
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2015

Generalized techniques for using system execution
traces to support software performance analysis
Thelge Manjula Peiris
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Peiris, Thelge Manjula, "Generalized techniques for using system execution traces to support software performance analysis" (2015).
Open Access Dissertations. 693.
https://docs.lib.purdue.edu/open_access_dissertations/693

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/693?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Thelge Peiris

GENERALIZED TECHNIQUES FOR USING SYSTEM EXECUTION TRACES TO SUPPORT SOFTWARE
PERFORMANCE ANALYSIS

Doctor of Philosophy

James H. Hill
Chair

Xiangyu Zhang
 Co-chair

Mohammad Al Hasan

Hubert Dunsmore

James H. Hill

Sunil Prabhakar 12/01/2015

GENERALIZED TECHNIQUES FOR USING SYSTEM EXECUTION TRACES

TO SUPPORT SOFTWARE PERFORMANCE ANALYSIS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Thelge Manjula Peiris

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2016

Purdue University

West Lafayette, Indiana

ii

To my parents, my wife Kanchana and our daughter Senadi.

iii

ACKNOWLEDGMENTS

First, I would like to express great thanks to my advisor and my great mentor

Prof. James H. Hill. I am very proud to say that I am his first Ph.D. student and

I am really lucky to have worked under him throughout my tenure at IUPUI. I have

undoubtedly learn more from Prof. Hill than from any other single person throughout

my life. His guidance on doing research, writing papers, presenting the work, writing

clean code, overcoming roadblocks and much other advice brought me to where I am

now. His confidence and trust in me always encouraged me to get closer and closer

to the goal.

Secondly, I would like to acknowledge Prof. Xiangyu Zhang for serving as the co-

advisor in my dissertation committee. His advise and suggestions helped significantly

in improving the research work proposed in this dissertation.

I would also like to thank Prof. Mohammad Al Hasan for serving as a committee

member in my dissertation committee. His advice on applying certain data mining

techniques were invaluable given that my background was not in the data mining

field, especially at the start of this dissertation work.

I would also like to thank Prof. Buster Dunsmore for serving as a committee

member in my dissertation committee. The advice and guidance he provided on

dissertation definitely help me to improve the quality of work.

Most of my research work is sponsored by Australian Department of Defence.

Therefore, I am really thankful to them for the funding provided especially during

the early stages of my research. I would also like to thank all the faculty and non-

faculty members at Department of Computer Science at IUPUI for the financial and

non-financial support given. The teaching and research assistantships helped me to

learn many new things and get invaluable experience. Special thanks should go to

Nicole for all the assistance provided on non-academic matters.

iv

I would also like to thank my friends at the SEDS lab for invaluable comments

and help provided to achieve my research goals. I would specially like to acknowledge

Dennis, Lahiru and Dimuthu for their friendship and also for great suggestions to

shape my research. Also, I will never forget all my other friends in USA and in Sri

Lanka, who helped me especially during tough times.

I would also like to express my deepest gratitude to Dr. Sanjiva Weerawarna

(who himself is a PhD graduate from Purdue Computer Science Department), CEO

and Chairman of my previous company WSO2. He encourages me to pursue com-

puter science PhD from a graduate school in USA. Without his recommendations and

guidance, this would have been a dream.

I will never forget all my teachers in my primary/high schools, University of

Moratuwa and at IUPUI. Every single thing I learned from them has contributed

to my thinking process and for this dissertation work.

I would not have come this far in education without the support of my father,

mother, and sister. We had real hard times financially when I was at high school

and also when I was in the college during my undergraduate studies in Sri Lanka.

My father and mother always assured that none of those hard situations stopped my

journey in education. Their patience, unconditional love and encouragement has been

one of the main motivations throughout my life.

Last but not least, I would like to express my great thanks to my wife Kanchana

and my daughter Senadi. If anyone has shared all the difficulties during the last five

years, that’s my wife. Her never ending love, patience and the sacrifice is hard to

imagine. She assured that I am physically and mentally tough during whole time.

My one year old daughter Senadi always kept me busy, wanting me to play with her,

read, walk and many other things, which help me to get a break from work and to

overcome some stressful periods. I cannot imagine a world without these two ladies.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

ABBREVIATIONS . xii

ABSTRACT . xiii

1 INTRODUCTION . 1
1.1 Trends and Challenges of Using Execution Traces for Performance

Analysis . 2
1.2 Research Approach. 7
1.3 Dissertation Organization . 8

2 RELATED WORK . 9
2.1 Approaches of Using Execution Traces to Evaluate Performance Prop-

erties . 9
2.1.1 Intrusive Instrumentation Approaches. 9
2.1.2 Non-Intrusive Instrumentation Approaches. 10
2.1.3 Approaches to Overcome the Imperfectness of Log Messages 11

2.2 Techniques of Using Execution Traces to Build Models for Software
Analyis . 12
2.2.1 Abstracting Event Types from Execution Logs 12
2.2.2 Building Intermediate Models from Execution Logs 13

2.3 Techniques Related to Detecting Excessive Dynamic Memory Alloca-
tions . 14
2.3.1 Using DBI in Detecting Memory Related Issues and Perfor-

mance Analysis . 15
2.3.2 Techniques of Detecting Software Performance Anti-patterns 16

3 AN OVERVIEW OF UNITE . 18

4 ADAPTING EXECUTION TRACES FOR SOFTWARE PERFORMANCE
ANALYSIS . 23
4.1 Unresolved Challenges in UNITE 23
4.2 Solution Approach : System Execution Trace Adaptation Framework

(SETAF) . 26
4.2.1 Design Approaches for Adapting Execution Traces 26
4.2.2 Defining the Adaptation Specification 28

vi

Page
4.2.3 Compiled versus Interpreted External Adapters in SETAF . 33

4.3 Results of Applying SETAF to Open-Source Projects 39
4.3.1 Experimental Setup . 40
4.3.2 Experimental Results for Applying SETAF to Apache ANT 41
4.3.3 Experimental Result for Applying SETAF to Apache Tomcat 43
4.3.4 Experimental Result for Applying SETAF to Apache ActiveMQ 46
4.3.5 Experimental Result for Applying SETAF to DAnCE 47
4.3.6 Performance Comparison of SETAF Compiled and Interpreted

Techniques . 50
4.3.7 Threats to Validity . 53

4.4 Chapter Summary . 53

5 AUTO-CONSTRUCTING DATAFLOW MODELS FROM EXECUTION
TRACES . 55
5.1 Challenges Addressed by Proposed Approach 55
5.2 Solution Approach : Dataflow Model Auto-Constructor (DMAC) . . 57

5.2.1 Overview of Frequent-Sequence Mining 57
5.2.2 Identifying Log Formats. 59
5.2.3 Mining Causal Relationships. 65

5.2.3.1 A Brief Overview on Dempster-Shafer (DS) Theory 68
5.2.4 Identifying Causal Relationships among Variables. 74

5.3 Results of Applying DMAC to Open-Source Projects 74
5.3.1 Experimental Setup . 75
5.3.2 Experimental Results for Execution Traces without Domain-

specific Evidence . 75
5.3.2.1 Experimental Results for ANT 75
5.3.2.2 Experimental Results for ActiveMQ 77
5.3.2.3 Experimental Results for Apache Tomcat 77
5.3.2.4 Measuring the Auto-constructed DataflowModel’s Ac-

curacy . 77
5.3.3 Experimental Results for Execution Traces with Domain-specific

Evidence . 79
5.4 Summary of Contributions . 82

6 DETECTING EXCESSIVE DYNAMICMEMORY ALLOCATIONS ANTI-
PATTERN USING SYSTEM EXECUTION TRACES 83
6.1 Challenges Addressed by Proposed Approach 83
6.2 The Approach of EMAD . 87

6.2.1 Instrumenting the Software Application 87
6.2.2 Constructing the Call Graph 93
6.2.3 Detecting Excessive Dynamic Memory Allocations 98

6.2.3.1 Using K-means Clustering to Identify High-frequent
Short-lived Objects 100

vii

Page
6.2.3.2 Using Outlier Detection to Identify High-frequent Short-

lived Objects . 103
6.3 Experimental Evaluation of EMAD 104

6.3.1 Experimental Setup . 105
6.3.2 Experimental Results for SQLite 106

6.3.2.1 Experimental Results with Clustering Method Enabled 107
6.3.2.2 Experimental Results with Outlier Detection Method 110
6.3.2.3 Resolving the Anti-pattern and Performance Improve-

ments . 112
6.3.3 Experimental Results for TAO 113
6.3.4 Experimental Results for Axis2-C 116
6.3.5 Experimental Results for Xerces-C++ 120
6.3.6 Discussion of Results and Threat to Validity 123

6.4 Summary of Contributions . 124

7 CONCLUDING REMARKS . 125

REFERENCES . 129

APPENDICES

A PAD: PERFORMANCE ANOMALY DETECTION IN MULTI-SERVER
DISTRIBUTED SYSTEMS . 138
A.1 Motivation : The Orleans Cloud Computing System 139

A.1.1 Stuck Random Number Generator 140
A.1.2 Leaking Buffer Pool . 141

A.2 Performance Counter Data and Challenges 142
A.2.1 Performance Counters . 142
A.2.2 Challenges in Analyzing Performance Counter Data 143

A.3 PAD-Assisted Investigation . 144
A.4 Implementation of PAD . 151
A.5 Applying PAD to Orleans . 152

A.5.1 Unbalanced DHT . 153
A.5.2 Performance Bottleneck and Tuning Analysis 153

A.6 Related Work . 154
A.6.1 Approaches that Rely on Historical Performance Data 154
A.6.2 Approaches that Do Not Require Historical Data 155

A.7 Lessons Learned and Conclusions 155

B DETAILED CALL TREES OF EXCESSIVE DYNAMIC MEMORY AL-
LOCATIONS DETECTED BY EMAD 158
B.1 Excessive Dynamic Memory Allocations in SQLite 158
B.2 Excessive Dynamic Memory Allocations in TAO 159
B.3 Excessive Dynamic Memory Allocations in Axis2-C 160

VITA . 165

viii

LIST OF TABLES

Table Page

3.1 An example execution trace displayed in table format as if being stored
for offline analysis in a database. 18

3.2 Variable correlation table for the execution trace shown in Table 3.1. . 22

4.1 Example execution trace that does not contain unique ids. 24

4.2 Example execution trace that contains hidden relations. 25

4.3 Data table reconstructed by UNITE for a subset of ANT’s tasks without
adaptation pattern specification. 41

4.4 Results for analyzing reconstructed table in UNITE for ANT without
adaptation specification. 42

4.5 Improved table reconstruction using SETAF and UNITE for a subset of
ANT’s tasks. 42

4.6 Final results for adapting UNITE’s analysis using SETAF for a subset of
ANT’s tasks. 43

4.7 Results for adapting Tomcat execution trace using UNITE and SETAF. 45

4.8 Results for adapting DAnCE’s execution trace using SETAF to measure
deployment time (DT). 50

4.9 Process time as a percentage of total evaluation time. 52

5.1 An example system execution trace to illustrate the DMAC concepts. . 58

5.2 Accuracy of auto-constructed log formats. 78

6.1 Excessive dynamic memory allocation locations in SQLite-3.5.9 identified
by EMAD from clustering method. 107

6.2 Excessive dynamic memory allocation locations in SQLite-3.8.5 identified
by EMAD from clustering method. 110

6.3 Excessive dynamic memory allocation locations identified by EMAD in
SQLite-3.5.9. 111

6.4 Performance of different versions of SQLite 112

6.5 Excessive dynamic memory allocation locations in TAO. 113

ix

Table Page

6.6 Performance of echo service example in TAO. 116

6.7 Excessive dynamic memory allocation locations in Axis2-C identified by
EMAD from clustering method. 118

6.8 Excessive dynamic memory allocation locations in Axis2-C identified by
EMAD from outlier detection method. 118

6.9 Axis2-C performance. 120

6.10 Performance of Xerces-C++ with a custom memory allocator and default
memory allocator. 121

A.1 Examples of different classes of performance counters in Orleans 142

x

LIST OF FIGURES

Figure Page

4.1 Overall analysis process with SETAF compiled adapter technique. . . . 34

4.2 Overall analysis process with SETAF interpreted adapter technique. . . 37

4.3 SETAF Variable and SETAF Command class hierarchies. 38

4.4 Log formats associated with DAnCE. 47

4.5 Load times of SETAF interpreted and compiled adapter. 51

4.6 Total evaluation time of SETAF interpreted and compiled adapter. . . 52

5.1 DMAC’s workflow for constructing a dataflow model. 57

5.2 Log format construction from a maximal-sequence. 61

5.3 Combing evidences for causal relation mining process. 73

5.4 Effect on domain-knowledge on TPs and FPs in the dataflow model auto-
construction process. 81

6.1 Conceptual overview of EMAD’s workflow. 88

6.2 Format of a message in the execution trace 89

6.3 Call Graph for the execution trace in Listing 6.4 93

6.4 Frequency-lifetime diagram. 100

6.5 Frequency-lifetime diagram for SQLite-3.5.9 109

6.6 Frequency-lifetime diagram for SQLite-3.8.5 110

6.7 Frequency-lifetime ratio chart for SQLite-3.5.9 111

6.8 Frequency-lifetime diagram for TAO 114

6.9 Frequency-lifetime ratio chart for TAO 115

6.10 Frequency-lifetime diagram for Axis2-C 117

6.11 Frequency-lifetime ratio chart for Axis2-C 118

6.12 Frequency-lifetime ratio chart for Xerces-C 122

6.13 Frequency-lifetime ratio chart for Axis2-C 122

xi

Figure Page

A.1 Detailed view . 145

A.2 Server view . 145

A.3 Time view . 145

A.4 Design of PAD. 151

xii

ABBREVIATIONS

DBI Dynamic Binary Instrumentation

XML Extensible Markup Language

ORB Object Request Broker

SOAP Simple Object Access Protocol

UNITE Understanding Non-functional Intensions via Testing and Exper-

imentation

CUTS Component Workload Emulator (CoWorkEr) Utilization Test

Suite

SETAF System Execution Trace Adaptation Framework

DMAC Dataflow Model Auto Constructor

EMAD Excessive Dynamic Memory Allocations Detector

xiii

ABSTRACT

Peiris, Thelge Manjula PhD, Purdue University, May 2016. Generalized Techniques
for Using System Execution Traces to Support Software Performance Analysis. Ma-
jor Professor: James H. Hill.

This dissertation proposes generalized techniques to support software performance

analysis using system execution traces in the absence of software development arti-

facts such as source code. The proposed techniques do not require modifications to

the source code, or to the software binaries, for the purpose of software analysis (non-

intrusive). The proposed techniques are also not tightly coupled to the architecture

specific details of the system being analyzed. This dissertation extends the current

techniques of using system execution traces to evaluate software performance prop-

erties, such as response times, service times. The dissertation also proposes a novel

technique to auto-construct a dataflow model from the system execution trace, which

will be useful in evaluating software performance properties. Finally, it showcases

how we can use execution traces in a novel technique to detect Excessive Dynamic

Memory Allocations software performance anti-pattern. This is the first attempt,

according to the author’s best knowledge, of a technique to detect automatically the

excessive dynamic memory allocations anti-pattern. The contributions from this dis-

sertation will ease the laborious process of software performance analysis and provide

a foundation for helping software developers quickly locate the causes for negative

performance results via execution traces.

1

1 INTRODUCTION

Performance is a crucial non-functional property in any software system. Slow and in-

efficient software frustrate users and can cause financial losses [1]. In certain real time

systems, failure to achieve performance requirements can be interpreted as functional

failures of the system. On the other hand, improving software performance is also

critical, even when the software is meeting its performance requirements. This is be-

cause efficient software systems can attract many users and generate lots of revenue.

Therefore, it is very important to develop techniques to analyze the performance

of software systems. Analyzing software performance includes not only analyzing

performance properties such as response times, service times and throughputs of a

software system; but also providing feedback to software developers about software

performance results.

System execution traces or simply execution traces1 are one artifact that has

been used by researchers and practitioners to analyze functional and non-functional

properties of software systems. There are several methods to generate execution

traces such as:

1. Compiling the original source code with an instrumentation code and executing

the combined executable [2–4];

2. Collecting execution traces from dynamic binary instrumentation where the

instrumentation is performed at run time on the compiled binary files [5];

3. Collecting log messages (i.e., traces generated from log statements in the source

code) during system execution [6–10]; and

1System execution traces and execution traces refer to the same entity throughout this document

2

4. Registering for certain events of the target system and generating messages

whenever the events occur [11–13].

Execution traces have been used on functional aspects of the system, such as

detecting system failures [14], operational profiling [15], and website usage patterns

based on user sessions [16]. However, recent research efforts have focused on using

system execution traces for software performance analysis [2, 3, 6, 9, 11, 17] .

One benefit of using execution traces to analyze software system performance

properties is execution traces provide a comprehensive view of the system’s behavior

and state throughout the system’s execution lifetime. This is opposed to a single

snapshot of the system at a given point in time, such as a global snapshot [18]. Like-

wise, they provide system testers with a rich set of data for analyzing data trends

associated with a given performance property, i.e., how a given performance property

changes with respect to time. Moreover, analyzing execution trace data has the ad-

vantage over analyzing performance counter data [19–23] because the latter does not

provide behavioral aspects of the system. Furthermore, it is hard to assume that ev-

ery system provides a complete enough set of performance counters for analysis. The

Appendix A presents techniques for analyzing performance counter data in system

execution logs to detect performance anomalies.

Most systems however have some kind of tracing technique that can be utilized

for performance analysis. Therefore, the next section summarizes different research

efforts and some unresolved challenges of using system execution traces for software

performance analysis.

1.1 Trends and Challenges of Using Execution Traces for Performance Analysis

Recent research efforts [2, 6, 9, 11] have tried using execution traces for software

performance analysis. However, following challenges still remain and need to be

addressed when using execution traces for software performance analysis.

3

1. Relaxing the assumptions about the execution trace and the system

generated it. Some approaches for using system execution traces to analyze

software performance rely on methods that require access to the system’s origi-

nal source code [2,3]. Therefore, it is hard to apply these approaches when the

source code of the system is not available, which is the case for most systems

built from third-party off the shelf components.

Another set of approaches for validating performance of the system using execu-

tion traces are tightly coupled to system’s architecture and technology [11–13].

Finally, the approaches that are not implementation dependent require execu-

tion traces to be generated in a certain format [6,7]. Moreover, such approaches

are not trying to utilize system log messages, but rather enforce the system im-

plementers to use the provided logging mechanisms or convert the system logs

to an intermediate format.

Understanding Non-functional Intensions through Testing and Experimentation

(UNITE) [9] is a tool and a technique that does not rely on the requirements

mentioned in the above paragraph to analyze software system performance prop-

erties. UNITE accomplishes this feat by using dataflow models that describe

causal relationships between event types—not event instances—in the system.

This allows UNITE to operate at a higher level of abstraction that remains

constant regardless of how the underlying software system is designed, imple-

mented, and deployed (i.e., the mapping of software components to hardware

components). More details on UNITE is provided in Chapter 3.

Although it is possible to analyze performance properties via system execution

traces using tools like UNITE (without any restriction on log message format),

it is assumed that execution traces contain several properties, e.g., identifiable

keywords, unique message instances, enough variations among the same event

types to support performance analysis. Moreover, the dataflow model used to

analyze the system execution trace must contain several properties, e.g., identi-

4

fiable log formats and unique relations between different log formats. If planned

early enough in the software lifecycle, it is possible to ensure these properties

exist in both the dataflow model and generated system execution trace.

Unfortunately, it is not possible to always ensure that system execution traces

contain the properties required to support performance analysis via UNITE.

Therefore, developing techniques to analyze software performance properties

using execution traces, which are not tightly coupled to (1) the source code of

the system; (2) the architecture and platform of the system; (3) the structure of

the messages in the execution trace; and (4) certain properties in the execution

trace will be very useful. This will help software testers to use execution traces

for performance analysis (1) with no or minor modifications to the analysis tool

and (2) with no modifications to the target system.

2. Minimizing the manual analysis of system execution traces to con-

struct dataflow models. Although UNITE provides a foundation for ana-

lyzing software system performance properties via execution traces, it is both

tedious and time-consuming for software system testers to define the required

dataflow model. Likewise, as software systems increase in both size (i.e., source

lines of code and number of software/hardware components) and complexity

(i.e., set of features), it becomes harder to manually define the dataflow model.

This is because software testers have to analyze the entire system execution

trace before defining the dataflow model, and may have to refer the source code

of the system to gain needed knowledge about the system.

Therefore, the task of manually specifying the dataflow model can limit the

applicability of dataflow model based performance analysis approaches like

UNITE. Because dataflow model captures the abstract event types and the

causal relationships between the event types, it will be very useful for software

5

testers to understand the runtime behavior of the system at a very abstract

level.

3. Using the system execution traces in detecting excessive dynamic

memory allocations. Even though summarizing software performance prop-

erty values using summary statistics such as means, variances and probability

distributions provides valuable insights about the system performance, soft-

ware developers and architects are interested in root causes to performance

problems [24,25].

One such root cause is excessive dynamic memory allocations. Even though dy-

namic memory allocations provide software developers with memory flexibility

at runtime, it is an expensive operation [26]. Allocation and dellocation (i.e.,

the process of releasing dynamically allocated memory) of dynamic memory us-

ing standard memory allocation/deallocation functions like malloc/free (in the

case of C) and new/delete (in the case of C++) require system calls. Too many

dynamic memory allocations can have negative consequences on software per-

formance. For example, Smith et al. [27] described and illustrated how excessive

dynamic memory allocations is a software performance anti-pattern. Software

performance anti-patterns [27, 28] are common designs that have negative im-

pact on software performance.

Because it is known that excessive dynamic memory allocations can have signif-

icant impact on software performance, many popular middleware and software

applications, such as Apache Web Server [29], GCC compiler [30], and the PHP

scripting language [31] use custom memory allocators as a solution to the exces-

sive dynamic memory allocations problem. Moreover, some popular applications

servers provide guidelines on how to reduce object creation and deletion. For

example, in WebSphere application server some of the best practices to improve

the server performance are directly/indirectly related to creation and deletion

of objects [32].

6

It is also important for newly created systems to detect excessive dynamic mem-

ory allocations anti-pattern before adapting an existing solution approach to

resolve this anti-pattern. On the other hand, failure to detect and remove

excessive dynamic memory allocations will cause system developers to seek al-

ternative methods for resolving it, such as adding more memory and processing

power to coup with slow performance.2

Because excessive dynamic memory allocation can have negative impact on

performance, it needs to be detected and resolved. Unfortunately, the most

prominent (and reliable) method for detecting and resolving excessive dynamic

memory allocation—and actually any software performance anti-pattern—is

(manual) source code analysis [33]. This approach, however, requires expert

domain knowledge. More importantly, it requires access to the original source

code to support the necessary analysis.

There are existing approaches for detecting software performance anti-patterns

that do not rely on source code. However, these approaches have categorized ex-

cessive dynamic memory allocations as an undetectable software performance

anti-pattern [24, 25, 34]. This is mainly because these approaches are either

architecture dependent [34] or rule-based approaches [24, 25], which do not

consider the behavioral aspects of software performance anti-patterns at run-

time. These forms of analysis make it hard to detect implementation level

anti-patterns like excessive dynamic memory allocations [35]. On the other

hand execution traces can be used to understand behavioral aspects of the sys-

tems. Therefore, techniques need to be developed to detect excessive dynamic

memory allocations anti-pattern utilizing execution traces.

2This thesis advisor Professor James Hill experienced this first hand as a visiting researcher at
EBay, Inc in 2007. He was responsible for optimizing the backend search engine for EBay, Inc to
address known performance issues. The proposed solution was to remove excessive dynamic memory
allocations that were requesting 0 bytes of memory. The solution resulted in 99% improvement
in performance for test scenarios that were missing their deadline and 10-15% improvement in
performance for scenarios that were not missing their deadline. This allowed EBay, Inc. to address
the root cause of the problem.

7

1.2 Research Approach.

To address the challenges identified in Section 1.1, and for better use of execution

traces, we advance the current state of the art of using execution traces in software

performance analysis by,

1. Improving the current techniques of using system log messages to

evaluate software performance properties. The novel contributions of

this aspect include an adaptation technique of dataflow models, associated with

execution traces, i.e. when execution traces do not contain the properties re-

quired for performance analysis and a method to auto-generate the dataflow

model associated with execution traces.

2. Providing a novel technique to detect excessive dynamic memory al-

locations software performance anti-pattern. This will enable software

developers to quickly locate the excessive dynamic memory allocations without

doing tedious source code analysis.

In the following, we briefly summarize the three different but synergistic contri-

butions proposed by this dissertation:

1. Adapting the dataflow models associated with execution traces, which

includes a technique that enables, using system execution traces for software

performance analysis when the execution traces does not contain the properties

discussed in Section 1.1.

The novel contributions of this research includes (1) a framework for adapting

dataflow models associated with the execution trace without changing the source

code of the software system or the execution trace; and (2) a domain specific

language for software testers to write different adaptation modules. Chapter 4

discusses this adaptation technique in detail.

2. Auto-constructing dataflow models from execution traces, which in-

cludes algorithms and techniques for constructing the dataflow model given an

8

execution trace, with minimum user intervention. This research effort provides

capabilities for (1) finding abstract event types of an execution trace, and (2)

finding the causal relationships among abstract event types and their variable

parts.

The novel contributions of this research include two algorithms for finding ab-

stract event types and causal relationships using data mining techniques and

probabilistic approaches. Chapter 5 discusses these techniques in detail.

3. Detecting excessive dynamic memory allocations anti-pattern using

system execution traces, which includes a technique to detect excessive dy-

namic memory allocations anti-pattern without using the source code of the

system.

The novel contribution of this research include an algorithm for constructing

the execution call graph of a runtime system using a system execution traces

generated from Dynamic Binary Instrumentation (DBI) and a method to find

routines in the source code that perform excessive dynamic memory allocations.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 discusses ex-

isting research related to the algorithms, analytics, patterns, and tools we present in

later chapters; Chapter 3 discusses UNITE performance analysis tool, because some

of the concepts and techniques proposed in this proposal have emerged from UNITE

and the dataflow model concept it has proposed. Chapter 4 discusses adapting exe-

cution traces for software performance analysis. Chapter 5 discusses auto-generating

dataflow models from execution traces. Chapter 6 discusses detecting excessive dy-

namic memory allocations software performance anti-pattern using execution traces.

Finally, Chapter 7 provides concluding remarks, lessons learned and future research

directions.

9

2 RELATED WORK

This chapter discusses current research related to our research on techniques for

using system execution traces to support software performance analysis. Some of our

research work on utilizing system execution traces to evaluate software performance

properties is built on top of techniques and concepts mentioned in [9]. Therefore, we

described UNITE’s technique in a separate chapter (Chapter 3). The remainder of this

chapter describes other related work and is organized as follows: Section 2.1 discusses

related research on using execution traces to evaluate software performance properties;

Section 2.2 discusses existing techniques for building models for software analysis

using execution traces. Section 2.3 presents current research related to detecting

excessive dynamic memory allocations software performance anti-pattern.

2.1 Approaches of Using Execution Traces to Evaluate Performance Properties

This section compares our research on adapting execution traces to support soft-

ware performance analysis with other related research on using execution traces to

achieve similar goals. Our research on adapting system execution traces to support

software performance analysis is discussed in detail in Chapter 4.

2.1.1 Intrusive Instrumentation Approaches.

We categorize intrusive instrumentation as altering the source code of the system

to collect traces for the purpose of software analysis. Several intrusive approaches can

be found in the literature that use traces from instrumented source code for software

performance analysis [2–4]. These approaches instrument the source code of the target

system using methods defined in the performance analysis tool. A main requirement

10

for these approaches therefore is the availability of the source code. Moreover, these

approaches add overhead to the system being analyzed. In contrast, our research

work uses log messages the system outputs during the system execution. We do not

modify the logging infrastructure (source code related to the logging module) of the

system for the purpose software performance analysis. This allows our approach to

be applied when the source code of the originating system is not available.

TimeToPic [6] is a tool that can be used to visualize a system execution log. It

also provides facilities to analyze different locations, such as points of interests in

the visualization graph. This visualization graph can be used to analyze different

performance properties. The main limitation in TimeToPic is, it relies heavily on

log message format. Either the developer has to use the common message format

TimeToPic has defined or implement the logger of the application using TimeToPic’s

logging API. This approach is easy to apply on newly developed systems, and hard

to apply on existing systems because it requires changes to the existing systems.

In contrast, our research technique on adapting execution traces does not have any

restrictions on the log message format and tries to utilize the system log as much as

it can.

2.1.2 Non-Intrusive Instrumentation Approaches.

Nagaraj et al. [7], propose a technique to comparatively analyze system logs to

diagnose performance problems. Nagaraj’s technique uses two execution logs: one

that is called the baseline log and an erroneous log it assumes to have performance

related issues. Nagaraj’s technique compares the erroneous log with the baseline log

and provides a report on the locations of performance problems. The main limitation

of Nagaraj’s approach is that the perl scripts that process to logs must be modified

each time when it encounters a new system. This is because the execution logs of

different systems are heterogeneous in nature. In contrast, our research does not

11

depend on such comparative analysis and also the performance analysis tool doesn’t

need to be change for each different log.

Han et al. [8] propose a method called StackMine that uses stack traces collected

by the Microsoft application monitoring tools to debug performance. Their perfor-

mance monitoring tools send traces only when the response time of a method is above

a certain threshold. Furthermore, Han’s analysis is offline. The main difference be-

tween StackMine and our technique is that StackMine is operating system dependent

because the performance monitoring tools they use are platform dependent. Other

non-intrusive approaches for performance monitoring are architecture dependent. For

example, previous research efforts have focused on proposing methods for performance

monitoring in Enterprise Java Beans (EJB) applications [11–13]. These approaches,

however, require users to deploy performance monitoring beans and are tightly cou-

pled to the J2EE architecture.

2.1.3 Approaches to Overcome the Imperfectness of Log Messages

Cinque et al. [36], propose a technique for dependability evaluation of complex

software systems using system execution traces. In their approach, they propose

to follow a minimal set of logging rules during the design and development time.

This set of rules guarantees that the system logs contain the required properties for

dependability analysis of complex systems. For example, the main types of rules

that Cinque et al. propose are enabling logging for service start/end and interaction

start/end events. Even though this approach contributes to the generation of well-

structured logs, it is highly unlikely that every system follows these rules. Current

software development methodologies highly depend on software reuse. It therefore

is highly unlikely to assume that this kind of structure is followed in complex soft-

ware systems. Instead, We focus on tackling this problem of uncertainty in system

execution traces using an adaptation technique.

12

Yang et al. [37], use system execution traces for dynamic inference. Similar to

our research approach, Yang et al. also accepts the fact that system execution traces

are imperfect. Likewise, Yang uses coding conventions to prune large number of

unimportant properties for developers. We however, do not rely on such coding

conventions. Instead, we provide a framework to capture execution semantics that

are not reflected in the execution trace.

2.2 Techniques of Using Execution Traces to Build Models for Software Analyis

This section compares our research on auto-constructing dataflow models to sup-

port software performance analysis with other related research. The main research

goals of below mentioned approaches are, (1) Abstracting event types from execu-

tion logs, similar to finding log formats in our work, (2) Building intermediate models

which are similar to dataflow models defined in UNITE 3 for software system analysis.

Our research on auto-constructing dataflow models to support software performance

analysis is discussed in detail in Chapter 5.

2.2.1 Abstracting Event Types from Execution Logs

Qiang et al. [38] describes a technique to detect execution anomalies in distributed

systems using unstructured log analysis. Similar to log formats in UNITE 3, Qiang et

al. has a concept called log keys. They also consider the variable parts of log keys as

parameters. They use empirical rules to identify log key parameters. Their intuition

is that in log messages, log key parameters are often in the forms of numbers, URIs,

and IP addresses. Qiang et al. also clusters similar log messages together. Edit

distance (i.e., the number of edit operations required to transform one word sequence

to another) is used as the criteria for determining similarities between log keys. In

contrast our technique does not rely on such assumptions when finding log formats.

Instead, we employ an algorithm based on frequent-sequence mining to identify log

formats and distinguish between variable and static parts.

13

Xu et al. [14] describes a technique for mining console logs for large-scale software

system problem detection. Xu et al. extracts static and variable parts of a log mes-

sage. Their approach, however, requires the original source code combined with the

console log. Nagappan et al. [39] describes a technique to find log formats, without

the original source code. They apply a frequency based approach to separate variable

parts from static parts in log messages. The main drawback with their approach is

variable parts are not identified when they have a frequency above the threshold fre-

quency. We address this issue in our technique by iteratively employing the algorithm

after pruning set of log messages using already found log formats.

Safyallah et al. [40] uses frequent-sequence mining to identify common function-

ality associated with feature-specific task scenarios based on data captured in a sys-

tem execution trace. Safyallah et al. also uses frequent-sequence mining to discover

relationships between different feature specific tasks in inter/intra modules. Their

approach defines a frequent-sequence pattern (i.e., execution pattern) as a contigu-

ous part of an execution trace. This method however does not count the situations

where, variable parts appearing in between static parts.

2.2.2 Building Intermediate Models from Execution Logs

Lou et al. [41] propose an approach on identifying dependences among events in

distributed systems. In their work, they use a learning approach based on Bayesian

decision model to construct a dependency graph using abstract log formats. They

have used the trained model to detect dependency based errors in Hadoop. The

training based approach makes it harder to apply their technique for broader set of

software systems. Because, in most of the software systems it is hard to find enough

training data (i.e. execution logs) to train a model. This will result in over fitting

of models and low accuracies when applied to new data. Instead our approach is

based on an evidence combination approach, which uses Dempster-Shafer theory and

it does not require up-front training data.

14

Fischer et al. [42] describe a technique to track system evolution by analyzing

the system execution traces. Their method locates execution patterns in the traces

to determine how the software has evolved between different revisions (or versions).

Their method also uses relational data model to store the traces and assign unique ids

for analysis purposes. Our work differs from their work, because our work analyzes

the performance properties of the system which are runtime properties as opposed

to static properties like how software is changed between versions. Further, their

method requires the system execution traces to have a particular format; however,

we do not assume that kind of a format in our technique.

Safyallah et al. [40] describe a method of mining system execution traces to find

out common functionality associated with feature-specific task scenarios (i.e., core

functions that implement software features) to discover relationships between differ-

ent feature specific tasks in inter/intra modules (i.e., inside a single software com-

ponent and between different software components). Their approach does not need

any particular format in the system execution traces. The main difference between

Safyallah et al.’s work and our work is that we try to find causal relationships among

different event types instead of relationships between feature specific tasks.

Voigt et al. [43] present a trace visualization technique for analyzing method calls

and object access. Their main purpose is to understand the large execution traces

as a sequence of object activities. They have tried to find out relationships in the

traces, which are mapped to relationships as activities between objects. Our research

effort differs from this work, because we are trying to do analysis at a higher level

than object activities. Also our main focus is not on visualization.

2.3 Techniques Related to Detecting Excessive Dynamic Memory Allocations

This section compares our research on detecting excessive dynamic memory al-

locations with other related research efforts. Our research on detecting excessive

dynamic memory allocations is discussed in detail in Chapter 6.

15

Automated approaches for detecting excessive dynamic memory allocations cannot

be found in literature. Likewise, existing approaches for detecting software perfor-

mance anti-patterns have categorized excessive dynamic memory allocations as an

undetectable software performance anti-pattern [24, 25, 34]. Although there are sev-

eral approaches for detecting memory leaks and memory access errors using Dynamic

Binary Instrumentation (DBI) [44–47], excessive dynamic memory allocation problem

has not been attacked by the research community.

2.3.1 Using DBI in Detecting Memory Related Issues and Performance Analysis

Chen et al. [48] have developed a tool called MemBrush that can be used to de-

tect memory allocation/deallocation functions in stripped binaries. Their goal is to

detect custom memory allocation routines and reverse engineer the memory manage-

ment APIs. They have identified a set of characteristics for custom memory allocation

routines and use DBI to identify these routines. Their approach is useful in detecting

memory leaks and memory access errors, but they do not discuss detecting exces-

sive dynamic memory allocations. Our technique expects a particular signature for

allocation/deallocation routines. By combining the MemBrush approach with our

approach, it may be possible to relax our assumptions about allocation/deallocation

routines.

DBI has been used to identify the root causes of performance anomalies. For

example, Attariyan et al. [49] proposes an approach to detect root causes of perfor-

mance anomalies using DBI. They use DBI to monitor the software application as it

is executing. The root causes they try to detect are human errors (e.g., misconfig-

urations), not software performance anti-patterns (e.g., excessive dynamic memory

allocation). Menon et al. [50] uses DBI to diagnosis performance overheads in Xen

virtual machine environments. The root causes they try to detect are related to I/O

handling in virtual machine environments—particular related to TCP connections in

virtual networks.

16

Detlefs et al. [26] provides a method to calculate the dynamic memory allocation

costs of large C/C++ programs. Their measurements include CPU overhead and

memory usage of different allocators. They also consider number of instructions

executed by different allocation routines in their analysis. Their goal is to show the

cost of dynamic memory allocations for different memory allocation algorithms. They,

however, do not discuss on detecting excessive dynamic memory allocations from a

performance perspective.

There are several research efforts on finding the object life times in garbage col-

lected languages [51–53] using DBI techniques. In garbage collected languages the

garbage collection process can happen at any time, therefore the timestamp at which

an object is deleted cannot be used alone to approximately calculate the object life-

time. We believe that by integrating our approach with these precise object lifetime

calculation techniques, we can extend our technique for applications created using

garbage collected languages.

2.3.2 Techniques of Detecting Software Performance Anti-patterns

There have not been many research efforts on automatically detecting software

performance anti-patterns. According to the study done by Din et al. [33], most of

the approaches for detecting software anti-patterns are based on source code analy-

sis. The few efforts, which have tried to detect software performance anti-patterns,

without the use of source code are model based approaches [24, 25, 34]. The main

characteristic of these approaches is that, they use annotated software architectures

to detect software performance anti-patterns. The annotation is done using rules,

which are similar to logical predicates. The annotated software architectures are sim-

ulated using models, such as Queuing networks, or sometimes using simulated code.

The rules for describing software performance anti-patterns use performance matri-

ces, such as resource usages and queue sizes, not behavioral patterns. Even though

these approaches suggest several rules to detect many performance anti-patterns, they

17

have failed to provide rules to detect excessive dynamic memory allocations. This is

mainly because excessive dynamic memory allocations is a source code level architec-

ture independent software performance anti-pattern.

Parsons et al. [54] used association rule mining to identify performance anti-

patterns in Enterprise Java Bean (EJB) applications. They use deployment de-

scriptors, instrumentation data, and rules to automatically identify the software

anti-patterns. Their approach is language and architecture dependent (i.e. EJB).

They collect and use three types of data to detect performance anti-patterns in EJB

applications—information from the running application, information related to the

server resources and contextual data. Anti-patterns are described as rules using the

three different kinds of data. The rules are applied to analysis data to detect perfor-

mance anti-patterns. The main limitation of Parsons et al.’s approach is it cannot

be applied to detect architecture independent software performance anti-patterns like

excessive dynamic memory allocations.

18

3 AN OVERVIEW OF UNITE

Understanding Non-functional Intensions through Testing and Experimentation [9]

is a method and tool for analyzing execution traces and validating software system

performance properties. UNITE’s analytical techniques are not tightly coupled to

(1) system implementation i.e., what technologies are used to implement the system;

(2) system composition, i.e., what components communicate with each other; and

(3) deployment, i.e., where components are located. This is opposed to processing

execution traces using simple scripts where those scripts are typically hard-coded for a

specific use case, system, and/or problem. Another major advantage of UNITE, over

other research efforts of utilizing execution traces for performance analysis is UNITE

does not rely on a global identifier, such as a global clock, for event correlation. This

is because UNITE uses data within the event trace that is common in both cause and

effect messages, thereby removing the need for a global clock and ensuring that log

messages (or events in a trace) are associated correctly.

Because UNITE is not a well-known tool, the remainder of this chapter provides

a detailed overview of UNITE’s capabilities and its current limitations.

Table 3.1.: An example execution trace displayed in table format as if being stored
for offline analysis in a database.

Time of Day Hostname Message
2012-01-25 05:15:55 node1 Config: sent event 1 at 120394455
2012-01-25 05:15:55 node2 Planner: sent event 2 at 120394465
2012-01-25 05:15:55 node2 Planner: received event 2 at 120394476
2012-01-25 05:15:55 node1 Config: received event 1 at 120394480
2012-01-25 05:15:55 node3 Effector: sent event 3 at 120394488
2012-01-25 05:15:55 node3 Effector: received event 3 at 120394502

Table 3.1 presents an example execution trace from a software system. As shown in

this table, the execution trace has log messages that correspond to sending/receiving

events between components in a software system. The log messages in this example

19

contain time of the event, event id, and name of the component where the event

occurred.

Software system testers use UNITE to analyze performance properties from the

execution trace in Table 3.1 by first identifying what log messages to extract from the

execution trace. These log messages should contain metrics of interest that support

desired performance analysis. Once the log messages are identified, software system

testers convert the common log messages into log formats. A log format is a high-level

representation of a log message that captures both the static and variable portions

of its corresponding log message. The static portions are those that do not change

between different log messages. The variable portions are those that change between

different log messages.

Given the execution trace in Table 3.1, Listing 3.1 shows the log formats that

represents the different log messages in the trace. As shown in this listing, each log

format (e.g., LF1 and LF2) contains static and variable portions for extracting metrics

from its corresponding log message in the execution trace. For example, LF1 con-

tains the variables: cmpid, eventid, and sent. The sent variable is used to extract

the sending time. The remaining variables in the log format are used for correlating

messages, which is explained next.

1 LF1: {STRING cmpid} sent event {INT eventid} at {INT sent}

2 LF2: {STRING cmpid} received event {INT eventid} at {INT recv}

Listing 3.1: Log formats for analyzing execution trace presented in Table 3.1.

A log format LFi can have zero or more variables. We define the set of variables

of log format LFi as Vi. Similarly, the set of variables of log format LFj is Vj. A

causal relation CRi,j between two log formats LFi and LFj is denoted as LFi → LFj

where LFi is the cause log format and LFj is the effect log format. This kind of a

causal relation is also called a log format relation. A causal relation CRi,j can have

zero or more variable relations. A variable relation V RC,E of a causal relation CRi,j is

defined as vC = vE, where vC ∈ Vi and vE ∈ Vj. A execution trace can have many log

20

formats, many causal relations between the log formats, and many variable relations

for each causal relation.

For the purpose of performance analysis, system testers can use subsets of the log

formats, causal relations and variable relations, which we call a dataflow model. We

formally define a dataflow model DM = (LF,CR, V R) as:

• A set LF of log formats where each log format represents a set of log messages

useful for analyzing a performance property;

• A set CR of causal relations that specify order of occurrence and causality

among the log formats LF ; and

• A set V R of variable relations attached to causal relations CR.

Like dataflow models in program analysis [55] where they relate variables across

different source lines, dataflow models in UNITE relate log format variables across

different log messages (or application contexts). The dataflow model then enables

reconstruction of execution flows in the system (1) irrespective of system complexity

and composition and (2) without a need for a global clock to ensure causality [18].

This is because the relations between the log formats preserve causality. For the ex-

ecution trace in Table 3.1, Listing 3.2 illustrates the dataflow model.

1 Log Formats:

2 LF1: {STRING cmpid} sent event {INT evid} at {INT sent}

3 LF2: {STRING cmpid} received event {INT evid} at {INT recv}

4

5 Log Format Relations:

6 LF1 → LF2

7

8 Variable Relations:

9 LF1.cmpid = LF2.cmpid

21

10 LF1.evid = LF2.evid

Listing 3.2: Dataflow model for analyzing execution trace presented in Table 3.1.

The dataflow model illustrated in Listing 3.2 is a higher level abstraction of the

execution trace being analyzed. Using this dataflow model and the execution trace,

UNITE creates a variable correlation table based on variables defined in the dataflow

model. A variable correlation table is a set of tuples (d1, d2, .., di, .., dn) where each

tuple di(i ≤ n) contains instance values for all the variables of log formats defined in

the dataflow model. The correlation of these values (i.e., the values occur together

in a single tuple) is defined by the variable relations in the dataflow model.

The previous work on UNITE [9] illustrates an algorithm based on topological

sorting directed acyclic graphs and constructing variable correlation table for a given

execution trace and a dataflow model. The log formats and corresponding log mes-

sages are processed in a certain order. This ordering is defined by the reverse topo-

logical ordering of the log formats in the dataflow model. This is because for a causal

relation if we can find a log message instance representing an effect log format, then

we should be able to find the corresponding cause log message instance from the same

execution trace.

The reverse, however, is not always true. For example, there can exist a “sent”

event without a “received” event. On the other hand, if there is a “received” event,

then the corresponding “sent” event must exist in the same execution trace. Once the

log formats in the dataflow model are topologically ordered, the source node (cause

log format) comes first in the list. Because UNITE only considers cause log message

instances that have the corresponding effect log message instance, UNITE has to

process effect log message instances first.

For example, for any LFi → LFj log format relation, UNITE first processes the

log messages that correspond to LFj, and then log messages that correspond to LFi.

While processing in this order, UNITE populates the variable correlation table based

on the values of the variables of each log message instance. For example, Table 3.2

22

shows the variable correlation table for the execution trace in Table 3.1 and dataflow

model in Listing 3.2.

Table 3.2.: Variable correlation table for the execution trace shown in Table 3.1.

LF1.cmpid LF1.evid LF1.sent LF2.cmpid LF2.evid LF2.recv
Config 1 120394455 Config 1 120394480
Planner 2 120394465 Planner 2 120394476
Effector 3 120394488 Effector 3 120394502

The variable correlation table shown in Table 3.2 enables software system testers

to analyze performance properties. For example, Listing 3.3 highlights the expression

for evaluating average event round trip time.

1 AVG(LF2.recv - LF1.sent)

Listing 3.3: Expression for analyzing round trip time using UNITE.

Based on this expression, UNITE can generate SQL queries that can aggregate per-

formance results captured from the variable correlation table. Likewise, if the aggre-

gation function (i.e., AVG) is removed from the expression, then UNITE will present

the data trend for the performance property undergoing analysis. Lastly, UNITE

provides facilities to group aggregated results—similar to grouping in SQL.

23

4 ADAPTING EXECUTION TRACES FOR SOFTWARE PERFORMANCE

ANALYSIS

In Chapter 1 we presented, the need to relax the assumptions about the structure of

the execution trace. As described in Section 2.1 of Chapter 2, existing approaches of

using system execution traces to evaluate software performance properties are based

on several assumptions about the execution traces. They assume either the source

code is available or messages of the execution trace are in a certain format. These

assumptions limit the applicability of the existing approaches described in Section 2.1

of Chapter 2.

Although UNITE’s analysis technique does not depend on the above mentioned

assumptions to some extent, it has not addressed other challenges when analyzing

heterogeneous system execution traces, which we are going to describe in this section.

These challenges motivated us to come up with a tool and technique called System

Execution Trace Adaptation Framework (SETAF). In this chapter we first present

the challenges, which motivated SETAF and then we describe the SETAF technique

in detail. Finally, we present the experimental results of applying SETAF combined

with UNITE to several open source software systems.

4.1 Unresolved Challenges in UNITE

Although UNITE enables analysis of software system performance properties using

execution traces, UNITE’s methodology has not resolved the following challenges:

• Challenge 1: Correlating log formats that have non-unique instances.

As mentioned in Chapter 3 the variable correlation table is a set of tuples. Each

tuple is a set of values for log format variables. Some of these values represent

a time stamp for a particular event (e.g., LF1.sent, LF2.recv). Let us define

24

the subset of a tuple that does not represent time as F . UNITE assumes that

the set F of any tuple in the variable correlation table to be unique (i.e., any

instance of a particular log format is different from any other instance of the

same log format apart from the timestamps). We call this uniqueness among

the log messages.

As shown in Table 3.1 and Listing 3.1 of Chapter 3, the event ids are different

in different log formats. It, however, is possible for the same log message to

reoccur without a unique id. When this situation occurs, the relation between

the two log messages is considered non-unique. Consequently, analysis of an

execution trace with non-unique relations typically yields incorrect results.

Table 4.1.: Example execution trace that does not contain unique ids.

Time of Day Hostname Message
2011-02-25 12:00:55 node1 Started doing task A at 12.00
2011-02-25 12:01:55 node1 Finished doing task A at 12.01
2011-02-25 12:02:55 node1 Started doing task A at 12.02
2011-02-25 12:03:55 node1 Finished doing task A at 12.03

For example, Table 4.1 illustrates an example execution trace where the dif-

ferent instances of the same log format are similar. Only the variable parts

related to time, change in different instances. It is therefore hard to know what

start/finish messages are associated with each other without human interven-

tion. Moreover, when an example similar to the one presented in Table 4.1 is

analyzed by UNITE, it will yield incorrect results (see Section 4.3.2 for sup-

porting results). It is therefore critical that UNITE be able to handle such

situations in generated execution traces.

• Challenge 2: Correlating log formats with hidden relations. Execu-

tion traces typically capture a variety of events that occur in different software

components. When there are repetitive events as shown in Table 3.1, it is easy

to identify the relations between log formats. In other cases, there may be no

repetitive events in the system. When this occurs, there are no true variable

25

parts (other than the log message time) for defining causality between log for-

mats. When this occurs, we say the dataflow model and system execution trace

contain hidden relations.

Table 4.2.: Example execution trace that contains hidden relations.

Time of Day Hostname Message
2011-02-25 10:00:55 node1 Initializing the system at 10.00
2011-02-25 10:10:55 node1 Start Monitoring components at 10.10
2011-02-25 10:11:55 node1 Finish Monitoring components at 10.11
2011-02-25 10:40:55 node1 Shutting down the system at 10.40

For example, consider the execution trace in Table 4.2. Time is a variable in

each log format and each log message is unique, however, there is no explicit

variable for determining causality between the log messages. The execution

trace in Table 4.2 therefore cannot be analyzed using UNITE, but it is critical

that UNITE be able to handle such situations.

• Challenge 3: Associating values of newly added log format variables.

One of UNITE’s main assumptions is that values for a given log format variable

are populated using data from its corresponding log messages. Correlating log

formats in Table 4.1 and Table 4.2, however, requires adding new log format

variables to the dataflow model while preserving the relationship between differ-

ent log formats. This process is sometimes as simple as adding a monotonically

increasing id. Other times it requires coordinating values from other log mes-

sages. There is no uniform way to associate data for the newly added log format

variables, but UNITE must be able to handle such situations.

The challenges listed above illustrate the heterogeneity among different execution

traces in software systems. Although system execution traces vary from system to

system, it is possible to use a general-purpose approach for adapting them so that

it will help to correctly correlate events in the system. This kind of correct correla-

tion will be useful to support performance analysis of the system. The next section

therefore explains our solution called, System Execution Trace Adaptation Frame-

26

work (SETAF) which is created to addresses the challenges outlined above to enable

performance analysis using execution traces.

4.2 Solution Approach : System Execution Trace Adaptation Framework (SETAF)

This section describes the design and functionality of SETAF. This section also

uses concrete examples to illustrate concepts realized in SETAF.

4.2.1 Design Approaches for Adapting Execution Traces

Before discussing the details of SETAF, it is necessary to understand different

approaches for adapting system execution traces and dataflow models to support

performance analysis—in particular with UNITE. The following therefore is a list of

approaches for realizing the adaptation:

• Approach 1: Change execution traces directly. In some cases, execution

traces may not contain certain properties that enable performance analysis. The

execution semantics of those systems, however, can be used to define dataflow

models as defined in Section 3. If the system’s source code is available, then the

source code can be changed so that the execution trace reflects the execution

semantics. For example, the source code that generates the execution trace

can be changed such that each log format has variables for capturing unique

relations.

The advantage of this approach is that UNITE—as is—can directly analyze gen-

erated system execution traces. This approach, however, has several disadvan-

tages. First, this approach requires software system testers to have access to the

source code so they can make the necessary updates. Moreover, it requires soft-

ware system testers to be familiar with the source code—its implementation—to

make the necessary updates. Secondly, this approach is not practical because

updating the source code accordingly can be a costly, error prone, and time

27

consuming task—especially when dealing with a large code base. Finally, the

actual source code should not be changed just to analyze performance prop-

erties because such changes may impact existing functional and performance

properties of the system.

• Approach 2: Adapting the dataflow model inside UNITE. It is possible

to adapt the dataflow model directly by modifying UNITE’s source code. For

example, if the adaptation requires adding a new log format variable and a

relation then UNITE could be updated to add new variables to an existing

dataflow model.

The advantage in this approach is that the source code of the actual software

system does not need to change. Unfortunately, it is not possible to adapt each

dataflow model in the same manner. This is because the dataflow model is

associated with the given system that generates the execution trace under per-

formance analysis. A dataflow model therefore can only be reused for different

executions of the same system. Moreover, this implies that UNITE must be

updated to accommodate new dataflow models that need adaptation.

• Approach 3: Adapting the dataflow model using user-defined exter-

nal adapters. This is similar to Approach 2, i.e., adapting the dataflow model

inside UNITE, but now the mechanisms for adapting the dataflow model reside

in an external specification. The external specification is then loaded by UNITE

when analyzing the corresponding execution trace. This approach allows soft-

ware system testers to write their own adaptation specification according to the

system domain without modifying the software system’s existing source code.

The disadvantage of this approach is that software system testers must be aware

of the dataflow model’s limitations. Software system testers also need to identify

the new log format variables, the relations that must be added to the existing

dataflow model so it can be adapted correctly.

28

Based on the advantages and disadvantages of each approach discussed above, Ap-

proach 3 was selected as the approach for adapting execution traces for performance

analysis. This approach was selected because it addresses the heterogeneity among

different systems in different domains. Moreover, it provides greater flexibility and

configurability when analyzing execution traces because UNITE’s underlying theory

and algorithms can remain constant while allowing the adapter(s) to provide more

domain-specific details.

When using Approach 3 (above), software system testers first have to identify the

adaptation pattern using domain knowledge about the execution trace. This adap-

tation pattern then need to be expressed in a manner that UNITE can understand.

One possible way of doing this is to implement the adapter(s) in the same program-

ming language as UNITE, which is C++. Although this is possible, software system

testers will be required to possess some domain knowledge about underlying architec-

ture and functionality of UNITE. We therefore designed a domain-specific language

for expressing the adaptation pattern, which does not require software system testers

to know the internals of UNITE. Section 4.2.2 describes this domain-specific language

in detail.

4.2.2 Defining the Adaptation Specification

As discussed in the previous section, the approach of using external adapters was

selected for adapting system execution traces for performance analysis. Software

system testers use SETAF by first manually analyzing the generated execution trace.

Through this analysis, the tester identifies an adaptation pattern. The adaptation

pattern captures what properties must be added to the dataflow model to support

performance analysis via the execution trace. Each adaptation specification contains

the following details:

• Variables. The variables are private data points that assist with adapting

the corresponding system execution trace. The variables are visible only to

29

the adaptation pattern, and not visible to UNITE—thereby helping to address

Challenge 3 introduced in Section 4.1. Moreover, these variables keep the state

of the current adaptation throughout the execution trace analysis.

• Initialization. The initial values for the variables defined above are specified

in this section.

• Reset. The state variables defined above may need to be reset at the start of

processing each log format. This section contains the values for such resetting.

• Data points. The data points are new columns added to UNITE’s data table

for reconstructing valid system execution flows from the generated execution

trace. For example, a data point named LF1.uid will become a column name in

UNITE’s data table. Finally, the data points are used to create new relations in

UNITE’s data table—thereby addressing Challenge 1 introduced in Section 4.1.

• Relations. The relations section of the adaptation pattern inserts new causal-

ity relations among log formats into the dataflow model. For example, assume

the following two data points named LF1.uid and LF2.uid are added to the

dataflow model. This section is used to define that LF1.uid causes LF2.uid—

thereby addressing Challenge 2 introduced in Section 4.1.

• Adaptation code. The adaptation code is where the domain-specific logic

resides for the adaptation pattern. The adaptation code is segmented based on

the log formats that must undergo adaptation. Each segment dictates how to

update variables in the dataflow model, as well as its own private variables—

thereby helping address Challenge 3 introduced in Section 4.1.

Realization in SETAF. To show the adaptation specification (capturing an

adaptation pattern) defined in SETAF, we are going to use a portion of an example

execution trace of Apache ANT (ant.apache.org), which is presented in Table 4.1.

We selected Apache ANT because its adaptation specification is a simple example for

30

illustrating the concepts previously discussed. We, however, have applied SETAF to

more complex examples as explained in Section 4.3.

Apache ANT is a widely used build tool primarily for Java projects, but can be

used for other purposes (e.g., build automation, documentation generation, and tradi-

tional execution shell). Apache ANT completes different tasks during a build process.

A task finish event is the effect of a task start event. Using this domain knowledge

of the execution trace, Listing 4.1 illustrates the dataflow model for analyzing the

execution time of each task in Apache ANT.

1 Log Formats:

2 LF1:Started doing task {STRING taskname} at {INT startTime}

3 LF2:Finished doing task {STRING taskname} at {INT finishTime}

4

5 Relations:

6 LF1.taskname = LF2.taskname

Listing 4.1: Dataflow model for Apache ANT execution trace.

When repeating the same task, Apache ANT uses the same task name in different

log messages, which will result in identical instances of LF1 and LF2 (i.e., different only

in the time stamp) in the execution trace. When UNITE is processing the execution

traces using the dataflow model shown in Listing 4.1, it first identifies all the log

message instances of type LF2. Then for each message of that type, UNITE tries

to find the corresponding LF1 message instance (i.e., UNITE is trying to correlate

the finish event of an ANT Task with the start event of the same task). As shown

in the Listing 4.1, the only possible way to do this is using the taskname. Because

taskname is not always different among different message instances, UNITE cannot

do this correlation correctly.

This behavior in UNITE is similar to Challenge 1 described in Section 3. Al-

though ANT’s execution trace has this problem, a log message representing the start

of a task is always preceded by a log message representing completion of the corre-

31

sponding task. The system tester knows this is the execution semantics of ANT, but

it is not completely captured in the execution trace. This observation is therefore

used to write a SETAF specification that adapts ANT’s dataflow model accordingly.

Listing 4.2 highlights the adaptation pattern—written as a SETAF specification—to

ensure correct analysis of ANT’s execution trace.

1 Variables:

2 int id_;

3

4 Init:

5 id_ = 0;

6

7 Reset:

8 id_ = 0;

9

10 DataPoints:

11 int LF1.uid;

12 int LF2.uid;

13

14 Relations:

15 LF1.uid -> LF2.uid;

16

17 // Begin adaptation code section

18 On LF1:

19 id_ = id_ + 1;

20 [uid] = id_;

21

22 On LF2:

23 id_ = id_ + 1;

32

24 [uid] = id_;

Listing 4.2: Adaptation pattern specification for Apache ANT in SETAF.

As illustrated in this listing, first software system testers define variables needed

to adapt the system execution trace. This information is captured in the section

labeled Variables of the SETAF specification. In this case the variable named id

maintains the state of the adaptation. As shown in section labeled Init and section,

labeled Reset the value of this variable is initialized to 0 at the start of the adaptation

and reset to 0 each time a new log format is processed. Software system testers then

use the DataPoints section to specify what data points need to be added to each log

format. For example, two data points named LF1.uid and LF2.uid, which are of

integer type, are injected into the dataflow model. These two variables are needed

to ensure that the relations are unique between the two log formats named LF1 and

LF2.

After defining what data points need to be injected into the dataflow model,

software system testers define new relations that should be added to the dataflow

model. As illustrated in Listing 4.2, the left side of the arrow represents the cause

variable; whereas, the right side of the arrow represents the effect variable. This

specification of the relations is similar to how existing relations are defined in UNITE.

The final part of the SETAF specification is defining how to adapt the actual

execution trace. This task is completed by stating how the adapter transforms the

execution trace for each log format that needs adaptation. As shown in Listing 4.2,

the uid variable is assigned the current value of id in both LF1 and LF2. In both LF1

and LF2 the state variable id is incremented. This ensures that the next occurrence

of LF1 is differentiated from the previous occurrence of LF1, as well as LF2. Finally,

the variable inside the brackets [] represents log format variables in UNITE. Writing

the variable inside brackets is used to differentiate the adapter state variables from

UNITE’s log format variables.

Integrating SETAF with UNITE. We extended UNITE to provide a con-

figuration option for specifying the location of the adaptation specification, and

33

a standard interface to support the functionality of the adaptation specification

described above. The unified interface of UNITE defines three main methods—

update log format(), update relations(), update values(). The implementa-

tion of these functions are defined in the adaptation specification. When there is an

adapter specification provided with a dataflow model, UNITE calls the three methods

above as follows.

1. update log format. This method is called when UNITE is processing log

formats in the dataflow model, and SETAF needs to add data points defined in

the adaptation specification to the dataflow model.

2. update relations. This method is called when UNITE is processing the log

format relations in the dataflow model and SETAF needs to add log format

relations defined in the adaptation specification to the dataflow model.

3. update values. This method is called when UNITE needs to populate the

variable correlation table. Moreover, this method is only called for the columns

(i.e., log format variables) in the variable correlation table that are added from

the adaptation specification because the execution trace does not have values

to populate the newly added columns.

4.2.3 Compiled versus Interpreted External Adapters in SETAF

There are two possible ways to use this adaptation specification with SETAF:

compiled adapter and interpreted adapter. As shown in Figure 4.1 when using the

compiled adapter technique, SETAF generates C++ source code using the adapta-

tion specification. Software system testers then compile the auto-generated code into

an external module. During the execution trace analysis, UNITE loads the exter-

nal module and invokes required functionality for the adaptation from the external

module.

34

Figure 4.1.: Overall analysis process with SETAF compiled adapter technique.

35

Listing 4.3 showcases the source code auto-generated for ANT’s adapter based

on the SETAF specification in Listing 4.2. As shown in this listing, the variables in

the Variables section of the SETAF specification are mapped into private variables

in the adapter. Likewise, the DataPoints in the specification are used inside the

update log format() method. More specifically, these data points are used to create

new log format variables.

Similarly, the update relations() method uses the relations specified in the

Relations section of the specification. This method is therefore responsible for creating

new relations among log formats with respect to the new log format variables. The

update values() method does the actual adaptation. Each adaptation section in

the SETAF specification (i.e., On [name]) is given its own if statement based on the

log format’s unique name as defined in the dataflow model.

The identifier SETAF::int32 vp () represents a log format variable casting op-

erator. It is needed because all the variables types in UNITE are derived from a

common variable type. This casting operator allows the system tester to narrow the

generic variable type to its concrete variable type, such as an integer, to set its value

accordingly. SETAF has log format variable casting operators for each variable type

supported in UNITE. Lastly, UNITE uses SETAF to adapt its dataflow model to

support the analysis of the execution trace using the compiled version of the specified

adapter source code.

1 class Ant_Adapter : public CUTS_Log_Format_Adapter {

2 public:

3 void init (void) { this ->id_ = 0; }

4 void reset (void) { this ->id_ = 0; }

5 void close (void) { delete this; }

6

7 void update_log_format(CUTS_Log_Format * lfmt) {

8 const string & name = lfmt ->name ();

36

9

10 if (name == "LF1")

11 lfmt ->add_variable ("uid", "int ");

12 else if (name == "LF2")

13 lfmt ->add_variable ("uid", "int ");

14 }

15

16 void update_relations(CUTS_Log_Format * lfmt) {

17 const string & name = lfmt ->name ();

18

19 if (name == "LF1")

20 lfmt ->add_relation ("LF2", "uid", "uid ");

21 }

22

23 void update_values(Variable_Table & vars ,

24 CUTS_Log_Format * lfmt) {

25 const ACE_CString & name = lfmt ->name ();

26

27 if (name == "LF1") {

28 ++this ->id_;

29 SETAF :: int32_vp (vars["uid"])->value (this ->id_);

30 }

31 else if (name == "LF2") {

32 ++this ->id_;

33 SETAF :: int32_vp (vars["uid"])->value (this ->id_);

34 }

35 }

36 private:

37 int id_;

38 };

Listing 4.3: Auto-generated source code for Apache ANT adapter.

37

The interpreted adapter technique removes the extra overhead of code generation

and compilation. As shown in the Figure 4.2, software system testers just need

to express the adaptation pattern as a specification. During analysis time of the

execution trace, UNITE loads the adaptation specification and SETAF builds an in

memory object model of the adapter.

Figure 4.2.: Overall analysis process with SETAF interpreted adapter technique.

For the interpreted adapter technique, the adaptation specification is mapped

into a SETAF Interpreter object type. The data points and relations are stored

in two list objects where each entry in the list corresponds to a data point and

relation, respectively. The methods update log format() , update relations()

and update values() are methods on the SETAF Interpreter object type. The first

two methods process the data point and relation list objects, respectively, and update

the dataflow model accordingly.

The interpreted adapter technique also defines two classes: SETAF Variable and

SETAF Command. SETAF Variable represents different kinds of variables in the adap-

tation specification, and SETAF Command represents each statement in the adaptation

code section of the adaptation specification. Figure 4.3 illustrates the SETAF Variable

38

and SETAF Command classes, their subclasses, and the relationship between the two

class hierarchies.

+ 

+  +  + 

Figure 4.3.: SETAF Variable and SETAF Command class hierarchies.

As shown in the figure, the variables defined in the Variable section of the adap-

tation specification are represented using SETAF State Variable object type. Like-

wise, UNITE’s log format variables (i.e., variable inside “[]”) are represented us-

ing SETAF Unite Variable object type. Figure 4.3 also shows that SETAF’s in-

terpreter adapter technique currently implements three types of statements: assign-

ment, increment, and addition. The three statements, which are an implementation

of the Command pattern [56], are represented using SETAF Assignment Command,

SETAF Increment Command, and SETAF Addition Command, respectively. SETAF only

implements these three statements because they are sufficient to adapt dataflow mod-

els of execution traces we have currently used with SETAF. Further these three state-

ments are the building blocks for most of the complex adaptation patterns. Moreover

39

if the adaptation requires a new statement, then it can be easily implemented using

the Command pattern.

The actual functionality of the command is implemented in a method named

execute(). As described before, the adaptation code is segmented based on the log

formats. Each log format that appears in the adaptation code is therefore mapped

to a SETAF Command object. When UNITE needs SETAF to apply adaptation to the

execution trace, it invokes update values() for the corresponding log format. The

SETAF interpreted adapter then locates the corresponding SETAF Command object

and executes it.

The interpreted adapter technique is easier to use, because the overhead associ-

ated with compiling the adapter, such as obtaining UNITE libraries and setting up a

development environment, are not present in the interpreted adapter. One therefore

may question the use of the compiled interpreter technique. We developed the com-

piled adapter technique because our initial intuition was that the compiled technique

would have better performance. This is because UNITE calls the functionality for

adaptation from a compiled module compared to parsing the specification file and

building an object model in the interpreted adapter. Section 4.3.6 shows a perfor-

mance comparison of the two techniques to evaluate whether our intuition is correct.

4.3 Results of Applying SETAF to Open-Source Projects

This section presents results from applying SETAF to several open-source projects

that generate execution traces and do not have the properties required for performance

analysis via UNITE. It also shows a performance comparison of the two techniques—

compiled versus interpreted adapter. Finally, the adaptation specification used for

either technique (i.e., compiles vs. interpreted) is the same. The performance analysis

results from applying UNITE and SETAF to different open source software systems

is therefore the same for both the cases.

40

4.3.1 Experimental Setup

To determine applicability of SETAF’s technique, we applied SETAF to the fol-

lowing open-source projects:

• Apache ANT. Apache ANT, which was previously introduced in Section 4.2.2,

is a widely used Java library and a command line tool mainly used to build

Java-based software systems.

• Apache Tomcat Web Server. Apache Tomcat (tomcat.apache.org) is an

implementation of the Java Servlet [57] and JavaServer Pages [58] technology. It

is also one of the most widely used Java web-based application servers. Finally,

Tomcat is embedded in many enterprise application servers that serve very high

volumes of requests.

• ActiveMQ Java Messaging Server (JMS) Broker. Apache ActiveMQ

(activemq.apache.org) is a widely used message broker that implements Java

Messaging Services (JMS) [59]. Apache ActiveMQ supports implementation of

enterprise integration patterns such as publisher-subscriber. It is also integrated

into a variety of Enterprise Service Bus (ESB) [60] middlewares in order to

support message mediation. It is also designed for high performance clustering,

client-server and peer based communication.

• Deployment And Configuration Engine (DAnCE). DAnCE [61] is an im-

plementation of the Object Management Group (www.omg.org) Deployment &

Configuration (D&C) [62] specification for deploying and configuring component-

based distributed systems.

These open-source projects were selected for several reasons. First, we ana-

lyzed their execution trace with only UNITE (i.e., without SETAF) and produced

invalid results because the execution trace lacked the required properties to sup-

port performance analysis via UNITE. Secondly, each open-source project exhib-

ited a different adaptation pattern, which is discussed in their respective result sec-

tion. Finally, each software application used a logging facility, such as log4j (http:

41

//logging.apache.org/index.html) and ACE Logging Facilities [63]. It was there-

fore possible to use appenders and intercepters, respectively, to capture generated

execution traces and store them in a database for adaptation and analysis without

making any modifications to the existing source code.

All experiments were conducted on an Intel core 2 Duo 2.1 GHz processor, with

3GB memory and running 32-bit Windows 7 operating system. The execution of

either UNITE or SETAF, however, is not bound to a particular operating system

as long as the operating system supports the Adaptive Communication Environment

(ACE) [64], Boost (www.boost.org), and SQLite (www.sqlite.org) middelware.

4.3.2 Experimental Results for Applying SETAF to Apache ANT

Table 4.3 shows the correlation table constructed by UNITE when analyzing

ANT’s execution trace without SETAF. The end goal was to measure the average ex-

ecution time of each ANT task, which is accomplished by subtracting the finishTime

from the startTime. Unfortunately, Table 4.3 constructed by UNITE will produce

incorrect results because some rows are not correlated correctly. For example, the

first and third rows have a startTime that is greater than the finishTime. This

means that the task finished before it actually started, which is not the case.

Table 4.3.: Data table reconstructed by UNITE for a subset of ANT’s tasks without
adaptation pattern specification.

startTime (msec) LF1.task finishTime (msec) LF2.task
1500 property 860 property
1500 property 1704 property
1516 available 1511 available
1516 available 1518 available

The reason for this error lies not in the generated execution trace. Instead, the

error lies in the analysis because the relations in the dataflow model used to recon-

struct the dataset from the execution trace are not unique (see Listing 4.1). More

specifically, UNITE processes the log formats in topological order of the correspond-

ing directed acyclic graph of the data flow model. UNITE therefore first populates

42

the finishTime column. Then it uses a SQL UPDATE query to update the corre-

sponding data value of the startTime column.

In this case, UNITE can only do the correlation using the relation LF1.task =

LF2.task. This cause UNITE to update multiple rows (as the relation is not unique)

and finally ends up with the latest value of the startTime for a particular task. For

example for task property, UNITE updates the startTime with 1500 by replacing all

the previously updated values. Because of the non-unique relations in the dataflow

model, the final analysis using only UNITE results in several negative values for the

average execution time of different ANT tasks as illustrated in Table 4.4.

Table 4.4.: Results for analyzing reconstructed table in UNITE for ANT without
adaptation specification.

Task Average Execution Time (msec)
available -630.34
delete 0.0

macrodef 140.0
mkdir -25.125
path 297.0

patternset -9.77
property -241.4

Total evaluation time (sec) 0.11994

To correct the errors in UNITE’s current analysis, we defined a SETAF specifica-

tion as described in Listing 4.2 for adapting ANT’s generated system execution trace

and the corresponding dataflow model. Table 4.5 therefore highlights the dataset re-

constructed by UNITE after using SETAF to apply the adaptation pattern to the

reconstruction process. As shown in this table, startTime and finishTime are

now correlated correctly because of the unique id added by SETAF. In this table,

startTime is always less than finishTime, which is the expected result.

Table 4.5.: Improved table reconstruction using SETAF and UNITE for a subset of
ANT’s tasks.

LF1.uid LF1.task startTime LF2.uid LF2.task finishTime
1 property 766 1 property 860
2 property 1500 2 property 1704
3 available 1500 3 available 1511
4 available 1516 4 available 1518

43

Finally, Table 4.6 illustrates the updated final results for analyzing task execution

time after using SETAF to adapt the execution trace as UNITE analyzed it. As

shown in this table all the service times for different ANT tasks have positive values,

which produce the expected (and correct) analysis results.

Table 4.6.: Final results for adapting UNITE’s analysis using SETAF for a subset of
ANT’s tasks.

Task Average Execution Time (msec)
available 93.67
delete 55.0

macrodef 79.0
mkdir 2.0
path 390.0

patternset 6.0
property 17.975

Total evaluation time of compiler technique (sec) 0.210
Total evaluation time of interpreter technique (sec) 0.220

4.3.3 Experimental Result for Applying SETAF to Apache Tomcat

To further validate SETAF’s method for adapting system execution traces for

analysis via UNITE, we applied SETAF and UNITE on Apache Tomcat. To obtain

a considerable amount of log messages for performance analysis, we had to set the

log level to a high value (i.e., DEBUG) to produce a more verbose execution trace.

This has some impact on the system performance, but the purpose of this experiment

is to validate SETAF’s applicability to a variety of applications—not to validate

performance.

When the Tomcat server starts up, it outputs the total time of the startup process.

Our aim was to compare this value with the value calculated from analyzing its

generated system execution traces using UNITE. The log messages related to this

case study, however, do not contain any variable parts other than the timestamp of

the event being captured in the execution trace. This means that SETAF is needed

to adapt the execution trace.

44

After analyzing the execution trace, we identified twelve independent events (or

log formats) associated with Tomcat’s startup process. Although there were no vari-

able parts in the log formats for explicitly identifying causality in the dataflow, the

desired causality can be defined by injecting a common id.

1 Variables:

2 string server_name;

3

4 Init:

5 server_name = "Tomcat ";

6

7 Reset:

8 server_name = "Tomcat ";

9

10 DataPoints:

11 string LF1.cid;

12 string LF2.cid;

13 // ...

14 string LF12.cid;

15

16 Relations:

17 LF1.cid ->LF2.cid;

18 LF2.cid ->LF3.cid;

19 // ...

20 LF11.cid ->LF12.cid;

21

22 // Begin adaptation code section

23 On LF1:

24 [cid] = server_name;

25

45

26 On LF2:

27 [cid] = server_name;

28 // ...

29

30 On LF12:

31 [cid] = server_name;

Listing 4.4: SETAF specification for Apache Tomcat.

Listing 4.4 therefore highlights a portion of the SETAF specification for Tomcat.

As illustrated in this listing, a variable called cid is added to all the log formats to

expose the hidden relation.

Table 4.7.: Results for adapting Tomcat execution trace using UNITE and SETAF.

Method Time (msec)
Server startup time from Tomcat instrumentation 68799.0
Server startup time from UNITE w/o SETAF N/A
Server startup time from UNITE w/ SETAF 68802.0

Total evaluation time of compiler technique (sec) 8.297
Total evaluation time of interpreter technique (sec) 8.329

Table 4.7 shows the results for comparing the server startup time calculated by

UNITE with and without SETAF against the server startup time given by the server

itself. As shown in this table, it was not possible to analyze the system execution trace

using UNITE alone because there are no variable parts for defining causality between

log formats (i.e., Challenge 2 in Section 3). When we analyzed the same system

trace using UNITE and a SETAF adaptation specification, the resulting analysis is

relatively close (i.e., a 0.00436% difference). The reason for the difference in time is

because the instrumentation points in the Tomcat source code are not the same as the

two points where the log messages are generated. More importantly, however, this

experiment shows that SETAF and UNITE can be used to produce results similar

to direct instrumentation. This, however, is dependent on how far a generated log

message is from the real instrumentation points-of-interest.

46

4.3.4 Experimental Result for Applying SETAF to Apache ActiveMQ

In Apache ActiveMQ, each message broker uses a local file for persistent stor-

age. This persistent store is updated periodically in order to prevent message lost

during a system crash. This process is called checkpointing. When checkpointing,

ActiveMQ generates a message with the content “checkpoint started”. At the end

of the checkpointing task, ActiveMQ generates another message with the content

“checkpoint done”. Because ActiveMQ checkpoints periodically, the checkpointing

messages occur frequently in the generated system execution trace.

Unfortunately, when we first tried to evaluate ActiveMQ’s average checkpointing

time using UNITE for one scenario, we learned that average checkpointing time was

-27235.333 msec. This result was clearly not correct because checkpointing time

cannot be a negative number. We then realized that ActiveMQ’s execution trace

cannot be analyzed as is using UNITE because ActiveMQ’s dataflow model does not

contain unique relations.

ActiveMQ’s execution trace, however, is similar to Apache ANT’s execution trace.

This is because each log message that represents the start of checkpointing is preceded

by a finish checkpointing message before another start checkpointing message occurs.

Because of this fact, the same adaptation specification is used as in Listing 4.2 to

adapt the execution trace generated by ActiveMQ.

After executing UNITE with the SETAF adapter for ActiveMQ, we were able to

evaluate that average checkpointing time was 115.917 msec for the scenario discussed

above. Software system testers therefore can use UNITE and SETAF to determine

whether there are any performance problems with the checkpointing module of Ac-

tiveMQ without making any modifications to the existing source code to perform such

analysis. This will be very useful when ActiveMQ is running in thirdparty systems,

because in those types of system only the server log is available for analysis.

47

4.3.5 Experimental Result for Applying SETAF to DAnCE

The goal of analyzing DAnCE is to evaluate the amount of time it takes to deploy

a set of components on a given node in the generated deployment plan. For this case

study we used the BasicSP scenario provided with DAnCE. The BasicSP scenario

has four different components mapped into four different nodes. After manually

analyzing DAnCE’s system execution trace for the BasicSP scenario, the following

dataflow model was constructed for DAnCE.

Figure 4.4.: Log formats associated with DAnCE.

As shown in Figure 4.4, the dataflow model contains 13 different log formats (out

of 50+ log formats) that depend on each other. The DAnCE deployment process

can be divided into three phases [61]: (1) deployment preparation phase; (2) start

launching phase; and (3) finish launching phase. Each of these phases are driven by

remote method calls between different components in DAnCE. The first 5 log formats

represent the analysis of the preparation phase. The next 4 log formats represent the

start launching phase. The last 4 log formats represent the finish launching phase.

If the software testers want to isolate different phases for performance testing, the

tester can use log formats within each phase for that purpose.

Because of different execution flows in DAnCE and its distributed functionality, it

is not possible to use only the first and last log formats for the analysis. Instead, each

intermediate log format between the first and last log format must be considered to

ensure correct correlation. Unfortunately, the relation between the intermediate log

formats is not unique.

48

Because component deployment is done according to a deployment plan, it is pos-

sible to use a common id named planid to correlate the messages among different

components and deployment plans. Moreover, another id named nodeid can be used

to correlate messages that are generated from the same node. Listing 4.5 therefore

presents the SETAF specification for adapting DAnCE’s generated system execution

traces for analysis using UNITE.

1 Variables:

2 string planid_;

3 int lf12_count_ , lf13_count_ , nodeid_;

4

5 Init:

6 lf12_count_ = lf13_count_ = nodeid_ = 0;

7

8 Reset:

9 lf12_count_ = lf13_count_ = nodeid_ = 0;

10

11 DataPoints:

12 string LF1.planid; string LF2.planid;

13 string LF5.planid; string LF6.planid;

14 string LF9.planid; string LF11.planid;

15 int LF12.nodeid; int LF13.nodeid;

16

17 Relations:

18 LF1.planid ->LF2.planid; LF5.planid ->LF6.planid;

19 LF6.planid ->LF7.planid; LF8.planid ->LF9.planid;

20 LF9.planid ->LF10.planid; LF10.planid ->LF11.planid;

21 LF11.planid ->LF12.planid; LF12.nodeid ->LF13.nodeid;

22

23 // Begin adaptation code section

49

24 On LF1:

25 [planid] = planid_;

26 On LF2:

27 [planid] = planid_;

28 On LF5:

29 [planid] = planid_;

30 On LF6:

31 [planid] = planid_;

32 On LF9:

33 [planid] = planid_;

34 On LF11:

35 [planid] = planid_;

36 On LF12:

37 [nodeid] = lf12_count_;

38 lf12_count_ = lf12_count_ + 1;

39 plan_id_ = [planid];

40 On LF13:

41 [nodeid] = lf13_count_;

42 lf13_count_ = lf13_count_ + 1;

Listing 4.5: SETAF specification for DAnCE.

As illustrated in Listing 4.5, all the log formats in the SETAF specification for

DAnCE, other than LF12 and LF13, use the private variable planid to get an adapta-

tion value. The value of this private variable is set by LF12 because it is the first log

format SETAF processes. This is because UNITE processes the log messages in the

topological order based on the dataflow model to achieve O(mn) runtime complexity

where m is the number of log formats in the dataflow model and n is the number of

log messages in the execution trace.

In order to correlate LF12 and LF13, a newly added id named nodeid is used.

The instance counts of this log format are kept in state variables lf12 count and

lf13 count . These variables are used to populate the value of LF12.nodeid and

50

LF13.nodeid. This allows us to differentiate the similar instances of the same log for-

mat. The scenario we tested with DAnCE has nodes named EC, BMDevice, BMClosedED

and BMDisplay where each contains a set of component instances.

Table 4.8.: Results for adapting DAnCE’s execution trace using SETAF to measure
deployment time (DT).

Node DT w/o
SETAF

DT w/
SETAF
(sec)

EC N/A 5.0
BMDevice N/A 5.0

BMClosedED N/A 5.0
BMDisplay N/A 5.1

Total evaluation time of compiler technique (sec) N/A 0.237
Total evaluation time of interpreter technique (sec) N/A 0.272

Table 4.8 illustrates the results of analyzing deployment time for each node after

adapting DAnCE’s generated system execution trace. As shown in this table, we were

not able to analyze DAnCE’s system execution trace using only UNITE because some

of the log formats were lacking variable parts to define causalities (i.e., Challenge 2

in Section 4.1) and some newly added log format variables required analyzing other

log messages to populate their corresponding value (i.e., Challenge 3 in Section 4.1).

When we used both UNITE and SETAF to analyze DAnCE’s system execution trace,

we learned that all four nodes take approximately equal time to deploy. More impor-

tantly, however, these results show that with careful analysis of the generated system

execution trace, SETAF and UNITE can be used to analyze such complex dataflow

models as found in DAnCE without modifying the existing source code.

4.3.6 Performance Comparison of SETAF Compiled and Interpreted Techniques

We compared the load time, processing time, total evaluation time and percent-

age difference in total evaluation time for the compiled and interpreted adapters in

SETAF. This performance analysis is based on the following equation:

Total Evaluation Time = Load Time + Process Time

51

In the compiled adapter, the load time is the amount of time taken to load the

compiled adapter module. In the interpreted adapter, the load time is the amount

of time taken to parse the adapter specification and create the object model that

represents an adapter. In both cases, the process time is the amount of time taken

to evaluate the dataflow model using either adapter.

Figure 4.5 shows the load times for both the techniques. As shown in the figure,

the compiled adapter has a much lower load time when compared to the interpreted

adapter. This is expected because the interpreted adapter has to parse the specifi-

cation and build an object model at run-time. In the compiled adapter, this object

model is already in binary form and UNITE only has to load the compiled adapter

into memory.

Figure 4.5.: Load times of SETAF interpreted and compiled adapter.

Although the load times are significantly different between the compiled and inter-

preted adapters, Figure 4.6 shows that there is not much difference in total evaluation

times. This is because total evaluation time for both techniques is dominated by the

processing time (e.g., more than 96% as shown in Table 4.9). The reason for the

dominance in processing time is the number of database operations executed during

the analysis stage of UNITE.

For example, for each log format defined in the dataflow model UNITE needs to

find all the corresponding log message instances [9]. This needs to be done because

52

UNITE needs to extract values for the data points in each log format . Therefore

it needs to iterate through the system execution trace each time it finds a new log

format. This complexity is the same for both the compiled and interpreted adapter,

and reflected in Figure 4.6.

Figure 4.6.: Total evaluation time of SETAF interpreted and compiled adapter.

Table 4.9.: Process time as a percentage of total evaluation time.

Open-source
Project

Size of the trace
(KB)

Compiled
Adapter

Interpreted
Adapter

ANT 4032 99.33% 98.23%
ActiveMQ 2242 99.79% 99.41%
Tomcat 27880 99.97% 99.87%
DAnCE 576 99.36% 96.80%

Final discussion. The four case studies previously discussed three different adap-

tation patterns. The ANT and ActiveMQ case study are similar in that a unique id is

added to the two log formats. In the DAnCE case study, the new log format variables

were populated using the values extracted from previously found log format variable

values after analyzing the execution trace. In the Tomcat case study, a common

id is added to log formats. This therefore showcases the flexibility and extendibil-

ity of SETAF’s approach to support adaptation of execution traces for performance

analysis.

The performance comparison results of the two adaptation techniques show that

there is little difference between a compiled and interpreted adapter. We therefore

53

recommend that software system testers use interpreted adapters because as men-

tioned in Section 4.2.2 it is easier to use. Moreover, the interpreted adapter provides

more flexibility and usability without sacrificing the performance.

4.3.7 Threats to Validity

One major assumption in these experiments is the collected log messages correctly

show the time of occurrence of events. This means system developers must insert the

log statement temporally adjacent to the program statement that is responsible for

the particular event. If the log statement is temporally far away from the event

statement, then the analysis can give incorrect results. This form of “good practice”

is not difficult to adhere when developing software. It is therefore not a big threat

for using SETAF and UNITE for performance analysis.

Another important aspect of these experiments is that they are tightly coupled

to the generated execution trace. For example, the same system can be executed in

different modes, such as with different configuration settings and different operating

conditions depending on user requirements. In these situations, the generated execu-

tion trace may differ from mode to mode, and therefore performance analysis results

may also differ. Different executions under the same mode, however, will produce

similar results, because executions under the same mode always generates the same

execution trace but with different timestamps.

4.4 Chapter Summary

In this chapter we have described the System Execution Trace Adaptation Frame-

work (SETAF) which enables software testers do performance analysis with minimal

assumptions about the system execution trace. We first described the limitations of

UNITE, which motivated us to create SETAF. Then we described several design ap-

proaches to address those limitations and the overall design, functionality of SETAF.

When doing performance analysis using SETAF and UNITE software testers do not

54

need to have access to the source code of the system. The described technique does

not assume any structure in the log messages or certain properties such as unique

identifiers and relations in the system execution trace. We showcase the validity of

our approach by applying it to four open source software systems. Following are the

key research contribution from this research work.

• A framework for adapting dataflow models associated with the execution trace,

without changing the source code of the software system, the execution trace

or the performance analysis tool (i.e. UNITE)

• A domain specific language for software testers to write different adaptation

modules, where each adaptation module captures an adaptation pattern.

55

5 AUTO-CONSTRUCTING DATAFLOW MODELS FROM EXECUTION

TRACES

Although UNITE and SETAF can be used to analyze system execution traces using

the concept of dataflow models, defining the dataflow model is done manually. In

Chapter 1, we briefly described requirements and advantages of auto-constructing

the dataflow model with minimum user intervention. In Section 2.2, we have al-

ready discussed the related research work on constructing intermediate models from

system execution traces. This chapter first describes challenges associated with auto-

constructing dataflow models from execution traces. Then, we describe Dataflow

Model Auto Constructor (DMAC), which is a tool and technique for auto-constructing

dataflow models [65] in detail. Finally, we describe results of applying DMAC to dif-

ferent open source software systems.

5.1 Challenges Addressed by Proposed Approach

For trivial system execution traces, it is not hard to manually define a dataflow

model. This, however, is not the case for large and complex system execution traces.

In this situation, it is ideal to automatically construct a dataflow model from its

corresponding system execution trace. Based on this need, we have identified the

following challenges for automatically constructing a dataflow model:

• Challenge 1: Correctly identifying valid log formats. As mentioned in

Chapter 3 Log formats contain both static and variable parts. The variable parts

are used to define causal relations between log formats and define expressions

that evaluate a performance property. Failure to identify the correct static and

variable parts can reduce the number of possible variables available for usage

in an expression. Moreover, it can inhibit our ability to define correct and

56

complete relations in the dataflow model. It is therefore important to correctly

identify complete log formats to create a comprehensive dataflow model. As

described in Section 2.2 the current approaches for abstracting event types from

logs either (1) Depends on empirical rules [38, 40], (2) Applies frequency based

approaches, however does not provide solutions to infrequent situations [39,40]

or (3) Require source code [14].

• Challenge 2: Correctly identifying causal relations between log for-

mats. When all the events are in a single execution context (i.e., no con-

currency), we can assume causality is defined by the order of occurrences for

the events. This is because the representative log messages generated for these

events occur from a source code that is executed serially. In this case we can

generate the dataflow model based on their execution order. The difficult task,

however, is identifying cause-effect relationships between events that occur in

different execution contexts because it introduces multiple local clocks, which

may not be synchronized. Even if we assume a single clock (i.e., a global clock),

there may, or may not, be explicit relationships between events that occur in

different execution contexts. As described in Section 2.2 the current approaches

for detecting causality relationships between abstract event types are supervised

learning techniques [41], which have a higher risk of model overfitting.

• Challenge 3: Correctly identifying relationships between variables.

After identifying the log formats and relations of the dataflow model, one must

identify relations between the variables such that their values are equal for all

the instances. Similar to the previous challenges, it is important to identify

correct relations between variables to ensure correct correlation of data points.

The next section describes Dataflow Model Auto-Constructor (DMAC), which has

been created to address the above mentioned challenges.

57

5.2 Solution Approach : Dataflow Model Auto-Constructor (DMAC)

Figure 5.1 illustrates DMAC’s workflow for constructing a dataflow model from

a system execution trace. As shown in this figure, the process consists of two major

steps: (1) identifying log formats for the dataflow model of the corresponding system

execution trace; and (2) identifying causal relationships between different log formats.

Figure 5.1.: DMAC’s workflow for constructing a dataflow model.

The log format mining step (i.e. step 1) is based on frequent-sequence mining.

This section therefore gives a brief overview of frequent-sequence mining and then

describes the functionality of DMAC’s log format mining algorithm.

5.2.1 Overview of Frequent-Sequence Mining

Given a collection of sequences S and a support threshold σ ∈ (0, 1], frequent-

sequence mining locates all the sequences that are sub-sequences of at least σ × |S|
sequences. The support of a sequence t is defined as the number of sequences in S

such that t is a sub-sequence. Mathematically,

∑
δ∈S

I(t � δ) (5.1)

where � denotes a sub-sequence and I is an indicator random variable. Lastly, the

support threshold σ is called minimum support and denoted by min-sup.

58

In the context of system execution traces, we define sequences as words sepa-

rated by a delimiter (e.g., space, tab, and newline). There are several methods for

frequent-sequence mining, e.g., Generalized Sequential Pattern (GSP) [66] and Se-

quential PAttern Discovery using Equivalence classes (SPADE) [67]. DMAC uses

SPADE because of its efficiency [67].

DMAC considers all k-word sequences where k > 1, because DMAC performs

multiple levels of mining (discussed later) to select candidate sequences and remove

sub-sequences from larger ones. Moreover, most log formats have at least two words

as their static part. Considering two or more word sequences therefore is sufficient

because most single word sequences appear in two or more word sequences as sub-

sequences. Likewise, single word sequences that are not part of any higher-order

sequence should correspond to one word log formats.

Table 5.1.: An example system execution trace to illustrate the DMAC concepts.

ID Time Hostname Severity Thread Message
1 13:15:56 Host-A INFO 1 A sent message 1 at 10
2 13:16:10 Host-A INFO 1 A received message 1 at 20
3 13:16:20 Host-A INFO 1 Got the authentication for request at 30
4 13:16:30 Host-B INFO 2 B sent message 2 at 40
5 13:16:40 Host-B INFO 2 B received message 2 at 50
6 13:16:55 Host-B INFO 2 Access denied at 60
7 13:17:10 Host-C INFO 3 C sent message 3 at 70
8 13:17:21 Host-C INFO 3 C received message 3 at 80
9 13:18:35 Host-C INFO 3 Got the authentication for request at 90

To better understand how frequent-sequence mining relates to DMAC, applying

frequent-sequence mining with min-sup value of 0.33 to the log messages in Table 5.1

produces the set of sequences shown in Listing 5.1. Reducing the min-sup to 0.2 will

generate all the combinations with A,B,C,1,2,3 in addition to the set of frequent-

sequences shown in Listing 5.1.

1 sent message , sent at , message at , received message ,

2 received at, sent message at, received message at

Listing 5.1: Frequent-sequences for min-sup value of 0.33.

59

DMAC then uses the resulting frequent-sequences to identify log formats of a

system execution trace. When an event occurs multiple times during the system

execution, its corresponding log message will appear in the system execution trace

with variations in its variable parts; whereas, its static parts do not change. This

implies that the static parts have a relatively high frequency compared to its variable

parts. DMAC therefore assumes frequent-sequences correspond to words in static

parts of a log format.

Because of DMAC’s assumption, it is important to select a relevant min-sup value.

Finding the appropriate min-sup value is a challenging problem in the field of data

mining [68]. If the min-sup is set to a very low value, variable parts of a log format

will be filtered as static parts (as discussed in the example above). Likewise, if the

min-sup is set to high, then SPADE will generate a smaller set of frequent-sequences.

This can cause DMAC to miss log formats. DMAC therefore uses an iterative process

that enables it to start with a relatively high min-sup value and still identify a large

number of log formats present in the system execution trace.

5.2.2 Identifying Log Formats.

Identifying the set of log formats in a dataflow model is a challenging process. This

is because it requires differentiating static parts from variable parts, and identifying

their correct positions within the log format. For a given system execution trace,

finding the set of log formats is a two step process. In the first step, DMAC uses a user-

provided min-sup value. This step is similar to the process described in Section 5.2.1.

The next step is constructing the log formats from the identified frequent-sequences.

Based on the assumption described in Section 5.2.1 where frequent-sequences are can-

didate static parts of the log formats, DMAC uses the frequent-sequences to identify

the variable parts of a log format. More specifically, DMAC uses the following sets

to assist with constructing valid log formats from identified frequent-sequences:

60

• Frequent-sequences (F). The set F is the frequent-sequences generated by

SPADE for a given min-sup value. For example, Listing 5.1 is the set F for

Table 5.1 with min-sup value of 0.33.

• Maximal-sequences (M). The set M is the maximal-sequences for F . A set

of frequent-sequences is called maximal if it is not a subset of any other set of

frequent-sequences. For example, Listing 5.2 shows the set M for Listing 5.1.

Maximal sequences are important because a maximal sequence contains all the

static parts for its corresponding log format.

1 sent message at

2 received message at

Listing 5.2: Maximal-sequence set for Listing 5.1.

• Position vector (p). The position vector p is an integer vector that tracks

the position numbers of words in a maximal sequence (i.e., ith word of the log

message) that appears in an actual log message. A position vector is always

associated with a maximal sequence m ∈ M . Each value in p represents the

position of the corresponding word of its associated maximal sequence m when

m appears in a log message. There can also be different position numbers for

m in different log messages. Listing 5.3 shows the position vector for M in

Listing 5.2. We denote the set of all position vectors associated with a maximal

sequence m as pm.

1 sent message at - (2, 3, 5)

2 received message at - (2, 3, 5)

Listing 5.3: Position vectors for the maximal sequences in Listing 5.2

DMAC first uses SPADE to construct the set F . DMAC then executes the fol-

lowing steps to construct log formats for a system execution trace:

61

1. For the set F , DMAC first generates the set M .

2. ∀m ∈ M , DMAC calculates the set of position vectors pm. DMAC does this

by checking if m is a sub-sequence of any log message in the system execution

trace. If it is a sub-sequence of a log message and p /∈ pm, then a new position

vector p is created and added to the set pm. When a new p is added to pm,

the size of the log message is also recorded. This is used to construct the log

formats as explained next.

3. ∀m ∈M , log formats are created for each member of pm. As shown in Figure 5.2,

a dummy log format is first created for the message where each word in the

dummy log format is initialized with an empty placeholder ({}). The number

of words in the dummy log format is equal to the number of words recorded in

previous step. Likewise, the position vector contains the positions of the static

parts and the actual words for the static parts are contained in m. Placeholders

that have not been replaced with actual words at the end of this process are

assumed to be the log format’s variable parts.

A B C D

1 3 4 6

1 3 4 5

Message Size

A {} B C {} D

A {} B C D {} {}
7

6

Figure 5.2.: Log format construction from a maximal-sequence.

Algorithm 1 highlights the steps discussed above. During the first iteration,

DMAC uses SPADE to mine the system execution trace. The identified frequent-

sequences are used to construct candidate log formats. The candidate log formats are

used to prune the current system execution trace—generating a new one (line 15).

The new system execution trace is then used in the next iteration. This process con-

tinues until a satisfiable coverage percentage (i.e., a measure of the number of log

62

Algorithm 1 Algorithm for constructing log formats from system execution traces.

1: procedure FindLogFormats(D,R, σ)
2: D: The system execution trace (Initial system execution trace)
3: R: Required coverage
4: σ: Initial min-sup
5: L: Final log formats
6: |D|: Number of messages in D
7:

8: d← D,L← ∅, C ← 0
9: i← 1, μ← σ
10:

11: while C ≤ R or i ≤MaxIterations do
12: μ← σ × 1

i
× |D|

|d|
13: F ←MineSequences(d, μ)
14: l ← FindLogFormats(d, F)
15: d← CreateNextSystemExecutionTrace(d, l)
16: L← L ∪ l
17: C ← C + CalculateCoverage(d, l,D)
18: i← i+ 1
19: end while
20: return L
21: end procedure

63

messages covered by the identified log formats) is met or a predetermined number of

iterations is exceeded.

For example using the frequent-sequences in Listing 5.1, DMAC identifies the log

formats shown in the Listing 5.4 where empty placeholders ({}) represent variable

parts.

1 LF1 - {} sent message {} at {}

2 LF2 - {} received message {} at {}

Listing 5.4: Log formats for the first iteration.

This set of log formats is now used to prune the original system execution trace

in Table 5.1 and create the new system execution trace shown in Listing 5.5.

1 Got the authentication for request at 30

2 Access denied at 60

3 Got the authentication for request at 90

Listing 5.5: Example trace for iteration 2.

One challenge in the iterative process is calculating the min-sup value for the

upcoming iteration. DMAC addresses this challenge by dividing the initial min-sup

value by the current iteration number and scaling it to a higher value by multiplying

it from the ratio of the sizes of the original system execution trace to the pruned one

(line 12). This guarantees that mining process starts from a relatively higher min-sup

value in each iteration.

In the example, DMAC applies frequent-sequence mining withmin-sup 0.49 (0.33×
1
2
× 9

3
) to the system execution trace in Listing 5.5 for its second iteration. This pro-

duces the frequent-sequences in Listing 5.6.

1 Got the , Got authentication , Got for , Got at ,

2 the authentication , the for ,

64

3 the at , authentication for , authentication at , for at ,

4 Got the authentication , Got the for , Got the at ,

5 Got authentication for , Got authentication at , Got for at ,

6 Got the authentication for , Got the authentication at ,

7 Got the for at , Got the authentication for at ,

8 Got authentication for at , the authentication for ,

9 the authentication at , the for at , the authentication for at ,

10 authentication for at

Listing 5.6: Frequent sequences for the iteration 2.

If the new min-sup exceeds 1 it sets it to 1 for the mining process. If it cannot find any

new frequent sequences in any iteration the min-sup is decreased and mining process

continues. When DMAC applies to the frequent-sequences of the system execution

trace in Listing 5.5, it identifies the log format in Listing 5.7.

1 LF3 - Got the authentication for request at {}

Listing 5.7: Resulting log formats from iteration 2.

Again, the log format in Listing 5.7 is used to prune the current system execution

trace, which creates the new system execution trace shown in Listing 5.8.

1 Access denied at 60

Listing 5.8: Example trace after iteration 3.

Finally, another iteration of mining with min-sup value of 1 (Using the equation in

the algorithm) is applied to the latest system execution trace. This process results in

the log format shown in Listing 5.9.

1 LF4 - Access denied at 60

Listing 5.9: Resulting log formats from iteration 3.

65

DMAC’s iterative process has two advantages over using a single iteration with a

lower min-sup value. First, it reduces the possibility of variable parts being selected

as static parts in the final set of log formats. This is because starting with a higher

min-sup value and pruning log messages after each iteration guarantees that lower

min-sup values are used on a smaller system execution traces. On the other hand, if

DMAC uses a single, lowmin-sup value, then DMAC runs the risk of selecting variable

parts as static parts. This issue is reflected in Nagappan et al. [39] approach when we

integrated it into DMAC for identifying log formats. Secondly, it enables achieving a

high coverage. This is because the iterative mining process increases coverage after

each iteration since infrequent sequences in an iteration become frequent in successive

iterations.

5.2.3 Mining Causal Relationships.

The end goal of mining causal relationships is to find the cause-effect graph from

a given set of log formats. Given a pair of log formats (LFi → LFj), they can either

occur in the same execution context or in two different execution contexts. Because

of this DMAC employs a two step process when mining causal relationships.

Step 1. In the first step, DMAC identifies causal relationships among log formats

that occur in the same execution context using the algorithm shown in Algorithm 2.

The steps in Algorithm 2 can be summarized as follows:

1. For each execution context, all its log messages are compared with the identified

log formats to produce an execution order, such as <LF1, LF2, LF3, LF1,

..., LF3>. DMAC only analyzes adjacent log format pairs in the execution

order because it is possible to order events using transitivity. For example, if

(LF1 → LF2) and (LF2 → LF3) are valid relations, then (LF1 → LF3) is a

valid relation.

2. For each adjacent log format pair in the execution order (i.e., OLi and OLi+1)

the earliest position of OLi in the execution order should always be less than

66

Algorithm 2 Algorithm for mining causal relationships in a single execution context.

1: procedure MineCausalOne(D,G,LF,E)
2: D: The system execution trace (Initial system execution trace)
3: G: Directed Acyclic Graph
4: LF : Final log formats
5: E: Current Execution Context
6: OL: Execution Order
7:

8: OL← CreateLogFormatOrderList(E,LF,D)
9:

10: for all (OLi, OLi+1) ∈ OL do
11: m← FirstPositionOf(OLi)
12: n← FirstPositionOf(OLi+1)
13: if m ≤ n then
14: ExtendGraph(OLi, OLi+1, G)
15: end if
16: end for
17: end procedure

67

the earliest position of OLi+1 to be considered a valid relation. This ensures no

cycles exist and directed acyclic graph properties are not violated.

3. Finally, the ExtendGraph function in line 14 adds the log format pair to the

graph if they are not already in the graph and do not have an edge between

them.

To provide a better understanding of the steps above, let us reconsider the system

execution trace from Table 5.1. For this example, we assume that they are generated

from the same execution context. This system execution trace produces an execution

order similar to the following:

< LF1, LF2, LF3, LF1, LF2, LF4, LF1, LF2, LF3 >

In this case, DMAC will identify (LF1 → LF2), (LF2 → LF3), (LF2 → LF4) as valid

relations. DMAC, however, will not identify (LF3 → LF1) and (LF4 → LF1) as valid

relations because it forms a cycle.

Step 2. In the second step, DMAC identifies causal relationships among log

formats that occur in different execution context. This, however, is a challenge when

compared to Step 1 because any two events that happen in different execution contexts

can have a causal relationship between each other [69]. This implies that there is a

level of uncertainty associated with causal relationships between events that occur in

different execution contexts.

To address this challenge, DMAC uses a probabilistic approach since probabilistic

frameworks are most suited for causality mining [70]. More specifically, DMAC uses

Dempster-Shafer (DS) theory [71], which is is a mathematical theory of evidence,

to mine causal relationships for log formats that occur in different execution con-

texts. The advantage of using Dempster-Shafer theory instead of Bayesian decision

model [41] is that it does not rely on a trained model of some prior known relation-

ships. Instead DS theory increases the belief on a particular decision depending on

the evidences it has collected.

The Section 5.2.3.1 provides a brief overview on Dempster-Shafer (DS) theory.

68

5.2.3.1 A Brief Overview on Dempster-Shafer (DS) Theory

In DS theory, a set of mutually exclusive and exhaustive set of hypothesis, Θ =

{h1,, hk}, are referred to as Frame of Discernment (FoD). A hypothesis hi is re-

ferred to as a singleton. The basic belief assignment, (bba) function, also called the

mass distribution function m, distributes belief over the power set of the FoD and is

defined as follows:

m : 2θ → [0, 1] (5.2)

∀x ⊆ Θ,m(x) ≥ 0 (5.3)

m(∅) = 0 (5.4)

and ∑
x⊆Θ

m(x) = 1 (5.5)

The belief function is defined as

∀x ⊆ Θ, Bel(x) =
∑
y⊆x

m(x) (5.6)

Bel(∅) = 0 (5.7)

and

Bel(Θ) = 1 (5.8)

The belief function is a measure of how much confidence we have for a certain

hypothesis to be true, whereas the bba specifies the weight (mass) of a particular

evidence source has to support a given hypothesis. Note that Bel(x) = m(x), if x is

a singleton.

69

Because there can be many sources of evidences for a particular proposition DS

theory provides Dempster’s rule to combine the evidences. Let’s say h1 and h2 are

two propositions and h is the resulting proposition of intersecting h1 and h2.

m(h) ≡ (m1 ⊕m2)(h) =

∑
h1∩h2=h m1(h1).m2(h2)

1−K
(5.9)

K =
∑

h1∩h2=∅
m1(h1).m2(h2) (5.10)

is referred to as the conflict because it indicates how much the evidences of the two

sources are in conflict.

Now we describe how we have used DS theory in the context of mining causal

relationships among log formats. The Frame of Discernment (FoD i.e. the set

of mutually exclusive hypothesis) in mining causal relations is {(LFi → LFj) =

Y es, (LFi → LFj) = No}. We define evidence m((LFi → LFj) = Y es) for sup-

porting the relationship according to a particular source of evidence, and evidence

m((LFi → LFj) = No) for disqualifying the causal relation according to a particular

evidence source. m((LFi → LFj) = Y es, (LFi → LFj) = No) is the measure of uncer-

tainty, or the ignorance, that a particular evidence source has about the relation. Un-

like traditional probability theory ifm((LFi → LFj) = Y es) = p, then it does not nec-

essarily mean thatm((LFi → LFj) = No) = 1−p. This is because sources of evidence

only support {(LFi → LFj) = Y es} and its ignorance about {(LFi → LFj) = No}
should be assigned to {(LFi → LFj) = Y es, (LFi → LFj) = No}.

We define the belief function as Bel((LFi → LFj) = Y es) in causal relation

mining. It denotes the confidence we have to support the causal relation between

LFi and LFj after combining evidence values from different evidence sources. DMAC

uses the Dempster’s rule to combine evidences and to handle conflicting evidences.

Algorithm 3 illustrates the major steps DMAC uses to apply DS theory.

As shown above, DMAC first verifies if the two log formats occur in different

execution contexts (line 9). DMAC then checks if the corresponding nodes for these

70

Algorithm 3 Algorithm for mining causal relationships between log formats in dif-
ferent execution entities.

1: procedure MineCausalTwo(G,LF,EL, λ)
2: G: Directed Acyclic Graph
3: LF : Final log formats
4: E: Execution Context List
5: λ: Belief Threshold
6: B: Belief value
7:

8: for all LFi, LFj do
9: if HasCommonEE(LFi, LFj, E) then
10: Continue
11: end if
12: if AreReachable(LFi, LFj, G) then
13: Continue
14: end if
15: B ← CalculateBelief(LFi, LFj)
16: if B ≥ λ then
17: ExtendGraph(LFi, LFj, G)
18: end if
19: end for
20: end procedure

71

log formats in the current graph are reachable from each other (line 12). This is

necessary because it implies a transitive relationship.

Lastly, DMAC evaluates evidence from different sources and combines it using

Dempster’s rule to associate a single belief value b ∈ [0, 1] to any log format pair

(line 15). The belief value is a measure of confidence about the causal relation between

the two log formats. Currently, DMAC uses the following three evidence sources to

calculate the belief value of a particular causal relation LFi → LFj:

1. Time evidence. Time evidence is based on the observation that two events

can be causally related if they occur within a certain time window [41]. To

calculate the time evidence value, DMAC first checks whether there is at least

one LFj log message occurs within the time window for each LFi log message,

and calculates a ratio of identified LFj to the number of LFi log messages.

The ratio is then multiplied by a weight based on the ratio between actual time

difference between the two events and the time window, that reflects how “easy”

for two events satisfy the time window requirement. For example, the closer

the time difference is to 0, the closer the weight is to 1.

Time evidence only assigns a bba to the {(LFi → LFj) = Y es} hypothesis.

Failing to satisfy the timing window does not necessarily mean {(LFi → LFj) =

No}. DMAC therefore assigns 1 − p value to the hypothesis {(LFi → LFj) =

Y es, (LFi → LFj) = No} Lastly, when calculating the time evidence for any

candidate causal relation {(LFi → LFj) = Y es}, we assume that clocks in the

different execution contexts are synchronized. If there is high clock drift between

the different execution contexts, then we decrease the calculated evidence value

by multiplying it with a weight that decreases the confidence about this event

source.

2. Variable evidence. Variable evidence is based on the observation that LFi →
LFj can be true if they both have variable parts that match across many oc-

currences of the log messages. Based on this observation DMAC calculates the

72

bba for the hypothesis {(LFi → LFj) = Y es} using the approach presented in

Algorithm 4.

Algorithm 4 Algorithm for calculating Variable evidence.

1: procedure CalculateVarEvidence(LFi, LFj)
2: LFi: Candidate Cause log format
3: LFj: Candidate Effect log format
4: Vi: Set of variable values of LFi

5: Vj: Set of variable values of LFj

6: M : Map of {(vm, vn), c}
7: vm ∈ Vi, vn ∈ Vj

8: c: Count of each matching (vm, vn)
9:

10: for all LFimessages do
11: for all LFjmessages do
12: for all (vm, vn) do
13: if vm = vn then
14: increment corresponding c in M
15: end if
16: end for
17: end for
18: end for
19: S ←Max(c)
20: n← |LFi|
21: return S

n

22: end procedure

As shown in this algorithm, if LFi has m variables and LFj has n variables,

then for any two messages it requires m × n comparisons. The comparison of

variables can be computationally expensive, but most log formats do not have

more than 4 variable. Within them×n iterations, the algorithm checks whether

the values of the two variables are equal (line 13). If the variable values are

equal, then the algorithm increments the counter that tracks the number of

instances satisfying the variable relation candidate in line 13. After iterating

over all the variable parts, the algorithm outputs portions of the messages that

satisfy the log format variable relationship. Lastly, the algorithm calculates the

73

bba for {(LFi → LFj) = Y es} hypothesis using the maximum count of the

m× n variable relation candidates (line 19).

3. Domain-specific evidence. The two evidence sources previously discussed

are common across all system execution traces. There can be cases when time

and variable evidence is not enough to construct a valid dataflow model. When

this situation occurs, we rely on domain-knowledge to integrate domain-specific

evidences (i.e., the evidence that pertains only to the dataflow model and corre-

sponding system execution trace). Because of the need to incorporate domain-

knowledge into DMAC, we have created a framework that allows testers to inte-

grate their own domain-knowledge about the system execution trace as another

evidence source. Figure 5.3 shows the general architecture for how domain-

Figure 5.3.: Combing evidences for causal relation mining process.

specific evidence is integrated into DMAC. As shown in this figure, the user can

specify domain-specific evidence at the DMAC-level, or the user-level, which

is converted to DMAC-level evidences. At the user-level, the tester specifies

knowledge about causal relationships between log messages using a natural lan-

guage and associates a quantitative value between 0 and 1 with each piece of

74

knowledge. For example, (“send” → “receive”, 0.6) means that corresponding

log formats that match log messages with either “send” or “receive” are causally

related with 0.6 certainty. At the DMAC-level, the tester specifies knowledge

about causal relationships between log formats. For example, (LFi → LFj, 0.6)

means that LFi causes LFj with 0.6 certainty.

DMAC then uses the DMAC-level domain-specific evidence—along with the

time and variable evidence—to auto-construct the dataflow model. It is worth

noting that domain-specific evidence is not required for DMAC to work cor-

rectly. It, however, is useful to incorporate domain-specific evidence if the time

and variable evidences are not producing an accurate dataflow model. Sec-

tion 5.3 discusses results related to this observation.

5.2.4 Identifying Causal Relationships among Variables.

The final part of constructing the dataflow model is identifying relationships be-

tween variable parts of different log formats. For each log format variable, DMAC

keeps all the values extracted from its corresponding log messages. This is called the

value set. When a valid relation is identified, the value sets are compared using an

algorithm similar to the one shown in Algorithm 4. This happens during the causality

mining process between log formats described above.

Finally, using information gathered from the multiple mining phases described

above, DMAC generates a dataflow model for the entire system.

5.3 Results of Applying DMAC to Open-Source Projects

This section discusses experimental results from applying DMAC to several open-

source projects, and the accuracy of its constructed dataflow models.

75

5.3.1 Experimental Setup

Similar to the case studies described in Section 4.3 We applied DMAC to the

system execution traces generated by Apache ANT, Apache Tomcat, Apache Ac-

tiveMQ and DAnCE. We first manually constructed their dataflow model after going

through the system execution trace and the source code. We therefore have “ground

truth” for these projects’ dataflow models. Another reason is that these projects

have diverse system execution traces—giving DMAC a range of case studies. For ex-

ample, Apache Tomcat’s system execution trace is dense compared to Apache ANT,

Apache ActiveMQ, and DAnCE. DAnCE’s system execution trace, however, has less

reoccurring patterns compared to ANT and ActiveMQ.

5.3.2 Experimental Results for Execution Traces without Domain-specific Evidence

5.3.2.1 Experimental Results for ANT

ANT’s system execution trace used in this experiment contained 8100 log mes-

sages. We used an initial min-sup value of 0.8. As shown in Listing 5.10, DMAC

identified 7 log formats, which cover 94.85% of total system execution trace. DMAC

was able to correctly identify the static and variable parts in all 7 log formats. DMAC

identified LF3 although it has occurred only once in the system execution trace. This

is because its corresponding candidate sequence is same as that of LF2, which occurs

frequently. Because of the difference in position vectors, DMAC was able to distin-

guish between the two different log formats. We did not use domain-specific evidence

for ANT’s system execution trace because it has only one execution context. DMAC

identified 12 relations as shown in Listing 5.10. One of the identified relations has

a cause-effect relationship between its variables (i.e., LF4.1 = LF5.1). This means

that variable 1 in LF4 has a cause-effect relationship with variable 1 in LF5.

76

1 LF1 = {} skipped - don ’t know how to handle it {}

2 LF2 = {} omitted as {} is up to date. {}

3 LF3 = omitted as {} is up to date. {}

4 LF4 = Task {} started. {}

5 LF5 = Task {} finished. {}

6 LF6 = adding directory {} {}

7 LF7 = adding entry {} {}

8

9 LF1 ->LF2; LF1 ->LF6; LF1 ->LF7; LF2 ->LF6; LF2 ->LF7;

10 LF2 ->LF3; LF4 ->LF5; LF4 ->LF1;LF4 ->LF2; LF4 ->LF7;

11 LF4 ->LF6; LF6 ->LF7

12

13 LF4.1 = LF5.1

14

15 Total Records = 8100

16 LF1 - Count = 1783; Percent = 22.0123%

17 LF2 - Count = 3488; Percent = 43.0617%

18 LF3 - Count = 1; Percent = 0.0123457%

19 LF4 - Count = 159; Percent = 1.96296%

20 LF5 - Count = 158; Percent = 1.95062%

21 LF6 - Count = 294; Percent = 3.62963%

22 LF7 - Count = 1800; Percent = 22.2222%

23 Total coverage : 94.8518%

Listing 5.10: Results for applying DMAC to ANT’s system execution trace.

ANT’s dataflow model constructed by DMAC is useful for analyzing its perfor-

mance properties. For example, LF4 and LF5 can be used to evaluate the execution

time of different ANT tasks, which we have explained in Section 4.3.2.

77

5.3.2.2 Experimental Results for ActiveMQ

ActiveMQ’s system execution trace contained 3650 log messages. Although Ac-

tiveMQ’s system execution trace contained fewer messages than ANT, it contained

more log formats. DMAC’s frequent-sequence mining step produced few sequences for

relatively high min-sup value. For example, an initial min-sup of 0.16 generated only

2 frequent-sequences; whereas min-sup of 0.03 produced 6000 frequent-sequences.

In the latter case, executing DMAC for one iteration produced a dataflow model

with 12 log formats and 50.96% coverage. DMAC’s iterative mining-process improved

when starting from a min-sup of 0.16 by producing a dataflow model with 80.23%

coverage. This dataflow model contained of 21 log formats and 31 relations.

5.3.2.3 Experimental Results for Apache Tomcat

Tomcat’s system execution trace contained 101700 log messages produced by six

different threads. We started DMAC with an initial min-sup value of 0.05. After

7 iterations, DMAC identified 89 log formats that covered 61.95% of the system

execution trace. DMAC also identified 318 relations. We stopped DMAC after 7

iterations because after 7 iterations DMAC started identifying variable parts of the log

messages as static parts. Finally, we validated that the dataflow model constructed by

DMAC could analyze the same performance properties of Tomcat that were analyzed

using a manually constructed dataflow model in prior work [72].

5.3.2.4 Measuring the Auto-constructed Dataflow Model’s Accuracy

For ANT, ActiveMQ, and Tomcat, we were able to use the constructed dataflow

model to analyze performance properties that were analyzed using a manually con-

structed dataflow model. Although the auto-constructed dataflow models were cor-

78

rect, we need to validate the accuracy of its log formats and relations in relation to

the original source code.

We evaluated the accuracy of a log format with respect to (w.r.t.) its counterpart

in the original source by comparing the static and variable parts of the log format

correspond with static and variable parts in the originating log message from source

code. We also evaluated the accuracy of a log format with respect to the system

execution trace by evaluating that (1) the static part of a log format is constant in

all corresponding log messages; and (2) the empty placeholder ({}) corresponds to at

least two possible values in all the corresponding log message instances in the system

execution trace.

Table 5.2 shows the accuracy results for the Apache, ANT, and ActiveMQ results

previously discussed. Most of the inaccuracy presented in Table 5.2 is because variable

parts were identified as static parts. This has a direct relationship with the structure

of the system execution trace. For example, ANT’s system execution trace is very

succinct; whereas, ActiveMQ and Tomcat’s system execution trace is verbose.

Table 5.2.: Accuracy of auto-constructed log formats.

Item ANT ActiveMQ Tomcat
of identified log for-
mats

7 21 89

of identified log for-
mats checked for cor-
rectness

7 21 25

LFs correct w.r.t.
source

7 14 18

LFs correct w.r.t. exe-
cution trace

6 15 20

source code accuracy 100% 66.7% 72%
execution trace accu-
racy

85.7% 71.4% 80%

We evaluated the dataflow model’s relation accuracy similar to how we evaluated

the log format’s accuracy. More specifically, we evaluated (LFi → LFj) accuracy

by comparing whether they actually occur in the original source code. When the

relation is from the same execution context we check whether the two log formats

are generated from adjacent log statements in the source code. When the relations

79

are in different execution contexts we check whether the two log statements represent

initiation or completion of a remote procedure call in the source code.

We were able to conclude that the identified relations are 100% accurate when

the log formats are from the same execution context. The next section describes

an experiment that was conducted to evaluate relation accuracy when the two log

formats are from different execution contexts.

5.3.3 Experimental Results for Execution Traces with Domain-specific Evidence

The DAnCE system execution trace was small compared to that of Tomcat, ANT

and ActiveMQ. Most of the words in the DAnCE’s log messages that describe an

event have a low frequency value. Furthermore, the frequency values of log message

metadata, e.g., log message severity, was greater than the frequency values for actual

log message content. DMAC therefore interprets the metadata as static parts and

the remaining content of the actual message as variable parts.

1 [LM_TRACE] - - plan , [LM_TRACE] - - for ,

2 [LM_TRACE] - - instance , [LM_TRACE] - - plugin ,

3 - - artifact ,[LM_TRACE] - - from , [LM_TRACE],

4 - - installation , [LM_TRACE] - - successfully ,

5 [LM_TRACE], - - to, - - handler

Listing 5.11: Frequent sequences for DAnCE’s system execution trace.

For example, Listing 5.11 shows frequent-sequences identified by DMAC when the

intermediate min-sup is 0.17. These candidate sequences are not sufficient to build

a log format. Because of this, DMAC considers remaining parts of the log format

as variable parts. Listing 5.12 shows some of the log formats identified by DMAC

for DAnCE. From this experiment, we concluded that DMAC does not work well

with this system execution trace because it does not have a high frequency value for

the words that describe an event when compared to other parts of the log message.

80

Moreover, it is harder to construct DAnCE’s dataflow model since many of the log

formats occur in different execution contexts—unlike our previous experiments.

1 LF1 = {} [LM_TRACE] - {} - {} {} {} - {} {} {}

2 for name {}

3 LF2 = {} [LM_TRACE] - {} - {} - {} {} {}

4 for name {}

5 LF3 = {} [LM_TRACE] - {} - {} - {} {}

6 for name {} {} {} {}

7 LF4 = {} [LM_TRACE] - {} - {} {} {} - {} {}

8 for name {} {} {} {}

Listing 5.12: Some of the log formats identified by DMAC for DAnCE’s system

execution trace.

Because we were not able to auto-construct a valid dataflow model from DAnCE

using only time and variable evidence, we added domain-specific evidence to the auto-

construction process. Based on our domain-knowledge of DAnCE, we defined domain-

specific evidence at the DMAC-level such that we specified a uniform bba value for

each causal relation between log formats. More specifically, if our confidence about

the domain knowledge is 0.8, then we assigned a bba value of 0.8 for each relation

LFi → LFj, i.e., ({(LFi → LFj) = Y ES}, 0.8). Likewise, we assigned a bba value

of 0.8 for the hypothesis {(LFi → LFk) = NO} for any relation we knew could not

occur in the dataflow model.

We then used DMAC with the added domain-specific evidence to auto-construct

the dataflow model for DAnCE. Because the domain-specific evidence is designed to

produce more accurate results, we evaluated the effect of domain-specific evidence on

affecting true-positives (TP) and false-positives (FP) in the auto-construction process.

Figure 5.4 shows the effect that the confidence level of domain-specific evidence has

on TPs and FPs. As shown in this figure, as we increase our confidence level, the

number of TPs increases and the number of FPs decrease. Likewise, when we reduce

81

Figure 5.4.: Effect on domain-knowledge on TPs and FPs in the dataflow model
auto-construction process.

82

our confidence level, the opposite occurs. For example, when the confidence level is 1

(i.e., the tester has complete knowledge and confidence), then DMAC produces the

most accurate results. Likewise, a confidence level of 0 produces results similar only

using time and variable evidence in the auto-construction process.

The DAnCE results show two evidences (i.e., time and variable) are not always

enough to correctly auto-construct a dataflow model. In some cases, it may be nec-

essary to integrate domain-specific evidence. As illustrated in the DAnCE results,

DMAC is able to successfully integrate domain-specific evidence into the dataflow

model auto-construction process. It is therefore the responsibility of the tester to

identify the domain-specific evidence and quantify it correctly to reduce the number

of FPs.

5.4 Summary of Contributions

In this chapter we presented the Dataflow Model Auto Constructor (DMAC),

which is a tool and technique to auto-construct dataflow models from system ex-

ecution traces. The auto-constructed dataflow models can be used to do software

performance analysis and to reason about software performance results. The follow-

ing are the key contributions of DMAC:

• A frequent-sequence mining based iterative algorithm to identify abstract event

types from execution trace data

• An evidence theory based causality relationship mining algorithm, which can be

used to identify causal relationships between abstract event types of the system

execution trace.

83

6 DETECTING EXCESSIVE DYNAMIC MEMORY ALLOCATIONS

ANTI-PATTERN USING SYSTEM EXECUTION TRACES

In Chapter 1 we described the importance of detecting excessive dynamic memory

allocations anti-pattern. In Section 2.3 of Chapter 2, we have already discussed

the related research on detecting dynamic memory allocations anti-pattern. This

chapter first describes challenges associated with detecting excessive dynamic memory

allocations anti-pattern. Then, we describe Excessive Dynamic Memory Allocations

Detector (EMAD), which is our novel contribution for detecting excessive dynamic

memory allocations anti-pattern with minimal user intervention. Finally, we describe

results of applying EMAD to different open source software systems.

6.1 Challenges Addressed by Proposed Approach

Excessive dynamic memory allocation is a common problem known to degrade

the performance of a software system. Because of this reason, many popular software

systems and libraries adopt solutions that amortize the cost of allocating/deleting

memory, such as allocating memory from memory pools (custom memory allocators)

or free lists [73]. Another solution is to use the Flyweight software design pattern [74].

Although these promising solutions are available, it is hard to apply them if one can-

not detect the excessive dynamic memory allocation anti-pattern. Unfortunately,

detecting the excessive dynamic memory allocation anti-pattern poses several chal-

lenges:

1. Inapplicability of source code analysis techniques. As mentioned in

Section 1, the prominent approach for detecting a software performance anti-

pattern is source code analysis. Understanding dynamic memory allocations by

just analyzing the source code, however, is hard. This is because key information

84

like frequency of object allocation, the size of the object being allocated, and

the lifetime of an object are hard to determine at compile time. Moreover, such

analysis requires time-consuming code analysis involving experts of complex

software systems [75].

Another limitation of this approach is that it requires source code to be avail-

able. Nowadays, most software systems are built using off the shelf software

components and libraries. It is therefore ill-conceived to assume that source

code is available for analysis at every situation. Even if the source code is avail-

able (as with open-source projects), one must still be able to understand the

source code (and its intent) in order to search for excessive dynamic memory

allocations.

2. Limitations of software performance anti-pattern detection techniques

based on architectural models. Another approach for detecting software

performance anti-patterns is defining rules on performance metric data (e.g.,

response time and throughput) and/or resource usage data (e.g., CPU and

network usage) and then detecting rule violations [24, 25, 34]. These rules are

defined on architectural models of the system and rule violations are analyzed

by simulating the architectural models. Excessive dynamic memory alloca-

tion, however, happens at software implementation level. This makes it hard

to model the minute details of an implementation, and detect the excessive

dynamic memory allocation anti-pattern [34].

On the other hand, resource usage data (e.g., high memory footprint) is not

a direct indicator of excessive dynamic memory allocations. This is because a

function can do a large allocation at once and then use it subsequently through-

out the application lifetime. This is all while not doing any frequent allocations.

3. Ill definition of excessive dynamic memory allocation problem. The

problem of detecting excessive dynamic memory allocations is ill defined com-

pared to other dynamic memory associated problems like memory leak detection

85

and invalid memory access detection. For example, memory leak detection can

be defined as finding dynamic memory allocations that are no longer accessible

to the program [76]. Likewise, memory access errors can be defined as detecting

invalid reads/writes from/to memory locations.

1 struct Foo {

2 int x;

3 };

4

5 int main (int argc , char * argv []) {

6 Foo * foo = new Foo ();

7

8 // Do someting with foo

9 // ...

10

11 return 0;

12 }

Listing 6.1: A simple program that has a potential memory leak.

For example, Lisiting 6.1 illustrates a simple program that has a potential mem-

ory leak. As shown in the program, we can conclude that a memory leak exists

by examining whether the object foo is, or is not, released when the main func-

tion returns. Although this examination process can be complex, the problem

of detecting the memory leak is well defined.

1 struct Foo {

2 int x;

3 };

4

5 int main (int argc , char * argv []) {

86

6 for (int i = 0; i < 1000000; i ++) {

7 Foo * foo = new Foo ();

8

9 // Do something with foo

10 // ...

11

12 delete foo;

13 }

14

15 return 0;

16 }

Listing 6.2: A simple program that has a potential excessive dynamic memory

allocation.

Excessive dynamic memory allocations, however, cannot be defined in such a

precise manner. The word “excessive” depends heavily on the context of the

allocation. For example, Listing 6.2 illustrates a simple program that has a po-

tential excessive dynamic memory allocation issue because of the high frequency

at which foo is being created and deleted. It, however, is hard to determine

whether this simple example exhibits excessive dynamic memory allocations by

only examining the number of times object foo is being created and deleted.

This is because excessive dynamic memory allocation is not only based on how

many allocations/deallocations occur, but also on the lifetime of those allocated

objects.

As discussed above, these challenges make it hard to create automated approaches

for detecting excessive dynamic memory allocation anti-pattern. The reminder of this

chapter will therefore discuss how EMAD helps address these challenges–providing

software developers with an improved approach to detect the excessive dynamic mem-

ory allocation anti-pattern. This will allow software developers to detect and resolve

87

the anti-pattern problem faster and improve the performance of their software appli-

cation.

6.2 The Approach of EMAD

Our approach for detecting the excessive dynamic memory allocations anti-pattern

is supported by Dynamic Binary Instrumentation (DBI). DBI [5,77] is the process of

instrumenting a software application at runtime as opposed to recompiling the soft-

ware application with the instrumentation software. DBI does not require the source

code of the system being instrumented because instrumentation logic is injected into

the target application while the program’s binary is executing. By using DBI, we are

able to create an approach that overcomes the challenge of needing the source code to

detect the existence of excessive memory allocation. Moreover, DBI allows us to trace

an application and therefore capture its behavior, which is one of the main weaknesses

in most of the exisiting software performance anti-pattern detection techniques. The

bigger challenge now is understanding how to apply DBI to actually detect excessive

dynamic memory allocations in an existing application, or middleware. Our proposed

technique is based on the intuition that this anti-pattern occurs when the software

applications have many short-lived high-frequent dynamic memory allocations.

Figure 6.1 illustrates EMAD’s workflow for detecting the excessive dynamic mem-

ory allocations anti-pattern. As shown in the figure, the process consists of 3 major

steps: (1) instrumenting the software application using DBI to collect an execution

trace; (2) constructing a call graph of the software from the collected execution trace;

and (3) analyzing the call graph to detect excessive dynamic memory allocations. We

discuss each step in detail throughout the remainder of this section.

6.2.1 Instrumenting the Software Application

EMAD uses Pin [5] along with Pin++ [78] as the underlying DBI framework to

instrument an application and collect the needed execution trace. Sidebar 1 provides

88

Figure 6.1.: Conceptual overview of EMAD’s workflow.

89

a brief overview on Pin and Pin++. EMAD uses Pin++ to implement a Pintool that

instruments a program at routine level. The Pintool instruments1 each routine call at

start (i.e., invocation) and at exit (i.e., return to caller). The Pintool then generates

an execution trace during the execution of the application that has messages similar

to the one shown in Figure 6.2.

Figure 6.2.: Format of a message in the execution trace

As illustrated in this figure, EMAD records the following information for each

instrumented routine:

• Thread id. The thread id is a unique identifier of the thread calling the routine

under analysis. This is important because the caller-callee relationships between

routines are determined on a per thread basis when constructing the call graph.

The thread id therefore is used to uniquely identify the thread.

• Routine id. The routine id is a unique id of the routine assigned by Pin. This

piece of information is important because the routine name is not unique if the

same routine is in different image or if it is overloaded in the same class. This

allows EMAD to uniquely identify each routine it instruments.

• Event name. The event name represents the type of event that is occurring.

For EMAD, the event name is either start or exit. Start represents the beginning

of a routine call and exit represents the return of a routine call. This piece of

information is important because it determines what subprocedures (i.e., the

1By instrument, we mean insert hooks to call analysis routine at point of insertion.

90

Sidebar 1: Pin and Pin++

Pin is a DBI tool for IA-32 and X86-64 instruction-set architecture. Pin provides

a framework to implement analysis tools called Pintools. Pintools can be imple-

mented to analyze several aspects of programs, such as program faults, program

behavior, root causes, performance profiling. Pintools also analyze a program at

different levels of granularities: binary image level, routine level, and instruction

level.

Pintools are implemented independently from target programs and are compiled

into separate shared libraries. Pintools are not compiled (statically) or linked (dy-

namically) with the program. When the target program needs to be instrumented,

it is executed by Pin providing the Pintool as an argument. This way the tar-

get program can be instrumented with different Pintools, and vice versa, without

requiring any modifications to the source of the program under instrumentation.

Even though Pin provides several facilities to instrument programs, the Pin-

tools implemented using Pin are fragile, rigid, hard to extend/reuse, and difficult to

understand [78]. Pin++ provides an object-oriented, template meta programming

approach to writing Pintools that handle the above mentioned software engineering

issues. Moreover, Pintools implemented using Pin++ have a reduction in cyclo-

matic complexity, do not induce additional overhead, and improves the Pintools

performance in certain cases. For example, Hill et al. [78] have shown that Pin++

can have a 54% reduction in complexity, increase its modularity, and up to 60%

reduction in instrumentation overhead when compared to Pintools implemented

the traditional way.

sub-procedure for receiving a start event or the sub-procedure for receiving an

exit event) to call in Algorithm 5.

• Name. The name represents the undecorated name of the routine under instru-

mentation (or being analyzed). This piece of information is important because

91

this allows EMAD to report the human readable name of an routine when it

identifies the location(s) of excessive dynamic memory allocations.

Because EMAD eventually constructs a call graph (see Section 6.2.2) that also

records dynamic memory allocations and deallocations, EMAD assumes signatures

with the patterns shown in Listing 6.3 for dynamic memory allocation and deallo-

cation routines. The patterns in this listing are the common signatures for most

of the general-purpose memory allocation/deallocation routines in both standard li-

braries [79,80](e.g., malloc/free and new/delete) and third-party libraries that imple-

ment its own memory management strategy [63,81].

1 // Pattern expected for memory allocation routine.

2 void * [allocation_method] (size_t size);

3

4 // Pattern expected for memory deallocation routine.

5 void [dellocation_method] (void * location);

Listing 6.3: Allocation/Deallocation method signatures.

EMAD also collects the following additional details for allocation/deallocation

routines in the execution trace:

• Allocation size. This is the input parameter at the start of the allocation rou-

tine, which is the size of the allocation. This piece of information is important

when characterizing a memory allocation.

• Address of the allocation. This is the return value at the exit of the al-

location routine, which is the allocated memory location address. This piece

of information is important when correlating memory allocations and dealloca-

tions.

• Allocation timestamp. This is the timestamp when exiting from the alloca-

tion routine. It specifies the time when the memory allocation was active. This

92

piece of information is important when calculating the lifetime of a particular

memory allocation.

• Deallocation timestamp. This is the timestamp when exiting from the deal-

location routine. It specifies the time when the memory allocation was deacti-

vated. This piece of information is important when calculating the lifetime of

a particular memory allocation.

The execution trace (i.e., the data discussed above) is recorded by the Pintool

while the program under instrumentation is executing. Listing 6.4 shows a portion

of an example execution trace the EMAD Pintool will generate. Once the execution

trace is recorded, the remainder of EMAD’s analysis is done offline.

1 0 19 start main

2 0 20 start Initialize

3 0 22 start malloc 32

4 0 22 exit malloc 842 c008 141677579

5 0 20 exit Initialize

6 0 34 start operation1

7 0 22 start malloc 64

8 0 22 exit malloc 9786 cd0 14167757886

9 0 35 start operation2

10 0 23 start free 9786 cd0

11 0 23 exit free 14167757928

12 0 23 start free 842 c008

13 0 23 exit free 14167757928

14 0 35 exit operation2

15 0 34 exit operation1

16 0 19 exit main

Listing 6.4: Example execution trace generated by the EMAD Pintool.

93

6.2.2 Constructing the Call Graph

EMAD uses the execution trace collected during the instrumentation step (see

Section 6.2.1) to construct a call graph [82] of the program. The constructed call

graph is a weighted directed graph. Each node in the graph represents an executed

routine in the application. Each edge represents a caller-callee relationship. The edge

weights represent the frequency of each routine call. The Figure 6.3 illustrates the

call graph EMAD will be constructing for the execution trace shown in Listing 6.4.

Figure 6.3.: Call Graph for the execution trace in Listing 6.4

The constructed call graph is also a condensed graph [83]. This is because EMAD

is not representing each and every call to a routine as its own node and edge as

in a detailed call graph. Instead, EMAD is capturing how many times a routine is

called. The condensed call graph reduces the amount of resources needed to construct

the needed call graph of an application. More importantly, we have learned that a

detailed call graph makes it hard to perform the necessary analysis to detect excessive

dynamic memory allocations.

Algorithm 5 details EMAD’s process for constructing the call graph from an exe-

cution trace. The algorithm consists of two sub-procedures. The first sub-procedure

handles routine start messages (line 11). The second sub-procedure handles routine

exit messages (line 13). It is worth noting that Algorithm 5 maintains a called routine

stack for each thread in the application being instrumented. This is because caller-

94

Algorithm 5 General algorithm for constructing the call graph in EMAD.

1: procedure ConstructCallGraph(ET)
2: ET : set of routine start/exit messages from execution trace
3:

4: CG : Call graph
5: CS : Set of stacks of called routines, one per each thread
6:

7: for all ETi ∈ ET do
8: j ← extract thread id(ETi)
9: R← extract routine(ETi)
10: if ETi is a routine start trace then
11: HandleRoutineStartTrace(CG,CSj, R)
12: else if ETi is a routine exit trace then
13: HandleRoutineExitTrace(CG,CSj, R)
14: end if
15: end for
16:

17: for all k ∈ thread ids do
18: while CSk is not empty do
19: R← Top(CSk)
20: HandleRoutineExitTrace(CG,CSk, R)
21: end while
22: end for
23:

24: end procedure

95

callee relationships are maintained on a per thread basis when using the condensed

graph approach [83]. There, however, will be one call graph that is updated using

the relationships maintained in each call stack.

The sub-procedure for handling routine start messages, which is shown in Algo-

rithm 6, is straightforward to understand. Whenever a routine start message is found,

the corresponding routine object is pushed onto the stack. A node representing the

routine object is also added into the call graph. Because EMAD is constructing a

condensed call graph, the AddNode statement (line 7) only adds a node to the call

graph if and only if the node is not in the call graph.

Algorithm 6 Procedure that handles a routine start trace.

1: procedure HandleRoutineStartTrace(CG, cs, R)
2: CG : Call graph
3: cs : The routine stack of a thread
4: R : The routine
5:

6: Push(cs, R)
7: AddNode(CG,R)
8: end procedure

The sub-procedure for handling routine exit messages is not as straightforward

when compared to the sub-procedure for handling routine start messages. This is

because the instrumentation of routine exits does not work reliably in the presence

of tail calls, or when return instructions cannot reliably be detected under Pin [84].

From our experience, a majority of the routine exit messages for the corresponding

routine start messages can be found in the execution trace. When a routine exit

message cannot be found in the execution trace, EMAD uses Algorithm 7 to resolve

the missing exit message problem.

As shown in this algorithm, it first checks whether the routine object at the stack

top is the same as the routine object represented from the message. If this condition

holds true, then this implies that the routine object has both start and exit messages

in the execution trace. It also implies that the caller of the routine should be the

96

Algorithm 7 Procedure that handles a routine exit trace.

1: procedure HandleRoutineExitTrace(CG, cs, R)
2: CG : Call graph
3: cs : The routine stack of a thread
4: R : The routine
5:

6: if cs is not empty then
7: if Top(cs) = R then
8: Pop(cs)
9: if cs is not empty then
10: AddEdge(CG, Top(cs), R)
11: end if
12: else
13: while Top(cs) �= R do
14: r ← Top(cs)
15: Pop(cs)
16: if cs is not empty then
17: AddEdge(CG, Top(cs), r)
18: end if
19: end while
20:

21: Pop(cs)
22: if cs is not empty then
23: AddEdge(CG, Top(cs), R)
24: end if
25: end if
26: end if
27:

28: end procedure

97

stack top element once the current stack top is removed. EMAD therefore creates an

edge between the two routines with the correct directionality (line 7-10) if an edge

does not already exist. If an edge already exists, its weight is increased by 1.

When the routine object at the top of the stack and the routine object corresponds

to routine exit message mismatches, it implies that the routine exit message for the

routine object at the top of the stack is missing. The allocation object’s caller should

be current stack top’s adjacent routine object. EMAD therefore saves the stack top,

pops an element from the stack, and connects the new stack top with the previous

stack top. EMAD continues this process until it finds the routine object represented

by the current routine exit message. The sub-procedure for handling routine exit

messages therefore guarantees that the correct caller-callee relationship is preserved

even when routine exit messages are missing in the execution trace.

Once all messages in the execution trace are processed, there can still be routine

objects remaining on the stack. EMAD explicitly calls the HandleRoutineExitTrace

routine (line 20) while iterating through call stacks of each thread. This is necessary

because the routine exit messages of the remaining routine objects are missing. Ex-

plicitly calling HandleRoutineExitTrace will complete the call graph with any missing

edges.

As mentioned in Section 6.2.1, the start/exit messages for allocation/dealloca-

tion routines contain extra details such as parameter/return values and timestamps.

Algorithm 5 and its sub-procedures discussed above will extract and store this ad-

ditional information in allocation/deallocation routine objects during the execution

trace processing. The data associated with the allocation/deallocation routines is

used to create allocation objects. The allocation object has three attributes, the size

of the dynamic memory allocation; the routine that calls the memory allocation rou-

tine to allocate memory; and the routine that calls the memory deallocation routine.

In EMAD, each dynamic memory allocation during the lifetime of the application is

represented using an allocation object.

98

An allocation object is distinguishable from another allocation object if any of its

attributes is different. One would think it should be possible to use the address of the

memory allocation to uniquely represent an allocation object. This, however, is not

possible because the same memory address can be reallocated several times during

the lifetime of the application. The memory address of an allocation is therefore not

unique once we consider the entire lifetime of the application. EMAD therefore uses

the memory address of an allocation to match the caller of the allocation routine and

caller of the deallocation routine.

Each allocation object also has a frequency. The frequency specifies how many

times an allocation object (with same values for above three attributes) occurs through-

out the software application lifetime. For each allocation object, we can also calculate

its lifetime as follows:

Tl = Td − Ta (6.1)

where Tl represents the lifetime of the allocation object; Td represents the timestamp

of the deallocation exit message; and Ta represents the timestamp of the allocation exit

message. Each distinct allocation object stores its average lifetime. Lastly, EMAD

uses the three attributes of an allocation object, its frequency, its calculated average

lifetime, and the constructed call graph to detect the excessive dynamic memory

allocation anti-pattern.

6.2.3 Detecting Excessive Dynamic Memory Allocations

As mentioned above our analysis technique for detecting excessive dynamic mem-

ory allocations is based on the intuition that this anti-pattern occurs when the soft-

ware application has many short-lived high-frequent allocation objects. Our intuition

comes from studying the two main solutions used to resolve the excessive dynamic

memory allocation software performance anti-pattern [27].

The most common solution to resolve this anti-pattern is to use a custom memory

allocator [85]. The basic idea of a custom memory allocator is to use a memory pool.

99

When using a memory pool, a large chunk of memory is allocated during the software

application initialization phase. The subsequent requirements for memory allocations

are fulfilled by obtaining memory from this memory pool—thereby eliminating the

system calls to allocate memory. When the allocated memory is no longer needed, it

is released into the memory pool—thereby eliminating the system calls to deallocate

memory.

The custom memory allocations approach will not be effective if the allocation

objects are in use for long periods of time. This is because when there are many

such objects, eventually the memory pool will not be able to fulfill the allocation

requests. This will result in acquiring memory from the operating system and the

expected performance gain may not be achieved. When the software application has

high-frequent short-lived allocation objects, however, the memory pool regains the

memory it has given to the application. This improves the performance by rarely

allocating memory using general purpose memory allocators.

The other solution for the excessive dynamic memory allocation anti-pattern is to

use the Flyweight software design pattern [56]. The Flyweight software design pattern

is similar to using a custom memory allocator. Its strategy also based on reusing the

already allocated objects. The only difference is the Flyweight design pattern applies

the solution at a higher level of abstractions such as reusing particular types of objects.

It is also effective only when there are high-frequent short-lived object instances that

are reusable.

Based on this intuition, EMAD’s main goal in the detection process is to iden-

tify short-lived, high-frequent allocation objects. EMAD analyzes the frequency and

average lifetime of the allocations objects annotated with the allocation/deallocation

routines in the constructed call graph. To understand the analysis process, we in-

troduce a frequency-lifetime diagram as illustrated in Figure 6.4. Each point in the

diagram represents a unique allocation object. The x value represents the frequency

of the allocation and y value represents the average lifetime of the allocation. We

consider points that fall in the low-right quadrant to correspond to short-lived, high-

100

frequent dynamic memory allocations. These are the set of points we want to identify

in our analysis.

Figure 6.4.: Frequency-lifetime diagram.

Because frequency and lifetime of allocation objects are relative to each software

application, it is hard to define thresholds to filter high-frequent, short-lived mem-

ory allocations. EMAD therefore provides two different exploratory data analysis

techniques: one using K-means clustering, and the other using an outlier detection

technique to identify high-frequent, short-lived memory allocations.

6.2.3.1 Using K-means Clustering to Identify High-frequent Short-lived Objects

Clustering is a non-supervised technique that can be used to partition objects

based on the quantitative values of their attributes. The goal of clustering is to

partition regions of points that have similarities. To accomplish this task, EMAD

uses popular K-means algorithm [86] to cluster the allocation objects based on their

101

frequency and average lifetime. Sidebar 2 contains a brief description on K-means

clustering.

Sidebar 2: Overview of K-means Clustering

The problem of clustering is to partition n data points xi, i = 1 . . . n into k parti-

tions. K-means approach in solving this problem is to find k centroids μi, i = 1 . . . k

to represent each cluster such that the distance from the centroid to the data points

is the minimum. K-means clustering solves,

argmin
c

k∑
i=1

∑
xεci

d (x, μi) (6.2)

K-means clustering typically uses square of the Euclidean distance. Therefore

above equation can be written as,

argmin
c

k∑
i=1

∑
xεci

‖x− μi‖2 (6.3)

This problem is a NP-hard problem therefore K-means algorithm does not

guarantee a global minimum, however it works well in practice and widely used [87].

It uses the following steps to find the k clusters.

1. Initialize the centroid of the clusters

2. Assign the data points randomly to each cluster

3. Evaluate the centroids of each cluster by averaging the data points

4. For each data point calculate the distance to each cluster centroids and assign

it to the one with minimum distance

5. Repeat step 3,4 until convergence

The algorithm stops when the assignment does not change from one iteration to

the other.

102

Once the allocated objects are clustered, EMAD then checks whether there is a

cluster C that satisfies all the following conditions:

1. The average frequency of C’s members is the highest compared to the other

clusters. This piece of information is important because if the frequency is

high, then there is a potential excessive dynamic memory allocation issue.

2. The average lifetime of C’s members is the lowest compared to the other clusters.

This piece of information is important because when the allocation object is a

short lived object there is a potential excessive dynamic memory allocation

issue.

If EMAD can find a cluster that satisfies both the conditions above, then it reports

that software application has excessive dynamic memory allocation anti-pattern. The

report may contain all the members of that cluster, or a user-defined number n of

members. In the latter case, EMAD will report first n members in the descending

order of frequency. Because the allocation objects contains the caller information of

the allocation, EMAD can also report call hierarchy of the allocation similar to other

dynamic memory analysis tools (e.g., Valgrind [44] and Purify [76]). By providing the

call hierarchy software developers can quickly locate the excessive dynamic memory

allocations anti-pattern in the source code—eliminating tedious and time consuming

source code analysis.

On the other hand, if EMAD cannot find a cluster that satisfies the conditions

above, then EMAD reports that the software application does not have the excessive

dynamic memory allocations anti-pattern. This is because the partitioning indicates

that most of the high-frequent allocation objects have a longer lifetime, or short lived

allocation objects are not frequent.

Because EMAD’s analysis is based on a clustering technique, the user can configure

the parameter that controls the number of clusters. This parameter, in turn, controls

the number of partitions EMAD has to create from the dataset. Unfortunately, this

103

is one of the limitations in cluster analysis [88, 89]. Likewise, identifying the correct

number of clusters may require some trial and error.

6.2.3.2 Using Outlier Detection to Identify High-frequent Short-lived Objects

In this technique, we convert the two dimensional dataset into a one dimensional

dataset by calculating the ratio between frequency and average lifetime of each allo-

cation object.

Therefore, the ratio R is defined as,

R =
frequency

lifetime
(6.4)

According to the above equation, the value ofR is larger when the frequency is high

and lifetime is low. Therefore, we consider allocation objects that have relatively high

values as potential excessive dynamic memory allocations. Based on this intuition

we consider extreme outliers of this one dimensional dataset as potential excessive

dynamic memory allocations. We only consider positive outliers that have larger

values for R, not the outliers with lower values. To identify these extreme values we

use Interquartile Range (IQR) based outlier detection technique [90]. We adopt this

technique instead of standard score based outlier detection techniques because we

observed that our datasets are not normal distributions [91]. We consider allocation

objects that have a value greater than the value obtained from the following expression

as potential dynamic excessive memory allocations.

Q3 + μ× IQR (6.5)

Here Q3 is the third quartile, IQR is the Interquartile Range, and μ is a user pro-

vided parameter. If we increase the value of μ, EMAD may miss potential excessive

dynamic memory allocations; and a lower value for μ may cause EMAD to report sev-

104

eral false-positives. Therefore, the user has to provide a reasonable value for μ which

may requires some trial and error. A good initial value for μ is the value obtained

for IQR. Another way to decide on a value for μ is to first view the datasets and see

how the value of R is deviating from normal. EMAD outputs this value during the

analysis. EMAD also ranks the excessive dynamic memory allocations based on the

value of R. Therefore, users can get an idea about the relative significance of excessive

dynamic memory allocations after seeing the results. EMAD also provide facilities to

view both two dimensional (i.e. frequency and lifetime) and one dimensional datasets

(i.e., value of R) of allocation objects.

6.3 Experimental Evaluation of EMAD

This section illustrates how we validate EMAD’s methodology by applying it to

several real world open source systems. Validating EMAD’s technique is challenging

because once EMAD reports excessive dynamic memory allocations, we need to make

sure it is an actual excessive dynamic memory allocation that has an impact on system

performance. Therefore, we validate EMAD with following types of experiments:

1. EMAD is applied to a known released software version that has the anti-pattern

and then to an anti-pattern resolved newer software version. (see Section 6.3.2)

2. Applying EMAD to an anti-pattern induced software version to see whether

EMAD can detect the induced anti-pattern (see Section 6.3.4)

3. EMAD detects the anti-pattern, which is previously unknown, we fix and val-

idate with EMAD again to see whether the problem is actually resolved. (see

Section 6.3.3)

4. Applying EMAD to software that does not exhibit the anti-pattern (see Sec-

tion 6.3.5)

105

Further to strength our experimental analysis, we evaluate the system performance

before and after resolving the anti-pattern if applicable for the above experimental

scenarios.

6.3.1 Experimental Setup

Following is a brief description of each open source project we applied EMAD.

• SQLite is a widely used SQL database engine that is mainly used in embedded

devices, such as mobile phones and web browsers. The power behind SQLite

is that it allows developers to access a flat file as if it was a SQL database.

We selected SQLite for our evaluation because we were able to search its re-

lease history and identify versions of SQLite that were actually impacted by

the excessive dynamic memory allocation anti-pattern. This project therefore

will serve as a good example to evaluate if EMAD can identify the software

performance anti-pattern. More importantly, it will evaluate if EMAD is able

to identify the routine that is the source of the problem. (i.e. experimental

scenario 1)

• Axis2-C [92] is a web services framework, which is implemented in C using

the popular Axis2 SOAP processing architecture [93]. Axis2-C is used in some

of the modern cloud computing infrastructure middleware and also in scripting

language based web services engines [94]. We have found a way to induce

the dynamic memory allocations anti-pattern into Axis2-C by doing a slight

modification to its source code. This allowed us to apply EMAD to Axis2-C to

check whether EMAD can detect the induced anti-pattern. (i.e. experimental

scenario 2)

• TAO [95] is a object request broker, which implements the OMG CORBA spec-

ification. TAO is used heavily to develop distributed real time and embedded

systems. Because TAO is used in real time systems, small percentages of per-

106

formance improvements matter in practice. Therefore, we have used it as one

of our case studies. (experimental scenario 3)

• Xerces-C++ [81] is a XML parser framework written in the C++ program-

ming language. It can parse, generate, and validate XML documents using the

DOM, SAX, and SAX2 APIs. It is one of the most widely used C++ XML

parsers. We selected Xerces-C++ because the framework allows developers to

integrate custom memory allocators. Moreover the custom memory allocator

integrated version and the default version do not show much difference in per-

formance. Therefore it is an indication that Xerces-C++ does not have the

excessive dynamic memory allocations anti-pattern. (experimental scenario 4)

All experiments were conducted on an Intel core 2 Duo 3.33 GHz processor, with

4GB memory and running 32-bit Ubuntu 14.04 operating system. We also used Pin

2.13 and Pin++ 1.0.0-beta.

6.3.2 Experimental Results for SQLite

We used the Northwind database [96] as the use case for our experiments with

SQLite. We used a single SQL file that had the SQL statements for table creation,

data insertion, table updating, and data querying. The SQLite command line in-

terface was used to manipulate all queries in the SQL file. Lastly, the performance

of SQLite was measured by recording the total time it takes to process the entire

Northwind database SQL file.

According to the SQLite [97] release history, SQLite had the excessive dynamic

memory allocations software performance anti-pattern prior to version 3.6.1. This is

because versions prior to 3.6.1 created many number of short-lived memory allocations

in each database connection. The SQLite documentation states the following related

to this excessive dynamic memory allocations problem2:

2More on the quote can be found at the following location: www.sqlite.org/malloc.html#

lookaside

107

These small memory allocations are used to hold things such as the names

of tables and columns, parse tree nodes, individual query results values,

and B-Tree cursor objects. There are consequently many calls to mal-

loc() and free() - so many calls that malloc() and free() end up using a

significant fraction of the CPU time assigned to SQLite.

As a solution to this issue, SQLite developers implemented a custom memory

allocator called lookaside allocator that preallocates a large chunk of memory and

divides it to fixed size small slots inside each database connection. This is called a

lookaside memory pool.

We applied EMAD against the Northwind database while using SQLite 3.5.9. We

did not use SQLite 3.6.0 because it was not a stable release.

6.3.2.1 Experimental Results with Clustering Method Enabled

We first used EMAD with the clustering method enabled as described in Sec-

tion 6.2.3.1. From our experiments, EMAD was able to detect 3 locations where

SQLite was performing excessive dynamic memory allocations in SQLite 3.5.9. These

3 locations are shown in Table 6.1.

Table 6.1.: Excessive dynamic memory allocation locations in SQLite-3.5.9 identified
by EMAD from clustering method.

Caller Size Destroyer Freq. Avg. Lifetime
sqlite3DbMallocRaw 68 sqlite3ExprDelete 29394 929.758 ms
sqlite3DbMallocRaw 32 sqlite3VdbeMemRelease 12918 224.889

pager write Size 1024 sqlite3BtreeCommitPhaseTwo 6832 1.29202

EMAD was also able to generate the call-tree (to a user-defined depth) for rou-

tines that are the source of excessive dynamic memory allocations. For example,

Listing 6.5 illustrates the call-tree for the sqlite3DbMallocRaw routine. The call-tree

shows the routine name and the frequency (inside parenthesis) of each caller-callee

relationship. Although there are several call-trees for the sqlite3DbMallocRaw rou-

108

tine, Listing 6.5 only shows the call frequencies with maximum edge weights. The

call tree for pager write routine is shown in Lisitng B.1 of Appendix B.

1 sqlite3DbMallocRaw (45858)

2 sqlite3Expr Frequency (26765)

3 sqlite3Parser Frequency (26436)

4 sqlite3RunParser Frequency (102322)

5 sqlite3Prepare Frequency (3450)

6 sqlite3LockAndPrepare Frequency (3450)

7 sqlite3_prepare Frequency (3450)

8 sqlite3VdbeMemRelease (788186)

9 sqlite3BtreeNext Frequency (378600)

10 sqlite3VdbeExec Frequency (60800)

11 sqlite3_step Frequency (14098)

12 sqlite3_column_name (10659)

Listing 6.5: Call-tree for the routine sqlite3DbMallocRaw.

As described in the SQLite documentation routines like sqlite3 column name con-

tribute to excessive dynamic memory allocations in SQLite3. As shown in Listing 6.5,

EMAD is able to report these routines in the call-tree for sqlite3DbMallocRaw routine

as a cause (or source) of the excessive dynamic memory allocations.

Figure 6.5 shows the frequency-lifetime diagram for this experiment. This fig-

ure also supports the reported excessive dynamic memory allocations. As shown in

Figure 6.5, the 3 allocation objects that correspond to excessive dynamic memory al-

locations have high-frequency (as high as 29394) and short lifetime (as low as 1.29202)

when compared to the other allocation objects in the figure.

SQLite releases after version SQLite 3.5.9 implement the solution to the excessive

dynamic memory allocations anti-pattern. To verify this, and continue evaluating

EMAD, we applied EMAD to SQLite 3.8.5. In this version of SQLite, EMAD could

find only one location where SQLite is performing excessive dynamic memory alloca-

109

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 5000 10000 15000 20000 25000 30000

A
ve

ra
ge

 li
fe

tim
e

(M
ill

is
ec

on
ds

)

Call frequency

Frequency-lifetime diagram for SQLite-3.5.9

Figure 6.5.: Frequency-lifetime diagram for SQLite-3.5.9

110

tions. Table 6.2 shows the location identified by EMAD. This location is related to an

input/output operation, which has no relation with the excessive dynamic memory

allocation problem we found in SQLite 3.5.9.

Table 6.2.: Excessive dynamic memory allocation locations in SQLite-3.8.5 identified
by EMAD from clustering method.

Caller Size Destroyer Freq Avg. Life-
time

memjrnlWrite 1024 memjrnlTruncate 10596 1.403 ms

The frequency-lifetime digram shown in Figure 6.6 validates the results of EMAD.

As shown in the diagram, there is only one allocation object that resides in high-

frequency, short-lifetime region.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 li
fe

tim
e

(M
ill

is
ec

on
ds

)

Call frequency

Frequency-lifetime diagram for SQLite-3.8.5

Figure 6.6.: Frequency-lifetime diagram for SQLite-3.8.5

6.3.2.2 Experimental Results with Outlier Detection Method

We also applied EMAD to SQLite 3.5.9 after configuring EMAD to employ outlier

detection technique mentioned in Section 6.2.3.2. After using a value of 1000 for μ

111

in Equation 6.5, EMAD was able to report only one place as shown in Table 6.3 as

excessive dynamic memory allocations. The frequency-lifetime ratio chart shown in

Figure 6.7 also illustrate this extreme outlier.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000

F
re

qu
en

cy
/A

vg
.L

ife
tim

e

Allocation Objects

Frequency-lifetime ration chart for SQLite 3.5.9

Excessive Allocations

Figure 6.7.: Frequency-lifetime ratio chart for SQLite-3.5.9

Table 6.3.: Excessive dynamic memory allocation locations identified by EMAD in
SQLite-3.5.9.

Caller Size Destroyer Freq. Avg. Lifetime
pager write 1024 sqlite3BtreeCommitPhaseTwo 22832 1.29202 ms

As shown in the Table 6.3 the outlier detection technique didn’t categorize some

of the high frequency short-lifetime allocation objects as excessive dynamic memory

allocations. This is because the IQR (Inter Quartile Range) of the dataset is as low as

1.7211 and we had to use a value as larger as 1000 for μ to filter the outliers. A lower

value for μ started producing several false positives. For example, when we lowered

the value of μ, EMAD reported allocation objects that have a frequency of 162 and

an average lifetime of 0.2075 as excessive dynamic memory allocations. Although the

average lifetime of the allocation objects is low in this case, the frequency is also low

compared to the frequencies of excessive dynamic memory allocations.

112

We also applied EMAD after enabling the outlier detection technique to SQLite

3.8.5 version. EMAD reported the same location as shown in Table 6.2, which was

identified from the clustering technique.

6.3.2.3 Resolving the Anti-pattern and Performance Improvements

To resolve the identified problem, we used a custom memory allocator (as men-

tioned in the SQLite documentation3) to resolve the performance anti-pattern and

improve the performance. According to SQLite documentation, the custom memory

allocator preallocates a chunk of memory during the application initialization process.

To apply to solution, we re-compiled SQLite-3.8.5 with the custom memory alloca-

tor enabled. We then re-ran the same experiment with the enabled custom memory

allocator. For our experiments, the custom memory allocator improved performance

by 10%.

Table 6.4.: Performance of different versions of SQLite

SQLite Version Total Process Time Malloc Calls
3.5.9 475.01 ms 184859
3.8.5 338.43 ms 58441

3.8.5 with custom allocator 308.53 ms 9706

To summarize our performance results, Table 6.4 shows the total processing time

for the Northwind database SQL file when processed by the three versions of SQLite

we used in our experiment. As shown in the table, the performance of SQLite im-

proved after we applied each solution to the identifed excessive dynamic memory

allocation software performance anti-pattern. For example, SQLite 3.8.5 improved

approximately 30% in performance when compared to SQLite 3.5.9. Likewise, SQLite

3.8.5 with custom memory allocator improved approximately 10% when compared to

SQLite 3.8.5 without the custom memory allocation. More importantly, the experi-

3http://www.sqlite.org/malloc.html

113

ments shows that EMAD was able to detect the excessive dynamic memory allocations

and can assist developers in improving performance.

Lastly, Table 6.4 shows the number of malloc/free routine calls invoked by each

version of SQLite we used in our experiments. We collected this data using a Pintool

that counts malloc/free routine calls. Our results show that when the excessive

dynamic allocation anti-pattern is resolved, there are fewer system-level calls to the

malloc/free routine.

6.3.3 Experimental Results for TAO

We instrumented TAO using EMAD’s pintool, while sending 10,000 requests to

its sample echo service. The collected trace was analyzed using EMAD for exces-

sive dynamic memory allocations. EMAD reported two excessive dynamic memory

allocations as shown in the Table 6.5.

Table 6.5.: Excessive dynamic memory allocation locations in TAO.

Caller Size Destroyer Freq. Avg. Lifetime
CORBA::string alloc 14 CORBA::string free 10000 0.453467 ms

operator¿¿ 0 IOP::ServiceContextList:: ServiceContextList 9999 3.50659 ms

In this case both the clustering technique and the outlier detection technique re-

ported the two locations shown in Table 6.5. The first excessive dynamic memory

allocation in Table 6.5 is coming from TAO itself. The second one is coming from the

echo service (i.e., the application) when it is echoing the received string. The call tree

for the excessive dynamic memory allocation in TAO is shown in Listing 6.6. The

complete stack frames for this routine call tree is shown in Listing B.4 of Appendix B.

The frequency-lifetime diagram in Figure 6.8 and the frequency-lifetime ratio chart

in Figure 6.9 also confirmed EMAD’s finding.

1 TAO_GIOP_Message_Gen_Parser_12 :: parse_header (10000)

2 TAO_GIOP_Message_Base :: process_request (10000)

114

3 TAO_GIOP_Message_Base :: process_request_message (10000)

4 TAO_Transport :: process_parsed_messages (10000)

5 TAO_Transport :: handle_input_parse_data (10000)

6 TAO_Transport :: handle_input (10001)

7 TAO_Connection_Handler :: handle_input_internal (10001)

8 TAO_Connection_Handler :: handle_input_eh (10001)

9 TAO_IIOP_Connection_Handler :: handle_input (10001)

10 ACE_TP_Reactor :: dispatch_socket_event (10001)

Listing 6.6: Call-tree for the routine operator¿¿.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 li
fe

tim
e

(M
ill

is
ec

on
ds

)

Call frequency

TAO example

Figure 6.8.: Frequency-lifetime diagram for TAO

Apart from the two excessive dynamic memory allocations, almost all the other

allocation objects have a very low frequency. Because of this, only the two data

points that corresponds to the excessive dynamic memory allocations are visible in

the Figure 6.9.

Our focus was on resolving the excessive dynamic memory allocation that resides

in TAO. Because it will impact all the applications that use TAO. This excessive

dynamic memory allocation occurs when TAO is doing a zero size allocation using

115

 0

 5000

 10000

 15000

 20000

 10 20 30 40 50 60 70 80

F
re

qu
en

cy
/A

vg
 L

ife
tim

e

Allocation Objects

Frequency/Avg Lifetime of allocation objects

Figure 6.9.: Frequency-lifetime ratio chart for TAO

116

new[] operator to allocate a list of buffers to keep some service context information.

When the same client sends many requests, however the buffer to keep service con-

text information has to be allocated only for the first request. Instead of avoiding

allocations for subsequent requests, TAO is doing a zero size allocation with new[]

operator. Our simple fix was to return immediately before calling new[] when the

requested length is 0.

After this fix we evaluated TAO performance for the simple echo service. We mea-

sured the time it takes to process n requests. We observed a 5-10% performance gain

for larger number of requests. The performance results are shown in the Table 6.6.

Table 6.6.: Performance of echo service example in TAO.

of Requests Before Fix (sec) After Fix (sec) Improvement(%)
10K 2.275431 2.25299 0.98
20K 4.589058 4.491926 2.11
30K 6.972080 6.825455 2.1
40K 9.51474 9.419871 0.99
50K 11.487203 11.291216 1.7
100K 22.917998 22.587449 1.44
200K 52.195151 45.445869 12.93
300K 68.968680 63.624066 7.74
400K 91.914805 85.586583 6.88
500K 115.174436 106.963704 7.12

We reported this finding to the TAO mailing list. The TAO developers accepted

the patch as it was something they were not aware of. Although it is not a bug, they

are willing to fix the problem because even a small improvement in performance is

valuable in the context of distributed realtime and embedded systems.

6.3.4 Experimental Results for Axis2-C

Axis2-C is executed via Apace Web Server [29] as an Apache web server mod-

ule4. Axis2-C calls Apache web server’s memory pool based dynamic memory alloca-

tion/deallocation routines (custom memory allocator) to allocate/deallocate dynamic

memory during runtime. To induce the excessive dynamic memory allocations anti-

pattern, we changed the source code of Apace web servers’s Axis2-C module to use

4http://httpd.apache.org/docs/current/mod/

117

malloc/free instead of Apace memory pool functions to allocate/deallocate memory.

This prevented Axis2-C from allocating memory from Apache’s memory pools. After

the change, we used Apache Benchmark tool to send 2000 SOAP requests to Axis2-C

sample echo service, which is deployed in Apache web server. We then instrumented

Apache web server and the Axis2-C while the requests were processed. The collected

execution trace was then analyzed using EMAD for excessive dynamic memory allo-

cations.

We found several locations where Axis2-C was doing excessive dynamic memory

allocations. Both the frequency-lifetime diagram (Figure 6.10) and frequency-lifetime

ratio chart (Figure 6.11) provide evidence for this.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000 70000

A
ve

ra
ge

 li
fe

tim
e

(M
ill

is
ec

on
ds

)

Call frequency

Axis2-C Frequency-lifetime diagram

Figure 6.10.: Frequency-lifetime diagram for Axis2-C

Both clustering technique and the outlier detection techniques were able to find

several locations that exhibit excessive dynamic memory allocations. These excessive

dynamic memory allocations are listed in Table 6.7 and in Table 6.8.

We have shown only the first 5 excessive dynamic memory allocations based on a

rank provided by each technique. When using the clustering technique, the results are

ranked from highest frequency to lowest frequency in the excessive dynamic memory

118

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 100 200 300

F
re

qu
en

cy
/A

vg
 L

ife
tim

e

Allocation Objects

Axis2-C Frequency-lifetime ratio chart

Figure 6.11.: Frequency-lifetime ratio chart for Axis2-C

Table 6.7.: Excessive dynamic memory allocation locations in Axis2-C identified by
EMAD from clustering method.

Caller Size Destroyer Freq Avg. Life-
time

axutil string create 16 axutil string free 70000 12.4372 ms
axiom node create 40 axiom node free detached subtree 54000 30.8595 ms
axutil hash first 16 axutil hash next 48274 0.345397 ms

axutil hash find entry 20 axutil hash free 42000 32.9438 ms
axutil string create assume ownership 16 axutil string free 38000 49.6887

Table 6.8.: Excessive dynamic memory allocation locations in Axis2-C identified by
EMAD from outlier detection method.

Caller Size Destroyer Freq Avg. Life-
time

guththila get prefix 4 axiom stax builder process namespaces 8000 0.0553061 ms
axutil hash first 16 axutil hash next 48274 0.345397 ms

guththila get prefix 8 axiom stax builder process namespaces 6000 0.0603158 ms
axutil strdup 5 axis2 req uri disp find op 2000 0.034171 ms
axutil stracat 22 axutil qname to string 4000 0.0699757

119

allocation cluster. In the outlier detection technique, the results are ranked based

on the frequency and lifetime ratio with the allocation object with the highest ratio

coming first. Some of the excessive dynamic memory allocations obtained a higher

rank from both the techniques. For example, memory allocation has axutil hash first

a higher rank on both the techniques.

The call tree found by EMAD for this allocation object (i.e. axutil hash first) is

shown in Listing 6.7.

1 axiom_element_free (16000)

2 axiom_node_free_detached_subtree (36000)

3 axiom_node_free_tree (4000)

4 axiom_document_free (2000)

5 axiom_stax_builder_free (2000)

6 axiom_soap_builder_free (2000)

7 axiom_soap_envelope_free (2000)

8 axis2_msg_ctx_free (4000)

9 axis2_apache2_worker_process_request (4000)

10 axis2_handler (2000)

11 ap_run_handler (2000)

Listing 6.7: Call-tree for the routine axutil hash first.

The call trees for other excessive dynamic memory allocations are presented in

Section B.3 of Appendix B. As shown in above listings, Axis2-C’s excessive dynamic

memory allocations happen mainly because of deep copying of strings. Because Axis2-

C is a SOAP engine it performs heavy XML processing for each request. Therefore,

it has to do frequent string manipulations. In the real world, Axis2-C is used with

QoS support after engaging third-party developed QoS modules. Axis2-C has to

pass some parts of the part of the SOAP message as XML objects to these third-

party modules. Once these XML objects are passed to the third-party modules,

it is hard to determine the ownership of strings. Therefore, Axis2-C uses a safe

120

approach by deep copying the strings. This is the main reason for the excessive

dynamic memory allocations. However, when used with Apace web server, Axis2-C

Table 6.9.: Axis2-C performance.

Item With memory pools without memory pools
Time takes to serve 1 million requests 280 secs 304 secs
Mallocs per one request 370 11032

can still perform deep copying when necessary without sacrificing the performance

by leveraging Apace’s memory pools. Although Apache has several type of memory

pools such as request, connection and global, Axis2-C mostly uses the request pool

because most of the object creation/deletion happen per request basis. When using

Apache memory pools, Axis2-C has 8% of performance improvement for processing

1 million requests as shown in Table 6.9. The table also shows that 96% less calls to

Malloc when processing a single request.

6.3.5 Experimental Results for Xerces-C++

We used Xerces-C++ Simple API for XML (SAX) interface to parse a 117 KB

XML file that contained 1,318 elements and 71,166 characters via its SAX command-

line utility. We then used EMAD to collect the execution trace of the SAX command-

line utility while it processed the XML file. Next, we used EMAD to generate the

call graph from the execution trace and detect the presence of the excessive dynamic

memory allocation software performance anti-pattern.

EMAD could not find any excessive dynamic memory allocations in Xerces-C++

either from the clustering or the outlier detection techniques. We have also checked if a

prior version of Xerces-C++ may have had the excessive dynamic memory allocation

software performance anti-pattern. We, however, could not find any version after

going through Xerces-C++ release notes.

Since Xerces-C++ supports custom memory allocators, we decided to investigate

if we could improve Xerces-C++ performance by implementing a custom memory

121

allocator. By default, Xerces-C++ uses the new/delete operators to allocate/deal-

locate memory. Our custom memory allocator is an implementation of a free list.

At the beginning, it allocates a large chunk of memory that is partitioned into small

user defined chunks. These small chunks are maintained as two linked lists. The first

linked list maintains the memory chunks that are being used in the program. The

second linked list maintains the freely available memory chunks.

The allocation function simply returns a memory chunk from the free list and cre-

ates a pointer to that chunk from allocated list. The deallocation function simply gives

back the deallocated memory chunk to the free list and removes the corresponding

pointer from the allocated list. This reduced frequent calls to general-purpose mem-

ory allocation/deallocation routines (i.e., new/delete). Lastly, the memory pool calls

the general-purpose memory allocation functions if the allocated memory pool is not

large enough to service the user request.

Finally, we measured the overall processing time for the XML file using the default

memory allocator and the custom memory allocator. Table 6.10 shows the results of

this experiment.

Table 6.10.: Performance of Xerces-C++ with a custom memory allocator and default
memory allocator.

Xerces-C++ Method Avg. Process Time
w/ default memory allocator 159 ms
w/ custom memory allocator 155 ms

As presented in Table 6.10, even when we plugged in the custom memory allocator

we could not observe much performance gain (as small as 2.5%). This is an indication

that Xerces-C++ does not exhibit excessive dynamic memory allocations. Figure 6.12

shows the frequency-lifetime diagram for our experiments.

In the diagram, none of the allocation objects resides in the high-frequent, short-

lifetime region of the graph. EMAD therefore does not report any excessive dynamic

memory allocations. The frequency-lifetime ratio chart shown in Figure 6.13 also

confirms this finding. The range of values for frequency-lifetime ratio is as low as 16,

122

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 li
fe

tim
e

(M
ill

is
ec

on
ds

)

Call frequency

Frequency-lifetime digram for Xerces-C

Figure 6.12.: Frequency-lifetime ratio chart for Xerces-C

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

F
re

qu
en

cy
/A

vg
 L

ife
tim

e

Allocation Objects

Frequency-lifetime ration chart for Xerces-C

Figure 6.13.: Frequency-lifetime ratio chart for Axis2-C

123

however in other applications where we found excessive dynamic memory allocations,

this ratio has a range as high as 150, 000.

6.3.6 Discussion of Results and Threat to Validity

These experiments show the validity of EMAD’s overall approach for detecting

excessive dynamic memory allocations. It was able to correctly detect and locate

when a software application has the anti-pattern, and when it does not have the anti-

pattern. This kind of analysis will help software developers resolve excessive dynamic

memory allocations faster. More importantly, it will eliminate the laborious process

of detecting the anti-pattern via manual source code analysis.

The main advantage of the clustering technique over the outlier detection method

is that it does not categorize allocation objects as excessive dynamic memory alloca-

tions when they have a low frequency. In the outlier detection technique, because we

consider frequency-lifetime ratio as the analytical value, it can still report extreme

outliers when the frequency is low and lifetime of the allocation object is very short.

These kind of low-frequent and short-lifetime values may sometime beat some high-

frequent short-lifetime objects. However, with the clustering technique, this kind of

false positives is not possible as it reports the problem only if it can find the high-

frequent short-lifetime cluster.

However, when using the clustering technique, EMAD’s users have to provide the

number of clusters to use in the analysis phase. There are some advanced data mining

techniques [89, 98] for learning this parameter from the dataset itself. EMAD, how-

ever, does not employ those techniques in its current implementation. Unfortunately,

this can cause EMAD to provide incorrect predictions if the user does not specify a

reasonable number of clusters. If the dataset has very clear separable partitions, then

the impact of this parameter can still be mitigated. On the other hand, when using

outlier detection technique, users have to provide the parameter μ, which may also

need some trial and error.

124

When using clustering technique, EMAD performs quantitative analysis and de-

tects excessive dynamic memory allocations only if high-frequent and short-lived al-

location objects resides in the same cluster. A software developer, however, may

still think that there are excessive dynamic memory allocations in other clusters by

looking at the numbers. In this situation, EMAD’s prediction may not be inline

with software developer’s expectation. EMAD, however, can still be helpful because

the software developer can manually analyze the frequency-lifetime diagram or the

frequency-lifetime ratio chart to understand the big picture. A recommended way

for further analysis is to do a comparative analysis of both two dimensional and one

dimensional datasets.

6.4 Summary of Contributions

In this chapter, we have presented the Excessive Dynamic Memory Allocations

Detector (EMAD), which is a tool and technique to detect excessive dynamic memory

allocations software performance anti-pattern using system execution traces. The

following are the key contributions of EMAD.

• An algorithm to construct a dynamic call graph of a program using an execution

trace, which may be missing routine exit messages corresponds to tail calls.

• Applying the K-means clustering algorithm [86] and an outlier detection tech-

niques to the data collected from DBI to detect excessive dynamic memory

allocations anti-pattern;

• First attempt, to the best of the authors knowledge, of a tool that can automat-

ically detect the excessive dynamic memory allocations software performance

anti-pattern; and

• First attempt, to the best of the authors knowledge, of using DBI to detect a

software performance anti-pattern.

125

7 CONCLUDING REMARKS

In this dissertation, we have described generalized techniques to support software

performance analysis using system execution traces. We preseneted three novel con-

tributions, which extend current state of the art of using system execution traces for

software performance analysis. We first presented the System Execution Trace Adap-

tation Framework (SETAF). SETAF enables software testers to write adaptation

specification and then provides a framework to use those adaptation specifications

with our software performance analysis tool called UNITE. We have also described

in detail why such an adaption is required. Second, we described DMAC (Dataflow

Model Auto Constructor), which is a tool and a technique to auto-construct dataflow

models from system execution traces. DMAC uses an iterative frequent sequence

mining technique to identify abstract event types from system execution traces and

uses an evidence theory based algorithm to detect causality relationships among ab-

stract event types. We then described EMAD an approach for detecting dynamic ex-

cessive memory allocation software performance anti-pattern using execution traces

generated from dynamic binary instrumentation. We have shown the applicability of

SETAF,DMAC and EMAD by describing the results of applying them to several real

world open source software projects.

The presented techniques do not require source code of the system to be available

and are not tightly coupled to particular system architectures. Moreover, the pro-

posed techniques use non-intrusive system execution traces. Software developers or

testers do not need to modify the source code or the binary artifacts of the systems.

The following is a summary of lessons learned from the research work presented in

this dissertation and some future research directions.

126

• Complex software systems, such as distributed systems can easily generate sys-

tem execution traces that are quite large. Therefore analyzing them manually

to create adaptation specifications is hard. Although DMAC provides a way to

auto-construct dataflow model, adaptation specifications in SETAF are created

manually. Therefore, techniques need to be developed to assist in locating adap-

tation patterns from execution traces and generating adaptation specifications.

• Adaptation specification size does not have much impact on evaluation time

of performance analysis. As learned from the performance comparisons of the

compiled and interpreted adapters in SETAF, total evaluation time depends on

the number of log messages and the size of the dataflow model (i.e., processing

time).

• As stated above, system testers have to manually analyze the dataflow models

and write the SETAF adaptation specifications. The performance analysis re-

sults from UNITE and SETAF therefore cannot be guaranteed if testers do not

analyze the model correctly and write a specification correctly. Although this

is true, the focus of SETAF is to provide the framework for writing adaptation

specifications, and support UNITE when analyzing system execution trace.

• Min-sup value plays an important role in log format mining process, when auto-

constructing dataflow models. Our log format mining process is based on the

user provided min-sup value. New parameterless sequence mining approaches

have been proposed by the data mining research community [99,100]. Therefore,

future research can focus on using these new algorithms to improve DMAC’s

log format mining process.

• Domain-knowledge is important when constructing dataflow models. We ob-

served that causality mining should not be dependent on only time and variable

evidences. This is because the absence or presence of either evidence does not

necessarily imply two log formats are—or are not—causally related. Time and

127

variable evidences only increases/decreases confidence levels about the causal

relationships. Future work therefore includes developing different techniques for

interpreting the user-level domain-specific evidence into DMAC-level domain-

specific evidence so it can be better integrated into the dataflow model auto-

construction process.

• When auto-constructing dataflow models stopping criteria for the iterative min-

ing process is important. Because DMAC finds more log formats as the number

of iterations increases. This, however, may lead to incorrectly identifying vari-

able parts as static parts. In some cases, the min-sup value does not decrease

during sub-sequent iterations, which is a good indicator of coverage for the

auto-generated dataflow model. Future work therefore includes investigating

improved techniques for stopping the iterative mining process.

• One assumption DMAC has about the system execution trace is that there are

no circular dependencies between log formats. This, however, is not always

possible with some of the system execution traces. A circular dependency in

the system execution trace may capture very important information such as

deadlocks of the system execution. Future research therefore will investigate

applying DMAC to system execution traces that have circular dependencies

between its log formats.

• In EMAD, our analysis is based on data collected using DBI, and DBI can

be used to collect lots of useful information related to an executing program at

different granularities. For example, DBI frameworks like Pin allow us to gather

information related to routine instructions and program locks. The also allow us

to replace routine calls at runtime. This information and functionality can then

be used to analyze behavioral aspects of software performance anti-patterns at

runtime. As future work, we are planning to continue using DBI to detect other

software performance anti-patterns [27], such as God Class, Single Lane Bridge,

128

and Circuitous Treasure Hunt. We believe this approach will improve current

state of the art in detecting software performance anti-patterns.

• Although K-means clustering has yielded positive results in EMAD experiments,

we have not studied extensively the role clustering algorithms in relation to this

problem. Moreover, there are other clustering algorithms [101] that perform

better than the K-means algorithm when analyzing noisy data. Future research

therefore should investigate comparing the results of different clustering algo-

rithms in the context of the excessive dynamic memory allocations problem.

• EMAD’s current technique works only with C/C++ software applications. Pro-

grams written in interpreted languages like Java, PHP, PERL have different

memory management schemes when compared to C/C++. Moreover, these

languages are typically run on virtual machines, and not directly on hardware

like C/C++ software applications. Future research therefore will focus on ap-

plying EMAD to software applications written from interpreted programming

languages to investigate if it is possible to uncover any evidence of excessive

dynamic memory allocations.

• As the execution traces become larger both EMAD’s and DMAC’s analysis

times grow from minutes to hours. We experienced this specially when building

the intermediate models, such as dataflow models and call graphs from the exe-

cution traces. Therefore, it is important to parallelize the algorithms proposed

in DMAC and EMAD techniques to speed up the analytical process.

The algorithms, analytics, and techniques described in this dissertation are avail-

able in open-source format. SETAF and DMAC has been integrated into CUTS dis-

tribution, which can be downloaded from github.com/SEDS/CUTS. EMAD has been

integrated into the Pin++ distribution, which can be downloaded from github.com/

SEDS/PinPP.

REFERENCES

129

REFERENCES

[1] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Under-
standing and detecting real-world performance bugs. ACM SIGPLAN Notices,
47(6):77–88, 2012.

[2] M. Geimer, F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker, and B. Mohr.
The scalasca performance toolset architecture. Concurrency and Computation:
Practice and Experience, 22(6):702–719, 2010.

[3] F. Wolf and B. Mohr. Automatic performance analysis of hybrid MPI/OpenMp
applications. Journal of Systems Architecture, 49(10):421–439, 2003.

[4] B. Wylie, F. Wolf, B. Mohr, and M. Geimer. Integrated runtime measurement
summarization and selective event tracing for scalable parallel execution per-
formance diagnosis. Applied Parallel Computing: State of the Art in Scientific
Computing, pages 460–469, 2007.

[5] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
ACM Sigplan Notices, volume 40, pages 190–200, ACM, 2005.

[6] Reima Piilil Erkki Salonen. Find the bug, Fix the bug, Do it fewer times
(TimeToPic). http://www.timetopic.net/Pages/default.aspx, 2012.

[7] K. Nagaraj, C. Killian, and J. Neville. Structured comparative analysis of
systems logs to diagnose performance problems. In Symposium on Networked
Systems Design and Implementation. USENIX Association, pages 26–26, 2012.

[8] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging in the
large via mining millions of stack traces. In Proceedings of the 2012 International
Conference on Software Engineering, pages 145–155, IEEE Press, 2012.

[9] James H. Hill, Hamilton A. Turner, James R. Edmondson, and Douglas C.
Schmidt. Unit Testing Non-functional Concerns of Component-based Dis-
tributed Systems. In Proceedings of the 2nd International Conference on Soft-
ware Testing, Verification, and Validation, pages 406–415, Denver, Colorado,
apr 2009.

[10] James H. Hill. Context-based Analysis of System Execution Traces for Validat-
ing Distributed Real-time and Embedded System Quality-of-Service Properties.
In Proceedings of 16th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), pages 92–101, Macau,
P.R.C., August 2010.

130

[11] A. Mos, J. Murphy, et al. Performance monitoring of Java component-oriented
distributed applications. In Proceedings of 9th IEEE International Conference
on Software, Telecommunications and Computer Networks (SoftCOM), pages
9–12, 2001.

[12] D. Mania, J. Murphy, and J. McManis. Developing performance models from
non-intrusive monitoring traces. In Proceedings of Information Technology and
Telecommunications (IT&T), 2002.

[13] T. Parsons, A. Mos, and J. Murphy. Non-intrusive end-to-end runtime path
tracing for J2EE systems. In Proceedings of IEEE Software, 153(4):149, 2006.

[14] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan.
Mining Console Logs for Large-scale System Problem Detection. In Proceedings
of the 3rd conference on Tackling Computer Systems Problems with Machine
Learning Techniques, SysML’08, pages 4–4, Berkeley, CA, USA, 2008.

[15] Meiyappan Nagappan, Kesheng Wu, and Mladen A. Vouk. Efficiently extracting
operational profiles from execution logs using suffix arrays. In Proceedings of
the 20th IEEE International Conference on Software Reliability Engineering,
ISSRE’09, pages 41–50, 2009.

[16] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. Anal-
ysis of a Very Large Web Search Engine Query Log. Special Interest Group on
Information Retrieval (SIGIR) Forum, 33:6–12, September 1999.

[17] Y. Yin, S. Byna, H. Song, X.H. Sun, and R. Thakur. Boosting Application-
Specific Parallel I/O Optimization Using IOSIG. In Symposium on 12th
IEEE/ACM Cluster, Cloud and Grid Computing (CCGrid), pages 196–203,
2012.

[18] K Mani Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer Systems
(TOCS), 3(1):63–75, 1985.

[19] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Ying Zou,
and Parminder Flora. Mining performance regression testing repositories for
automated performance analysis. In Proceedings of the 10th IEEE International
Conference on Quality Software (QSIC), pages 32–41, 2010.

[20] Haroon Malik, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Parminder
Flora, and Gilbert Hamann. Automatic comparison of load tests to support
the performance analysis of large enterprise systems. In Proceedings of the
14th IEEE European Conference on Software Maintenance and Reengineering
(CSMR), pages 222–231, 2010.

[21] Haroon Malik, Hadi Hemmati, and Ahmed E Hassan. Automatic detection of
performance deviations in the load testing of large scale systems. In Proceedings
of the IEEE International Conference on Software Engineering, pages 1012–
1021. IEEE Press, 2013.

[22] Zhen Ming Jiang, Ahmed E Hassan, Gilbert Hamann, and Parminder Flora.
Automated performance analysis of load tests. In Proceedings of the IEEE In-
ternational Conference on Software Maintenance (ICSM), pages 125–134, 2009.

131

[23] Manjula Peiris, James H. Hill, Jorgen Thelin, Sergey Bykov, Gabriel Kliot,
and Christian Konig. PAD: Performance anomaly detection in multi-server
distributed systems. In Proceedings of the 7th IEEE International Conference
on Cloud Computing, Alaska, USA, June 2014.

[24] Vittorio Cortellessa, Antinisca Di Marco, and Catia Trubiani. Performance
antipatterns as logical predicates. In Proceedings of the 15th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS), pages
146–156, IEEE, 2010.

[25] Jing Xu. Rule-based automatic software performance diagnosis and improve-
ment. Performance Evaluation, 67(8):585–611, 2010.

[26] David Detlefs, Al Dosser, and Benjamin Zorn. Memory allocation costs in large
C and C++ programs. Software: Practice and Experience, 24(6):527–542, 1994.

[27] Connie U. Smith and Lloyd G. Williams. Software performance antipatterns.
In Workshop on Software and Performance, pages 127–136, 2000.

[28] Connie U. Smith and Lloyd G. Williams. More new software performance
antipatterns: Even more ways to shoot yourself in the foot. In Computer Mea-
surement Group Conference, pages 717–725, 2003.

[29] Apache Software Foundation. The Apache HTTP Server Project. http://
httpd.apache.org/.

[30] Free Software Foundation. GCC, the GNU Compiler Collection. http://gcc.
gnu.org/.

[31] PHP Group. PHP. http://php.net/.

[32] Harvey W Gunther. Websphere application server development best practices
for performance and scalability. IBM WebSphere Application Server Standard
and Advanced Editions–White paper, 2000.

[33] Jafri Din, Anas Bassam Al-Badareen, and Yusmadi Yah Jusoh. Antipatterns
detection approaches in object-oriented design: A literature review. In 7th
International Conference on Computing and Convergence Technology (ICCCT),
pages 926–931, IEEE, 2012.

[34] Catia Trubiani and Anne Koziolek. Detection and solution of software perfor-
mance antipatterns in palladio architectural models. In ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE), pages 19–30, 2011.

[35] Catia Trubiani and Anne Koziolek. Detection and solution of software perfor-
mance antipatterns in palladio architectural models. In ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE), pages 19–30, 2011.

[36] M. Cinque, D. Cotroneo, and A. Pecchia. A logging approach for effective
dependability evaluation of complex systems. In Proceedings of the 2nd Inter-
national Conference on Dependability (DEPEND), pages 105–110, Washington,
DC, USA, 2009. IEEE Computer Society.

132

[37] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. Perracotta: Mining temporal API rules from imperfect traces. In Pro-
ceedings of the 28th international conference on Software Engineering (ICSE),
pages 282–291, New York, NY, USA, 2006. ACM.

[38] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution Anomaly De-
tection in Distributed Systems through Unstructured Log Analysis. In IEEE
International Conference on Data Mining, pages 149–158, 2009.

[39] Meiyappan Nagappan and Mladen A. Vouk. Abstracting log lines to log event
types for mining software system logs. In Proceedings of the 7th International
Working Conference on Mining Software Repositories (MSR 2010 Co-located
with ICSE), Cape Town, South Africa, May 2-3, 2010, pages 114–117, 2010.

[40] Hossein Safyallah and Kamran Sartipi. Dynamic analysis of software systems
using execution pattern mining. In Proceedings of the 14th IEEE International
Conference on Program Comprehension, pages 84–88, 2006.

[41] J.G. Lou, Q. Fu, Y. Wang, and J. Li. Mining dependency in distributed systems
through unstructured logs analysis. ACM Special Interest Group on Operating
Systems (SIGOPS) Operating Systems Review, 44(1):91–96, 2010.

[42] M. Fischer, J. Oberleitner, H. Gall, and T Gschwind. System evolution tracking
through execution trace analysis. In 13th International Workshop on Program
Comprehension (IWPC), pages 237–246, May 2005.

[43] S. Voigt, J. Bohnet, and J. Dollner. Object aware execution trace exploration. In
IEEE International Conference on Software Maintenance (ICSM), pages 201–
210, September 2009.

[44] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. ACM Sigplan Notices, 42(6):89–100, 2007.

[45] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86
executables. In Compiler Construction, pages 5–23. Springer, 2004.

[46] Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel Mid-
kiff, and Josep Torrellas. Accmon: Automatically detecting memory-related
bugs via program counter-based invariants. In Proceedings of the 37th an-
nual IEEE/ACM International Symposium on Microarchitecture, pages 269–
280. IEEE Computer Society, 2004.

[47] Gene Novark, Emery D Berger, and Benjamin G Zorn. Efficiently and precisely
locating memory leaks and bloat. In ACM Sigplan Notices, volume 44, pages
397–407. ACM, 2009.

[48] Xi Chen, Asia Slowinska, and Herbert Bos. Who allocated my memory? de-
tecting custom memory allocators in C binaries. In 20th Working Conference
on Reverse Engineering (WCRE), pages 22–31. IEEE, 2013.

[49] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating root-
cause diagnosis of performance anomalies in production software. In Proceedings
of the 10th USENIX conference on Operating Systems Design and Implementa-
tion, pages 307–320. USENIX Association, 2012.

133

[50] Aravind Menon, Jose Renato Santos, Yoshio Turner, G John Janakiraman,
and Willy Zwaenepoel. Diagnosing performance overheads in the xen virtual
machine environment. In Proceedings of the 1st ACM/USENIX International
conference on Virtual execution environments, pages 13–23. ACM, 2005.

[51] Matthew Hertz, Stephen M Blackburn, J Eliot B. Moss, Kathryn S. McKinley,
and Darko Stefanović. Generating object lifetime traces with merlin. ACM
Transactions on Programming Languages and Systems (TOPLAS), 28(3):476–
516, 2006.

[52] Guoqing Xu. Resurrector: A tunable object lifetime profiling technique for
optimizing real-world programs. In ACM SIGPLAN Notices, volume 48, pages
111–130. ACM, 2013.

[53] Nathan P Ricci, Samuel Z Guyer, and J Eliot B. Moss. Elephant tracks:
Portable production of complete and precise GC traces. ACM SIGPLAN No-
tices, 48(11):109–118, 2013.

[54] Trevor Parsons. A framework for detecting performance design and deployment
antipatterns in component based enterprise systems. In Proceedings of the 2nd
International Doctoral Symposium on Middleware, pages 1–5. ACM, 2005.

[55] F. E. Allen and J. Cocke. A program data flow analysis procedure. Communi-
cations of the ACM, 19:137–, March 1976.

[56] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns, Elements of Reusable Object-Oriented Software. Addison-Wesley, 1997.

[57] Sun Micro Systems. Java Servlet Specification . SUN, 3.0 edition, December
2009.

[58] Sun Micro Systems. Java Server Pages Specification . SUN, Version 2.1 edition,
May 2006.

[59] SUN Micro Systems. Java Messaging Service Specification. java.sun.com/
products/jms/, 2002.

[60] David Chappell. Enterprise Service Bus. OReilly, 2004.

[61] Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C. Schmidt,
and Aniruddha Gokhale. DAnCE: A QoS-enabled Component Deployment
and Configuration Engine. In Proceedings of the 3rd Working Conference on
Component Deployment (CD 2005), pages 67–82, Grenoble, France, November
2005.

[62] Object Management Group. Deployment and Configuration Adopted Submis-
sion. Object Management Group, OMG Document mars/03-05-08 edition, July
2003.

[63] Douglas C. Schmidt. The Adaptive Communication Environment (ACE).
www.cs.wustl.edu/∼schmidt/ACE.html, 1997.

[64] Douglas C. Schmidt. The Adaptive Communication Environment: An object-
oriented network programming toolkit for developing communication software.
In CiteSeer, pages 214–225, 1993.

134

[65] Manjula Peiris and James H. Hill. Auto-constructing dataflow models
from system execution traces. 16th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, June
2013.

[66] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In Proceedings of the 5th Inter-
national Conference on Extending Database Technology: Advances in Database
Technology, pages 3–17, 1996.

[67] Mohammed J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Se-
quences. Machine Learning Journal, 42(1/2):31–60, Jan/Feb 2001.

[68] P. Tzvetkov, X. Yan, and J. Han. TSP: Mining top-k closed sequential patterns.
Knowledge and Information Systems, 7(4):438–457, 2005.

[69] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21:558–565, July 1978.

[70] L.J. Mazlack. Causality recognition for data mining in an inherently ill defined
world. In International Joint Workshop on Soft Computing for Internet and
Bioinformatics, 2003.

[71] G. Shafer. A mathematical theory of evidence, volume 76. Princeton university
press Princeton, 1976.

[72] T. Manjula Peiris and James H. Hill. Adapting System Execution Traces
for Validation of Distributed System QoS Properties. In Proceedings of 15th
IEEE International Symposium on Object/Component/Service-oriented Real-
time Distributed Computing (ISORC), pages 162–171, Shenzhen, China, April
2012.

[73] Emery D Berger, Benjamin G Zorn, and Kathryn S McKinley. Oopsla 2002:
Reconsidering custom memory allocation. ACM SIGPLAN Notices, 48(4):46–
57, 2013.

[74] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Read-
ing, MA, 1995.

[75] Naouel Moha. Detection and correction of design defects in object-oriented de-
signs. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pages 949–950. ACM, 2007.

[76] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and ac-
cess errors. In In Proceedings of the Winter 1992 USENIX Conference. Citeseer,
1991.

[77] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In SIGPLAN Not., pages 89–100, June 2007.

[78] James H Hill and Dennis C Feiock. Pin++: An object-oriented framework for
writing pintools. In Proceedings of the 2014 International Conference on Gen-
erative Programming: Concepts and Experiences, pages 133–141. ACM, 2014.

135

[79] ISO/IEC. International Standard: Programming Languages - C++. Number
14882:1998(E) in ASC X3, September 1998.

[80] ANSI/ISO. ANSI/ISO Standard C. Number ISO/IEC 9899:2011, April 2011.

[81] Apache Software Foundation. Xerces-C++ XML Parser. http://xerces.
apache.org/xerces-c/.

[82] Barbara G. Ryder. Constructing the call graph of a program. IEEE Transac-
tions on Software Engineering, (3):216–226, 1979.

[83] Frank Eichinger, Klemens Böhm, and Matthias Huber. Mining edge-weighted
call graphs to localise software bugs. In Machine Learning and Knowledge
Discovery in Databases, pages 333–348. Springer, 2008.

[84] Intel Corporation. Pin 2.14 User Guide. https://software.intel.com/
sites/landingpage/pintool/docs/67254/Pin/html/.

[85] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing
high-performance memory allocators. In ACM SIGPLAN Notices, volume 36,
pages 114–124. ACM, 2001.

[86] John A. Hartigan and Manchek A. Wong. Algorithm as 136: A k-means clus-
tering algorithm. Applied statistics, pages 100–108, 1979.

[87] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8):651–666, 2010.

[88] Chris Fraley and Adrian E. Raftery. How many clusters? which clustering
method? answers via model-based cluster analysis. The computer journal,
41(8):578–588, 1998.

[89] Catherine A. Sugar and Gareth M. James. Finding the number of clusters in a
dataset. Journal of the American Statistical Association, 98(463), 2003.

[90] Victoria J. Hodge and Jim Austin. A survey of outlier detection methodologies.
Artificial Intelligence Review, 22(2):85–126, 2004.

[91] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent
Licata. Detecting outliers: Do not use standard deviation around the mean,
use absolute deviation around the median. Journal of Experimental Social Psy-
chology, 49(4):764–766, 2013.

[92] Apache Software Foundation. Apache Axis2/C. http://axis.apache.org/
axis2/c/core/index.html.

[93] Srinath Perera, Chathura Herath, Jaliya Ekanayake, Eran Chinthaka, Ajith
Ranabahu, Deepal Jayasinghe, Sanjiva Weerawarana, and Glen Daniels. Axis2,
middleware for next generation web services. In International Conference on
Web Services, 2006 (ICWS’06)., pages 833–840. IEEE, 2006.

[94] Muhammad Imran and Helmut Hlavacs. Provenance in the cloud: Why and
how. In 3rd International Conference on Cloud Computing, GRIDs, and Vir-
tualization, pages 106–112, 2012.

136

[95] Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale, Nanbor Wang, and
Christopher Gill. TAO: A Pattern-Oriented Object Request Broker for Dis-
tributed Real-time and Embedded Systems. IEEE Distributed Systems Online,
3(2), February 2002.

[96] Microsoft Cooperation. Northwind database. https://northwinddatabase.
codeplex.com/.

[97] SQLite. Release History. http://www.sqlite.org/changes.html.

[98] Stan Salvador and Philip Chan. Determining the number of clusters/segments
in hierarchical clustering/segmentation algorithms. In 16th IEEE International
Conference on Tools with Artificial Intelligence, 2004 (ICTAI 2004), pages 576–
584. IEEE, 2004.

[99] Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. Mining top-k fre-
quent closed patterns without minimum support. In Proceedings of the IEEE
International Conference on Data Mining 2002 (ICDM 2002), pages 211–218.
IEEE, 2002.

[100] Maged El-Sayed, Carolina Ruiz, and Elke A. Rundensteiner. Fs-miner: Efficient
and incremental mining of frequent sequence patterns in web logs. In Proceed-
ings of the 6th annual ACM international workshop on Web information and
data management, pages 128–135. ACM, 2004.

[101] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of doc-
ument clustering techniques. In Knowledge Discovery and Data mining (KDD)
workshop on text mining, volume 400, pages 525–526. Boston, 2000.

[102] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and
Jorgen Thelin. Orleans: Cloud computing for everyone. In Proceedings of the
2nd ACM Symposium on Cloud Computing, page 16. ACM, 2011.

[103] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):107–113, 2008.

[104] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans
Andersen. Fingerprinting the datacenter: Automated classification of perfor-
mance crises. In Proceedings of the 5th European conference on Computer sys-
tems, pages 111–124. ACM, 2010.

[105] Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and
David A. Patterson. Characterizing, modeling, and generating workload spikes
for stateful services. In Proceedings of the 1st ACM symposium on Cloud com-
puting, pages 241–252. ACM, 2010.

[106] Microsoft. Available Chart Types. http://office.microsoft.com/en-us/
excel-help/available-chart-types-HA010342187.aspx.

[107] Richard C. Sprinthall and Stephen T. Fisk. Basic statistical analysis. Prentice
Hall Englewood Cliffs, NJ, 1990.

[108] David C. Hoaglin, Frederick Mosteller, and John Wilder Tukey. Understanding
robust and exploratory data analysis, volume 3. Wiley New York, 1983.

137

[109] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in dis-
tributed real-time systems. IEEE Transactions on Computers, 100(8):933–940,
1987.

[110] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementation of vector
clocks. Information Processing Letters, 43(1):47–52, 1992.

[111] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In ACM SIGCOMM Computer Communication Review, volume 31, pages 149–
160. ACM, 2001.

[112] Haroon Malik, Hadi Hemmati, and Ahmed E. Hassan. Automatic detection of
performance deviations in the load testing of large scale systems. In Proceedings
of the 2013 International Conference on Software Engineering, pages 1012–
1021. IEEE Press, 2013.

[113] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[114] C.U. Smith and L.G. Williams. New Software Performance Antipatterns: More
Ways to Shoot Yourself in the Foot. In (Computer Measurement Group (CMG),
volume 2, pages 667–674, Dallas, TX, 2003.

[115] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[116] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using au-
tomatic anomaly detection. In Proceedings of the 24th International Conference
on Software Engineering, pages 291–301. ACM, 2002.

APPENDICES

138

APPENDIX A PAD: PERFORMANCE ANOMALY DETECTION IN

MULTI-SERVER DISTRIBUTED SYSTEMS

This appendix presents our work on analyzing performance counter data in system

execution logs to detect performance anomalies in multi-server distributed systems.

Performance anomalies in multi-server distributed systems can be in the form of

under-achievements of performance goals such as low throughput or high latency. In

such situations, system execution logs might not contain direct clues (e.g., error mes-

sages or exceptions) that can be used as a starting point for analysis. Instead, they

usually include performance counters that track different aspects of system perfor-

mance.

Developers and testers typically analyze the performance counters to find system

performance anomalies and reason about performance characteristics. Multi-server

distributed systems, however, contain hundreds of servers each constantly generating

performance data—making manual analysis error prone and time consuming. It is

therefore essential to develop techniques and build automatic tools for performance

analysis and diagnostics of large multi-server distributed systems using the perfor-

mance data generated during execution.

Therefore, to diagnosis performance anomalies in distributed multi-server systems,

we have developed a tool called Performance Anomaly Detector (PAD). The objec-

tives of PAD are: (1) give distributed system developers insights about distributed

system performance from collected performance data; (2) minimize developer time

required to analyze large amounts of performance data generated across hundreds to

thousands of servers; and (3) assist system developers and administrators in trou-

bleshooting performance related issues and finding root causes. To achieve the above

goals PAD provides:

139

1. Summary of distributed system performance data using visualizations and sum-

mary statistics ;

2. Threshold analysis for performance counters;

3. Correlation analysis for automatic detection of relationships between perfor-

mance counters; and

4. Comparative analysis for automatic detection of anomalous performance coun-

ters.

The capabilities listed above enable a powerful combination of user-driven naviga-

tion analysis and automatic analysis. In user-driven navigation analysis, the person

troubleshooting the system applies expert knowledge in a semi-manual process as-

sisted by the tool. When this process does not lead to successful problem resolution,

automatic correlation and comparative analysis techniques are used to automatically

try to find clues for performance problems.

A.1 Motivation : The Orleans Cloud Computing System

The motivation for developing PAD started with our experience diagnosing the

performance of the Orleans system [102]. Orleans is a programming model and run-

time for large-scale distributed cloud computing services. Orleans is based on an

actor programming model. Actors in Orleans are virtual and isolated computation

entities that use asynchronous message passing to communicate. The actor model

is suitable for interactive request-reply applications (as opposite to MapReduce [103]

style models that are suitable for offline batch processing) and is highly scalable due

to the independent nature of actors and their interactions.

Although the main design goal of Orleans is to simplify the programming model

for cloud applications while providing scalability and reliability, providing efficiency

is not less important for cloud applications that pay for consuming cloud resources.

It is thus critical for Orleans to provide good performance. To ensure Orleans and

its applications are executing within their performance requirements, it is necessary

140

to continually track its performance. When performance requirements are not met,

it is necessary to identify and resolve performance bottlenecks in a timely manner.

The need for PAD emerged since the early stages of the Orleans project when we

occasionally faced non-trivial bugs that required manually looking through large sets

of execution logs—literally searching for a needle in a haystack. We describe two such

examples and specific data exploration techniques we used.

A.1.1 Stuck Random Number Generator

On one occasion, our regression performance test running on a cluster of servers

failed after running fine for several hours. The external symptoms were lower than

expected throughput and a large number of failed requests. We started by scanning

and grepping through the logs with scripts to find a point in time where the number

of failed requests suddenly started to grow. We then continued searching for the root

cause.

After a laborious process of comparing performance counters across different

servers, we discovered that some performance counters started to significantly di-

verge starting roughly at the time when the requests began timing out. In particular,

there was one server that received a much larger number of requests than the other

servers. Looking at the logs of this server, we consequently discovered that a dispro-

portionally large number of actors were placed on it compared to other servers. This

imbalance kept growing as the time advanced.

In this specific test, the actors were randomly placed on servers and the expecta-

tion was the number of actors (and as a result also the number of requests) should be

roughly equal across all servers. We now had the evidence that from a certain point

on, disproportionally more and more actors were placed on one server only. That

lead us to look closer into the placement logic. After a thorough code analysis we dis-

covered that we were using the random number generator (RNG) in a thread-unsafe

manner. C# RNG is not thread-safe and, if accessed simultaneously by multiple

141

threads, can get “stuck” returning zero forever. This caused actors to be placed on

one server (with index zero) from the moment the RNG got stuck. The fix was to

protect access to RNG with a lock.

A.1.2 Leaking Buffer Pool

In this occasion, we observed decreasing throughput and growing requests latency.

By using similar manual techniques like in the RNG case above, we were able to corre-

late the performance degradation with increasing memory pressure. At approximately

the same time as the performance started to degrade, the amount of available mem-

ory in the system started to shrink and the overhead of garbage collection activities

started to increase. This lead us to suspect a memory leak. Although Orleans is

written in a managed language, it uses a custom buffer pool for messages aimed at

minimizing the rate of memory allocations and reducing the pressure on the memory

subsystem and the garbage collector. Consequently, we found a bug in our buffer pool

implementation that caused code acquiring the buffer from the pool to occasionally

not release it back to the pool (i.e., leaking memory).

The above two bugs helped us define a number of requirements for PAD: (1) ability

to visualize performance counters across time and easily find points in time when val-

ues start diverging from the norm; (2) automatically find counters that exhibit large

variance across different servers (Comparative Analysis within a dataset); (3) auto-

matically correlate one counter that we knew to be a symptom of a problem to other

counters that could potentially lead to the root cause of the anomaly (Correlation

Analysis).

We have used Orleans performance tests data to validate the applicability of our

tool. Current applications of PAD show that it is capable of supporting root cause

analysis of performance problems in Orleans. It is important to note that the appli-

cability of the techniques we have developed as well as the PAD tool itself are not

142

limited to Orleans and can be applied to any multi-server distributed system which

generates performance data.

A.2 Performance Counter Data and Challenges

This section describes about performance counter data and challenges that need

to be addressed when analyzing them for performance anomaly detection.

A.2.1 Performance Counters

When run in production, multi-server distributed system performance is closely

monitored. The collected performance data is stored in execution logs in the form

of performance counters [20]. Performance counters track specific system states or

resources during execution, such as CPU, memory, network, and application/frame-

work specific information. Typical large production multi-server distributed systems

run on clusters consisting of hundreds to thousands of servers. Each server periodi-

cally (typically every couple of minutes) tracks a large number of counters (hundreds

in [20]) and stores them in the log.

In Orleans, a typical deployment consists of tens to hundreds of servers each

tracking about 200 counters every five minute. The log is either stored separately for

each server in its local file system or in a shared cloud storage, such as Azure Table

storage1. Table A.1 provides examples of different classes of performance counters in

Orleans.

Table A.1.: Examples of different classes of performance counters in Orleans

Type Examples
Orleans Runtime CPU usage, Percentage of time in garbage collection
Message Queues Lengths of the send and receive message queues
Messaging Number of total messages sent and received
Actors Number of actors on a server

1http://www.windowsazure.com/en-us/develop/net/how-to-guides/table-services/

143

A.2.2 Challenges in Analyzing Performance Counter Data

The approaches used in PAD are based on the above mentioned performance

diagnosis techniques. In addition, we have tackled a number of unique challenges in

our setting that we detail below.

1. Large data volumes. As already mentioned, multi-server distributed systems

generate a large amount of performance data, which is impossible to analyze

manually. Navigating the vast amount of data is also hard as it is not easy to

decide how to slide-and-dice it: (1) what set of performance counters to consider

and (2) whether to look at the performance counters across different servers at

a particular time, particular server across different times, or both.

Developers sometimes have an idea, or clue, about the source of the problem. In

such cases, they can manually inspect the relevant counters. For most perfor-

mance issues, however, it is hard to decide what counters are relevant. Incorrect

selection can cost valuable developer time at best and/or lead to wrong conclu-

sions at worse. It is therefore important to inspect the performance counters

that are more closely related to the problem under investigation.

2. Insufficient training data. One approach for performance diagnosis is to clas-

sify the counters into performance crisis situations, as done in [104, 105]. This

kind of classification requires many different datasets and known labels (perfor-

mance crisis situations) in order to apply machine learning based classification

techniques. Such labeled datasets, however, are not always available. For exam-

ple, although Orleans has been used in several projects within Microsoft, we did

not have access to any labeled historical data. Because the labeled performance

crisis data was unavailable, we could not apply machine learning classification

techniques.

3. Time correlation. A distributed nature of the systems we consider poses a ma-

jor challenge when correlating data collected from different servers across time.

Servers are located on different physical machines, each having a different physi-

144

cal clock that may not be always synchronized. Unfortunately, some performance

counters are sensitive to time and therefore even a 1 second approximation may

give incorrect results.

A.3 PAD-Assisted Investigation

In this section, we describe how PAD assists developers in finding performance

problems and anomalies. Developers start the troubleshooting process when they

suspect that a performance related problem has occurred. This can be either deviation

from explicit performance requirements like Service Level Agreements (SLA), implicit

internal implementation requirements (e.g., CPU time) or deviation from normal

performance learned from previous executions.

The developer troubleshooting the system is engaged in a PAD-assisted investi-

gation process, which combines their expert knowledge, manual steps, and automatic

anomaly detection techniques to find performance problems and its root cause(s).

PAD helps developers in every step of this process, which typically involves the fol-

lowing five steps: (1) collecting the performance counters data; (2) visualizing the

data; (3) threshold analysis; (4) correlation analysis; and (5) comparative analysis.

Steps 1, 4, and 5 are completely automated by PAD, while steps 2 and 3 are man-

ual steps assisted by PAD. We now describe each step in a typical troubleshooting

workflow session in detail.

Step 1 - Performance Data Collection. The developer starts by directing

PAD to gather relevant performance counter data. The developer only needs to

provide the location of the log files, or the Azure storage account that holds the

logs, and the PAD automatically downloads the data, parses it, and stores it in an

in-memory compact data structure.

Step 2 - Data Visualization. After data is gathered, the developer typically

wants to visualize it. Visualizing the data can sometimes reveal the problem quickly

without requiring further complicated analysis. System developers typically suspect

145

certain performance counters, which they prefer to analyze first. The selection of the

performance counters is based on developer’s knowledge about the system, and the

performance diagnosis issue of interest. For example, if the developer suspects that

the system is experiencing memory pressure, the developer can use PAD to visualize

and summarize performance counters related to garbage collection or memory usage.

PAD provides three different visualizations for different data views:

 1
 2

 3
 4

 5
 6 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5 50

 100

 150

 200

 250

 300

C
ou

nt
er

 v
al

ue
s

Server
Time

C
ou

nt
er

 v
al

ue
s

Figure A.1.: Detailed view

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 5 10 15 20 25

C
ou

nt
er

 v
al

ue
s

Server

Max

Min
Avg

Figure A.2.: Server view

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 10 20 30 40 50 60 70

C
ou

nt
er

 v
al

ue

Time point

Figure A.3.: Time view

1. Detailed view. In the detailed view, PAD provides a 3D data plot. A 3D plot

allows the developer to visualize and compare values both spatially (across all

146

servers) and temporally (across time). Figure A.1 illustrates an example plot

produced by PAD for one performance counter. The X-axis represents server

name, the Y-axis represents time, and the Z-axis represents the performance

counter value. Any point in the plot captures the value of a performance counter

at a particular time and in a particular server. The detailed view provides

developers with overall trend information based on time and location. It can

also prompt developers to perform further analysis when there are spikes (or

anomalies) in the plot.

2. Server view. In the server view PAD visualizes summary statistics (i.e., av-

erage, median, standard deviation, minimum, maximum, and quantiles) across

time for a selected performance counter in each server. Figure A.2 illustrates an

example of a server view graph, which is called a stock type chart [106], because it

shows the average, maximum and minimum values of the performance counter

in each server. This view allows developers to quickly compare performance

counter summary statistics across all servers.

3. Time view. In the time view, PAD visualizes summary statistics (i.e., av-

erage, median, standard deviation, minimum, maximum, and quantiles) across

all servers for a selected performance counter at each time point. Figure A.3

illustrates an example of a time view graph. The time points are calculated

with respect to the start time of system execution. This view allows develop-

ers to quickly compare performance counter summary statistics across all times

regardless of the server.

By providing visualizations in three different views developers are able to gain

more insight about system performance. For example, spike in the server view might

be an indication of a hot server that performs more work than others. This allows

developers to reduce the problem space into one particular server and concentrate

further investigations at this server (like in the case in Section A.1.1)—eventually

saving time. The visualization may not reveal any insights, or may trigger further

147

analysis, including the need to look for other counters or compare certain counter

values to predefined thresholds.

Step 3 - Threshold Analysis In threshold analysis, developers define threshold

values for a given counter. PAD compares counter values (or their statistical prop-

erties, i.e., means, medians, and quantiles) against the predefined threshold values.

Performance counters that violate their threshold are reported back. Developers de-

fine thresholds using an XML configuration file. Listing A.1 illustrates an example

for configuring thresholds for different performance counters.

1 <ThresholdConfig >

2 <PerformanceCounter Name=" Runtime.GC.PercentOfTimeInGC">

3 <Rule AppliesTo =" DetailView">

4 <Statistic >Any </Statistic >

5 <ExpectedValue >15</ExpectedValue >

6 <ComparisonOperator >GreaterThan </ComparisonOperator >

7 </Rule >

8 </PerformanceCounter >

9 <PerformanceCounter Name=" MessageQueue.NumQueuedMsgs">

10 <Rule AppliesTo =" TimeView">

11 <Statistic >Average </Statistic >

12 <ExpectedValue >5</ExpectedValue >

13 <ComparisonOperator >GreaterThan </ComparisonOperator >

14 </Rule >

15 </PerformanceCounter >

16 </ThresholdConfig >

Listing A.1: Example threshold analysis configuration file.

Developers can configure thresholds that apply to the detailed, server, or time view

of each performance counter. Developers can specify what statistical property (e.g.,

mean, median) to apply the rule to, or that the threshold should be compared with

148

all values of the distribution. Likewise, developers can specify an expected percentage

with respect to a statistical property. For example, the developer can ask to find all

the occurrences of a particular performance counter exceeding more than X% from

the median. Finally, threshold analysis in PAD supports Z-score [107] comparisons

for each value in the distribution. This helps developers detect outliers when the

values are distributed according to a normal distribution.

Threshold analysis is usually used in combination with expert knowledge related

to acceptable range of values for certain counters. For example, the developer may

want to check if the time spent in garbage collection (GC) has exceed 15% of the CPU

time at any point in time. Listing A.1 illustrates an example configuration file with

two rules: (1) find any time and server that the value of the PercentOfTimeInGC

counter was greater than 15% (“any in the detailed view”) and (2) find any time that

the average value of the NumQueuedMsgs counter across all servers was greater than

5 (“average in the time view”).

Step 4 - Correlation Analysis Using the first three steps above, the developers

may be able to find what counters behave abnormally. This, however, may not

facilitate root cause analysis. For example, imagine the developer has established

that a certain server spends more than 15% in GC. The question now is why? What

has happened in the system to cause this undesired behavior? The developer may

not have a direct answer to this question and may not know the exact counter to

look for. In such a situation, the developer can use correlation analysis to find the

counters responsible for the root of the problem.

In correlation analysis PAD detects a set of counters that can explain the dis-

tribution of another performance counter. PAD supports two correlation analysis

techniques:

1. 1) Pearson Coefficient. The Pearson coefficient is used to check whether any

two performance counters have a linear correlation [107]. Pearson coefficient

calculates a value in the range [-1, 1]. The closer this value to either endpoint,

the greater the correlation between the two performance counters.

149

2. 2) Spearman Coefficient. The Spearman coefficient is a measure of how well

two counters can be described using a monotonic function [107]. Spearman coef-

ficient also provides a value in the range [-1, 1]. When the value is close to either

endpoint, the two performance counters can be explained as a monotonically

increasing function of the other.

PAD finds all explanatory counters that have a correlation value greater than some

X (usually 0.9 in our usage) with the performance counter of interest using Pearson

and Spearman correlations. This enables system developers to narrow down reasons

for abnormal values in certain performance counters.

An example of using correlation analysis is when the time in GC exceeded the

threshold of 15%, the tool found that this spike in GC activity correlated to a spike

in a number of queued requests in this server. The server in question was receiving

more load than the other servers and failed to keep up. This provided developers

with enough information to look into the reason for load imbalance, and helped the

developers identify the root cause.

Step 5 - Comparative Analysis Sometimes the developer may not know what

counters to start with. In such situations, using visualization or threshold analysis

might be too time consuming, provide too much data that is hard to analyze, and

have a low chance of finding the root cause. In such cases PAD can help automatically

detect anomalous counters based on statistical properties, such as average, median

and quantiles, that deviate from other “normal” behavior of this counter.

PAD finds abnormal performance counters using comparative analysis [108]. Com-

parative analysis is a form of exploratory data analysis technique where statistical

properties of different viewpoints of a performance counter dataset are compared

against each other. More specifically, PAD implements the following comparative

analysis methods:

1. Comparative analysis within a dataset. In this analysis, PAD uses a given

dataset to find performance counters that have abnormal statistical properties

either in specific servers, or at different time points.

150

PAD uses Equation A.1 for comparative analysis within a dataset.

X =

∣∣GlobalMedian− LocalMedian
∣∣

GlobalStandardDeviation
(A.1)

In this equation, we use a global median as a reference point to compare with a

local median. A local median is a statistical property of the distribution of the

performance counter in a server, or at a time point. PAD uses medians instead

of averages because they are more robust to noisy data [104] (high and low fluc-

tuations of a performance counter will have little impact on the median). Both

metrics will therefore remain stable enough to use as a reference for comparison.

By taking the different between the global and local medians, PAD calculates a

local counter’s deviation with respect to its global value. Finally, PAD normal-

izes the calculated deviation by the standard deviation of the global distribution

to account for the fact that different performance counters can have different

ranges of values. This provides PAD with a normalized method for comparing

different counters that would be hard to compare using raw values.

2. Comparative analysis between datasets. PAD can also be used to compare

different datasets, such as different regression test runs of the same application

or different system releases. In this analysis, the developer specifies the reference

(“correct”) dataset, and PAD attempts to detect suspicious performance coun-

ters in the anomalous dataset. PAD uses Equation A.2 for comparative analysis

between datasets.

X =

∣∣RefDatasetMedian−DatasetMedian
∣∣

RefDatasetStdDev
(A.2)

As illustrated in Equation A.2, PAD uses global medians and standard devia-

tions of each performance counter in each dataset to calculate the deviation value

X. PAD automatically performs the comparative analysis for all counters (the

developer does not need to specify specific counters as in the threshold or com-

151

parative analysis). Once the suspicions counters are found, the developer can

use PAD for visualization, threshold, and correlation analysis of the performance

counters PAD has identified.

A.4 Implementation of PAD

Figure A.4 shows the overall workflow of PAD and its internal modules. PAD can

Figure A.4.: Design of PAD.

either collect data from Azure storage or log files. The data collection component is

decoupled from the analysis components so that new data sources can be integrated

without changing the analysis modules. After collecting the data, PAD builds an in

memory model that is used by all analysis modules.

PAD (by default) implements the analysis techniques described in the previous

section. Developers can also extend it with their own analysis techniques through

an extensible analysis framework. The different features of PAD (e.g., how to collect

data, what type of analysis to use, and how to use visualization) are easily config-

urable via XML. Last, the visualization component of PAD is based on automatically

generating Excel charts for selected set of performance counters and uses C# COM

interface of Microsoft Excel.

Time correlation. As specified in Section A.2.2, another challenge in analyzing

the performance of Orleans is correlating the counters across different servers at dif-

ferent points in time. This is a common problem in distributed systems, where there

152

is no global clock shared by all servers and where per-server clocks may not be fully

synchronized [109].

Prior research efforts have proposed several techniques, such as vector clocks [110],

to address this problem. These approaches, however, are intrusive as they requires

system instrumentation, and send messages between servers to perform the correla-

tion. PAD uses a different approach. PAD’s goal is to find the distribution of values

of a particular performance counter at time point ti from all servers. Since servers do

not start at exactly the same time, we first find two time points [ts, tf] where ts is the

latest starting time point of performance counters recording across all servers and tf

is the earliest finish time point of counters recording across all servers. We consider

counter values in all servers during [ts, tf] only.

Assuming the configured periodic logging interval of performance counters is d,

PAD calculates the maximum number of time points N that can be contained inside

the time interval [ts, tf] using Equation A.3.

N =
⌊tf − ts

d

⌋
(A.3)

Since clocks of different servers may not be synchronized, all servers may not have

exactly N time points. PAD therefore takes the maximal N ′ time points that are

common to each server such that N ′ ≤ N . PAD then indexes each time point from

1 to N ′ starting from ts in each server. Because we have taken the same number of

points from each server, it allows PAD to correlate performance counter values at

similar indices in each server. The distribution of performance counter values at each

time point are the correlated values at each index.

A.5 Applying PAD to Orleans

This section discusses two applications of PAD to analyze the performance coun-

ters in Orleans. In these particular scenarios, we used automated Orleans performance

153

tests running on 25 servers machines and a set of client machines as load generators.

Each client is configured to send 1 million requests.

A.5.1 Unbalanced DHT

In Orleans, actor instances are hosted on all servers. A distributed directory maps

actor identities to their locations so incoming requests are brokered to their correct

locations. The actor registry is implemented as a Distributed Hash Table (DHT) [111].

Each server is responsible for hosting a portion of the DHT. It is important to keep

the DHT balanced so each server handles roughly the same amount of requests related

to resolving actors locations.

During one test, Orleans was experiencing lower than expected throughput. We

first analyzed Orleans performance counters using PAD by performing a comparative

analysis within a dataset (Equation A.1 in Section A.3) on a problematic performance

test dataset. PAD found two anomalous performance counters in one particular

server: Registrations.Local counter and Registrations.Remote.Received counter.

This means that the number of local registrations of the DHT in this server was

high compared to other servers (Registrations.Local) and that it also received more

remote registration requests than other servers (Registrations.Remote.Received). This

was caused by the fact that this server was responsible for a much larger portion of

the DHT.

PAD therefore was able to correctly identify the anomalous performance counters

related to this issue. More importantly, PAD helped us pinpoint the root cause of

performance degradation.

A.5.2 Performance Bottleneck and Tuning Analysis

We also used PAD to assist us in evaluating various performance optimization

techniques in Orleans. As part of this work, we analyzed the impact of the different

optimization techniques on performance (e.g., end-to-end throughput and latency)

154

and specific performance counters. For example, we implemented a certain batching

algorithm and inspected its impact on end-to-end throughput, number of messages,

message size distribution, buffer pool, and number of socket system calls. PAD there-

fore allowed us to quickly assess the effectiveness of various optimization techniques

on low-level system components and greatly shortened our trial cycle. Without PAD,

detailed investigation of a large number of performance counters would be very diffi-

cult.

A.6 Related Work

A.6.1 Approaches that Rely on Historical Performance Data

There are several related works [19,20,22,112] on analyzing performance of large-

scale distributed systems similar to Orleans. Similar to PAD, these approaches rely on

performance counters to detect performance anomalies. Foo et al. [19] calculate per-

formance signatures from previous executions and use them as a baseline to compare

against performance signatures of new executions. They assume that older execu-

tions do not suffer from performance anomalies. This approach is close to regression

testing as it validates if anomalies are introduced into newer software versions. They,

however, only do comparative analysis, which only provides a Yes/No answer on per-

formance anomalies. In contrast, PAD facilitates different types of analysis beyond

regression testing.

Nagaraj et al. [7] propose a method to compare two system logs, one with good

and one with bad performance. After categorizing log messages as events and states,

they calculate summary statistics for event timings, event counts, and state variable

values used to compare the logs. Their approach is similar to the comparative analysis

in PAD, but they do not provide other non-comparative techniques.

Bodik et al. [104] also propose a signature-based performance anomaly detection.

Their method calculates signatures called fingerprints from historical performance

155

data collected during a performance crisis. The goal is to quickly identify whether a

similar performance crisis has occurred in the past so that known solutions can be

applied. This approach is hard to apply when there are no previously known crises.

A.6.2 Approaches that Do Not Require Historical Data

Malik et al. [20] applied Principal Component Analysis (PCA) [113] to reduce the

number of counters used to analyze performance anomalies. The main assumption

is that counters that have high variance are the ones that represent the performance

anomalies. This assumption, however, does not hold in all cases. For example,

a system that experiences varying workloads may result in high variances in most

performance counters without any actual performance problem.

Attariyan et al. [49] proposed a performance summarization approach for identi-

fying root causes of performance anomalies based on human errors, such as miscon-

figurations. They used dynamic binary instrumentation [5] to monitor application as

it executes instead of execution logs or performance counters.

However, their techniques only focus on misconfigurations and do not help to

find root causes for other performance problems, such as bugs in implementation

or design, like PAD. Finally, there are other approaches [24, 25, 34] that use anno-

tated software models to detect performance anti-patterns [114]. These approaches,

however, use software model simulations and not real production software. More-

over, these approaches do not rely on statistical analysis, but instead use rules and

logical-predicate analysis to detect performance problems.

A.7 Lessons Learned and Conclusions

In this paper, we presented PAD, a tool to analyze performance counters in multi-

server distributed systems. PAD combines user-driven navigation analysis with au-

tomatic correlation and comparative analysis techniques. Based on our experience in

applying PAD to the Orleans framework, we discovered that PAD was able to reduce

156

developers’ time and efforts in detecting anomalous performance cases and improve

developers’ ability to perform deeper analysis of such behaviors. Below we detail the

lessons learned based on our experience with PAD.

1. Visualization and summary statistic is a key part in performance

anomaly detection. Visualization provides a quick overview of performance

and triggers deeper analysis when needed. We believe that visualization should

be the first step in human-based performance anomaly detection. Multiple view

points (server or time) as well as summary statistics (e.g., average, median, stan-

dard deviation, minimum, maximum, and quantiles) are very helpful in navigat-

ing the large amounts of data, and selecting a view for further analysis.

2. Reducing the data size. It is important to reduce the number of performance

counters before visualizing data and performing root cause analysis. This saves

developers time and effort by focusing their attention on data most relevant

to the anomaly. For example, although Orleans has nearly 200 performance

counters, we discovered certain performance issues can be summarized using

only few counters.

We also tried to apply Principal Component Analysis to reduce the number

of performance counters used in the analysis. This approach transformed the

original performance counters into a different, smaller dataset with different

dimensions. The new counters, however, bared no semantic meaning, could not

be correlated back to the actual system, and did not help us with root causes

analysis.

3. Fully automated root cause analysis for performance anomalies is

hard. Existing research on automating root cause analysis is based on func-

tional failures [115, 116]. As explained in Section A.6, expert knowledge is re-

quired to analyze the root causes of performance anomalies. This knowledge

differs from system to system, which makes it hard to generalize and automate.

PAD addresses this challenge by combining automatic correlation and compara-

157

tive analysis with manual user-driven navigation analysis. We still believe that

commonalities between different automated root cause analysis processes must

be identified and reused. Finally, techniques to formalize the required expert

knowledge from different domains are required so developers can begin develop-

ing domain-specific automated techniques for root cause analysis.

158

APPENDIX B DETAILED CALL TREES OF EXCESSIVE DYNAMIC

MEMORY ALLOCATIONS DETECTED BY EMAD

This appendix presents the detailed call trees of excessive dynamic memory allocations

in SQLite, TAO and Axis2-C. The maximum call frequency of each routine is shown

inside the parenthesis after routine name.

B.1 Excessive Dynamic Memory Allocations in SQLite

1 sqlite3PagerWrite (16417)

2 insertCell (9222)

3 sqlite3BtreeInsert (8479)

4 sqlite3VdbeExec (4342)

5 sqlite3_step (14098)

6 sqlite3_column_name (10659)

7 sqlite3_prepare (49)

8 sqlite3_exec (3439)

9 __libc_free (3385)

10 sqlite3_free (175158)

11 sqlite3VdbeMemRelease (788186)

12 sqlite3BtreeNext (378600)

Listing B.1: Call-tree for the routine pager write in SQLite-3.5.9

1 sqlite3DbMallocZero (45858)

2 sqlite3Expr (26765)

3 sqlite3Parser (26436)

4 sqlite3RunParser (102322)

5 sqlite3Prepare (3450)

159

6 sqlite3LockAndPrepare (3450)

7 sqlite3_prepare (3450)

8 sqlite3_exec (3439)

9 __libc_free (3385)

10 sqlite3_free (175158)

11 sqlite3VdbeMemRelease (788186)

12 sqlite3BtreeNext (378600)

13 sqlite3VdbeExec (60800)

14 sqlite3_step (14098)

15 sqlite3_column_name (10659)

Listing B.2: Call-tree for the routine sqlite3DbMallocRaw in SQLite-3.5.9

1 write32bits (14848)

2 sqlite3BitvecTest (14848)

3 sqlite3PcacheMakeDirty (8101)

4 pager_write (14318)

5 sqlite3PagerWrite (14318)

6 insertCell (8727)

7 sqlite3BtreeInsert (7798)

8 applyAffinity (7473)

9 btreeParseCell (14430)

10 sqlite3BtreeKeySize.part .112 (13948)

Listing B.3: Call-tree for the routine memjrnlWrite in SQLite-3.8.5

B.2 Excessive Dynamic Memory Allocations in TAO

1 operator >> (10000)

2 TAO_GIOP_Message_Gen_Parser_12 :: parse_header (10000)

3 TAO_GIOP_Message_Base :: process_request (10000)

4 TAO_GIOP_Message_Base :: process_request_message (10000)

160

5 TAO_Transport :: process_parsed_messages (10000)

6 TAO_Transport :: handle_input_parse_data (10000)

7 TAO_Transport :: handle_input (10001)

8 TAO_Connection_Handler :: handle_input_internal (10001)

9 TAO_Connection_Handler :: handle_input_eh (10001)

10 TAO_IIOP_Connection_Handler :: handle_input (10001)

11 ACE_TP_Reactor :: dispatch_socket_event (10001)

12 ACE_TP_Reactor :: handle_socket_events (10002)

13 ACE_TP_Reactor :: dispatch_i (10002)

14 ACE_TP_Reactor :: handle_events (10003)

15 TAO_ORB_Core ::run (10003)

16 CORBA::ORB::run (1)

17 CORBA::ORB::run (1)

18 TAO_ORB_Manager ::run (1)

19 main (1)

20 __libc_start_main (1)

21 _start (1)

Listing B.4: Complete call tree for the excessive dynamic memory allocation in TAO.

B.3 Excessive Dynamic Memory Allocations in Axis2-C

This appendix presents the excessive dynamic memory allocations of Axis2-C that

were detected by EMAD.

1 guththila_xml_reader_wrapper_get_prefix (16100)

2 axiom_xml_reader_get_prefix (16100)

3 axiom_stax_builder_process_namespaces (16100)

4 axiom_stax_builder_create_om_element (16100)

5 axiom_stax_builder_next_with_token (16000)

6 axiom_soap_builder_next (38000)

7 axiom_soap_builder_create (20000)

161

8 axis2_http_transport_utils_process_http_post_request (2000)

9 axis2_apache2_worker_process_request (2000)

10 axis2_handler (2000)

11 ap_run_handler (2000)

Listing B.5: Call-tree for the routine guththila get prefix.

1 axiom_element_free (16000)

2 axiom_node_free_detached_subtree (36000)

3 axiom_node_free_tree (4000)

4 axiom_document_free (2000)

5 axiom_stax_builder_free (2000)

6 axiom_soap_builder_free (2000)

7 axiom_soap_envelope_free (2000)

8 axis2_msg_ctx_free (4000)

9 axis2_apache2_worker_process_request (4000)

10 axis2_handler (2000)

11 ap_run_handler (2000)

Listing B.6: Call-tree for the routine axutil hash first.

1 axutil_qname_create (58901)

2 axiom_element_get_qname (6089)

3 axiom_children_qname_iterator_has_next (6662)

4 axiom_element_get_first_child_with_qname (2080)

5 axis2_addr_in_extract_svc_grp_ctx_id (2000)

6 axis2_addr_in_handler_invoke (2000)

7 axis2_handler_invoke (2000)

8 axis2_phase_invoke (18000)

9 axis2_engine_invoke_phases (10000)

10 axis2_engine_receive (4000)

11 axis2_http_transport_utils_process_http_post_request (2000)

Listing B.7: Call-tree for the routine axutil strdup.

162

1 axutil_qname_to_string (40000)

2 axiom_element_get_attribute (18130)

3 axis2_addr_in_extract_ref_params (6000)

4 axis2_addr_in_handler_invoke (2000)

5 axis2_handler_invoke (2000)

6 axis2_phase_invoke (18000)

7 axis2_engine_invoke_phases (10000)

8 axis2_engine_receive (4000)

9 axis2_http_transport_utils_process_http_post_request (2000)

10 axis2_apache2_worker_process_request (2000)

11 axis2_handler (2000)

Listing B.8: Call-tree for the routine axutil stracat.

1 axiom_namespace_create Id (36000)

2 axis2_addr_out_handler_process_string_info (6000)

3 axis2_addr_out_handler_invoke (6000)

4 axis2_handler_invoke (2000)

5 axis2_phase_invoke (18000)

6 axis2_engine_invoke_phases (10000)

7 axis2_engine_receive (4000)

8 axis2_http_transport_utils_process_http_post_request (2000)

9 axis2_apache2_worker_process_request (2000)

10 axis2_handler (2000)

11 ap_run_handler (2000)

Listing B.9: Call-tree for the routine axutil string create.

1 axiom_element_create (20000)

2 axiom_soap_header_block_create_with_parent (8000)

3 axiom_soap_header_add_header_block (8000)

4 axis2_addr_out_handler_process_string_info (6000)

5 axis2_addr_out_handler_invoke (6000)

163

6 axis2_handler_invoke (2000)

7 axis2_phase_invoke (18000)

8 axis2_engine_invoke_phases (10000)

9 axis2_engine_receive (4000)

10 axis2_http_transport_utils_process_http_post_request (2000)

11 axis2_apache2_worker_process_request (2000)

Listing B.10: Call-tree for the routine axiom node create.

1 axutil_hash_get (80578)

2 axutil_param_container_get_param (24172)

3 _init (8029)

4 axis2_svc_grp_get_param (6027)

5 axis2_svc_get_param (4027)

6 axis2_op_get_param (2016)

7 axis2_msg_ctx_get_parameter (2000)

8 axis2_ctx_handler_invoke (2000)

9 axis2_handler_invoke (2000)

10 axis2_phase_invoke (18000)

11 axis2_engine_invoke_phases (10000)

Listing B.11: Call-tree for the routine axutil hash find entry.

1 axiom_stax_builder_create_om_element (16100)

2 axiom_stax_builder_next_with_token (16000)

3 axiom_soap_builder_next (38000)

4 axiom_soap_builder_create (20000)

5 axis2_http_transport_utils_process_http_post_request (2000)

6 axis2_apache2_worker_process_request (2000)

7 axis2_handler (2000)

8 ap_run_handler (2000)

9 ap_invoke_handler (2000)

10 ap_process_request_internal (2000)

164

11 ap_process_request (2000)

Listing B.12: Call-tree for the routine axutil string create assume ownership.

VITA

165

VITA

Thelge Manjula Peiris received his bachelor’s degree from University of Moratuwa,

Sri Lanka in 2006 and his masters’s degree from Purdue University Indianapolis in

2013. Before joining Purdue University he worked as a software engineer at WSO2.

Upon receiving his Ph.D. from Purdue University he joined Amazon Web Services as

a software engineer.

	Purdue University
	Purdue e-Pubs
	12-2015

	Generalized techniques for using system execution traces to support software performance analysis
	Thelge Manjula Peiris
	Recommended Citation

	10149249.pdf

