platform for understanding

global impacts such as GHG emissions. Adding first-order sector-specific detail would

allow for greater credibility to CGE models without sacrificing their benefits.

Thus, the aim of the dissertation is to construct a model with a technologically-rich

representation of the electricity sector which can comprise part of a global

CGE model with fully endogenous prices and production (i.e. feedbacks in the

dynamic energy economy). This involves two main steps: i) constructing a

technologically-rich electricity sector within a “top-down” economic database and

ii) development of a computational equilibrium model which captures important

operational characteristics of the electricity database in a manner consistent with
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existing global economic analysis. These two broad steps and their individual

contributions to literature are discussed in detail in Chapters 2–4 and 5, respectively.

In Chapter 6 the computational equilibrium model is used to answer the question:

how does the US electricity sector respond to a carbon tax versus regulation? Chapter

7 concludes.

Detailed in Chapters 2–4, the database construction step, is a disaggregation

of the electricity sector in the Global Trade Analysis Project (GTAP) database,

an applied general equilibrium database of the world economy constructed from

national input–output tables, trade, macroeconomic, and trade protection data from

several sources. As discussed earlier, the main GTAP database, however, only

has one sector which encompasses the production, collection, and distribution of

electricity. This aggregate electricity sector is disaggregated into the following new

sectors: transmission and distribution (T&D), nuclear, coal, gas, oil, hydroelectric,

wind, solar, and ‘other’ power technologies. Gas, oil, and hydroelectric power

are further differentiated by load type: base and peak. Chapter 2 introduces

the engineering-level data to inform the disaggregation and a novel method that

best preserves economic information considering specific aspects of the electricity

disaggregation problem. The method is useful for applications outside electric power

as well. Chapter 3 discusses the linkages between various matrix balancing methods

and modeling results and concludes that preserving certain economic relationships

implied by the engineering-level data is of utmost importance, which lends confidence

to the methodology. Chapter 4 documents additional components of the complete

GTAP-Power disaggregation.

Chapter 5 presents a model that uses the GTAP-Power database as a starting point

and characterizes how electricity generating technologies might evolve in response to

technological advances and policies. Substitution between electric power generating

technologies results from two distinct mechanisms: i) constructing new capital,

termed capacity expansion, and/or ii) increasing or decreasing operations of existing

capital, termed capacity utilization. Long-term returns on capital investment in
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electric power technologies drive expansion, while utilization is the substitution of

production from existing capacity, also called fuel-switching, in response to prevailing

economic conditions, namely fuel prices. The two mechanisms are interrelated in that

capital rents partly depend on how much generation is produced per unit of capacity

(i.e. capacity factor) and short-term utilization changes may be counterbalanced

by long-term expansion. The model posed here integrates these two mechanisms

of electricity generation within a partial equilibrium framework conducive to

extension into a full computable general equilibrium framework. Importantly, this

representation of the electricity sector is validated against observations. A corollary

contribution to the economic modeling literature is a novel implementation of a

variant of the constant elasticity of substitution (CES) production specification which

ensures the quantity of aggregate electricity production (i.e. GWh) is equal to the sum

of the input quantities (i.e. GWh from individual technologies) (van der Mensbrugghe

and Peters, 2015).

Chapter 6 uses the validated partial equilibrium model described in Chapter 5 to

analyze policy pathways outlined in the US Environmental protection Agency (EPA)

Clean Power Plan (CPP). A baseline projection to 2030 shows that coal capacity

retirements, combined with fuel switching from coal to gas power in response to low

gas prices and continued expansion in renewables, lead to a CO2 emission reduction

of almost 28% in the US electricity sector. This means that the 32% reduction goal of

the CPP can nearly be met without any policy intervention. Still, there is a need for

some small interventions to meet the stated goal. The CPP describes three building

blocks, one of which focus on capacity utilization (building block 2) and another on

capacity expansion (building block 3). Therefore, the model detailed in Chapter 5 is

ideally suited for analyzing policies given the CPP’s building block framework.

Two policy alternatives, a carbon tax and an additional investment subsidy for

wind and solar, are presented and compared to a baseline for 2030. The carbon

tax reduces CO2 by fuel-switching from coal to gas (building block 2) and by

expanding renewables due to reduced returns to fossil-fuel capacity (building block
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3). On the other hand, wind and solar investment subsidies increase returns for

renewable (specifically wind and solar) capacity (building bloack 3), but the capacity

expansion crowds-out utilization and actually increases emissions from fuel-switching

(building block 2) as compared to the baseline. This is an important consideration for

pursuing an investment subsidy policy as opposed to the economically-efficient, but

less politically tractable carbon tax. We also observe that wind and solar investment

subsidies crowd-out returns to capacity for other renewable options (e.g. nuclear,

hydro, geothermal, biomass). Finally, because the investment subsidy case does not

penalize returns to coal capacity (the largest contributor to emissions), coal capacity

retires at a slower rate. These insights provide specific guidance in designing policies

within the CPP policy framework.

Chapter 7 reviews the advances in database construction (Chapters 2–4) and the

representation of the electricity sector in computational equilibrium models (Chapter

5) and discusses the insights uncovered in the analysis of the US EPA CPP (Chapter

6). The chapter then describes two future steps. First, the computational model can

be integrated into a CGE framework to analyze the CPP in terms of welfare and other

economy-wide impacts. Second, the role of the US electricity sector as part of the

global economy can be studied by integrating regional trade flows to study important

global trends like international carbon policy and possibilities for US energy exports.
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CHAPTER 2. MATRIX BALANCING WITH UNKNOWN TOTAL COSTS: A

NOVEL METHOD FOR GTAP-POWER

Global economic analysis, specifically computable general equilibrium, relies on

an underlying database that describes the inter-sectoral and inter-regional linkages

in an economy. This type of database is typically constructed from national

input–output tables, trade, macroeconomic, and trade protection data from several

sources. However, due to the aggregate nature of the data, the sectoral resolution

tends to be quite coarse. For instance, the GTAP database, which is the predominant

database for global CGE analysis, has only one aggregate electricity sector which

encompasses production, collection, and distribution. The database identifies

fuel inputs, but is blind to the actual technologies used to produce electricity.

It is particularly non-informative for non-fuel based technologies (e.g. nuclear,

hydroelectric, wind, solar), which encompass roughly 32% of the global electricity

sector. Technology-specific advancements and policies motivate a more detailed

representation of electricity generation in CGE databases.

In the GTAP-Power database, described in the Chapters 2–4, the aggregate

electricity sector in GTAP is disaggregated into the following new sectors:

transmission and distribution (T&D), nuclear, coal, gas, oil, hydroelectric, wind,

solar, and other power technologies. Gas, oil, and hydroelectric power are further

differentiated by load type: base and peak (henceforth designated by “BL” and “P”

suffixes, respectively).1 The intent of the split between base and peak load is two-fold.

First, total generation data comes in the form of fuel inputs (e.g. GWh generated

from natural gas); however, several different technologies (e.g. combustion turbine,

steam turbine, combined-cycle) convert the fuels into electricity. These technologies

1Chapters 2 and 3 show matrix balancing methods and their implications on modeling results using
disaggregations with less technological detail for clarity.
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Figure 2.1.: Shares of global electricity generation by technology. About 32% comes
from non-fuel-based technologies and would be represented as a portion of total capital
in an aggregate electricity sector.

have cost structures that must be differentiated, and in a typical case where a modeler

wishes to re-aggregate these into a single fuel-based sector (e.g. gas power) using this

database this is important.2 Second, connecting the data to modeling, base and peak

load are distinct types of generation. Without differentiating electricity production

by these operational considerations, a model can have a technology like solar taking

over the entire generation, which is not realistic in the modern electricity system (i.e.

without storage for time arbitrage).

The objective of the electricity sector disaggregation is to include as much

engineering-level data as possible and preserve the economic relationships that

they imply subject to the constraint imposed by the aggregate electricity sector.

Chapters 2–4 all make individual, but related contributions to the construction of an

electricity-detailed computable general equilibrium database. The relevant data are

reviewed in Section 2.1 and the remainder of the chapter introduces a novel matrix

balancing method that best preserves important economic relationships (i.e. relative

2In the long-run specific technologies such as combined-cycle, combustion turbine, and steam turbine
gas would provide a better idea of costs, but the modeling issues of how each of these technologies
compete from an operational perspective is still unclear. Therefore, a simple aggregate base and
peak load differentiation balances operational considerations and data availability.
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contributions to input demand across technologies (termed “row share”) and cost

structure). Later Chapter 3 shows that these economic relationships translate directly

into modeling results and reinforce the strength of the matrix balancing method in the

final GTAP-Power database. Specific details of the full GTAP-Power disaggregation

are highlighted in Chapter 4 along with some summary results.

2.1 Engineering-level data4

The foundations of the bottom-up economic data are: i) electricity production (in

GWh) by technology (IEA, 2015, 2014) and ii) levelized capital, fuel, operating and

maintenance (O&M) costs for each technology (IEA/NEA, 2010). Levelized costs of

electricity (LCOE) are annualized unit costs (US$ per GWh).7 Electricity production

is represented as the matrix Qg with elements qgt where t is the index for the new

sector. Levelized costs are represented as the matrix L0 with elements l0it where i

is the index for the input cost. The super-script 0 indicates that this is reported

data. The final levelized costs, L, are the balanced costs. The base years for this

disaggregation are 2004, 2007, and 2011. These data sources are constructed from

the reported data along with some elementary assumptions – e.g. missing costs are

filled in the manner outlined in Peters (2015).

It is worth noting that levelized costs of electricity are notoriously misleading

estimates of the value of electricity. First, each individual levelized cost is derived

from a number assumptions that are unobservable ex ante (e.g. depreciation rate,

7The use of levelized capital costs requires some caveat for general usage in disaggregations of
the electricity sector. Additional care and manipulation may be required to capture the financial
structure of the sector based on the research question at hand. For instance, a large portion of
the value in capital costs are construction costs which likely have taken place in previous years.
This can be problematic for some I–O analysis and especially life-cycle analysis where construction
embodied in levelized capital costs are excluded (Marriott, 2007; Lindner et al., 2013). Methods in
Marriott (2007) can be used to create an initial matrix A for construction-specific costs rather than
capital in the application presented here. Levelized capital costs are useful in disaggregating social
accounting matrices and computable general equilibrium databases. The application here is for
GTAP, a SAM/CGE database, so we use levelized capital costs to allocate capital in the database.
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Table 2.1.: Total electricity production by technology in the United States in 2011,
Qg (in TWh) and shares. Results may not sum due to rounding. Source: IEA (2014,
2015); Peters (2015).

Nuclear Coal GasBL GasP Oil Hydro Wind Solar Other Total

TWh 821.4 1,872.2 445.1 611.4 31.4 321.7 120.8 6.2 96.3 4,326.6

Share 19.0% 43.3% 10.3% 14.1% 0.7% 7.4% 2.8% 0.1% 2.2% 100%

Table 2.2.: Levelized cost for electricity production by technology in the United
States, l0it (2011 US$/MWh). Source: IEA (2014, 2015); Peters (2015).

LCOE Nuclear Coal GasBL GasP Oil Hydro Wind Solar Other

Capital 27.4 19.7 9.2 5.9 11.3 89.3 60.4 202.9 23.5

O&M 22.9 8.8 3.7 4.6 22.8 13.3 16.6 17.2 20.2

Coal - 20.2 - - - - - - -

Gas - - 50.8 68.6 - - - - -

Oil - - - - 214 - - - 32.2

project lifetime). Second, the value of electricity varies over time, space, and contract

type (Joskow, 2011; Hirth et al., 2014).

Despite the deficiencies of levelized costs in estimating the value of power

generation, Table 2.2 shows how they can capture important economic differences

between the technologies. For example, wind, hydroelectric, and solar power have no

specific fuels costs, but have high capital costs. As such, their costs are not sensitive

to fuel shocks, but are sensitive to the cost of capital, which motivates support for

renewables via investment tax credits in the United States.

There are only limited input cost data, but the I–O component of the GTAP

database comprises 63 different input costs to the electricity sector. The vector of

63 inputs is aggregated to map to available aggregate input cost categories (capital,

fuels, and O&M) to create the row constraints, ui. This results in the row constraint

for aggregate inputs to the new electricity industries where each row sums to ui.
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The matrix of initial estimates, A, can be constructed from the economic data.

The estimates for ait are as follows:

ait =
l0it · qgt∑

i

∑
t l

0
it · qgt

·
∑
i

ui (2.1)

where l0it is the levelized cost for cost i for technology t, and qgt is the GWh production

for technology t. The bottom-up costs are normalized to the total value in the original

electricity sector (i.e.
∑

i ui).

Table 2.3.: Target matrix, A, for the United States (in millions of 2011 US$) derived
from levelized cost and production data compared to the GTAP totals (U).

T&D Nuc. Coal GasBL GasP Oil Hydro Wind Solar Other Total U

Cap. 24,770 22,481 36,880 4,101 3,627 356 28,736 7,303 1,248 2,263 131,763 129,967

O&M 43,676 18,811 16,542 1,658 2,826 716 4,286 2,011 106 1,944 92,575 133,139

Coal - 37,884 - - - - - - - - 37,884 61,781

Gas - - - 22,625 41,957 - - - - - 64,582 48,361

Oil 16 - - - - 6,724 - - - 3,103 9,843 7,758

The final two columns of Table 2.3 show that the totals implied by the bottom-up

data do not match that of the corresponding costs in the original GTAP electricity

sector.8 Therefore, the target matrix A must be balanced to meet the accounting

consistency constraints in the GTAP database, U. The remainder of this chapter

details a novel matrix balancing method specifically designed for the electricity

disaggregation problem and available data.9 Similar to bottom-up and top-down

8Levelized costs try to capture the annualized cost of production while considering data such as
overnight capital costs, depreciation rate, fuel costs averaged over the year, heat rate, and other
technological factors. Top-down data comes from the reporting of final reported costs in broad
categories which may encompass a wider breadth of costs than the bottom-up data (e.g. transmission
and distribution, insurance services, customer service, litigation). These different perspectives offers
some insight on the origin of the discrepancies between the two data types.
9Both Chapters 2 and 3 use GTAPv8 data with a base year of 2007 and an alternate scheme that only
includes the following technologies: nuclear, coal, gas, oil, hydroelectric, wind, and solar. The intent
is for clearer analysis of the properties of the matrix balancing techniques shown and discussed in
Peters and Hertel (2015b,a). The full estimates shown in Table 2.3 are used for the full GTAP-Power
disaggregation in Chapter 4. The data is otherwise identical.
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modeling discussed in Chapter 1, levelized cost (L0) and production quantities (Qg)

are bottom-up data that must be balanced to conform to fit the top-down totals (i.e.

U). In this way, the gulf between the two modeling philosophies is drawn slightly

closer together.

2.2 Matrix Balancing with Unknown Total Costs

Systems of national accounts (e.g. supply and use tables, input–output (I–O)

tables, social accounting matrices (SAM), and computable general equilibrium (CGE)

models) are commonly used for multi-sectoral, multi-regional economic analysis. The

I–O table comprises the core of industry production information within SAM and

CGE databases, yet it often has insufficient detail for addressing specific issues - for

example, regulating CO2 emissions from the electric power sector. This section on

the disaggregation of an I–O industry in the unique situation where information on

total costs of the new sectors are either unknown or deemed less “trustworthy” than

the component costs (e.g. levelized input costs for each technology).

In the disaggregation problem, detailed sub-sector information must be balanced

with the aggregate sector using a matrix balancing method. In a survey of these

methods, Huang et al. (2008) recommends RAS (a biproportionate cross-entropy

method)10 and the improved normalized squared differences (INSD) method

(Friedlander, 1961) for balancing I–O tables. Similarly, Temurshoev et al. (2011)

analyzed prevailing methods for projecting supply and use tables and concluded that

RAS, INSD, as well as Kuroda (1988) perform better than the alternatives explored

in these works.11

However, Kuroda’s method (with some minor modification discussed later) is the

only one of these capable of addressing the case where total costs are unknown and/or

where the researcher does not wish to impose fixed conditions on the total costs.

10RAS has many variants to improve upon its various limitations, notably GRAS (Lenzen et al.,
2007). The reference to “RAS” in this work is general to the variants as they are basic cross-entropy
formulation. Our example only considers a positive matrix, so GRAS is not required.
11Kuroda’s method was not included in Huang et al. (2008).
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With no hard constraint on total costs, both RAS and INSD reduce to the pro rata

distribution which only considers relative contributions to input demand and ignores

cost structure of the technologies.

While RAS and INSD target the individual elements, Kuroda’s method targets the

economic relationships of cost structure and relative contributions to input demand.12

As will be shown, both of these economic relationships are critical in determining

the economic outcomes of studies involving policies bearing on the sector being

disaggregated. The cost structure is of importance in the face of an input (e.g. fuel)

price shock. The row share has direct implications in terms of modeling substitution

between the disaggregate sub-sectors. If the ordering of relative input shares in the

reported data (e.g. capital share to each sub-sector) is not preserved, the substitution

between the technologies may be distorted and even reversed (McDougall, 1999).

These two economic relationships are non-trivial when the database is implemented

in even the simplest of models. They also play a key role in designing an objective to

balance a matrix with unknown total costs.

In this section, we slightly adjust the Kuroda method so the column constraint

(termed Kuroda-NC) can be removed, and we propose the share preserving

cross-entropy (SPCE) formulation which attempts to preserve cost structures and

row shares without any constraint on total cost. The cross-entropy (CE) formulation

complements the sum squared error (SSE)-type approach of Kuroda.13 We also show

that the SPCE solution reduces to the RAS solution when a total cost constraint is

imposed.

The motivating example for this research on unknown total costs is found in the

United States where policymakers have turned to regulations, taxes, and subsidies on

specific electric power sub-sectors to limit CO2 emissions. An aggregate electric power

12Henceforth, we will refer to cost structure interchangeably with “column shares.” The relative
contributions to input demand across industries will be referred to as “row shares.” The latter
refers to the share of input use by a given sub-sector in overall input use (e.g. capital employment
in different electricity technologies). Alternatively, the row share can be thought of as the
production-weighted input intensity across industries or “sales share.”
13It is important to note that we do not wish to determine the virtues between cross-entropy, sum
squared error, or other objectives. These largely remain the preference of the individual researcher.
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sector, as is typically found in I–O tables, is insufficient for capturing the effects of

technology-level policies where different technologies have significantly different cost

structures and substitute for one another in the ultimate production of electricity.

Total costs of electricity production from different technologies are largely unknown,

and the price of electricity differs across generating technologies due to operational

realities (e.g. “base” versus “peak” power). However, there exist economic data

regarding the generating technologies (i.e. cost structure and row share) which can

inform how these technologies may respond in the face of technological, economic,

or policy shocks. Despite this, previous work on electricity disaggregation has not

focused specifically on these dual relationships (Lindner et al. (2013); a detailed

discussion is presented later). In this example, the relative component costs are

deemed more “trustworthy” than the summation. The lack of proper total cost

data renders most existing formulations impotent, with the exception of SPCE and

a variant of Kuroda’s method.

While the electricity sector motivates the disaggregation problem which seeks to

preserve economic relationships where total costs are unknown, the proposed solution

can be applied to other aggregate sectors which employ different technologies to

produce slightly dissimilar end products preventing a simple assignment of a uniform

price across the technologies (e.g. services, biofuels). In addition, the methods

discussed in this work are also not exclusive to the sector disaggregation problem

and can be used broadly across other matrix balancing problems.

This section is organized as follows. The structure of the disaggregation problem

and important features of the electricity application are outlined in Section 2.3.

The importance of cost structure and row share in application are detailed with

a simple set of equations in Section 2.4. Next, the modified Kuroda-NC and the

novel share preserving cross-entropy approach that is well-suited for the unknown

column sum problem, termed SPCE, are formulated. The SPCE objective returns

the RAS solution when a column sum constraint is imposed and should outperform

RAS when the constraint is removed because the constraint becomes unnecessarily
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restrictive. Section 2.6 analyzes RAS, SPCE, Kuroda, and Kuroda-NC with a

practical application to the electric power generation sector using a simplified

disaggregation of the 126 regions in GTAPv8 and compares their performance with

respect to various performance indicators. A comparison between RAS and SPCE

and between Kuroda and Kuroda-NC shows how performance can be improved by

relaxing the total cost constraint. Comparing SPCE and Kuroda-NC shows how the

two different definitions of closeness (entropy versus SSE, respectively) perform.

2.3 The Structure of the Disaggregation Problem

I–O industries are often characterized by aggregate sectors due to the lack of

specific sub-sector information. However, policies and technological advances are

often related to specific technologies/sub-sectors and may not be applicable to the

aggregate sector. Disaggregating the aggregate industry in I–O tables is an important

step in reconciling bottom-up technological detail with top-down economy-wide

modeling (Sue Wing, 2008; Lenzen, 2011). The disaggregation problem presented

here focuses on how to transition from an aggregate sector to several sub-sectors when

the total costs of the new industries are unknown - all while preserving important

economic relationships within and across the sub-sectors.

2.3.1 The Disaggregated I–O table

The fully disaggregated supply-side matrix is constructed by disaggregating a

particular sector (e.g. electricity) into sub-sectors while the other sectors remain

unaffected. The balanced disaggregation is defined as matrix X with elements xit

where i is an input in the same vector of inputs as those in the full GTAP database,

and t is a new industry within the set of new industries (or technologies) which are

inserted in place of the aggregated sector. By way of example, xit might refer to

capital inputs into the solar power generation sub-sector. In order to perform this
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Figure 2.2.: The I–O table for the disaggregated industry (X)

disaggregation, an initial matrixA is constructed from economic and/or technological

information about alternative technologies (e.g. Equation 2.1 in the previous section).

The disaggregation problem is to minimize the distance between the elements of

X and A subject to a set of constraints imposed by the I–O structure (Schneider

and Zenios, 1990). In particular, the sum of xit over all t (row sum) must equal the

original employment of input i in the aggregate sector defined as ui (i.e. xi• = ui

where xi• ≡
∑

t xit).
14 The majority of methods also impose a column sum constraint

on the sum of xit over all i for each t must equal some given value vt (i.e. x•t = vt

where x•t ≡
∑

i xit). However, this constraint is not strictly required for consistency

since the earlier row sum restriction will ensure that total value in the disaggregate

matrix will equal that of the aggregate industry. Therefore, it is preferable to avoid a

potentially restrictive column sum constraint when information on the column sum,

vt, is unknown or of less reliability than the component costs (reinforced later in

Chapter 3).

The disaggregated industry matrix (X) replaces the aggregate industry in the

full matrix to construct a complete GTAP-Power database containing the new

disaggregated electricity industries along with those in the GTAP database.

14Throughout this work, summations are assumed to range over the entirety of the dimensions unless
otherwise stated.
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2.3.2 The Nature of Economic Data for an Electricity Disaggregation

As discussed in Section 2.1, the fundamental economic data which can be

reasonably be obtained are: i) data on total generation from each technology in

gigawatt-hours (GWh), ii) the input costs to each generation technology (US$ per

GWh), and iii) the original employment of inputs in all electricity generation, ui (in

US$). In this case, available input cost data consist of capital, fuel, and operating

and maintenance (O&M) levelized cost (i.e. annualized cost per GWh) data reported

with different error distributions for each category of input. Total cost data for

generating technologies are not available because national accounts do not generally

report on detailed technologies. Because national accounts are constructed from

plant-level data, sub-sector total cost data exist in theory; however, in practice,

depending on the region, this type of data can be proprietary, unreliable, and

unpublished. Constructing detailed national accounts from plant-level data would

obviously overcome the unknown total cost problem.

Matrix balancing approaches would normally advise to construct artificial column

totals using the available data. One way to construct total costs of generation is

to impute a uniform price of electricity from the original values and GWh produced

(Lindner et al., 2012; Shrestha and Marpaung, 2006); however, in reality unit costs

of electricity differ, sometimes greatly, between generation types due to operational

realities (e.g. “base” versus “peak” power, vintage of the power plants, etc.).

Alternatively, assuming the cost data are complete (which is often not the case),

column sums could be derived from summing component costs for a technology and

normalizing to fit the total value in the original I–O data.15 However, fundamentally

different methods of measurement and assumptions are used to construct the levelized

15Robinson et al. (2001) highlights the importance of known column sums in CE, and offers the use
of weighted errors in total costs as a powerful tool where column sums are uncertain. As proposed,
simple summing up the reported input costs has implications for the error distribution of the column
sum when the individual cost errors are dependent in the cost structure or across industries (which
is likely in the case of data from the same source). This complicates a simple “cost totals with error”
measure, especially in the case with several weighted error on various constraints in the model. The
intent here is to avoid the additional unnecessary constraint altogether.
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input costs than are used to create the aggregate national accounts.16 Thus, this

approach unnecessarily imposes a total cost constraint that is derived from two

or more disparate data sources. Furthermore, the development of these column

constraints also requires complete knowledge of input costs, which may not be

available.

It is more intuitive, and most general, to preserve the economic relationships in the

input data rather than construct total cost data from incomparable sources solely to

fit into an existing method, especially when the presence of a constraint unnecessarily

restricts the result.

2.4 The Importance of Preserving Economic Relationships in Modeling

The two economic relationships we consider here are cost structure and row share.

Both appear often in economic modeling using I–O, SAM, and CGE-type analysis.

Cost structure and row share are defined, respectively, as:

cit ≡ xit
x•t

and rit ≡ xit
xi•

(2.2)

To illustrate their importance, consider Equations 2.3–2.8 which provide a

linearization of a generic, competitive, long-run partial equilibrium model (in the

spirit of ORANI (Dixon, 1982)) with two activities (A and B) which substitute

imperfectly for one another in the supply of electricity to the grid, with elasticity

of substitution in use, σ. These sectors could be nuclear-powered (high capital cost)

and gas-powered electricity generation (lower capital cost) where the aggregate output

of electricity is produced by substituting between nuclear and gas-power. This local

approximation to the percentage change in demand for each type of power generation

may be written as a function of the percentage change in total electricity production,

16Levelized costs are annualized costs of production which consider data such as overnight capital
costs, depreciation rate, fuel costs, heat rate, and other technological factors. National accounting
data comes from the reporting of final reported costs in broad categories which may encompass
a wider breadth of costs (e.g. transmission and distribution, insurance services, customer service,
litigation).
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q̂ely, as well as the change in price of each individual type of power (p̂A, p̂B), relative

to the change in the average cost of electricity, p̂ely:

q̂A = q̂ely − σ · (p̂A − q̂ely) (2.3)

q̂B = q̂ely − σ · (p̂B − q̂ely) (2.4)

When the two types of power are highly substitutable (σ � 0), large swings in

the source of power generation can be expected. When they substitute poorly in

use, we can expect nuclear and gas-powered generation to rise and fall, more or less

in tandem with changes in total power demand, q̂ely. Assuming either average cost

regulation or competitive entry and exit of generating technologies in the long run,

we can derive a zero profit condition for each sub-sector, as well as for the industry

as a whole. These equations simply state that the sub-sector output price change

in long-run equilibrium will be determined by the cost-share weighted sum of input

price changes.

p̂A =
∑
i

ciA · p̂iA (2.5)

p̂B =
∑
i

ciB · p̂iB (2.6)

p̂ely = θA · p̂A + (1− θA) · p̂B (2.7)

where p̂it is the percentage change in the price of input i used in technology t and

θt is the share of technology t in total electricity cost. We will assume for the time

being that the price change of input i is identical across technologies (i.e. p̂iA = p̂iB).

From the zero-profit conditions, Equations 2.5 and 2.6, it can be seen that the

cost share of an input for a given activity will have important consequences for the

power sector’s long run response to a change in the price of that input. Consider,

for example, the case in which the price of a common input, say capital, rises by

20%. The intensity of input i in each productive sector t, (i.e. column coefficient

in the I–O context, cit), determines the size of the two relative price changes for
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activities A and B, with the relative price of the more capital intensive sector (let

us assume this is A) rising more. Faced by a relative price rise for activity A, the

power sector will substitute toward activity B so that q̂A < 0 and q̂B > 0. However,

if, in the process of disaggregating the power sector, the relative capital intensity of

activity A is not preserved, i.e. now, ciB > ciA, then the direction of quantity change

is reversed when the cost of capital rises. This is very problematic in cases where

the ordering of column shares is not necessarily preserved. In fact, the minimum

sum of column cross-entropy (MSCCE) posed by Golan et al. (1994) and studied by

Robinson et al. (2001) has been shown to flip the ordering of input intensity across

sectors McDougall (1999), which highlights a danger in preserving only one of these

economic relationships. Simply removing the column constraint in the RAS and INSD

formulations reduces both methods to the pro rata distribution which preserves only

the row share.

Now turn to the related question of row shares. For the sake of simplicity, we will

assume that the input demands in the individual activities change in fixed proportion

to output levels (e.g. no capital-labor substitution in the individual technologies used

to generate power). We then can add one more equation to the model which serves

to determine the change in total use of input i (e.g. capital), q̂i, in the aggregate

electricity industry. This can be written as the quantity share-weighted sum of

sub-sector output changes. Since both sectors face the same input prices, the quantity

and value-shares are identical, so that:

q̂i = riA · q̂A + riB · q̂B (2.8)

Recall riA represents the row share of sector A in the total use of input i. From

this, it is easy to see that if sector A (e.g. nuclear power) is relatively more capital

intensive than B (gas generation), then a shift from nuclear to gas will lessen the

demand for capital in the power sector. Reversing this row share relationship can

result in misleading estimates of the total input requirements for the power sector

following an exogenous price shock or policy intervention.
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Clearly, both the cost structure and relative contributions to input demand

are important when it comes to economic analysis of a sector comprising varied

individual technologies. Targeting these economic relationships, rather than the

values themselves, can allow the relaxation of a total cost constraint. This is

illustrated further later in this dissertation.

2.5 Possible Approaches for Unknown Total Costs

Huang et al. (2008) and Temurshoev et al. (2011) compare various matrix

balancing methods and reach similar conclusions: RAS (e.g. Lenzen et al. (2007)),

INSD (Friedlander, 1961), and Kuroda (1988) are preferred methods. Therefore, we

confine our analysis to these three alternatives, although there is a large and diverse

literature on matrix balancing and other reasonable alternatives might exist.

The motivation for this research is in the case of unknown total costs or when

the total cost constraint is thought to be unreliable compared to other aspects of

the initial data used to construct the matrix A. If the corresponding constraint

is removed from RAS and INSD formulations, they both will reduce to a pro rata

distribution which only considers row share and ignores cost structure. This leaves

us with Kuroda as the only preferred option capable of the case with unknown or

unreliable total costs. The Kuroda objective directly targets cost structure and row

shares so that the total cost constraint can be removed without compromising the

intent of the method.

However, many researchers prefer the information-theoretic cross-entropy

approach (see Shannon (1948) and Kullback and Leibler (1951) for an in-depth

information-theoretic treatment). To the authors’ knowledge there is no such

approach which allows the flexibility of removing the total cost constraint without

adversely impacting the biproportional intent of the method. We therefore propose

such a novel entropy-type approach to complement the sum squared error (SSE)-type

Kuroda approach for the case of unknown or unreliable total costs.
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Accordingly, the Kuroda, Kuroda without a total cost constraint (Kuroda-NC),

and the novel share preserving cross-entropy (SPCE) are formally introduced as

constrained optimization problems in this section.

2.5.1 Kuroda’s Method without a Total Cost Constraint (Kuroda-NC)

Temurshoev et al. (2011) reviews three different weighting schemes for the original

Kuroda objective function, but the original Kuroda (1988) weighting scheme of “equal

percentage change” is determined to perform best. The objective function is

min
xit

1

2

∑
i

∑
t

[(
xit/ui

r0it
− 1

)2

+

(
xit/vt

c0it
− 1

)2
]

(2.9)

where

c0it ≡
ait
a•t

and r0it ≡
ait
ai•

(2.10)

which correspond to the row share and the cost structure of the target matrix A,

respectively. Elements ui and vt are the exogenous target row and column totals for

the balanced matrix, X, respectively. The objective essentially minimizes the sum

squared percentage error in both row share and cost structure. For matrix balancing

this objective is typically subject to both row and column constraints.

∑
t

xit = ui for all i (2.11)

∑
i

xit = vt for all t (2.12)

So that the Kuroda method is described by Equations 2.9, 2.10, and 2.11. To

relax the total cost constraint the necessary modification to the Kuroda objective is

straightforward. The Kuroda-NC objective can be written as:

min
xit

1

2

∑
i

∑
t

[(
xit/ui

r0it
− 1

)2

+

(
xit/x•t

c0it
− 1

)2
]

(2.13)
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where the column sum in the balanced matrix, X, is no longer exogenously given by

vt, but rather endogenously determined by x•t. Thus, the Kuroda-NC method can

be described by Equations 2.11 and 2.13. The result is identical to the Kuroda result

when the column constraint, Equation 2.12, is also included.

2.5.2 RAS and Share Preserving Cross-Entropy (SPCE)

To the authors’ knowledge there is no previously documented entropy-theoretic

approach which is capable of relaxing the total cost constraint (i.e. Equation 2.11)

while preserving both row share and cost structure. For example, the commonly-used

RAS approach reduces to the pro rata distribution when the column constraint is

removed.

Therefore, this section presents the share-preserving cross-entropy (SPCE)

objective - an alternative entropy objective function specifically designed to preserve

economic relationships (i.e. cost structure and row share) in the face of unknown

column sums but known component costs. The component costs might represent

economic aggregates for which data are available (e.g. operating and maintenance

costs, labor, fuels). The result can then provide estimates of column sums of each

of these economic aggregates which can subsequently be used with traditional CE

methods, like RAS, to derive values from sub-components (e.g. unskilled and skilled

labor costs derived from an aggregate labor cost) while still preserving the economic

relationships in the original data as best as possible.

The interpretation of cross-entropy is the divergence between the a priori

(unbalanced) and the a posteriori (balanced) distribution. The RAS objective in

its simplest form is as follows

min
xit

∑
i

∑
t

xit · ln xit
e · ait (2.14)
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where e is the base of the natural log.17 The RAS method encompasses Equation

2.14 subject to both the constraints given in Equations 2.11 and 2.12.

Cross-entropy methods, such as RAS, are built on information-theoretic

foundations. Kullback and Leibler (1951) denote the mean information to

discriminate between two hypotheses given some observation; the discrete distribution

version of which, applied to our two-dimensional problem, is given by

D (p : q) =
∑
i

∑
t

(
xit
x••

)
· ln

(
xit/x••
ait/a••

)
(2.15)

where xit/x•• is the a posteriori distribution and ait/a•• is the a priori distribution

of values. Given that a•• is non-negative and constant (i.e. exogenous) and some

constraint imposes x•• to be constant as well (e.g. Equation 2.11 or 2.12), it is

straightforward to show that minimizing cross entropy is equivalent to minimizing the

Kullback and Leibler (1951) measure of information needed to discriminate between

two discrete distributions, although the objectives are not identical.

In information-theoretic terms, minimizing cross-entropy is equivalent to

minimizing the entropy information gained (i.e. extraneous information) from

imposing the balancing constraints on the a priori distribution. Alternatively, Junius

and Oosterhaven (2003) interpret this as the information loss from the a priori

distribution due to the matrix balancing process. The interpretation of the RAS

objective in Equation (2.14) considers the elements of matrix A to be the relevant a

priori distribution.

Instead the SPCE objective considers both cost structure and row share in the

matrix A to be the a priori distributions. As such the objective is defined as follows

min
xit

{∑
i

αi

[∑
t

xit
xi•

ln

(
xit/xi•

r0it

)]
+

∑
t

βt

[∑
i

xit
x•t

ln

(
xit/x•t

c0it

)]}
(2.16)

17The RAS objective function is sometimes written without the base of the natural log shown
in Equation 2.14. Subject to any constraint that fixes x•• (e.g. Equations 2.11 and 2.12), the
minimization of the RAS objective function with and without the base of the natural log are
equivalent.
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where αi and βt are arbitrary weights on the row share cross-entropy and the cost

structure cross-entropy, respectively. With an endogenous weighting scheme of α =

xi• and β = x•t, the SPCE objective becomes

min
xit

∑
i

∑
t

xit · ln
(

xit/xi•

r0it
·
xit/x•t

c0it

)
(2.17)

Appendix A in Peters and Hertel (2015b) discusses the first order conditions and

a method performance check to show that imposing the row and/or column totals

directly from A as constraints returns the full matrix A. The column constraint can

be relaxed while still preserving the important economic relationships, and the SPCE

would then comprise Equations 2.11 and 2.17. This objective also allows the row

constraint to be relaxed instead of the column constraint (i.e. Equations 2.12 and

2.17); however, the practical use of this is unclear.

Another important feature of this objective formulation is that if the column

constraint is also included (i.e. Equations 2.11, 2.12, and 2.17) the result is identical

to the RAS solution (see Appendix B in Peters and Hertel (2015b)). This makes the

solution especially attractive for comparison purposes and for practitioners who are

most confident in the RAS solution.

There may be some concern regarding the endogenous weighting scheme which

leads to Equation 2.17. It is important to note that if the row total constraint

is imposed (Equation 2.11) then αi is in fact exogenously given by ui, and if the

total column constraint is imposed (Equation 2.12) then βt is exogenously given

by vt. However, in the context of unknown total costs we assume that the total

column constraint is not imposed and βt is in fact endogenous and may lead to

some circularity. Thus, we compare the SPCE (Equations 2.17 and 2.11) result with

βt = x•t (endogenous weighting) against the RAS results as well as two alternate

exogenous weighting schemes in Equation 2.16: βt = a•t (
∑

i ui/a••), termed SPCE-1,

and the uniform weighting scheme βt = 1/m
∑

i αi, termed SPCE-2. Figure 2.3 shows

a frequency chart of the absolute percentage deviation of xit from ait for capital and
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Figure 2.3.: A frequency chart of absolute percentage deviation of the balanced values
from the a priori values show that the endogenous weighting scheme of the SPCE
formulation is comparable to other exogenous weighting schemes.

O&M across each technology and region. We see the deviations of the endogenous

weighting scheme (SPCE) are not significantly different than RAS or the exogenous

weighting schemes. From this, we can conclude that the endogenous weighting

appears robust in most cases.

The following section compares the Kuroda, Kuroda-NC, RAS, and SPCE

formulations with an application to the electricity sector where component costs

are deemed more reliable than their totals. In other words, the preservation of

economic relationships between component costs is deemed more important than

strictly adhering to the implied total costs.

2.6 An Example in a Simple Electricity Sector Disaggregation

The motivating application of this specific formulation is the disaggregation of an

aggregate I–O electricity sector into sub-sectors which include distinct generating

technologies. The I–O table itself can be used for a number of purposes (e.g.

understanding economic structure, I–O analysis, life-cycle analysis, CGE modeling).

Electricity technologies are highly substitutable. Therefore, as reinforced later in

Chapter 3, preserving the associated economic relationships is of utmost importance
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when undertaking economic analysis of policy interventions. Failing to preserve

the economic relationships should be seen as a serious limitation in the context of

electricity sector disaggregation efforts meant to include generating technologies.

One major criticism of previous work aimed at power sector disaggregation is that

the I–O construction methodology is not always transparent, perhaps due to ad hoc

methods (e.g. Han et al. (2004); Limmeechokchai and Suksuntornsiri (2007)). This is

especially true in large-scale CGE and IAM research where documentation is copious

and technical details are all too often omitted. Weakly-documented studies are likely

suspect for use beyond the immediate research purpose, because no conclusions can

be made whether the models will be able to adequately capture the impacts of

substitution between inputs and substitution of technologies in electricity production.

Several works have pursued the electricity disaggregation problem without using

any information regarding input costs to various generation technologies. Lindner

et al. (2012) disaggregate the electricity sector in China using a random-walk

algorithm with only electricity output (GWh) known. Since they do not use data

on input costs, their method assumes a uniform cost of electricity to arrive at column

sums, neglecting important operational realities of the sector (Hirth et al., 2014).

Similarly, Shrestha and Marpaung (2006) disaggregate based solely on electricity

production data.

Other electricity disaggregation efforts use available component cost data, but

only leverage one aspect of the underlying economic relationships. Marriott (2007),

Arora and Cai (2014), and Lindner et al. (2013) focus on row shares by allocating

input costs across new technologies based largely on production (GWh) and basic

assumptions (e.g. water transport is exclusive to coal-fired power and pipeline

transport is split between gas and oil power). In these cases, there is no specific

attention paid to the final cost structure of the technologies. These are essentially pro

rata distribution-based methods. Furthermore, these are ad hoc methods and do not

present a systematic way of introducing additional information as in the constrained

optimization formulations.



38

Sue Wing (2008) presents a positive mathematical programming approach to

incorporating cost structure and detailed engineering data (e.g. thermal efficiency,

GWh production). The formulation does quite well in introducing the detailed

technological data, but neglects specific attention to preserving input intensities (i.e.

row shares) across the new technologies.

The discussion in Section 2.4 emphasized the necessity of preserving both cost

structure and row shares in the electricity disaggregation, especially when substitution

of technologies is important, as is the case for electricity generation. Given that the

input cost data exist for the disaggregation task at hand, both relationships should

be considered.

The example presented in this paper focuses on a disaggregation of the electricity

sector in 126 regions in the Global Trade Analysis Project (GTAP) version 8 database

(Aguiar et al., 2012). The United States data are presented in detail here due to the

availability of reliable economic estimates in this region. The GTAP database is

widely-used in the multi-region I–O, SAM, CGE, and IAM modeling communities;

however, electricity is represented as a single sector which includes production,

collection and distribution. Here, the original sector is disaggregated into seven new

electricity sectors: nuclear, coal, gas, oil, hydro, wind, and solar power. Preserving the

economic relationships in the electricity sector is necessary in this context, because

such a database will be used for CGE analysis where the electricity technologies

substitute as in the economic model outlined by Equations 2.3–2.8 above.

2.6.1 Economic Data for the Simple Disaggregation

The foundations of the bottom-up economic data used for disaggregation are:

i) electricity production (in GWh) by technology (IEA, 2014, 2015) and ii) levelized

capital, fuel, operating and maintenance (O&M) costs for each technology (IEA/NEA,

2010). Levelized costs of electricity (LCOE) are annualized unit costs ($ per GWh).

The base year for this disaggregation is 2007. These data sources are constructed from
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the reported data along with some elementary assumptions. For example, missing

values of LCOE are filled in the manner outlined in Peters (2015) based on regional

and technological similarity.

The target A matrix is constructed in a similar method as in Section 2.1 but only

for a subset of the technologies for simplicity and clarity.

The balanced matrices X are constructed for each of the 126 regions in the GTAP

database from the initial matrices A using the Kuroda, Kuroda-NC, RAS, and SPCE

approaches. Only the supply-side is considered in this work. The new sub-sectors

can be treated as activities in the supply of an electricity good where demanders are

agnostic to the technology (e.g. perfect substitutes in demand). Alternatively, the

electricity demand for each technology can be allocated based on the proportions of

total cost revealed in the SPCE procedure. The results are compared using a diverse

set of performance indicators from literature described in the following section.

2.6.2 Performance Indicators

It is generally useful to compare different matrix balancing methods against a

variety of performance indicators, because the indicators are often highly similar to

the objective function, and therefore, any individual indicator will likely be biased

in favor of the associated approach (e.g. minimum percentage deviation or entropy

distance). We test the four methods against four different performance indicators

in the spirit of Temurshoev et al. (2011). Two of these measure percentage changes

(akin to Kuroda) and two apply information metrics (akin to cross-entropy methods).

Because there is no observed matrix to benchmark the balanced matrices against, each

performance indicator estimates some distance between each estimated elements zit

of the matrix Z and the a priori elements, zait, of the matrix Za. Benchmarking

with the a priori matrix, as opposed to some observed matrix, is an inherently weak

test; however, the absence of an observed matrix is the primary motivation of the

disaggregation problem. Possible alternatives are discussed in the conclusion.
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(1) Mean absolute percentage error (Butterfield and Mules, 1980):

MAPE =
1

mn

∑
i

∑
t

|zit − zait|
zait

· 100 (2.18)

The scalars m and n are the dimensions of i and t, respectively. This gives an

average percentage deviation between the estimated and target value.

(2) Weighted absolute percentage error (Mı́nguez et al., 2009):

WAPE =
∑
i

∑
t

( |zait|
za••

)
· |zit − zait|

zait
· 100 (2.19)

This is similar to MAPE but gives a weighted percentage deviation based on the

relative size of the a priori element.

(3) Phi statistic (Smith and Hutchinson, 1981):

φ =
∑
i

∑
t

zait ·
∣∣∣∣ln(

zait
zit

)∣∣∣∣ (2.20)

This statistic is similar to the information gain statistic given by Kullback and

Leibler (1951) and entropy. For a given zait, a zit twice as large returns the same error

as a zit half as large.

(4) Psi statistic (Kullback, 1959; Knudsen and Fotheringham, 1986):

ψ =
1

za••

∑
i

∑
t

[
|zait| ·

∣∣∣∣ln(
zait
sit

)∣∣∣∣+ |zit| ·
∣∣∣∣ln(

zit
sit

)∣∣∣∣] (2.21)

where sit =
1
2
(|zait|+ |zit|). Knudsen and Fotheringham (1986) find both the phi and

psi statistics to be some of the most accurate performance metrics.

For each of the MAPE, WAPE, and φ there are four different statistics: with

no superscript zait = ait and zit = xit; with superscript r zait = r0it and zit = rit; with

superscript c zait = c0it and zit = cit; and with superscript s zat = vt and zt = x•t.

The statistics are trivially modified for analyzing column sums so the summations

do not range over the row dimension. In this way we can analyze the performance

for the total matrix, row sum, cost structure, and the deviation from the implied
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total costs, respectively. However, the deviations compared to the implied total costs

(i.e. superscript s) should be considered less reliable in the context of this particular

problem since we believe the implied total costs to be unreliable.

2.6.3 Comparison of Methods

A total of 13 statistics for each of the 126 regions provides wide coverage in

evaluating the performance of the four alternative matrix balancing methods. Each

region is independent of one another, so these are essentially 126 different instances

of the electricity sector disaggregation. There is no clear dominance between the

measures (i.e. no one performance metric always dominates another with respect to

any of the statistics). Therefore, we rank the performance of each method (i.e. RAS,

SPCE, Kuroda, and Kuroda-NC) for each region and average them across the 126

regions (a ranking of 1 is the best performing for that region and 4 is the worst).

This ranking system provides more accurate and comprehensive information than an

average of the performance indicator values themselves since the regions are truly

different disaggregations. This average ranking scheme is applied to each of the 13

performance statistics. A lower score indicates better performance with respect to

that particular statistic. The average rankings for each method and statistic are

shown in Table 2.4 below.18

As one would expect based on the altered objective, SPCE consistently ranks

better than RAS for the column and row-specific metrics (i.e. superscripts c and r,

respectively). There are mixed results for the individual element error (no superscript)

with SPCE performing better according toMAPE and φ and RAS performing better

for WAPE and ψ.

Opposed to RAS and SPCE, Kuroda and Kuroda-NC share an objective which

targets column and row shares explicitly. Regardless and still as expected, relaxing the

column constraint in Kuroda-NC generally shows better performance for the column

18The complete set of 13 x 126 statistics for each method is included in the supplementary material.
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Table 2.4.: Average rankings of performance indicators for each method. A ranking
of 1 is best. Italics show better performing method based on objective type (entropy
and SSE-type). Bold shows overall best performing. No superscript, superscript r,
and superscript c indicates the metric for deviation from the individual elements, cost
structure, and row shares, respectively. The superscript s is the deviation from the
uncertain total cost constraint that must be imposed in RAS and Kuroda. Therefore,
the metric is only used for SPCE and Kuroda-NC.

Percentage change-based performance indicators

Method MAPE MAPEc MAPEr MAPEs WAPE WAPEc WAPEr WAPEs

RAS 3.18 3.52 2.14 - 1.31 2.88 2.27 -

SPCE 3.10 2.97 1.95 1.41 1.48 2.40 1.87 1.35

Kuroda 1.75 2.31 2.98 - 1.85 3.17 3.02 -

Kuroda-NC 1.83 1.06 2.79 1.56 2.96 1.40 2.70 1.63

Information-based performance indicators

Method φ φc φr φs ψ

RAS 2.54 3.37 2.04 - 2.13

SPCE 2.33 2.60 1.66 1.35 2.54

Kuroda 2.73 2.72 3.02 - 2.02

Kuroda-NC 2.25 1.16 3.13 1.63 3.10

and row-specific metrics. However, Kuroda seems to perform better for all of the

individual element errors with one exception. This is likely due to large swings in

the column sums when the constraint is relaxed in Kuroda-NC. In fact, we see larger

swings in total column sums for Kuroda-NC than with SPCE.

The large column sum swings in Kuroda-NC also greatly increases the performance

in preserving cost structure; Kuroda-NC greatly outperforms all other methods.

However, this seems to have some expense on the individual element error as well

as the row share. SPCE performs better than Kuroda-NC for row share. It is also

worth noting that Kuroda-NC outperforms SPCE with respect to individual elements

for the MAPE metric, while SPCE outperforms Kuroda-NC when the error values

are weighted by the values of the cells (i.e. the WAPE metric). This suggests that
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Figure 2.4.: A frequency chart of gains from relaxing total cost constraint in CE and
SSE-type objectives in terms of difference in WAPEr and WAPEc.

the Kuroda-NC method allows larger changes for cells with initially larger values.

Temurshoev et al. (2011) reached a similar conclusion when comparing (generalized)

RAS with Kuroda, which is also supported empirically here.

It is not clear if any of the four methods performs better for individual elements;

there is no clear distinction. However, we can see that SPCE outperforms RAS

on 8 of the 10 measures (excluding the column sum measures, superscript s, which

RAS outperforms by definition). We can also observe that SPCE performs better for

preserving cost structure and row share, while RAS performs better at total cost via

the hard constraint. The same is true for Kuroda and Kuroda-NC. Of course, the

motivation for the work is that this hard constraint is less reliable.

There is a clear trade-off between the perfect accuracy for total costs of sub-sectors

using RAS and Kuroda and best preserving important economic relationships in the

bottom-up data by relaxing the column constraint with either SPCE or Kuroda-NC.

Figure 2.4 and 2.5 illustrate this trade-off.
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While there are clear gains (i.e. difference in WAPE-based metrics) by relaxing

the total cost constraint, there are losses in terms of the column sums as defined by

the constraint.19 The losses can be quite large.

However, if there is either no information on the total costs or the information

is unreliable, as is the case described in this work, the losses shown in Figure 2.5

are largely meaningless. That is, how are we to evaluate error metrics if the true

value is unknown and the a priori sums considered unreliable? The burden is on the

individual researcher to evaluate which information exists, which information is more

reliable, and which relationships in the economic data is most important to preserve

in the balanced matrix.

It is worth noting that column constraints can still be placed on one or more of

the sub-sector totals in Kuroda-NC or SPCE without compromising the methods. In

this way, they are more general than their respective counterparts.

2.7 Conclusions

Matrix balancing methods are well-studied, highly effective, and efficient ways

to estimate matrix elements given incomplete or even conflicting information.

However, a majority of popular methods are unable to trade-off important economic

relationships (i.e. industry cost structure and relative contributions to input demand)

in the case where total industry costs (i.e. column sums) are unknown or unreliable.

One exception is Kuroda’s sum squared error-type approach, but there exists no

complementary entropy-theoretic approach for this specific case. In this work we

formulate a novel entropy approach to handle the case of unknown or unreliable total

cost information, termed share-preserving cross-entropy (SPCE).

The SPCE formulation allows the column sum constraint to be relaxed in a

constrained optimization formulation which preserves both cost structure and row

shares. Previous research for incorporating additional information in the literature

19The WAPE is used for these figures since it seems to be the most balanced indicator between the
four methods. The same insights appear using the other performance indicators as well.
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are easily integrated. This formulation does not replace existing formulations. This

is especially true considering the limitations of the performance evaluation using the

a priori matrix as the benchmark for comparing against existing formulations. These

formulations could potentially be evaluated against an aggregation of an observed

I–O where the original observed I–O could be used as the “true” benchmark. This

is outside the scope of this section because an unknown electricity-detailed matrix

motivates this particular work. Instead of replacing existing formulations, this work

builds on the previous work in this field and demonstrates the flexibility of the

constrained optimization form of CE in situations where the data type and application

preclude the more traditionally cited approaches for estimating matrix elements.

Beyond this extension, this paper implicitly advocates for the use of formulations

which are designed for the specific problem at hand; the gains can be considerable, as

demonstrated by the electricity disaggregation example. The formulation described in

this paper could be applied seamlessly to other matrix estimation problems involving

unknown column sums or where column sums have been previously constructed from

simple summation. Ultimately, the preferred disaggregation method is inseparable

from both the data available and the intended research objective.
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CHAPTER 3. THE RELATIONSHIP BETWEEN MATRIX BALANCING AND

MODELING

The previous chapter discussed an improved matrix balancing method for the

case where the component costs (i.e. levelized cost of electricity) are deemed more

important than the total column sums. The method relaxes the total column

constraint which improves the closeness of the balanced data to the original bottom-up

data.

This chapter shows that the choice of database reconciliation methodology has a

significant impact on modeling results. Four commonly used disaggregation methods

are compared: i) an pro rata method used by Marriott (2007), Lindner et al. (2013),

and Arora and Cai (2014), ii) minimum sum of column cross-entropy (MSCCE)

(Golan et al., 1994; Robinson et al., 2001), iii) RAS (e.g. Lahr and De Mesnard

(2004)), and iv) SPCE described above. The experiments use identical bottom-up

data to create different balanced matrices and are then taken as input to a simple

partial equilibrium (PE) model which allows us to analytically trace how different

disaggregation methods impact modeling results.

The modeling analysis focuses on three contemporary economic shocks. The first

is a technology-specific capital subsidy (e.g. an investment tax credit). This is useful

since it will highlight the value of preserving the cost structure in the sub-sectors. The

second example involves a shock to the price of natural gas (e.g. a result of the US

shale gas boom). Finally, a sector-wide capital tax (e.g. removal of a sector-wide tax

credit) is considered. This experiment illustrates the importance of preserving row

shares in the reconciled database. Model results are shown to be highly dependent

on the balancing methods used to construct a CGE database and flow directly from

the mathematical features of the algorithms.
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In current practice, the database construction methods used in IAMs are, at

best, not adequately documented. This point will only increase in importance

with the increasing demand for more highly resolved analysis of critical sectors in

IAMs. The results shown in this article advocate for greater introspection at the

database-modeling nexus. More broadly, the results should redirect attention back to

the validation of new and innovative CGE and IAM extensions. Finally, the results

provide evidence that the appropriate selection of matrix balancing methods can

reduce the overall deviation between bottom-up and top-down modeling.

3.1 Some Matrix Balancing Methods

The methods for disaggregation fall into two broad categories: ad hoc and

constrained optimization. Ad-hoc methods employ straightforward algebraic rules

to allocate the aggregate values across the different technologies. Constrained

optimization methods minimize a specific distance metric with respect to important

economic relationships, such as: i) cost structure (i.e. the share of an input cost

in total production cost of a sub-sector, cit) and ii) relative contributions to input

demand from the sub-sectors, rit.

Constrained optimization methods define the “closeness” metric explicitly via

the objective function - seeking to find a new matrix X which satisfies the column

and/or row totals while coming as close as possible to the original column and/or row

shares. Ad hoc methods target these shares implicitly. The most relevant constrained

optimization methods minimize entropy distance: i) MSCCE ii) RAS, and iii) SPCE.1

The most popular ad hoc method, and thus the one explored here, allocates value

in the matrix based on row share alone. This is also termed a pro rata distribution

method and can also be produced by removing the column constraint in the RAS

formulation (Temurshoev, 2012). Other ad hoc methods may be equally prevalent,

1In addition to entropy methods, Temurshoev et al. (2011) studies a number of alternate measures of
deviation. For consistency and clarity in comparison we only study cross-entropy based objectives.
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but are rarely publicly documented. Henceforth, ad hoc methods are synonymous

with the pro rata distribution.

3.1.1 Pro Rata Distribution

Despite the ubiquity of well-studied matrix balancing methods, ad hoc approaches

remain very popular in practice. The most prevalent of these is the pro rata-based

allocation (Marriott, 2007; Lindner et al., 2013; Arora and Cai, 2014). Here, the

matrix A is comprised of the implied value from the bottom-up, engineering-level

data (L0 and Q0) described in Section 2.1 and U is the input employment in the

original aggregate sector. The pro rata method allocates the original input value in

the aggregate sector by the following equation:

xit =
ait
ai•

· ui (3.1)

or equivalently, to demonstrate the uni-proportionality:

xit = r0it · ui (3.2)

Of course, this is a simplification of the pro rata-based methods used by Marriott

(2007), Lindner et al. (2013), and Arora and Cai (2014). Their disaggregations include

more detailed inputs than the illustrative ones presented here. Basic assumptions on

fuel inputs (e.g. coal to coal-fired power) and even more detailed assumptions on other

inputs (e.g. water transport is exclusive to coal-fired power and pipeline transport

is split between gas and oil power) are easily made. However, the general intuition

is the same: row share-based allocation in the cases where no exact assumption of

values on X can be made. Two key points are: i) cost structure is not specifically

considered in the pro rata method and ii) there can be no total cost or any other

informational constraint. These can be readily implemented in the context of

constrained optimization methods to follow.
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3.1.2 Minimum Sum of Column Cross-Entropy (MSCCE)

The minimum sum of column cross-entropy (MSCCE), as proposed by Golan et al.

(1994) and extended by Robinson et al. (2001), focuses on cost structure, but does

not specifically focus on row shares. The constrained optimization problem, in its

most simplified form, is as follows:

min
cit

∑
i

∑
t

cit · ln cit
c0it

(3.3)

subject to:∑
t

cit · vt = ui (3.4)

∑
t

cit = 1 (3.5)

0 ≤ cit ≤ 1 (3.6)

where c0it is the original cost structure implied by A and where ui and vt are the given

row and column sums, respectively, which ensure consistency with the top-down data.

The optimal cit result can be readily be transformed to xit by multiplying them by

the value of output for a given technology.

A key weakness of MSCCE is that the ordering of relative input intensities between

technologies (i.e. row shares) is not always preserved (McDougall, 1999). This can

have adverse consequences for economic modeling, as detailed in Section 2.4.

3.1.3 RAS

The biproportionate adjustment (RAS) method attempts to preserve both

economic relationships (i.e. cost structure and row share) by targeting the elements

of matrix A, specifically. RAS is not always treated as a constrained optimization

problem, but can be formulated with Equations 2.14, 2.11, 2.12.

This reflects a “true” cross-entropy formulation and is related to MSCCE as a

weighted sum of column cross-entropy. While the divergence between X and A
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may be greater than in MSCCE, the basic RAS solution preserves the ordering of

input intensity (McDougall, 1999). Robinson et al. (2001) acknowledge that the RAS

approach may be better suited to cases where both cost structure and row shares are

important, as is generally the case for CGEs and IAMs.

3.1.4 Share Preserving Cross-Entropy

The MSCCE and RAS approaches both require column sum constraints (Eq.

2.11 and Eq. 2.12, respectively), whereas the pro rata approach has none. These

constraints ensure a fit to an observed total cost for each sub-sector when such

an observation exists. When data on the total cost associated with individual

technologies does not exist, or where targeting relationships rather than totals is

judged to be of more importance, the column sum constraint may unnecessarily

restrict the problem (Peters and Hertel, 2015b). One convenient comparative feature

for this exercise is that the result collapses to RAS when the column constraint

is included. Recall, the formulation can be given by Equations 2.17 and 2.11 and

explicitly balances both cost structure, cit, and row share, rit. This formulation is

easily compared with both the pro rata and constrained optimization approaches

because SPCE does not require any assumption on total cost for the sub-sectors.

3.2 Comparison of Construction Methods

In summary, there are two primary considerations when selecting a matrix

balancing method: i) an objective which seeks to preserve important economic

relationships (i.e. row share and/or cost structure) and ii) required constraints (i.e.

total input employment (row) and/or total cost (column) constraints). Here, the

required constraints are independent of additional informational constraints and refer

only to requirements of the method itself. Table 3.1 shows how MSCCE, RAS, SPCE,

and the pro rata approach fit into these categories.
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Table 3.1.: Mathematical considerations for comparing matrix balancing methods

Consideration MSCCE RAS SPCE Pro rata

Objective
- Row share Row share Row share

Cost structure Cost structure Cost structure -

Required
Constraints

Total row Total row Total row Total row

Total column Total column - -

Because of the interdependent relationships between the objective, the constraints,

and disparities in data sources, it is difficult to reach general conclusions about an

algorithm’s usefulness. However, some expectations from this investigation can be

formed (all of which assume no additional informational constraints and required

constraints are the identical if required).

If the total cost constraint values for RAS are the same as those implied by the

pro rata method, then the RAS result is equivalent to the pro rata result. However,

it is worth noting that, despite this equivalence, both the RAS and SPCE allow for

additional information via the constraint set. Also, as mentioned before, it is not

necessary, but a total cost constraint can be imposed on SPCE. If the optional total

cost constraint on SPCE is the same as the required constraint on RAS, the two

methods are equivalent.

The objective function determines whether the balancing method preserves row

share, cost structure, or both. The MSCCE objective considers only cost structure

while sacrificing row share, and the pro rata method considers only row share, while

neglecting cost structure. The RAS and SPCE objectives attempt to preserve both,

but in doing so sacrifice both (although likely to a lesser degree than MSCCE and

pro rata).

Required constraints may prevent an algorithm from preserving economic

relationships. The row total constraint is required in all cases for CGE consistency;
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however, the total cost constraint can be relaxed.2 MSCCE and RAS require total

cost constraints; pro rata and SPCE do not. Imposing total cost constraints may

prevent the algorithm from preserving the cost structure objective because the total

cost is not flexible to preserve the economic relationship of the individual elements.

The row constraints impact the overall possible “closeness” of the balanced top-down

data to the unbalanced bottom-up data. These constraints increasingly prevent

preserving economic relationships as the constraints become increasingly restrictive

(i.e. increasing disparity between bottom-up and top-down data).

Assuming no additional constraints beyond those required, the objective and

constraints imply a certain ordering of how well each algorithm preserves both row

share and cost structure. Here, ordering is only relevant when viewing the entirety

of the matrix; ordering may not hold for individual elements. First, the pro rata

methodology perfectly preserves row share while MSCCE makes no consideration

whatsoever of the row shares. Therefore, SPCE and RAS lie somewhere in between.

Second, SPCE will preserve cost structure better than the pro rata method, given

that SPCE explicitly considers this in the objective function. Also, MSCCE should

perform better than RAS with respect to cost shares, since there is no trade-off

with preserving row share. These expectations are summarized later, along with the

numerical results in the following sections, in Figure 3.4.

3.3 Disaggregated Matrices and Numerical Comparison

As mentioned previously, many researchers attempt to disaggregate

CGE-consistent databases using detailed economic or technological data. If

the bottom-up technical data and the aggregate economic data match perfectly, the

balancing problem is moot; however, in practice the two data sources invariably

differ, sometimes by a large margin. For example, the top-down GTAP data

estimates less capital, coal, and gas employment and more O&M employment in

2The total row constraint also constrains the total value in the balanced database to the original
value in the top-down data (i.e. the sum of row constraints equals the original total sector value).
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the total electricity sector than the unbalanced matrix assembled directly from the

bottom-up data, A (Table 2.3). Therefore, the ensuing differences between the

matrix balancing algorithm results can be attributed to both the balancing method

(the focus of this work) and the magnitude of discrepancy between the bottom-up

data and the top-down economic data.

In this section, pro rata, MSCCE, RAS, and SPCE-based disaggregations are

constructed for the 129 GTAPv8 regions using the type of data outlined in Section 2.1

(i.e. annual GWh production and levelized costs fit to the GTAP input employment

data). Table 3.2 shows the results for the United States for each balancing method,

and Table 3.3 shows the average deviation (in absolute value) from the bottom-up

data for each matrix balancing method - again for the United States.

The disaggregated electricity sectors for the United States (Table 3.2) show three

main points. First, the unbalanced, bottom-up matrix, A, has different total input

employment values in the sector (row totals shown in Table 3.2) than the balanced

matrices, all of which conform to the top-down data. However, as discussed in Section

2.3, the input employment for the balanced matrices must match that of the original

electricity sector in the GTAP data. This is a major source of deviations shown in

Table 3.3.

Second, expanding on the previous point, the total input employment of fuels

from the bottom-up and top-down do not match. The fuel inputs are specific to a

technology (i.e. coal to coal power, gas to gas power, and oil to oil power). This drives

some of the deviations for the methods which attempt to preserve the cost structure

of the technology because the fuel input value is inflexible.

Third, both MSCCE and RAS require a total cost constraint for each of the

disaggregated technologies and are constrained to match the values in implied in A.

However, the pro rata and SPCE methods do not require such a constraint and, in

some cases, deviate greatly from the bottom-up data. This is especially true for the

gas sector, a fuel-intensive technology, where the total costs of the sector are much

lower for the unconstrained methods (pro rata and SPCE). SPCE has flexibility to
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Table 3.2.: Disaggregated electricity sector for the United States using different approaches
(A, pro rata, MSCCE, RAS, and SPCE) in 2007 US$

A

Nuclear Coal Gas Oil Hydro Wind Solar Total

Capital 33,985 61,938 9,744 1,313 33,091 3,103 504 143,679

O&M 16,487 27,782 5,816 2,642 4,936 855 43 58,560

Coal 0 63,625 0 0 0 0 0 63,625

Gas 0 0 84,065 0 0 0 0 84,065

Oil 0 0 0 24,823 0 0 0 24,823

Total 50,472 153,345 99,626 28,778 38,027 3,958 546

Pro rata

Nuclear Coal Gas Oil Hydro Wind Solar Total

Capital 28,137 51,280 8,067 1,087 27,397 2,569 417 118,955

O&M 39,869 67,185 14,066 6,390 11,936 2,067 103 141,615

Coal 0 42,782 0 0 0 0 0 42,782

Gas 0 0 47,288 0 0 0 0 47,288

Oil 0 0 0 24,111 0 0 0 24,111

Total 68,007 161,247 69,422 31,588 39,333 4,636 520

MSCCE

Nuclear Coal Gas Oil Hydro Wind Solar Total

Capital 32,641 32,447 8,901 1,350 39,017 3,949 649 118,955

O&M 32,388 83,151 11,147 3,746 9,978 1,150 55 141,615

Coal 0 42,782 0 0 0 0 0 42,782

Gas 0 0 47,288 0 0 0 0 47,288

Oil 0 0 0 24,111 0 0 0 24,111

Total 65,029 158,380 67,337 29,207 48,995 5,100 704

RAS

Nuclear Coal Gas Oil Hydro Wind Solar Total

Capital 25,991 48,392 7,039 705 33,517 2,753 558 118,955

continued on next page
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Table 3.2.: continued

O&M 39,038 67,206 13,009 4,391 15,478 2,347 146 141,615

Coal 0 42,782 0 0 0 0 0 42,782

Gas 0 0 47,288 0 0 0 0 47,288

Oil 0 0 0 24,111 0 0 0 24,111

Total 65,029 158,380 67,337 29,207 48,995 51,00 704

SPCE

Nuclear Coal Gas Oil Hydro Wind Solar Total

Capital 25,991 48,392 7,039 705 33,517 2,753 558 118,955

O&M 39,038 67,206 13,009 4,391 154,78 2347 146 141,615

Coal 0 42,782 0 0 0 0 0 42,782

Gas 0 0 47,288 0 0 0 0 47,288

Oil 0 0 0 24,111 0 0 0 24,111

Total 65,029 158,380 67,337 29,207 48,995 5,100 704
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Table 3.3.: Percentage deviation (mean absolute percentage deviation across inputs
and technologies) between the economic relationships before, A, and after balancing
for the United States. Ordering in parentheses.

Cost structure deviation Row share deviation Cell deviation

A 0 0 0

Pro rata 0.344 (4) 0 (1) 0.341 (3)

MSCCE 0.201 (1 ) 0.129 (4) 0.232 (1)

RAS 0.336 (3) 0.072 (3) 0.378 (4)

SPCE 0.315 (2) 0.044 (2) 0.326 (2)

preserve the cost structure where the value of gas input implied by the bottom-up

data is higher than the gas input value in the GTAP data. Table 3.3 shows the mean

absolute percentage deviations (Butterfield and Mules, 1980) from cost structure and

row share for the different methods.

The ordering of mean absolute percentage deviation between the bottom-up data

and the data after balancing is consistent with the expectations outlined previously.

MSCCE dominates RAS and SPCE, which in turn dominate pro rata in cost structure

preservation. The pro rata method perfectly preserves row share and both RAS and

SPCE dominate MSCCE on this metric. Also as expected, SPCE outperforms RAS in

both cases, because SPCE does not require a possibly restrictive total cost constraint.

The pro rata and SPCE methods may outperform the MSCCE and RAS methods

in either economic relationship if the total cost constraint is highly restrictive. As

McDougall (1999) suggests, MSCCE generally preserves the original cell values better

than the others.

The ordering shown for the United States in Table 3.3 generally holds for all 129

regions. Figure 3.1 shows percentage error for each region (averaged across inputs

and technologies, in absolute values) between the cost structure (Figure 3.1a) and

row shares (Figure 3.1b) in the balanced data and those implied by the bottom-up

data for each method.
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Figure 3.1.: Histograms of percentage deviation between bottom-up and balanced
data in each region for both cost structure (a) and row share (b) - where deviation
is the absolute percentage deviation averaged across inputs and technologies in each
region.

The results across the 129 regions show numerically that the deviation between

row share, rit and r
0
it, are generally ordered from least to greatest deviation as follows:

pro rata (zero by definition), SPCE, RAS, MSCCE. The ordering for the deviation

between cost structures, cit and c0it, is somewhat reversed: MSCEE, SPCE, RAS,

followed by pro rata. This ordering is not necessarily identical in each region, but

indicates a general tendency that is again consistent with the expectation from the

mathematical structure of the matrix balancing methods.

The specific example of the United States shows what the deviation between the

bottom-up data and balanced data might look like in terms of values and magnitude

of deviation. The ordering of the dominance between balancing methods across the

129 regions in GTAP shows that these results are consistent with the expectations

from the mathematics of the methods.

The next section demonstrates how these deviations manifest in the ensuing

economic analysis based on these diverse databases. It illustrates the importance

of preserving both the cost and row share economic relationships in order to ensure

the model results using balanced data are as consistent as possible with the model

results using bottom-up data. The shocks chosen for the simulations represent the
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type of technological (e.g. shale gas extraction) and policy shocks (e.g. investment

tax credits) prevalent in the electric power sector and commonly investigated using

IAMs.

3.4 Economic Implications of Alternative Database Construction Methods

This section explores common energy and environmental-related shocks in the

context of a model which is broadly representative of those employed in IAMs,

but tractable enough to follow how economic relationships in a database map to

modeling results. Therefore, a simple partial equilibrium (PE) representation of the

electricity sector is presented in this section. It is for illustration only and is not

an adequate representation of the electricity sector for use in a full-blown IAM, nor

is it representative of the current state of electricity research.3 Rather this model is

designed to clearly identify where and how differences in cost structure and row shares

evidence themselves in modeling results for the electric power sector. The simple

model implemented here assumes there is no trade in electricity, so the equations

can be written for each region separately. Therefore, the regional index is dropped

for clarity and conciseness without loss in generality. The simulations focus on the

United States because of the availability of quality bottom-up data, but could be

readily extended to other regions.

The model is represented in linearized form in order to highlight the role of key

economic relationships, including key row and column shares. The ‘hat’ notation in

Figure 3.2 refers to percentage changes in the associated levels variables. It is solved

as a non-linear, initial value problem using the GEMPACK software suite (Harrison

et al., 2014). The price responsiveness of electricity demand is represented via a single,

aggregate demand elasticity, μ (Eq. PE1), which aggregates the demand responses of

retail, commercial and industrial activities. The electricity sector production process

3There are numerous studies on the electricity sector using partial equilibrium analysis which capture
a vast quantity of engineering-economic interactions. The purpose here is to precisely show the
interaction between the balancing methods and model results, rather than the precise sectoral
interactions.
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is characterized by a quantity-preserving constant elasticity of substitution (QCES)

production function which aggregates power generated from different technologies

based on the CES parameter, σ, which yields a set of derived demands for electricity

produced from specific technologies (Eq. PE3). Each individual power generating

technology demands fuel, O&M and capital in fixed proportion to generation (i.e.

Leontief production) (Eq. PE5).

Prices for electricity produced by each technology and the aggregate electricity

good are assumed to cover costs, leaving no excess economic profits (Eq. PE4 and

Eq. PE2, respectively) which is consistent with average cost pricing in a regulated

market. Exogenous price shocks enter into the model by shifting the supply price of

the input to electricity generation (Eq. PE6). The supply of inputs to the generating

technologies is assumed to be perfectly elastic in this simple model (Eq. PE7).

This simple framework is used to demonstrate the effect which different supply

shocks, t̂it, have on the model economy. Again, the bottom-up data and the PE

model (Eq. PE1–PE8) are identical across the experiments. Therefore, all variation

in results comes from the balancing method.

3.4.1 Simulation to Highlight the Role of Cost Structure in Modeling

Cost structure preservation comes into play when there is a shock to a particular

input to a particular technology (e.g. investment tax credit for a certain technology,

fuel price). In order to show the importance of preserving cost structure within each

individual technology, a price shock is applied to only one sector. Table 3.4 shows the

capital intensity of each generating technology in the bottom-up data (A) and after

balancing using each method described above. The capital share in the cost structure

of gas power is highlighted with a dashed box. The first simulation applies a -30%

shock to the cost of capital for gas-fired power only (t̂i,Gas = −30).4

4This serves as the most straightforward example; a more relevant example in the context of IAM
is presented subsequently (i.e. a negative price shock to gas as result of the shale gas extraction
technology).
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Table 3.4.: Capital intensity in the cost structure of technologies after matrix
balancing procedures for the United States (sVk,t)

sVk,t

Technology A Pro rata MSCCE RAS SPCE

Nuclear 0.673 0.414 0.502 0.400 0.416

Coal 0.404 0.318 0.205 0.306 0.316

Gas 0.098 0.116 0.132 0.105 0.096

Oil 0.046 0.034 0.046 0.024 0.034

Hydro 0.870 0.697 0.796 0.684 0.699

Wind 0.784 0.554 0.774 0.540 0.557

Solar 0.922 0.802 0.921 0.792 0.803
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Production Nest Equation Description No.  

 

 Final electricity demand (PE1) 

 Final electricity price – zero profit, 
average cost pricing (PE2) 

 CES derived demand for individual 
technologies (PE3) 

 Price of generating technology – zero 
profit, average cost pricing (PE4) 

 Leontief derived demand for inputs (PE5) 

 Supply price for generating 
technology (PE6) 

 Infinite factor supply elasticity (PE7) 
  Total input employment in electricity 

sector (PE8) 

The hat accent designates a variable measured in percent change. 
 is the percent change in total electricity production. 
 is the percent change in price of electricity. 

μ is the elasticity of demand for total electricity. 
 is the quantity share of production from technology t in the electricity sector. 
 is the percent change in price of electricity from technology t. 
 is the percent change in GWh production from technology t. 

σ is the quantity-preserving CES parameter. 
 is the value share of input i in technology t. 

 reflects the supply price for input i faced by technology t. 
 is the percent change in input i used in technology t. 
 is the percent change in price for input i for use in technology t. 
 is an exogenous shock to price. 
 is the total employment of input i in the electricity sector. 

 

 

   

   

 

Figure 3.2.: Production structure for the simple PE model of the representative
electricity sector



63

MSCCE is generally closer than the other methods to the capital share values

implied by the bottom-up data with the exception of gas power and coal power where

the deviation is comparatively large. This raises questions regarding the MSCCE

method’s ability to preserve cost structure despite (and probably a result of) focusing

only on this in the objective.

Focusing on gas power, both the capital cost share in the RAS and SPCE

approaches are closer to the bottom-up data than the pro rata approach because

the pro rata method has no specific objective to preserve cost structure. The SPCE

approach outperforms the RAS in this case because SPCE does not require a total

cost constraint which allows additional flexibility to conform to the bottom-up data.

Table 3.5 shows that the results flow directly from the deviations from the

bottom-up data. The pro rata, MSCCE, and RAS methods overestimate capital

intensity (sVk,gas) in the gas power sector, thereby overestimating the price of gas power

(p̂tgas) in Eq. PE4 and overestimating production changes (q̂tt) for all technologies

in Eq. PE3, while the SPCE underestimates only slightly.

Table 3.5.: Targeted technology policy: a -30% shock to the price of capital for gas
power in the United States

Percent change in production (GWh) by technology (q̂tt)

Technology A Pro rata MSCCE RAS SPCE

Nuclear -3.317 -3.957 -4.517 -3.550 -3.254

Coal -3.317 -3.957 -4.517 -3.550 -3.254

Gas 13.017 15.531 17.730 13.934 12.770

Oil -3.317 -3.957 -4.517 -3.550 -3.254

Hydro -3.317 -3.957 -4.517 -3.550 -3.254

Wind -3.317 -3.957 -4.517 -3.550 -3.254

Solar -3.317 -3.957 -4.517 -3.505 -3.254

These results can be attributed to the deviation for this particular cell, (sVk,gas) of

the balanced matrices. The results may not deviate for shocks to other cells; however
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the implication is the same: deviations should be minimized for each cell in the matrix

balancing method.

The shock to the price of capital in gas power in the United States is shown because

the connection from cost structure to model results is transparent and tractable.

However, the price of capital for gas is not terribly relevant in the context of energy,

electricity, climate, and other policies that IAMs have proven useful for - although a

similar shock on different sector might be more relevant (e.g. investment tax credit

for renewables). Therefore, another relevant example is the glut of gas in the United

States due to shale oil and gas extraction technology. Wellhead gas prices in the

United States dropped roughly 67% from 2007 to 2012. If natural gas export terminals

are constructed, then the rest of the world may also enjoy lower gas prices. A 40%

decrease in gas price is applied to each of the 129 regions in the GTAP database

(t̂gas,gas,r = −40). Figure 3.3 shows a frequency chart of the absolute percentage

deviation of each matrix balancing method result as compared to the bottom-up data

(A).5

The MSCCE and RAS results are identical because the share of fuel in gas power

is given by the employment of gas in the total electricity sector and the total cost

is constrained. The total cost is flexible for the pro rata and SPCE methods, so

the fuel shares may differ. The results clearly demonstrate that the SPCE, RAS,

and MSCCE, which consider cost structure in their objectives, dominate the pro rata

method, which does not. However, it is difficult to discern any dominance between the

SPCE, RAS, and MSCCE methods. The average across technologies of the absolute

percentage deviations for each balancing method are 22.83% for ad-hoc, 19.66% for

RAS and MSCCE, and 18.47% for SPCE. The same results (i.e. SPCE, RAS, and

MSCCE dominating ad-hoc) are found in other simulations, such as a capital subsidy

for solar and wind power and a simple carbon-based tax on coal power and gas power,

5Due to the simple nature of the PE model, the magnitude of the price shock does not have any
significant impact on the percentage deviations between the balanced and bottom-up data (e.g.
Figure 3.3). That is, the frequency chart looks almost identical regardless of the magnitude of the
price shock applied in each region (regions are independent from one another).
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Figure 3.3.: Histogram of absolute percentage deviation from bottom-up model results
and balanced data model results from a -40% shock to the price of gas in each of the
129 GTAP regions.
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but to varying magnitudes. The general conclusion is that pro rata model results are

less consistent with the bottom-up data model results than methods which explicitly

preserve cost structure.

3.4.2 Simulation to Highlight the Role of Row Shares

Row share preservation primarily applies to a shock to an input shared by multiple

technologies (e.g. investment tax credit across multiple technologies, labor taxes).

Recall that Table 3.4 shows that MSCCE deviates from the bottom-up data for cost

structure of capital in gas power and coal power. Another way to see this discrepancy

for gas power and coal power is by capital employment across technologies (row share)

in Table 3.6 below.

Table 3.6.: Capital employment across technologies (i.e. row share) after matrix
balancing procedures for the United States

Share of total capital employment in electricity sector

Technology A Pro rata MSCCE RAS SPCE

Nuclear 0.237 0.237 0.274 0.218 0.286

Coal 0.431 0.431 0.273 0.407 0.413

Gas 0.068 0.068 0.075 0.059 0.052

Oil 0.009 0.009 0.011 0.006 0.009

Hydro 0.230 0.230 0.328 0.282 0.215

Wind 0.022 0.022 0.033 0.023 0.023

Solar 0.004 0.004 0.005 0.005 0.003

Total 1 1 1 1 1

As expected, the pro rata method perfectly preserves the row share relationship.

RAS and SPCE deviations are relatively similar which indicates the total cost

constraint in RAS may not be overly restrictive in this particular case. Here, MSCCE

shows a switch of ordering in row share between nuclear and coal power (shown in
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bold in Table 3.6). A numerical simulation of a capital tax across all technologies

is provided in Table 3.7 by implementing a uniform capital price shock of 10% (t̂it).

A capital price shock is representative of a tax or subsidy on electricity generation

investment. Investment tax credits for renewable generation is a widely used policy

tool to promote renewable energy and crowd-out investment in carbon-intensive

generation. Here the policy is applied to all generation types to make the connection

between matrix balancing and model results clear and tractable.

Table 3.7.: Shared input policy simulation: 10% shock to the price of capital in the
United States electricity sector

Percent change in production (GWh) by technology (q̂tt)

Technology A Pro rata MSCCE RAS SPCE

Nuclear -13.607 -5.885 -11.3 -5.779 -6.231

Coal -0.951 -1.298 2.882 -1.266 -1.417

Gas 14.476 8.730 6.511 8.723 9.511

Oil 17.217 12.933 10.886 12.854 12.683

Hydro -22.307 -18.800 -24.318 -18.772 -19.107

Wind -18.557 -12.419 -23.384 -12.300 -12.755

Solar -24.517 -23.362 -29.535 -23.464 -23.638

The positive price shock, t̂it, increases, p̂sit (Eq. PE6). The ensuing impact of

p̂sit on p̂tt depends on the input share sVit (Eq. PE4) which is where the differences

in matrix balancing method enter the model. The matrix balancing methods affect

the result of interest, q̂tt, via the substitution between technologies base on relative

cost of technology, p̂tt (Eq. PE3).

The results indicate that the large deviation in row share for coal power using

the MSCCE method is translated directly to the deviation in model results. The

direction of change is opposite those implied by the bottom-up data. The major

implication is that, in the case of a uniform input price shock (e.g. tax break for capital
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investment for renewable power) with substitutability between sectors, MSCCE can

lead to opposite interpretations of model results even with the simplest of models.

3.5 Discussion

Divergent results from bottom-up and top-down modeling are well-known (Grubb

et al., 1993), and there is constructive research regarding the relative merits and

reducing divergence between both approaches (e.g. Böhringer (1998); McFarland

et al. (2004)). The important takeaways here pertain to the reasons the results of

different top-down models might diverge even in the case of identical bottom-up

data. The divergence is the result of two primary factors: i) disparate bottom-up and

top-down data and ii) the preservation of economic relationships (i.e. row share and

cost structure) after the matrix balancing method which fits the bottom-up data to

the top-down data. Of primary interest to this study are the discrepancies caused by

the matrix balancing methods.

3.5.1 Disparate Bottom-Up and Top-Down Data

Moving to a CGE/IAM framework requires that the engineering data conforms to

data on the circular flow of the economy, which are important in certain analyses. For

example, Hazilla and Kopp (1990) and Bergman (1991) conclude general equilibrium

impacts, such as input prices, output prices, and allocation of resources in the

economy, can be “significant and pervasive” in the context of environmental policy.

Unfortunately, the two data sources tend to differ, sometimes by large margins. The

bottom-up data is constructed from levelized (i.e. annualized) costs of electricity by

technology and total production while the top-down data is constructed by targeting

prices of electricity, cost structure, and production data (where available) in GTAPv8.

The sources and type of data are disparate.

For example, Table 2.3 shows that the share of O&M is much higher in the

top-down database which draws cost away from capital and fuels. Still, in moving to a
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CGE model, the balanced database must conform to the values in the top-down data

via the total input employment constraint in the balancing methods described above.

The constraint contributes to a large portion of the difference between the results,

but is none-the-less necessary to move toward a CGE model which may be a more

holistic representation of the economy as compared to the bottom-up representation.

3.5.2 Preserving Cost Structure and Row Share

Section 3.4.1 simulated a technology-specific capital price shock and a shock to

the price of gas. These simulations demonstrate that preserving the cost structure for

individual technologies can be important. The pro rata model does not specifically

consider cost structure; inputs are allocated solely based on row share. The RAS

and SPCE approaches, which specifically consider cost structure along with row

share, conform closer to the bottom-up data and, therefore, the bottom-up model

predictions. It is worth noting that the MSCCE may have large cost structure

deviations for some technologies (e.g. coal-fired power in Table 3.4) which may be

unattractive for policies targeting these technologies.

Section 3.4.2 simulated an electricity sector-wide shock to the price of capital.

The MSCCE method implied an opposite result for one of the technologies. This

can be attributed to the absence of consideration of the row share relationship in

the MSCCE objective function. MSCCE does not specifically preserve row share, so

when a shock is applied which pertains to relative input employment between sectors

an opposite result may occur. Even if the result does not turn out to be opposite, it

is still less convincing after observing this simulation.

3.5.3 Selecting an Appropriate Matrix Balancing Method

The decision on which matrix balancing method is most appropriate for the

research task at hand depends on several factors and is highly case-specific. The

initial decision is whether to include a total cost constraint. This depends on the
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available bottom-up data and will drive the selection of matrix balancing method.

Figure 3.4 summarizes the insights from the mathematical structure discussed in

Section 3.2 which then tie this to the modeling results from Section 3.4, and charts

the path to selecting an appropriate matrix balancing method for CGE and IAMs

(Figure 3.5).

If there are no data on input costs to technologies, then total cost may be the only

way to differentiate sectors. Also, if the researcher wishes only to shock the outputs of

the new sectors (e.g. subsidy on renewable technologies) rather than the input prices

in the new sectors, perhaps total cost might be preserved while sacrificing some of

the component cost detail. In this case, where a total cost constraint is desired,

SPCE and RAS are equivalent. A total cost constraint cannot be imposed on the pro

rata method, thereby rendering it impotent for this particular information set. The

numerical simulations of the RAS/SPCE and MSCCE methods show that there is no

clear dominance in method in the cost structure case. That is, RAS/SPCE performs

better for some sectors while MSCCE performs better for others (Table 3.4). However,

RAS/SPCE performs much better in the case of the row share relevant simulations

(Table 3.6) which implies that the SPCE/RAS might be the best selection when both

relationships are relevant.

Alternatively, if technology specific input costs are available in the bottom-up

data (e.g. levelized costs as is the case here) and the researcher wishes to shock input

prices in the new sectors, the restrictive total cost constraint can be removed. In this

case the applicable methods are the pro rata and the SPCE approach, because the

basic MSCCE and RAS approaches require a total cost constraint. The mathematical

properties imply and the numerical simulations show that SPCE performs better in

terms of model results in the case of preserving cost structure (Table 3.5 and Figure

3.3) while the pro rata performs marginally better in preserving row share (Table

3.6). On balance, the SPCE seems to outperform the pro rata method when both

relationships are important. It is also worth noting that pro rata methods are unable
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Equivalence 
E1 RAS = pro rata - If total cost constraint for RAS is identical to total costs implied by pro 

rata, then the two are equivalent. 
- RAS still allows for information on total cost. 

E2 SPCE = RAS - If total cost constraint is added as information to SPCE, the two are 
equivalent. 

Cost structure preservation 
C1 SPCE > pro rata - SPCE considers cost structure in the objective. 
C2 MSCCE > RAS - RAS sacrifices some cost structure preservation for row share. 

- Individual elements may differ in ordering (e.g. RAS result may be closer 
than the MSCCE for certain elements), but as a whole MSCCE > RAS. 

C3 SPCE ~ MSCCE - The level of restriction from the total constraint required by RAS and 
MSCCE will determine ordering. 

Row share preservation 
R1 Pro rata > all others - Pro rata perfectly preserves row shares. 
R2 RAS and SPCE > 

MSCCE 
- MSCCE has no consideration of row shares. 

 

Figure 3.4.: Considerations for selecting an appropriate matrix balancing method
– insights from algorithms. These only hold when no additional informational
constraints are present.

Total cost 
constraint? 

Restrictions and 
equivalence 

Cost structure 
important? 

Row share 
important? 

Both 
relationships 
important? 

No - RAS not possible 
- MSCCE not possible 

- SPCE > pro rata (C1) - pro rata > SPCE 
(R1) 

SPCE > all 

Yes - SPCE = RAS (E2) 
- pro rata not possible 

- RAS/SPCE ~ 
MSCCE (E2, C3) 

- RAS/SPCE > 
MSCCE (R2) 

RAS/SPCE > all 

 

Figure 3.5.: Considerations for selecting an appropriate matrix balancing method -
Insights from modeling. The corresponding insight from the algorithm (Figure 3.4)
are in parentheses
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to leverage the vast research on incorporating additional information and reliability

of information in constrained optimization (Lahr and De Mesnard, 2004).

It is more than likely that both cost shares and row shares will eventually be of

importance in most CGE/IAM projects. While researchers may have a particular

shock or set of shocks in mind initially, the models are often subsequently used for

simulations for which it was not originally designed. Given this, the SPCE method

is the most flexible method and preserves both economic relationships, thereby

providing results which are the most consistent with the original bottom-up data

over the largest set of shocks.

3.6 Conclusions and Broader impacts

Using a simple partial equilibrium model, the deviation between results with

bottom-up data and balanced data stem from two primary sources: i) differences

between the bottom-up and top-down data and ii) the matrix balancing methodology

used to conform the dataset when there are disparate data. If the database implied by

the bottom-up data match that of the top-down data, there is no need for the matrix

balancing method at all. Unfortunately, that is rarely, if ever, the case, and the data

balancing methods are necessary. This work shows that the modeling differences can

be quite large based on the selection of matrix balancing method which necessitates

close consideration, justification, and documentation.

This section explored four matrix balancing methods which are commonly

employed to create a consistent CGE/IAM database and the implications each has

on economic modeling. Their mathematical constructions (i.e. the objective and

constraints) provide some insight into how they might perform in relation to two

important economic relationships (i.e. cost structure and row share). The analytical

investigation is supported by numerical examples in a simple disaggregation of the

electricity sector. Identical data is used for each method. The numerical results are
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generally consistent with their mathematical constructions regarding the economic

relationships.

Numerical simulations showed the relevance of these economic relationships

in modeling. The alternative balancing methods, despite identical original data,

differed from the original bottom-up data results depending on their mathematical

constructions and ability to preserve the economic relationships. In these experiments

the original bottom-up data, partial equilibrium model, and simulations were control

variables. The matrix balancing methods directly drove the modeling results.

Selecting an appropriate matrix balancing method will help decrease the

divergence between bottom-up and top-down models. The SPCE method outperforms

the other methods both in flexibility (i.e. it is the only method which can be used

with and without a total cost constraint) and where both economic relationships are

important, which is the most likely case.

The implications for large-scale CGE and IAM modeling are straightforward.

First, the best way to reduce deviation introduced by the matrix balancing methods

is to inform the top-down data with the bottom-up data, and vice versa. Second,

in cases of disparate bottom-up and top-down data, the balancing method matters.

Finally, the database construction efforts, which includes the matrix balancing, should

be considered closely, justified, and documented. Moving forward data construction

elements of CGE and IAM modeling efforts should be publicly documented with

data and methods posted online to promote continuous improvement at the

data-database-modeling nexus. This is an under-researched, but critical, aspect of

IAM research and critical to the long-run credibility of this important work.
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CHAPTER 4. CONSTRUCTING THE GTAP-POWER DATABASE

This work documents a tractable disaggregation methodology for the regional

electricity sectors in GTAPv9 database which leverages available data and various

matrix balancing techniques. The result is a transparent GTAP-Power database

where specific limitations and improvements in techniques can be identified by both

researchers and GTAP community members. The database will be published in

hopes of continuous improvement and greater consistency in the base data amongst

researchers modeling the electricity sector.

The GTAP-Power database is an extension of the GTAPv9 database in that it

includes all of the data included in the GTAPv9 database. Peters (2015) provides

corresponding data files and GAMS file ely disagg 2011.gms which performs the

GTAP-Power disaggregation for base year 2011.

4.1 Data

Recall the data used in the disaggregation for GTAP-Power are: i) electricity

production (in GWh) by fuel source (IEA, 2014, 2015; EIA, 2015), ii) total value

of inputs (in base year USD) to an aggregate electricity sector for each source (i.e.

domestic and import), and type (i.e. basic and tax) for base years 2004, 2007, and

2011 (Aguiar et al., 2012), and iii) levelized (i.e. annualized cost per GWh) capital,

operating and maintenance (O&M), fuel, and effective tax costs of electricity for

select generating technologies and regions (IEA/NEA (2010); various sources). These

databases are represented as matrices Q0, U0, and L0 with elements q0f , u
0
iab, and l

0
ct,

respectively. These data are available over an addition index, r, which covers the 140

regions in the GTAPv9 database, but this index is dropped in most of the following
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notation because the regional disaggregations can be performed independently. The

super-script 0 identifies these as original data sources.

The set f is the set of original technologies in the IEA database which are not

differentiated based on operational characteristics (i.e. base versus peak load). The

matrix, Q0, with elements q0f refers to the total electric output by each generating

technology in the IEA database for each region. The EIA database was used to help

fill missed regions in IEA.

The set t consists of the disaggregated sectors, transmission and distribution

and all generating technologies. These are: transmission and distribution (‘T&D’),

seven base load technologies (‘NuclearBL’, ‘CoalBL’, ‘GasBL’, ‘HydroBL’, ‘OilBL’,

‘WindBL’, and ‘OtherBL’), and four peak load technologies (‘GasP’, ‘OilP’, ‘HydroP’,

and ‘SolarP’). The matrix, Qg, with elements qt is the expanded matrix with these

new sectors for the GTAP-Power database. Electricity produced by the transmission

and distribution sector is defined as the total GWh produced in the region.

The matrix U0 with elements u0iab is an alternate representation of electricity

sector in the GTAPv9 database where i is the set of all input costs to production

(see Appendix A for listing), a is the set of sources (i.e. domestic or imported), and

the set b is the type of cost (i.e. basic or tax).1 The GTAP database, U0, is used to

create constraints in the GTAP-Power disaggregation.

The matrix L0 represents the levelized cost of electricity (LCOE) for each type, c

(i.e. investment, O&M, fuel, own-use, and effective tax), for each new sector, t, and

region.

The technologies in the IEA (Q0) and IEA/NEA (L0) do not encompass all of

the technologies that are in the GTAP-Power database. The GTAP-Power database

includes splits of certain generating technologies into base and peak load technologies.

The intent of the split between base and peak load is two-fold. First, the total

generation data (Q0) comes in the form of fuel inputs (e.g. GWh generated from

natural gas); however, several different technologies (e.g. combined-cycle, combustion

1The national version of the GTAPv9 database is created using scripts from the SplitCom application
Horridge (2005). SplitCom takes the full database and creates NATIONAL and TRADE matrices.
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turbine, steam turbine) are used to turn the fuels into electricity. These technologies

have cost structures which must be differentiated, especially if the modeler wishes

to aggregate different technologies.2 Second, connecting the data to modeling, base

and peak load are distinct types of generation. Without differentiating electricity

production by these operational considerations, a model can have a technology like

solar taking over the entire generation which is not realistic, at least in the current

electricity system (i.e. without storage for time arbitrage).

The GTAPv9 electricity sector data (U0) is derived in part from the IEA GWh

data. The IEA GWh data (Q0) is mapped to the GTAP regions. In the event where

levelized cost data (L0) is not available for either a technology or region, averages of

all available cost data are used. The accuracy of this assumption may raise eyebrows

at first glance and is certainly debatable. However, considering there are only a

handful of suppliers for the electricity generating units worldwide, this assumption

may not be as limiting as expected in terms of both capital and O&M costs (at least

for new capacity). To derive levelized costs of own-use, the value of total own-use

in the electricity sector in each region comes directly from own-use in the original

GTAP database, u0iab where i = ‘ely’. The value share allocated to transmission

and distribution is identical to the share allocated to transmission and distribution

for the entire electricity sector (discussed later). The remainder is divided by the

total GWh produced in the region to derive the electricity own-use cost per GWh.

Also, estimated fuel costs, which are generally more variable by region, are derived

partly from the implicit region-specific fuel prices in the GTAP database. The full

levelized costs data are available in Appendix C of Peters (2015). Increasing the

LCOE coverage is a major opportunity for subsequent versions.

2In the long-run specific technologies such as combined-cycle, combustion turbine, and steam turbine
gas would provide a better idea of costs, but the modeling issues of how each of these technologies
compete from an operational perspective is still unclear. Therefore, a simple aggregate base and
peak load differentiation is a nice balance between operational considerations and data availability.
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4.2 Stage 1: Base and Peak Load Split

As motivated before, this particular effort is unique to many other electricity

sector disaggregations, in that the generating technologies are split into base and peak

load power to reveal important cost structure and operational considerations of the

electricity sector. This suggests a two-stage procedure which first identifies the GWh

split between base and peak load for the generating technologies then fills the full

matrix given the GWh splits. Separating the GWh split into a separate stage makes

the problem more tractable and allows seamless implementation of alternative data

types (e.g. detailed regional technological data) and models (e.g. Wiskich (2014))

without compromising the matrix balancing described later in Stage 2.

The base-peak load split stage minimizes the total O&M and fuel costs of base

load production subject to GWh clearing constraints and an assumption that base

load must account for at least 85% of total GWh produced. This is a simple way to

allocate high capital, low variable cost technologies to the base load and low capital,

high variable cost technologies to peak load. A straightforward improvement would

be to minimize variable costs specifically; a portion of O&M costs may be fixed. The

formulation is as follows and is repeated for each region, r:

min
q

∑
bl

qbl ·
(
l0O&M,bl + l0fuel,bl

)
(4.1)

subject to:

∑
bl

qbl ≥ β ·
∑
t

qt (4.2)

qgasbl + qgasp = q0gas (4.3)

qoilbl + qoilp = q0oil (4.4)

qhydrobl + qhydrop = q0hydro (4.5)
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Figure 4.1.: Shares of global electricity generation from different technologies in base
and peak (green cut-out) load.

where qt is the total GWh produced by each generating technology, t. Again, q0f is

total GWh produced by each fuel type, f , from the IEA Energy Balance data (the

dataset does not distinguish base and peak load technologies), and l0ct is the IEA

levelized cost data for each generating technology. The set t contains all generating

technologies in the GTAP-Power database, and bl is the subset of t with generating

technologies classified as base load power. The scalar β is the assumed proportion of

base load generation in total generation (here, 85%).

One important limitation in the above method is that it cannot admit more than

one technology that is both base and peak load. Alternative models which elucidate

the base and peak load split (such as Wiskich (2014)) could be implemented in this

stage; however, there is a trade-off between model capability, data availability, and

solution improvement.

Figure 4.1 shows the shares of electricity from base and peak load technologies.

Coal, nuclear, wind, and other exclusively provide base load, and solar exclusively

provides peak load. The exclusive technologies have uniform levelized costs; therefore,

the base and peak distinction does not have any implication on the values in the

disaggregate database. Gas provides over half of the peak load. Hydro is more likely

to provide base load than peak load. Conversely, oil is more likely to provide peak

than base load.
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4.3 Stage 2a: Targeting Levelized Cost Relationships

Peters and Hertel (2015a) show that an ideal disaggregation preserves both the

cost structure and “row share” (i.e. relative input employment by technologies)

implied by the economic data (in this case, L0). This is especially the case when the

database will be used in a model with substitution between the electricity generation

technologies. We choose to preserve these economic relationships over imposing the

total cost cosntraints. That is, we believe the relationships to be more “trustworthy”

than the total costs.

The fully disaggregated matrix is partitioned to investment, fuel, O&M, own-use,

and production tax costs for transmission and distribution and each generating

technology. This provides a target matrix, A, based on the levelized cost and

electricity production data; however, it is inconsistent with the GTAP database.

Targeting relationships in levelized cost data, L0, and fixing the other data implies

that the GTAP values, U0, as an aggregate measure, and the electricity production

values, Qg, are the more trusted sources. The proposed optimization algorithm finds

an estimated levelized cost which minimizes deviation from both the derived i) cost

proportionality within a single generating technology (i.e. cost structure) and ii)

relative input employment by generating technologies (i.e. row share) from the target

levelized cost data. In doing so, the algorithm targets relationships between levelized

costs rather than the levelized costs themselves. Tax costs are assumed fixed and

are assigned by the value implied by the tax (L0) and production (Qg) data. The

residual tax value in GTAP are allocated to the new sectors on a per GWh basis.

The objective function is designed to minimize weighted entropy distance from

both the cost structure and row share relationships (Peters and Hertel, 2015b). This is

termed the share-preserving cross-entropy (SPCE) method. Constraints are imposed

to maintain an assumed allocation of value to transmission and distribution and

ensure consistency with the GTAP database.
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The target matrix A, as defined in Section 2.1, is given by:

act =
l0ct · qt∑

c

∑
t l

0
ct · qt

· u0••• (4.6)

where u0••• =
∑

i

∑
a

∑
b u

0
iab or the total value in the GTAP electricity sector. The

balanced matrix mathbfX, as defined in Section 2.3 is given by

xct =
lct · qt∑

c

∑
t lct · qt

· u0••• (4.7)

where l0ct is replaced by the balanced levelized costs lct. The values for the linear

constraints are described as

ui =
∑
i∈c

u0i•• (4.8)

Again, the index r is dropped for simplicity since each region is balanced

independently. The balanced levelized costs lct are determined from the SPCE

objective in Equation 2.17 above and the following constraints for each region, r:

∑
t

xct = uc (4.9)

∑
d

xdt = γ · ud (4.10)

The SPCE method is written in terms of X and A to conform to literature and

for sake of simplicity, but are written in terms of lct and qt in the accompanying

GAMS code. The final matrix of L is the estimated levelized cost which minimizes

the weighted entropy distance from the economic relationships implied by the target

levelized cost data (L0). The first natural log component of the objective targets cost

structure, and the second targets row share. The set c consists of all the levelized

costs, and subset d are the levelized costs excluding effective tax. The objective,

Equation 2.17, sums across only d since the effective tax is fixed (discussed in Section

4.4.5).
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The first constraint (Equation 4.9) sums over only the costs, i, which are associated

with the particular levelized cost, c (e.g. labor in O&M, coal in fuel). The vector

U0 is the GTAP national input value data for total value of each cost in the original

electricity sector (‘ely’) with dimensions for source, a, (i.e. domestic or imported)

and type, b (i.e. basic or tax). This ensures market clearance of the GTAP values

across each levelized costs; that is, values of the new sectors in GTAP-Power can be

aggregated to the GTAPv9 electricity values.

The second constraint (Equation 4.10) ensures the assumed value allocation to

transmission and distribution where the scalar γ is the proportion of total non-tax

value allocated to the transmission and distribution sector. The γ value does not

have a great deal of literature behind it; examples of values include 4% (Marriott,

2007), 45% (Joskow, 1997), and 65% (Sue Wing, 2008) for the United States.

The non-production operational expenses (i.e. transmission, distribution, customer

accounts, customer service, sales, and administration) for electric utilities in the

United States represent about 21% of total operational expenses (EIA (2015): Table

8.3).3 Therefore, a γ value of 21% is used for all regions in this disaggregation. In

reality, the value may differ regionally which can easily be incorporated provided

accurate data are available.

Additional constraints are imposed to ensure sufficient and proportional allocation

of fuels into their associated technologies (e.g. total fuel costs of coal-based generation

are greater or equal to the total coal costs to electricity in the GTAP database).

4.4 Stage 2b: Targeting Levelized Cost Sub-Matricies

Stage 2a returns estimated total column sums for each levelized cost (Table 6)

which overcomes the unknown total costs which motivated the SPCE formulation.

Therefore, RAS can be used to estimate the matrices for each levelized cost. Basic

data and assumptions are used to construct the target matrices (the same A as

3This does not include electricity loss in transmission and distribution. Here, we are concerned with
the costs and values.
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defined in Section 2.1) for each levelized cost separately. The notation is identical to

the generic disaggregation problem in Section 2.3 and pertains to the relevant section

only. That is, A is not differentiated by any form of notation in the O&M and capital

disaggregations in the following sections. They are independent disaggregations.

4.4.1 Operating and Maintenance Costs

The O&M sub-matrix disaggregation focuses on constructing a highly-detailed

target matrix A for the 58 costs which fall under the broad umbrella of O&M.

This involves taking expert assumptions on the probability of each O&M cost,

j ∈ O&M , entering T&D or generation (GEN) (P z) and entering a particular

generation technology, t, given the cost is classified as generation (P g
t ). The O&M

sub-matrix targets are defined as:

ajt = P z · uj for z = T&D and j ∈ i = O&M (4.11)

ajt = P z · P g
t · lit · qgt∑

t lit · qgt
· uj for z = GEN and j ∈ i = O&M (4.12)

The target matrix is balanced using the RAS method. Assignment of probabilities

allows the expert to integrate a great deal of specific cost-level information in a

systematic manner. The final result can be seen in Table 4.4. For example, water

transport is a cost only incurred by ‘CoalBL’. ‘NuclearBL’ is more skilled-labor

intensive than fossil fuel technologies such as ‘CoalBL’. Also, T&D is highly

service-labor intensive. The actual probabilities used in constructing this table are

available in Peters (2015).

4.4.2 Fuel Costs

There are five sectors in the GTAP database which correspond to fuel costs: coal,

gas pipeline, distributed gas, oil, and petroleum and coal products (‘coa’, ‘gas’, ‘gdt’,

‘oil’, and ‘p c’ in GTAP, respectively). These are allocated using basic assumptions
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and conditionals when those assumptions break down. The original GTAP coal sector

is allocated to ‘CoalBL’. Both pipeline and distributed gas are allocated to ‘GasBL’

and ‘GasP’ based on the relative levelized cost between the technologies and in a

manner where the proportion of types of gas are equal for each technology. The equal

proportions technique is also used for oil and ‘p c’ in ‘OilBL’ and ‘OilP’; however,

petroleum-derived products do not strictly enter oil technologies (e.g. lubricants,

gasoline for company vehicles). The excess ‘p c’ is used to meet the levelized fuel cost

column sum constraints for the other sectors.

Conditionals may come into play where there are fuel inputs to electricity in the

original GTAP database, but there is no directly corresponding generation for a region

(e.g. coal input to electricity in GTAP, but no coal generation in the OECD GWh

data). The source of these residuals is case and region-specific, but may arise as

a result of sectoral aggregation in GTAP, non-exclusivity of fuel use for electricity

production (e.g. gas for heat in the facility), and the balancing algorithm necessary

for the original GTAP database. In these cases, targets are created based on relative

cost across the new sectors. High confidence in the assumptions for fuel inputs to

generating technologies results in a highly constrained optimization problem.

4.4.3 Capital Costs

Although levelized capital costs only have one associated GTAP sector (i.e.

capital), the difference in cost type (i.e. basic and tax) are of particular importance

in the electricity sector. For instance, the US has investment tax credits which

subsidize capital investments in some renewable technologies. This is an important

consideration for modeling using the disaggregated database. The targets for the two

type matrices are as follows:

aIjt =
lit · qgt∑
t lit · qgt

· uj for j ∈ i = capital (4.13)
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aXjt =
aIjt
kjt

for j ∈ i = capital (4.14)

where aIit is the tax-inclusive target (superscript I), and a
X
it is the tax-exclusive target

(superscript X) for capital costs. The set j is a subset of all costs which map to

capital costs (j ∈ i = captial). The scalar kit is the power of the tax on capital for

the electricity sub-sectors.

Entropy is minimized for a tax-inclusive and tax-exclusive matrix subject to

market clearing constraints for both matrices and a total column sum for the

tax-inclusive matrix. This is a similar formulation to one found in McDougall (1999).

min
xI
jt,x

X
jt

xIjt · ln
(

xIjt
e · aIjt

)
+ xXjt · ln

(
xXjt
e · aXjt

)
for j ∈ i = capital (4.15)

∑
t

xIjt = uj for j ∈ i = capital (4.16)

∑
t

xXjt = uXj for j ∈ i = capital (4.17)

∑
j

xIjt = vt for j ∈ i = capital (4.18)

where uXj is the row constraint for non-tax value in the GTAP data and vt is the total

column cost implied from the SPCE result for capital. The results, xXjt and (xIjt−xXjt),
are the balanced basic and tax matrices in the GTAP data. These are expanded to full

GTAP dimensionality based on the source (i.e. domestics and imports) in the original

GTAP electricity sector proportions to preserve market clearing in these dimensions.

4.4.4 Own-Use Costs

The value of total own-use in the electricity sector in each region comes directly

from own-use in the original GTAP database, u0iab where i = ‘ely.’ The total costs

of own-use for the disaggregated electricity sectors is the estimated levelized cost for

own-use, lown−use,t, multiplied by the total production, qt.
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The individual electricity input costs are allocated to the new electricity sectors

with the assumption that each demands identical shares of transmission and

distribution and generating technologies. This is as though they draw from the grid

and not necessarily the individual plant-type.

4.4.5 Effective Production Tax

The effective production tax in GTAP is labeled ‘PTAX’, which for a generating

technology can be thought of as a tax on a specific type of generation, while ‘PTAX’

for transmission and distribution can be thought of a tax on electricity provision to

the ultimate users. Tax costs are assumed fixed and are assigned by the value implied

by the levelized tax from the data (L0) and total GWh production (Qg) data. The

residual tax value (that not explained by available tax data) is additionally allocated

to the new sectors on an equal per GWh basis.

4.4.6 Demand and Trade Disaggregation

The electricity mix of exports of electricity are assumed to be identical to the

mix of domestic production. This assumption fills the complete trade matrix. The

demand-side share allocation for each electricity sector is simply identical to the mix

implied by the sum of domestic production and the net imports.

Presumably, different industries and households consume electricity from different

sources depending on the sub-region and type of load. For instance, the retail industry

may consume electricity predominantly during peak hours during the middle of the

day. Households may consume more electricity during the peak hours immediately

following school or office hours. Furthermore, households may demand renewable

sources or even purchase household solar panels. Certain industries may require

electricity and make long-term agreements for base load electricity.

Unfortunately, anything beyond pure assumption is currently unavailable for

this research. The disaggregation of the demand-side in this work assumes all
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users demand identical shares of transmission and distribution and each generating

technologies.

Alternatively, the transmission and distribution sector could be separated from

generation where generation would be sold to transmission and distribution, and

users would purchase the transmission and distribution. This may make some sense

in terms of how the electricity sector operates (at least in the United States); however,

this type of database construction does not allow for different generation demands by

industry. The database construction described above is general enough to allow for

this; although due to data limitations, uniform mixes across industries are assumed

for this particular version.

4.5 Results

The final results of the supply-side disaggregation are presented in this section.

The demand-side is less interesting because of the lack of available data. The data

and assumptions explained above are available upon request. This section focuses

on the error between the estimated levelized costs and the IEA/NEA data and how

important features in the original datasets are captured in the disaggregated data.

4.5.1 Pro Rata Method for Large Deviations

For some regions the deviation between the estimated and the target levelized costs

can be quite large. While deviation is expected, large deviations may indicate broader

issues in the OECD electricity production and, more likely, the electricity sector in

the GTAP database. For instance, the target estimate of capital requirements for

electricity in Cambodia derived from the levelized costs and production data is 75.9

million USD; however, the GTAP database reports only 1.8 million USD of capital

is allocated to the entire electricity sector. Obviously, there is some discrepancy in

reporting between the top-down and bottom-up type datasets.
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To accommodate for largely disparate data, an additional bound constraint is

added to the Stage 2a formulation which bounded the estimated capital and O&M

levelized costs for each generation technology to n and (1/n) times the target levelized

cost value threshold. Fuel costs are excluded from these bounds because these are

generally directly mapped to fuel input costs in GTAP (e.g. coal to ‘CoalBL’) and

the costs are highly variable across regions which limits the relevance of using an

average of available levelized cost data as an initial estimate. A single capital and

O&M levelized cost to a generation technology which deviates by n or (1/n) times

the target estimate results in an unsuccessful completion. The number of successful

completions in total share of GWh terms are shown in Figure 4.2. Beyond a certain

threshold (x-axis) it may be better to allocate each levelized cost using an ad hoc

method. The threshold chosen is 10 because at this point over 95% of the global

GWh produced converges using the SPCE method.4

The pro rata method is used for those regions that do not converge by

allocating each costs by the production weighted levelized costs described by for each

unsuccessful region recalling Equation 3.1.

This does not specifically preserve the cost structure, but the data is so disparate

in these regions the any modeling of these regions individually is suspect to begin

with.

The jump in GWh converging from a bound of 9 to 10 in Figure 4.2 is due to the

convergence of Russia at a bound of 10. The GTAP value of capital in Russia is much

lower than the value implied by the target levelized cost of capital. Later, this section

discusses how the GTAP database construction may be able to leverage the levelized

cost data to eliminate such large discrepancies moving forward while recognizing the

limitations in the target cost data as well.

4With a threshold of a 10 or 1/10 times deviation from the original levelized cost value the following
22 regions cannot be reconciled: Oman, Rest of Oceania, Brunei Darussalam, Laos, Rest of South
Asia, Argentina, Ecuador, Honduras, Estonia, Lithuania, Belarus, Rest of Former Soviet Union,
Georgia, Bahrain, United Arab Emirates, Rest of West Asia, Guinea, Rest of West Africa, Kenya,
Madagascar, Malawi, and Rest of Southern Africa. These regions produce less than 3% of the world’s
electricity and in most cases would be aggregated into larger regions.
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4.5.2 Deviation from Target Levelized Cost Data

It is worth reiterating that the procedure described above implies that the GTAP

values, as an aggregate measure, and the electricity production values are a more

trustworthy source than levelized cost, as a stylized representative of actual costs

determined from a number of assumptions. This is why we fix the GTAP, U0, and

the estimated GWh production, Qg, values and target the levelized costs, L0.
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Table 4.1 shows the percentage deviation of the estimated levelized costs from

the target levelized costs in the United States. The average deviation for non-fixed

levelized costs is 20.9%. The estimated levelized cost for ‘NuclearBL’ and ‘CoalBL’

are larger than the target levelized cost while the majority of others are lower. It

is also evident that the O&M cost in the GTAP data is much larger than the cost

implied by O&M in the levelized cost; the deviation is highest for O&M costs and

the balanced estimates are all larger than the target levelized costs. The histogram

in Figure 4.3 shows how these deviations are distributed for all regions, and Figure

4.4 shows the different between OECD and non-OECD countries.

Table 4.2 and Table 4.3 show the deviation from the cost structure and relative

cost intensity for the United States, respectively. Again, the disparity between the

target levelized costs and the GTAP data in O&M is the primary source of deviation

in cost structure. However, the relative fuel costs seem to be the primary source of

deviation in the row share. The effective tax has no deviation because the taxes are

allocated on a row share basis. The average deviation is 16.7% and 12.3% for cost

structure and row share, respectively.

Deviations can be attributed to two primary factors: i) discrepancies in the values

implied by the different data sets and ii) assumptions made in the procedure itself.

An example is the O&M levelized costs for the United States (discernable in all

three deviation tables). While the error in fuel and tax estimates are relatively

low, the estimated levelized costs for O&M are much higher than the values in

the IEA/NEA dataset (Figure 4.3). This indicates that the O&M costs implied

by original GTAP dataset are much higher than the IEA/NEA data. However,

this deviation can also be attributed to our assumption of the cost structure of

the transmission and distribution sector. If this assumption is altered to include

a larger share of O&M in the total cost of transmission and distribution, some of the

‘excess’ O&M in generation will be absorbed by the sector. The own-use cost has a

high deviation because the target for transmission and distribution was constructed

from the ‘similar-to-communications-sector’ assumption and targets for generating
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technologies were constructed from GWh data, and the targets do not necessarily

sum to the total own-use for electricity in the GTAP data. While the error values for

the United States and some other OECD countries are relatively low, the errors can

be quite high for regions where the GTAP and IEA electricity production data are

questionable and where the levelized cost is derived through averages.

Figure 4.3 shows that O&M costs are skewed to the right which indicates that

GTAP, in general, has more O&M cost than the levelized cost data. However, at the

left-hand extremum for both investment and O&M costs, Figure 4.3 shows that for

some regions and technologies there is significantly less value in the GTAP data than

what is implied by the levelized cost data. In other words, the estimated levelized costs

are lower than the target data set. This could be partly a result of averages from

mainly OECD countries used as levelized cost in developing and other low-income

countries where no data are available (see Figure 4.4). For instance, a low-income

country may face significantly less labor costs, which is a major component of O&M

costs. Another disparity could be between the assumptions of parameters used to

construct the levelized costs and similar assumptions in the GTAP database. The

nature of the deviations, shown in Figure 4.3 and Figure 4.4, implies that the levelized

cost data can be improved greatly. Furthermore, high-fidelity cost data could also

lead to improvements in the construction of the GTAP electricity sector itself.

4.5.3 Main Result

All of the original 62 costs were disaggregated using the method described above,

and the results are then aggregated to 21 sectors for analysis (See Appendix A

in Peters (2015)for sectoral mapping). Table 4.4 shows the input values to the

disaggregated sectors for the United States. The values are the sum of sources and

type dimensions. With the exception of capital subsidies to solar power (‘SolarP’) and

balancing of the capital across the other users, the hidden dimensions are allocated

in identical proportions.
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The fuel sectors (i.e. coal, gas, gas distribution, oil, and petroleum products)

are allocated to the corresponding generating technology. Coal enters ‘CoalBL’, Oil

enters ‘OilP’ only as there is no GWh generated from oil technology as base load in

the United States. Gas and gas distribution enter in equal proportion to ‘GasBL’

and ‘GasP’. However, the proportion of gas fuels in ‘GasP’ to gas fuels in ‘GasBL’ is

greater than the proportion of GWh in ‘GasP’ to ‘GasBL’ due to a higher levelized

cost of fuel for peak gas production. The opposite is true when looking at capital

to the gas generating technologies because ‘GasBL’ is more capital intensive than

‘GasP’. A portion of petroleum products also enter ‘GasBL’ and ‘GasP’ in order to

reach the levelized cost target (i.e. the total gas inputs in GTAP were insufficient).

The petroleum and coal products sector in GTAP contains many different energy fuels

(e.g. coke, refinery gas, diesel), so it is difficult to distinguish the actual composition

of this sector. As discussed previously, some of these energy fuels may very well enter

alternative types of production other than strictly oil technologies. These also enter

in fixed proportion between gas technologies. Similarly, the relative levelized cost

intensities between technologies is preserved when we look at the other levelized costs

and generating technologies as well.

The probability tables, Pt and Pg, used in the disaggregation can be found in

Appendix B. Focusing on two O&M sectors which had no additional assumptions

beyond relative cost intensity between technologies, chemicals & rubber and

non-ferrous metals, we see that the relative costs are similar across the technologies.

The ratio of value of chemicals and rubber to non-ferrous metals is approximately

10.7 for each technology.

However, general assumptions can be made about many O&M sectors. First, water

transport is allocated strictly to ‘CoalBL’ (i.e. Pt(GEN) = 1 and Pg(CoalBL) =

1), since coal is generally the only fuel source which is transported domestically by

waterway in the United States. Second, a 2/3 probability of Pt(T&D) was made

for various sectors in the services set under the assumption that a majority of the

sales, customer service, etc. of the utilizes fall under these sectors in transmission
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and distribution. This is a simple and somewhat arbitrary value, but demonstrates

the ability to add expert intuition into the methodology. A similar method can be

adopted to redistribute skilled and unskilled labor. This may require a balancing

act between relative probabilities between types of labor within a technology and

across technologies. The complex allocations of these two labor types in generation

demonstrate how some of these assumptions may sacrifice transparency of the final

results. These results show that the skilled to unskilled labor ratio is higher for

‘NuclearBL’ and renewable sources (i.e. ‘WindBL’ and ‘SolarP’) than fossil-fuel based

generating technologies.
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Figure 4.5.: The share of GWh produced by each technology in GTAP-Power for the
same ten largest fuel-based electricity sectors plus Brazil as Figure 4.6 (ordered left to
right by share of non-fuel based technology share). The non-fuel based technologies
represented with diagonal lines (i.e. Nuclear, Wind, HydroBL, Other, HydroP, and
Solar) are only implicitly represented by ‘Capital’ in the original GTAP database.

Moving from the US electricity to the global level, Figure 4.5 shows that non-fuel

based technologies play a large role in the electricity production for many countries

(i.e. nuclear, wind, hydroelectric, solar, and other). In the original GTAP database,

these technologies would be agglomerated with the rest of the capital in the electricity

sector. With the electricity-detail in GTAP-Power, it is possible to distinguish these

very different technologies in a CGE database and provide a better representation of

the sector to model of electricity, energy, and climate policies using social accounting

and CGE methods.

Looking just at the fuel-based technologies in Figure 4.6, we see the share of

fuel-based technologies as well as the import/domestic share varies greatly between

countries. Further, Figure 4.6 shows that almost all of Korea’s coal and gas power uses

imported fuels. The source of the imports are countries that use a significant amount

of fuels in their own electricity sector (e.g. Russia, US, China, Australia). These
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plus Brazil. Both the fuel and source composition differ greatly between countries.
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Figure 4.7.: Korea produces more than 32% of its electricity from imported fuels.
These charts show the composition of Korea’s coal and gas imports.

two charts show that energy trade is partly driven by domestic electricity sectors.

GTAP-Power allows energy trade to be understood in greater detail.

4.6 A Look Back at the GTAP Database Construction

There may exist some opportunity to reconcile the aggregate electricity value

implied by the disaggregated levelized cost data with those from original aggregate

GTAP electricity sector. Table 4.5 below shows the aggregate value of inputs to the

electricity sector in the United States implied by the disaggregated data compared

to those in the GTAP aggregate electricity database. The latter is a constraint

on disaggregation, so it is also identical to the aggregate electricity sector in the

GTAP-Power database. This section presents ideas, as opposed to guidelines, on how

such a reconciliation might be performed in subsequent versions.

On one hand there is the bottom-up data constructed from levelized costs and

production levels. Recall that due to the heterogeneous reality of electricity markets

these levelized costs can be misleading in many ways (Joskow, 2011; Hirth et al., 2014).
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Table 4.5.: Deviation between total aggregate inputs to the electricity sector implied
by the disaggregate data (used as targets) and the original values in the GTAP ‘ely’
sector (used as consistency constraints) for the United States.

Total aggregate inputs to electricity (millions of 2011 US$)

LCOE Disaggregate data GTAP ‘ely’ sector (uc) Deviation

Inv 131,763 129,967 1.4%

Fuel 112,309 117,899 -4.7%

Own-use 26,002 26,002 0.0%

O&M 92,575 133,139 -30.5%

Tax 14,370 14,370 0.0%

Total 377,020 421,378 -10.5%

On the other hand the aggregate GTAP electricity sector is constructed from targets

that are derived from various sources, namely contributed I–O tables and IEA energy

data. Even in the long-run, it is unlikely that the I–O tables contributed by the GTAP

community will include all or even some of the electricity sub-sectors described here.

Many contributions may not even include a separated electricity sector. Therefore,

the new electricity sectors described here will likely remain a disaggregation of an

aggregate electricity sector in the main GTAP database construction.

Therefore, despite the known limitations, there may be opportunity to use the

levelized cost data to create targets for the aggregate electricity sector in GTAP,

especially where quality data may not exist to target the sector otherwise. This would

help reconcile the bottom-up and top-down perspectives of the electricity sector.

There are at least three distinct cases in a possible aggregate electricity

reconciliation exercise. For each GTAP region: i) the levelized cost data are more

“trustworthy” than the GTAP target, ii) the GTAP target is more “trustworthy”

than the levelized cost data, or iii) they are equally “trustworthy” (or equally

“untrustworthy”). In the first two cases, it may be best to simply use the target
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the researcher deems more “trustworthy”. However, there should be some additional

introspection when these deviate by such large margins.

The third case may be more interesting. Typically, the quality of the data follows

the collection efforts of the region and both the bottom-up and top-down data are

either “trustworthy” or “untrustworthy,” rather than the two cases described before.

Still differences inevitably arise, as shown for the United States in Table 13. In this

case, there might be two options based on the cost structure component of the data. If

the cost structure of the aggregate GTAP electricity sector is “trustworthy”, a simple

average of the two data sources for each input cost to the aggregate electricity sector

could suffice. What might be a more likely case, is that the top-down total value in

the electricity might be accurate since it can be easily constructed from a price of

electricity and total production (demand-side), but the cost structure is created from

assumption rather than data. Here, the targets for inputs to the aggregate electricity

can be constructed by taking the total electricity sector value from the top-down data

and imposing the aggregate cost structure (GWh-weighted average levelized cost plus

T&D) implied by the bottom-up data.

These methods might help decrease the gap between the bottom-up and top-down

modeling using the GTAP-Power database. This section documents ideas gathered

from this particular disaggregation exercise and not necessarily the path GTAP will

continue in the future.

4.7 Conclusions and Path Forward

Chapters 2–4 discussed advances in the construction of global economic databases.

A novel matrix balancing method that preserves important economic relationships is

developed in Chapter 2. The new method outperforms commonly-used methods when

the bottom-up cost data are more reliable than the total sub-sector cost data. Chapter

3 shows that this can have important consequences in modeling using a balanced
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database. These are used in this chapter to develop the GTAP-Power database, the

foremost publicly-available electricity-detailed general equilibrium database.

GTAP-Power is a disaggregation of the GTAP electricity sector into transmission

and distribution, base load generating technologies, and peak generating technologies

for use in CGE models. The method leverages available data and reasonable

assumptions to construct the database in a replicable and transparent manner.

Application to CGE and integrated assessment models which are built on the GTAP

database is straightforward.

The resulting electricity-detailed GTAP-Power database can be used by

researchers to advance modeling of electricity, energy, and climate policies using social

accounting and CGE methods.

An additional motivation for this work is to identify strengths and limitations

in database construction for consistency and continuous improvement in the GTAP

community. There are many limitations to this work that offer opportunity for

continuous improvement given additional data sources. Some of these are listed below:

1. Stage 1 of the methodology disaggregates the power sectors by fuel into power

sectors by load-type (i.e. base and peak load). The base-peak split in this stage

could be improved or, given data, these could split into distinct technologies (e.g.

steam, combined-cycle, combustion turbine). The latter case would give much

better estimates of cost structures as well as allow for more detailed modeling.

2. The assumptions on the cost structure of transmission and distribution greatly

influence the results for the generation technologies.

3. Additional coverage of levelized cost data would reduce deviation between the

original data sets.

4. The levelized costs used in this version are for new generating capacity. In

GTAP many countries have capital values much lower than those implied by

the levelized costs and production data. This may be due to depreciated (old)
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generating capacity in the country. Adjusting for this may bring estimates of

levelized capital costs more in line with the GTAP data.

5. Coverage of production and input taxes for specific electricity technologies is

currently limited.

6. As discussed in Section 4.6, the disaggregated data could be used as an

additional data source for the GTAP ‘ely’ sector. This might help reduce the

deviations between the bottom-up and top-down models.

By making the disaggregation method transparent and publicly-available, the

intent is to continuously improve the method and foundational data via the social

accounting and CGE research community.

Despite these limitations, the GTAP-Power database contains the most detailed

representation of electricity technologies in any publicly-available global CGE

database. Furthermore, the database is a freely available database extension with

a subscription to the main GTAP database. As opposed to many other databases

and models of this type, the disaggregation is fully documented and accompanied by

an example version of the software used to produce the database. This allows and

encourage continuous improvement on the assumptions, methodologies, and data in

the research community.

An electricity-detailed CGE database is the foundation for researching electric

power in the global economy. The following chapter describes a model which leverages

this database to give a highly-detailed representation of the electricity sector in global

economic modeling.
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CHAPTER 5. A DETAILED REPRESENTATION OF THE ELECTRICITY

SECTOR FOR ECONOMIC EQUILIBRIUM MODELS

This chapter formulates a detailed representation of the electricity sector

conducive to partial and general equilibrium modeling that explicitly and

endogenously captures capacity utilization, capacity expansion, and their

interdependency. Independent and joint validations of these two interdependent

mechanisms in a partial equilibrium setting lend support to the predictive ability

of the model. The validated electricity sector representation is also the most

important feature of a general equilibrium version, termed the electricity-detailed

general equilibrium (EDGE) model; although this particular extension is not discussed

in this dissertation.

Electricity generation, as opposed to capacity, is the relevant economic good

in balancing supply and demand in the power sector. The magnitude and mix

of generation from different technologies has important implications for long-run

sustainability issues such as mitigating greenhouse gas emissions and moderating

energy consumption. Changes in electricity generation result from two distinct

economic mechanisms: i) construction of new capital, termed capacity expansion,

or ii) increases or decreases in operation of existing capital, termed capacity

utilization. Long-term returns on capital investment in electric power technologies

drive expansion, while utilization is the substitution in response to prevailing

economic conditions, especially fuel prices, which is also termed fuel-switching.

The two mechanisms are interrelated in that capital rents partly depend on how

much generation is produced per unit of capacity (i.e. capacity factor) and

short-term factor utilization may be counterbalanced by long-term expansion. These

joint mechanisms are often overlooked in long-term projections of the evolution of
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electricity generation in both technologically-rich, partial equilibrium optimization

(bottom-up) and globally consistent general equilibrium (top-down) models.

Bottom-up models are technologically-rich and use exogenous projections of

capital, fuel, operating, maintenance, and other costs to drive changes in total

capacity of electricity generating technologies. Capacity factors for each technology

also tend to be treated exogenously implying that existing capacity is unable to adjust

to prevailing economic conditions, and new capacity must operate at a preordained

level. One major criticism is that price projections are exogenous despite the

possibility that both demands for fuel and their corresponding prices are partly

determined by changes in the electricity sector. Endogenously determined capacity

factors suggest the need for endogenously determined prices for the technologies.

Top-down, namely CGE, models have endogenously determined prices, but

typically characterize the substitution of technologies in generation (GWh) as a single

mechanism, which treats factor utilization and capacity expansions implicitly. This

ignores a key distinction in how different economic and policy shocks impact the

electric power sector. For instance, fuel price shocks (e.g. decline in gas prices

as a result of the shale boom) can be adjusted for in the short-term with existing

infrastructure, prior to construction of new capital and decommissioning of old. On

the other hand, subsidies to capital (e.g. US solar and wind investment tax credits)

impact only new capital investments.

In sum, bottom-up models capture technology-level, extensive and sector-level,

intensive margins given sector-level, extensive margins, but often fail to capture

complete market price responses; although several models include supply responses

for input prices. Top-down models focus on the sector-level in terms of generation,

but blur the lines between intensive and extensive margins at the technology-level

(See Table 5.1).

The question addressed here is how to represent capacity utilization and

expansion that endogenously respond to economic conditions in a manner consistent

with existing partial and general equilibrium modeling frameworks. This chapter
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Table 5.1.: Intensive and extensive margins for electric power at technology and
sector-level

Intensive margin Extensive margin

Technology-level Capacity factor utilization Capacity expansion

Sector-level Technological substitution Total generation expansion

formulates a partial equilibrium model that explicitly and endogenously captures

these interdependent mechanisms. A corollary contribution is a novel implementation

of a variant of the constant elasticity of substitution function which ensures

aggregate output quantity (i.e. total GWh) is equal to the sum of input quantities

(i.e. individual GWh for each technology) for the electric power sector (van der

Mensbrugghe and Peters, 2015). Model estimates for annual capacity utilization,

given exogenous capacity growth are validated against observations between 2002

and 2012. Next, a more complete validation exercise is undertaken combining both

capacity utilization and endogenous expansion from 2007 to 2018. These validation

exercises, often overlooked in large-scale modeling, demonstrate the predictive power

of the electricity sector representation in a equilibrium modeling with capacity

utilization, expansion, and their interdependency.

Identical to the sectors in GTAP-Power, the electricity generating technologies

explored in this work are: nuclear, coal, gas, oil, hydro, wind, solar, and other (which

is comprised of biofuels, geothermal, and other less-prevalent technologies). Gas

and oil power is separated into base and peak load because combined-cycle plants

are competitive in providing base load power, and combustion turbine plants are

competitive in providing peak load power. Similarly, hydroelectric plants are split in

to base and peak load because they can potentially be used for either or both types

of load provision. Base and peak load technologies are designated by a “BL” and “P”

suffix, respectively.
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Instead of including the full general equilibrium linkages, the following sections

describe a partial equilibrium model of the US electricity sector, which uses the

GTAP-Power data with equations that are conducive to general equilibrium modeling.

The complete economy-wide, general equilibrium supply schedule is replaced by

upward supply curves for coal, oil, gas, and O&M, and the demand schedule is

replaced by a downward sloping demand curve (see Figure 5.1). In the model

prices are shifted to replicate observations and run simulations, but supply and

demand are still price responsive and can capture rebound effects. Also, household

income is exogenous (i.e. not impacted by electricity prices and tax), and there

is no international trade. These simplifications allow for a controlled analysis and

validation of the US electricity sector model – the relevant sector in this dissertation.

The analysis lends credibility to the US electricity sector results as part of a complete

general equilibrium analysis.
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5.1 Conceptual Framework

The development of the model focuses on the following accounting relationship:

qgt = ct · α · qct (5.1)

where qgt is the quantity of GWh generated by technology t, ct is the capacity factor

(i.e. ratio of actual production to capacity) for technology t, qct is the quantity of

capacity (in GW), and α is the number of hours (one calendar year � 8,760 hours).

Equation 5.1 can be log-linearized (in percentage change terms) as follows:

q̂gt = ĉt + q̂ct (5.2)

where q̂gt is the percentage change (henceforth denoted by the lowercase letter and hat)

in generation, ĉt is the percentage change in capacity factor, and q̂ct is the percentage

change in total capacity. Therefore, the quantity of generation from each technology

can be increased (decreased) by increasing (decreasing) the capacity factor and/or

the total capacity. The representation explicitly represents capacity utilization (ĉt)

and expansion (q̂ct ) in the generation of electricity.

The associated equations, which describe the economic equilibrium model, are

also written in percentage change form following the ORANI tradition (Dixon, 1982),

and the non-linear model is solved as such using the GEMPACK software (Harrison

et al., 2014). Level variables are not accented (as in equation 5.1), percentage change

variables are written in lowercase with hat accents (e.g. q̂gt as in equation 5.2), and

aggregate variables are written in uppercase (e.g. level and percentage change in total

generation would be Qg and Q̂g, respectively).

5.2 Electricity Production

The production of electricity from existing capacity follows the standard GTAP

production structure. Intermediate inputs (e.g. fuels) and an aggregate value-added,
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Figure 5.2.: Total electricity generation is determined by the dual capacity utilization
and capacity expansion mechanisms and their interdependency. The two mechanisms
are linked by the capacity factor for existing and new capacity (ĉt), returns to capacity
(p̂k,t), and the net change in capacity (q̂ct ).

comprising capital and operating and maintenance (O&M), are Leontief inputs to

production. Capital and O&M can substitute in the value-added nest, specified by

a cost-minimizing constant elasticity of substitution (CES) parameter, σva
t . This

behavior is described by the following equations:

q̂it = −âit + ĉt ∀i ∈ INT (5.3)

q̂it = −âit + ĉt − σva
t · [p̂it − âit −

∑
i∈V A

svait · (p̂it − âit)] ∀i ∈ V A (5.4)

where q̂it is the percentage change in demand for input i by technology t, p̂it is the

percentage change in price of input i in technology t, and âit is the percentage change

in technological efficiency of input i in technology t. The variable svait is the value

share of input i in total value-added for technology t. The sets INT and V A contain

the intermediate and value-added inputs, respectively.

5.3 Capacity Factor Utilization

The annual capacity factor is the ratio of annually generated electricity to the

available capacity in a year. Since demand fluctuates on a daily and seasonal basis

with dynamic marginal values of electricity, the annual capacity factor is an aggregate

measure of the technology’s annual supply response. That is, some technologies might
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have a large capacity factor for a brief period during peak hours, but the annual

capacity factor might be low since it is not a competitive technology during normal

hours (e.g. oil power). Base load technologies tend to have higher annual capacity

factors than technologies that only operate during peak loads.

The possibilities for capacity utilization adjustment is based on two determinants:

i) flexibility of the technology itself and ii) substitution between flexible technologies.

Flexibility is the ability of a technology to increase and/or decrease operations of the

plant in response to the prevailing economic conditions, characterized by technical

specifications of technology. Although flexible technologies can quickly increase or

decrease operations, they are not perfectly substitutable due to factors such as space,

time, and contract lead time (Hirth et al., 2014), so their substitutability is estimated

and validated against historical observations.

Flexibility and substitutability of these technologies are discussed conceptually

and integrated into the empirical model in their respective sections, Section 5.3.1 and

Section 5.3.2. This work focuses on annual factor utilization, but both the conceptual

and empirical components can be applied to smaller time intervals without loss in

generality, provided appropriate data exist.

5.3.1 Capacity Factor Flexibility

The capacity factor can adjust to prevailing economic conditions only if the

existing capacity of a technology is flexible in meeting demand. The capacity factor

can be derived by dividing generation by the capacity-hours reported for a year.

Figure 5.3 shows annual capacity factors have changed over time in response to

overall demand and prevailing economic conditions.

A flexible technology has the ability to adjust generation levels from built capacity

- shown by a slope different than zero (i.e. Coal, Oil, GasBL, and GasP). GasP

shows only slight flexibility because it comprises a large percentage of peak power.

Therefore, small changes in capacity factor are large changes in generation; oil and
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Figure 5.3.: Annual capacity factors from 2002–2012 EIA (2015b). The slope of
the trend lines indicate the technology’s flexibility in the face of changing economic
conditions over time. Black lines represent the flexible technologies, while the gray
trend lines represent the inflexible technologies.

solar do not produce much in comparison. The inflexible technologies (i.e. Nuclear,

Hydro, Wind, Solar, and Other) show little response to changing economic conditions.

The only variability they exhibit is a result of normal annual operational fluctuations

(e.g. plant shutdowns, maintenance); annual rainfall in the case of hydro power; wind

in the case of wind power; and sunlight in the case of solar power. These types of

non-economic fluctuations are not captured in this model.

The capacity factor can be represented by supply curves (for each technology)

with capacity factor on the x-axis and price of technology-specific capital on the

y-axis (Figure 5.4). As the capacity factor expands, it becomes increasingly costly

to produce each unit of electricity. The increase in the cost of electricity is due to

expensive short-term capital improvements. It is infinitely expensive to operate at

full capacity (i.e. capacity factor of 100%) due to the non-economic requirements

for plant maintenance. Flexible technologies (i.e. coal, gas, and oil power) can
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adjust production without much additional capital expenditure (elastic supply) by

increasing O&M inputs. Inflexible technologies cannot adjust production except with

exceedingly large capital expenditure (inelastic supply).

pk,t 
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g=Qt
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ct=Qt
g/Qt

c 

ct
0 

Q
ct

1 

pk,t
0 

pk,t
1 

Figure 5.4.: Generic supply curve for a flexible electricity generating technology. An
inflexible technology would be a vertical line intercepting the x-axis at the capacity
factor value.

Supply for inputs to electricity production are represented in the model by simple

elasticities of supply. Intermediate inputs and O&M are mobile inputs, but capital is

technology-specific. These equations can be written as:

q̂i = μs
i · p̂i ∀i ∈MOBL (5.5)

q̂i = q̂it and p̂i = p̂it ∀i ∈MOBL (5.6)

q̂it = μs
it · p̂it + q̂ct ∀i ∈ NMOB (5.7)

where μs
i and μs

it are the supply elasticities for mobile (MOBL) and non-mobile,

technology-specific (NMOB) inputs, respectively. The set MOBL includes

intermediate inputs and O&M while set NMOB is only for capital, which is fixed in

the short-term (i.e. μs
it = 0). Chetty et al. (2011) finds a labor supply elasticity of

0.30, which is used for O&M. Brown (1998) finds long-run supply elasticities of coal,

oil, and gas to be 1.86, 0.51, and 0.76, respectively. These estimates are pre-shale oil
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and gas boom, and we might expect the supply of oil and gas to be more elastic due to

the ability to drill shale wells much more quickly than conventional, capital-intensive

wells. The sensitivity of the model results to these parameters can be tested using

systematic sensitivity analysis.

Flexible technologies can adjust capacity utilization by substituting O&M for

capital improvements. For example, plant operators can adjust labor hours (e.g.

paying overtime) and the frequency of normally scheduled maintenance. The

parameter σva
t (in equation 5.4) is calibrated such that the returns to capital roughly

match the change in capacity factor. That is, the returns reflect the change in

production (i.e. generation) per unit of capital (i.e. capacity). Figure 5.5 shows

the capacity factor supply curves for flexible technologies which are drawn out by

shifting demand for the technology. A higher CES parameter between value-added

corresponds with greater flexibility.
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Figure 5.5.: Capacity factor supply curves for flexible electricity generating
technologies. Data points represent results from shocks to other substitutable
technologies to shift demand for the relevant technology. The selection of the shocks
were designed to map out the response over a wide range of possible shocks.

The supply curves distinguish flexible and inflexible technologies. Inflexible

technologies are excluded from Figure 5.5, but would be vertical lines at their

current capacity factor. The parameters should ideally be estimated in conjunction

with capacity expansion since they related to the long-run returns to capital. The
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selection of parameters here (i.e. inelastic supply for inflexible technology and elastic

supply for flexible) is sufficient for the capacity utilization to ensure that only flexible

technologies respond to the prevailing economic conditions.

5.3.2 Substitution of Existing Capacity

Substitution of generation in total electricity production in both partial and

general equilibrium modeling is often represented with CES parameters where

generation from different technologies are directly substituted based on cost

minimizing assumptions Paltsev et al. (2005); Wing (2006); Château et al. (2014).

However, this representation treats the dual mechanisms of factor utilization and

capacity expansion implicitly. Also, the standard CES production function does not

preserve quantities. That is, due to the CES production specification, the derived

generation from each individual technology may not sum to the aggregate generation

of electricity. The CES assumes inputs are heterogeneous despite the fact that both

are measured in GWh terms. The heterogeneous input assumption is well-suited for

many problems, but can be problematic for interpreting the modeling results when

corollary impacts flow from the quantity of electricity generation (e.g. emissions):

how can they not sum? What is the correct total change in GWh? What is the

impact?

Therefore, another contribution in this work, beyond the dual mechanism for

changes in electricity generation, is a variant of the CES which preserves quantities

(GWh) in the aggregate output and sum of disaggregate inputs, termed here as QCES.

The variant has been implemented in the context of labor (Dixon and Rimmer,

2003) and land (Giesecke et al., 2013) markets and requires a slightly different

conceptual justification from the standard CES. This section discusses the conceptual

justification and implements the QCES specification for capacity factor adjustment

in the electricity sector.
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5.3.2.1 Standard CES Substitution

CES is the most common specification for the supply of electricity in both partial

and general equilibrium models (Paltsev et al., 2005; Wing, 2006; Château et al.,

2014). Electricity generating technologies substitute with one another in some form

of nested CES where the nesting attempts to control for some of the operational

considerations of the electricity sector (e.g. load type). Substitution is based on cost

minimization with a CES production constraint. The formulation for a single nest is

as follows:

min
qgt

C =
∑
t

pgt · qgt (5.8)

subject to:

Qg =

[∑
t

(θt · qgt )ρ
] 1

ρ

(5.9)

σ =
1

ρ− 1
(5.10)

where C is the cost function characterized by the sum of the cost per unit production

from each technology, pgt , multiplied by the total production of that technology, qgt .

Total production of electricity, Qg, is characterized by CES production where θt are

the share parameters, and ρ is the CES exponent, which is easily transformed to the

familiar CES parameter, σ, describing the constant elasticity of substitution amongst

inputs.

Implemented in log-linearized form, derived demands for each technology are given

by the following equation (Dixon, 1982; McDougall, 1992):

q̂gt = Q̂g − σ ·
(
p̂gt −

∑
t

svt · p̂t
)

(5.11)

where svt is the value share of technology t in the total production nest. Again,

the hat accent refers to the percentage change in the variables. The standard

CES specification is attractive for both partial and general equilibrium analysis for

several reasons. First of all, while the assumed CES production function is largely
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arbitrary (outside of the fact other common production specifications, such as Leontief

and Cobb-Douglas, are special cases of the more general CES specification), the

cost minimization objective seems appropriate for electricity aggregators choosing

which technologies to employ. Also, only a single parameter, σ, is required to

characterize substitution (svt is given by the data). This point is important for

calibrating large-scale models which already require a vast number of equations and

corresponding parameters (i.e. supply, demand, and substitution parameters).

However, the standard CES function does not preserve additivity of the inputs in

the output. This point is harmless in the case of transforming fundamentally different

goods into a new good (e.g. capital and labor) or in the case of different qualities

across inputs where the units of the aggregate and the inputs are identical (e.g.

quality-adjusted labor (Bowles, 1970)). However, this is not the case for electricity

in which units of production for each technology and the units of the aggregate are

identical and of the same quality.1

This motivates the implementation of the QCES described by Dixon and Rimmer

(2002, 2003, 2006) below; however, QCES first requires a slightly modified theory

regarding the structure of the electricity sector than the standard CES (van der

Mensbrugghe and Peters, 2015).

5.3.2.2 Quantity-Preserving CES (QCES) Substitution

Supply must equal demand instantaneously in an electricity network. As a result,

the values of electricity produced with different generation technologies (from the

system operator perspective) are not stationary over any period of time due to: i) the

nature of demand, which can fluctuate by the minute, hour, day, and season and ii)

the operational constraints of technologies that may prevent flexibility in responding

to the fluctuating demand. While it may be intuitive to think of cost minimization as

1Although values of electricity produced from different technologies may be heterogeneous in supply
due to time, space, and contract lead-time (Hirth et al., 2014), the qualities of the produced electricity
from each are identical.
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in the standard CES, the average cost of producing electricity is an incomplete idea

in that it does not reflect the complete cost to the system operator because of costs

incurred by operational constraints, which are difficult to identify and incorporate

into the market prices. For instance, the Pennsylvania-New Jersey-Maryland (PJM)

market in the United States refers to these costs as: day-ahead and balancing

operating reserves, reactive services, synchronous condensing, and black start services.

The purpose of identifying and categorizing these costs is “to reflect the impact of

physical constraints in market prices to the maximum extent possible (Monitoring

Analytics, 2015, p.g. 142)” mainly for the purposes of reliability of instantaneously

adjusting supply (and having reserves) to meet the unpredictable demand (Monitoring

Analytics, 2015).

Recognizing that average costs of generation are incomplete, there is an

unobserved utility of supply that reflects of the usefulness of the supply from different

technologies in meeting the specific nature of the demand which balances of average

cost of generation, reliability costs, and costs incurred from operational constraints.

Therefore, the problem of the system operator is two-fold. First, the total

production from each technology, qgt , must meet the total electricity demand observed

over some period of time, Qg. Second, the operator maximizes the utility of the

supply where the utility is defined as a CES function with revenue obtained from each

generation technology. That is, the system operator gets some positive contribution

to overall utility from revenue obtained from certain technologies. Here, revenue,

rather than the technologies, is substitutable.

The QCES specification maximizes the CES utility subject to the sum of electricity

produced from each technology equaling the total electricity demand, as shown below:

max
qgt

U =

[∑
t

(pgt · qgt )ρ
] 1

ρ

(5.12)

subject to:



121

Qg =
∑
t

qgt (5.13)

σ =
1

1− ρ
(5.14)

The observed mix of revenue from various electricity generation technologies is

then the mix which optimally satisfies the complex nature of demand given by the

unobserved utility. Note also that the QCES parameter is related to the CES exponent

in a slightly different manner than in the standard CES case (Equation 5.10).

The log-linearized description is nearly identical to the standard CES specification

(equation 5.11) except the price index is based on the quantity shares, sqt , rather than

the value shares svt (van der Mensbrugghe and Peters, 2015).

q̂gt = Q̂g − σ ·
(
p̂gt −

∑
t

sqt · p̂t
)

(5.15)

Because sqt comes from observable data, implementation of the QCES into partial and

general equilibrium models is straightforward. Perfect substitution, σ = ∞, would

imply that a small increase in revenue for a unit of utility (e.g. price or quantity per

“util” decreases) in a technology would result in all electricity being produced from

that technology, just as we would observe in the traditional CES with production as

inputs. Leontief, σ = 0, implies that the same proportion of revenue is required for a

change in utility or change in total electricity since utility is homothetic in quantities.

A nested CES-type structure is commonly used in CGE analysis of electricity

production. The motivation of this work to incorporate economy-wide linkages, so a

commensurate representation is used here. The important consideration in creating

a reasonable the production structure is capturing imperfect substitution between

technologies, especially regarding the dispatchability and the load type (base versus

peak). Château et al. (2014) does not include electricity technologies. Instead, capital

and fuels are imperfectly substitutable, coal and liquids (i.e. crude oil, refined oil,

and gas) are imperfectly substitutable, and liquids are imperfectly substitutable.

McDougall and Golub (2008) characterizes a similar nested substitution between
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fuels and between fuels and capital. However, both of these ignore non-fuel-based

technologies in electricity production. Pant (2007) uses a technology bundle approach

with specific generating technologies, but does not consider any dispatchability and

base versus peak load characteristics in the substitution between the technologies.

Paltsev et al. (2005) uses a nesting between non-dispatchable and dispatchable (i.e.

fossil fuels) and then substitution between the dispatchable fossil fuels. Variable

technologies (i.e. solar and wind) are accompanied by a peak-load dispatchable

technology (e.g. gas or oil power). The parameters in the nesting structure are

neither estimated nor calibrated.

The capacity utilization model here uses a nested QCES production structure to

represent substitution between technologies. Capacity factor utilization is represented

as a nested derived demand system for the technologies represented in Figure 5.6.

Base and peak load technologies are distinguished from one another to reflect

the additional operational aspect of the electricity sector. QCES parameters are

calibrated across several time periods for base and peak load (i.e. σbl and σpl,

respectively) separately. The substitution between base and peak load (i.e. σg)

and between transmission and distribution (T&D) and total generation are assumed

equal to zero (i.e. Leontief).

5.3.2.3 Calibrating the Quantity-Preserving CES Parameters

The QCES parameters for the United States are calibrated across several time

periods (i.e. 2002–2012) for the base and peak load nests in Figure 5.6 from equations

5.16 and 5.17, respectively, where the percentage change variables are for annual time

steps. The error terms, εbl and εpl, are minimized independently using an ordinary

least squares estimator.

q̂gt = Q̂g − σbl ·
(
p̂gt −

∑
t

sqt · p̂t
)

+ εbl for t ∈ EBL (5.16)
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Figure 5.6.: Production structure for capacity utilization. Composite sectors are in
italics.

q̂gt = Q̂g − σpl ·
(
p̂gt −

∑
t

sqt · p̂t
)

+ εpl for t ∈ EPL (5.17)

where EBL and EPL are the sets of base and peak load technologies, respectively.

Therefore, the relevant data are annual generation for each technology, qgt , and annual

costs of generation by technology, pgt . The variable Q
g can be constructed by summing

qgt across all technologies, and sqt is constructed by by share-weighting qgt over the

EBL and EPL sets. EIA (2015b) and other EIA databases have annual data on qgt

from 2002 to 2012. Moving from annual level variables to annual percentage change

variables is straightforward.

Changes in annual costs of generation by technology are constructed from the

following equation:

p̂gt =
∑
i

cit · p̂it (5.18)

where cit is the share of the cost of input i (i.e. fuel, O&M, and capital) in producing

using technology t (i.e. cost structure), and p̂it is the percentage change in price of

input i in technology t. Cost structures for each technology are taken from the
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GTAP-Power database (Chapter 3). Annual values for pit are required for each

technology to determine pgt ; alternatively, annual changes in price pit from the base

levelized cost estimates in Chapter 2 are required to determine pgt . BLS (2015) has

data on labor costs, pO&M,t, in the total electric power sector, and uniform changes,

pO&M,t, are applied across all technologies. The impact on total price will depend

on the share of O&M in the cost structure of the particular technology. Fuel prices

for coal, oil , and gas (measured in real price per MMBTu observed in the electricity

sector) are also available from EIA (2015b) for the relevant time period. Capital

costs are assumed to be constant since we are investigating short-term changes in

generation from factor utilization only (p̂k,t = 0).

The multi-period calibration procedure estimates annual QCES parameters for

base and peak load technology substitution to be 0.462 and 0.472, respectively. More

observations would be needed to econometrically estimate these parameters (here n =

10). It is worth noting that general equilibrium modeling takes the perspective that

prices and quantities are endogenously determined, as opposed to exogenous prices

in this estimation, and the greater concern are the feedbacks in the structure of the

economy. It may be worth varying the parameter in the CGE model using systematic

sensitivity analysis to represent the uncertainty (Arndt, 1996). For example, an

increase in substitution would make utilization more elastic. More observations would

be required to be certain of the “true” parameter value (if a “true” parameter value

even exists).

Of greater interest than the significance of the parameter values is how well

these parameter values characterize factor utilization in an economic model. While

the lack of econometrically supported parameters in these models is one of the

major criticisms of DeCanio (2003), the detailed representation of electricity and

the validation exercises addresses two other major criticisms. The following section

describes the capacity utilization validation.
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5.3.3 Capacity Factor Utilization Validation

The parameters mapping the flexibility of supply from existing capacity, σva
t , and

parameters describing substitution between existing capacity, σbl and σpl, are now

specified in the capacity utilization version of the model with exogenously specified

capacity expansion (i.e. expansion is controlled in these simulations). The model is

subjected to shifts to the main determinants of factor utilization (i.e. fuel prices)

and some important longer-term determinants of demand and supply (i.e. per capita

income, population, and technical efficiency of the electricity sector). The following

total electricity demand equation and zero-profit condition, combined with derived

demands and supply response for inputs (Equations 5.3–5.7) and derived demands

for electricity generating technologies (Equations 5.16–5.18), complete the equilibrium

model for capacity utilization:

Q̂g = −âg + ŷ + p̂op+
∑
u

su · μu · P̂ g (5.19)

P̂ g =
∑
t

sqt · p̂gt (5.20)

where âg is the percentage change in technical efficiency of electricity use, ŷ is the

percentage change in gross national income per capita, p̂op is the percentage change

in population, su is the end-use share of total electricity demanded by user category

u (comprised of industrial, commercial, and residential), μu is the demand elasticity

for electricity by user, and P̂ g is the aggregate price of demanded electricity.

5.3.3.1 Baseline Factor Utilization Validation

The model validation uses a base year of 2007 from which the power sector is

shifted retrospectively to 2002 and prospectively to 2012.2 The results for the change

in capacity factor for each technology are then compared to the observed capacity

2The baseline validation was initially performed with the GTAPv8 database with a base year of
2007. Using a base year of 2007 is advantageous because it allows for validation before and after
structural change in fuel prices brought on by the shale oil and gas boom in the US.
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factors over that same time period. The deviations from the observed values are

expected to become more pronounced as the deviation from 2007 increases because

of the compounding influence of other uncontrolled longer-term determinants as well

as the interaction between existing and new capacity (which is introduced in the full

model later). Still, the capacity utilization validation lends confidence in the model’s

ability to capture the response of existing electricity generation technologies in the

aggregate region to economic and policy shocks.

Table 5.2.: Shocks to key drivers of capacity factor from 2002–2012. 2007 is the
reference year for GTAPv8. In percentage change from reference year. All are
exogenous shifts except âg, which is an output from the model.

Exogenous shifts (percentage deviation from 2007) Model Output

Year ŷ p̂op p̂coal p̂gas p̂oil p̂O&M Q̂g q̂ct âg

2002 -9.844 -4.517 -18.622 -42.304 -46.322 7.177 -7.176

E
IA

(2
0
1
5
)

2.290

2003 -7.612 -3.693 -18.526 -14.592 -31.962 4.250 -6.581 3.550

2004 -4.863 -2.797 -15.680 -8.009 -34.339 5.870 -4.479 3.230

2005 -2.602 -1.897 -7.648 22.566 -4.662 -2.729 -2.438 1.310

2006 -1.181 -0.947 -1.820 0.369 -10.653 0.366 -2.214 1.930

2007 - - - - - - - -

2008 -0.947 0.950 12.602 22.148 45.969 2.442 -0.899 -0.756

2009 -4.639 1.839 20.647 -35.582 -5.395 6.760 -4.966 4.900

2010 -2.728 2.695 21.922 -31.942 26.491 10.082 -0.762 1.310

2011 -1.723 3.483 24.440 -38.820 60.409 13.766 -1.362 2.750

2012 -0.384 4.276 21.407 -56.569 57.157 14.019 -2.622 7.060

Table 5.2 shows the exogenous shifts imposed in the model. Population

consistently increases from 2002 to 2012. Coal prices increase from 2003 to 2008

and are relatively flat otherwise. Gas prices increase from 2002 to 2009 then fall

sharply as the US shale oil and gas boom, which began in 2007, takes shape. Oil

prices generally increase over the time period but with large fluctuations. Fuel prices

per MWh of electricity generated are shown in Figure 5.7.
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Figure 5.7.: Fuel prices per MWh of electricity produced (nominal dollars)
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Figure 5.8.: Validation of capacity factor portion of model. Model results are
represented by large markers and are not connected because they are each shifted
separately from the 2007 base year. Observed values are gray, dashed lines.

The model results correlate well with the observed values (see Figure 5.8 and

Table 5.4)3; however, there are two important time periods with larger deviations

3Model results are represented by large markers and are not connected because they are each shifted
separately from the 2007 base year. That is, 2007 to 2008, 2007 to 2009, etc. This representation is
used in the charts throughout.
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between the observed generation and the model results. First, between 2002 and

2005 the model projects too little coal generation and too much gas generation in

base load power, and the model projects too little oil generation in peak load power.

Second, between 2011 and 2012 the model projects too much coal generation and too

little gas generation in base load. This may be partly due to attempts by the federal

government to regulate mercury as well as structural change in coal contract duration

(leading to increasing substitutability from coal with time).

In March 2005, the Clean Air Mercury Rule (CAMR) issued by the US

Environmental Protection Agency (EPA) sought to permanently cap and reduce

mercury emissions from power plants by 70%. This was later vacated in 2008, but it

signaled that the federal government was targeting mercury emissions by coal and

oil-fired generation. In the context of the model, prior to 2005 the actual cost

(excluding the cost of prospective regulation) of coal and oil power may actually

be lower than the shifts imposed on the 2007 economy.4 This would explain some of

the deviation between the observed and model results between 2002 and 2005.

Subsequently in March 2011, the EPA announced the Mercury and Air Toxics

Standards (MATS) which aimed to reduce mercury emissions from coal and oil

emissions more aggressively by up to 91%. This standard would contribute to a

higher actual cost (including prospective regulation) of coal and oil power than in the

model shifts after 2011.5 This might explain part of the deviation in years 2011 and

2012.

While neither the CAMR nor MATS is law at the time of writing this dissertation,

several utilities have already installed equipment to limit mercury emissions in

anticipation of such legislation (EIA, 2014). The regulations also may have signaled

to the electric power industry that they should have higher future cost expectations

for coal-fired generation; this permeates the validation.

4The projected annualized compliance cost of CAMR and CAIR (a related measure for sulfur oxide
and nitrous oxide) is $2.5 billion or about 1.5 $/MWh (USD 2007) (EPA, 2005)
5The projected annualized compliance cost of MATS is $9 billion for coal-fired generation or about
4.7 $/MWh (USD 2007) (EPA, 2011)
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In addition, the elasticities of substitution used in the validation were calibrated

on an annual basis to control for interactions with capacity expansion. However, the

long-term elasticity of substitution in base load power might be greater because of

the decreasing term of coal contracts. In the US electricity sector 93% of coal in 2011

was purchased on contracts longer than one year with a median around three or four

years which limits substitutability by contractually obligating coal generation. Only

44% of gas was purchased on long-term contracts in 2011 (Macmillan et al., 2013).

The trajectory of observed and model estimates for gas and coal in base load power

in Figure 5.8 seems to imply that, in fact, the two became more substitutable around

2010 which is about three years after the shale oil and gas boom, when natural gas

prices dropped significantly compared to coal (Figure 5.7). The greater substitution

observed after 2010 is partly a result of allowing long-term coal contracts to expire or,

at least, allowing renegotiation due to a drop in natural gas prices. The elasticity of

substitution will likely increase as longer-term coal contracts expire and are replaced

by shorter-term contracts or even spot prices.

5.3.3.2 Policy-Adjusted Factor Utilization Validation

Top-down models are generally limited to price-based policies, and structural

change is represented implicitly via elasticities (Hourcade et al., 2006). Both

limitations make the aforementioned federal and industry policies a challenge to

introduce in the model. Instead, monetary costs of meeting mercury regulations

and a higher elasticity of substitution after the significant drop in gas prices in 2009

are used to adjust for the aforementioned federal and industry policies. These coarse

adjustments should help to explain some of the gap between the baseline validation

and the observed values.

Table 5.3 shows the new shifts which are used in addition to the shifts the

validation described in Table 5.2 along with alternate elasticities of substitution for

base load power to account for the reduction in coal contract duration. We assume
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that the average coal contract duration is three years with expiration uniformly

distributed over those three years.6 Although in reality contracts have different

beginning and end points as well as duration, we assume that coal contracts will

expire, shorten, or be significantly renegotiated beginning in 2008 as a result of the

sharp decrease in gas price (i.e. one-third expire in 2008, one-third in 2009, and

one-third in 2010). This implies that the estimated annual elasticity of substitution

for base load power would double in 2009 and triple in 2010 (i.e. all the number

of contracts now are expired or available for renegotiation) where it remains in the

long-term.

Table 5.3.: Additional shifts to key drivers of capacity factor from 2002 - 2012. 2007
is the reference year for GTAPv8. In percent change from reference year. All are
exogenous shifts except âg, which is an output from the model.

Additional exogenous shifts Model Output

Year t̂ccoalbl t̂coilp σbl âg

2002 -7.5 -7.5 0.462 2.570

2003 -7.5 -7.5 0.462 3.840

2004 -7.5 -7.5 0.462 3.520

2005 -7.5 -7.5 0.462 1.580

2006 - - 0.462 1.930

2007 - - - -

2008 - - 0.462 -0.756

2009 - - 0.924 4.350

2010 - - 1.386 0.926

2011 - - 1.386 2.270

2012 23.5 23.5 1.386 5.770

6An average of three years is consistent with volume-weighted state average contract lengths in
Macmillan et al. (2013). Kozhevnikova and Lange (2009) report an average coal contract duration
of 4.40 years between 1979 and 1999, but contract durations have been decreasing since that study
period due to the fall in gas price (EIA, 2015c).
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Figure 5.9.: Refinement of capacity factor validation using additional insights. Model
results are represented by large markers and are not connected because they are each
shifted separately from the 2007 base year. Observed values are gray, dashed lines

Figure 5.9 shows the results of the validation after the regulation and parameter

adjustments. The numerical value of the refined shifts and parameters are crude

estimates since the regulations were not passed, and there is insufficient data to

estimate how the elasticity of substitution in the electricity sector may have changed

in response to a decoupling of oil and gas prices and the subsequent fall in gas

prices. However, these insights are shown to be an important aspect in modeling the

evolution of electricity. Table 5.4 shows that these qualitative insights improve the

correlation between the observed generation and the model predictions. Therefore,

these retrospective insights are retained in the subsequent analysis.

There still remains a large difference in the predictions for coal and gas in base

load and between oil and gas in peak load generation from 2002 to 2005. This may be

indicative of the threat of future regulation of mercury in coal and oil power imposed

a higher expected future cost of these generation types than that of just the expected

upgrade costs to meet CAMR regulations. Coal has been a target for regulators for

some time.
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Table 5.4.: Comparison of correlation between observations and model predictions
for the baseline and the policy-adjusted validation.

Baseline Policy-adjusted Gain

CoalBL 0.743 0.947 +0.204

GasBL 0.899 0.950 +0.051

OilP 0.845 0.847 +0.002

GasP 0.923 0.924 +0.001

Total Gas 0.953 0.956 +0.003

5.3.4 Summary of Capacity Utilization

This section presented the capacity utilization portion of the electricity-detailed

model and shows that it performs well with exogenous capacity. The substitution

across generation types using existing capacity results in a change in the rates of

returns to each technology. For instance, if the capacity factor of gas power increases

(ĉt) more than other technologies, then gas power will have a higher return per unit

of existing capacity (p̂k,t). This increases the value of the technology in the capacity

expansion stage. Furthermore, a higher capacity factor in a flexible technology might

crowd-out some of the returns from inflexible technologies. For instance, if gas power

becomes inexpensive, nuclear power may see diminished returns on its capital. These

rental rates partly determine the amount of investment and expansion in each type

of capacity in the following section. Both the capacity factor and the rates of return

from the utilization portion are passed on to the capacity expansion portion of the

model, which is presented and analyzed in the following section.

5.4 Capacity Expansion

It is important to define the difference between nominal (or nameplate) capacity

and effective generating capacity. Nominal capacity refers to the actual MW of

capacity installed, while effective capacity refers to the capacity that can reasonably
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be used to provide electricity generation (i.e. weighted by the capacity factor). Since

generation is what balances supply and demand, effective capacity is important for

decision-making in expansion. In the electricity-detailed model the percentage change

in quantity of capital (i.e. q̂ct ) directly maps to percentage changes in nominal capacity.

Recall the motivating relationship in equation 5.2, the capacity factor is given as:

ĉt = q̂gt − q̂ct (5.21)

where ĉt is the percentage change in capacity factor for technology t, q̂gt is the

percentage change in generation by technology t, and q̂ct is the percentage change

in nominal capacity for technology t. The relationship between nominal and effective

capacity is given by:

qet = qct · ct (5.22)

where qet and q
c
t are the effective and nominal capacity, respectively. The total effective

capacity changes can be decomposed into additional and retiring capacity. The rate

of nominal retirements are a function of the changes in returns to capacity, p̂ct , and the

annual rate of retirements defined by the inverse of the technical lifetime of existing

plants. This captures the “economic lifetime” of the plant where a plant may extend

its lifetime if the rate of return is higher or shorten if the returns become lower.7

q̂crt =
(100− p̂ct)

100
· rt · t (5.23)

q̂ert = q̂crt · cft (5.24)

where q̂crt and q̂ert are the percentage change in nominal and effective capacity for

technology t due to retirements, respectively. The coefficient cf t links the change in

capacity utilization to the effective capacity (cf t ≡ ĉt
100

− 1). This coefficient factor is

7Data prior to 2014 is given as net capacity changes rather than distinguishing between additions
and retirements.
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one of the three linkages between capacity utilization and capacity expansion shown

in the original conceptual model in Figure 5.2.

Additional effective capacity is the sum of the net effective capacity and total

retired effective capacity net of changes in total capacity utilization from all

technologies.

Q̂g − Ĉ = Q̂ea −
∑
t

sqt · q̂ert (5.25)

where Ĉ is the percentage change in total capacity factor and Q̂ea is the required

additional effective generation in the sector, and sqt is the share of electricity generated

by technology t. This accounting condition is in generation (effective capacity) terms

to ensure additional capacity meets the generation-based requirements.

We can determine the effective capacity additions for each technology according

to the following equations:

sqt · q̂eat = sat · Q̂ea (5.26)

q̂cat = cf t · q̂eat (5.27)

where q̂eat and q̂cat are the effective and nominal capacity additions, respectively. The

coefficient sat is the share of effective capacity additions allocated to each technology

t.

These shares are derived using a multinomial logit (MNL) model where the utility

Ut is solely a function of the change in rate of return on the capital in technology t,

that is Ut = α · P c
t where the coefficient α, marginal impact on utility from rate of

return, is assumed identical across generation types and can be calibrated to data.8.

8This highly-constrained MNL model is validated later. Given additional data, an alternate MNL
model could estimated with econometrics
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The variable P c
t is the level of rate of return on new capacity and is linked to rental

rates of existing capacity by the following equation.9.

p̂ct = p̂k,t + ât − t̂ct (5.28)

where p̂ct is the percentage change in rate of return of new capacity, p̂k,t is the

percentage change in rental rate of existing capacity due to change in capacity factor

which comes from the capacity utilization portion of the model, ât is the percentage

change of technological efficiency of new capacity (compared to existing capacity),

and t̂ct are capital taxes/subsidies for new capacity.

This specification results in the following equation for sat :

sat =
eα·P

c
t∑

t e
α·P c

t
(5.29)

Thus, the resulting long-term capital growth, capacity expansion, is:

q̂ct = q̂cat − q̂crt (5.30)

This is the third linkage by which capacity expansion feeds back into capacity

utilization for flexible technologies because net changes in capacity will impact the

utilization rates of the sector.

5.5 Joint Capacity Utilization and Expansion Validation

The purpose of the joint capacity utilization and expansion validation is to test

how the model performs in predicting both total capacity expansion as well as

contributions from each generating technology given changes in capital rents from

capacity utilization – as shown in the previous validation.

9Here it is assumed that the original rate of return is equal amongst existing capacity. This seems to
be a reasonable assumption with a base year of 2007. Prior to 2007 there was little variation, which
some exception, in capacity growth (i.e. no large difference in rate of return). This assumption may
need to be changed in the future with renewables and gas displacing coal and oil power.
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The foremost difficulty in validating capacity expansion arises from the lag

between planning period to expected service (i.e. lead time) and the changes in

economic conditions during that time. Tidball et al. (2010) reports a roughly four

year lead time from capacity order to expected service; nuclear and coal may be

longer, but do not play a big role in capacity expansion from 2007 to 2018.10 In

reality, there is no natural experiment where an economic shock takes place and the

external environment does not evolve while constructing planned capacity. This is

especially true in light of the economic recession from 2007–2009 and the decline in

gas prices as a result of the US shale oil and gas boom.

This is not to say that a validation is not possible; instead, a validation relies on

qualitative discussion of factors leading to the departures between the model outputs

and observations. The model results are based on shifts from the 2007 base year,

similar to the capacity utilization validation. Nuclear and hydroelectric power are

assumed not to expand in the validation, because both are highly constrained by

regulation and resource availability, respectively and do not respond as quickly to

economic variables. The other technologies are compared to observed capacity from

2007 to 2013 and planned capacity from 2014 to 2018 (EIA, 2015b). We present three

validation exercises, each with slightly different assumptions to reinforce confidence

in the model results.

The intent of the first validation, termed “targeted total capacity”, is to test

how the model performs in predicting contributions from each generating technology

by controlling for total capacity expansion. Here, capacity expansion in time t is

based on the three driving factors: i) technology available during planning at time

t − 4, ii) assumed perfect information on input prices at time of expected service

t, and iii) a projection of generation needs that controls for actual total capacity

growth. The first assumption is reasonable because materials must be purchased

well in advance of expected service; therefore, the technological efficiency and capital

10Project lead times vary by technology. Tidball et al. (2010) report an average time from order to
expected service of 6 years for nuclear power plants, 4 for coal, 4 for hydroelectric, 2-4 years for gas
(depending on technology), 3 for wind, and 2-3 for solar.
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costs of the generating units are based on the planning year, time t−4. However, the

latter two assumptions may be more contentious, so they are relaxed further in the

subsequent two validation exercises: “planning year prices” and “projected capacity

needs” validations, respectively.

5.5.1 Targeted Total Capacity Validation

In this validation exercise, the shifts and parameters from Tables 5.3 from the

capacity utilization validation and 5.5 below are imposed on the model.

Table 5.5.: Shocks to key drivers of “targeted total capacity” validation from 2007 to
2018. Total generation, Q̂g, are exogenously given to target observed total capacity
expansion. Policy-adjusted shifts and parameters from Table 5.3 are included in the
validation but not shown in this table.

Exogenous shifts (percentage deviation from 2007)

Year Planning (t− 4) Service (t)

t̂csolarp ŷ p̂op p̂coal p̂gas p̂oil p̂O&M Q̂g

2008 30 -0.947 0.950 12.602 22.148 45.969 2.442 0.000

2009 20 -4.639 1.839 20.647 -35.582 -5.395 6.760 2.100

2010 10 -2.728 2.695 21.922 -31.942 26.491 10.082 2.700

2011 - -1.723 3.483 24.440 -38.820 60.409 13.766 3.600

2012 -10 -0.384 4.276 21.407 -56.569 57.157 14.019 5.200

2013 -20 0.994 5.069 17.643 -45.807 43.594 11.419 1.400

2014 -25 1.396 5.853 17.643 -45.807 43.594 12.382 1.400

2015 -30 2.061 6.852 17.643 -45.807 43.594 13.346 1.000

2016 -33 2.727 7.729 17.643 -45.807 43.594 14.309 1.000

2017 -36 3.392 8.606 17.643 -45.807 43.594 15.272 0.800

2018 -40 4.058 9.482 17.643 -45.807 43.594 16.236 0.600

Figure 5.10 shows that the validation controls for total capacity expansion using

the total generation projections, Q̂g, shown in the final column of Table 5.5. The
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economic recession from 2007–2009 stifled electricity demand. We can observe some

of the lagged effects in Figure 5.10. Because the recession was not foreseen and

capacity expansion occurs over a 3–5 year time frame, capacity continued to enter

service after these years despite the lack of electricity demand and true capacity needs.

The forecasts were revised during the recessions causing the capacity to decrease from

2012–2013 before rising again after the recession ended. These confounding factors

show the need to control for total capacity growth in this validation. In the broader

context, it shows that the electricity sector is highly dependent on linkages in the rest

of the economy and reinforces the motivation of this dissertation to understand the

role of electricity in the context of the economy as a whole.
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Figure 5.10.: The “targeted total capacity” validation controls for total capacity
expansion. Model results are for each year are changes from the 2007 baseline.

As hypothesized earlier, the “targeted total capacity” validation using service

year input prices over-predicts the observed capacity growth in gas power. This is

because the model gives the optimal capacity expansion given service year prices,

while investment decisions would actually be made in the planning years (≈ t − 4)

when prices of gas were relatively higher (see Figure 5.7). This deviation is represented

by the shaded area in Figure 5.11a. Similarly, because gas and coal are highly

substitutable (shown in the capacity utilization module) we observe a faster decline

in coal capacity – represented by the shaded area in Figure 5.11b. In years after the

fall in gas prices the model predictions for gas power and the predictions for the rate

of coal retirements more closely mirror those of the observations. This validation fails
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(a) Gas capacity expansion in “targeted total capacity” validation. Model results are for
each year are changes from the 2007 baseline.
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(b) Coal capacity expansion in “targeted total capacity” validation. Model results are for
each year are changes from the 2007 baseline.

Figure 5.11.: Gas prices unexpectedly fell beginning in 2008, so due to assumption
of input prices at service year instead of input price at planning year, the model
over-predicts expansion of gas capacity. The model predicts a more immediate turn
from new coal capacity while there is some lag in the observed data.

in a predictable way which lends support for the validity of the capacity expansion in

response to fuel prices. The “planned year prices” validation uses planned year prices

and corrects for some of the deviation in gas power.

Another point to note regarding coal retirements is that they may not respond

immediately to economic stimuli. In this model the base annual rate of retirement

is the technical rate of retirement (inverse of technical lifetime). The rate of

retirement increases if the returns to capacity decline, and vice versa, to reflect the

economic lifetime (see Equation 5.23). In reality, coal retirements may not be so

price responsive. The annual rate of retirements and planned retiremetns observed

in the data from 2007 to 2018 is roughly 1.1% of total capacity which implies an
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economic lifetime of nearly 90 years, well over their technical lifetime (roughly 60

years), despite decreasing returns to capacity. This may be due to the fact that

many of these plants are already paid off and environmental policies preclude the

construction of replacement coal plants. There is also uncertainty whether the recent

decline in gas prices will continue over the long-term. Coal power operators may elect

to produce electricity using existing plants as long as possible, even by co-firing with

gas or biomass, to hedge against future fuel price uncertainty and to avoid costly

capacity expansion. It may be useful to treat coal power retirements exogenously

in long-run analysis, especially in analyzing environmental policy where coal is a

significant contributor.

One of the most important trends in the US electricity sector is the expected rise

in renewables in response to both technological change and GHG policy. Figure 5.12

shows the model performs fairly well for both technologies despite the rapid growth

observed from 2007 onward which is difficult to predict with certainty. Correlations

for each technology are shown in Table 5.6.

5.5.2 Planning Year Prices Validation

As we observed in Figure 5.11a using service year prices leads to over-predictions of

capacity expansion toward gas power. The “planning year prices” validation attempts

to correct for some of this by using planning year prices (t − 4). This might better

reflect the initial planning decisions, but neglects the opportunity to adjust capacity

expansion plans during the construct phase (e.g. canceling contracts). We might

expect reality to lie somewhere in between the two price assumptions. Figure 5.13

shows that using planning year prices in the model provides a better fit to the observed

capacity growth. It also shows an outlier in 2012 (i.e. 2008 prices). This is because

the model is sensitive to fuel prices. As mentioned, there could have been some

year-to-year adjustment in response to reduced gas prices after 2008 (i.e. canceling

other contracts and more gas capacity planning in 2009 and after that would have
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(a) Wind capacity expansion in “targeted total capacity” validation. Model results are for
each year are changes from the 2007 baseline.
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(b) Solar capacity expansion in “targeted total capacity” validation. Model results are for
each year are changes from the 2007 baseline.

Figure 5.12.: The model does well to predict capacity expansion in renewable power.
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come into service in 2012). Generally, equilibrium analysis is useful for long-run

planning, so any price shock used in a normal equilibrium modeling scenario would

be expected to be a sustained shock and this outlier does not discredit the model’s

long-run predictive power.

The “planning year prices” validation in combination with the “targeted total

capacity” validation reinforces the assertion that the electricity-detailed model can

reasonably predict the contributions to total capacity expansion from individual

generating technologies.
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Figure 5.13.: Gas capacity expansion in the “planning year price” validation. Using
planning year input prices corrects for the over-prediction using service year prices,
but does not allow for year-to-year planning adjustments. Model results are for each
year are changes from the 2007 baseline.

5.5.3 Projected Capacity Needs Validation

The “targeted total capacity” validation controls for total capacity expansion;

however, in a practical modeling scenario the total capacity expansion would be

endogenously derived based on the growth in electricity demand. The “projected

capacity needs” validation uses a four-year rolling average of generation predictions

to endogenously determine total capacity expansion.

The intent of using a four-year average for projected generation is to control for

year-to-year variations such as the drop in electricity demand during the economic

recession from 2007–2009. Figure 5.14 shows that observed electricity generation was
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almost always below the EIA AEO predictions. Viewed in light of the long-term

planning horizon in capacity expansion, an over-expansion in the sector would be

expected until roughly four years after the recession in 2007–2008; this is observed in

Figure 5.10.

Because the AEO projections consistently over-estimated generation needs from

2008–2014 we would expect the model to also over-estimate the actual capacity

expansion to some extent. The shaded area labeled “A” in Figure 5.15 shows this

to be largely the case. We also observe some deviation for years 2017 and 2018 (the

shaded area labeled “B” in Figure 5.15. This is likely due to the fact that planned

capacity for 2018 in the EIA data does not account for all the total capacity needs,

since it is not necessary to plan four years in advance for some technologies (e.g.

wind, solar) which is also why we also observe a plateau in planned expansion of

these technologies in 2017 and 2018 as well (Figure 5.12).

The “projected capacity needs” validation shows that the model can reasonably

predict total capacity expansion over the long-run, given reasonable projections in

total electricity generation.
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5.5.4 Overall Validation

The intent of the three validation exercises is to test the ability of the model to

reasonably predict total capacity expansion as well as the individual contribution from

individual technologies. Figure 5.6 shows that all of the validations show high levels of

correlation between the model predictions and the observed values for contributions

from individual technologies with some exceptions. The “other” power sector is poorly

correlated. This may be because the technologies which comprise this aggregate

group (e.g. geothermal, municipal waste, biogas) are resource constrained, similar to

hydroelectric and nuclear, and do not respond as quickly to economic conditions as

other technologies.

The first validation exercise, “targeted total capacity” validation showed that

the model reasonably predicts the contributions to total capacity expansion for each

technology. There were expected deviations for gas power expansion because of the

service year fuel price assumption, which was relaxed in the subsequent “planning

year price” validation.

The shale gas boom and subsequent drop in gas price was largely not predicted by

the power sector planners. Therefore, the “targeted total capacity” validation that

uses prices at time of service would be expected to overestimate the initial shift to

gas power from coal power. This hypothesis is clearly apparent in the results; that

is, the “targeted total capacity” fails in an expected way given additional qualitative

information. The “planning year price” validation instead used input prices from
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Table 5.6.: Comparison of correlation between the targeted total capacity (TTC),
planning year prices (PYP), and predicted capacity needs (PCN) validations. Each
validation has limitations arising from the assumptions, but each lends support to
the overall validity of the model. *The low value in correlation here is due to a single
outlier.

TTC PYP PCN

Coal Power 0.916 0.942 0.924

Total Gas 0.898 0.919 0.926

Total Oil 0.978 0.929 0.972

Wind 0.974 0.976 0.901

Solar 0.967 0.626* 0.941

Nuclear - - -

Hydroelectric - - -

Other 0.489 -0.130 0.225

Total Capacity 0.999 0.999 0.908

the planning year, t − 4. This validation no longer shows the initial overestimate of

gas power, but still is not quite reasonable because it does not allow for year-to-year

adjustment (e.g. canceling contracts) once price changes are realized during the

construction period. The “planned year prices” validation shows correlation gains for

gas and coal power which numerically supports the observations in Figures 5.11 and

5.13. Reality is likely somewhere in between these alternate input price assumptions.

In a modeling scenario, a price shock would be imposed with the presumption it

is a long-term price change; both validations serve to support confidence in price

response. Also, the low correlation for solar in the “planning year prices” validation

is due to a single outlier discussed in the previous section. The correlation increases

to 0.85 when that outlier is removed. This demonstrates the sensitivity of the model

and raises some concern regarding fluctuating input prices but is of less concern in

long-run analysis.
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The “targeted total capacity” validation controls for total capacity so the shares

of capacity growth by technology can be seen clearly; however, in a normal modeling

scenario the total capacity needs would need to be endogenously derived from some

economic shock (e.g projection of generation needs or preferably from projections of

income, population, and technical efficiency). Therefore, the final validation, termed

the “projected capacity needs” validation, assumes the projected generation for year

t to be the average of predictions for year t from the EIA Annual Energy Outlook

(AEO) for years t − 5 to t − 2. The four-year rolling average of projections controls

some of the confounding year-to-year adjustment mentioned above and returns total

capacity expansion which is shown to correlate well with observations with predictable

deviations. The “projected capacity needs” validation shows a high level of correlation

between model predictions and observations of total capacity expansion.

5.6 Summary

The electricity-detailed partial equilibrium model presented in this chapter fits

well in the space between bottom-up models which do not capture endogenous price

feedbacks and economy-wide impacts and top-down models which have insufficient

detail in the electricity sector for many relevant technology and policies. The model

captures important mechanisms for substitution of electricity generating technologies:

capacity utilization, expansion, and their interdependency. Both utilization and

expansion are validated against observations of generation and capacity in the United

States and perform quite well - especially compared to other economy-wide capable

models that are rarely validated in practice. The capacity utilization validation

showed strong correlation for generation changes with existing capacity (See Figures

5.8 and 5.9 and Table 5.4). The capacity expansion validation showed an ability to

predict contributions to total capacity expansion for individual technologies as well

as an ability to capture total capacity changes (see Table 5.6). These lend support

for the predictive power of the electricity-detailed partial equilibrium model.
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Therefore, we can conclude that the model overcomes two key criticisms of global

economic models offered by DeCanio (2003) who argues that: i) models are rarely

validated against actual observations, and ii) models do not have sufficient sector-level

detail. Despite the demonstrated predictive power, more work may be needed to

rigorously estimate the parameters selected for the current version of the model,

which will hinge on the availability of longer time series of data.

The following chapter shows the applicability of the model in answering a question

for which it is well-suited. What are the different electricity generation mixes resulting

from a carbon tax and from a wind and solar investment subsidy used to meet the

US Environmental Protection Agency’s Clean Power Plan?
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CHAPTER 6. ON THE ELECTRICITY SECTOR RESPONSE TO THE CLEAN

POWER PLAN: CARBON TAX VERSUS INVESTMENT SUBSIDY

While it has been shown that electricity is an important factor in economic

development, the sector outputs potentially harmful greenhouse gas (GHG). An

estimated 41%, or 12.5 billion tons, of the worldwide CO2 emissions from fuel

combustion comes from electricity and heat production (IEA, 2012). The US EPA

estimated the electric sector was responsible for about one-third of US GHG (CO2

equivalent) emissions in 2011. In addition to the direct greenhouse gas emissions

from electricity production, the life-cycle extends to the upstream (e.g. exploration,

transportation, construction) and downstream sectors (e.g. decommissioning, waste

management). Mitigating climate change by reducing carbon emissions is on the

minds of policymakers worldwide, and the electricity sector is critical to successful

mitigation policy.

On August 3, 2015, the US EPA announced the Clean Power Plan (CPP) to reduce

carbon pollution. The final rule promotes flexibility in meeting carbon targets by

focusing on emission performance that reflects the “best system of emission reduction”

based on three building blocks for supply-side management: improved plant-level

(namely coal-fired power) efficiency, switching from coal to gas power with existing

plants, and constructing more renewable power (EPA, 2015). The second building

block pertains to capacity factor adjustment and the third to capacity expansion.

Therefore, the partial equilibrium model detailed in Chapter 5 is ideally-suited to

study these two interacting mechanisms for meeting requirements of the CPP under

the backdrop of the dynamic energy landscape in the United States. Recall that

bottom-up models neglect economy-wide impacts and largely consider both fuel prices
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and capacity factor to be exogenous while typical top-down models lack the necessary

detail to study these dual mechanisms in the electricity sector.

Table 6.1.: Connecting the EPA CPP building blocks to model mechanisms
determining changes in electricity generation (EPA, 2015).

Description from EPA (2015)
Model

Mechanism

Building
Block 1

reducing the carbon intensity of electricity
generation by improving the heat rate of
existing coal-fired power plants

Technical
productivity (âgt )

Building
Block 2

substituting increased electricity generation
from lower-emitting existing natural gas plants
for reduced generation from higher-emitting
coal-fired power plants

Capacity
utilization (ĉt)

Building
Block 3

substituting increased electricity generation
from new zero-emitting renewable energy
sources (like wind and solar) for reduced
generation from existing coal-fired power plants

Capacity
expansion (q̂ct )

Previous drafts of the Clean Power Plan rule included a fourth building block:

more efficient electricity use. Increasing end-use efficiency may have significant

potential in offsetting total electricity demand in the United States (Wang and

Brown, 2014). The focus of this work is on endogenous supply-side responses (i.e.

capacity utilization and expansion); both supply and demand efficiency are considered

implicitly as the difference between gross national income and an exogenous projection

of electricity demand (Equation 5.19).

The intent of the rule is to give individual states flexibility to meet their

state-specific targets. The basic options are to establish a carbon trading system

within or across state boundaries (i.e. addressing building blocks 2 and 3) or establish

subsidies or regulations for new capacity (i.e. addressing building block 3 only). While

the CPP is aimed at individual states, the emission target is at the national-level.

The CPP, when fully implemented, aims to reduce carbon pollution from the US

electricity sector by 32% below 2005 levels.
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In order to give some perspective of the CPP target, it is necessary to observe

some important trends in the US electricity sector, especially in terms of some changes

in CO2 intensity, presumably due in part by the same mechanism discussed in the

CPP building blocks. Figure 6.1 shows that CO2 intensity remained fairly constant

from 1989–2007, and decreases significantly after 2007 (see area A in Figure 6.1).

This could a result of fuel-switching from coal to gas power (coal being almost twice

as carbon intensive as gas) as observed in Figure 5.9, but could also be a result of

the increase in renewable capacity as observed in Figure 5.12 or several other factors

such as general increasing carbon efficiency. If we use the total generation projection

from the EIA Annual Energy Outlook (AEO) 2015 report (EIA, 2015a) combined

with electricity sector-wide projections for CO2 intensity using data from 1989–2013,

we observe a reduction of 8.2% in total CO2 emissions from the 2005 baseline. If

we instead use a projection of CO2 intensity using data from just 2007–2013, where

we observe a decoupling in generation and emissions, the reduction of total CO2

emissions are over 44% from the 2005 baseline. While reality likely lies somewhere in

the middle, Figure 6.1 shows that the momentum from current economic conditions

(e.g. low gas prices, renewable policies, and end-use efficiency) will likely reduce the

magnitude of policy interventions needed to meet the CPP target.

The analysis begins by establishing the baseline for 2030 based on current input

prices, policies, and projections of future generation requirements. That is, given

the current US energy-economic landscape with low gas prices, renewable policies,

and increasing electricity end-use efficiency, how close to (or how far from) the 32%

target will we end up in 2030. What we find is that from increasing returns to gas

capacity due to the increasing capacity utilization observed in Chapter 5 and the

opposite trend in coal, emissions are projected to decrease almost 28% from 2007

levels without additional policy instruments.

Still, policy instruments may be needed to make up the full CPP CO2 target.

Sections 6.2 and 6.3 contrast the impacts of a carbon tax (equivalent to carbon

trading mechanism) with an investment subsidy for only wind and solar power (W+S
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Figure 6.1.: CO2 emissions by source for the US electricity sector from 1989 to 2010,
and as total emissions from 2011 to 2013 (EIA, 2015b). We observe decreasing CO2

intensity from 2007 onward (A). The total generation projection for 2030 is based on
EIA AEO 2015 (EIA, 2015a), and the two total CO2 projections are based on CO2

intensity projections using linear regressions with different periods of the emission
data (1989–2013 and 2007–2013).

investment subsidy scenario) to meet carbon reduction targets, and also compares

the resulting generation mixes in each scenario. Section 6.4 concludes.

6.1 Baseline for 2030

The baseline scenario is used to provide a basis for analyzing the carbon tax and

the W+S investment subsidy scenarios. The scenario projects the electric power

sector to 2030 using projections for total generation needs using the most recent EIA

AEO (EIA, 2015a), as well as population (US Census), labor costs as a proxy for

O&M costs (BLS, 2015), and income per household using simple regressions. With

the exception of large shocks such as the US economic recession discussed in Chapter

5, growth rates for these projections are quite stable. We shift fuel prices, taxes,

and technology to 2014 levels. The fuel prices still have a supply response. Given

recent fluctuations in fuel prices resulting from the shale oil and gas boom and the

more recent decline in oil prices (2015), no change may be a satisfactory projection.

Further, empirical evidence on endogenous technological change suggests that the
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price of fuels remains fairly constant in real terms over the long-term, albeit with high

year-to-year variability (Stuermer and Schwerhoff, 2013). Current federal investment

subsidies for wind and solar (i.e. 30% capital subsidy) are included in the baseline

simulation. Because technology is assumed to remain at 2014 levels, the results may

be conservative estimates for relatively new technologies (e.g. wind and solar) that

are improving at a faster rate than traditional technologies. These exogenous shifts

to the 2007 base year are shown in Table 6.2.

Table 6.2.: Shocks to 2030 for baseline scenario based on projections or 2014
observations. Effective taxes from mercury regulation (Table 5.3) and technology
(Table 5.5) are also shifted using 2014 levels. Years 2014 (fuel price year) and 2018
(last year of joint validation) used for reference.

Exogenous shifts (percentage change from 2007)

Projections 2007–2014 change Model Output

Year ŷ p̂op Q̂g p̂O&M p̂coal p̂gas p̂oil âg

2007 - - - - - - - -

2014 1.396 5.853 1.400 12.382 17.643 -45.807 43.594 5.360

2018 4.058 9.482 0.600 16.236 17.643 -45.807 43.594 9.015

2030 12.044 20.004 12.853 27.765 17.643 -45.807 43.594 17.423

Furthermore, coal and oil capacity are assumed to not expand economically

due to regulatory constraints (e.g. mercury and carbon regulations). Nuclear and

hydroelectric capacity are assumed to not expand economically due to regulatory and

resource constraints, respectively.

There will be additional retirements which will need to be replaced with additional

capacity. Looking back at the results we observed the joint validation in Chapter 5

and because we are using the same fuel price shifts, it is reasonable to assume that

most of the expansion in the 2030 baseline will also come from the gas, solar, and

wind technologies. We can also hypothesize that because capacity utilization changes

in 2030 should roughly match those from the projected capacity validation for 2018
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due to identical fuel price shifts, returns to capacity should be roughly similar and

expansion would probably be in roughly similar shares, despite the highly non-linear

system of equations. This hypothesis does not consider confounding factors from the

capacity expansion.

The results shown in Figure 6.3 and 6.4 support the above hypothesis. We observe

that capacity utilization of ‘GasBL’ increases over 60% while coal power utilization

decreases due to the lower relative price of gas. The story is similar for the reduced

utilization for oil power. Interestingly, we also observe a slight decrease in utilization

of ‘GasP’ which is likely a result of the tremendous growth in solar.

Utilization, in turn, affects the returns to capacity. Pressure from increasing

utilization and capacity expansion in ‘GasBL’ and expansion of wind puts pressure

on inflexible technologies that cannot adjust economically (i.e. nuclear and hydro).

Significant retirements of both coal and oil capacity (decreasing supply) keeps returns

fairly high for remaining plants, despite their lower utilization rates and inability to

expand.

The interdependency of utilization and expansion are nicely demonstrated for

‘GasBL’ in Figures 6.3 and 6.4. Returns to ‘GasBL’ fall moving out to 2030 due to

significant expansion in capacity. With high returns in 2018, ‘GasBL’ encompasses

23% of total capacity expansion, but due to the large expansion some of the returns

are “crowded-out” and the share reduces to 15% in 2030.

As we observe in the validation exercises in Chapter 5, there is strong switching

from coal power to gas power. Also, additional coal plants retire with time. As

a result, total carbon emissions from the US electricity can be expected to drop

approximately 27.7%. Total carbon emissions from coal and oil power reduce by 48%

and 60%, respectively, but is partly offset by a 72% increase in emissions from gas

power. Figure 6.2 shows carbon emissions by source in 2030 compared to 2005.

Interestingly, the baseline scenario projects that with no additional policies the

CPP goals will almost be met by 2030 (27.7% of the 32.0% target). Only a
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Figure 6.2.: Contributions to total CO2 emissions by fuel-type in the United States
in 2005 and model projections for 2030. Emissions from coal and oil reduce by 48%
and 60%, respectively, but is partly offset by a 72% increase in emissions from gas
power. CO2 emissions for other power technologies is small.
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Figure 6.3.: Capacity utilization in 2018 and 2030 are roughly similar due to similar
fuel price shifts (dissimilar O&M price shifts). This results in returns to capacity
in 2018 and 2030 are roughly similar except for technologies that have difficulty
expanding economically due to policy (i.e. coal and oil) or resource and regulatory
constraints (i.e. nuclear and hydro).
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relatively small remainder must be achieved through further incentives through policy

interventions which are discussed in the following section.

The 27.7% reduction predicted here is significantly different than other “business

as usual” (BAU) cases in both bottom-up and top-down literature. For example,

Bushnell et al. (2014) use a bottom-up, partial equilibrium model to analyze

differences between cap-and-trade and rate-based policies in a handful of western

US states. Their BAU case estimates a 10% increase in emissions from 2007–2030

due to increasing demand because the partial equilibrium model does not consider

increasing returns to capacity due to utilization changes, which would drive expansion

toward gas and away from coal, as in the model described here. This interdependency

between utilization and expansion is usually ignored in least cost optimization models.

As a result the policy intervention needed to meet the CPP target is larger than what

is found in the following chapter. On the other hand, Cai and Arora (2015) use a

CGE model with several generating technologies which substitute imperfectly, which

implicitly captures a combined utilization and expansion effect. The 2030 baseline

in this study predicts an 11% decrease in CO2 emissions. However, characteristic of

most top-down models, the model does not consider important aspects of electricity

production (e.g. base versus peak markets), is not validated, and includes technologies

that do not currently exist in meaningful scale (e.g. carbon capture and storage).

Without considering the interdependency of utilization and expansion (as in many

bottom-up optimization models) estimates of emissions may be too high. Without

explicitly representing and validating these joint mechanism the numbers resulting

from top-down models should be met with appropriate caution. The representation

and validation of capacity utilization and expansion in this model lends credibility to

the estimate of CO2 emissions presented here and in subsequent sections.
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6.2 Policy Scenarios: Carbon Tax and W+S Investment Subsidy

The following policy scenarios target the full 32.0% reduction goal of the CPP in

the US electric power sector. First, a carbon tax on electricity generation technologies,

TCO2 , of $8.9 per metric ton of CO2 is imposed in order to reach the policy target.

Second, equivalent capital (i.e. capacity) subsidies, t̂ct , of -27 are given to wind and

solar exclusively. The two policies are equivalent in that they are required meet the

additional 4% reduction needed to meet the full 32.0% reduction in CO2 emissions

from 2005 levels in 2030. These two alternative shifts are shown in Table 6.3 where

ĈO2 is the percentage change in CO2 emissions relative to the 2007 economy.

Table 6.3.: Additional shifts to 2030 in addition to baseline shifts in Table 6.2 for
carbon tax and W+S investment subsidy policy scenarios. Both policy scenarios
choose shocks that meet the total CO2 reduction goal of the CPP, 32.0%.

Projections Policies Target

Policy Year âg TCO2 t̂csolar t̂cwind ĈO2

Carbon tax 2030 17.423 $8.9 - - -32.0

W+S investment subsidy 2030 17.423 - -27 -27 -32.0

The two alternative policy scenarios would be expected to have different impacts

on the economy due to targeting of specific technologies as well as how the shocks

impact the systems of equations which define the model economy.

First, the carbon tax targets CO2 directly by internalizing the cost of emissions

via the zero-profit condition for the electricity generating technologies:

p̂gt =
∑
i

cit · p̂it + γt · TCO2 (6.1)

where the first term is the original zero-profit condition in Equation 5.18 and the

second accounts for the carbon tax. The coefficient, γt, is the CO2 emission factor

(thousand metric tons per GWh) for technology t. Table 6.4 shows that emission

factors are non-zero for coal, gas, oil, and other power, and vary in intensity. The
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carbon tax negatively impacts these technologies while positively impacting other

technologies on a relative basis. On the other hand, the W+S investment subsidy

positively impacts wind and solar while negatively impacting all other technologies

on a relative basis. Under both scenarios, fossil fuel technologies are hurt. The

difference is in non-fossil fuel technologies that do not receive subsidies (i.e. nuclear

and hydro power), which are impacted positively in the carbon tax but negatively

in the W+S investment subsidy scenario. This is because zero-emitting technologies,

like nuclear and hydro power, are relatively better options under a carbon tax, but are

not included in the wind and solar only subsidies so they are hurt in this case. Fossil

fuel technologies that are less impacted by the carbon tax than others (i.e. gas and

other power) are impacted differentially in the carbon tax case and uniformly (same

basis) in the W+S investment subsidy case. Therefore, the less carbon intensive

technologies are hurt more in the investment subsidy case.

Table 6.4.: CO2 emissions factors for each technology in the United States. EIA data
for 2007.

Nuclear Coal GasBL Wind Hydro Other GasP Oil Solar

γt 0 1.007 0.477 0 0 0.198 0.477 1.031 0

The second difference between the two policy scenarios is how the policies enter

the system of equations that define the model economy. The primary linkages are

outlined below:

• The carbon tax, TCO2 , will impact the cost of electricity generation via

Equation 6.1.

• The costs of generation impact capacity utilization via Equations 5.17 and 5.16.

• Capacity utilization contributes to the returns to capital via Equation 5.4.

• Returns to capacity and t̂ct contribute to additional capacity growth Equation

5.28 and Equation 5.29.
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• Total capacity changes feed back to the returns to capacity (Equation 5.7) and

cost of generation.

The carbon tax will mainly impact capacity utilization which impacts the returns

to capacity. The investment subsidies for wind and solar will impact capacity

expansion and affect utilization by crowding-out other technologies. The two different

policies reinforces the need to capture the dual mechanisms for substitution in

generation: utilization, expansion, and their interdependency.

The following section follows the primary linkages listed above to interpret the

equilibrium electricity mix in 2030 in response to the two policy scenarios.

6.3 Policy Scenario Discussion

Figure 6.5 shows that the carbon tax increases fuel switching from coal to

gas power as compared to the baseline. The relative impact on utilization is

correlated with the emission factor – more emissions per GWh more negative impact.

Interestingly, utilization of the technologies in the other technology category actually

switches from negative in the baseline to positive under the carbon tax because it

is relatively less affected than fossil fuel technologies. As expected, the investment

subsidies for wind and solar crowd-out capacity utilization for all technologies that

are not subsidized in a more uniform manner than the carbon tax scenario. As a

result, fossil fuel technologies with lower emission factors (e.g. gas and ‘other’ power)

are hurt relatively more than in the carbon tax scenario, fossil fuel technologies with

higher emission factors (e.g. coal and oil power) are hurt relatively less (see Figure

6.5).

The story in utilization translates easily to the returns to capacity shown in

Figure 6.6. The carbon tax drives coal capacity returns down while the W+S

investment subsidy drives wind capacity returns up. The high relative returns for

wind crowds-out capacity expansions in gas power which drives returns for gas

a little higher, but also crowds-out capacity expansion in solar power. Without
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Figure 6.5.: A carbon tax reduces capacity utilization for fossil fuels from the baseline
based on relative carbon content (1, 2) while a wind and solar investment subsidy
impacts utilization for all other flexible technologies in a more uniform manner (1, 2,
3).

as much expansion in solar, ‘GasP’ remains an important part of the generation

mix for peak load, and we observe higher returns in the W+S investment subsidy

scenario. Inflexible, non-fossil fuel technologies (i.e. nuclear and hydro power) are

impacted positively in the carbon tax case, but hurt tremendously in the investment

subsidy case. This is a known phenomena where the policy essentially picks the

winning technologies, here mainly wind, and implicitly picks losers despite the losing

technologies’ ability to address the stated goal (i.e. reduction in CO2 emissions).

The resulting generation mix from the two policy scenarios differ in three main

ways. First, in the carbon tax scenario all non-fossil fuel technologies expand.

This includes nuclear and hydro which would also be expected to expand even

more if regulatory restrictions were reduced for nuclear or hydro resources made

available. Picking the winners (wind and solar) constrains the returns for these other

technologies. Recall, that the model limits movement in these technologies due to

their imperfect response to economic stimuli; still, the direction of change is important

especially when analyzing the results with this type of qualitative information (as

shown in the validation exercises in Chapter 5). Second, the differential taxation
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Figure 6.6.: Absolute returns for fossil fuels are reduced by the carbon tax and less
impacted by the wind and solar investment subsidies (4). Returns to other zero
emissions technologies that not subsidized are hurt by the investment subsidy scenario
(5).

of carbon emissions between gas and coal leads to additional fuel switching from

coal to gas power; however, there is a decrease in both gas and coal power in the

W+S investment subsidy scenario. Third, as expected wind expands more in the

subsidy case. Finally, there is significant interdependence in capacity expansion

and utilization, as we observe with increasing utilization of ‘GasP’ (because of

crowding-out of expansion due to wind capacity returns) despite subsidies for solar

power expansion which also leads to a reduction in total solar power.

Recall that the CPP focuses on emission performance that reflects the “best

system of emission reduction” based on three building blocks for supply-side

management: 1) improved plant-level (namely coal-fired power) efficiency, 2)

switching from coal to gas power with existing plants, and 3) constructing more

renewable power. Both policy scenarios address the third building block. Renewable

(i.e. nuclear, hydro, wind, and solar) capacity increases 5.0% with a carbon tax

and 7.9% with W+S investment subsidies. However, the story is slightly different

for building block 2 – switching from coal to gas power with existing plants. The

baseline case with no additional CO2 emission policies shows that 41.39% of total
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coal (CPP building block 2) as compared to the W+S subsidy case. As expected
larger growth in wind and solar is observed with the subsidies.

electricity production from either coal and gas power comes from coal power. Coal

power’s share reduces to 39.94% with the carbon tax which indicates additional fuel

switching from the baseline. However, with subsidies to wind and solar the share of

coal power increases to 41.45% which indicates that expanding renewable capacity

(CPP building block 3) may compromise building block 2.

The cost of total electricity production increases 8.8% in the baseline scenario,

primarily due to increasing labor costs. The carbon tax increases the electricity

costs an additional 3.0%, which reduces total electricity demand, while the W+S

investment subsidy decreases electricity costs by 0.6%, increasing demand slightly

(see Figure 6.7). The total electricity cost may have important impacts in both tax

receipts and welfare analysis, which are not considered here.
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Another important point in this analysis is that the biggest contributor to

emissions in the US electricity sector comes from coal power; however, none of the

CPP building blocks explicitly call for retiring coal plants. Reducing electricity

generation from coal requires reducing utilization as well as reducing capacity.

Building block 2 helps drive retirements because differential relative prices (e.g.

inexpensive gas) and taxes (e.g. carbon tax) can drive down utilization of coal

which also reduces returns to capacity and increases retirements. Because the W+S

investment subsidy does not reduce the returns to coal power as much as the carbon

tax in absolute terms (Figure 6.6), the rate of coal retirements is lower (50.6%

reduction in coal capacity with a carbon tax and only 48.0% with the W+S investment

subsidies). As Chapter 5 notes, coal retirements may not be so price responsive, and

it may be worthwhile to treat coal retirements exogenously and perform sensitivity

analysis on the rates of retirement. In the absence of a carbon tax, subsidies might

be more effective if they are designed to provide an additional incentive to retire coal

plants to ensure that both building blocks 2 and 3 are met simultaneously.

6.4 Conclusions and Future Work

This chapter applies the partial equilibrium model described in Chapter 5 using

the data for the US electricity sector constructed in Chapters 2–4. A carbon tax and

an investment subsidy scenario for solar and wind are compared to the baseline. The

results replicate well-known results regarding the efficiency of a tax versus selective

regulation (i.e. wind and solar investment subsidies, here).

One of the more interesting insights from this work is the baseline projection to

2030. Given current economic conditions, namely the assumption that gas price will

remain at 2014 levels in the long-run, almost 28% of the CPP target of 32% reductions

will be met without any additional policy intervention. This means the magnitude

of further policies (e.g. carbon tax and investment subsidies analyzed here) may be

much smaller than what we might expect. Additional research on the “break-even”
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cost of gas for meeting the CPP target as well as investigating economy-wide factors

that might affect the price of gas such as the opening of LNG exports Levi (2012)

would be both timely and interesting. Increased demand for gas by the electricity

sector only increased the price of gas about 4.6%.

By capturing utilization, expansion, and their interdependency explicitly in the

model we can observe some additional interesting phenomena. First, selective

investment subsidies hurt returns for other renewable generating technologies (e.g.

nuclear, hydroelectric power) that otherwise could contribute to the goal of emission

reductions. Selective piecemeal subsidies can also compromise the effectiveness of

policies. Recall, that wind subsidies crowded-out investment in solar, which actually

resulted in more fossil-fuel production in the peak load. Second, focusing on the third

CPP building block (i.e. capacity expansion for renewables) might actually hurt the

second building block (i.e. fuel switching from coal to gas power with existing plants).

When pursuing a “best system for emission reduction”, as outlined in the EPA CPP

guidelines, it is important to combine capacity expansion policies with other policies

which might prevent emission offsetting in fuel-switching. Third, perhaps the best

way to reduce emissions is by retiring coal capacity. This is done by reducing the

returns to capacity. The carbon tax reduces returns by encouraging fuel switching to

gas, but the investment subsidies only reduce coal power returns in relative terms,

which does not push coal power out of the electricity mix at as quickly of a rate.

This analysis gives guidance for designing a “best system of emission reductions”

to meet the CO2 emission reduction objectives of the CPP. However, policymakers

should also consider welfare and economy-wide effects. Further, CO2 emissions have

implications beyond the just the US region via our shared global economy and

environment. Carbon leakage has been shown to be an important consideration for

reducing global emissions (Peters and Hertwich, 2008). Also, possible opportunities

for fuel exports (i.e. oil, gas, and coal) could open up the electricity sector to

important international price dynamics. The next steps in this line of research are
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to integrate the computation model as part of a global CGE model with relevant

sectoral and regional linkages.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The electricity sector plays a crucial role in the global economy. It is also a major

consumer of fossil fuel resources, a large producer of greenhouse gas emissions, and an

important indicator and causal factor for economic development. As such, the sector is

a primary target for policymakers seeking to address each of these issues. The sector is

also experiencing rapid technological change in generation (e.g. renewables), primary

inputs (e.g. horizontal drilling and hydraulic fracturing), and end-use efficiency. This

dissertation seeks to further our understanding of the role of the electricity sector

as part of the dynamic global energy-economy, which requires significant research

advances in both database construction and modeling techniques.

The introductory chapter discussed how the advances presented in this dissertation

fit within the current field research that focuses on the electricity sector and its

economy-wide linkages. So called “bottom-up” partial equilibrium or simulation

models are capable of providing a technologically and operationally-detailed

representation of the electricity sector. However, the sector-level detail often sacrifices

inter-industry feedbacks (i.e. fuel and other input prices are considered largely

exogenous) and inter-regional linkages. “Top-down” models, such as computable

general equilibrium, suffer from the opposite affliction. That is, inter-industry and

inter-regional linkages are well represented at the expense of sector-level details.

The advances in database construction and representing electricity presented in this

dissertation lend capability and credibility to sector-specific modeling in a top-down

computational equilibrium framework.

Chapters 2–4 detail individual, but interrelated advances in CGE database

construction for global economic modeling. Chapter 2 described the need to balance

bottom-up, engineering-level data with top-down data used for global economic
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analysis. Previous research that constructed electricity-detailed CGE databases fail

to document matrix balancing methods which balance these disparate data. The

chapter revisited the well-studied matrix balancing problem and formulates a share

preserving cross entropy (SPCE) method that is designed specifically for the type

of data in the electricity disaggregation. The solution to this method is equivalent

to the well-studied RAS method, but allows one of the constraints to be relaxed

without compromising the solution. This means the SPCE method is more flexible

than RAS and is shown to perform better in the case where total costs of sub-sectors

is not known with absolute certainty, as in the case of the electricity data. Chapter 3

demonstrated that matrix balancing methods have a significant impact on modeling

results and advocates for more documentation of these methods across researchers

in the future. GTAP-Power leverages these and other advances in constructing the

most electricity-detailed publicly-available CGE database (Chapter 4).

Chapter 5 described an electricity-detailed model that leverages the GTAP-Power

database to address two of the most criticized aspects of computational equilibrium

modeling: i) insufficient sector-level detail and ii) lack of validation against observed

data. The model captures two aspects of electricity generation which is the relevant

metric for balancing supply and demand as well as determining externalities such as

GHG emissions. Capacity factor utilization, expansion, and their interdependency are

explicitly and endogenously determined, which advance the field of both bottom-up

and top-down computational equilibrium model. The capacity utilization is validated

for the United States for the years 2002 and 2012 and shown to perform quite well,

especially in combination with qualitative information. A joint validation, which

links utilization with expansion, encompasses several distinct simulations which test

the models predictive ability from 2007 to 2018 and builds confidence of the system

of equilibrium equations in modeling the US electricity sector. Thus, this chapter

addresses two fundamental criticisms of computational equilibrium modeling.

Chapter 6 used the GTAP-Power database for the United States and the validated

electricity-detailed model to analyze the US EPA Clean Power Plan. The 2030
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baseline scenario almost completely achieves the 32% CO2 emission reduction goal

of the CPP. Low gas prices, coal power retirements, and expansion in renewables

nets reductions of 27.7% with no additional policy interventions. A carbon tax and

a solar and wind investment subsidy are imposed on the baseline scenario to reach

the full 32% target of the CPP. A wind and solar investment subsidy picks winning

technologies at the expense of over renewable technologies. Interestingly, the results

show that the wind investment subsidy crowd-out expansion for solar capacity even

with the solar investment subsidy. Further, the investment subsidies can offset some

of the potential baseline CO2 emission reductions from switching from coal to gas

power, which is one of the specific mechanisms, termed “building blocks” outlined in

the CPP. Finally, we observe that the carbon tax penalizes coal power in absolute

terms rather than in just relative terms by increasing returns of wind and solar. As a

result, coal capacity retires at a slower rate in the wind and solar investment subsidy

scenario.

Because coal is emissions intensive, retiring coal capacity is the key component

in emission reduction. An investment subsidy might be combined with another

mechanism to reduce returns to coal capacity to increase the rate of retirements.

In the absence of an economically efficient carbon tax, the more tractable policy of

renewable investment subsidies should be designed in such a way to avoid “picking

winners” (e.g. subsidies for all zero and low-emitting technologies), offsetting fuel

switching possibilities, and increasing returns to coal capacity.

Overall, the computational equilibrium model, which captures capacity utilization,

expansion, and their interdependency, is shown to be well-suited to analyze EPA’s

advice to pursue a “best system of emission reductions” given the complex nature of

the electricity system.

This dissertation focuses on advances in database construction and representing

electricity in economy-wide analysis. The next steps involve integrating the

computational equilibrium model from Chapter 5 into a full CGE framework to

fully leverage the inter-industry and inter-regional capabilities. The CGE linkages



170

will expand analysis to income and welfare impacts to more comprehensively analyze

carbon mitigation scenarios such as those proposed in Chapter 6. Further, trade

linkages will likely become of increasing importance for the US electricity sector as

traditional generating fuels (i.e. coal, gas, and oil) have potential for exports. There

are currently a handful of LNG export terminal permits approved for exporting

gas. There is legislation looking to remove the ban on petroleum exports. Also,

the shift from coal use in the US might lead coal producers to look for markets

overseas. Trade might have a significant impact on fuel prices, which we have already

seen can greatly impact the US electricity sector, and vice versa (Chapter 5). The

electricity-detailed representation in Chapter 5 was validated for the United States,

but should be calibrated and validated for other regions. Integrating CGE linkages

will unlock many timely research vistas including, but not limited to, the impact of

different combinations of national and global emission policies as well as the impacts

on fuel trade. This dissertation demonstrates the viability of electricity-detailed global

economic analysis going forward.
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Appendix A. Capacity Flexibility, Utilization, and Expansion Analytics: Technology

Price Shock

Let us first consider a simple model which characterizes capacity flexibility,

utilization, expansion, and their interactions. First, we have percentage change

in total electricity demand, Q̂g, determined by elasticity of demand, ηD, and the

percentage change in aggregate cost of electricity, p̂g:

Q̂g = −ηD · p̂g (A.1)

The aggregate cost of electricity is subject to the following zero-profit or aggregate

cost pricing condition:

p̂g =
∑
t

θgt p̂
g
t (A.2)

where θgt is the share of total electricity production from technology t in GWh, and

p̂gt is the percentage change in total cost of electricity generated using technology t.

Total cost of electricity using technology t is also given by a zero-profit or aggregate

cost pricing condition:

p̂gt =
∑
i

θitp̂it + δpt (A.3)

where θit is the cost share of input i in producing electricity with technology t and

p̂it is the percentage change in input cost. Here, the cost of generating electricity

using technology t is subject to a price shock, δpt . This will allow us to determine the

effect of parameter values on the responsiveness of the returns to capacity given an

exogenous price shock.

The derived demand equation allows for substitution between input prices given

by the constant elasticity of substitution between inputs, σi. A flexible technology

has σi > 0 and an inflexible technology has σi = 0.
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q̂Dit = q̂gt − σi (p̂it − p̂gt ) (A.4)

where q̂gt is the percentage change in total generation using technology t. This is given

by the corresponding derived demand equation that allows for substitution between

technologies using existing capacity.

q̂gt = Q̂g − σt (p̂
g
t − p̂g) (A.5)

where σt is a CES parameter that characterizes the ability of the electricity sector to

adjust generation via the utilization mechanism.

Finally, we represent the capacity expansion mechanism with the following

elasticity of supply, μt:

q̂Skt = μt · p̂kt (A.6)

To make the system of equations analytically tractable, we assume that only

change in prices is in capital inputs of the technology that we are investigating (i.e

infinite supply elasticity for other inputs and technologies). That is,

p̂it = 0 for all i 
= k (A.7)

and

p̂gt = 0 for all t 
= s (A.8)

where capital is designated k and the technology we are investigating is designated

s. Therefore, we rewrite the original zero-profit/average cost pricing equations

(Equations A.3 and A.2) as:

p̂gs = θksp̂ks + δps (A.9)

p̂g = θgsθksp̂ks + θgsδ
p
s (A.10)
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This is a simplification of the electricity-detailed computational equilibrium model;

however, using this analysis, we can show the interdependencies between capacity

utilization and expansion.

We begin by equating capacity supply and demand for technology s using

Equations A.6 and A.4).

μsp̂ks = q̂Sks = q̂Dks = q̂gs − σi (p̂ks − p̂gs) (A.11)

Simplifying and distributing σi nets

μsp̂ks = q̂gs − σip̂ks + σip̂
g
s (A.12)

and substituting q̂gs using Equation A.5 allows us to write:

μsp̂ks = Q̂g − σtp̂
g
s + σtp̂

g − σip̂ks + σip̂
g
s (A.13)

Replacing Q̂g using Equation A.1 nets the following equation with only price

percentage change variables and parameters.

μsp̂ks = −ηDp̂g − σtp̂
g
s + σtp̂

g − σip̂ks + σip̂
g
s (A.14)

Substituting with Equations A.9 and A.10 allows us to write the relationship in

terms of only the parameters, price shock, and returns to capacity:

μsp̂ks = − ηDθ
g
sθksp̂ks − ηDθ

g
sδ

p
s − σtθksp̂ks − σtδ

p
s

+ σtθ
g
sθksp̂ks + σtθ

g
sδ

p
s − σip̂ks + σiθksp̂ks + σiδ

p
s

(A.15)

Collecting all the p̂ks on the left hand side and δ̂ps on the right hand side leads to

the following equations:
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μsp̂ks + ηDθ
g
sθksp̂ks + σtθksp̂ks − σtθ

g
sθksp̂ks + σip̂ks − σiθksp̂ks

= −ηDθgsδps − σtδ
p
s + σtθ

g
sδ

p
s + σiδ

p
s

(A.16)

p̂ks(μs + ηDθ
g
sθks + σtθks − σtθ

g
sθks + σi − σiθks) = −δps(ηDθgs + σt − σtθ

g
s − σi) (A.17)

This leads us to define the response in returns to capacity, p̂ks, as a function of

the price shock, −δps , and relationships between the parameters. The following three

equations are equivalent; however, the parameters are rearranged to highlight various

relationships in the parameters which affect the response of the returns to capacity

in response to the price shock.

p̂ks = −δps ·
ηDθ

g
s + σt − σtθ

g
s − σi

μs + ηDθ
g
sθks + σtθks − σtθ

g
sθks + σi − σiθks

(A.18)

p̂ks = −δps ·
ηDθ

g
s + σt − σtθ

g
s − σi

μs + θks · (ηDθgs + σt − σtθ
g
s − σi) + σi

(A.19)

p̂ks = −δps ·
ηDθ

g
s + σt − σtθ

g
s − σi

μs + ηDθ
g
sθks + σt(θks − θgsθks) + σi · (1− θks)

(A.20)

It is easy to see that for ηDθ
g
s+σt−σtθgs−σi > 0 a negative price shock (i.e. cheaper

generation with technology s) results in higher returns to capacity. We are able to

draw out the following insights from the parameter terms in Equations A.18–A.20.

Recall that σi relates to the flexibility of the technology, σt to capacity utilization,

and μs to capacity expansion.1

1. If μs increases (i.e. higher capacity expansion elasticity via MNL) then the

response of p̂ks to δ
p
s decreases (i.e. denominator in Equation A.18 increases). In

other words, returns to capacity is dampened by responsive capacity expansion

(e.g. low rate of retirement for the technology, high rate of total retirements,

1The following assumes that ηDθ
g
s + σt − σtθ

g
s − σi > 0.
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high MNL parameter). This is one of the major linkages between utilization

and expansion.

2. If σi (i.e. flexibility of the technology) increases then the response of p̂ks to δps

decreases. Equation A.20 shows the numerator decreases and the denominator

increases. The response of cost of capacity is offset by substituting away from

capital by increasing labor and operations.

3. If there is greater opportunity to increase capacity utilization (i.e. σt increases),

returns to capacity will increase because the there will be more generation per

unit of capacity. The numerator increases more than the denominator (Equation

A.20).

4. If ηD increases then the response of p̂ks to δ
p
s increases. The numerator increases

more than the denominator (Equation A.20).

5. The greater the capital intensity of the technology (i.e. θks), the less the response

of p̂ks to δps . The denominator increases more than the numerator in Equation

A.19.

6. The impact of the share of the technology in the generation mix (i.e. θgs) depends

on the relationship of (ηD − σt) (see corresponding terms in Equation A.19).

With high opportunity for capacity utilization changes (σt > ηD), the greater

the share of the technology in the mix, the greater the response in returns to

capacity.
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Appendix B. Capacity Flexibility, Utilization, and Expansion Analytics: Electricity

Demand Shock

Let us first consider a simple model which characterizes capacity flexibility,

utilization, expansion, and their interactions. First, we have percentage change

in total electricity demand, Q̂g, determined by elasticity of demand, ηD, and the

percentage change in aggregate cost of electricity, p̂g:

Q̂g = −ηD · p̂g + δD (B.1)

The aggregate cost of electricity is subject to the following zero-profit or aggregate

cost pricing condition:

p̂g =
∑
t

θgt p̂
g
t (B.2)

where θgt is the share of total electricity production from technology t in GWh, and

p̂gt is the percentage change in total cost of electricity generated using technology t.

Total cost of electricity using technology t is also given by a zero-profit or aggregate

cost pricing condition:

p̂gt =
∑
i

θitp̂it (B.3)

where θit is the cost share of input i in producing electricity with technology t and p̂it

is the percentage change in input cost. Here, the cost of generating electricity using

technology t is subject to a demand shock, δpt . This will allow us to determine the

effect of parameter values on the responsiveness of the returns to capacity given an

exogenous demand shock.

The derived demand equation allows for substitution between input prices given

by the constant elasticity of substitution between inputs, σi. A flexible technology

has σi > 0 and an inflexible technology has σi = 0.
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q̂Dit = q̂gt − σi (p̂it − p̂gt ) (B.4)

where q̂gt is the percentage change in total generation using technology t. This is given

by the corresponding derived demand equation that allows for substitution between

technologies using existing capacity.

q̂gt = Q̂g − σt (p̂
g
t − p̂g) (B.5)

where σt is a CES parameter that characterizes the ability of the electricity sector to

adjust generation via the utilization mechanism.

Finally, we represent the capacity expansion mechanism with the following

elasticity of supply, μt:

q̂Skt = μt · p̂kt (B.6)

To make the system of equations analytically tractable, we assume that only

change in prices is in capital inputs of the technology that we are investigating (i.e

infinite supply elasticity for other inputs and technologies). That is,

p̂it = 0 for all i 
= k (B.7)

where capital is designated k and the technology we are investigating is designated

s. Therefore, we rewrite the original zero-profit/average cost pricing equations

(Equations B.3 and B.2) as:

p̂gs = θksp̂ks (B.8)

p̂g = θgsθksp̂ks +
∑
t �=s

θgt θktp̂kt (B.9)
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This is a simplification of the electricity-detailed computational equilibrium model;

however, using this analysis, we can show the interdependencies between capacity

utilization and expansion.

We begin by equating capacity supply and demand for technology s using

Equations B.6 and B.4).

μsp̂ks = q̂Sks = q̂Dks = q̂gs − σi (p̂ks − p̂gs) (B.10)

Simplifying and distributing σi nets

μsp̂ks = q̂gs − σip̂ks + σip̂
g
s (B.11)

and substituting q̂gs using Equation B.5 allows us to write:

μsp̂ks = Q̂g − σtp̂
g
s + σtp̂

g − σip̂ks + σip̂
g
s (B.12)

Replacing Q̂g using Equation B.1 nets the following equation with only price

percentage change variables and parameters.

μsp̂ks = δD − ηDp̂
g − σtp̂

g
s + σtp̂

g − σip̂ks + σip̂
g
s (B.13)

Substituting with Equations B.8 and B.9 allows us to write the relationship in

terms of only the parameters, demand shock, and returns to capacity:

μsp̂ks =δ
D − ηDθ

g
sθksp̂ks − ηD

∑
t �=s

θgt θktp̂kt − σtθksp̂ks

+ σtθ
g
sθksp̂ks + σt

∑
t �=s

θgt θktp̂kt − σip̂ks + σiθksp̂ks

(B.14)

Collecting all the p̂ks on the left hand side and δ̂ps on the right hand side leads to

the following equations:
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μsp̂ks + ηDθ
g
sθksp̂ks + σtθksp̂ks − σtθ

g
sθksp̂ks + σip̂ks − σiθksp̂ks

= δD − ηD
∑
t �=s

θgt θktp̂kt + σt
∑
t �=s

θgt θktp̂kt
(B.15)

p̂ks(μs + ηDθ
g
sθks + σtθks − σtθ

g
sθks + σi − σiθks) = δD + (σt − ηD)

∑
t �=s

θgt θktp̂kt (B.16)

This leads us to define the response in returns to capacity, p̂ks, as a function

of the demand shock, δD, and relationships between the parameters. The following

three equations are equivalent; however, the parameters are rearranged to highlight

various relationships in the parameters which affect the response of the returns to

capacity in response to the demand shock. Not that the denominator is identical to

the denominator in Appendix A which explored a technology-specific price shock.

p̂ks =
δD + (σt − ηD)

∑
t �=s θ

g
t θktp̂kt

μs + ηDθ
g
sθks + σtθks − σtθ

g
sθks + σi − σiθks

(B.17)

p̂ks =
δD + (σt − ηD)

∑
t �=s θ

g
t θktp̂kt

μs + θks · (ηDθgs + σt − σtθ
g
s − σi) + σi

(B.18)

p̂ks =
δD + (σt − ηD)

∑
t �=s θ

g
t θktp̂kt

μs + ηDθ
g
sθks + σt(θks − θgsθks) + σi · (1− θks)

(B.19)
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