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ABSTRACT 

Munyua, Philip Mutuma. Ph.D., Purdue University, May 2016. Collaboration in 

Scientific Digital Ecosystems: A Socio-Technical Network Analysis. Major Professor: 

Sabine Brunswicker. 

 

 

This dissertation seeks to understand the formation, operation, organizational 

(collaboration) and the effect of scientific digital ecosystems that connect several online 

community networks in a single platform. The formation, mechanism and processes of 

online networks that influence members output is limited and contradictory. The 

dissertation is comprised of three papers that are guided by the following research 

questions: How does online community member’s productivity (or success) depend upon 

their ‘position’ in the digital networks? What are the network formation mechanism, 

structures and characteristics of an online community? How do scientific innovations 

traverse (diffuse) amongst users in online communities? A combination of exploratory, 

inductive and deductive research designs is applied sequentially but in a non-linear 

manner to address research question. The dissertation contributes to the literature on 

scientific collaboration, digital communities of creation, social network modelling and 

diffusion of innovation.   

The first paper applies network theory and spatial probit autocorrelative 

modelling technique to evaluate how member developer’s positioning in digital 

community correlate with his/her productivity. The second paper looks at the dynamics 
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of developer’s participation in online developers’ network for a period spanning 7-years 

using exponential random graph models (ERGM). This paper applies theory of network 

(network science) to model network formation patterns in developer community. The 

third paper, like the first, applies network theory and to understand user network 

characteristics and communication channels which influence diffusion of scientific 

innovations. Bass and spatial probit autocorrelative models are applied for this analysis.  

 Data from this study was mined from developers, authors and user communities 

of nanoHUB.org cyberinfrastructure platform. NanoHUB.org is a science and 

engineering online ecosystem comprising self-organized researchers, educators, and 

professional communities in eight member institutions that collaborate, share resources 

and solve nanotechnology related problems including development and usage of tools 

(scientific innovation). Data from collaboration and information sharing activities was 

used to create the developers, authors and user networks that were used for analysis. 

Results of the first paper show that the spatial autocorrelation parameter of the 

spatial probit model is negative and statistically different from zero. The negative spatial 

spillover effect in the developer network imply that developers that are embedded in the 

network have a lower probability of getting more output. The structural network 

characteristics of eigen vector centrality had statistically significant effects on probability 

of being more productive.  Developers who are also authors were found to be more 

productive than those in one network. The implications of these findings is that 

developers will benefit from being in multiple network spaces and by associating with 

more accomplished developers. The autocorrelative and interaction models also reveal 
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various new modelling approach of accounting for network autocorrelation effects to 

online member.  

Results of the second paper show that developers form in a manner that follow a 

pure uniform random distribution. Results also show that developer’s collaborative 

mechanisms are characterized by low tendencies to reciprocate and form homophiles 

(tendency of developers to associate with similar peers) but high tendency to form 

clusters. The implications of network formation mechanism and processes are that 

developers are forming in a purely random and self-organized manner and minimum 

efforts should be applied in trying to organize and influence the community organization. 

The results also reveal that a simple link to link ERGM and stochastic dominance criteria 

can be combined to characterize the network formation characteristics just like the 

ERG(p*) model but have an advantage of overcoming degeneracy challenges associated 

with ERG(p*) models.  

Results of the third paper show that bass model is a good predictor for diffusion 

of scientific innovations (tools) in online community setting. Results also show different 

innovations have varying levels and rates of adoption and these were influenced by both 

external and internal factors. Results of the micro-based model found degrees and 

betweeness centrality as some of the internal variables that have positive influence on the 

adoption of innovation while centrality measures of power or leadership were found to 

have negative influence of adoption process. The relative time taken to run a simulation 

(measured as job usage time) was also found to be negatively influencing diffusion. The 

implication of the study results is that bass model is a good fit for evaluating and 

forecasting adoption of innovation in online communities. Moreover, network structural 
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characteristics are responsible for adoption of innovation adoption and policy making 

should consider tool adoption enhancing ones. Additionally, researchers could further 

explore the network structural characteristics that are driving diffusion of innovation.  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

The global systems of scientific collaboration and communication have been changing 

and growing rapidly in the last two decades due to improvements in information and 

communication technologies (Brunswicker et al., 2015; Schroeder, Jennifer, deBeer & 

Fry, 2007). The growth has transformed customary collaboration practices of innovation 

and production including the “traditional” research and collaboration practices in various 

field of science (Schroeder, Jennifer, deBeer & Fry, 2007).  The traditional collaboration1 

and systems of digital practice were mostly enabled by three channels (formal, informal 

and tabular) and primary, secondary (library catalogs and indexing services) and tertiary 

(encyclopedias and reviews) sources (Sondergaard, Anderson & Hjorland, 2003). The 

three channels and sources were first singled out in 1971 by the United Nations 

Educational scientific and Cultural organizations (UNESCO) and International Council 

of Scientific Unions (ICSU), UNISIST model as mechanisms which enabled member 

scientist to collaborate (Sondergaard et al., 2003). Gold (2007) and Faraj and Johnson 

(2011) noted that the changes and ongoing growth in systems of scientific 

communication have also affected both formal and informal communication and data 

                                                 
1 Communication and collaboration are used interchangeably throughout this study to imply 

engagements. 
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sharing and dissemination methods, “gatekeeping”2 and outputs. The transformations in 

scientific systems of communication and collaboration have elicited research interest 

about the new form of scientific organization because collaborations and communication 

in those platforms is voluntary and the collaboration mechanics are self-organizing 

(Brunswicker et al., 2015; Faraj & Johnson; 2011; Levine & Prietula, 2014; Matei, 2014; 

Matei et al., 2015). Research interest in these platforms has focused on “why”, “how” and 

“what”, that is, why do participants enter, how does the platform maintain itself (and in 

most cases grow) and what do members gain by being in those platforms. Faraj and 

Johnson (2011) noted that online-based platforms are characterized by large networks of 

people/scientists that would not have been possible without communication that is highly 

efficient (e.g., high speed internet). Other factors that have been known to influence 

growth of online platforms include allowing access through mainly open collaboration 

model and availing resources like data and simulation tools3 to participating members 

(Gold, 2007; Levine and Prietula, 2014; nanoHUB.org, 2014). There  is, therefore, a 

worldwide effort to make scientific research on collaboration and communication and 

practice a permanent part of scientific data research through platforms where processing, 

storage and dissemination of data through open ‘access’ model (open source) is gaining 

popularity (Faraj and Johnson, 2011; Gold, 2007). In this study we will focus on the 

changes (growth) and organization of such kind of online platform known as 

nanoHUB.org cyberinfrastructure (e.g., Brunswicker et al., 2015; Matei, 2014). We 

                                                 
2 “Gatekeeping is the process through which information is filtered for dissemination, whether for 

publication, broadcasting, the Internet, or some other mode of communication” (Barzilai, 2009) 
3 Tools are scientific artifacts (softwares) used to run simulations and applications programs including data 

visualization (nanoHUB.org, 2014) 
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particularly focused on emerging data, information sharing method and outputs using a 

platform called NanoHub.org4 cyberinfrastructure (A detailed description of the platform 

is discussed under research design) 

 

1.1.1 The Emergence of Scientific Cyberinfrastructures and Digital Communities 

Scientific cyberinfrastructure was initially used by the US National Science Foundation 

(NSF) in early 2000 to denote broad and unified systems of software, hardware, 

middleware and networks that are designed to better manage big data; procurement, 

mining, storage, amalgamation and visualization over the internet. i.e., a computer 

technology based infrastructure for information and communication (Gold, 2007; Stewart 

et al., 2010). Cyberinfrastructure is also known by the terms e-science and e-

infrastructure in UK (United Kingdom) and EU (European Union) respectively 

(Schroeder et al., 2007).  The scientific community defines cyberinfrastructure as, 

“…infrastructure consisting of computational systems, data and information 

management, advanced instruments, visualization environments, and people5, all linked 

together by software and advanced networks to improve scholarly productivity and 

enable knowledge breakthroughs and discoveries not otherwise possible” (Stewart et al., 

2010). Gold (2007) found that research in cyberinfrastructure involves evaluation of 

                                                 
4 NanoHUB.Org is a scientific cyberinfrastructure (ecosystem) that involves scientific 

tool developers, tool users, authors, educators and learners that work in a novel self-

organizing and distributed way to produce, use, and learn with scientific software tools 

(Brunswicker et al., 2015; https://nanohub.org/ ) 

 
5 Scientist, actors, developers and users are used interchangeably throughout this study to 

imply online community members 

https://nanohub.org/
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computing systems, data storage structures, data repositories and innovative instruments, 

graphical settings, and scientists (people) that are all interconnected by high speed 

internet to make possible scholarly innovation and discoveries that would have otherwise 

not been possible. Kling, McKim and King (2003) established that social structures 

formed by scientists in their organizations are needed in addition to advancement in 

technology and communication. The authors further noted that social structures provide 

an informal system of social and technical (socio-technical) interaction which facilitates 

scholarly scientific communication. i.e., communication is driven by technology but it is 

also defined by the social structures of participating scientists and their groups. As early 

as 1980’s, Abelson (1980) had also described scientists as inherently “social” and usually 

connected through formal or informal collaboration in communications that enable 

scientific progress. As it will be seen below, cyberinfrastructure platforms mostly 

facilitate scientist’s collaboration through allowing scientists to interact at will thorough 

an open collaboration model (Levine & Prietula, 2014).  

Open collaboration is a model that allows the general public to freely access a 

source code for their use and/ or also for modification from its original plan (Levine & 

Prietula, 2014). Several techniques for managing and allowing access to the source code 

exist including what Levine and Prietula (2014) described as the harbinger for open 

collaboration; open source. The most generally known open source is open source 

software (OSS). Crowston, Wei, Howison & Wiggin (2012) described OSS as “a 

software which is released under a license that permits inspection, use, modification, and 

redistribution of the software's source code by volunteer programmers”.  The volunteer 

programmers come together virtually and form OSS communities while working on the 
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software. Some commonly known OSS examples include the Linux operating system and 

the Apache Web Server-http (the largest and most successful OSS), user applications 

(e.g., Mozilla Firefox, OpenOffice), Internet infrastructure (e.g., sendmail, bind) and 

programming language interpreters and compilers (e.g., Python, gcc) (Crowston et al., 

2012).   

The OSS community has been growing tremendously since the inception of the 

OSS model in the late 1990 (Ursula, 2004). Vass (2007) estimated that OSS community 

has 800,000 programmers/scientists around the world and the number continues to grow 

making OSS an important portion of the collaboration infrastructure of modern digital 

society. The growth in OSS and OSS community has seen an equal increase in the bulk 

of studies examining the digital open collaboration occurrence (e.g., Crowston et al., 

2012; Rossi, 2006). The majority of this literature is comprised of studies that have 

modelled OSS communities as network spaces involving actors who form and break ties 

(collaborate) in that space based on their inherent goals (e.g Abbasi, Chung, & Hossain, 

2012; Brunswicker et al., 2015; Gonzalez-Brambila, Veloso, & Krackhardt, 2013; Matei, 

2014). In this study I will follow Matei (2004) and Brunswicker et al. (2015) social 

network and spatial autocorrelation perspective to model online collaboraties as networks 

that form, grow and contribute to members’ outcomes (e.g., Abbasi et al., 2012; Borgatti 

& Halgin, 2012; Gonzalez-Brambrila et al., 2013; Jackson, 2008) 

1.1.2 Statement of the Problem 

The growth in technology (cyberinfrastructure) enabled online communities has 

made the platforms a vital part of the collaboration infrastructure of the current society 

because the networks formed in the online communities are seen as sources or facilitators 
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of information that is relevant to member’s productivity. Technology based online 

communities are distinguished by a unique and novel form of organization that is 

characterized by members that join the platforms voluntarily and has those members self-

organize themselves and maintain (or grow) the networks. This new form of organization 

has drawn researchers into examining the networks from several aspects including, one, 

effect of networks on participant’s outcomes (productivity6 or choices), and two, patterns 

of formation and sustenance mechanisms in technology enabled online communities 

(e.g., Abbasi et al., 2012; Brunswicker et al., 2015; Crowston et al., 2012; Faraj & 

Johnson, 2011; Gonzalez-Brambila et al., 2013; Jackson & Rogers, 2007; Matei, 2004; 

Rossi, 2006; Scacchi, 2007).  

A large proportion of literature is comprised of studies that have modelled online 

platforms as network spaces involving actors who form and break ties (collaborate) in 

that space based on their inherent goals (e.g., Jarvenpaa & Leidner, 1999; 

Kanawattanachai & Yoo, 2007; Kankanhalli, Tan & Wei, 2005; Wasko & Faraj, 

2000&2005). Others have looked at the effect of the networks on members’ outcome 

when measured as productivity or choice (e.g., Abbasi et al., 2012; Brass, 2002; 

Brunswicker et al., 2015; Gonzalez-Brambila et al., 2013; Jackson and Rogers, 2007). 

Borgatti and Halgin (2011) and Matei (2014) established that success is usually measured 

using social capital while choice is usually measured as an aspect of social homogeneity 

caused by contagion processes. 

                                                 
6 Productivity is measured at the number of citations a developer receives through 

citations of developed tools. 
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The mechanisms and processes of collaboration which influence output and 

diffusion processes in the established network is limited, nevertheless. There are very few 

studies of scientific production that have looked at the interactions and characteristics of 

network structures as factors of production despite its importance in understanding the 

collaboration mechanisms (e.g., Abbasi et al., 2011; Brunswicker et al, 2015; Gonzalez-

Bambrila et al., 2013; Li et al., 2013; McFadyen & Cannella, 2004; Matei, 2014; Singh, 

2007;). There are even lesser studies that have looked at these interactions and 

characteristics using network autocorrelation model that would best capture the global 

effects of those networks on member’s success (e.g., Brunswicker et al., 2015; Matei, 

2014) and none, to our knowledge, that has looked at the interactions in multiple (two or 

more) networks in a digital infrastructure/platform. On the diffusion processes, there are 

few empirical studies that have looked at the effect of network on diffusion (e.g., 

Ballester, Calvo-Armengol & Zenou, 2006; Banerjee, Chandrasekhar, Duflo, & Jackson, 

2013; Meade & Islam, 2006), and no study has looked at diffusion from a network 

autocorrelation perspective in a non-market based digital platform.  

Moreover, the above highlighted network effect techniques only describe and 

understand the network characteristics and their effects on community member’s 

productivity and choice; they rarely address the network formation and sustenance 

mechanism which is also not well understood (Faraj & Johnson, 2011; Jackson & Rogers, 

2007; Matei, 2014; Robins, Pattison, Kalish, & Lusher, 2007). This study therefore seeks 

to fill the above highlighted three knowledge gaps and is guided by the following 

research questions. 
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1.1.3 Research Questions 

This study seeks to understand formation, operation, organizational 

(collaboration) and the effect of networks formed in online digital communities to 

members and is guided by the following research questions, 

 

1. How does productivity (measured as number of citations a developed tool gets) of 

members of online communities depend upon their positioning in the digital 

networks? 

2. What are the network formation and sustenance mechanism and structural 

characteristics of a digital platform? 

3. How do innovations traverse (diffuse) amongst user network in online digital 

platforms? 

 

The research questions are addressed in form of three independent papers that combine 

socio-technical tools. The first paper broadly applies network theory and spatial 

econometrics technique to evaluate how developer’s positioning (embeddedness) in 

digital space correlate with his/her output. The second paper looks at the network 

formation and sustenance mechanism and structural characteristics of developer network. 

This paper broadly applies theory of network (network science) to model patterns in 

network formation and sustenance mechanism. The third paper, like the first, broadly 

applies network theory and spatial econometrics to understand user network 

characteristics that influence diffusion of scientific tools. The motivation, model 

specification and results of the three papers are discussed in details below.  
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1.1.4 Theoretical Foundation 

This study is anchored on network analysis primarily concerned with evaluating the 

effect and formation mechanism of networks in digital (online) platforms following 

Brunswicker et al. (2015) and Matei (2014) study of evolution of digital practice capital. 

Digital platforms enable members to form digital practice enabled networks through 

source coding, tool usage and other computer enabled associations and engagements that 

are mostly facilitated by the platform’s API (Application Program Interface) 

(Brunswicker et al., 2015; Matei, 2014; nanoHUB.org, 2014). In network analysis, the 

study will broadly focus on network theory and theory of networks (Borgatti & Halgin, 

2011). While noting that analysis and definition of the two theories is subtle, Borgatti and 

Halgin (2011) defined network theory as the study of the outcome associated with 

mechanisms and processes that occur within a network structure and theory of network as 

the study that determines why network form. i.e., models of which scientist/actors form 

ties (links, triads, e.t.c) and how they position themselves (e.g., centrality measures, 

small-worldness e.t.c) the network as a whole will have. Network theory asks questions 

like what will be the effect of network structural characteristics like having high degree 

centrality (many ties) or betweeness centrality (being centrally located (e.g., Brass, 2002). 

Theories (sub-theories) that have emerged from network theory includes the well-known 

strength of weak ties by Granovetter’s (1973) and Burt’s (1992) structural holes (SH). 

Borgatti and Halgin (2011) noted that these theories that have been used widely to study 

network features on outcomes and are usually tested by network coordination model or 

the network flow model.   
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The network coordination model is based on the structure and position of 

scientists in a network (Borgatti & Halgin, 2011). For example, a weak tie will be 

valuable in SWT models because they link network clusters/components. i.e., their 

position in the network (structural role) makes them valuable in that setting (Burt, 1992). 

In SH, the shape of the ego network (personal network/1-neighborhood/first-order zone,) 

around a scientist/actor gives them advantage to others that are positioned in other 

clusters. Therefore, network structures and attributes interactions are examined through 

either choice (social homogeneity) or success (social capital) outcome7 variables where, 

for example, one could explore the effects of network structural differences on any of the 

two variables (Borgatti & Halgin, 2011). 

The network flow model is also called the implicit theory of network function 

(Borgatti & Halgin, 2011). The authors noted that this model assumes that SWT and SH 

sub-theories depend on a basic model of a social systems that form networks that 

facilitate information to flow. Some theoretical propositions derived from this model 

would be influenced by SH and SWT theories and would include network measures such 

as distance (location of the nodes which determines time of information arrival) and 

embeddedness (this determines the relevancy of information received i.e., on-redundant 

flow received) (Borgatti & Halgin, 2011; Jackson & Rogers, 2007). Furthermore these 

network measures are then correlated to more common outcomes that have traditionally 

                                                 
7 Network theory models are often used to explain two broad type of outcomes: one, the 

choice outcome i.e., behavioral, attitudes, beliefs and internal structural characteristics as 

for the case of organizations, and, two, the success outcome which includes parameters 

like performance and or rewards (Borgatti & Halgin, 2011) 
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been evaluated using either of the two outcomes (Borgatti & Halgin, 2011; Jackson & 

Rogers, 2007). Table 1 shows a schematic representation of the tradition research in 

network analysis. 

Table 1: Traditional Research in Network Analysis 

Model 

Research Tradition 

Social Capital Social Homogeneity 

Network flow model (ties as pipes) Capitalization Contagion 

Network coordination (ties as bonds) Cooperation Convergence 

Source: Borgatti & Halgin, 2011. 

 

The columns in the Table 1 shows the two traditional areas of research in social 

networks, social capital and social homogeneity while the rows show the network models 

(measures). Research work in contagion includes diffusion models or adoption models 

(Borgatti & Halgin, 2011; Jackson, 2008). These models test networks as flow models 

(i.e., ties as pipes) where, for example, information symmetry is reached through 

information flow (conduit) in the network. Borgatti and Halgin (2011) noted that research 

on convergence includes evaluating networks as bonds that, say coordinate information 

or resources to some converging measures e.g., research on structural equivalence while 

research on capitalization has mostly tested the concept of social capital theory in SWT 

and SH. The authors further noted that cooperation research consist of bond-based 

explanations of achievements.  

 Research of theory of network has mostly involved evaluation of the network 

formation processes as either random (e.g., Erdos Renyi, ERGM-Exponential Random 
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Graph Models), preferential or hybrid model involving both processes (Jackson, 2008; 

Lusher et al., 2013). These models evaluate the network from the scientist’s behavioral 

point of view i.e., by looking at models of which scientist/actors form ties (links, triads, 

e.t.c) and how do they position themselves (e.g., centrality measures, small-worldness 

e.t.c) (Brass, 2002; Jackson, 2008). This study will therefore apply both theories; network 

theory and theory of network to answer the research questions. Network theory will be 

used to address the first and third research questions in papers 1 and 3 and theory of 

network for research question two (corresponding to paper 2). 

 

1.1.4.1 Research Design 

This study combined observation, induction, and deduction research designs in all the 

three papers (Recker, 2013). Exploratory Analysis is first used to understand patterns of 

the data. The observed patterns were then used to rationalize the data (inductive 

reasoning) that helped us derive some set of hypothesis. The hypotheses were then tested 

and validated through statistical analysis to make deductions about our 

rationalization/hypotheses. “Deduction is commonly used to predict the results of the 

hypotheses or propositions” and the validated results (deductions) were then used to 

prove or disapprove our hypothesis and/ or theory where applicable (Recker, 2013). The 

application of the three research design was done in a sequential manner but updated 

regularly based on the findings of predicted results. This made the process non-linear as 

shown in Figure 1 below.  
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Figure 1: Exploration, rationalization and validation in research design (Source: Recker, 

2013) 

1.1.4.2 Study Platform/ Cyberinfrastructure 

NanoHUB.org cyberinfrastructure platform was used to explore, rationalize and validate 

our study on emerging data, information sharing method and outputs. The platform was 

used to mine data from developer, author and user communities of nanoHUB.Org 

Cyberinfrastructure. NanoHUB.org is a science and engineering cyberinfrastructure that 

supports research efforts in nanoelectronics in “eight member institutions (including 

Purdue University, the University of California at Berkeley, the University of Illinois at 

Urbana-Champaign, Massachusetts Institute of Technology, The Molecular Foundry at 

Lawrence Berkely National Laboratory, Norfolk State University, Northwestern 
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University, and the University of Texas at El Paso” (Klimeck et al. 2008). The hub was 

created by network for computational nanotechnology (NCN) in 2002 with the support of 

US National Science foundation, national nanotechnology initiative. Our data from 

nanoHUB.org is organized by the communities of scientists that form the platform. The 

communities in nanoHUB.org are comprised of users from research, education, and 

industry who come together (form networks) to develop tools, learn from each other and 

use tools for their personal use or class related work, that is, run simulations 

e.t.c.(McLennan, 2012). 

1.1.5 Problem Background and New Contribution 

Digital practice has been articulated in the context of NanoHUB.org Network 

Analysis Project (Matei, 2014), to which I contributed as a research assistant and on 

which I build upon my research. The project was dedicated to explaining online social 

collaboration through social network and spatial autocorrelation lenses. The theoretical 

justification for using these methodological tools was proposed by Matei (2009 and 2014) 

and, building on this conceptualization, in Brunswicker et al. (2015). The core concept is 

that of social collaborative practice, an evolutionary understanding of the social capital 

and coordination concept (e.g. Abassi et al., 2011; Gonzalez-Brambila et al., 2013 and Li 

et al., 2013). The other perspective is that of social autocorrelative research developed in 

social sciences with an interest in spatial problem. Such research included a rich literature 

(e.g., Leenders, 2002; O’Malley & Marsden, 2008) but the more direct source of 

inspiration of our current work are Brunswicker et al (2015) and the NanoHub Social 

Network Analysis Project. My contribution to this research is to extend the research on 

digital social practice capital methodologically in three folds. One, as an extension of the 
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work proposed by Brunswicker et al. (2015) and Matei (2014), I explore the degree to 

which digital practice capital has a direct and real influence collaborative productivity. 

This is attained by incorporating more relational aspects of network effect models as 

applied by (Abassi et al., 2011; Li et al., 2013; Gonzalez-Brambila et al., 2013) and 

though through network autocorrelation modelling which enables us to capture the global 

effects of the network (Brunswicker et al., 2015; Matei, 2014). Two, I explore how 

digital social practice emerge and evolve. Specifically, I am interested in finding out the 

network structural characteristics that are responsible for the evolution of digital practice 

capital and coordination. Finally, and more importantly, one of the core contribution of 

tis dissertation, which goes beyond the models proposed previously, is to explore the 

degree to which digital practice capital and coordination is responsible for diffusion of 

innovation. My research build on the dataset produced by the NanoHub Network 

Analysis Project. The conceptualization of the network, especially, in terms of 

gravitational attraction between collaborators, was defined in the dataset and I am using it 

as such. The explanation I provide for the network building methodology is a recounting 

of the methodology pioneered by Matei (2014) in the context of studying open source 

collaborative processes (Matei et al., 2015) 

 

1.1.6 Scope 

The first paper characterizes network positioning/embeddedness variables that are 

correlated with developer’s productivity and also identifies whether being embedded in 

multiple network spaces is more advantageous than one. The second paper identifies the 

patterns of formation of developer network and also identifies the network characteristics 
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that sustain the growth of the network. The third paper determines the rate of diffusion of 

tools in the user network and also identifies user and network characteristics that enhance 

diffusion of tools in nanoHUB.org. A Schematic representation of the nanoHUB.org 

platform is presented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the nanoHUB.org cyberinfrastructure platform. The platform is 

comprised of several network spaces that are used for this study including developer, 

authors and tool users (students, researchers and educators).  

NanoHub Research 

Ecosystem 

Students 

Tool 

developers 

Authors 

Educators 

Researchers 

Figure 2: Schematic Representation of nanoHUB.org Platform/Ecosystem 
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1.1.7 Definitions and Acronyms 

1.1.7.1 Definitions 

Cyberinfrastructure:  “Cyberinfrastructure consists of computational systems, data and 

information management, advanced instruments, visualization 

environments, and people, all linked together by software and advanced 

networks to improve scholarly productivity and enable knowledge 

breakthroughs and discoveries not otherwise possible” (Stewart et al., 

2010). 

Embeddedness: This is a multidimensional variable relating generally to the importance 

of social networks of members benefits. i.e., embeddedness indicates that 

scientists who are integrated in dense clusters or multiplex relations of 

social networks face different sets of resources and constraints than those 

who are not embedded in such networks (Moody & White, 2003). 

Gatekeeping:  This is “the process through which information is filtered for 

dissemination, whether for publication, broadcasting, the Internet, or some 

other mode of communication” (Barzilai, 2009). 

Innovation:  This is the “mutation” of an institution or product which “incessantly 

revolutionizes” the original form of an institution or product. i.e., the 

process of developing a new and useful solution to the existing old one 

(Schumpeter, 1942). 
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Online Communities:  An online community is a large virtual community whose 

members interact with each other primarily via the Internet for individual 

members or social welfare (Faraj & Johnson, 2011) 

Open source:  This is defined as, “a program in which the source code is available to the 

general public for use and/or modification from its original design free of 

charge” (Crowston et al., 2012). 

Nanotechnology: This is the understanding and utilization of matter on the atomic and 

molecular scale (NanoHUB.org, 2014). 

Platforms: Platforms are defined as either internal or external. Gawer and Cusumano 

(2013) defined internal platforms as “a set of assets organized in a 

common structure from which a company/organization can efficiently 

develop and produce a stream of derivative products”. The author also 

defined external (industry) platforms as,  “products, services, or 

technologies that are similar in some ways to the internal assets but which 

provide the foundation upon which outside firms (organized as a 

“business ecosystem”) can develop their own complementary products, 

technologies, or services 

Productivity: Productivity is defined as the effectiveness of developing quality tools that 

have a high probability of getting a cite (Daskovska et al., 2010) 

 

1.1.7.2 Acronyms 

GMM: Generalized Methods of Moment (GMM) 
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MCMC: Bayesian Monte Carlo Markov Chain (MCMC) 

OSS: Open Source Software 

SAR:  Spatial Autoregressive Model 

SDEM:  Spatial Durbin Error Model 

SLX: Spatially lagged explanatory variables Model. 

 

1.2 Dissertation Outline 

The first chapter, above, provided the introduction to the study. The chapter provided a 

background, highlighted research gaps, developed research questions and provided the 

theoretical background that encompasses the study. Chapter 2 contains a literature review 

of network science on outcomes and facilitation and network formation. The literature 

review focuses on two broad frameworks; one, the structural characteristics of the 

network that look at a network as a facilitation and production units responsible for 

increased output and information flow and, two, the network formation and sustenance 

aspects that keep the network in place and in most cases grow. Chapters 3 to 5 present 

independent papers that address each of the three research questions. The chapters start 

by motivating research, then provide some theoretical background and hypothesis to be 

tested. The chapters’ then present the proposed methodology for testing the hypothesis 

present results and conclusion. Chapter 6 provides the summary of the dissertation. The 

chapter gives a synopsis of each study and then concludes by discussing limitations of the 

study and future work. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Literature Review Outline 

This literature review focuses on two broad frameworks; one, the structural 

characteristics of the network that looks at network as production units or facilitators of 

information flow and, two, the network formation and sustenance aspects that keep the 

network in place and in most cases grow. The literature on the structural characteristics of 

the network is further reviewed from networks as production units that facilitate 

member’s productivity and networks as communication channels and social structures 

that facilitate diffusion of tools; the two literature review streams correspond to papers 

one and three respectively. This review in comprised of both the practical and theoretical 

aspects of the identified literature but leans more on theoretical aspect given the study 

design ultimate’s goal of testing and validating a set of theories that are assumed to drive 

the network formation, sustenance and effects of member’s output (Recker, 2013).  

Research in open digital platforms (cyberinfrastructure) and open collaboration 

model of communication and collaboration has focused on “why” and “how”, that is, 

why do participants enter and how does the platform maintain itself (and in most cases 

grow) and what outcomes do the platforms accord members (e.g., Barabasi & Albert, 

1999; Gonzalez-Brambila et al. 2013; Faraj & Johnson, 2011; Jackson, 2008; Levine & 

Prietula, 2015; Matei, 2014). The growth in open collaboration model of scientific 



21 

 

 

 

communication and collaboration in digital platforms (cyberinfrastructure) has witnessed 

proliferation of studies researching the new phenomenon (e.g., Crowston et al., 2012; 

Rossi, 2006; Scacchi, 2007). The majority of this literature is comprised of studies that 

have modelled online communities as network spaces involving actors who form and 

break ties (collaborate) in that space based on their inherent goals. i.e., scientist 

collaborate to gain knowledge that will be useful to their scientific production output (e.g 

Abbasi et al., 2011; Brunswicker et al., 2015; Gonzalez-Brambila et al., 2013; Matei, 

2014). Other studies have looked at how the networks are forming and sustaining 

themselves (e.g., Faraj & Johnson, 2011; Jackson & Rogers, 2007). The literature of 

diffusion has looked at the effect of network communication channels and social 

structures on adoption of innovation (e.g., Banerjee et al., 2013; Jackson, 2008).  We 

therefore look at the three streams of literature separately below. 

 

2.2 Literature on Networks as Production Units 

The literature of networks as facilitation and production units has found networks 

to be positively correlated with participant’s success (Gonzalez-Bambrila et al., 2013; Li 

et al., 2013; Rullani & Haefliger, 2013). Abbasi et al. (2011), Gonzalez-Bambrila et al. 

(2013), Li et al. (2013), McFadyen and Cannella (2004) and Singh (2007) applied 

individual-outcome models (network effect model) where networks were used to extract 

individual explanatory variables as inputs of scientific production.  McFadyen and 

Cannella (2004) evaluated the relationship between network ties and scientist output and 

found a positive relationship. Singh (2007) also used network ties but added structural 

holes variables and found a positive relationship between these variables and scientific 
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output. However, these studies only focused on a few structural aspects of the network 

and largely ignored the effects of the relational dimension of the network that include 

different measurements of social capital e.g., relational capital, structural capital and 

cognitive capital (Gonzalez-Brambila et al., 2013). Relational dimension includes 

centrality measures such as degree, closeness, betweeness, eigen vector centrality 

amongst others (Abbasi et al., 2011; Gonzalez-Brambila et al., 2013; Li et al., 2013). 

Abassi et al. (2011), Gonzalez-Brambila et al. (2013) and Li et al. (2013) 

extended Singh’s (2007) study by including more aspects of social embedded 

characteristics including density and position in the network. Abassi et al. (2011) 

evaluated the co-authorship network structural aspects (including degree, closeness, 

betweeness and eigen vector centrality measures) on scientist scholars output (citation). 

The authors applied a network effect model (Poisson regression model) and found only 

degree, and eigen vector centrality measures had significance effect on member’s output. 

Li et al. (2013) examined the effect of social capital embeddedness in network structure 

on scientist output. The authors used degree, closeness and betweeness centralities 

amongst other variables and found betweeness centrality to be significantly correlated 

with output. Gonzalez-Brambila et al. (2013) evaluated the effects of social capital 

relational, cognitive and structural aspects of network on scientists output and quality. 

The authors considered network structural characteristics (direct ties and their strength, 

density, structural hole, centrality and cross-disciplinary) and used extensive panel data 

and fixed effect models. The panel data ran from 1981 to 2002 and came from 

publication and citations database for scientific papers that had atleast an author from 

Mexico, North America. The authors found that relational aspects of scientist affected 
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quality while cognitive dimension affected quantity. The authors also found the structural 

dimension mattered to both measures of scientist outcomes; quality and quantity. 

 While scientific collaboration in cyberinfrastructure involves social interactions 

amongst scientist that are driven by a goal of producing output, there is limited 

understanding of the mechanisms and processes of collaboration which influence output 

as seen in the above literature on networks as production units (Brunswicker et al., 2015; 

Matei, 2014). This study aims to fill this literature gap through extension of Brunswicker 

et al. (2015) digital practice concept. The study looks at the interactions and 

characteristics of being embedded in multiple networks in a digital infrastructure by using 

network autocorrelation model. 

2.3 Literature on Networks as Communication and Social Structures Units that 

Facilitate Diffusion. 

 The structural features of network also have influence on communication 

channels (information flow) that enhances diffusion of tools or innovations (Jackson, 

2008). As early as in the 1980’s, Rogers (1983) identified innovation, social structures 

that are affected by innovation (network structure), communication channel of the 

network and time as the main elements that facilitate diffusion. Bass model is an amassed 

model that describe diffusion from behavioral perspective of the entire network (Bass, 

1969). Bass (1969) developed the model based on a simple premise that adopters are as 

innovators or imitators who interact in a user network that determines the rate and timing 

of adoption of innovation. 

Research on diffusion of innovations has been approached from either the 

macroscopic (Bass Model) or microscopic (agent based) perspective or a combination of 
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both models (Meade & Islam, 2006; Laciana, Rovere, & Podestá, 2013). However, 

majority of these studies have applied simulation and analytical techniques with very 

little empirical evidence to buttress their findings (Ballester et al., 2006; Banerjee et al., 

2013; Kitsak et al., 2010; Meade & Islam, 2006; van Eck et al., 2011;).  Laciana et al. 

(2013) and Meade and Islam (2006) identified macroscopic research as that which 

considers the whole set of users while the micro considers individual users. The authors 

also noted that most macro-level studies have applied Bass model and are based on the 

assumption that users are fully connected (in a fully connected component) and are 

homogeneous which implies that every individual has some possibility of influencing the 

other through the connected network, i.e., there is social contagion due to homogeneity in 

the social networks.  The advantage of the macro-level model is its ability to provide a 

simple and tractable was of looking at timing of diffusion of innovation of the population 

and also forecast diffusion patterns (Laciana et al., 2013; Mahajan, Muller & Bass, 1990). 

However, a major caveat of the macroscopic model that was pointed out by Peres, 

Muller, & Mahajan (2010) is its inability to provide an insight of about the processes 

(mostly the communication and social structures aspects of diffusion) that influence 

adoption, or how social interactions of actors are linked to the global social patterns like 

the microscopic models. Bulte and Stremersch (2004) also noted that the assumption of 

complete network connectedness and social contagion might not be being realistic in real 

world because rarely do you find fully connected individual in real world. The authors 

continued to note that that diffusion process (i.e., the typical logistic-S-Shaped adoption 
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curve8) does not actually come from social contagion process that is assumed in the bass 

model setting but due to some intrinsic tendency of heterogeneous individuals to adopt 

and this is better explained by microscopic models. 

Microscopic models are commonly referred as agent based models because they 

evaluate individual behavior including the innovation characteristics, communication 

channels and social interactions that influence adoption (Fibich & Gibori, 2010; Laciana 

et al., 2013). The models relate explanatory variables (covariates) to adoption decision 

(Meade & Islam, 2006).  The authors noted that microscopic models have the advantage 

of overcoming some weaknesses of the macro based models including the assumption of 

homogeneity of users.   

This study will try to reconcile the conflicting perspectives of what drives 

diffusion amongst networks through an empirical application of both macro- and 

microscopic models. Our study will therefore contribute to the literature of understanding 

social structure (communication channels and social structure) aspects on information 

flow and diffusion of innovation.  

 

2.4 Literature Review on Social Modelling 

Literature on growth and attachment patterns (also referred to as social modelling) 

of online platforms has focused on network formation perspective, where actors are 

believed to have some preferences while attaching to other scientists in the network (e.g., 

Barbasi & Alfred, 1999; Faraj & Johnson, 2011; Jackson & Rogers, 2007). Earlier studies 

                                                 
8 S-Shaped diffusion curve is similar to logistic function 
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of modelling social networks involved mostly evaluation of the network formation 

processes as either random (e.g., Erdos Renyi, ERGM-Exponential Random Graph 

Models), preferential (preferential attachment models that have distributions that are 

scale free –Barbasi and Alfred, 1999) or hybrid model involving both processes (Jackson, 

2008). These models evaluated the network from the actor’s behavioral point of view i.e., 

models of which scientist/actors form ties (links, triads, e.t.c) and how do they position 

themselves (e.g., centrality measures, small-worldness e.t.c) the network as a whole will 

have due to their action (Brass, 2002; Jackson, 2008). Recent network formation studies 

have found that actors do not follow preferential attachment while joining a group but do 

so randomly (e.g. Faraj & Johnson, 2011; Jackson & Roger, 2007).  

Early literature of network modelling involved the mechanical processes that 

described the stochastic (random attachment) processes of network formation (e.g., Erdos 

& Renyi, 1959). The modelling has now been improved to include application of game 

theory tools to help understand the formation process (Jackson & Rogers, 2007). The 

authors also noted that social network modelling results in development of models that 

are either scale free networks (networks that follow a degree distribution that is power 

law) or uniform random networks (networks that follow negative exponential degree 

distribution).  The first random graph model was developed by Erdos and Renyi in 1959 

(Erdos & Renyi, 1959; Lusher et al., 2013). Erdos and Renyi (1959) developed a simple 

random graph model (uniform Bernoulli graph distribution) model that had every link 

having a fixed probability 𝑝 ∈ (0,1) of formation. Erdos and Renyi (1959) also assumed 

that formation of every link was independent of any other and the model is mostly useful 

for understanding certain thresholds and how networks come to exhibit certain features. 
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The model assumes that once the threshold is met the links will continue forming to one 

big component and this was identified as a major caveat of the model because this seems 

not to be a good representation of social networks, that is, it lacks structural effect like 

clustering, degree distribution and small diameter (Jackson, 2008; Lusher et al., 2013).  

Improvements of Erdos Renyi (1959) model have involved relaxing the link 

formation independence through modifying the model to capture those important network 

dependency characteristics like clustering, degree distribution and small diameter 

(Jackson, 2008; Lusher et al., 2013). These include modelling network formation with 

dependencies as uniform random graph and/or by preferential treatment (e.g., Barabasi & 

Albert, 1999; Cooper & Frieze; 2003; Holland, 1981; Watts, 1999). Recently, hybrid 

models have also been developed (e.g., Jackson & Rogers, 2007; Kumar et al., 2000; 

Vazquez, 2003). Other extensions include stochastic block modes, exponential random 

graphs and newly introduced SERGMs/SUGMs (e.g., Chandrasekhar & Jackson 2012; 

Chatterjee & Diaconis, 2011; Frank & Strauss, 1986; Lusher et al., 2013). 

Holland and Leinhardt (1981) introduced dependency in Erdos Renyi model 

thorough p1 models where they added within-dyads but failed to introduce other network 

characteristics like triads and between-dyad dependence. The P1 models failure to 

capture all features of network dependence together with estimation issues prompted 

Frank and Strauss (1986) to introduce Markov random graph models. The authors 

developed Markov random graph models on the basis of conditional independence 

amongst ties whereby, ties may spread in the network from some tie. i.e., presence of a 

tie may affect formation of others and hence network characteristics dependence (Lusher 

et al., 2013). Markov random graph models were thus able to capture the dependence of 
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network characteristics and therefore became accepted form of ERGM in the 1990s. The 

models were further popularized in social network research by Wasserman and Pattison 

(1996) as ERGM (p*) models. However, despite ERGM (p*) ability to capture most 

aspects of network, they degenerate in large data sets (Jackson, 2008; Lusher et al., 

2013). This degeneracy issue is being addressed through other forms of modelling 

including Statistical Exponential Random Graph Models-SERGM/SUGMS which take 

some sample statistics from the large data set and use that for analysis of network 

formation mechanism (Jackson, 2008; Snijders et al., 2006).  Other forms of growing 

social model improvements include Watt (1999) who revealed small average short 

distance and clustering in networks when he randomly modified links. Barabasi and 

Albert (1999) modelled formation of the complex World Wide Web (www) and found 

them to attach through preferential attachment. Albert et al. (1999) also modelled the 

www and found the network to exhibit small diameter. Jackson and Rogers (2007) used a 

simple stylized link to link model that mixed random meetings to preferential attachment 

on five networks and found them to exhibit different proportions of random to 

preferential attachment meetings. Of particular interest, the authors found Barabasi and 

albert (1999) complex network to also have about a third of meetings being uniformly 

random. 

ERGM (p*) models have also been used to evaluate the network characteristics 

that are assumed to sustain the emerging online communities (e.g., Faraj & Johnson, 

2011). Faraj and Johnson, (2011) modelled the network formation and exchange patterns 

in online communities using ERGM (p*) model. The authors sought to understand mostly 

the network sustenance and formation patterns of five online communities over a period 
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of 27-months. The authors noted that the communities exhibited exponential growth 

despite the entry being voluntary and organization being self-organizing. Our study will 

contribute to the literature of social modelling in online communities through application 

of simple link to link ERG model that has the advantage of capturing the network 

formation processes and also is able to identify the network structural characteristics that 

are responsible for the network formation.  
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CHAPTER 3. EMBEDDED IN MUILTIPLE NETWORK SPACES ON SCIENTIST 

DEVELOPMENT: HIGHER ORDER SPATIAL AND NETWORK FIXED 

EFFECT MODELS 

3.1 Introduction  

Scientific productivity has been found to be positively correlated with collaboration (e.g., 

Gonzalez-Bambrila., 2013; Li et al., 2013). Collaboration in science involves virtual and 

social interactions amongst scientist that are driven mostly by a goal of producing 

scientific artifacts (Brunswicker et al., 2015; Matei, 2014). Brunswicker et al. (2015), 

Matei (2014) and Rullani and Haefliger (2013) looked at virtual collaboration networks 

formed out of digital practice activities like coding as production networks that ends up 

playing an important role as a factor of production to the members. However, the 

member’s positioning (or embeddedness) in those networks leads to different outcomes 

(e.g., Abbasi et al., 2011; Gonzalez-Brambrila et al., 2013; Li et al., 2013; Rullani & 

Haefliger, 2013) and the mechanisms and processes of collaboration which influence 

output is limited (Matei, 2014). There are very few studies of scientific production that 

have looked at the interactions and characteristics of network structures as factors of 

production despite its importance in understanding the collaboration mechanisms (e.g., 

Abbasi et al., 2011; Gonzalez-Bambrila et al., 2013; Li et al., 2013; McFadyen & 

Cannella, 2004; Singh, 2007). There are even lesser studies that have looked at these 

interactions and characteristics using network autocorrelation model (e.g., Brunswicker et 



31 

 

 

 

al., 2015; Matei, 2014) and none, to our knowledge, that has looked at the interactions in 

multiple (two or more) networks in a digital platform. Abbasi et al. (2011), Gonzalez-

Bambrila et al. (2013), Li et al. (2013), McFadyen and Cannella (2004) and Singh (2007) 

applied individual-outcome models (network effect model) where scientist networks were 

used to extract individual explanatory variables. For example, McFadyen and Cannella 

(2004) evaluated the relationship between network ties and scientist output and found a 

positive correlation between the variables. Singh (2007) also used network ties but added 

structural holes variables and found a positive relationship between these variables and 

scientific output. Abassi et al. (2011), Gonzalez-Brambila et al. (2013) and Li et al. 

(2013) extended Singh’s (2007) study by including more aspects of social embedded 

characteristics including density and position in the network. Abassi et al. (2011) 

evaluated the network structural aspects (including degree, closeness, betweeness and 

eigen vector centrality measures) on scientist scholars output (citation) and found only 

degree, and eigen vector centrality measures had significance effect on scientist’s 

productivity. Li et al. (2013) examined the effect of social capital embeddedness in 

network structure on scientist output. The authors used, degree, closeness and betweeness 

centralities amongst other variables and found betweeness centrality to be significantly 

correlated with output. Gonzalez-Brambila et al. (2013) evaluated the effects of social 

capitals relational, cognitive and structural aspects of network on scientist’s productivity 

and quality. The authors found that relational aspects of network affected quality, 

cognitive aspects affected quantity and structural aspects affected both quality and 

quantity. Brunswicker et al. (2015) evaluated the global and local impact of digital 

practice capital on developer’s productivity using autocorrelative model. The authors 
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found that degree of contribution to the core of the digital practice structure and 

authorship capital to be positively correlated with developer’s production. The authors 

also found the digital practice network as having negative spillover effects on developer’s 

productivity.  

Our study extends Abassi et al. (2011), Gonzalez-Brambila et al. (2013) and Li et 

al. (2013) individual-outcome models (network effect model) that looked at the effect of 

mostly local social embedded characteristics of a single network on scientists output in 

three ways. One, we incorporate relational aspects in the model through network 

autocorrelation modelling which enables us to capture the global effects of the network 

following Brunswicker et al. (2015). Two, we evaluate the effect of a scientist output 

when they are embedded in multiple networks (two or more-Here, we look at the virtual 

developer and authorship networks) and, three, we evaluate the scientific production in a 

pure digital platform. Unlike other scientific production systems, scientific production in 

digital ecosystem is largely dependent on the characteristics and interactions of the 

networks in the ecosystem because scientist rarely meet in those virtual platforms (e.g., 

Abassi et al., 2011; Brunswicker et al., 2015; Gonzalez-Brambila et al., 2013; Li et al., 

2013; Matei, 2014).  

 

3.2 Theoretical Background and Hypothesis 

This study is founded on network analysis because we are primarily concerned 

with evaluating the effect of networks formed in digital (online) platforms. Digital 

platforms enable members to form networks through digital practice activities such as 

source coding and other computer enabled associations and engagements that are mostly 
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facilitated by the platform’s API (Application Program Interface) and SVN (software 

versioning systems) information management files (nanoHUB.org, 2014). Brunswicker et 

al. (2015), Matei (2014) and Orlikowski (2000) found that networks evolve out of coding 

activities that the scientist engage in (digital practices) in the platforms.  While looking at 

the effects of the networks of member’s outcomes we will broadly look at both the 

individual local network effects and the global network effects that we hypothesize are 

driving productivity.  

3.2.1 Network Global Effects on Developers Productivity 

 Online digital platforms like nanoHUB.org cyberinfrastructure serves as a platform that 

enable scientists to collaborate. For example, tool developers collaborate by working on a 

particular tool while authors collaborate when working on a particular paper in the 

nanoHub.org cyberinfrastructure. The work on the tools development involves digital 

practice activities including modification, deletion or addition of the contents while the 

work on papers involves both formal and informal collaboration in the sense of 

traditional research (Brunswicker et al., 2015; Matei, 2014; nanoHUB.org, 2014). 

Therefore, two developers or authors 𝑖 and 𝑗 will be connected if they work on a 

particular tool or paper in the nanoHUB.org cyberinfrastructure. However, the magnitude 

of connection will depend on the level of work (or intensity of digital practice activities) 

they put in the tools or papers. To calculate the level of interaction (digital practice 

capital) between any two developers or authors we apply gravity model following Matei 

et al. (2015) digital practice capital model. The authors applied gravity model on the basis 

that two scientist digital practice activities could be likened to gravitational interaction 

that is influenced by mass and distance as described by Isaac Newton's law of gravity 
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(Anderson, 2010). The authors noted that developers and authors attract with each other 

when working on a common tool or paper and the level of attraction is based on the 

amount of work (time) they put on the tools and papers.  The scientists are separated by a 

revision distance which is defined as decayed time of association (Matei et al., 2015). 

The authors calculated the magnitude (weights-Θ) of the level of integration following 

gravity model as, 

1)       Θ𝑖𝑗 =
𝛿𝑖𝛿𝑗

𝑑𝑖𝑗
2  

Where,  

Θ𝑖𝑗 is the interaction term (weight) between i and j 

𝛿𝑖𝛿𝑗 are functions representing attractiveness (maximum of added and 

deleted lines) and repulsive forces (half of the minimum added and deleted lines 

plus modified lines) and, 

𝑑𝑖,𝑗
2  is the revision distance defined as decayed time of association.  

The weights were used to construct the edge list and adjacent weight matrix of 

developers’ collaboration in the two networks (Matei et al., 2015; Brunswicker et al., 

2015).  

The global network effect of the weight matrix was captured using autocorrelation 

modelling that is able to account for spillover effects of the network to participating 

scientists in addition to looking at different aspects of local network characteristics i.e., 

network embeddedness characteristics. Developers that are surrounded by those that have 

more digital practice capital will be influenced positively to be also productive because of 

spillover effects or contagion (Leenders, 2002). Moreover, developers that are embedded 
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in more than one network have more access to more digital practice capital (production 

resources and spillover effects) and will be expected to be more productive (Brunswicker 

et al., 2015; Matei, 2008). We therefore hypothesis that the network multivariate 

dependent and independent variables will be positively correlated to the developer’s 

productivity. i.e., 

Hypothesis 1: Developers and Authors network aggregate digital practice capital will be 

positively correlated to developer’s productivity.  

3.2.2 Network Local Effects on Developer’s Productivity 

Positioning (centrality measures) and density aspects of social embeddedness are 

important dimension of network embeddedness that influence performance (or the level 

of digital practice capital) but as Gonzalez-Brambila et al. (2013) puts it, until now there 

is no compelling evidence of what type of network embeddedness characteristics enhance 

the generation of knowledge or performance.  There are two main opposing school of 

thoughts as to what network mechanisms enhance productivity. One school of thought 

posits that network closure leads to more outcomes while the other posits that structural 

hole in network hence positioning in the network enhances better outcomes (Burt, 1992; 

Coleman, 1988). A third emerging school of thought argues that the “type “of scientist 

that one associates with might influence the outcome (Gonzalez-Brambila et al., 2013).  

Gonzalez-Brambila et al. (2013) noted that network characteristics that enhance 

coordination include trust and this can be tested with reciprocity where members that 

trust each other have tendencies to reciprocate. The authors further noted that most 

empirical studies have focused on the structure of the network and largely ignored the 

effects of the relational dimension of the structure of network that include different 
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measurements of social capital e.g., relational capital and structural capital. The social 

capital deals with the importance of relationships as resources for social action (in 

networks) but it is not one-dimensional because different aspects of these social 

relationships coexist in these networks (Macke & Dilly, 2010).  

Relational dimension includes centrality measures such as degree, closeness, 

betweeness, eigen vector centrality amongst others (Gonzalez-Brambila et al., 2013; Li et 

al., 2013). Degree centrality quantifies the number of direct ties that a developer has in 

the network (Jackson, 2008; Valente et al., 2010). It is assumed that direct ties stimulate 

combination and exchange of resources that are vital for accumulation of digital practice 

capital (Brunswicker et al., 2015; Jackson, 2008; Matei, 2014). We therefore hypothesis 

that developers with high degree centrality in either developer or authorship networks 

will consolidate resources that helps them accumulate digital practice capital to develop 

or author many scientific artifacts which increase their chances of getting a tool cite. i.e,  

Hypothesis 2: Degree centrality will be positively correlated with developer’s 

productivity.  

Closeness centrality measures the average distance of a developer to all others in 

the network (Jackson, 2008; Valente et al., 2010). A related centrality measure is 

betweeness centrality. Betweeness centrality measures a developer’s relative position in 

spanning the structural hole (Jackson, 2008; Valente et al., 2010). The hypothesized 

effects of the two centrality measures can be closely related to density of the network 

whereby, for example, a denser network will lead to high measure of closeness but low 

betweeness centrality. The effects of density on productivity is divided nevertheless: 

Coleman (1998), Hansen (1999) and Obstfeld (2005), Uzzi (1997) argued that denser 
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networks facilitates access to information and knowledge because actors develop trust 

and share customs of behavior which outweigh the potential individual opportunistic 

behaviors amongst actors i.e., closeness centrality will give a developer a higher digital 

practice capital that will increase the probability of developing a tool that will get a cite. 

The authors concluded that denser networks are therefore more beneficial than less dense 

network because they increase developer digital practice capital that enables him/her to 

transfer tacit knowledge based on proximity. An opposing view point is that by Burt 

(1992, 2004), Hargadon (2002) and Hargadon and Sutton (1997) who argued that such 

information is likely to get redundant after sometime and that developers in less dense 

networks create digital practice capital through leveraging efficient and information-rich 

network because redundant partners is minimized. i.e., betweeness centrality will give a 

developer digital practice capital leverage to develop artifacts that have a higher 

probability of being cited. The authors found that structural holes facilitate development 

of innovative products.  Following these constructing views we will hypothesize the two 

centrality measures to take any but opposite directions in the digital platform. 

Hypothesis 3: Betweeness Centrality will be positively correlated to developer’s 

productivity and Closeness Centrality will be negatively correlated to developer’s 

productivity.  

Hypothesis 4: Closeness Centrality will be positively correlated to developer’s 

productivity and Betweeness Centrality will be negatively correlated to developer’s 

productivity  

Eigenvector centrality measures the developers relative position to more 

influential (powerful) or accomplished developers (Jackson, 2008; Valente et al., 2010). 
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It is hypothesized that a developer’s association or connection with such highly 

accomplished (cited) developer’s will enhance his/her ability to take complex ideas and 

thus give him/her an edge in accumulating digital practice capital that will enable him/her 

to develop tools or coauthor papers that have a high probability of getting a cite. We 

therefore hypothesize that Eigen vector centrality will be correlated to developer’s 

productivity. i.e., 

Hypothesis 5: Eigen Vector Centrality will be positively correlated to developer’s 

productivity.  

 

3.3 Methodology 

3.3.1 Data 

The data for this study came from the nanoHUB.org cyberinfrastructure (Matei, 2014; 

nanoHUB.org, 2014). (Please refer to the description of the nanoHUB.org 

cyberinfrastructure on section 1.1.4.2 “Study Platform”). Our data from nanoHUB.org is 

organized by the structure of scientists that form the platform. This includes data on tool 

developers, tool users, educators and leaners. The data for this study comprised the tool 

developers and authors and this was mined from the SVN (Software Versioning Files) 

logs in the nanoHUB.org cyberinfrastructure (Brunswicker et al., 2015; Matei, 2014; 

nanoHUB.org, 2014).  

3.3.2 Variables 

The number of citations a developer gets from developed scientific artifact was used as 

the dependent variable. We do not include a time lag between the time that a developer 

worked on a scientific artifact and the time it was cited like in other citation studies (e.g., 
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Abassi et al., 2012; Li et al., 2013) because the work on tool development involves 

ongoing modifications, deletions and addition of codes that are captures in the SVN logs 

(Matei, 2014; NanoHUB.org, 2014). The independent variables for the autocorrelation 

model included the weight matrices in both network spaces, network embedded 

characteristics that captured the local effects and control variables. The weight matrices 

were excluded from the network fixed effect models. 

3.3.2.1 The Weight Matrices.  

The gravity model weights were calculated using Equation 1 (Section 3.2.1). These 

weights were used to construct the edge list and adjacent weight matrix of scientist’s 

collaboration in the two networks (Matei, 2014). The two weight matrices are presented 

in Figure 3 below. 

Figure 3 shows developers weight matrix to be fully connected but not the 

authorship network. The figure also shows that developers are more than the authors. The 

variations could be explained by the obvious digital practice work and infrastructure 

involved in tools development and authorship where tool development only requires a 

computer that is connected to the internet to form linkages while authorship requirements 

and numbers are quite the opposite nevertheless (Abassi et al., 2011; Gonzalez-Brambila 

et al., 2013; Matei, 2014). 
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Figure 3: NanoHUB.org Developer and Authorship Networks Adjacency Weight 

Matrices)  

The network embedded variables considered included. 

3.3.2.2 Degree Centrality(𝐶𝐷).  

This measured the number of developers that a developer is connected to and it is 

calculated as, 

2)     
 

j

ijiiD XXndC )(

 

𝑑(𝑛𝑖) is the degree centrality of node (developer) 𝑖, 𝑋𝑖𝑗 is the incoming or 

outgoing tie from developer 𝑖 to developer 𝑗. Degree centrality is a local measure of 

direct contacts and its magnitude can be misleading nevertheless (Jackson, 2008.p.38; 

Valente et al., 2010) 
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3.3.2.3 Closeness Centrality(𝑪𝑪(𝒏𝒊)). 

 This measures how a developer is close to others in the network (Jackson, 2008.p.39; 

Valente et al., 2010). The measure is founded on the inverse distance of each developer to 

all others in the network.   

3)     
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𝑑(𝑛𝑖, 𝑛𝑗) is the distance between developer 𝑖 and 𝑗 . 

A developer is considered significant if he/she is relatively ‘close’ to all other developers 

i.e., has a high closeness centrality (Jackson, 2008.p.39; Valente et al., 2010) 

3.3.2.4 Betweeness Centrality-𝑪𝑩(𝒏𝒊).  

This measures the developer’s ability to span structural holes (Jackson, 2008.p.39; 

Valente et al., 2010). The measure tallies the number of shortest paths between 

developers i and k that developer j resides on 

4)     




kj

jkijkiB gngnC /)()(

 

Where gjk = the number of geodesics connecting jk, and  

 gjk(ni) = the number that developer i is on (Jackson, 2008.p.39; Valente et al., 

2010). 

3.3.2.5 Eigen Vector and Bonacich Centrality(𝑪(𝜶, 𝜷)). 

Both centrality measures are related and they measure power (influence). Developer’s 

“centrality (prestige) is equal to a function of the prestige of those they are connected to” 

(Jackson, 2008.p.40-43; Valente et al., 2010).  Thus, developers that are linked to very 
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central developers have a higher power/prestige centrality than those who are not. The 

centrality measure is calculated as 

5)     1)(),( 1RRIC    

Where, “𝛼 is a scaling vector, which is set to normalize the score, 𝛽 reflects the 

extent to which one weight the centrality of developers that a developer is tied to, R is the 

adjacency matrix (can be valued), I is the identity matrix (1s down the diagonal) and 1 is 

a matrix of all ones” (Jackson, 2008.p.40-43). The author notes that the magnitude of β 

echoes the circle of influence/power and this distinguishes between the two centrality 

measures. According to Jackson, small values of β measure local structure while larger 

values yield global structure. i.e., If β > 0, a central developer is expected to have a high 

centrality when connected to other central developers and if β < 0 if the developer has a 

high centrality measure when connected to periphery developers. Where β = 0, the 

formula collapses to degree centrality (Jackson, 2008.p.40-43). 

3.3.2.6 The Control Variable 

Tenure. Tenure was defined as the duration of work days after a developer joined the 

platform 

 

3.3.3 The Models. 

This study seeks to evaluate the effect of networks in the nanoHUB.org 

cyberinfrastructure on developer’s output. Developers in the nanoHUB.org 

cyberinfrastructure are embedded in developer’s network but some are also embedded in 

authorship network. To evaluate the effect of authorship network on developers that are 
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embedded in the two network spaces we applied autocorrelation model, network fixed 

effect model and an autocorrelation model with fixed effect variable (i.e., Spatial Durbin 

Error Model-SDEM, probit and interaction model and fixed effect spatial probit model). 

Networks affects developers through structural characteristics (embeddedness) and 

spillover effects from the entire network (Brunswicker et al., 2015; Leenders, 2002; 

Matei, 2014). Embeddedness is usually considered as local network feature and global 

effect as spillover effects for the entire network (Jackson, 2008; Lesage & Pace, 2009). 

Our study will therefore evaluate both local and global effect of digital communities to 

participating developers. The local and global effects of network to participating 

developers and the effect of the number of network spaces (communities) that a scientist 

is embedded into in a digital platform will be modelled through network autocorrelation 

models (Spatial Probit and Spatial Durbin Error Models) and network fixed effect models 

(probit and Interaction). The fixed effect models will be used to account for the 

authorship network effect on developers. The models are discussed in details below: 

Autocorrelation models are discussed first followed by the network effect models. 

 

3.3.3.1 Network Autocorrelation Model 

The similarity in social networks and geodistance analysis is found in the weight matrix 

that captures the relationship in the research units while the main difference comes from 

the assumptions that are made regarding the research units “stationerity” (Páez, Scott, & 

Volz, 2008). Geodistance spatial analysis uses mostly geographical locations/features that 

are assumed to be stationery while the social networks use interactions mostly by humans 
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who are usually non-stationery because subjects change behavior quite often. The non-

stationery assumption leads to measurement errors and autocorrelated error term (Dubin, 

1998). However, our analysis considered a pure network effect (based on digital practice 

in digital ecosystem) that has less interactions of humans and it is therefore assumed to be 

stationery (stable) as any other geographic feature (e.g., Jackson, 2008; Orlikowski; 

2000).  

Our analysis involves developers that are embedded in one or two network spaces 

(developer /and citation network). Because we are interested in quantifying the local and 

global impact in two network spaces (both the developer and citation networks) we 

choose to extend a spatial durbin error model (SDEM) model that captures both the local 

and global spillovers and through the error term (Lesage & Pace, 2011). The global 

spillover effects are those associated with spatial lags while the local spillovers are those 

associated with changes in the explanatory variables (Lesage & Pace, 2011). The authors 

noted that one main advantage of SDEM over the conventional higher order SAR model 

is its ability to allow separation of the local impacts on the two network spaces 

(developer and authorship network) on developer’ productivity. Moreover, higher order 

SDEM is also able to address the pitfalls associated with lack of separation of marginal 

effects of higher order SAR. The basic and extended SAR and extended SDEM spatial 

econometrics models are shown in equations 6, 7 and 8 below. 

 

6)                                𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀 

7)                                𝑦 = 𝜌1𝑊1𝑦 + 𝜌2𝑊2𝑦 + 𝑋𝛽 + 𝜀 

8)      𝑦 = 𝑋𝛽 + 𝑊1𝑋𝜃 + 𝑊2𝑋𝛾 + 𝑢 ∶   𝑢 = 𝜌𝑉𝑢 + 𝜀 
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Where, 

 𝑦 is a vector of dependent variable that exhibits variations across spatial 

observational units. 

𝑋 is a vector of explanatory variables including network embeddedness 

characteristics 

 𝜌, 𝜌1  and 𝜌2 are the scalar parameter that measure the strength of spatial 

dependence with the neighbors 

 𝜃 and 𝛾 are scalars that measure spillovers that impact immediate 

neighbors (local spillovers). 

 𝛽 are parameters to be estimated by either the maximum likelihood, 

generalized moments, Bayesian, or instrumental variable methods  

𝑊, 𝑊1 𝑎𝑛𝑑𝑊2 are weight matrices representing various relationship of 

actors or research units.  

The choice of higher order SDEM over SAR is motivated by the drawbacks that are 

associated with extending the simple SAR model to higher order SAR (Lesage & Pace, 

2011). Lesage and Pace (2011) identified four pitfalls associated with adding weight 

matrices to the basic SAR. The authors noted that proponents of that extension usually do 

so to account for more features of non-spatial dependence and also to “stabilize” the 

estimates because it is believed that the estimates are highly sensitive to the weight 

matrix (e.g., Badinger & Egger, 2011; Case et al., 1993).  Lesage and Pace (2011) noted 

that the ultimate goal of applying a spatial econometrics model is to explain the effects of 

predictor variables on the dependent variable through the own- and cross-effects which 

are not explained by the extended SAR model. The authors noted that extended SAR 
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model results in interaction and overlap of the global spillovers in the two or higher order 

weight matrix spaces making the own- and cross-effects non-separable. The own and 

cross partial derivatives from the SAR, SEM and extended SAR models are given by, 

9)    
𝑑𝑦𝑖

𝑑𝑥𝑖
𝑟 = (𝐼𝑛 − 𝜌𝑊)𝑖𝑖

−1𝛽𝑟 

10)    
𝑑𝑦𝑗

𝑑𝑥𝑖
𝑟 = (𝐼𝑛 − 𝜌𝑊)𝑖𝑖

−1𝛽𝑟 

11)    
𝑑𝑦𝑖

𝑑𝑥𝑖
𝑟 = 𝛽𝑟 

12)    
𝑑𝑦𝑗

𝑑𝑥𝑖
𝑟 = 0 

13)    
𝑑𝑦𝑗

𝑑𝑥𝑟′ = (𝐼𝑛 − 𝜌1𝑊1 − 𝜌2𝑊2)𝑖𝑖
−1𝛽𝑟 

 

Equation (9) shows the direct effect of changes in the 𝑟th explanatory variable in 

region 𝑖 to itself, while (10) shows the indirect effect of how changes in the 𝑟th 

explanatory variable in region 𝑖 affects other regions 𝑗 in the SAR model (Lesage & Pace, 

2011). The direct and indirect effect can also be calculated from the resulting 𝑛𝑋𝑛 matrix 

by the average of the main diagonal elements (direct) and “the average of the cumulative 

sum of the off-diagonal elements” (indirect effects) (Lesage & Pace, 2011). Equation (11) 

represents the measure of changes in the 𝑟th explanatory variable in region 𝑖 to itself 

while (12) shows the indirect effect of how changes in the 𝑟th explanatory variable in 

region 𝑖 affects other regions 𝑗 which is zero, in the SEM model (Lesage & Pace, 2011). 

Equation (13) shows the partial derivative for a higher order SAR which shows the 

resulting 𝑛𝑋𝑛 matrix has both 𝑊1 and 𝑊2 which is a combination of the two dependence 

that are being modelled. As such, it is impossible to separate the spillover communication 
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channels that are linked with each weight matrix which was the original intention of 

extending the SAR model to start with (Lesage & Pace, 2011). Lesage and Pace (2011) 

therefore identified this as the first pitfall in modelling higher order spatial models using 

SAR. 

Lesage and Pace (2011) also examined the second belief/motivation for extending 

SAR model, “the sensitivity of estimated parameters to the weight matrix”. The authors 

noted that the marginal effects in (13) could exhibit high covariations in higher order 

series expansions even when there was no relationship to start with.  The authors noted 

that there might also be issues to do with endogeneity where a second non spatial weight 

is used for extension because it might be highly correlated with other explanatory 

variables. 

The third drawback for extending SAR model has to do with the feasible range of 

the spatial dependence parameters 𝜌1 and 𝜌2 (Lesage & Pace, 2011).  “The minimum and 

maximum eigenvalues of the weight matrix 𝑊 determine the feasible range of the spatial 

dependence parameter 𝜌” (Lesage & Page, 2009). Lacombe and Piras (2011) and Lesage 

and Pace (2011) showed that the feasible region of higher order models exhibits a “non-

linear relationship between feasible values of parameters 𝜌1 and 𝜌2”. The authors 

indicated that most studies modelling higher order weight matrix do not specify the 

parameter space while others restrict the absolute values of the two parameters to less 

than 1.i.e.,  

14)    (|𝜌1| + |𝜌2| < 1) 
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 (e.g., Badinger & Egger, 2011; Elhorst et al., 2011; Lee & Liu, 2010; Lesage & 

Pace, 2011). The commonly used Generalized Methods of Moment (GMM) estimation 

ignores the restriction of the feasible values of parameters 𝜌1 and 𝜌2 in (14) but Bayesian 

Monte Carlo Markov Chain (MCMC) estimation could be used to impose that restriction 

using a Metropolis-Hasting (M-H) technique (Elhorst et al., 2011). 

Lesage and Pace (2011) also noted that the order with which the weight matrix is 

entered matters in parameter estimates and that extended higher order SAR model 

implicitly assumes that 𝑊1𝑊2 = 𝑊2𝑊1 which is non-flexible.   

3.3.3.1.1 Addressing Draw Backs Associated with Extended SAR Model 

The main motivation of applying spatial econometrics model is to capture the spillover 

effects associated with interdependencies in the weight matrix. As aforementioned the 

spillover effects are usually local or global. Models that capture the local spillovers 

effects include “spatially lagged explanatory variables (SLX) and spatial durbin error 

(SDEM) models” but these models have been largely been ignored in applied work 

(Lesage & Pace, 2011). Equation (15) and (16) give the model specifications, 

15)    𝑦 = 𝑋𝛽 + 𝑊𝑋𝜃 + 𝜀 

16)    𝑦 = 𝑋𝛽 + 𝑊𝑋𝜃 + 𝑢 ∶   𝑢 = 𝑉𝑢 + 𝜀 

All the variables are as explained in above and 𝜃 is the parameter that captures the local 

effects. The partial effects of (15) and (16) is the same and it given by (17), 

17)    
𝑑𝑦𝑖

𝑑𝑥𝑖
𝑟 = (𝐼𝑛𝛽𝑟 + 𝑊𝜃𝑟) 

The average of the diagonal in (17) gives the direct effects while the average of the off-

diagonal elements gives the indirect effect (Lesage & Pace, 2011). The diagonals 
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elements in the weight matrix 𝑊 are zeros (reflecting the fact that a region cannot be 

neighbor to itself) and the row sums are 1 implying that from (17) 𝛽𝑟 gives the direct 

effects while 𝜃𝑟 gives the spillover effects of the immediate neighbors (local effects) 

(Lesage & Pace, 2011). The authors noted that SDEM model has also the ability to give 

the global effects through the error term and it is therefore more efficient. An 

extended/higher order SDEM model is given by, 

18)     𝑦 = 𝑋𝛽 + 𝑊1𝑋𝜃 + 𝑊2𝑋𝛾 + 𝑢 ∶   𝑢 = 𝜌𝑉𝑢 + 𝜀 

Equation (18) gives separate local and global spillover effects and is able to avoid the 

aforementioned pitfalls of extending SAR model (Lesage & Pace, 2011). SDEM model 

(18) was therefore chosen for the analysis of this study. Lesage and Pace (2011) further 

noted that extended SAR model has the same functional form the expected 𝑦 and the 

error term covariance which is restrictive because misspecification in one part will taint 

other parts of the model specification. A Bayesian Monte Carlo Markov Chain (MCMC) 

estimation method was applied over the commonly used Generalized Methods of 

Moment (GMM) to get the estimates of the SDEM model (Eqt. 18). GMM estimation 

ignores the restriction of the feasible values of parameters 𝜌1 and 𝜌2 in (14) but Bayesian 

Monte Carlo Markov Chain (MCMC) estimation was used to impose that restriction 

using a Metropolis-Hasting (M-H) technique (Elhorst et al., 2011). Bayesian estimation 

method samples posterior distribution parameters from our model and then applies 

Markov Chain Monte Carlo (MCMC), Gibbs and Metropolis-Hasting technique to 

generate population using several simulations (here 1000) and confidence interval with a 

burn.in value (here 500). 
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3.3.3.2 Network Fixed Effect and Interaction Models 

Fixed effects regression models holds constant (fixes) the average effects of each 

developer and is able to capture the effect of within variation in the authorship network 

(Wooldridge, 2003. p.220).  The modelling involves inclusion of authorship dummy that 

controls for the average differences across developers i.e., the fixed effect coefficient 

controls the variations across the developer networks and only leaves the variations 

within authorship network. The fixed effect probit model was used as the non-spatial 

version of the fixed effect spatial probit models. The fixed probit model does not include 

the spatial autocorrelation variable and was used to compare/ or validate the use of the 

spatial version.  The interaction model extends the single fixed effect probit model. In the 

model, we assume that the authorship dummy moderates the effects of other variables 

too. We therefore interact the authorship dummy with the network structural variables 

and control variables. Interaction of the authorship dummy with continuous variables will 

alter the slope while interaction with dummy variable will alter the intercept 

(Wooldridge, 2003. p.233; Green, 2003.p.123). The interaction model was used to 

evaluate the effect of the network structure and control variables on scientist citations 

conditional (when moderated) by the developer also being an author. The fixed effects 

probit model and interaction models are presented in equations (19) and (20) below. 

19)                                        𝑦 = 𝑋𝛽 + 𝜀 

And 

20)                                 𝑦 = 𝑋𝛽 + 𝑋−1𝑋1𝜃 + 𝜀 

Where, 

𝑦 is a vector of dependent variable with 1 and 0’s. 
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𝑋 is a vector of explanatory variables including network embeddedness 

characteristics 

 𝛽 is a vector of parameters to be estimated  

𝑋−1𝑋1 is a vector of interaction variables defined as; 𝑋−1 is a vector of the all 

explanatory variables excluding the dummy of a developer being an author and 𝑋1 is the 

dummy representing a developer who is also an author 

𝜃 is a vector of fixed effect parameters to be estimated 

 

3.4 Results and Discussion 

We first conducted statistical data analysis9 visually, then tested variables for spatial 

effects before formal modeling and hypothesis testing.  All variables were first explored 

visually through histograms before being analyzed statistically. Histograms of citations, 

tenure, centrality measures; bonacich, betweeness, closeness, degree and eigen vector and 

components are presented in the Appendix. Histograms for citations, betweeness 

centrality, degree centrality and eigen vector centrality are positively skewed and show 

distribution that follows power law. Table 2 show the descriptive statistics of the 

variables used in the model.  

 

 

 

                                                 
9 “Statistical data analysis involves both statistical analysis and visual inspection of the 

variables” (Dasu & Johnson, 2003).   
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Table 2: Descriptive Statistics 

Variable Obs Mean Std. Dev. Min Mid Max 

Citations 477 13.94 68.99 0 0 866 

Tenure 477 1878 1039 0 7.50 4974 

Authorship (dummy) 477 0.612 0.488 0 0 1 

Bonacich Centrality 477 -0.13 -0.99 -7.679 0.008 3.111 

Betweeness Centrality 477 767.04 5077.87 0 0 67292 

Closeness Centrality 477 5.15e-5 7.69e-7 4.4e-6 5.75e-5 6.14e-5 

Degree Centrality 477 53.77 67.736 1 13 597 

Eigen Vector Centrality 477 0.101 0.224 2.7e-4 0.02 1 

Components 477 239.00 137.84 1 239 477 

 

Table 2 shows, mean standard deviation, minimum, median and maximum of the 

variables. All centrality variables have high standard deviation, a median that is close to 

the minimum and high range (minimum and maximum difference) which of an indication 

of positive skewedness. The average number of citations that an article gets is about 14 

with a standard deviation of 69. However, the minimum and median citations that a 

developer gets is zero implying that there are many developers that get very low citations 

and very few that get high citations. The average number of citation an author gets is 

within range found by Gonzalez-Bambrila et al. (2013) and Singh (2007) even though 

their articles were in different study areas.  The average number of days of tenure that the 

developers had since joining the nanoHUB.org cyberinfrastructure was 1878 with a 

standard deviation of 1039. The authorship dummy had value 1 if the developer was also 

an author and 0 if the developer was not an author. Results show that about 39% of the 

developers were also authors. This implies that over 60% of software developers do not 

attempt to publish their work. The mean values of bonacich and eigenvector centrality 
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measures were -0.127 and 0.101 respectively. Their standard deviations were -0.993 and 

0.244. These results imply that the number of influential/powerful/very successful 

developers’ in the network is relatively small. Betweeness centrality measure also 

showed high variance with a mean of 767.04 and a standard deviation of 5077.87. 

Betweeness centrality measures show the average span across the network structural 

holes and the high number is an indication of that most developers have relative ease in 

spanning across the structural holes in the network. i.e., developer network in the 

nanoHub.org cyberinfrastructure has many components and good enabling mechanisms 

that allow developers to easily span through those components. Burt (1998) and 

Gonzalez-Bambrila et al. (2013) also noted that high betweeness centrality can also be 

attributed to the size of the network where large sample size increases the structural 

holes.  

The mean in degree centrality measures was 53.8 with a standard deviation of 

67.7. However, the minimum and median in degree was 1 and 13 respectively implying 

that most developers have a low number of indegree and few have a high indegree. The 

results are characteristics of citations network that lean towards being scale free (e.g. 

Barbasi & Albert, 1999; Jackson, 2008). The number of component showed relatively 

normal distribution with a mean of 239 and a standard deviation of 137.84. Component 

measures the number of developers that are “reachable from a given developer”, or the 

opposite: all developers from which a given developer is “reachable via a directed path” 

(Gabor, 2014).  
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The variables that showed had high variance were tested for power law 

distribution (scale free property) through Kolmogorov–Smirnov test (KS10 test). The 

power law distribution test had the null hypothesis that the data was generated from a 

distribution that was scale free (power law distribution). The KS test results of the power 

law distribution tests are shown in Table 3. 

Table 3: KS Test for Power Law Distribution for Selected Variables 

Variable alpha KS.Stat KS.P 

Citations 2.726 0.121 0.143*** 

Bonacich Centrality 3.256 0.000 1.000*** 

Betweeness Centrality 1.717 0.089 0.927*** 

Closeness Centrality 13.206 0.242 0.000 

Degree Centrality 3.477 0.147 0.727*** 

Eigen Vector Centrality 1.736 0.094 0.003 

*** denote significance at 1% significance level 

Results show that the column KS p value for citations, bonacich centrality, betweeness 

centrality, degree and centrality were greater than 0.05 and we reject the null hypothesis 

that their distributions did not come from a power distribution. We therefore conclude 

that the data set came from power law distributions. Similar results have been found in 

other citation and social networks (e.g. Barbasi & Alberta, 1999; Jackson, 2008). Log 

transformation was applied to the power law distributed variables to correct (have more 

variance) for high positive skewedness in those transformations which is more suitable 

for parametric regression (Hoskins, 2013). The distributions of the transformed variable 

                                                 
10

 “Kolmogorov–Smirnov test is a nonparametric test of the equality of continuous, one-

dimensional probability distributions that is used to compare a sample with a reference 

probability distribution for one-sample KS test.” (Marsglia et al., 2003) 
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were further examined visually. All the variable expect degree centrality still exhibited 

positive skewedness. These variable were therefore categorized into two as follows; the 

dependent variable citations were set to 1 if the number of citations were greater than 1 

and 0 otherwise. The implication of categorizing the endogenous variable was that we 

now have a dichotomous variable that can longer fit a linear model (Wooldridge, 2003). 

Running a liner model on limited dependent variable results in inefficient estimates 

(Lesage, 2000). For the predictor variables, we created a dummy variable for betweeness, 

closeness and eigen vector centrality. Betweeness centrality was set to 1 if the measure 

was greater than 2 and 0 otherwise. Closeness centrality measures had very low values 

and was therefore scaled up by 105 before being categorized into two; 1 was assigned if 

the closeness centrality was greater than 4 and 0 otherwise.  The eigen vector centrality 

was set to 1 if the value was greater than 0.1 and 0 otherwise. The corresponding global 

descriptive properties of the networks are presented in Table 5. The global statistics that 

were considered include Assortativity, Clustering coefficient, diameter, density and 

reciprocity. The definition, magnitude and implication of the global statistics is discussed 

below.  

Table 4: The Global Descriptive Properties of the Developer and Authorship Network 

Variable Developers Network (W1) Authorship Network (W2) 

Assortivity -0.0075 -0.0026 

Clustering coefficient 0.7595 0.7595 

Diameter/avshortpath 2.22284 2.22284 

Density 0.0565 0.0565 

Reciprocity 0.3780 0.378 
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Both networks have equal magnitudes of clustering, density and reciprocity. 

Results show assortativity coefficients of both networks are low (compare -0.0075 to -

0.0026 for developer network and authorship network respectively). The low coefficient 

implies that there is low homophily in the network because assortativity coefficient 

measures the tendency of scientists to mix with similar scientists in a network 

(homophily) (Newman, 2003). Clustering coefficient is also known as transitivity 

coefficient and it measures the probability that adjacent developers of a scientist are 

connected (Gabor, 2014; Wasserman & Faust, 1994). The clustering coefficient was 

0.7595 for both networks. This implies that developers will cluster into small group than 

into bigger one. The networks have a low density of 0.0565 which indicates that there is a 

low probability of getting a tie (dyad) in a purely random network. Burt (1992, 2004) and 

Hagdom and Sutton (1997) found that low dense networks accord scientist leverage in 

generating opportunities that are more efficient and non-redundant. Both networks have 

reciprocity of 0.378. Reciprocity describes the proportion of mutual connections in a 

directed graph. i.e., “the probability that the opposite counterpart of a directed edge is 

also included in the graph” (Gabor, 2013). Reciprocity is often used as a measure of trust 

in social exchange theory (Cropanzano & Mitchell, 2005). Result imply that about there 

is about 37.8% probability of mutual connections or social exchange between developers 

in the network. 

 

3.4.1 Statistical Test for Spatial Autocorrelation 

Moran I was used to test for spatial effects; spatial autocorrelation and heterogeneity of 

the variables and in the model. Moran’s I scatter plots were also plotted to visually 
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explore the autocorrelation patterns in the variables. Results for Moran’s I results are 

presented in Table 5 while some representative scatter plots are presented in the 

Appendix.   

3.4.1.1 Moran’s I Test for Spatial Autocorrelation 

Moran’s I test for residuals is given by,  

21)        /][]/[ WSNI  

Where , 

  is the vector of residuals 

W is a exogenous spatial weight matrix defined above and  

S is a standard factor defined as the sum of all elements in the given 

matrix (Anselin, 1988).  

Moran’s I test for residuals had the null hypothesis of no spatial effects on the 

endogenous and predictor variables. Moran’s I test for the residual were tested under the 

assumptions that the distribution of the variables was normal and random pattern but both 

yielded similar results (Tiefelsdorf, 2000).  Moran’s I results are presented in Table 5 

below, 
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 Table 5: Moran's I Statistics for Dependent and Independent Variables 

Variable Developer Network (W1)   Authorship Network (W2) 

  Moran I p-value   Moran I p-value 

Citations 0.223*** 0.000  0.940*** 0.000 

Bonacich Centrality 0.125*** 0.000  0.940*** 0.000 

Betweeness Centrality 0.256*** 0.000  0.942*** 0.000 

Tenure 0.137*** 0.000  0.939*** 0.000 

Closeness Centrality 0.149*** 0.000  0.938*** 0.000 

Degree Centrality 0.177*** 0.000  0.942*** 0.000 

Eigen Vector Centrality 0.171*** 0.000  0.939*** 0.000 

Google Page Rank 0.178*** 0.000   0.943*** 0.000 

*** denote significance at 1% significance level 

 

Results show that we reject the null hypothesis of no spatial effects in the dependent and 

independent variables in both weight matrices. Results also show that the slopes of the 

fitted line in the second weight matrix is higher than the first weight matrix. The scatter 

plots in the Appendix seem to support Moran’s I test statistics results: the plots show 

clear patterns of clustering along the fitted line in the quadrants for all the variables and 

the slope of fitted line in the authorship network is higher.  

 Table 6 show the correlation matrix between the variables used in the models. The 

variables are presented symbols as follows: Citations (y), Tenure (x02), Developers 

network variables (W1-Weight matrix 1); Bonacich centrality (x03), Betweeness 

Centrality (x04), Closeness Centrality (x05), Degree Centrality (x07), Contributions 

(x08), Eigen Vector Centrality (x09), Components (x10) and Authorship network 

variables (W2-Weight Matrix 2); Bonacich centrality (xx03), Betweeness Centrality 

(xx04), Closeness Centrality (xx05), Degree Centrality (xx07), Contributions (xx08), 

Eigen Vector Centrality (xx09), Components (xx10). 
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Table 6 shows that some variables have high correlation. The table shows 

Bonacich and betweeness centrality from the two weight matrix as being perfectly 

correlated. Betweeness centrality in the two weight matrices has also a high correlation. 

The highly correlated variables were removed from the model before analysis11.  

Table 6: Correlation Matrix of Dependent, Control and Network Structural Variables 

Considered in the Models 

Variable y x02 x03 x04 x05 x07 x08 x09 x10 xx03 xx04 xx05 xx07 xx08 xx09 xx10 

y 1                

x02 -0.1 1               

x03 0.0 0.2 1              

x04 0.3 0.0 0.0 1             

x05 0.0 0.1 -0.1 0.1 1            

x07 0.2 -0.1 -0.3 0.5 0.3 1           

x08 0.3 0.0 0.1 0.1 -0.1 -0.1 1          

x09 0.2 0.0 0.0 0.1 0.2 0.5 0.4 1         

x10 0.0 0.0 0.2 -0.2 -0.3 -0.4 0.2 -0.1 1        

xx03 0.0 0.2 1.0 0.0 -0.1 -0.3 0.1 0.0 0.2 1       

xx04 0.3 0.1 0.1 0.8 0.1 0.5 0.1 0.2 -0.1 0.1 1      

xx05 0.0 0.1 -0.1 0.1 1.0 0.2 -0.1 0.1 -0.3 -0.1 0.0 1     

xx07 0.2 -0.1 -0.3 0.5 0.3 1.0 -0.1 0.5 -0.4 -0.3 0.5 0.2 1    

xx08 0.3 0.0 0.1 0.1 -0.1 -0.1 1.0 0.4 0.2 0.1 0.1 -0.1 -0.1 1   

xx09 0.2 0.1 0.0 0.1 0.1 0.3 0.3 0.6 0.0 0.0 0.2 0.1 0.3 0.3 1  

xx10 0.0 0.1 0.3 -0.2 -0.4 -0.7 0.2 -0.3 0.4 0.3 -0.2 -0.3 -0.7 0.2 -0.1 1 

 

3.4.2 Models Results and Discussion. 

The network autocorrelation model and the fixed effects network models are presented in 

Table 7 below. The models fit test statistics are also presented in the Table 7. Table 7 

show results of fixed effect network (probit and interaction) models and network 

                                                 
11 We use R programming software which does not run if there is collinierity problem. R 

program does not invert the matrix XTX  that is used to generate the estimate. A 

consequence of running the model with collinear variables is getting high standard error 

that increase the probability of causing type two error and getting over fitted models 
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autocorrelation (spatial probit and spatial durbin error-SDEM) models. The models were 

first subjected to likelihood ratio (LR) tests to evaluate their fit of the data. The LR test 

had the null hypothesis that the log likelihoods of restricted and unrestricted models are 

not different from zero. Results show that log likelihood of the restricted and unrestricted 

models are all different from zero and therefore all the four models fit the data 

presentation. Given the LR test results that qualify all models, we use a vote count 

technique that is often used in meta-analysis12 to discuss the models estimates results. 

Vote count method is a simple narrative review in which the number of statistically 

significant studies are compared to the number of statistically non-significant studies 

using 𝑝-values (Stanley & Doucouliagos, 2012). We therefore proceed to discuss the 

direction and magnitude of variables based on the vote count in the four models.  

Table 7 shows the spatial autocorrelation parameter of the spatial probit model is 

statistically different from zero. The parameter results of -0.003 at 1% significance level 

implies that there is a negative spatial spillover effect in the developer network. Being 

embedded in the developer network reduces the probability of developing a tool that will 

get a cite.  

 

 

                                                 
12 “Meta-analysis synthesizes results from a group of studies while controlling for 

heterogeneity among studies and consequently builds a body of knowledge and that 

provides a more precise and robust guide for action” (Stanley & Doucouliagos, 2012, p. 

3; Ringquist, 2013, p.4). 
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Table 7: Regression Results for Network Effect (Probit and Interaction) Models and 

Network Autocorrelation (Spatial Probit and SDEM) Models: DV=Number of Citations 

of Scientific Artifacts 

  PROBIT SARPROBIT 

INTERACTION 

MODEL 

SDEM 

(Extended) 

Dependent Variable (DV)=Y 

Estimate 

(std dev) 

Estimate  

(std dev) 

Estimate 

(std dev) 
 

  

Intercept 0.122 

(0.075) 

-1.823** 

(0.698) 

0.020 

(0.086) 

 -0.025 

(0.715) 

Tenure -0.008 

(0.009) 

-0.059 (0.084) -0.003 

(0.009) 

 0.133 

(0.079) 

Betweeness Centrality (Dummy) 0.016 

(0.029) 

0.136  

(0.232) 

-0.000 

(0.038) 

 0.0451** 

(0.170) 

Closeness Centrality (Dummy) -0.115** 

(0.042) 

-1.145** 

(0.350) 

-0.001 

(0.054) 

 -0.521** 

(0.217) 

Authorship member (Dummy) 0.775*** 

(0.025) 

3.627*** 

(0.279) 

0.925*** 

(0.076) 

  

Degree Centrality 0.007 

(0.010) 

0.083 

 (0.104) 

-0.000 

(0.011) 

 -0.161* 

(0.093) 

Eigen Vector Centrality 0.198** 

(0.039) 

1.142** 

(0.383) 

-0.000 

(0.048) 

 -0.439* 

(0.234) 

Components      -0.000 

(000) 

Authorship member (Dummy) and 

Betweeness Centrality 

    0.011 

(0.059) 

   

Authorship member (Dummy) and 

Closeness Centrality 

  -0.253** 

(0.086) 

  

Authorship member (Dummy) and 

Degree Centrality 

  0.012 

(0.023) 

  

Authorship member (Dummy) and 

Eigen Vector Centrality 

    0.252** 

(0.082) 

   

Bonachis Centrality (local_1)     0.000 

(0.004) 

Degree Centrality (local_1)     -0.116 

(0.219) 

Tenure (local_2)         -0.154** 

(0.065) 

Bonacich Centrality (local_2)     -0.030 

(0.067) 

Betweeness Centrality (local_2)     0.871*** 

(0.176) 

Components (local_2)     0.001 

(0.001) 

      

AIC 50.3 220.318 34.213   550.21 

rho  -0.003*** 

(0.001) 

  -0.305 

(0.387) 

Sige     1.062*** 

(0.113) 

Log-likelihood  102.16 -5.11  -260.11 

LR (nested interaction terms) 543.76*** 352.84*** 24.09***   31.06*** 

*, ** and *** denote significance at 10%, 5% and 1% significance level, respectively 
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Both weight matrices are characterized by high clustering13 (small worlds) but do 

not show homophily amongst those clusters (low assortativity coefficient). This implies 

that developers in both developer and authorship networks cluster not based on similarity 

in them (scientists) but other factors that could be work related14. The weight matrices are 

also characterized by low density and relatively low reciprocity. High clustering, low 

density and reciprocity will encourage developers to span structural hole while searching 

for non-redundant knowledge from “trusted” (reliable) scientist that will give them 

leverage to develop quality tools that have a high probability of getting a cite (e.g., Burt 

1992; 2004; Hargadon & Sutton, 1997). These results are further supported by the 

positive and significant coefficient of betweeness centrality and negative and significant 

coefficient of closeness centrality. These findings support Burt (1992; 2004) and 

Hargadon and Sutton (1997) structural hole theory as the mechanism that enhances 

developer’s productivity in a digital network. The results also support our hypothesis of 

getting reversed influence between closeness and betweeness centrality measure in digital 

network.  

The structural network characteristics of eigen vector centrality and closeness 

centrality have statistically significant effects on probability of developing a quality tool 

that will get citations in the probit, spatial probit and SDEM models.  Eigen vector 

centrality measures the developer’s position relative to influential/highly accomplished 

developers in the network. Results show that being close to influential developers in the 

                                                 
13 Clustering coefficient for both weight matrices was 0.76 while assortativity 

(homophily) measure for weight matrices 1 and 2 was calculated as -0.0075 and -0.0026 

respectively (See Table 4 in section 4.2) 
14 Our data lacks more control variables that could explain the behavior better. 
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network increases the probability of getting a citation. This result is supported by 

Gonzalez-Bambrila et al. (2013) but contradicted by Abbasi et al. (2011).  Abbasi et al. 

(2011) found a negative correlation between eigen vector centrality and scientist’s 

productivity. However, the findings support the emerging new school of thought which 

argues that the “type” of scientist that a developer associates/works with might influence 

citation of developed tools (Gonzalez-Bambrila et al., 2013). Being close to other 

developers in the network leads to reduced probability of developing a tool that will get a 

cite. These results are supported by Coleman (1988), Burt’s (1992&2004) and Hargadon 

and Sutton (1997) who argue that high closeness centrality leads to redundancy in 

information or knowledge.   This result is confirmed by statistically significant negative 

estimates of closeness centrality measure in all the models but interaction term model. 

Tools specificity that a developer works on could be attributed to specialization and 

redundancy in ideas.   

The dummy variables for a developer being an author (authorship dummy) yield 

statistically significant results for both the probit and spatial probit models. Authorship 

dummy was used to evaluate the effect of a developer also being an author after fixing 

the effect of developers in all models but SDEM model. Results show that the authorship 

dummy was positive and statistically significant at 1% significance levels. Results show 

that a developer who is also an author has about 77.5%, 92.5% and over 100% likelihood 

of developing a tool that will get a cite going by the probit, interaction and spatial probit 

models respectively. These results imply that being embedded in multiple networks 

increases the chances of developing a tool that will get citation.  
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The interaction terms in the interaction model show that closeness centrality 

reduced the probability of a developer who is an author from getting citation of their tool 

after moderating the effect of embeddedness in the author network. i.e., high closeness 

centrality reduces the probability of a developer developing a tool that will get a cite 

when the scientists is a developer and an author. However, eigen vector centrality 

increases the probability of getting a citation when it is moderated in the authorship 

network. The SDEM model results show that scientists that span structural holes (have 

high betweeness centrality) have a higher probability of developing a tool that will get a 

citation. This result is supported by Burt (1992; 2004) that showed that structural hole 

facilitates development of quality tools that will most likely get citations. SDEM model 

result also show that closeness, degree and eigen vector centralities have a negative 

influence in developing a tool that will get cited. Developers with low degree centrality 

have a higher probability of developing a tool that will get a cite. This finding goes 

against our hypothesis but it can be attributed to the above highlighted tool specificity 

and the tendency for information to became highly redundant amongst many scientist 

working on one particular too (e.g. Burt 1992; 2004). The tenure and betweeness 

centrality local spillover effect in the authorship network have significance influence of 

development of a tool that will get citation. Longer tenure reduces the probability of 

getting a tool that will get citation while betweeness centrality increases the probability of 

getting a tool that will get citation. 
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3.5 Summary and Concluding Remarks 

This study sought to evaluate network structural and relational factors that 

influence developer’s productivity in the nanoHUB.org cyberinfrastructure. Our study 

evaluated developer’s productivity and we hypothesized that productivity in a digital 

ecosystem is a function of the network (structural and relational features) and developer’s 

inherent characteristics including the number of networks that a developer is embedded 

into.  Data for this study came from the nanoHUB.org cyberinfrastructure. The 

nanoHUB.org has data that is organized by the structures of scientists in the platform and 

includes data of tool developers, authors, tool users, educator and learners.  

A network and an extended (Spatial Probit and Spatial Durbin Error) network 

autocorrelation models were used to capture both the network relational aspects (spillover 

effects) and also embeddedness in multiple network spaces in the digital platform. The 

model results were compared to network fixed effect models (probit and interaction 

models). The number of citations a developer gets from the developed tool was used as 

the dependent variable. The independent variables for the autocorrelation model included 

the weight matrices in both network spaces, network embedded characteristics that 

captured the local effects and control variables.  

Results showed that the spatial autocorrelation parameter of the spatial probit 

model is statistically different from zero. The parameter results of -0.003 at 1% 

significance level implies that there is a negative spatial spillover effect in the developer 

network. i.e., being embedded in the developer network reduces the probability of getting 

a citation. Results of the extended SDEM also show a negative but statistically 

insignificant spatial effect parameter. The results contribute to both theoretical and 
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practical understanding of networks where autocorrelative modelling is extended to 

understand the effects of networks formed in digital practice.  The negative spillover 

effect was attributed to model representation and the characteristics of the chosen weight 

matrix/matrices. Both weight matrices are characterized by high clustering15 (small 

worlds) but do not show homophily amongst those clusters (low assortativity coefficient). 

The practical implication of these results is the revelation that developers in both 

developer and authorship network cluster not based on similar developers but other 

factors that could be work related. The weight matrices were also characterized by low 

density and relatively low reciprocity. High clustering, low density and reciprocity 

encourages developers to span structural hole while searching for non-redundant 

knowledge from “trusted” (reliable) developers that will give them leverage to develop 

quality tools that have a high probability of getting a cite (e.g., Burt 1992; 2004; 

Hargadon & Sutton, 1997).  

The structural network characteristics of eigen vector centrality had statistically 

significant effects on probability of getting citations.  Eigen vector centrality measures 

the developer’s position relative to influential/highly accomplished developers in the 

network. Results showed that being close to influential developers in the network 

increases the probability of getting a citation. This finding is a major theoretical 

contribution that supports the emerging new school of thought which argues that the 

                                                 
15 Clustering coefficient for both weight matrices was 0.76 while assortativity 

(homophily) measure for weight matrices 1 and 2 was calculated as -0.0075 and -0.0026 

respectively (See Table 4 in section 4.2) 
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“type” of developers that a developer associates/works with might influence development 

and citation of tools they develop (Gonzalez-Bambrila et al., 2013).    

The dummy variables for a developer being an author (authorship dummy) 

yielded statistically significant results for both the probit and spatial probit models. 

Authorship dummy was used to evaluate the effect of a developer also being an author 

after fixing the effect of developers. Results show that the authorship dummy was 

positive and statistically significant at 1% significance levels. These results are also a 

major practical contribution in digital practice organization since they reveal that being 

embedded in multiple networks increases the chances of developing a tool that will get 

citation.  

 



68 

 

 

 

CHAPTER 4. GROWING DEVELOPER COMMUNITY IN SCIENTIFIC DIGITAL 

COMMUNITIES: EXPONENTIAL RANDOM GRAPH MODELS 

4.1 Introduction  

Communities in digital platforms (ecosystems) have been growing rapidly in the last two 

decades mainly due to improvement in computing technologies (Schroeder et al. 2007). 

The growth of these communities has made the platforms an important part of the 

collaboration infrastructure of the current society. The growth has also seen an equal 

increase in studies researching the patterns of formation and sustenance of these 

communities (e.g., Crowston et al., 2012; Rossi, 2006; Scacchi, 2007). The majority of 

this literature is comprised of studies that have modelled online communities as networks 

that are formed by actors who form and break ties (collaborate) in those environments 

based on their inherent goals (e.g., Jarvenpaa & Leidner, 1999; Kanawattanachai & Yoo, 

2007; Kankanhalli et al. 2005; Wasko & Faraj, 2000&2005). Others have looked at the 

effect of the networks on community members’ outcome (e.g., Abbasi et al., 2012; Brass, 

2002; Brunswicker et al., 2015; Gonzalez-Brambila et al., 2013; Matei, 2014).  However, 

most of these studies only describe and understand the network characteristics and their 

effects on community member’s outcome; they rarely address the mechanism of network 

formation (Jackson & Rogers, 2007; Robins et al., 2007). Research in digital platforms 

consists of social networks that are enabled by computer systems that are linked by 

internet. The social networks provide an informal system of social and technical 
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interactions which facilitate scholarly scientific collaboration from the digital practice 

related activities such as software development (Brunswicker et al., 2015; Kling et al., 

2003; Matei, 2014). This new form of technology enabled networks has been growing at 

unprecedented rate but there is limited knowledge of how the networks form and how 

they sustain themselves (Faraj & Johnson, 2011; Jackson & Rogers, 2007). For example, 

“nanoHUB.org cyberinfrastructure user community grew from 1,000 in 2002 to more 

than 56,000 in 2007 while 5,800 registered users logged in and ran more than 240,000 

simulation jobs in 2007” (Klimeck et al., 2008).  This study will therefore seek to 

understand the network formation and sustenance mechanism in an online community 

(nanoHUB.org cyberinfrastructure) through social network modelling. Robins et al 

(2007) gave several reasons as to why we would need to model network formation over 

and above the well-known and applied techniques that measure properties of network on 

outcome; The authors noted that modelling networks gives a better understanding of the 

social behaviors responsible for predominantly self-organized network formation 

processes given that the social behavior is complex as it involves aspects of both 

randomness and regularity. Robin et al. (2007) also noted that statistical modelling 

yielded better inference about which aspects of network are more prevalent than they 

would be expected in say a purely random or preferential formation process. The authors 

further noted that modelling allows us to better understand which social network 

processes might be dominant in explaining a phenomenon like clustering that is usually 

caused by either endogenous structural effects (self-organization) or node level effect 

(e.g. homophily).  
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This study therefore models social network in the nanoHUB.org cyberinfrastructure 

so as to understand the mechanisms of organization in this emerging organization 

structures of developer’s communities. The study is broadly guided by the research 

question; What are the network formation and sustenance mechanism and structural 

characteristics of a digital platform? This study contributes to the emerging literature of 

understanding the virtual organizational of large communities of developers. To the 

network formation and organization mechanisms, study draws upon theories of network, 

network exchange theory, preferential and random networks formation theory and mutual 

interest/collective action theory (Albert & Barbasi, 1999; Borgatti & Halgin, 2011; Faraj 

& Johnson, 2011; Jackson & Rogers, 2007; Monge & Contractor, 2003).  

 

4.2 Theoretical Framework and Hypothesis 

4.2.1 A Framework of Network Formation through Digital Practice in Community of 

Developers 

Network formation process falls broadly under the theory of network, where individual’s 

inherent characteristics/attributes are assumed to influence the type of ties they form and 

with whom (Borgatti & Halgin, 2011; Jackson, 2008). Theory of network is defined as 

the study that determines why network form. i.e., models of which actors form ties (links, 

triads, e.t.c) and how do they position themselves (e.g., centrality measures, small-

worldness e.t.c) the network as a whole will have (Borgatti & Halgin, 2011). Matei 

(2014) explained the individual motivation and inherent characteristics to joining and 

participating in these platforms can be explained and revealed by the digital practice 

theory that argues that evolution of networks is caused by the level and intensity of 
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digital activities that the members engage in. In addition to the above two theories: theory 

of network and theory of digital practice we will also consider several complementing 

theories (sub-theories) have also been used to explain the growth and sustenance of 

networks in online communities. These theories include network exchange theory, 

preferential and random networks formation theory and mutual interest/collective action 

theory and could be looked at as those that explain the mechanism that is holding the 

network in place (Albert & Barbasi, 1999; Faraj & Johnson, 2011; Jackson & Rogers, 

2007; Monge & Contractor, 2003).  

While modelling network formation from a network level characteristic this study 

will be able to reconcile conflicting motivations for why developers join the communities 

and also understand the network-level characteristics that are responsible for growth and 

sustenance of online communities like the nanoHUB.org cyberinfrastructure. Research on 

collaboration in online communities has also identified developer’s inherent 

characteristics that are motivated by self-gain for reputation building and pure altruism as 

some of the reasons that developer’s participate in the platforms (Constant et al., 1996; 

Fulk et al., 2004; Matei, 2014; Peddibhotla & Subramani, 2007). In online communities, 

software developers collaborate virtually through digital practice activities in the digital 

platform (Matei, 2014; nanoHUB.org, 2014). The digital practice work on the tools 

involve modification, deletion or addition of the original software code and this is 

captured in the subversion (SVN) logs (Matei, 2014; nanoHUB.org, 2014). SVN is 

version control that assists manage changes to the tools source code and therefore enables 

us to capture the intensity of digital practice activities (Cambridge, 2015). SVN 

control/registry manages the changes by preventing programmer developers that are 
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working on the same source code, from “overwriting” each other’s codes, “possibly 

reintroducing bugs some poor programmer has spent ages removing.” SVN works like 

central repository, but it “remembers every change ever made to the files and directories” 

(Cambridge, 2015). This allows recovery and examination of the history of changes 

(including how and when the data was changed and who changed it) of older versions of 

a developers file (source code lines) “you to recover older versions of your files and 

examine the history of how and when your data changed, and who changed it”. The 

nanoHUB.org allows multiple and parallel modification of source code in a copy-modify-

merge SVN management system. The copy-modify-merge SVN management system in 

illustrated and explained below.  

 

Figure 4: Illustration of Copy-Modify-Merge Subversion Management System 



73 

 

 

 

The sequence of changing a source code (e.g., a code line, function) in the copy-modify-

merge version in Figure 1 involves the following processes (Cambridge, 2015; 

nanoHUB.org), 

 Developers 𝑖 and 𝑗 “each create working copies of the same source code, copied 

from the SVN repository”.  

 Both developers work in parallel, and modify the same code (e.g., source code 

line "A".  

 Developers 𝑗  saves her modifications to the repository first.  

 Developers 𝑖 attempts to save his modification thereafter, but the repository 

“informs him that his source code file A is out-of-date; file A in the repository has 

somehow changed since he last copied it.”  

 So Developers 𝑖 asks “his client to merge any new changes from the repository 

into his working copy of file A (it is assumed here that there are no conflicts)”.  

 Both sets of modifications are integrated, and Developers 𝑖 “saves his working 

copy back to the repository.”  

This makes developers 𝑖 and 𝑗 connected by the virtue of working on a similar source 

code in the platform. However, the magnitude of connection will depend on the level of 

work they put in the tools or papers. To calculate the level of interaction (digital practice) 

between any two developers we apply gravity model following Matei et al. (2015) digital 

practice proximity model. The authors applied gravity model on the basis that two 

developers digital practice activities could be likened to gravitational interaction that is 

influenced by mass and distance as described by Isaac Newton's law of gravity 
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(Anderson, 2010). The authors noted that developers attract with each other when 

working on a common tool and the level of attraction is based on the amount of work 

(time) they put on the tools.  The scientists are separated by a revision distance which is 

defined as decayed time of association (Matei et al., 2015). The authors calculated the 

magnitude (weights-Θ) of the level of integration following gravity model as, 

22)       Θ𝑖𝑗 =
𝛿𝑖𝛿𝑗

𝑑𝑖𝑗
2  

Where,  

Θ𝑖𝑗 is the interaction term (weight) between i and j 

𝛿𝑖𝛿𝑗 are functions representing attractiveness (maximum of added and 

deleted lines) and repulsive forces (half of the minimum added and deleted lines 

plus modified lines) and, 

𝑑𝑖,𝑗
2  is the revision distance defined as decayed time of association.  

The weights were used to construct the edge list and adjacent weight matrix of 

developer’s collaboration in the developer networks (Matei et al., 2015). The growth and 

attachment patterns in online communities has been studied from the network formation 

perspective, where developers are believed to have some preferences while attaching 

(contributing to source code) to other actors in the network (e.g., Barbasi & Alfred, 

1999). Research of theory of network has mostly involved evaluation of the network 

formation processes as either random (e.g., Erdos Renyi, ERGM-Exponential Random 

Graph Models), preferential (preferential attachment models that have distributions that 

are scale free –Barbasi & Alfred, 1999) or hybrid model involving both processes 

(Jackson, 2008). These models evaluate the network from the actor’s behavioral point of 
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view i.e., by looking at models of which actors form ties (links, triads, e.t.c) and how do 

they position themselves (e.g., centrality measures, small-worldness e.t.c) the network as 

a whole will have due to their action (Brass, 2002; Jackson, 2008). Recent network 

formation studies have found that actors do not follow preferential attachment while 

joining a group but do so randomly (e.g. Jackson & Roger, 2007; Faraj & Johnson, 2011). 

Based on those contrasting viewpoints, this study hypothesis that developers in digital 

platforms exhibit both preferential and randomness searches while looking on what 

source code they want to contribute to.   

HYPOTHESIS 1a: Developers in digital platforms contribute to source code randomly. 

HYPOTHESIS 1b: Developers in digital platforms contribute to source code 

preferentially 

 

4.2.2 A Framework of Network Efficiency and Sustenance: Network and Social 

Exchange Theories 

Network exchange theory posits that people have different levels of resources and can 

exchange them based on their desire which is also the case with developers that have 

different levels of expertise (Monge & Contractor, 2003). The theory also states that the 

structure of the network constraint drives different developers to act in a predictable and 

consistent manner, a view that is supported by network theory (Borgatti & Halgin, Faraj 

& Johnson, 2011). The network exchange theory thus comprises both social and network 

exchange theories (Faraj & Johnson, 2011; Monge & Contractor 2003). Social exchange 

theory focuses on actions and interactions of individual developer’s in the network and 

provides ways of studying collective outcomes while network exchange theory places 
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focus on network positioning on access to resources (relevant source code information) 

and power (ability to contribute to lines on leading source code contributors) including 

social capital (Monge & Contractor, 2003). A key driver in exchange theory is reciprocity 

where developers reciprocates source code modifications to the initiator or others (Flynn, 

2005; Kilduff et al., 2006). Eheh (1974) noted that social exchange theory places high 

importance on reciprocity because developers are humans that keeps scores of actions on 

the source code modifications and change their subsequent digital practice actions based 

on perceived digital practice balance). Individual developer programmers are inherently 

social like any other developers and this study expects them to socially exchange 

information (i.e., intensify the level of participation in the modification of the source 

codes) in the technology based platform (Faraj & Johnson, 2011; Kling, 2003). This 

study therefore expects both the social and network exchange theories to come into play 

in the exchange patterns in digital platforms. On that bases, this study hypothesis that 

developers in digital platforms exhibit structural network tendency towards reciprocity. 

i.e.,  

HYPOTHESIS 2:  Developers in digital platforms contribute to codes in a manner that 

shows reciprocity to initial alteration of the source code 

 

Another key characteristic in network formation model is closure or clustering. 

Closure or clustering can be explained from theories of mutual interest and collective 

action where developers tend to form ties, coalesce/cluster into groups because groups 

give them a collective ability to learn from other developers, and thus acquire gains that 

far outweighs those gained in individual code contribution (Marwell & Oliver, 1993, p. 
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2). We therefore expect developers in the nanoHUB.org to contribute to codes based on 

area of interest or expertise and this might lead to formation of mutual interest groups out 

of the digital practice activities.  This study would therefore expect developers in online 

communities to participate in source code modification to specific set of source codes in a 

manner that clusters into groups with the hope that they tend to “gain” from engaging in 

“specializing” those group settings. This study therefore hypothesis that developers in 

online communities will contribute to source code modification in a manner that forms 

ties and coalesce/cluster into groups (clusters) that they believe will increase their 

collective ability to leverage and mobilize resources for collective action in the platform. 

i.e., 

HYPOTHESIS 3: Developers in digital platforms contribute to codes in a manner that 

show clustering patterns 

 

4.3 Methodology 

4.3.1 Data 

The data for this study came from developer network of scientific digital platform 

(nanoHUB.org cyberinfrastructure) (NanoHUB.org, 2014). The network of developers 

was created through a developer’s weight matrix described in the theoretical section.  Our 

data from nanoHUB.org is organized by the structure of scientists that form the platform 

including data on tool developers, tool users, educators and leaners. The data for this 

study is comprised of 7-terms (of 6 months) panel data of developers that were available 

from the 2002, when nanoHUB.org was launched (Matei, 2004; nanoHUB.org, 2014).  
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4.3.2 Variables 

The weight matrix was the main variable for this study because it was used to extract the 

network characteristics that were used to fit the model to data for the link to link and 

stochastic dominance models. The weight matrix was also used as the dependent variable 

for the ERG (p*) Model.   

4.3.2.1 The Weight Matrix  

We constructed the weight matrices for the 7 year panels following Matei et al. (2015) 

modelling of network formation from developer’s level of digital practice (Please refer to 

Section. 3.2.1). The weights were used to construct the edge list and adjacent weight 

matrix of developers’ collaboration in the network. The weight matrices for time slices 2 

to 8 are presented in Figures 5 to 8 below. 

 

Figure 5: Developers Network at Time Slices 2 and 3 
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Figure 6: Developers Network at Time Slices 4 and 5 

 

Figure 7: Developers Network at Time Slices 6 and 7 

 

 



80 

 

 

 

 

Figure 8: Developers Network at Time Slice 8 

Figures 5 to 8 show gradual increase of developers from time period 2 to time period 8. 

The networks show different patterns implying that there are reorganizations taking place 

in the networks. 

4.3.3 Model 

 Empirical analysis of socially generated networks have found the structures to 

exhibit five main characteristics: (1) nodes exhibit small average short path length 

between them, (2) clustering coefficient (tendency of linked nodes to have mutual 

neighbors) is high, (3) degree distribution tend to follow  power law, (4) nodes tend to 

exhibit assortativity (degree of nodes tends to be correlated), and (5) clustering amongst 

neighbors, in some networks, tend to be inversely related to the node degree (Jackson & 

Rogers, 2007). The authors noted that the five characteristics are usually used to validate 

network formation models. 
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Formal modelling of network formation has generally followed two categories. 

The first category is strategic formation of network and this involves application of game 

theory tools while the other is more of the mechanical one and it describes the stochastic 

processes of network formation (this has its root in the random graph literature) (Amaral 

et al. 2000; Erdos & Renyi, 1959; Jackson & Rogers, 2007). These models lead to either 

scale free networks (networks that follow power law degree distribution) or uniform 

random networks (networks that follow a distribution that is negative exponential).  The 

first random graph model was developed by Erdos and Renyi in 1959 (Erdos & Renyi, 

1959; Lusher et al., 2013). The model states that every link is formed with probability 

𝑝 ∈ (0,1) independent of any other link and it is mostly useful for understanding certain 

thresholds and how networks come to exhibit certain features (Jackson, 2008; Lusher et 

al., 2013). The model assumes that once the threshold is met the links will continue 

forming to one big component and this has been identified as a major caveat of the model 

because this seems to violate the above highlighted properties of social networks, e.g., 

clustering, degree distribution e.t.c (Jackson & Rogers, 2007). Improvements of Erdos 

Renyi (1959) model have involved modifying the model to capture those important 

network characteristics like clustering, degree distribution e.t.c. These include modelling 

network formation as uniform random graph and/or by preferential treatment (e.g., 

Barabasi & Albert, 1999; Cooper & Frieze; 2003; Watts, 1999). Recently, hybrid models 

have also been developed (e.g., Jackson & Rogers, 2007; Kumar et al., 2000; Vazquez, 

2003). Other extensions include stochastic block modes, exponential random graphs 

models (ERGM) and newly introduced statistical exponential random graph models 
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(SERGMs) (e.g., Chandrasekhar & Jackson 2012; Chatterjee & Diaconis, 2011; Frank & 

Strauss, 1986; Lusher et al., 2013). 

In this study we applied and compared results of two models while trying to 

explain developer network formation process in nanoHUB.org cyberinfrastructure. Our 

first model was a two stage process. In the first stage, we evaluated the network 

formation process by modelling our networks through a link-to-link ERG model 

following Jackson & Rogers (2007) hybrid model. In the second stage we identified the 

network formation characteristics of the most efficient network based on stochastic 

dominance criteria of degree distribution. i.e., we tried to trace back the network 

formation characteristics of the stochastically dominating network. In the second model, 

we applied Exponential Random Graph (p*) Model (ERGM). ERG(p*) Models are used 

to understand how and why social networks ties arise (Lusher, et al., 2012. p. 9; 16). An 

alternative model application of would have been the separable temporal ERGMs 

(STERGMs) that are an extension of ERGMs for modeling dynamic networks in discrete 

time (Krivitsky and Handcock, 2010). STERGMs consists of two models: one ERGM 

underlying relational formation, and a second one underlying relational dissolution 

(Krivitsky and Handcock, 2010). However, the link-to-link ERGM model and stochastic 

dominance criteria model was chosen over STERGMs because our networks in the seven 

time slices had unequal vertices (developers) (Krivitsky and Handcock, 2010). Moreover, 

as it will be described below, the link-to-link ERGM model applies the mean field theory 

that predicts the growth dynamics of the individual vertices, and is used to calculate the 

connectivity distribution and the scaling exponents (Barbasi et al., 1999; Jackson, 2008; 

Jackson & Rogers, 2007). The mean-field method was therefore used to address the 
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properties of two variants of the scale-free model, that do not display power-law scaling. 

Both models are described below.  

Jackson and Rogers (2007) link-to-link ERG model is a simple network formation 

model that combine both random and preferential attachment formation techniques and 

was used to address the first hypothesis. Our model is also based on assumptions made 

about the features of digital developer network which follow similar pattern to 

coauthorship, citation and also worldwide web networks network-www (Albert et al., 

1999; Gonzalez-Brambila et al., 2013; Jackson & Rogers, 2007; Li et al, 2013). Networks 

having these characteristics have been modelled through, random, preferential and hybrid 

models. Preferential models are given by power law which is linear but this assumption 

might be wrong as showed in www network where the distribution does not follow the 

law (Jackson & Rogers, 2007). Similarly, in citation network, people search for coauthors 

randomly then use preference to attach to others and therefore we cannot expect a pure 

power law distribution. We assume that our scientists are nonstrategic and the 

collaborations are a combination of uniformly random and preferential process (e.g., 

Jackson & Rogers, 2007). We proceed to describe the random and preferential models 

and finally the hybrid model. The models are adopted from Jackson (2008) and Jackson 

and Rogers (2007). 

 

4.3.3.1 Random Model 

Random model is based on both the graph and probability theories (Jackson, 2008; 

Jackson & Rogers, 2007). The model assumes that a new developer 𝑖 uniformly randomly 



84 

 

 

 

picks and forms  𝑚 links from a set of existing nodes (The average indegree is used as 𝑚- 

e.g., Jackson & Rogers (2007)). This gives developer’s 𝑖 starting condition degree 

as   𝑑𝑖(𝑖) = 𝑚. The rate of change of degree distribution of scientist 𝑖  is given by (23), 

23)      
𝑑𝑑𝑖(𝑡)

𝑑𝑡
=

𝑚

𝑡
 

Equation (24) is a differential equation which gives the following solution, 

24)     𝑑𝑖(𝑡) = 𝑚 + 𝑚𝑙𝑜𝑔 (
𝑡

𝑖
) 

We can use equation (24) to get a degree distribution by solving for nodes that have 

expected degree of less than 𝑑 at some time 𝑡, i.e., 

25)     𝑚(1 + 𝑙𝑜𝑔 (
𝑡

𝑖
) < 𝑑 

Solving for 𝑖 gives the nodes that have expected degree of less than 𝑑 are those born 

after, i.e., 

26)        𝑖 > 𝑡𝑒−(
𝑑−𝑚

𝑚
) 𝑎𝑛𝑑 

𝑖

𝑡
= 𝑒−(

𝑑−𝑚

𝑚
)
 

This gives a distribution function 𝐹𝑡(𝑑), 

27)       𝐹𝑡(𝑑) = 1 − 𝑒−
𝑑−𝑚

𝑚  

The distribution function (27) is a negative exponential.  

4.3.3.2 Preferential Attachment Model 

Preferential attachment model is based on the assumption that a new developer 𝑖 picks  𝑚 

links from a set of existing nodes and forms 𝑚 links based on probability that is 

proportional to their degrees (Jackson, 2008; Jackson & Rogers, 2007). The probability 

that an existing deevloper 𝑖 gets a new link at time 𝑡 is 𝑚 times 𝑖′𝑠 over the total degree 

of all existing scientists at time 𝑡, i.e.,  
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28)     
𝑑𝑑𝑖(𝑡)

𝑑𝑡
=

𝑑𝑖(𝑡)

∑ 𝑑𝑗
𝑡
𝑗=1 (𝑡)

 

But the total number of links in the system at time 𝑡 is given as 𝑡𝑚 and ∑ 𝑑𝑗
𝑡
𝑗=1 (𝑡) =

2𝑡𝑚  which changes (28) to, 

29)     
𝑑𝑑𝑖(𝑡)

𝑑𝑡
=

𝑑𝑖(𝑡)

2𝑡
 

 

Solving the differential equation gives the distribution function, 

30)      𝐹𝑡(𝑑) = 1 − 𝑚2𝑑−2 

And density/frequency distribution, 

31)      𝑓𝑡(𝑑) = 2𝑚2𝑑−3 

Which is a power law distribution.  

4.3.3.3 Hybrid Model 

The distributions of random and preferential models give two extremes distributions and 

hybrid models give an intermediate distribution where we assume that networks form 

through a combination of the two models (Jackson, 2008; Jackson & Rogers, 2007). This 

implies a scientist 𝑖 forms a link 𝑚 randomly by proportion parameter 𝛼 and 

preferentially by proportion  (1 − 𝛼). This gives the rate of change in the degree of a 

node as, 

32)      
𝑑𝑑𝑖(𝑡)

𝑑𝑡
=

𝛼𝑚

𝑡
+

(1−𝛼)𝑑𝑖(𝑡)

2𝑡
 

Solving the differential equation using the steps above gives the indegree distribution 

function, 

33)     𝐹𝑡(𝑑) = 1 − (
𝑚+

2𝛼𝑚

1−𝛼

𝑑+
2𝛼𝑚

1−𝛼

)

2 (1−𝛼)⁄
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The distribution (33) follows power distribution (pure preferential distribution) when 𝛼 =

0  and near exponential distribution (random distribution) when 𝛼 → 1 . To solve for 𝛼 

we linearize and rearrange (33) to get  

34)    𝑙𝑜𝑔(1 − 𝐹(𝑑)) =
2

1−𝛼
𝑙𝑜𝑔 (𝑚 +

2𝛼𝑚

1−𝛼
) −

2

1−𝛼
𝑙𝑜𝑔 (𝑑 +

2𝛼𝑚

1−𝛼
) 

Equation (34) can be written as, 

35)     𝑙𝑜𝑔(𝑦) = 𝑐 − 𝛽 log (𝑑 +
2𝛼𝑚

1−𝛼
) 

Where  

𝑦 = 1 − 𝐹(𝑑)), 𝑐 =
2

1−𝛼
𝑙𝑜𝑔 (𝑚 +

2𝛼𝑚

1−𝛼
)  and   𝛽 =

2

1−𝛼
 

𝛼 in (35) will be solved through iterative process to determine ratio of random to 

preferential attachment. 

4.3.3.4 Efficiency in Network Structure; Stochastic Dominance Model 

We study the implications of the network formation process on the operation of a 

network through efficiency because we are evaluating developer network over a 7-year 

period. Efficiency of the model was tested by ordering the 7 degree distributions by first- 

and/or second-order stochastic dominance (Jackson, 2008; Jackson & Rogers, 2007). 

Stochastic dominance model was used to evaluate and distinguish the most efficient 

network structure. The dominance network structure was used to evaluate structural and 

operational characteristics that are important for formation and sustenance of developer 

network. i.e., the dominance network characteristics helped us tie the network formation 

characteristic to formation of developer network (Jackson & Rogers, 2007). The network 

formation characteristics that were used to validate the network formation model 
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included the average short path length, clustering, degree distribution pattern, 

assortativity and clustering and node degree relationship.   

4.3.3.5 Exponential Random Graph Model. 

ERG (p*) models try to describe the network statistics in the network so as to 

categorize/classify the network structure (Lusher, et al., 2013). The authors noted that 

ERGM model is not a social influence model but a “tie-based” model for social network 

i.e., models are not focused on predicting the outcome of individual in the network (e.g. 

diffusion or contagion) but it is about revealing patterns that may enable inferences on tie 

formation including social selection processes where network ties are predicted from the 

attributes of the network scientists (Lusher, et al., 2013). The ERGM model explains the 

“complex combination” of social processes that facilitate formation of network links 

(Lusher, et al., 2013). The authors noted that modelling ERGM requires the researcher to 

choose the set of statistics/configurations that he/she believes are theoretically sound for 

formations and/ sustenance of that particular set of network. The researcher then applies 

the model to an observed social networks and the parameters are estimated. This permits 

inferences about the type of social processes that are important in creating and sustaining 

the network (Lusher, et al., 2012). The authors noted that there are a whole set of ERGM 

models and the researcher chooses the specification of the ERGM for the data. ERGM is 

founded on muilti-theory process because of the complexity (multiplicity, 

interconnectedness and dependencies) of the network structures, configurations and 

processes (Lusher, et al., 2012. p. 10). One main theory of ERGM theory is 

interdependencies of ties and ERGM can test the evidence as to which processes 
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contribute to the formation of the network structure (Lusher, et al., 2012. p.21; Monge & 

Contractor, 2003) 

The main network theories that we investigated with ERGM model are reciprocity 

or exchange and this is configured from dyadic process. Other relationship involving 

triads deal with mostly clustering and closure (path or network closure). Out-2 star is a 

star like structure with two outgoing ties from the central node and this is used to denote 

activity-based configurations, where an actor directs ties to many network partners 

(Lusher et al., 2013). The opposite of that is in-star configurations and these measure 

popularity of an actor. i.e., an actor has two incoming ties. The other configuration 

represent homophily i.e. actors of the same attribute have reciprocated ties. A general 

ERGM model with edges, stars and triangles is given by, 

36)                                𝑝(𝑌 = 𝑦𝑖𝑗) =
1

𝑍
𝑒(𝜃𝐿(𝑦)+∑ 𝜎𝑟𝑆𝑟(𝑦)+𝜏𝑇(𝑦)𝑟=2,𝑛−1 ) 

Where, 

𝑌 is the software developer adjacency matrix 

𝑦𝑖𝑗 is binary indicator for edge (𝑖, 𝑗) 

𝐿(𝑦) is the number of edges  

𝜃  is the edges or density parameter to be estimates and  

𝑆𝑟 is the number of stars of size r in y 

𝜎𝑟 is a parameter for a star of size r 

𝜏 is clustering or triangle parameter 

𝑇(𝑦) is the number of triangles 
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𝑍  is the normalizing constant which is a function of parameter vector and 

this ensures that (15) is a probability distribution. 

All ERGM models take the above general form, describing the probability distribution of 

graph on nodes. 

 

4.4 Results and Discussion 

4.4.1 Mean Field Method and Network Characteristics 

Mean filed approximation was used to fit the data to the degree distribution based on the 

dynamic hybrid model (equation 3316). This method was used to establish the network 

formation characteristics based on the variance of 𝛼. The variance of 𝛼 gives us an 

indication of preferential to uniform random attachment which tells us how the links are 

formed in nanoHUB.org developers network (Jackson, 2008; Pennock et al., 2002).  𝑚, 

the number of new links formed in each period was directly calculated from the data.  𝑚  

is calculated as half of the average degree (Jackson, 2008).  Table 8 shows 𝑚 to range 

from 3.5 to slightly above 30. The proportion of uniformly random connection in 

developer network (𝛼), was then calculated through a simple iterative least square 

approach. The simple iterative least square approach starts with an initial guess of  𝛼,

𝑒. 𝑔. , (𝛼0). Equation (35) is then regressed with (𝛼0)  in place to get the parameter 

estimate 𝛽  that is used to calculate a new (𝛼1). 𝛼1 is used as the” new guess” and the 

entire regression is repeated to calculate a new 𝛼. The iteration process continues until 

                                                 
16 The link to link hybrid model is given by  𝑙𝑜𝑔(𝑦) = 𝑐 − 𝛽 log (𝑑 +

2𝛼𝑚

1−𝛼
) 
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the initial and estimated 𝛼 converge. Results of estimated 𝛼 are presented in Table 8 

below. 

 

Table 8: Link to Link Network Statistics and Developer Network Characteristics 

 Time 

  T02 T03 T04 T05 T06 T07 T08 

Number of nodes 289 297 294 179 108 74 10 

average in-degree: m 31.8 31.03 31.09 11.014 9.13 10 4.5 

𝛼-Proportion of  0.998 0.999 0.999 0.999 0.998 0.999 0.998 

Diameter data 8, 241 17, 35 2,232 3,62 3,72 3,52 2,7 

Average Short path 2.156 2.162 2.156 2.2315 1.995 1.937 1.484 

Assortivity 9.0e-3 6.54e-3 1.23e-2 4.13e-2 9.e-3 6.6e-3 9.8e-2 

Cluster Coeff 0.897 0.894 0.9 0.328 0.35 0.489 0.854 

Dyads (mutual) 1247 1246 1219 528 214 155 13 

Density 0.1089 0.103 0.104 0.0591 0.081 0.13 0.444 

Reciprocity 0.2753 0.275 0.271 0.5614 0.46 0.442 0.667 

 

Results in Table 8 show 𝛼   in all time periods to be close to 1. When 𝛼 → 1  it 

approaches exponential distribution even though the limit is harder to get (Jackson, 

2008). Approaches to fitting such data include Berger et al. (2005) polya urn models and 

simulations for degree distribution using non-parametric bootstrap techniques (Jackson, 

2008). We fitted our degree distribution model results to data using nonparametric 

bootstrap technique The Nonparametric bootstrap method takes the original data set as 

the population and then draws equal samples by simulation. The sampling is done 

through replacement method that ensures that each observation has the same probability 

of being picked. Table 9 shows the nonparametric bootstrap results of the relative 
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frequency of the degree distribution in time slice 2 (The actual plot of the degree 

distribution is presented in the Appendix). The first column shows the important 

distribution statistics that were tested in the by bootstrap model; Mean, variance and 

Median. The second column gives the original data estimates of the statistics while the 

third shows the bias i.e., the difference between population value of the degree 

distribution and the expected value of the link to link degree distribution. The fourth and 

fifth columns show the standard error and the percentile (lower and upper confidence 

intervals) of the bootstrap estimates. 

Table 9: Nonparametric Bootstrap Estimates for Fitting Degree Distribution 

Statistics Original (t*) bias Std. error Percentile 

Mean -4.973 -0.002 0.095 -4.994, -4.603 

Variance 0.766 -0.012 0.093 0.577, 0.939 

Median -4.973 0.011 0.134 -4.973, -4.568 

 

Results show that the mean and median estimates of the relative frequency of degree 

distribution are similar, -4.97 while the variance of the mean is 0.77. Results show that 

the difference between mean, variance and median population relative frequency values 

(bootstrap) of the degree distribution and the link to link degree distribution value to be 

low (low bias). Results also show that for a 95% confidence interval, we find the 2.5%-

tile and 97.5%-tile mean and median relative degrees frequency in the distribution to be -

4.99 and -4.60 and -4.97 and -4.57 respectively. These results imply that we are 95% 

confident the degree distribution from our link to link model fits the data. The results 

imply that developer networks do not follow a network-based coding pattern but chose 

codes to work on in almost uniform randomly manner. While we would expect a more 
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predominantly network based pattern of coding in developers’ network of nanoHUB.org 

cyberinfrastructure, results imply that new developers contribute to source codes in a near 

uniformly random manner. While we would expect a more predominantly network based 

pattern of meeting in developers’ network of the nanoHUB.org cyberinfrastructure, 

results imply that new developers attach to existing developers in a near uniformly 

random manner. These results are not surprising, because, contrary to expectation and 

earlier studies about formation (e.g., Barabasi & Albert, 1999; Faraj & Johnson, 2011; 

Jackson & Rogers, 2007), online enabled networks links form in a manner that does not 

follow preferential attachment. To see a clear distribution pattern of the degree 

distribution, we plotted scatter plots of the log of frequency against the log of degree. The 

plots are shown in the Appendix C excluding the one for time slice 8 that had very small 

data points. The figures show a similar pattern that follows negative exponential which is 

characteristics of uniformly random formed distributions. The tails are however fat like 

those of power law fitted distributions. 

 The link to link mean field approximation can also be used to fit for other network 

features such as small world (short diameter), clustering and assortativity (Jackson, 2008; 

Jackson & Rogers, 2007). Given that our model fit results gave us a 95% confident the 

degree distribution from our link to link model fits the data we expect other networks 

statistics that are derived from the network to follow; these statistics are validated by the 

ERGM model, nevertheless.  For example, Jackson and Rogers (2007) fitted six different 

network model results to data and found near match. The authors found clustering from 

data to match the model fit in 3 of the 5 networks and found diameter of the data to be 

within the model fit in 5 networks. As such we will calculate network characteristics 
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from the data and establish the distinguishing network characteristics responsible for 

formation of nanoHUB.org developer’s network. However, given that we are considering 

7 time periods that have varying characteristics, we identify the most efficient network in 

terms of degree distribution and use its network characteristics to map out the 

distinguishing characteristics that are responsible for network formation. The identified 

network characteristics were further validated with the ERG(p*) model. Efficiency of 7-

degree distribution was evaluated by ordering the distributions by stochastic dominance 

criteria using KS-test (Kolmogorov-Smirnov) (e.g., Jackson, 2008; Jackson & Rogers, 

2007). 

 

4.4.2 KS Efficiency Tests for Stochastic Dominance 

 KS-test is a non-parametric method that is used to evaluate whether two distributions 

differ significantly (Scaillet & Topaloglou, 2010). Table 10 shows the KS-test results for 

stochastic dominance. The first column shows the distribution that is to be evaluated 

(treatment distribution) against the reference distribution (control distribution) in the 

second column. Results show that distribution of time slice 2, 3 and 4 stochastically 

dominates those of time slice 6-8. Results also show that the distribution in time slice 5 

stochastically dominate the one of time slice 8. Given that the time slice 2, 3 and 4 

dominate those of the later periods (6, 7 &8) we will use and compare the distribution of 

the latest time period (time slice 2) and compare it with the latest time distribution 

amongst the dominated distributions (time slice 6). The alternative would be to compare 

the mean and standard deviation of the dominating (2, 3 and 4) and dominated 

distributions (6, 7 and 8) but this will imply that we are assuming the distributions are 
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normally distributions which might not the case. Therefore, we chose time slices 2 and 6 

since those have more data points than those of 3 and 4 and 7 and 8 respectively.  The 

dominated distribution time slice 6 was taken as the control while the dominating 

distribution, time slice 2, was taken as the treatment. 

Table 10: KS Efficiency Tests for Stochastic Dominance 

Time Slice 1 (T1) Time Slice 2 (T2) Difference (T1-T2) in Distributions p-value 

Time slice 02 3 0.0909 0.100 

 4 0.0882 0.119 

 5 0.0854 0.142 

 6 0.124** 0.008 

 7 0.119** 0.012 

  8 0.201*** 0.000 

Time slice 03 4 0.074 0.268 

 5 0.0799 0.197 

 6 0.119** 0.012 

 7 0.113** 0.019 

  8 0.196*** 0.000 

Time Slice 4 5 0.069 0.356 

 6 0.107** 0.030 

 7 0.102** 0.046 

  8 0.185*** 0.000 

Time Slice 5 6 0.039 0.950 

 7 0.039 0.950 

  8 0.116** 0.016 

Time Slice 6 7 0.041 0.916 

  8 0.077 0.230 

Time Slice 7 8 0.083 0.168 

***,** denote significance at 1%  and 5% significance level respectively 

 

The network of the dominating (treatment) distribution (time slice 2) was used to tie the 

network formation characteristic to the network outcomes when compared to the 
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dominated one. That is, we used the direction and magnitude of the network formation 

characteristics including average short path length, clustering, degree distribution pattern, 

assortativity and clustering and node degree to validate the network formation 

characteristics of developer network in nanoHUB.org cyberinfrastructure (e.g., Jackson 

& Rogers, 2007). The network characteristic results are presented in Table 8. 

Results in Table 8 show that assortativity coefficients of networks in both time slices to 

be approximately -0.009. The low assortativity coefficient imply that developer networks 

are characterized by low degree homophily (Newman, 2003). The clustering coefficient 

for the more efficient (treatment) network, time slice 2, is about 0.9 while the one for the 

inefficient (control) time slice 6 is about 0.35. Clustering coefficient is also known as 

transitivity coefficient and a higher coefficient value in time slice 2 over 6 imply that 

there is a high number of triangles, transitive closures in developer network (Gabor, 

2014; Wasserman & Faust, 1994). The measure for reciprocity is usually given by 

reciprocity coefficient or density. Table 8 shows that the reciprocity for the control 

network (time slice 6) is higher than the reciprocity for the treatment network (time slice 

2), compare reciprocity coefficient 0.46 to 0.27 for time slice 6 to time slice 2 

respectively. These results imply that developer networks are characterized by low 

reciprocity. Reciprocity defines the proportion of mutual connections, in a directed graph. 

i.e., the probability that the reverse link of a directed edge is also featuring in the 

network. (Gabor, 2013). Result imply that about there is low probability (about 27%) of 

mutual connections or social exchange between developers in the network. The density of 

treatment network (time slice 2) is low and insignificantly different from the control 

network (time slice 6); compare 0.11 for treatment to 0.08 for control in Table 1. Low 
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densities imply that developer network are characterized by a relatively low number of 

mutual ties than they would be in a purely random network.  

 

4.4.3 ERGM Model Results 

We use ERGM (p*) to further validate the presence (and absence) of network ties, 

and so provide a model for developer network structure (Lusher, et al., 2013). ERGM is a 

“tie-based” model for social network and allows us to understand the “complex 

combination” of social processes by which network ties are formed (Lusher, et al., 2013). 

In modelling ERGM we were guided by the findings of the above highlighted network 

characteristics and configurations that we believe are responsible for the formation and 

sustenance of developer network in digital platforms. We therefore tested the presence or 

absence of reciprocity, clustering, assortativity, diameter and tendency to attachment in a 

uniform randomly in developer network using ERGM (p*) model. The network statistics 

that we considered to test for reciprocity, clustering, assortativity, and non-preferential 

attachment were mutual dyads, triangles/transitive/cycles, gwdidegree, and istar 

respectively (e.g. O’Malley & Marsden, 2008).  However, because of the computational 

complexity nature of ERGM (p*) model, whereby, for example, inclusion of both istar 

and triangles leads to model degeneracy and lack of convergence, we did stepwise and 

near permutation combination17 of the variables so as to best capture the magnitude and 

direction of the variables (e.g., Hunter et al., 2008; Lusher et al., 2013; O’Malley & 

Marsden, 2008).  

                                                 
17 All model combinations did not alter the direction of the network statistics.  
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We tried various variable combinations in 4 models to evaluate their composition 

in developer network. Models 1 to 4 represent different combinations of the desired 

network characteristics. Model 1 has only mutual ties while model 2 has both mutual and 

transitive network statistics. Model 3 has mutual, transitive and istar (3) network statistics 

and model 4 has mutual and gwidegree network statistics. As aforementioned, mutual 

statistics is used to evaluate for presence of reciprocated ties in the network (Lusher et al., 

2013; O’Malley & Marsden, 2008).  Transitive triad tests for presence of clusters in the 

network, istar (3) network statistics test for the presence of preferential attachment while 

gwidegree (t-2.5) test for the presence of degree homophily in the network (e.g., Lusher 

et al., 2013; O’Malley & Marsden, 2008).  All the models converge and estimates results 

are presented in Table 11. 

Table 11: ERG (p*) Model Results 

 Model 1 Model 2 Model 3 Model 4 

Variable Estimate (std err) 

Mutual 

-2.519*** 

(0.030) 

-13.534*** 

(2.003) 

-2.675*** 

(0.107) 

-0.926*** 

(0.026) 

Transitive  

0.024***  

(0.001) 

0.002*** 

(0.000)  

Istar (3)   

-3.316e-04*** 

(3.677e-06)  

Gwidegree (𝜏 = 2.5)    

-12.938 

(369) 

     

AIC 74635 92529 74135 56699 

BIC 74644 92548 74163 56717 

*** denote significance at 1% significance level 

Results show mutual ties is negative and statistically significant in all the four models 

while istar (3) is negatively significant in model 3. This implies that the developer 

network does not to reciprocate nor follow preferential attachment while forming. i.e., 
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developers do not reciprocate codes and do not follow a particular preference when 

joining the network.  The findings are well supported by those of stochastically 

dominating networks found in the link to link model. The link to link model showed that 

developer network tends to be characterized by low reciprocity and forms in a manner 

that follows uniformly random pattern. Both model results imply that we reject the 

hypothesis that developer network is highly characterized by reciprocated ties. Results 

also show that we uphold the hypothesis that developer ties form in a manner that follows 

uniform random attachment. Table 11 shows that transitive triad’s statistics to be positive 

and statistically significant in both models 2 and 3. These result imply that developer 

network form clusters (exhibit closure) than they would in a network that is formed in a 

pure uniform random manner. i.e., these results are also supported by our network link to 

link results that showed that the dominating network showed tendencies for high 

clustering. We therefore uphold our third hypothesis which posited that software 

developers in the nanoHUB.org are characterized by high clustering.  

4.4.4  Goodness of Fit of the Models 

We further subjected the model to goodness of fit (GoF). The graphical tests of GoF are 

presented in Figure 7. The graphical tests of GoF technique is chosen over the traditional 

AIC, BIC and likelihood methods because the plots are more informative than the AIC or 

BIC for they tell us which structural features fit well and which do not (Hunter et al., 

2008). Moreover, the GoF plots does not rely on the assumptions that observations need 

to come from an independent and identically distributed sample which is a requirement 

for calculating AIC and BIC (Hunter et al., 2008). The authors also noted that likelihood 

ratio method is only applicable to dyads independent and not dependent models like 
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ERGM (Hunter et al., 2008). Gof compares the set of observed network statistics with a 

range of the same statistics obtained by 100 simulations of networks from the fitted 

ERGM (Hunter et al., 2008). We fit our model using three commonly and important 

network statistics including degree, shared partner statistics and geodesic distance.  

Hunter et al. (2008) pointed out that degree statistics gives an indication of the 

distribution, while shared partner statistics gives an indication of triangle count because 

triangles are a function of shared partner statistics. The authors then noted that geodesic 

distance gives a basis of the two most common features, centrality and are also important 

to understanding the speed and robustness of transmission. GoF computes the p-value for 

the geodesic distance, degree and average short path summaries to ascertain the ERGM 

models goodness-of-fit. The GoF graphs for the four models are presented in Figure 9 

below. 
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Figure 9: Simulation Results for Dyadic Dependence ERGMs of Table 12. (Model 1) 

Mutual. (Model 2) Mutual + Transitive. (Model 3) Mutual + istar (3) + Transitive. 

(Model 4) Mutual + gwd (𝜏 = 2.5).  

Figure 9 show results of 100 simulations for developer network from fitted dyadic 

independence models given in Table 11. Columns one to three show the fitted network 

statistics (degree, shared partner statistics and geodesic distance) for the four models. The 

vertical axis is the log-odd ratio of the relative frequency, and the solid line is the 

statistics of the observed network. Results show that the four models have different fits 

Model 1 

Model 2 

Model 3 

Model 4 
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for all the three network statistics implying that the models have varying magnitudes of 

either strongly estimating and underestimating the degree distribution, local clustering 

and average short paths of the network. Figure 9 show that model 4 fits better than 

models 1-3 for indegree and edgewise-shared partner while model 1 fits the geodesic 

distance better than the others. These results imply that model 4 is best suited for 

estimating attachment patterns (preferential to random), reciprocity and clustering while 

model 1 best for estimating the network average short distance which is not evaluated in 

this study nonetheless.  The results give a relatively fair representation of the data fit. Gof 

allows us to know whether the specified model for our observed data represent particular 

network structures of graph features well but should not be expected to explain or fit all 

features of a network (Lusher et al., 2013).   

 

4.5 Summary and Concluding Remarks 

This study sought to understand the network formation, operation and 

organization (collaboration) and sustenance mechanism in an online enabled 

cyberinfrastructure (nanoHUB.org) through social network modelling. A simple link to 

link network formation model was used to evaluate the network formation pattern. 

Stochastic dominance model was used to evaluate the most efficient model which was 

used to evaluate and fit the network characteristics that are important for developer 

networks. ERG (P*) model was used to compare and validate the network formation 

characteristics of the developer network. The study was anchored in theory of network 

that mostly explains the patters of the network formation. Other network self-organizing 

and sustenance sub-theories including tendency for the networks to show reciprocity and 
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clustering were also tested in the model. Both link to link and ERGM models results show 

that developers contribute to source code in a manner that follows a pure uniform 

random distribution. These results confirm our hypothesis that online communities form 

in manner that inclines more towards a pure random attachment and are similar to those 

found by other online studies (e.g., Faraj and Johnson, 2011; Jackson, 2008). The 

practical implication of this study finding is that online platform managers should put 

least efforts in activities that try to influence developer’s involvement in community 

activities. Results also showed that developer are characterized by low tendencies to 

reciprocate but have a high tendency to form clusters. These results imply that 

developer’s participation in online communities is not influenced by back and forth 

exchanges of code modifications e.t.c. but flows exchanges that tend to coalesce (cluster) 

in small groups naturally. These results imply that platform managers should put least 

efforts in activities that enhance to direct exchanges in the SVN files. Results have also 

shown that developers are characterized by low homophily, that is, developer network 

exhibits heterogeneous coders working on a particular tool. The theoretical contributions 

of this study are: (1), application of different ERGM models to understand the network 

formation and organization patterns of online developer community that includes 

formation in a pattern that follow pure random distribution, network exhibiting low 

reciprocity and homophily but high tendencies to cluster and; (2), application of 

stochastic dominance to order most efficient distribution in terms of degree distribution.   
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CHAPTER 5. COMMUNICATION CHANNELS AND SOCIAL STRUCTURES 

ASPECTS OF DIFUSSION OF SOFTWARE IN ONLINE DIGITAL USER 

COMMUNITY: A BASS MODEL AND NETWORK AUTOCORRELATIVE 

MICRO MODELLING 

5.1 Introduction 

Diffusion of innovation studies have broadly focused on timing, innovation, 

communication channels and social structures aspects of transmission after Bass model of 

diffusion was introduced in marketing in the 1960s (Bass, 1969; Mahajan et al., 1990; 

Rogers, 1983). Bass (1969) claimed that diffusion patterns are the product of interaction 

between innovators (early adopters) and imitators. In more terms, “The basic assumption 

of the model is that the timing of a consumer’s initial adoption of a scientific artifact is 

related to the number of previous adopters”. Bass model is therefore a summative model 

that describes diffusion in terms of the behavior of the entire user network; the model 

largely ignores the social systems on which the innovation impacts (network structure) 

(Bass, 1969). Bass model is based on the assumption that users are fully connected (in 

fully connected component) and are homogeneous which implies that every individual 

has some possibility of influencing the other through the network. i.e., there is social 

contagion due to homogeneity in the social networks.  Bass model is therefore good at 

looking at the timing18 aspects of diffusion of innovation but not the social structures and 

                                                 
18 We use timing to denote all aspects of adoption curve including speed and the 

saturation  
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communication channel aspects of innovation Bulte & Stremersch, 2004; Laciana et al., 

2013). Bulte and Stremersch (2004) and Peres et al. (2013) pointed out that the model 

does not provide an insight about the processes that determine adoption, or how 

individual’s social interactions are linked to the global social behavior because of the 

assumption of complete network connectedness and social contagion which might not be 

being realistic in real world. The authors continued to note that that diffusion process 

(i.e., the typical logistic-S-Shaped diffusion curve19) does not essentially come from 

social contagion process but due to some intrinsic tendency of heterogeneous individuals 

to adopt and this is better explained by microscopic models. Matei (2014) argued that 

different structures and patterns of user network are largely determined by the level of 

interactions in digital practice space. 

Microscopic (Or Micro) models are commonly referred as agent based models 

because they evaluate individual’s (agent’s) behavior including the innovation 

characteristics and social interactions that influence adoption (Fibich & Gibori, 2010; 

Laciana et al., 2013). The models relate explanatory variables (covariates) to adoption 

behavior and are therefore able to look at the social structures and communication aspects 

to the diffusion process and therefore overcome the some of the limitations of the macro 

based models including homogeneity of the users (Jackson & Rogers, 2007; Meade & 

Islam, 2006; Rogers, 1983). This study will refer to the social structures and 

communication channels broadly as digital practice variables that have direct influence 

on an individual’s tool adoption choice. The structural features of network have direct 

                                                 
19 S-Shaped diffusion curve is similar to logistic function or normal function with heavier 

tails 
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influence on information flow that enhances diffusion of tools or technologies but the 

mechanisms and processes of communication which influence diffusion processes in the 

established network is limited (Jackson, 2008, p. 178).  

Research on diffusion of innovation has largely focused on the macroscopic or 

microscopic perspective or a combination of both models (Laciana et al., 2013; Meade & 

Islam, 2006).  The models choice and their effect on understanding the above highlighted 

four drivers of innovation (timing, innovation, communication channels and social 

structures) is contradictory and not very well understood (e.g., Laciana et al., 2013; 

Meade & Islam, 2006). Moreover, majority of these studies have applied simulation and 

analytical techniques with very little empirical evidence to buttress their findings 

(Ballester et al., 2006; Banerjee et al., 2013; Kitsak et al., 2010; Meade & Islam, 2006; 

van Eck et al, 2011).  There are few empirical studies that have looked at the effect of 

network on diffusion (e.g., Ballester et al., 2006; Banerjee et al., 2013; Meade & Islam, 

2006), and no study (to the best of our knowledge) has looked at diffusion from a 

network autocorrelation perspective in a non-market based digital platform. This study is 

a first (to the best of our knowledge) empirical application of diffusion model in a non-

market digital user community using both the macro and micro diffusion models (e.g., 

Banerjee et al., 2013; Peres et al., 2010; Shanahan et al., 2008). The study findings 

contribute to the literature of understanding of the information flow from the network 

characteristics perspective and its impact enabling diffusion of tool diffusion in a non-

market based online community. 
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5.2 Theoretical Framework and Hypothesis 

Diffusion of innovation falls under diffusion theory which is a theory of communication20 

(contagion). The theory seeks to explain how a new product, practice or innovation 

(including diseases, computer virus) spreads amongst people that are interconnected 

through a network structure (Jackson, 2008.p.185; Mahajan et al., 1990).  Diffusion 

theory is therefore nested in network theory that explains the effect of a network on 

productivity or choice (Borgatti & Halgin, 2011). The network structural characteristics 

(conduits of communication amongst people) facilitates flow of information in the 

interconnected structure (network) through a pattern that closely translates to product life 

cycle or the adoption curve (Borgatti & Halgin, 2011; Rogers, 1983). The product life 

cycle or the adoption curve shows the stages that a new product or innovation goes 

through while cascading through the social structure (network) and this process follows a 

distribution that is logistic or near normal (Rogers, 2003). Rogers (2003) categorized the 

adoption curve into the ‘popular’ five phases; innovators, early adopters, early majority, 

late majority and laggards (Mahajan et al., 1990; Rogers, 1983). The authors noted that 

peoples perceived ratio of benefits to cost (BCR) is a big factor that determines the speed 

and rate of adoption of innovation.i.e., an individual choice of adopting an innovation is 

directly related to their perceived benefits of adopting against not adopting.  Some factors 

that are said to increase/alter BCR include modernity, homophily, physical distance and 

characteristics of opinion leaders all of which reduce the perceived risks and the initial 

effort required to learn about a new product before uptake (Jackson & Rogers, 2007; 

                                                 
20 Communication is defined as any means that enable information sharing (Rogers, 1983) 
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Mahajan et al., 1990). Modernity refers to individuals going with the current social trends 

in the society while homophily is the tendency of individuals to associate with similar 

others (Jackson & Rogers, 2007). The authors further noted that physical distance is the 

space between two individuals which has direct influence on the speed of information 

flows between them while characteristics of opinion leaders refers to the direct influence 

of the leaders on information spreading and decision making. Mahajan et al. (1990) 

broadly classified these factors as external and internal and defined external factors as 

shocks from mass media (advertisements) and the internal factors as interpersonal 

communication within the network structure. The innovators and early adopters are said 

to be part of the visionary minority who experiment and take up an innovation or new 

ideas; these persons are also very entrepreneur and often risk takers (Bulte & lilian, 

2001). On the other hand, the late majority are the skeptical mass who are risk averse 

because they wait until other individual take up an innovation/product before adopting an 

innovation/product (Mahajan et al., 1990; Rogers, 1983). A schematic representation of 

the adoption curve with the five phases of adoption is presented in Figure 10 below.  
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Figure 10: Adoption Curve Showing 5-Phases of Adoption (Rogers, 1983) 

 Diffusion process in online communities follows similar patterns with those of 

markets goods because it is the connections or channels of communication that influence 

the process (Firth et al., 2006; Susarla et al., 2012).  Like other market-based connections, 

online communities involve users’ scientists that are linked online with computers and 

their relationship is enhanced through digital practice (Matei, 2014). 

 This study used data from tools users in the nanoHUB.org to create online user 

community. The nanoHUB.org cyberinfrastructure is freely accessible for use by anyone 

with a nanoHUB.org account and was used to study the patterns of diffusion amongst its 

users  (Klimeick, 2008; McLennan, 2012). The nanoHUB account registration is free but 

requires a user to have Java 1.4 or more, enable Javascript and cookies  (McLennan, 

2012). The web registration information and the cookies are used to capture usage and 

user information. The usage rate and reviews of a tool are all publicly displayed in the 
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nanoHUB.org cyberinfrastructure.org and these features plus the other tools specifics 

features including title, purpose, developer’s name/s, program launch, class schedules 

largely constitute the internal and external influences that determine the rate and speed of 

adoption of individual tools  (McLennan, 2012). Tool users therefore rely on these two 

distinct mechanisms when making a decision of whether to adopt a tool or not i.e., 

innovators are those scientists that go to the website to try a tool based on the initial 

appearance and other features on the website or based on advertisement flyers, titles e.t.c. 

and imitators are the tool users that rely on reviews, trusted user developers, other users 

direct or indirect influence. We therefore expect innovators to be impervious to the above 

highlighted network related influences when adopting a tool and the remaining users to 

be impressionable to internal /social influences (, i.e., modernity, homophily, physical 

distance and opinion leadership (e.g., Bulte & Lilian, 2001; Wright et al., 1997).  

We model the above highlighted internal features as network proximity features 

and characteristics that increase the influence how information cascades amongst users in 

the network. Our reasoning is that digital practice activities are enhanced by both 

computer and location proximity features. We created a probabilistic proximity index 

weighted adjacency matrix based on nearest user using digital and geo-locational 

proximity features. Other studies have constructed weight matrices based on mostly geo-

locational and online interaction proximity index such as gravity model and social models 

such as friendship, interaction, latent and following graph models  (e.g., Leenders, 

2002;(Jin, Chen, Wang, Hui, & Vasilakos, 2013) Matei et al., 2015; Winfree et al., 2005). 

The digital connections feature that we considered included internet protocol (IP) 

address, IP domain (Media Access Control-MAC), IP city, IP region, and IP country 
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while the geolocation features that we considered included the city, state and country. 

While the physical locations may seem as duplicates we hypothesize that there might be a 

low probability that people meet physically while doing their daily chores and influence 

each other. The digital proximity was given higher weight than the geo-locational 

weights nevertheless. The order of weighs was also tilted to favor those who share IP 

address, IP domain, IP city, IP region and IP country in that order based on the 

assumption that those the level of digital practice activities diminish in similar fashion. 

As such we created a probabilistic proximity index that sums to 10 based on an intuitive 

sense of the likely scenarios of interaction or encounter (We believe that this index can be 

improved based on some historical data). 

Table 12: Proximity Index Scores for Adjacency matrix. 

Digital proximity variables Score 

IP address 4 

IP domain 3 

IP city 1 

IP region 0.6 

IP country 0.4 

Geo-locational Proximity Variables Score 

City 0.5 

State  0.3 

Country 0.2 

Total 10 

 

Users that share ip address and domain were given a high score of 4 and 3 because we 

believe that these have direct influence on each other’s work hence have more propensity 

to contagion through both physical and information sharing (digital practice). Users 

sharing IP city, IP region and IP country were given low scores of 1, 0.6 and 0.4 
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respectively because we believe the probability of interacting and influencing each other 

diminishes based on the size of location that people might meet. Each proximity score 

was used to create separate adjacency matrix such that two users 𝑖 and 𝑗 will be 

connected by a weight 4/10 if they share the same IP address. Similarly, two users 𝑖 and 

𝑗 will be connected by a weight 3/10 if they share the same IP domain (MAC). All the 

adjacency matrices were added to come up with the proximity index. Figure 11 shows the 

resulting user network (left) and the largest component (right).  

 

Figure 11: Spring 2006 the nanoHUB.org User Network and Largest Component 

 

The resulting network shows the network with several components. The largest 

component (plotted to the right) was extracted and used to evaluate diffusion in that 

network because diffusion occurs in interconnected network structure (Jackson, 2008).  

The network centrality measures that we consider as being significant to the 

diffusion process and also representative to modernity, homophily, physical distance and 
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opinion leaders include degree, closeness, betweeness, eigen vector centrality amongst 

others (Jackson, 2008; Gonzalez-Brambila et al., 2013; Li et al., 2013; Valente et al., 

2008). Degree centrality measures the number of direct ties that a user is linked to in the 

network (Valente et al., 2008). Jackson (2008) noted that the number of direct ties 

facilitate combination and direct exchange of information that will increase the 

probability of a user adopting a tool. We therefore hypothesis that users with high degree 

centrality have a higher chance of getting information that will influence their decision to 

adopting a tool.  

Hypothesis 1: High Degree centrality will be positively correlated with adoption of 

scientific innovation 

Closeness centrality measures the average distance of a user to all others users in 

the network while betweeness centrality measures user’s relative position in spanning the 

structural hole (Jackson, 2008; Valente et al., 2008). The two centrality measures are 

closely related to density of the network because dense network will lead to high measure 

of closeness but low betweeness centrality and vice-versa. Coleman (1998), Hansen 

(1999), Obstfeld (2005), Uzzi (1997) and Valente et al. (2008) argued that more dense 

networks facilitates direct access to information because users share norms in behavior 

and develop trust that they could use to mimic their fellow users and therefore adopt a 

tool i.e., closeness centrality will give a user a higher probability of adopting a tool 

because they are able to transfer tacit information based on their proximity and this will 

enable them make a decision to adopt or not adopt a tool. An opposing view point is that 

by Burt (1992, 2004) and Hargadon (2002) who argued that such information becomes 

redundant after sometime and that users in less dense networks are likely to gather 
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information that generate leverage to constructing an efficient and information-rich 

network where redundant partners is minimized. i.e., betweeness centrality will give 

users a higher probability of adopting a tool because structural holes facilitate diffusion 

of tools.  Following these constructing views we will hypothesize the two centrality 

measures to take any but opposite directions in the digital platform.  

Hypothesis 2: Closeness Centrality will be positively correlated with adoption of 

scientific innovations and Betweeness Centrality will be negatively correlated with 

adoption of scientific innovations 

Hypothesis 3: Betweeness Centrality will be positively correlated with adoption of 

scientific innovations and Closeness Centrality will be negative correlated with adoption 

of scientific innovations 

Eigenvector centrality measures the users relative position to opinion leaders 

(well-connected users). It is hypothesized that a user association or connection with 

opinion leaders will enable him have good contacts and information about a tool and this 

will increase his probability of adopting a tool. We therefore hypothesize that eigen 

vector centrality will increase the probability of tool adoptions. i.e., 

Hypothesis 4: Eigen Vector Centrality will be positively correlated with adoption of 

scientific innovations  

Users that are surrounded (are neighbors to) by more users that have adopted the 

tool will most likely be positively influenced to adopt the tool because of spillover effects 

or contagion (Leenders, 2002).  Peres et al. (2010) noted that the spillover effects can be 

direct and indirect. The authors noted that the spillover effects will be positive if the 

adoption decision is directly affected by the number of immediate individual neighbors 
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that have adopted the tools (this could be likened to degree centrality) and indirect if the 

decision to adopt a tool is based on the number of indirect neighbors that have adopted 

the tool (this could be likened to both betweeness and closeness centrality measures).  

However, the difference between spillover effects to the centrality measure is the fact that 

interpersonal communication does not have to be present for network externalities to 

work (Peres et al., 2010). Autocorrelation modelling is therefore able to capture the 

effects of network spillovers effects on tool adoption by users and we hypothesis that the 

network spillover effects (multivariate dependent variables) will be positively correlated 

with adoption of tools, i.e., 

Hypothesis 5: Spatial Autocorrelation parameter will be positively correlated with 

adoption of scientific innovations. 

 

5.3 Methodology 

In this study we explored the communication channels and social structures 

aspects of diffusion on usage of tools (softwares) in user community of the nanoHUB.org 

cyberinfrastructure using macro (bass model), agent based model (discrete time hazard 

model) and the spatial autocorrelation model version of the discrete time hazard model. 

The models are specified in details below. 

5.3.1 The Rate of Diffusion of Tools in the User Network: An Application of Bass 

Model  

The bass model is an amassed model that defines the transmission of information through 

the behavior of the users in the network. The model is simple, tractable and incorporates 

social aspects into its structure (Jackson, 2008. p. 187). The Bass model explains the 
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mechanism of how adopters and potential adopters of a scientific innovations interact 

with each other in the user network (Jackson, 2008. p. 187). The model is based on the 

premise that adopters are innovators or imitators and the speed and timing of adoption 

depends on their degree of innovativeness and the degree of imitation among adopters. 

The bass model for continuous time period 𝑡 is given by the differential equation (37), 

 

37)       
𝑑𝐹(𝑡)

𝑑𝑡
= (𝑝 + 𝑞𝐹(𝑡))(1 − 𝐹(𝑡)) 

Where, 

𝐹(𝑡) is the fraction of users who have adopted Tool-1 

𝑑𝐹(𝑡)

𝑑𝑡
 is the rate of change of adoption of a tool or the hazard function 

𝑝 is the rate of innovation 

𝑞 is the rate of imitation 

 

To solve for the unknown cumulative distribution F(T) we define 𝐿(𝑡), the conditional 

likelihood that a user will adopt a tool at time t  by bayes formula as, 

 

38)       𝐿(𝑡) = 𝑓(𝑡)

1−𝐹(𝑡)
 

 

Where, 

𝑓(𝑡)   is the probability density function. Equation (38) can be written as  

 

39)      𝐿(𝑡) = 𝑝 +
𝑞

𝑁̅
(𝑡) 



116 

 

 

 

Where, 

𝑁(𝑡) is the number of consumers who have adopted the tool by time t 

𝑁̅ = 𝑁̅𝐹(𝑡)   is a constraint that represents the total number of users who will eventually 

adopt the scientific innovation; The formula for calculating 𝑁̅ is given in equation (45) 

below. 

Equation (38) into (39) yields (after rearrangement), 

40)      𝑓(𝑡) = [𝑝 +
𝑞

𝑁̅
𝑁(𝑡)] [1 − 𝐹(𝑡)] 

If we define 𝑛(𝑡) = 𝑁̅𝐹(𝑡) as the number of users adopting a tool at time 𝑡, equation (40) 

can be written (after some algebraic manipulation) as, 

41)      𝑛(𝑡) = 𝑝𝑁̅ + (𝑞 − 𝑝)𝑁(𝑡) −
𝑞

𝑁̅
[𝑁(𝑡)]2 

The OLS estimates 𝑝𝑁̅, (𝑞 − 𝑝) and 
𝑞

𝑁̅
 in Equation (41) can be written as a, 𝑏 and 𝑐 

respectively. Equation (41) therefore changes to, 

42)      𝑛(𝑡) = 𝑎 + b𝑁(𝑡) − c[𝑁(𝑡)]2 

The parameter estimates 𝑝 and 𝑞 were calculated were calculated from (41) and (42) as, 

43)      𝑝 =
𝑎

𝑁̅
 

And  

44)      𝑞 = −𝑐𝑁̅ 

𝑁̅ is calculated using the quadratic equation as, 

45)      𝑁̅ =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
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Differentiating (41) with respect to 𝑡  yields the predicted time it takes a tool adoption to 

peak 

46)       𝑡∗ =
1

(𝑝+𝑞)
ln (

𝑞

𝑝
) 

Solving for 𝐹(𝑡) in (37) with 𝑝 > 0 and 𝐹(0) = 0 yields the cdf function, 

47)      𝐹(𝑡) =
1−𝑒−(𝑝+𝑞)𝑡

1+
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡

 

Parameters 𝑝 and 𝑞 were calculated in weekly panels from the fitted model (42) using 

ordinary least squares (OLS) method. The choice of OLS over the maximum likelihood 

(ML) method on (42) was informed by ML shortcomings of underestimating the standard 

errors of estimated parameters (e.g., Schmittlein & Mahajan, 1982; Srinivasan & Mason, 

1986). The authors also noted that ML only considers sampling errors and ignores all 

other errors. The shortcomings of estimating Bass Models with OLS method include, 

increased likelihood of getting biased estimates due to multi-collinearity problem caused 

by correlated 𝑁(𝑡)  and  𝑁2(𝑡) , lack of statistical inference on estimated 𝑝,  𝑞 and 𝑁̅ 

because we are not able to calculate their standard errors and use of discrete time series 

data to estimate continuous model (bass dynamic model) which might cause time 

invariant bias (Schmittlein & Mahajan, 1982). Jain and Rao (1989) suggested use of any 

nonlinear regression method as an alternative to both OLS and ML methods but this is 

beyond the scope of this study that seeks to evaluate the communication channels and 

social structure aspects of diffusion of innovations; the structural characteristics and 

communication aspects will be thoroughly analyzed in the probit and spatial probit 

model. The estimated parameter sets ( 𝑝,  𝑞 and  𝑁̅) were used to calculate and forecast 
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diffusion based on the cumulative function (47) (Jackson, 2008, p. 187). The ‘best” 

cumulative function was analyzed through stochastic dominance criteria.  

 

5.3.2 The Most and Least Adopted Tools: Stochastic Dominance Criteria  

Stochastic dominance (SD) describes a set of relations that hold between two 

distributions (Guo, 2012). A Parameter set (A) will be first order stochastically 

dominated by a set (B) if  𝐹(𝑡)𝐵 ≥ 𝐹(𝑡)𝐴. 𝐹(𝑡)𝐴 and 𝐹(𝑡)𝐵are the cumulative functions 

(47) derived from parameter sets (A) and (B) respectively (Schmid & Trede, 1996). This 

implies that user networks characteristic that generate parameter set (B) lead to more 

diffusion of a tool than those that generate parameter set (A). Network characteristics 

were characterized with probit and spatial probit (autocorrelation) model estimates based 

on the dominating and dominated cumulative frequencies adoption curves.  

 

5.3.3 Users and Network Characteristics that Determine Diffusion of Tools: Probit 

Versus Spatial Probit Models Application 

We first apply a simple probit regression model that evaluates the probability that 

a user adopts a tool. This model is based on Banerjee et al. (2013) study that sought to 

evaluate the influence of opinion leaders on diffusion of microfinance in India. Banerjee 

et al. (2013) considered opinion leaders position in the network (communication 

centrality) through a logistic probability model, 

 

48)        𝑦𝑖𝑡 = log (
𝑝𝑖𝑡

1−𝑝𝑖𝑡
) = 𝑋𝑖

′𝛽 + 𝜆𝐹𝑖𝑡 + 𝑣𝑖 
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Where, 

 log (
𝑝𝑖𝑡

1−𝑝𝑖𝑡
) is the odd ratio, 

𝑋𝑖 is the vector of covariates (representing user characteristics) 

 𝛽 is the vector of coefficients that describe the influence of user characteristics 𝑋𝑖 

on the odds ratio and 

𝐹𝑖𝑡 is a ratio of adopting users to the total number of users that informed user 𝑖 

about the program. (i.e., numerator =number of users who adopts a tool and 

denominator =number of users who informed user 𝑖  about the tool). This ratio 

captures the information asymmetry in the user network. If information is 

assumed to be perfect (where all users have the same information regarding a 

tool) then we can remove the ratio.  

𝜆 is the parameter representing the influence the change in the ratio of 

participation on the odds ratio. 

𝑣𝑖 is user 𝑖′𝑠 preference shock. 

Banerjee et al. (2013) noted that the preference shock 𝑣𝑖 maybe correlated with 𝑣𝑗if say 𝑖 

and 𝑗 are neighbors that influence each other.i.e., there might exists spatial 

autocorrelation in the diffusion behavior. To empirically test such a spatial auto-

correlation effect, we extended Banerjee et al. (2013) model to include a spatial 

component but also removed the information asymmetry component because this was 

captured in the user network weight matrix. We also changed the depend variable from 

the odds ratio to a discrete binary variable.  Our spatial autoregressive model therefore 

become, 
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49)                                𝑦𝑖𝑡 = 𝜌𝑊𝑦𝑗𝑡 + 𝑋𝑖𝑡𝛽 + 𝜀𝑖  

 

Where, 

𝑦𝑖𝑡 = 1 if user 𝑖  has adopted a tool at time 𝑡  and 0 otherwise 

𝑦𝑗𝑡 = 1 if user  𝑗 has adopted a tool at time 𝑡  and 0 otherwise 

𝑊 is an adjacent weight matrix representing relationship of the users forming the 

network. The edge list was constructed using an index with physical location, 

time of usage, start year e.t.c. 

 𝜌 is the autocorrelation parameter and all other variables are as described above 

but with time subscript.   

Equation (48) was compared with those in equation (49) through the 

autocorrelation parameter 𝜌 and correlation of preference shock 𝑣𝑖 and 𝑣𝑗 . 

 

5.3.4 Data and Variables 

5.3.4.1 Data 

The data for this study came from the user community of the nanoHUB.Org 

cyberinfrastructure (Kleimeik, 2008; nanoHUB.org, 2014). Because of the enormous size 

of the user network, discontinuous time usage and the requirement of fully connected 

component, we chose users in the first half of 2006 as our sample user network. 

Component determine the likelihood and extent of diffusion in a network because actors 

(scientists) have to be linked if they are to “infect” each other (Jackson, 2008. p. 178). 
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Jackson (2008, p.178) noted that most studies have chosen the largest component as their 

network sample to study diffusion patterns because there is higher likelihood of getting 

infected in a more connected network structure.  In this study we tried to understand the 

diffusion pattern of the most used tool in the class and compared it with a first order 

stochastically dominated tool in the user network. Bass model of diffusion was applied to 

evaluate the rate and structural components that determine diffusion (Mahajan et al., 

1990; Jackson, 2008. p. 187). Stochastic dominance was used to determine the 

dominating and dominated tools by usage. The probit and spatial probit network 

autocorrelation models were used to identify and distinguish the user network 

characteristics that are highly correlated with the tool adoption in the dominating tool. 

 

5.3.4.2 Variables 

The weekly adoption time series data for the top five tools was used for the bass model. 

The bass model adoption curve was categorized by time to denote early versus late 

adopters and early versus late majority and this was used as a dependent variable for the 

probit and spatial probit models. The network structural characteristics were used as the 

explanatory variables and the central processing unit time variables from nanohub.org 

were used as the control variables together with the country dummy. The independent 

variables for the spatial probit was weight matrix of the users’ connections or rate of 

association (digital practice activities) in addition to the network embedded 

characteristics that captured the local effects and control variables. All variable for probit 

and spatial probit model are described below.  



122 

 

 

 

5.3.4.2.1 The Weight Matrix.  

We applied the tool user network created based probabilistic proximity index as 

described in Section 5.2 (Theoretical Framework and Hypothesis). This index captured 

users level of association largely driven by both digital practice and physical distance 

proximity (e.g., Matei, 2014). The largest component was used to extract the social and 

communication channels variables described below.  

 

3.2.2 The network embedded variables considered included. 

We calculated degree, betweeness, closeness and Eigen vector centrality measures from 

the largest component (described in section 5.2) as measures of as modernity, homophily, 

physical distance and opinion leaders. The variables definition and formulae are 

described in Section 3.3.2. (Variables)   

 

3.2.3 The Control Variable 

The definitions of the control variables were given from nanoHUB.org administration 

available at (www.nanuhub.org) and they mostly describe computing time and by 

extension computing capability.  

Job (j.job) a job is the intensive part of tool usage, that is, the time taken to complete a 

given computation after parameters are set. Jobs are launched from sessions  

Session Central Processing Unit time (s.cputime). This is the time spent by Central 

Processing Time (CPU) executing a collection of one or more processes groups (running 

computer programs, i.e., entering parameters, starting a job and viewing results) 

http://www.nanuhub.org/
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Job Processing Unit walltime (j.walltime). This is the time spent by CPU executing a 

job (the intense part of a tool usage). Walltime is the total time taken by CPU from 

initiation of a program to completion. 

Central Processing Unit walltime (c.walltime). Walltime is the total time taken by CPU 

from initiation of a program to completion. Walltime includes total time taken during that 

processing period. 

Session viewtime (s.viewtime). This is the total time taken to access (look at) a session 

by users.  

Job Events (j.events). These are user jobs that are being handled by nanoHUB.org API 

(application Programming Interphase) 

Country. This is a country dummy of the location of the user (the variable has 1 if 

residing in US and 0 otherwise).  

 

5.4 Results and Discussion. 

We first present the macro model results (bass model) before going to the agent based 

models (probit and spatial probit model). Bass model results include external and internal 

parameter estimates, peak times, saturation levels and forecasted distributions of the 5 

most adopted tools by users in first half of 2006 (Week 1-Week 26).  

5.4.1 Bass Model Results 

The set of complete half year data was first applied to the bass model equation (42). The 

cumulative number of adoptions 𝑁(𝑡) at time 𝑡 and the number of adoptions 𝑛(𝑡) at time 

𝑡 were calculated on weekly basis as the time that a scientist started using a tool. The 

choice of weekly aggregation to daily or aggregation was to reproduce a graph with a 
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smooth and regular diffusion pattern that follows a normal and near normal distribution 

and which does not greatly reduce the degree of freedoms (Wright et al., 2006). OLS was 

used on equation (42) to solve for the external and internal influences  𝑝  and  𝑞  and the 

potential number of ultimate adopters 𝑁̅(𝑝). To address the above highlighted 

shortcoming of using OLS technique, we first ran a correlation test between 𝑁(𝑡) and 

𝑁2(𝑡 + 1) in equation (42) and found no evidence of correlation in all the tools (The 

correlation coefficients between 𝑁(𝑡) and 𝑁2(𝑡 + 1) for “pntoy”, “spice3f4”, “fettoy”, 

“qclab” and “qdot” were -0.15, 0.05, 0.22, -0.09 and -0.09 respectively). Table 13 shows 

results of the Bass model: 𝑎, 𝑏 and 𝑐 are parameter estimates from OLS model (42),  𝑝  is 

the external influence,  𝑞  is the internal influence, 𝑁̅(𝑝)  is the potential number of ultimate 

adopters,  𝑞  is the internal influence, 𝑁̅(𝑎)  is the actual number of ultimate adopters,  

𝑡1  is the period where adoptions equaled or exceeded the period which the adoption took 

off (𝑝𝑁̅) for the first time, 𝑡∗is the predicted peak time and 𝑡(𝑎) the actual peak time.  

Table 13: Bass Model Estimates 𝑎, 𝑏, 𝑐, 𝑝, 𝑞, 𝑁̅ and 𝑡, and Time Series Data for 𝑁̅ and 𝑡 

Tool 𝑎 𝑏 𝑐 𝑝 𝑞 𝑁̅(𝑝)   𝑁̅(𝑎)   𝑡1 𝑡∗ 𝑡(𝑎) 

pntoy 5.71 0.13 -0.001 0.036 0.171 156.6 151 3 10.5 11 

spice3f4 2.09 0.27 -0.003 0.024 0.297 87.0 84 6 13.8 14 

fettoy 0.73 0.55 -0.011 0.014 0.567 51.1 58 8.5 14.8 15 

qclab 0.48 0.77 -0.017 0.010 0.784 46.9 48 5 10.5 10 

qdot 1.41 0.20 -0.005 0.032 0.233 43.6 43 4 11.4 11 

   

Results show that external influence coefficient (p) is less than internal influence 

coefficient (q) in all tools implying that the tools are liable to adoption (Wright et al., 

1997). The range of external influence was 0.01 to 0.036 for the tools while that of 

internal influence was 0.23 to 0.78. This range implies that external and internal 
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influences have varying degree of influences on each tool (e.g., Firth et al., 2006). The 

order of external influence on tools adoptions does not follow that of internal influence 

nevertheless. “pntoy” adoption has the highest external influence followed by “qdot”, 

“spice3f4”, “fettoy” and “qclab” in that order. “qclab” has that the highest internal 

influence followed by “fettoy” “spice3f4”, “qdot” and “pntoy”. The levels of internal and 

external influences are within the mode and range of the sum of internal and external 

influence coefficients, 0.5 and 0.3 to 0.7 respectively (Lawrence & Lawton, 1981).  

To fit the data to the model, we applied two main methods. The first method 

involved calculation of the predicted peak time of adoption of tools and saturation levels 

and compare those with the data. Time 1 was set as the period where adoptions equaled 

or exceeded the period which the adoption took off (𝑝𝑁̅) for the first time (Bass, 1969; 

Firth et al., 2006; Wright et al., 1997). The predicted and actual peak time of adoption 

and total number of adopters (saturation levels) are shown in Table 1 as t* and t (a) and 

𝑁̅(𝑝) and 𝑁̅(𝑎) respectively. In the second method, we calculated the predicted 

(forecasted) adoption rates of tools using the external (p), internal (q) and the potential 

number of ultimate adopters (𝑁̅) estimates from (42) and (45) and compared that with the 

actual adoption rates through visual (graphs) and non-parametric test statistics 

(Kolmogorov-Smirnov (KS test)). Other studies have applied basic parametric test 

statistics, t-test based on an assumption of normal distribution and/ or sum of square 

difference between the two distributions with a lower one implying a better model fit 

(e.g., Firth et al., 2006).  KS test statistics was used to evaluate the overall goodness of fit 

of the predicted versus actual distributions because our data did not follow a normal 

distribution. The adoption curve of the 5 top adopted plots is presented in Figure 12 
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below. The plots of tool usage adoption rates and cumulative rates for the 5 top adopted 

tools in the first half year are presented in Figures 13-17 below. 

 Results in Table 13 show that the actual and predicted time peaks and saturation 

levels are very close to each other for all the tools implying that our model fits the data 

pretty well (e.g., Firth et al., 2006; Wright et al., 1997). The peak time and saturations 

levels fits the data very well but shows some variations based on the tools. 

 

Figure 12: Adoption Curves of the 5 Most Used Tools in First Half of 2006 

 

The adoption curves in Figure 12 seem to follow distribution that resembles logistic 

curve albeit with varying degree of curvature. Adoption of “pntoy” is characterized by 

early take off and peaking times while “fettoy” has a late take off but peaks very quickly. 
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“qdot” has the lowest peak off and saturation levels. “spice3f4” and “qclab” seem to pick 

later than “pntoy” but are above “qdot”. To further understand the relationship between 

these distributions we ran a stochastic dominance test and results are discussed in the 

following section. The weekly frequency and cumulative distributions of individual tools 

bass model adoption and time series data are presented in Figures 13-17 below.  

 

Figure 13: Fitting Bass Model Estimates to Data (Time Series) for "pntoy" Tool for 1st 

half of 2006 
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Figure 14: Fitting Bass Model Estimates to Data (Time Series) for "spice3f4" Tool for 1st 

half of 2006 

 

Figure 15: Fitting Bass Model Estimates to Data (Time Series) for "fettoy" Tool for 1st 

half of 2006 
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Figure 16: Fitting Bass Model Estimates to Data (Time Series) "qclab" Tool for 1st half 

of 2006 

 

Figure 17: Fitting Bass Model Estimates to Data (Time Series) for "qdot" Tool for 1st 

half of 2006 
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Figures 13-17 shows relatively fitting but varying bass model to data. The fit is better 

seen in bass model and time series cumulative frequency distributions that has less noise 

than weekly frequency distributions. KS test statistics was further used to evaluate the 

overall fit of the distributions the bass model distributions and the time series data. KS 

test has the null hypothesis that the bass model distribution followed the time series data 

distribution. Results are shown in Table 14 below.  

Table 14: KS Test for Goodness of Fit for Bass Model and Time Series Data 

Distributions 

Tool Difference (Obs-Pred) in Distributions p-value 

Pntoy 0.148 0.928 

Spice3f4 0.37** 0.049 

fettoy 0.333 0.100 

qclab 0.519*** 0.001 

qdot 0.259 0.324 

*,** denotes 1% and 5% significance levels 

Results of the KS test in Table 14 shows the difference in distributions of the bass model 

and the time series data and the p-values. Results show that “spice3f4” and “qclab” has a 

statistically significance difference in distributions and we fail to reject the hypothesis 

that the model and data distributions followed each other. Other tools show that the 

model distribution followed data distribution.    

5.4.1.1 Pairwise Stochastic Dominance Test for Adoption Curves Distributions 

KS-test was also used to evaluate pairwise difference of tool adoption curves. Table 15 

shows the KS-test results for stochastic dominance. The first column shows the 

distribution that is to be evaluated (treatment distribution) against the reference 
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distribution (control distribution) in the second column. Results of pairwise stochastics 

dominance of the distributions are presented in Table 15 below 

Table 15: Pairwise Stochastic Dominance of the Distributions 

Distr. 1 Distr. 2 Difference (1-2) in Distributions p-value 

Pntoy Spice3f4 0.593*** 0.000 

 fettoy 0.704*** 0.000 

 qclab 0.778*** 0.000 

  qdot 0.778*** 0.000 

Spice3f4 fettoy 0.482** 0.004 

 qclab 0.482** 0.004 

  qdot 0.482** 0.004 

Fettoy qclab 0.222 0.517 

  qdot 0.407** 0.023 

Qclab qdot 0.519*** 0.046 

 

Results show that distribution of “pntoy” stochastically dominates all other tool 

distributions. Results also show the distribution of “spice3f4” stochastically dominates all 

other tools but “pntoy”. “Fettoy” and “qclab” stochastically dominates “qdot”. The 

highest difference in dominated distributions is found between “pntoy” and “qclab” and 

“qdot” but “spice3f4” shows consistent difference in distributions to “qclab” and “qdot”. 

We thus choose a stochastically dominating distribution “spice3f4” and dominated “qdot” 

and map out the distinguishing network characteristics that might be responsible for the 

tool adoption in the “spice3f4” (the distributions of the model to data had also very good 

fit of the model. See figures 14 and 17).  

Probit and Spatial Probit models estimates were used to map out the 

distinguishing network characteristics based on the above highlighted results of stochastic 
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dominance between “spice3f4” and “dqot”. The model of the dominated distribution 

“qdot” was taken as the control while the dominating distribution “spice3f4” was taken as 

the treatment. By the stochastic dominance we will be able to map out the distinguishing 

network characteristics of users in those distribution which will give the direction of the 

user network characteristics responsible for tools uptake including the degree, closeness, 

betweeness and eigen vector centrality.  Results of the network characteristics of the two 

distributions are shown in Table 16 below. 

  Probit and Spatial Probit models were based on the assumption that all users in 

the nanoHUB.org were aware (or had access to information) of the tools available for use 

and that the choice of adoption was purely based on individual scientist’s preferences that 

would be partly determined by the level of digital practice. However, because of 

communication channels and social structure influence we anticipate correlation in the 

error term estimates of the logistic function (e.g., Banerjee et al., 2013). The correlated 

error terms will lead to biased estimates and we extended the probit model to capture the 

network autocorrelation effect through and Spatial probit model that adds a weighted 

neighborhood matrix.  

5.4.2 Results of the Probit and Spatial Probit Model 

We compare the distinguishing network and communication channels characteristics 

responsible for adoption in the stochastically dominating “spice3f4” and dominated 

“qdot” for early adopters and early majority adopters. The early adopters and early 

majority users are based on Rogers (1983) classical 5 phase categories. Our data does not 

follow a logistic or near normal distribution but we categorize early adopters as 16% of 

the tools users by time 𝑡 and early majority as 50% of the users by time 𝑡 and evaluate the 
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distinguishing network characteristics (including communication channels) and personal 

characteristics influencing the diffusion process (Rogers, 1983). We do not consider the 

innovators (2.5%) because of the small size of our component data set. However, by 

considering the communication channels and network characteristics responsible for the 

tool adoption, we will be indirectly testing the external and internal influence whereby 

absence of significance estimates implies lack of the said social influences. Tables 16, 17 

and 18 show the descriptive statistics of the model variables and results of probit and 

spatial probit regressions models.  

Results show that 12% percent of the total users had adopted “spice3f4” tool 

while about 1% had adopted “dqot” by week 4 (16% of the term lifecycle). Results also 

show that about 12% and 3% of the total users had adopted the “spice3f4” and “pntoy” at 

week 13 (50% of the term life cycle). Table 16 also shows the user network structural 

characteristics that were used as independent variables for our models. Results show the 

mean of Bonacich centrality to be -0.75 and the standard deviation to be low 0.046. 

Results imply that the network is characterized by less powerful or influential 

users/leaders because Bonacich centrality measures the number of influential 

people/leaders in the network (e.,g Jackson, 2008). A similar and related centrality 

measure of leadership/influential persons in the network is Eigen vector centrality and 

google page rank. Eigen vector centrality had a low mean of 0.36 and standard deviation 

0.033 while google page rank had a mean of 4.79 with a standard deviation of 0.08. The 

results seem to confirm that the user network is characterized by less influential persons/ 

leaders/decision makers.   
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Table 16: Descriptive Statistics of Probit and Spatial Probit Model Variables 

early (e') Adopters n Mean Std. Err Min Mid Max 

pntoy-e 209 0.115 0.022 0 0 1 

spice3f4_e 209 0.120 0.023 0 0 1 

fettoy_e 209 0.005 0.005 0 0 1 

qclab_e 209 0.038 0.013 0 0 1 

qdot_e 209 0.005 0.005 0 0 1 

Early Majority (em) Adopters     

pntoy_em 209 0.120 0.023 0 0 1 

spice3f4_em 209 0.124 0.023 0 0 1 

fettoy_em 209 0.010 0.007 0 0 1 

qclab_em 209 0.105 0.021 0 0 1 

qdot_em 209 0.029 0.012 0 0 1 

Independent Variables       

Bonacich Centrality 209 -0.751 0.046 -3.08 -0.76 1.55 

Betweeness Centrality 209 1.912 0.155 0 2.48 9.28 

Closeness Centrality 209 0.815 0.009 0.46 0.87 1.15 

Degree Centrality 209 86.105 4.011 2.00 82.00 184.00 

Eigen Vector Centrality 209 0.360 0.033 0.00 0.00 1.00 

Google Page Rank 209 4.785 0.081 0.93 4.87 9.15 

Control Variables       

s.cputime 209 2.149 0.098 0.0 2.24 4.62 

j.cputime 209 1.182 0.087 0.0 0.64 4.62 

c.walltime 209 7.203 0.177 0.0 7.33 15.55 

s.viewtime 209 6.258 0.230 0.0 7.07 15.55 

j. job 209 0.541 0.035 0 1 1 

j.event 209 0.459 0.035 0 0 1 

Country  209 0.842 0.025 0 1 1 

 

Results also show the mean betweeness and closeness centrality measures to be 1.91 and 

0.815 while the standard deviations to be 0.155 and 0.009 respectively. Betweeness 

centrality measures the average span across the network structural holes and it is a 
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measure of easiness of information passing to the peripheral users in the network 

(Valente et al., 2008). Betweeness centrality measure indicates that there is both direct 

and direct information passing in the network. Results imply that there is relatively high 

levels of direct and indirect information passing in the network. Closeness centrality 

measures the average reachability (closeness) between users in the network and it is an 

indication of network efficiency and independence in transmitting information. i.e., users 

transmit information efficiently because of close proximity and are therefore independent 

because they do not reach out to peripheral users for information (Freidkin, 1991; Valente 

et al., 2008).  The low closeness centrality measure imply that the network is less 

efficient in transmitting information and users are therefore dependent on other users in 

getting information. The user network has a mean degree centrality of 86 and a low 

standard deviation, 4.0. This implies that users in the largest component have a relatively 

high degree of connectedness and we expect high information exchange. Valente et al. 

(2008) noted that degree centrality is highly correlated with closeness centrality because 

the two measures are directly linked to direct and efficient information exchange.   

The control variable used in the analysis included the tool usage time variables 

comprising the time spent running or viewing an application or simulating a program, 

job, processes or session. These are measured from the central processing units and or the 

user interphase view time and are measures of the nanoHUB.org computing power by 

users. Results show relatively short use time with some variability that was of interest for 

statistical analysis.  For example, the average time taken to run a session was 2.149 

seconds with a low standard deviation of 0.098 while the time taken a job is about half of 

the time 1.18 seconds. The average time central processing unit walltime (total time to 
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run a program from initiation to completion) was 7.2 seconds with a standard deviation of 

0.177 while the average time taken to view a session by users was 6.26 seconds with a 

standard deviation of 0.23. The other control variable was the geo-location of users, 

country dummy. The country dummy shows that about 84% of the users are located in 

the US. Other geolocation variables that had some variations were not considered 

because they were included in constructing the actual weight matrix.  

5.4.2.1 Probit and Spatial Probit Models 

Results of probit and spatial probit models for the early adopters and early majority users 

for “spice3f4” and “qdot” tools are presented in Tables 17 and 18 respectively. The 

dependent variable in Tables 17 and 18 is a binary variable (with 1 and 0) representing 

the number of tool adopters at time corresponding 16% and 50% of the distribution 

respectively. The variable has 1 if the user had adopted the tool at that particular time and 

0 otherwise. Explanatory variables included the network characteristics representing the 

communication channels and social structure characteristics and control variables 

representing individual tool usage time and country variables. We first evaluated the 

model fit using likelihood ratio (LR) test and also tested the residuals for autocorrelation 

using Moran’s I test. The LR test had the null hypothesis that the log likelihood of the 

restricted and unrestricted models is not different from zero. The LR test results show 

that all 8 model results fit the data because the log likelihood of restricted and 

unrestricted models are different from zero.  Moran test for residual autocorrelation on 

probit models confirms that the error terms are autocorrelated implying that social 

influence is present in diffusion of tools.  
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Table 17: Probit and Spatial Probit Results of Dominating "spice3f4" Tool and 

Dominated Tool "qdot" Early Adopters 

  spice3f4_e qdot_e 

Variable Probit S.Probit Probit S.Probit 

intercept 

0.130 

(0.158) 

-4.890** 

(2.297) 

-0.022 

(0.037) 

-9.228*** 

(2.045) 

Bonacich Centrality 

-0.114** 

(0.036) 

-1.753*** 

(0.462) 

0.003 

(0.008) 

0.606  

(0.492) 

Betweeness Centrality 

0.039** 

(0.012) 

0.287** 

(0.143) 

-0.004 

(0.003) 

-0.229  

(0.143) 

Closeness Centrality 

-0.154 

(0.198) 

-0.784 

(2.115) 

0.028 

(0.047) 

2.104  

(2.114) 

Degree Centrality 

0.002*** 

(0.000) 

0.025*** 

(0.007) 

0.000 

(0.000) 

-0.004  

(0.009) 

Google Page Rank 

-0.086** 

(0.028) 

-1.042** 

(0.341) 

0.007 

(0.006) 

0.395  

(0.314) 

s.cputime 

0.026 

(0.026) 

0.202 

(0.181) 

0.002 

(0.006) 

0.145 

 (0.290) 

j.cputime 

-0.035 

(0.023) 

-0.335 

(0.209) 

0.001 

(0.005) 

-0.047  

(0.231) 

s.walltime 

0.012 

(0.011) 

0.139 

(0.090) 

0.000 

(0.003) 

-0.055  

(0.116) 

j.event 

0.117** 

(0.059) 

1.022* 

(0.598) 

0.006 

(0.014) 

-0.183  

(0.810) 

Country (US==1) 

0.040 

(0.064) 

1.773 

(1.223) 

-0.034** 

(0.015) 

-0.444  

(0.513) 

rho  

-0.010** 

(0.003)  

-0.050*** 

(0.011) 

Morans I residual test 3.42***  7.41***  

loglik  -44.58  -16.05 

AIC 94.67 113.16 -510.01 56.1 

LR   81.92***   116.39*** 

 

The presence of social influence is confirmed by the spatial autocorrelation parameter of 

the spatial probit models. Spatial probit models corrects the autocorrelation bias through 
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inclusion of a weighted neighborhood influence variable (Lesage & Pace, 2008). The 

spatial autocorrelation parameter estimates for “spice3f4” and “qdot” for early adopters 

was -0.010 and -0.050 at 5% and 1% significance levels while it was -0.008 and -0.010 at 

5% significance levels for early majority. These results imply that user network has a 

negative spillover effect of diffusion of tools in the largest component, that is, being 

embedded in the largest component reduced the probability of adopting a tool. The 

negative spillover effect in the largest component could be attributed to the 

communication channels and structure of the network and the above highlighted network 

structural characteristics. The network structural characteristics that enable/facilitate 

communication are further discussed for the early adopters and early majority below. As 

aforementioned, we largely expect communication channels and social influence to be 

absent amongst early adopters than late adopters because there is a low probability of 

adoption from social influence given the small number of tool adopters at 16%.  

Results show that most of the communications and network structural 

characteristics that facilitate communication are significant in outlining increased 

probability of tool adoption for the dominating distribution “spice3f4” to dominated 

“qdot” for early adopters of tools but not for early majority users. Table 17 shows that 

having high degree and betweeness centrality increases the probability of adopting a tool 

while high Eigen vector and bonacich centrality decreases the probability of adopting a 

tool in the dominating “spice3f4” and not the dominated “qdot”. These results imply that 

the probability of adopting a tool is increased by network internal factors (network 

characteristics) and not just external factors. Our results are supported by Borgatti and 

Halgin (2011) Banerjee et al. (2013) analytical and empirical papers that “found” that 
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social influence or contagion is a factor that lead to diffusion of innovation.  Users that 

have high number of connections (high degree centrality) have a higher chance of 

adopting a tool because degree centrality facilitates direct transmission of influence or 

information that might lead to the adoption decision (Valente et al., 2008). The author 

notes that this is a measure of network efficiency and independence because users take a 

relatively “shorter” time to transmit information and do not need third parties to get that 

information. A related centrality measure of network efficiency is closeness centrality but 

results showed this measure to be insignificant in this study. Results also show that users 

that have high betweeness centrality (users that lie between paths of others-brokers) have 

a higher probability of adopting a tool. These results imply that such users are able to get 

relevant information about a tool from direct and indirect sources by the virtue of their 

position and this might influence their decision in adopting a tool (Valente et al., 2008).  

While we would expect users that are connected to leaders and/well connected users to 

have a higher probability of adopting a tool because of enabled/facilitated linkages to 

other users, results show that this actually decreases the probability of adoption of tools. 

This is confirmed by the negative and statistically significant Eigen, bonacich and 

googlepage rank parameter estimates that measure effect of influence/ power. Tables 16 

also shows only j.event control variables has an effect of increasing the probability of 

tool adoption for dominating “spice3f4” adoption amongst the early adopters and early 

majority users but for all models but spatial probit model of “spice3f4”.  Results imply 

there is a higher likelihood of tool adoption by users that run their applications or jobs 

when there are many jobs running simultaneously. J.events measures the number of jobs 

running on the nanoHUB.org API. J.event measure the jobs that are being handled by the 
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nanoHUB.org API (application Programming Interphase). Table 18 also shows that the 

time spent by Central Processing Time (CPU) in executing a job decreases the probability 

of adopting a tool. i.e., the more time is spent running a job will lead to reduced 

likelihood of adoption of a tool. 

Table 18: Probit and Spatial Probit Results of Dominating "spice3f4" Tool and 

Dominated "qdot" Tool Early Majority Users 

  spice3f4_em qdot_em 

Variable Probit 

Spatial 

Probit Probit Spatial Probit 

intercept 

0.133 

(0.160) 

-4.258** 

(2.076) 

0.130 

(0.158) 

-4.890** 

(2.297) 

Bonacich Centrality 

-0.114** 

(0.036) 

-2.03*** 

(0.374) 

-0.114** 

(0.036) 

-1.753*** 

(0.462) 

Betweeness Centrality 

0.040*** 

(0.012) 

0.306 

(0.203) 

0.039** 

(0.012) 

0.287** 

(0.143) 

Closeness Centrality 

-0.135 

(0.201) 

-1.349 

(2.502) 

-0.154 

(0.198) -0.784 (2.115) 

Degree Centrality 

0.002*** 

(0.001) 

0.030*** 

(0.006) 

0.002*** 

(0.000) 

0.025*** 

(0.007) 

Google Page Rank 

-0.090** 

(0.028) 

-1.25*** 

(0.316) 

-0.086** 

(0.028) 

-1.042** 

(0.341) 

s.cputime 

0.029 

(0.026) 

0.157 

(0.170) 

0.026 

(0.026) 0.202 (0.181) 

j.cputime 

-0.036 

(0.024) 

-0.386* 

(0.215) 

-0.035 

(0.023) -0.335 (0.209) 

s.walltime 

0.011 

(0.011) 

0.107 

(0.092) 

0.012 

(0.011) 0.139 (0.090) 

j.event 

0.113* 

(0.060) 

0.858 

(0.525) 

0.117** 

(0.059) 1.022* (0.598) 

Country (US==1) 

0.039 

(0.065) 

2.321** 

(1.073) 

0.040 

(0.064) 1.773 (1.223) 

rho  

-0.008** 

(0.003)  

-0.010** 

(0.003) 

Morans I residual test 3.48***  3.42***  

loglik  -46.07  -44.58 

AIC 100.21 116.13 94.67 113.16 

LR   60.28***   121.67*** 
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Other significant control variable was country data for the dominated “qdot” probit 

model amongst the early majority tool adopters. The country dummy shows that being a 

non us citizen increases the probability of adopting a tool of for the qdot tool. 

 

5.5 Summary and Concluding Remarks 

This study sought to understand diffusion of tools amongst scientific users in an online 

community. Diffusion of innovation theory was explored from both a macro and micro 

modelling perspective. The macro model was used to understand and rank usage of tool 

amongst users in an aggregate manner because users are assumed to be similar in their 

adoption preferences (homogeneous). The bass model determined the external, internal 

factors influencing adoption of tools and also forecasted adoption in online community 

based on estimated parameters. Micro models were used to complement Bass model and 

also understand the actual network structural and hence communication channels that 

were responsible for adoption of tools which showed different adoption patterns. The 

aggregate assumption of the global social influence in bass model was further tested 

using an autocorrelation model. As such probit and spatial probit models were used as the 

micro economics models.  

Data came from user network of nanHUB.org cyberinfrastructure that brings 

together user community across the globe through online high speed internet and high 

capacity computers. The time series rate of adoption was used as the data for the Bass 

model. Data for micro models included a binary rate of adoption as the dependent 

variable, a weight matrix (adjacency matrix) that was constructed based on close 

proximity to evaluate the social contagion influence aspects of the network and the 

Network structural characteristics as explanatory variables and some usage variables as 
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control variables. Results show that bass model is a good predictor for tool adoption in an 

online community setting. Results also show different tools to have varying tool usage 

rates, external and internal influences, time of peak and saturation levels. Both external 

and internal factors were found to be responsible for tools adoption. Results of the micro-

based model found degrees and betweeness centrality as some of the internal variables 

that influenced the adoption process positively while centrality measures of power or 

leadership were found to have negative influence of adoption. The job usage time was 

also found to negatively influence diffusion.  

While these results seem inconclusive, for a start, we have seen that diffusion 

process in online communities also exhibit patterns similar to market based innovation 

which is the main theoretical contribution. In particular, bass model was found to fit and 

thus predict the diffusion process pretty well. While we might not come up with a 

particular value for external and internal influence, results fell in the range found in 

market goods and this is an important practical contribution that is useful to platform 

managers. Therefore, we can recommend policy to apply bass model to forecast adoption 

and also determine the probable timing and saturation levels of tools in an online setting 

based on the standard 0.5 mode value of external and internal influences but allow some 

variations. Forecasted values can be good for determining the required CPU capacity and 

the possible peak time can be used to determine when and when not to put more 

awareness effort, say of advertisements and flyers.  Another theoretical contribution was 

the finding of degree and betweeness centrality as having a positive influence on 

probability of tool adoption but not leadership in the micro models. This finding has also 

practical contribution to platform managers whom we would recommend to 
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enable/enhance activities that will encourage more direct connection and 

communications, like live chats and also enable forums for reaching out to other others 

users in an online questions and answers setting on the basis of encouraging both direct 

and indirect connections (i.e., increasing betweeness centrality). Another practical 

contribution was the revelation that the time of running a job discouraged adoption of 

tools. This implies that the platform managers (administrators) needs to works on ways of 

reducing the time of running a job. For example, the administration can try cloud 

computing or increase the CPU capacity to increase the speed of running a job. The 

projection of the capacity and cloud computing can very much be determined by the 

predictions of the bass model.  
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CHAPTER 6. CONCLUSIONS 

Scientific collaborations have witnessed major changes in the last two decades because of 

progression in technological communication (mostly high speed internet). The changes 

have transformed systems of digital practice including the “traditional” research and 

collaboration methods in various field of science where collaboraties have increased in 

size and frequency. Online collaboraties are now larger and operate in a more efficient 

manner that is believed to increase productivity; innovations and self-growth for 

participants (Brunswicker et al., 2015; Gonzalez-Brambila et al., 2013; Matei, 2014; 

Schroeder et al., 2007). Research examining this new phenomenon have focused on 

understanding mechanisms of online collaboraties that influence output and how the 

networks collaboraties form. This dissertation is focused on understanding the formations 

and effect of such kind of online communities (using the nanoHUB.org 

cyberinfrastructure) to members.  

 

6.1 Summary of Papers 

Network theory is used to determine the effect of networks on members’ 

productivity while theory of network is used to understand how the online communities 

are forming. Several sub-theories of network theory were considered in understanding 

these phenomena. These include, social exchange, small world, structural holes and 
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strength of weak ties, theory of collective action, random and preferential attachment and 

diffusion theories.    

The first paper applied network theory and spatial econometrics technique to 

evaluate how scientist’s positioning in digital spaces correlated with his/her productivity. 

The second paper looked at the network formation mechanism using theory of network. 

The third paper, like the first, applied network theory and spatial econometrics to 

understand user network characteristics that influence diffusion of scientific tools in the 

user network.  

 

6.1.1 Conclusion for Paper One: Embeddedness in Multiple Network Spaces on 

Scientist Development; Higher Order Spatial Models and Network Fixed Effect 

Models 

This study evaluated network local and global structural and relational factors that 

influence participating member’s digital practice capital and hence productivity in a 

developer community. The global spatial autocorrelation parameter was found to be 

negative and statistically different from zero implying that there is a negative spatial 

spillover effect on digital practice capital in the developer network. The negative 

spillover effects was attributed to model representation and the characteristics of the 

chosen weight matrix/matrices. Both weight matrices are characterized by high 

clustering21 (small worlds) but do not show homophily amongst those clusters (low 

                                                 
21 Clustering coefficient for both weight matrices was 0.76 while assortativity 

(homophily) measure for weight matrices 1 and 2 was calculated as -0.0075 and -0.0026 

respectively (See Table 4 in section 4.2) 
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assortativity coefficient). The practical implication of these results is the revelation that 

developers in both developer and authorship network cluster not based on similar 

developers but other factors that could be work related. The weight matrices were also 

characterized by low density and relatively low reciprocity. High clustering, low density 

and reciprocity encourages developers to span structural hole while searching for non-

redundant knowledge from “trusted” (reliable) developers that will give them leverage to 

acquire digital practice capital to develop quality tools that have a high probability of 

getting a cite (e.g., Burt 1992; 2004; Hargadon & Sutton, 1997).  

The local structural network characteristics of eigen vector centrality had 

statistically significant effects on probability of getting citations.  Eigen vector centrality 

measures the developer’s position relative to influential/highly accomplished developers 

in the network. Results showed that being close to influential developers in the network 

increases the digital practice capital and hence the probability of getting a citation. This 

finding supports the emerging new school of thought which argues that the “type” of 

scientist that a developer associates/works with might influence citation of developed 

tools (Gonzalez-Bambrila, 2013).   This finding is a major theoretical contribution that 

supports the emerging new school of thought which argues that the “type” of developers 

that a developer associates/works with might influence citation of developed tools 

(Gonzalez-Bambrila et al., 2013).    

Results also showed that developers that are in more than one network spaces had 

a higher probability of being successful than those that were in one. These results are also 

a major practical contribution in digital practice organization since they reveal that being 
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embedded in multiple networks increases the chances of developing a tool that will get 

citation.  

6.1.2 Conclusion for Paper Two: Growing Developer Community in Scientific Digital 

Ecosystems: Exponential Random Graph Models 

This study evaluated the network formation, operation and organization 

(collaboration) and sustenance mechanism in an online enabled cyberinfrastructure 

(nanoHUB.org) through social network modelling. A simple link to link network 

formation model was used to evaluate the network formation pattern. Stochastic 

dominance model was used to evaluate the most efficient model which was used to 

evaluate and fit the network characteristics that are important for developer networks. 

ERG (P*) model was used to compare and validate the network formation characteristics 

of the developer network. The study was anchored in theory of network that mostly 

explains the patterns of the network formation. Other network self-organizing and 

sustenance sub-theories including tendency for the networks to show reciprocity and 

clustering were also tested in the model. Both link to link and ERGM models results 

show that developers form in a manner that follow a pure uniform random distribution. 

The practical implication of this study is that online platform managers should put least 

efforts in activities that try to influence membership to communities. The theoretical 

implication of this results is the revelation that a simple link to link model performs just 

as good as any other ERGM in determining the patterns of formation and organization of 

networks. Other theoretical implication is the characterization of network characteristics 

from the most efficient degree distribution that is derived from stochastic dominance 

criteria. Results also show that developers are characterized by low tendencies to 



148 

 

 

 

reciprocate but have a high tendency to form clusters. These results imply that 

developer’s participation in online communities is not exhibited by back and forth 

exchanges of coding but flows exchanges that coalesce (cluster) in small groups. These 

results imply that platform managers should not engage in activities that might enhance 

to direct exchanges through the SVN files. Results also show that developers show low 

tendencies towards homophily, that is, developer network exhibits heterogeneous coders 

working on a particular tool. 

 

6.1.3 Conclusion for Paper Three; Communication Channels and Social Structures 

Aspects of Diffusion of Software in Online Digital User Community: Bass Model 

and Network Autocorrelative Micro Modelling 

This study sought to further understand the communication channels and social structures 

aspects of diffusion of tools amongst scientific users in an online community. Results 

show that bass model is a good predictor for tool adoption in an online community 

setting. Results also show different tools to have varying tool usage rates, external and 

internal influences, time of peak and saturation levels. Both external and internal factors 

were found to be responsible for tools adoption. Results of the micro-based model found 

degrees and betweeness centrality as some of the internal variables that influenced the 

adoption process positively while centrality measures of power or leadership was found 

to have negative influence of adoption. The job usage time was also found to have 

negative significance on diffusion.  

While these results seem inconclusive, for a start, we have seen that diffusion 

process in online communities also exhibit patterns similar to market based innovation. 
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Bass model was found to fit and thus predict the diffusion process pretty well. While we 

might not come up with a particular value for external and internal influence we can 

certainly say they range fall within the range found in market goods. Therefore, we can 

recommend policy to apply bass model to forecast adoption and also determine the 

probable timing and saturation levels of tools in an online setting based on the standard 

0.5 mode value of external and internal influences but allow some variations. Forecasted 

values can be good for determining the required CPU capacity and the possible peak time 

can be used to determine when and when not to put more awareness effort, say of 

advertisements and flyers.   

The micro models have found that degree and betweeness centrality as having a 

positive influence on increased probability of adoption but not leadership. We therefore 

recommend policy to enable activities that will encourage more direct connection and 

communications, like live chats and also enable forums for reaching out to other others 

users in an online questions and answers setting on the basis of encouraging both direct 

and indirect connections (i.e., increasing betweeness centrality). Results also found that 

the time of running a job discourages adoption of tools. This implies that the 

administration needs to works on ways of reducing the time of running a job. For 

example, the administration can try cloud computing or increase the CPU capacity to 

increase the speed of running a job. The projection of the capacity and cloud computing 

can very much be determined by the predictions of the bass model.  
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6.2 Limitations and Future Work 

Future Work could improve all the papers by considering various alternatives of scientist 

association captured by the weight matrix. In the first paper, a simple gravity model 

based on the level of code modification deletion and time of association was used to 

generate the weight matrix. This formula generated a weight matrix that was fully 

connected and very dense. The weight matrix formulation and characteristics were 

attributed to giving negative spillover effects. Different alternatives methods of 

generating the association of scientist could be devised to improve the weight matrix. 

Rewiring technique could also be considered as an alternative and result compared to get 

a matrix that is ideal and representative of the real world. Our scientist data also did not 

have several personal covariates that would greatly improve the study finding. Further 

studies with these covariates could be applied to control for the actual effect of the 

network with those of individual scientist.  

The second essay considered the network formation, operation and sustenance 

mechanism for a period of 8 years using a simple link to link model and exponential 

graph modelling. The weight matrix was also constructed using scientist association 

based on the level of work they put on the codes using the gravity model. The weight 

matrix could also be improved through different formulation of association and or 

through rewiring. The study could also explore the game theory aspect of network 

formation to better understand the actual components driving the network formation 

process. 

The third essay considered diffusion of tools in one term because of discontinuity 

in the terms and tools. The study did not also consider the tool injection point while 



151 

 

 

 

evaluation the diffusion process because of lack of that data. Future work could consider 

the injection point of tools because it is one of the main drivers of diffusion of 

innovation. The study could also be improved through addition of individual user’s 

characteristics because these will largely help to control and distinguish the main drivers 

of diffusion of tools in digital platforms. The diffusion patterns and trends of other terms 

could also be considered to generate a more precise range of external and internal 

influence. 

 

 

 



 

 

 

BIBLIOGRAPHY 

 

 



152 

 

 

 

BIBLIOGRAPHY 

Abbasi, A., Chung, K. S. K., & Hossain, L. (2012). Egocentric analysis of co-authorship 

network structure, position and performance. Information Processing & 

Management, 48(4), 671-679. doi:10.1016/j.ipm.2011.09.001 

Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of 

preferential attachment in the evolution of research collaboration networks. 

Journal of Informetrics, 6(3), 403-412. doi:10.1016/j.joi.2012.01.002 

Abelson, P. H. (1980). Scientific Communication. Science, 209(4452, Centennial Issue 

(Jul. 4, 1980), pp. 60-62), 60-62.  Retrieved from 

http://www.jstor.org/stable/1684837 

Albert, R., Hawoong, J., & Albert-László, B. (1999). Diameter of the World-Wide Web. 

Nature, 401, 130.  Retrieved from www.nature.com 

Anderson, J. E. (2010). THE GRAVITY MODEL. NBER WORKING PAPER SERIES.  

Retrieved from http://www.nber.org/papers/w16576 

Anselin, L. (1988). Spatial Econometrics: Methods and Models: Springer. 

Badinger, H., & Egger, P. (2011). Estimation of higher-order spatial autoregressive cross-

section models with heteroscedastic disturbances. Papers in Regional Science, 

90(1), 213-235. doi:10.1111/j.1435-5957.2010.00323.x 

Ballester, C., Antoni, C.-A., & Yves, Z. (2006). Who's Who in Networks. Wanted: The 

Key Player. Econometrica, 74(5), 1403-1417.  Retrieved from 

http://www.jstor.org/stable/3805930 

Banerjee, A., Chandrasekhar, A. G., Duflo, E., & Jackson, M. O. (2013). The diffusion of 

microfinance. Science, 341(6144), 1236498. doi:10.1126/science.1236498

http://www.jstor.org/stable/1684837
http://www.nature.com/
http://www.nber.org/papers/w16576
http://www.jstor.org/stable/3805930


153 

 

 

 

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. 

Science, 286(5439), 509-512.  Retrieved from 

http://www.jstor.org/stable/2899318?seq=1&cid=pdf-

reference#references_tab_contents 

Barzilai-Nahon, K. (2009). Gatekeeping: A critical review. Annual Review of Information 

Science and Technology, 43, 1-79. doi:10.1002/aris.2009.1440430117 

Bass, F. M. (1969). A new product growth for model consumer durables. Management 

Science, 15(5), 215-227.  

Berger, N., Borgs, C., Chayes, J. T., & Saberi, A. (2005, 2005). On the Spread of Viruses 

on the Internet. Paper presented at the Proceedings of the sixteenth annual ACM-

SIAM symposium on Discrete algorithms, Vancouver, British Columbia. 

Borgatti, S. P., & Halgin, D. S. (2011). On Network Theory. Organization Science, 22(5), 

1168-1181. doi:10.1287/orsc.1100.0641 

Brass, K. (2002). Pushing e-learning. Sales and Marketing Management, 154(3), 56.  

Brunswicker, S., Matei, S., Zentner, A., Zentner, M., L., & Klimeck, G. (2015). Creating 

Impact in the Digital Space: Digital Practice Dependency in Developer 

Communities of Digital Innovation in Science. Working Paper. Research Center 

for Open Digital Innovation. West-Lafayette. Purdue University.  

Bulte, C. V. d., & Lilien, G. L. (2001). Medical Innovation Revisited: Social Contagion 

versus Marketing Efforts. American Journal of Sociology, 106(5), 1409-1435.  

Retrieved from http://www.jstor.org/stable/10.1086/320819 . 

Burt, R. S. (1992). Structural Holes: The Social Structure of Competition.: Harvard 

University Press, Cambridge, MA. 

Burt, R. S. (2004). Structural Holes and Good Ideas. American Journal of Sociology, 

110(2), 349-399.  Retrieved from http://www.jstor.org/stable/10.1086/421787 

Cambridge, U. o. (2010). Computer Laboratory: What is Subversion?   Retrieved from 

https://www.cl.cam.ac.uk/local/web/subversion/introduction/subversionguide.htm

l 

Case, A. C., & Rosen, H. S. (1993). Budget spillovers and fiscal policy interdependence: 

Evidence from the states. Journal of Public Economics, 52, 285-307.  

http://www.jstor.org/stable/2899318?seq=1&cid=pdf-reference#references_tab_contents
http://www.jstor.org/stable/2899318?seq=1&cid=pdf-reference#references_tab_contents
http://www.jstor.org/stable/10.1086/320819
http://www.jstor.org/stable/10.1086/421787
https://www.cl.cam.ac.uk/local/web/subversion/introduction/subversionguide.html
https://www.cl.cam.ac.uk/local/web/subversion/introduction/subversionguide.html


154 

 

 

 

Chandrasekhar, A., & Jackson, M. (2013). Tractable and consistent random graph 

models. Available at SSRN 2150428.  

Chatterjee, S., & Diaconis, P. (2013). Estimating and understanding exponential random 

graph models. The Annals of Statistics, 41(5), 2428-2461. doi:10.1214/13-

aos1155 

Coleman, J. S. (1998). Social Capital in the Creation of Human Capital. American 

Journal of Sociology, 94(Supplement: Organizations and Institutions: 

Sociological and Economic Approaches to the Analysis of Social Structure), S95-

S120.  Retrieved from http://www.jstor.org/stable/2780243 

Constant, D., Sproull, L., & Kiesler, S. (1996). The Kindness of Strangers: The 

Usefulness of Electronic Weak Ties for Technical Advice. Organization Science, 

7, 119-135.  

Cooper, C., & Frieze, A. (2003). A general model of web graphs. Random Struct. 

Algorithms, 22, 311-335.  

Cropanzano, R., & Mitchell, M. S. (2005). Social Exchange Theory: An Interdisciplinary 

Review. Journal of Management, 31(6), 874-900. 

doi:10.1177/0149206305279602 

Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2012). Free/Libre open-source 

software development. ACM Computing Surveys, 44(2), 1-35. 

doi:10.1145/2089125.2089127 

Daskovska, T., Simar, L., & Bellegem,S. (2010). Forecasting the Malmquist productivity 

index. Journal of Productivity Analysis, Springer, vol. 33(2), 97–107. 

Dasu, T., & Johnson, T. (2003). Exploratory Data Mining and Data Cleaning: Wiley. 

Delre, S. A., Jager, W., Bijmolt, T. H. A., & Janssen, M. A. (2007). Targeting and timing 

promotional activities: An agent-based model for the takeoff of new products. 

Journal of Business Research, 60(8), 826-835. doi:10.1016/j.jbusres.2007.02.002 

Dubin, R. A. (1998). Spatial Autocorrelation: A Primer. Journal of Housing Economics, 

7, 304-327.  

http://www.jstor.org/stable/2780243


155 

 

 

 

Eck, v. S. P., Wander Jager, & Leeflang, P. S. H. (2011). Opinion Leaders’ Role in 

Innovation Diffusion: A Simulation Study. Journal of Product Innovation 

Management, 28, 187-203.  

Ekeh, P. P. (1974). Social exchange theory: the two traditions: Harvard University Press. 

Elhorst, J. P., Lacombe, D. J., & Piras, G. (2012). On model specification and parameter 

space definitions in higher order spatial econometric models. Regional Science 

and Urban Economics, 42(1-2), 211-220. doi:10.1016/j.regsciurbeco.2011.09.003 

Erdos, P., & Renyi, A. (1959). On random graphs 1. Publicationes Mathematicae, 6, 290-

297.  

Faraj, S., & Johnson, S. L. (2011). Network Exchange Patterns in Online Communities. 

Organization Science, 22(6), 1464-1480. doi:10.1287/orsc.1100.0600 

Fibich, G., & Gibori, R. i. (2010). Aggregate Diffusion Dynamics in Agent-Based 

Models with a Spatial Structure. Operations Research, 58(5), 1450-1468. 

doi:10.1287/opre.1100.0818 

Firth, D. R., Lawrence, C., & Clouse, S. F. (2006). Predicting Internet-based online 

community size and time to peak membership using the bass model of new 

product growth. Interdisciplinary Journal of Information, Knowledge, and 

Management, 1(1), 1-12.  

Flynn, F. J. (2005). Identity Orientations and Forms of Social Exchange in Organizations. 

The Academy of Management Review, 30, 737-750. doi:10.2307/20159165 

Frank, O., & Strauss, D. (1986). Markov Graphs. Journal of the American Statistical 

Association, 81(395), 832-842.  Retrieved from 

http://links.jstor.org/sici?sici=0162-

1459%28198609%2981%3A395%3C832%3AMG%3E2.0.CO%3B2-C 

Friedkin, N. E. (1991). Theoretical Foundations for Centrality Measures. American 

Journal of Sociology, 96(6), 1478-1504. doi:10.2307/2781908 

Friedrich, S., & Mark, T. (1998). A Kolmogorov-type test for second-order stochastic 

dominance. Statistics & Probability Letters, 37, 183-193.  

http://links.jstor.org/sici?sici=0162-1459%28198609%2981%3A395%3C832%3AMG%3E2.0.CO%3B2-C
http://links.jstor.org/sici?sici=0162-1459%28198609%2981%3A395%3C832%3AMG%3E2.0.CO%3B2-C


156 

 

 

 

Fulk, J., Heino, R., Flanagin, A. J., Monge, P. R., & Bar, F. (2004). A Test of the 

Individual Action Model for Organizational Information Commons. Organization 

Science, 15, 569-585.  

Gabor, C., & Nepusz, T. (2006). The igraph software package for complex network 

research.  

Gawer, A., & Cusumano, M. A. (2014). Industry Platforms and Ecosystem Innovation. 

Journal of Product Innovation Management, 31(3), 417-433. 

doi:10.1111/jpim.12105 

Gold, A. (2007). Cyberinfrastructure, Data, and Libraries, Part 1. D-Lib Magazine, 

13(9/10).  

Gonzalez-Brambila, C. N., Veloso, F. M., & Krackhardt, D. (2013). The impact of 

network embeddedness on research output. Research Policy, 42(9), 1555-1567. 

doi:10.1016/j.respol.2013.07.008 

Granovetter, M. S. (1973). The Strength of Weak Ties. American Journal of Sociology, 

78(6), 1360-1380.  

Greene, W. H. (2003). Econometric analysis (Vol. 5): Prentice hall. 

Guo, Z. (2012). Stochastic Dominance and Its Applications in Portfolio Management.  

Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:352-242222 

Hansen, M. T. (1999). The Search-Transfer Problem: The Role of Weak Ties in Sharing 

Knowledge across organization Subunits. Administrative Science Quarterly, 

44(1), 82-111.  Retrieved from http://www.jstor.org/stable/2667032 

Hargadon, A., & Sutton, R. I. (1997). Technology Brokering and Innovation in a Product 

Development Firm. Administrative Science Quarterly, 42(4), 716-749.  Retrieved 

from http://www.jstor.org/stable/2393655 

Hargadon, A. B. (2002). BROKERING KNOWLEDGE: LINKING LEARNING AND 

INNOVATION. Research in Organizational Behavior, 24, 41-85.  

Holland, P. W., & Leinhardt, S. (1981). An Exponential Family of Probability 

Distributions for Directed Graphs. Journal of the American Statistical 

Association, 76(373), 33-50.  Retrieved from http://links.jstor.org/sici?sici=0162-

1459%28198103%2976%3A373%3C33%3AAEFOPD%3E2.0.CO%3B2-Q 

http://nbn-resolving.de/urn:nbn:de:bsz:352-242222
http://www.jstor.org/stable/2667032
http://www.jstor.org/stable/2393655
http://links.jstor.org/sici?sici=0162-1459%28198103%2976%3A373%3C33%3AAEFOPD%3E2.0.CO%3B2-Q
http://links.jstor.org/sici?sici=0162-1459%28198103%2976%3A373%3C33%3AAEFOPD%3E2.0.CO%3B2-Q


157 

 

 

 

Holtgrewe, U. (2004). Articulating the Speed(s) of the Internet: The Case of Open 

Source/Free Software. Time & Society, 13(1), 129-146. 

doi:10.1177/0961463x04040750 

Hoskin, T. Parametric and non-parametric: Demystifying the terms. Mayo Clinic 

CTSA BERD Resource. Retrieved from http://www.mayo.edu/mayo-edudocs/center-for-

translational-science-activities-documents/berd-5-6.pdf. 

Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of Fit of Social 

Network Models. Journal of the American Statistical Association, 103(481), 248-

258. doi:10.1198/016214507000000446 

Jackson, M. O. (2008). Social and Economic Networks: Princeton University Press. 

Jackson, M. O., & Rogers, B. W. (2007a). Meeting Strangers and Friends of Friends: 

How Random Are Social Networks? American Economic Review, 97(3), 890-915.  

Retrieved from http://www.jstor.org/stable/30035025 

Jackson, M. O., & Rogers, B. W. (2007b). Relating Network Structure to Diffusion 

Properties through Stochastic Dominance. The B.E. Journal of Theoretical 

Economics, 7(1).  

Jain, D. C., & Rao, R. C. (1990). Effect of Price on the Demand for Durables: Modeling, 

Estimation, and Findings. Journal of Business & Economic Statistics, 8(2), 163-

170. doi:10.2307/1391978 

James, S. C. (1988). Social Capital in the Creation of Human Capital. American Journal 

of Sociology, 94.  Retrieved from http://www.jstor.org/stable/2780243 

Jarvenpaa, S. L., & Leidner, D. E. (1999). Communication and Trust in Global Virtual 

Teams Organizations. Organization Science, 10(6), 791-815.  Retrieved from 

http://www.jstor.org/stable/2640242 

Jin, L., Chen, Y., Wang, T., Hui, P., & Vasilakos, A. V. (2013). Understanding User 

Behavior in Online Social Networks: A Survey. IEEE Communications 

Magazine.  

Kanawattanachai, P., & Yoo, Y. (2007). The Impact of Knowledge Coordination on 

Virtual Team Performance over Time. MIS Quarterly, 31(4), 783-808.  

http://www.mayo.edu/mayo-edudocs/center-for-translational-science-activities-documents/berd-5-6.pdf
http://www.mayo.edu/mayo-edudocs/center-for-translational-science-activities-documents/berd-5-6.pdf
http://www.jstor.org/stable/30035025
http://www.jstor.org/stable/2780243
http://www.jstor.org/stable/2640242


158 

 

 

 

Kankanhalli, A., Tan, B. C. Y., & Wei, K.-K. (2005). Contributing Knowledge to 

Electronic Knowledge Repositories: An Empirical Investigation. MIS Quarterly, 

29(1), 113-143.  Retrieved from http://www.jstor.org/stable/25148670 

Kilduff, M., Tsai, W., & Hanke, R. (2006). A Paradigm Too Far? A Dynamic Stability 

Reconsideration of the Social Network Research Program. The Academy of 

Management Review, 31, 1031-1048. doi:10.2307/20159264 

Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, 

H. A. (2010). Identification of influential spreaders in complex networks. Nature 

Physics, 6(11), 888-893. doi:10.1038/nphys1746 

Klimeck, G., McLennan, M., Brophy, S. B., Adams-III, G. B., & Lundstrom, M. S. 

(2008). nanoHUB.org: Advancing Education and Research in Nanotechnology. 

Computing in Science& Engineering (IEEE Computer Society), 10(5).  Retrieved 

from doi:10.1109/MCSE.2008.120 

Kling, R., McKim, G., & King, A. (2003). A Bit More to It: Scholarly Communication 

Forums as Socio-Technical Interaction Networks. Journal of the American 

Society for Information Science and Technology, 54(1), 47-67.  

Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., & Upfal, E. 

(2000, 2000). Stochastic models for the web graph. 

Laciana, C. E., Rovere, S. L., & Podestá, G. P. (2013). Exploring associations between 

micro-level models of innovation diffusion and emerging macro-level adoption 

patterns. Physica A: Statistical Mechanics and its Applications, 392(8), 1873-

1884. doi:10.1016/j.physa.2012.12.023 

Lawrence, K. D., & Lawrton, W. H. (1981). Applications of Diffusion Models: Some 

Emperical Results. In Y. Wind, V. Mahajan, & R. Cardozo (Eds.), New Product 

Forecasting (pp. 529-541). Lexington, MA: Lexington Books. 

Lee, L.-f., & Liu, X. (2009). Efficient Gmm Estimation of High Order Spatial 

Autoregressive Models with Autoregressive Disturbances. Econometric Theory, 

26(01), 187. doi:10.1017/s0266466609090653 

Leenders, R. T. A. J. (2002). Modeling social influence through network autocorrelation: 

constructing the weight matrix. Social Networks, 24, 21-47.  

http://www.jstor.org/stable/25148670


159 

 

 

 

LeSage, J., & Pace, K. R. (2009). Introduction to Spatial Econometrics: CRC Press. 

LeSage, J. P., & Pace, R. K. (2011). Pitfalls in Higher Order Model Extensions of Basic 

Spatial Regression Methodology. The Review of Regional Studies, 41(1), 13-26.  

Levine, S. S., & Prietula, J. M. (2015). Open Collaboration for Innovation: Principles and 

Performance. Organization Science, Forthcoming.  

Li, E. Y., Liao, C. H., & Yen, H. R. (2013). Co-authorship networks and research impact: 

A social capital perspective. Research Policy, 42(9), 1515-1530. 

doi:10.1016/j.respol.2013.06.012 

Lusher, D., Koskinen, J., & Robbins, G. (2013). Exponential random graph models for 

social networks : theories, methods, and applications: Cambridge New York : 

Cambridge University Press. 

Macke, J., & Dilly, E. K. (2010). Social Capital Dimensions in Collaborative Networks: 

The Role Of Linking Social Capital. International Journal of Social Inquiry, 3(2), 

121-136.  

Mahajan, V., Muller, E., & Bass, F. M. (1990). New Product Diffusion Models in 

Marketing: A Review and Directions for Research. Journal of Marketing, 54(1), 

1-26.  Retrieved from http://www.jstor.org/stable/1252170 

Marsaglia, G., Tsang, W. W., & Wang, J. (2003). Evaluating Kolmogorov\'s Distribution. 

2003, 8(18), 4. doi:10.18637/jss.v008.i18 

Matei, S. A. (2014).A social network analysis and entropy approach to defining and 

measuring the impact of social roles on social media and in science collaboration 

platforms – a case study with nanoHUB.org (Exploratory Social Science Grant, 

Office of the Vice President for Research, Purdue University, PI: Sorin Adam 

Matei, http://kredible.net/in/?p=647) 

 

 

 

 

 

http://www.jstor.org/stable/1252170
http://kredible.net/in/?p=647


160 

 

 

 

Matei, S. A., Bertino, E., Zhu, M., Liu, C., Si, L., & Britt, B. (2015). A Research Agenda 

for the Study of Entropic Social Structural Evolution, Functional Roles, 

Adhocratic Leadership Styles, and Credibility in Online Organizations and 

Knowledge Markets. In E. Bertino & S. A. Matei (Eds.), Roles, Trust, and 

Reputation in Social Media Knowledge Markets (pp. 3–33). Cham: Springer 

International Publishing. Retrieved from 

http://springer.libdl.ir/chapter/10.1007/978-3-319-05467-4_1 

McFadyen, M. A., & Albert, A. C. J. (2004). Social Capital and Knowledge Creation: 

Diminishing Returns of the Number and Strength of Exchange. The Academy of 

Management Journal, 47(5), 735-746.  Retrieved from 

http://www.jstor.org/stable/20159615 

McLennan, M. (2012). Rappture Bootcamp: Building and Deploying Tools. 

McLure, W. M., & Faraj, S. (2005). Why Should I Share? Examining Social Capital and 

Knowledge Contribution in Electronic Networks of Practice. MIS Quarterly, 

29(1), 35-57.  Retrieved from http://www.jstor.org/stable/25148667 

Meade, N., & Islam, T. (2006). Modelling and forecasting the diffusion of innovation – A 

25-year review. International Journal of Forecasting, 22(3), 519-545. 

doi:10.1016/j.ijforecast.2006.01.005 

Monge, P. R., & Contractor, N. S. (2003). Theories of communication networks: Oxford 

University Press. 

Moody, J., & White, T. D. (2003). Structural Cohesion and Embeddedness: A 

Hierarchical Concept of Social Groups. American Sociological Review, 68(1), 

103-127.  Retrieved from http://www.jstor.org/stable/3088904 

nanoHUB. (2014). About US.   Retrieved from https://nanohub.org/about 

Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E, 67(2). 

doi:10.1103/PhysRevE.67.026126 

O'Malley, A. J., & Marsden, P. V. (2008). The Analysis of Social Networks. Health Serv 

Outcomes Res Methodol, 8(4), 222-269. doi:10.1007/s10742-008-0041-z 

http://springer.libdl.ir/chapter/10.1007/978-3-319-05467-4_1
http://www.jstor.org/stable/20159615
http://www.jstor.org/stable/25148667
http://www.jstor.org/stable/3088904
https://nanohub.org/about


161 

 

 

 

Obstfeld, D. (2005). Social Networks, the Tertius Iungens Orientation, and Involvement 

in Innovation. Administrative Science Quarterly, 50(1), 100-130.  Retrieved from 

http://www.jstor.org/stable/30037177 

Orlikowski, W. J. (2000). Using Technology and Constituting Structures: A Practice 

Lens for Studying Technology in Organizations. Organization Science, 11(4), 

404-428.  Retrieved from http://www.jstor.org/stable/2640412 

Páez, A., Scott, D. M., & Volz, E. (2008). Weight matrices for social influence analysis: 

An investigation of measurement errors and their effect on model identification 

and estimation quality. Social Networks, 30(4), 309-317. 

doi:10.1016/j.socnet.2008.05.001 

Peddibhotla, N. B., & Subramani, M. R. (2007). Contributing to Public Document 

Repositories: A Critical Mass Theory Perspective. Organization Studies, 28(3), 

327-346. doi:10.1177/0170840607076002 

Pennock, D. M., Flake, G. W., Lawrence, S., Glover, E. J., & Giles, C. L. (2002). 

Winners don't take all: Characterizing the competition for links on the web. 

Proceedings of the National Academy of Sciences, 99(8), 5207-5211. 

doi:10.1073/pnas.032085699 

Peres, R., Muller, E., & Mahajan, V. (2010). Innovation diffusion and new product 

growth models: A critical review and research directions. International Journal of 

Research in Marketing, 27(2), 91-106. doi:10.1016/j.ijresmar.2009.12.012 

Recker, J. (2013). Scientific Research in Information Systems: Springer Heidelberg New 

York Dordrecht London. 

Ringquist, E. (2013). Meta-Analysis for Public Management and Policy: Wiley. 

Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential 

random graph (p*) models for social networks. Social Networks, 29(2), 173-191. 

doi:10.1016/j.socnet.2006.08.002 

Rogers, E. M. (1983). Diffusion of Innovations. University of Illinois at Urbana-

Champaign's Academy for Entrepreneurial Leadership Historical Research 

Reference in Entrepreneurship. 

http://www.jstor.org/stable/30037177
http://www.jstor.org/stable/2640412


162 

 

 

 

Rossi, M. A. (2006). 2 - Decoding the Free/Open Source Software Puzzle: A Survey of 

Theoretical and Empirical Contributions. In J. B. J. H. Schröder (Ed.), The 

Economics of Open Source Software Development (pp. 15-55). Amsterdam: 

Elsevier. 

Rullani, F., & Haefliger, S. (2013). The periphery on stage: The intra-organizational 

dynamics in online communities of creation. Research Policy, 42(4), 941-953. 

doi:10.1016/j.respol.2012.10.008 

Scacchi, W. (2007). Free/Open Source Software Development: Recent Research Results 

and Methods. 69, 243-295. doi:10.1016/s0065-2458(06)69005-0 

Schmittlein, D. C., & Mahajan, V. (1982). Maximum Likelihood Estimation for an 

Innovation Diffusion Model of New Product Acceptance. Marketing Science, 

1(1), 57-78. doi:doi:10.1287/mksc.1.1.57 

Schroeder, R., Jennifer, A. d., & Jenny, F. (2007). e-Research Infrastructures and 

Scientific Communication. Paper presented at the IATUL Conferences. 

Schumpeter, J. A. (1942). Capitalism, Socialism, and Democracy. University of Illinois 

at Urbana-Champaign's  

Shanahan, C. J., Hooker, N. H., & Sporleder, T. L. (2008). The diffusion of organic food 

products: toward a theory of adoption. Agribusiness, 24(3), 369-387. 

doi:10.1002/agr.20164 

Singh, J. (2007). External Collaboration, Social Networks and Knowledge Creation: 

Evidence from Scientific Publications. Paper presented at the DRUID Summer 

Conference 2007, Copenhagen, CBS, Denmark.  

Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). NEW 

SPECIFICATIONS FOR EXPONENTIAL RANDOM GRAPH MODELS. 

Sociological Methodology, 36, 99-153. doi:10.1111/j.1467-9531.2006.00176.x 

Søndergaard, F. T., Andersen, J., & Hjørland, B. (2003). Documents and the 

communication of scientific and scholarly information. Journal of 

Documentation, 59(3), 278-320. doi:10.1108/00220410310472509 



163 

 

 

 

Srinivasan, V., & Mason, C. H. (1986). Nonlinear Least Squares Estimation of New 

Product Diffusion Models. Marketing Science, 5(2), 169-178.  Retrieved from 

http://www.jstor.org.ezproxy.lib.purdue.edu/stable/183671 

Stanley, T. D., & Doucouliagos, H. (2012). Meta-regression Analysis in Economics and 

Business: Routledge. 

Stewart, C. A., Simms, S., Plale, B., Link, M., Hancock, D. Y., & Fox, G. C. (2010). 

What is Cyberinfrastructure? Paper presented at the 38th Annual Fall Conference 

on SIGUCCS, New York. 

Susarla, A., Oh, J.-H., & Tan, Y. (2012). Social Networks and the Diffusion of User-

Generated Content: Evidence from YouTube. Information Systems Research, 

23(1), 23-41. doi:10.1287/isre.1100.0339 

Tiefelsdorf, M. (2000). Modelling Spatial Processes: The Identification and Analysis of 

Spatial Relationships in Regression Residuals by Means of Moran’s I. 

Uzzi, B. (1997). Social Structure and Competition in Interfirm Networks: The Paradox of 

Embeddedness. Administrative Science Quarterly, 42(1), 35-67.  Retrieved from 

http://www.jstor.org/stable/2393808 

Valente, T. W., Kathryn, C., Lakon, C., & Costenbader, E. (2008). How correlated are 

network centrality measures? Connect (Tor), 28(1), 16-26.  

Van den Bulte, C., & Stremersch, S. (2004). Social Contagion and Income Heterogeneity 

in New Product Diffusion: A Meta-Analytic Test. Marketing Science, 23(4), 530-

544. doi:10.1287/mksc.1040.0054 

Vass, B. (2007, 2007). Migrating to open source: Have no fear. 

Vázquez, A. (2003). Growing network with local rules: Preferential attachment, 

clustering hierarchy, and degree correlations. Physical Review E, 67(5). 

doi:10.1103/PhysRevE.67.056104 

Wasko, M. M., & Faraj, S. (2000). "It is what one does": why people participate and help 

others in electronic communities of practice. Journal of Strategic Information 

Systems, 9, 155-173.  

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications 

(Vol. 8): Cambridge university press. 

http://www.jstor.org.ezproxy.lib.purdue.edu/stable/183671
http://www.jstor.org/stable/2393808


164 

 

 

 

Wasserman, S., & Pattison, P. (1996). Logit Models and Logistic Regressions for Social 

Networks: I. An Introducton to Markov Graphs and p*. Psychometrika, 61(3), 

401-425.  

Watts, D. J. (1999). Small worlds: the dynamics of networks between order and 

randomness: Princeton university press. 

Winfree, R., Dushoff, J., Crone, E. E., Schultz, C. B., Budny, R. V., Williams, N. M., & 

Kremen, C. (2005). Testing simple indices of habitat proximity. The American 

Naturalist, 165(6), 707-717.  

Wooldridge, J. (2008). Introductory Econometrics: A Modern Approach: Cengage 

Learning. 

Wright, M., Upritchard, C., & Lewis, T. (1997). A Validation of the Bass New Product 

Diffusion Model in New Zealand. Marketing Bulletin, 8(2), 15-29.  Retrieved 

from http://marketing-bulletin.massey.ac.nz 

Yoo, Y., Boland, R. J., Lyytinen, K., & Majchrzak, A. (2012). Organizing for Innovation 

in the Digitized World. Organization Science, 23(5), 1398-1408. 

doi:10.1287/orsc.1120.0771 

 

http://marketing-bulletin.massey.ac.nz/


 

 

 

 

 

 

 

 

 

 

 

APPENDICES



165 

 

 

 

Appendix A Histograms for Endogenous and Predictor Variables 
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Appendix B Moran’s I Scatter Plots for the Endogenous and Predictor Variables 
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Appendix C Degree Distributions of the 7-Time Slices 
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Appendix D R-Codes 

Paper 1. R-Codes 

# Author. Philip Munyua.  

 

 

#Probit, Spatial Probit, Interaction Models and SDEM models  

#Outline 

# 1. Data mining (Data Extraction from SVN logs, Data Cleaning and Data Merging,) 

# 2. Statistical Analysis (Model Variables Extraction and Visualization, Cleaning and 

Model Analysis) 

 

## Data Mining 

#Betweeness Matching 

#set directory and read files 

rm(list=ls())  #Clear working directory 

#--load libraries 

library(spdep) 

library(Matrix) 

library(igraph) 

library(lmtest) 

library(sphet) 

library(AER) 

library(spatstat) 

library(spatialprobit) 

library(McSpatial) 

library(mfx)  

library(stats) 

library(Hmisc) 

library(utils) 

library(Zelig) 

 

# Set/Load  working directory 

setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop 

level _test spatial\\02 input data") 

 

##Generating Developers Weight Matrix using Gravity Model 

 

# load data into dataframe weight.dat 

weight.dat<-read.csv("crystal_viewer_metrics_DiD.csv") 

 

# List of unique tool developers in crystal_names 

# Steps to get unique values 1. Get all the unique values 2. Convert them to character 3. 

Add them to the vertex_attrib files 

crystal_names<-as.character( unique (weight.dat$username) )  

 

# Add the vertex names to the vertex_names vector which will be made a column in the 

vertex_attrib dataframe 

 

Names<-crystal_names 

  

# Getting all the vertices (minus) duplicates  

Names<-union(vertex_attrib$Names,Names) 

vertex_attrib<-data.frame(Names) 

 

# size of the adjacency matrix for crystal ( Just calculate this as we might need it 

later on) 

crystal_size<-length(crystal_names) 

 

# Number of revisions in total  

crystal_rev<-length(crystal[,1])   # could even think of using crystal_rev<-

max(crystal$rev) 

 

# Creating the contribution <crbn> column  to be changed as per Gravitational model 
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crbn<-vector(mode="numeric",length=crystal_rev) 

for(i in 1:crystal_rev) 

{ 

  crbn[i]<-max(weight.dat$add[i],weight.dat$del[i]) - 

0.5*(min(weight.dat$add[i],weight.dat$del[i])) + weight.dat$chrn[i]; # Gravity model 

formula numerator  

} 

 

# Add the contribution <crbn> column to the crystal.dat data frame 

weight.dat<-data.frame(weight.dat,crbn) 

 

# Creating weights using modified gravitational centrality and adding it to the 

edge_attributes files 

# IMPORTANT -- Looping is backwards 

temp_contrib<-0  

temp_weight<-0 

new_edge_attrib_row <-c("","",0) 

for(i in crystal_rev:2) 

{ 

  currval<-i-1 # value that needs to be passed to j 

  temp_contrib = weight.dat$crbn[i] 

  for(j in currval:1) 

  { 

    if(weight.dat$username[i]==weight.dat$username[j]) 

    {temp_contrib = temp_contrib+weight.dat$crbn[j];} 

     

    else 

    { 

      distance = weight.dat$rev[j]-weight.dat$rev[i]; 

      if ( length(edge_attrib$FROM[ edge_attrib$FROM 

==as.character(weight.dat$username[i]) & 

edge_attrib$TO==as.character(weight.dat$username[j])])==0 ) 

      {  # Create a new edge link between the two  

        new_edge_attrib_row = c(  as.character(weight.dat$username[i]) , 

as.character(weight.dat$username[j]) , as.numeric(temp_contrib/( distance^2 ))  ); 

        edge_attrib<-rbind(edge_attrib,new_edge_attrib_row);   next;                 

      }   

      else { 

        temp_weight <- as.numeric(edge_attrib$WEIGHT[edge_attrib$FROM == 

as.character(weight.dat$username[i]) & edge_attrib$TO== 

as.character(weight.dat$username[j] )  ]) +  (temp_contrib*tool$crbn[j])/( distance^2 ) ; 

        edge_attrib$WEIGHT[edge_attrib$FROM == as.character(weight.dat$username[i]) & 

edge_attrib$TO== as.character( weight.dat$username[j] )  ]<-temp_weight 

      } 

    } 

  } 

} 

 

#----------Generating Authors Edgelist 

aut1<-read.csv("aut1.csv") 

dev1<-read.csv("dev1.csv") 

aut2<-aut1[, c(3,9)] 

dev2<-dev1[, c(4,29)] 

write.csv(aut2, file="C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 

develop level _test spatial\\02 input data\\aut2.csv") 

write.csv(dev2, file="C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 

develop level _test spatial\\02 input data\\dev2.csv") 

 

#Matching Authors weighted Edgelist 

 

autedge<-read.csv("weightedEdgeList.csv") 

 

for(i in 1:dim(autedge)[1]){ 

   

  index2<-which(as.character(autedge$FROM[i])==as.character(aut2$auth_nano_uid)) 

  if (length(index2)>0){ 

    autedge[i,"FROM1"]<-aut2$username[index2] 

  }else{ 

    autedge[i,"FROM1"]<-NA 
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  } 

} 

 

for(i in 1:dim(autedge)[1]){ 

   

  index3<-which(as.character(autedge$TO[i])==as.character(aut2$auth_nano_uid)) 

  if (length(index3)>0){ 

    autedge[i,"TO1"]<-aut2$username[index3] 

  }else{ 

    autedge[i,"TO1"]<-NA 

  } 

} 

 

autedge1<-autedge[, c(2,7,3,8,4)] 

write.csv(autedge1, file="C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\autedge1.csv") 

 

devedge<-read.csv("edge_list_complete_log10.csv") 

autedge2<-read.csv("autedge1.csv") 

 

for(i in 1:dim(devedge)[1]) { 

    index4 <- which(as.character(devedge$FROM[i])==as.character(autedge2$FROM1)&  

                      as.character(devedge$TO[i])==as.character(autedge2$TO1)) 

          devedge[i,"WEIGHT1"]<-ifelse(length(index4)>0, autedge2$Wgt[index4],0) 

     } 

write.csv(devedge, file="C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\devedge.csv") 

 

 

##---------------------Calculating Developers (W1) and Authorship (W2) Weight Matrices 

 

#W1 

graph_list<-read.csv("edge_list_complete_log10.csv") ## read developers edgelist (the 

weight have been shifted by 1 and logged) 

graph_list$X<-NULL   #deleting empty 

mat<-as.matrix(graph_list[,1:2]) 

 

## Make an directed graph  

graph<-graph.edgelist(mat,directed=TRUE) 

E(graph)$weight<-graph_list[,3] 

gmat<-get.adjacency(graph,attr="weight") 

#plot(gmat, layout = layout.fruchterman.reingold, vertex.label.family = "sans", 

vertex.size = 477, vertex.label = "") 

adjmat<-as.matrix(gmat) 

 

for(i in 1:477) 

{ 

  adjmat2[i,i]= 1.0 

} 

W1<-as.matrix(adjmat) 

nb<-mat2listw(adjmat) 

## Row standardized weigth matrix:Row standardization creates proportional 

##weights in cases where features have an unequal number of neighbors 

nb1<-nb2listw(nb$neighbours, style="W")  

 

#W2 

graph_list2<-read.csv("devedge.csv") ## logged edge_list 

graph_list2$X.1<-NULL 

graph_list2$X<-NULL 

graph_list2$WEIGHT<-NULL 

graph_list2$WGT1<-NULL 

mat2<-as.matrix(graph_list2[,1:2]) 

 

## Make an directed graph  

graph2<-graph.edgelist(mat2,directed=TRUE) 

E(graph2)$weight<-graph_list2[,3] 

gmat2<-get.adjacency(graph2,attr="weight") 
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##-----------Generating Descriptive Statistics and Extracting degree centrality measures 

variables 

#--------------Assortivity 

V(graph2)$foo <- sample(1:3, replace=TRUE, vcount(graph2)) 

assort<-assortativity.nominal(graph2, types=V(graph2)$foo) 

assortivity<-as.data.frame(assort) # set the value as data frame 

 

#clusters  

#calculates the “maximal (weakly or strongly) connected components of a graph” 

isclus<-is.connected(graph2, mode=c("weak", "strong")) #decided whether the graph is 

weakly or strongly connected 

 

#Diameter 

#calculates the “length of the longest geodesic” 

getdiam<-get.diameter(graph2, directed=TRUE, unconnected=TRUE, weights=NULL) # retunrs a 

path with actual diameter  

getdiam2<-as.data.frame(getdiam) 

farnodes<-farthest.nodes(graph2, directed=TRUE, unconnected=TRUE, weights=NULL) # returns 

two vertex ids 

farnodes2<-as.data.frame(farnodes) 

 

#Dyad Census (p.85) 

dyads<-dyad.census(graph2) 

dyads2<-as.data.frame(dyads) 

 

#Graph density 

#Density “is the ratio of the number of edges (links) and the number of possible edges” 

density<-graph.density(graph2, loops=FALSE) 

density2<-as.data.frame(density) 

 

#Average nearest neighbor degree 

# “calculates  the average nearest neighbor degree of the given vertices and the same 

quantity in the function of the vertex degree” 

avneigh<-graph.knn(graph2, vids=V(graph2),weights=NULL) 

avneigh1<-as.data.frame(avneigh) 

 

#Reciprocity of graphs 

recipro<-reciprocity(graph2, ignore.loops=TRUE, mode=c("default", "ratio")) 

recipro2<-as.data.frame(recipro) 

 

#Shortest Path 

#Calculates the shortest paths between vertices 

shortpath<-shortest.paths(graph2, v=V(graph2),mode=c("all","out","in"), 

            weights=NULL, algorithm=c("automatic","unweighted","dijkstra","bellman-

ford","johnson")) 

getshortpath<-get.shortest.paths(graph2, 2, to=V(graph2), mode = c("out", "all", 

              "in"), weights = NULL, output=c("vpath", "epath", "both"), predecessors = 

FALSE, inbound.edges = FALSE) 

getallshortpath<-get.all.shortest.paths(graph2, 2, to = V(graph2), mode = c("out", 

                                  "all", "in"), weights=NULL) 

avshortpath<-average.path.length(graph2, directed=TRUE, unconnected=TRUE) 

avshortpath2<-as.data.frame(avshortpath) 

pathlenngthhist<-path.length.hist (graph2, directed = TRUE) 

 

#Transivity or clustering coefficient 

#A measure of the probability that the adjacency nodes of a node are connected (also 

known as clustering coefficient) 

clustcoeff<-transitivity(graph2, type=c("undirected", "global", "globalundirected", 

                                       "localundirected", "local", "average", 

"localaverage", 

                                       "localaverageundirected", "barrat", "weighted"), 

vids=NULL, 

                         weights=NULL, isolates=c("NaN", "zero")) 

clustcoeff2<-as.data.frame(clustcoeff) 

   

#Triad Census 

triads<-triad.census(graph2) 

tri2<-as.data.frame(triads) 
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#----Centrality measures (Bonacich, Betweeness, Closeness, Degree, Eigen Vector and 

Google Page Rank ) 

#-------------“Bonacich Power Centrality Scores of Network Positions” 

boncent<-bonpow(graph2, nodes=V(graph2), loops=FALSE, exponent=0.1, rescale=FALSE, 

tol=1e-7, sparse=TRUE) 

BC2<-as.data.frame(boncent) # Set the value as data frame 

 

# Betweeness Centrality  

betcent<-betweenness(graph2, v=V(graph2), directed=TRUE, weights=NA, nobigint=TRUE, 

normalized=FALSE) # calculates nodes betweenness centrality 

betcent.est<-edge.betweenness(graph2, vids=V(graph2), directed=TRUE, cutoff, weights=NA, 

nobigint=TRUE) # calculates nodes betweenness centrality with cuttoff paths 

BeC2<-as.data.frame(betcent)  # Set the value as data frame 

 

#Closeness Centrality  

clocent<-closeness(graph2, vids=V(graph2), mode=c("out", "in", "all","total"), 

weights=NULL, normalized=FALSE) 

CC2<-as.data.frame(clocent)  # Set the value as data frame 

 

#Degree Centrality 

deg<-degree(graph2, v=V(graph2), 

mode=c("all","out","in","total"),loops=TRUE,normalized=FALSE) 

dC2<-as.data.frame(deg) 

 

#Eigen Vector Centrality 

evcent<-evcent(graph2, directed=FALSE, scale=TRUE,weights=NULL, 

options=igraph.arpack.default) 

evcent2<-as.data.frame(evcent[1]) 

 

#google Page Rank 

#Calculating google page rank 

googpr<-page.rank(graph2, algo=c("prpack","arpack","power"),vids=V(graph2), 

directed=TRUE, damping=0.85, personalized=NULL, weights=NULL, options=NULL) 

googpr.old<-page.rank.old(graph2, vids=V(graph2), directed=TRUE, niter=1000, eps=0.001, 

damping=0.85, old=FALSE) 

googpr.old2<-as.data.frame(googpr.old) 

 

#compling vector of new variables 

object2<-data.frame(BC2,BeC2,CC2, dC2,evcent2, dcomp2, googpr.old2) 

file_cc<-file("C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 

develop level _test spatial\\02 input data\\centrality0130W2.csv","w") 

write.csv(object2, file_cc) 

close(file_cc) 

 

#Merging data sets 

object3<-read.csv("centrality0130W2.csv",header=TRUE) 

colnames(object3)[1] <- "Dev_Name" #Renaming a column 

class(object3) 

newdev2<-merge(dev, object3, by="Dev_Name") #Merging developer network with the new 

variables by the common variable "Dev_Name" 

newdev2$X<-NULL 

class(newdev2) 

 

file_dev2<-file("C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 

develop level _test spatial\\02 input data\\dev_attrib_ver0130W2.csv","w") 

write.csv(newdev2, file_dev2) 

close(file_dev2) 

 

#-------------Models 

 

##SDEM with Plots 

### Converting from Matrix to ListW object for spatial regression ###  

 

## set the working directory to Nanohub 

rm(list=ls()) 

setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop 

level _test spatial\\02 input data") 

 

library(spdep) 
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library(Matrix) 

library(igraph) 

library(lmtest) 

library(sphet) 

library(AER) 

library(spatstat) 

library(spatialprobit) 

library(McSpatial) 

library(mfx)  

library(stats) 

library(Hmisc) 

library(utils) 

library(Zelig) 

library(lme4) 

library(foreign) 

library(nlme) 

library(matrixcalc) 

 

#---LOAD DEVELOPER ATTRIBUTES VARIABLES TABLE IN DEV DATA FRAME 

dev<-read.csv("dev_attrib_ver0130w1w2.csv",header=TRUE) 

 

##Converting data to log after adding (+1) 

dev$citations=log(dev$citations+1) 

class(dev$citations) 

dev$tenure=log(dev$tenure+1) 

 

 

#dev$dummy_type=log(dev$dummy_type+1) 

#Data extraction  for regressions 

data<-as.matrix(dev) 

#DV  

y=as.numeric(subset(data,select=c(citations))) 

 

#IVs 

x01=rep(c(1), 477) 

x02=as.numeric(subset(data,select=c(tenure))) 

x03=as.numeric(subset(data,select=c(boncent))) 

x04=as.numeric(subset(data,select=c(betcent))) 

x05=as.numeric(subset(data, select=c(clocent))) 

x06=as.numeric(subset(data, select=c(dummy_type))) 

x07=as.numeric(subset(data, select=c(deg))) 

x09=as.numeric(subset(data, select=c(vector))) 

x10=as.numeric(subset(data, select=c(comp))) 

x11=as.numeric(subset(data, select=c(googpr.old))) 

xx03=as.numeric(subset(data,select=c(boncent2))) 

xx04=as.numeric(subset(data,select=c(betcent2))) 

xx05=as.numeric(subset(data, select=c(clocent2))) 

xx07=as.numeric(subset(data, select=c(deg2))) 

xx09=as.numeric(subset(data, select=c(vector2))) 

xx10=as.numeric(subset(data, select=c(comp2))) 

xx11=as.numeric(subset(data, select=c(googpr.old2))) 

y=as.matrix(y) 

 

#Histograms plots 

attach(mtcars) 

par(mfrow=c(2,2)) 

hist(y, xlab="Citations") 

hist(x02, xlab="Tenure") 

hist(x03, xlab="Bonacich Centrality") 

hist(x04, xlab="Betweeness Centrality") 

attach(mtcars) 

par(mfrow=c(2,2)) 

hist(x05, xlab="Closeness centrality") 

hist(x07, xlab="degree centrality") 

hist(x09, xlab="Eigen vector Centrality") 

hist(x10, xlab="Components") 

#POwerlaw tests 

#Fitting Power Law  

#fitting a power-law distribution 
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powerlawfit.y<-power.law.fit(y, xmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlaw.y<-as.data.frame(powerlawfit.y) 

powerlawfit.3<-power.law.fit(x03, xmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlaw.3<-as.data.frame(powerlawfit.3) 

powerlawfit.4<-power.law.fit(x04, xmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlaw.4<-as.data.frame(powerlawfit.4) 

powerlawfit.5<-power.law.fit(x05, xmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlaw.5<-as.data.frame(powerlawfit.5) 

powerlawfit.7<-power.law.fit(x07, xmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlaw.7<-as.data.frame(powerlawfit.7) 

powerlawfit.9<-power.law.fit(x09, xmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlaw.9<-as.data.frame(powerlawfit.9) 

powerlawfit.10<-power.law.fit(x10, xmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlaw.10<-as.data.frame(powerlawfit.10) 

 

##Correlation 

Xy=cbind(y, x02, x03, x04, x05, x06, x07, x09, x10, x11, xx03, xx04, xx05, xx07, xx09, 

xx10, xx11) 

corr<-rcorr(as.matrix(Xy)) 

write.table(corr, file="C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\corr.txt", sep="\t") 

#Summary Statistics 

summary(Xy) 

## Moran Tests under randomisation and normality  

moran.test(y,nb1) # row standardized 

moran.test(y,nb1, randomisation=FALSE) 

moran.test(x02,nb1) # row standardized 

moran.test(x02,nb1, randomisation=FALSE) 

moran.test(x03,nb1) # row standardized 

moran.test(x03,nb1, randomisation=FALSE) 

moran.test(x04,nb1) # row standardized 

moran.test(x04,nb1, randomisation=FALSE) 

moran.test(x05,nb1) # row standardized 

moran.test(x05,nb1, randomisation=FALSE) 

moran.test(x07,nb1) # row standardized 

moran.test(x07,nb1, randomisation=FALSE) 

moran.test(x09,nb1) # row standardized 

moran.test(x09,nb1, randomisation=FALSE) 

moran.test(x10,nb1) # row standardized 

moran.test(x10,nb1, randomisation=FALSE) 

moran.test(x11,nb1) # row standardized 

moran.test(x11,nb1, randomisation=FALSE) 

moran.test(xx03,nb1) # row standardized 

moran.test(xx03,nb1, randomisation=FALSE) 

moran.test(xx04,nb1) # row standardized 

moran.test(xx04,nb1, randomisation=FALSE) 

moran.test(xx05,nb1) # row standardized 

moran.test(xx05,nb1, randomisation=FALSE) 

moran.test(xx07,nb1) # row standardized 

moran.test(xx07,nb1, randomisation=FALSE) 

moran.test(xx09,nb1) # row standardized 

moran.test(xx09,nb1, randomisation=FALSE) 

moran.test(xx10,nb1) # row standardized 

moran.test(xx10,nb1, randomisation=FALSE) 

moran.test(xx11,nb1) # row standardized 

moran.test(xx11,nb1, randomisation=FALSE) 

 

 

##Moran Plots for the depedent and indepedent variable 

 

# 4 figures arranged in 2 rows and 2 columns 

attach(mtcars) 
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par(mfrow=c(2,2)) 

moran.plot(dev$citations,nb1) 

moran.plot(dev$tenure,nb1) 

moran.plot(log(dev$betcent2+1),nb1) 

moran.plot(log(dev$deg2+1),nb1) 

# 4 figures arranged in 2 rows and 2 columns 

attach(mtcars) 

par(mfrow=c(2,2)) 

moran.plot(dev$boncent2,nb1) 

moran.plot(dev$clocent2,nb1) 

moran.plot(dev$vector2,nb1) 

moran.plot(dev$googpr.old2,nb1) 

 

##Getting logs and power functions 

x04<-log(1+x04)  #between centrality 

x05<-100000*x05  # closeness centrality (Justification for amplification) 

x07<-log(1+x07) #degree centrality 

x11<-100*x11   #google.page rank 

ln_xx04<-ln(xx04+1) # betcent2  

xx09    vector2  

 

X=cbind(x02, x03, x04, x05, x07, x09, x10, x11, xx03, xx04, xx05, xx07, xx09, xx10, xx11) 

class(X) 

 

#Generating new variables with W1 and W2 

W1X<-W1%*%X 

W2X<-W2%*%X 

 

#Extracting variables 

x02w1<-as.data.frame(W1X[,1]) 

x03w1<-as.data.frame(W1X[,2]) 

x04w1<-as.data.frame(W1X[,3]) 

x05w1<-as.data.frame(W1X[,4]) 

x07w1<-as.data.frame(W1X[,5]) 

x09w1<-as.data.frame(W1X[,6]) 

x10w1<-as.data.frame(W1X[,7]) 

x11w1<-as.data.frame(W1X[,8]) 

 

x02w2<-as.data.frame(W2X[,1]) 

x03w2<-as.data.frame(W2X[,9]) 

x04w2<-as.data.frame(W2X[,10]) 

x05w2<-as.data.frame(W2X[,11]) 

x07w2<-as.data.frame(W2X[,12]) 

x09w2<-as.data.frame(W2X[,13]) 

x10w2<-as.data.frame(W2X[,14]) 

x11w2<-as.data.frame(W2X[,15]) 

 

#Transformations 

 

#x03w1  local1 boncent  normal 

x07w1<-log(x07w1)# degree centrality transformation for power law 

#x02w2  local2 tenure   normal 

#x03w2  local 2 boncent normal 

#x04w2  local 2 betcent power law 

#x05w2  local2 clocent  normal 

#x07w2  local 2 degree  powerlaw 

#x10w2  local 2 component   normal 

#x11w2  local 2 googlepage rank discard  

 

#x02w2  local2 tenure   normal   

#x03w2  local 2 boncent normal   

x04w2<-log(x04w2+1) 

#x05w2  local2 clocent  normal   

     

 

 

##Generating categories in citations and IV that have power law (generate dummy variables 

based on their distributions) 

y1 <- ifelse(y>1, c(1), c(0))  
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x044<-ifelse(x04>2, c(1),c(0)) 

xx044<-ifelse(xx04>1, c(1),c(0)) 

x055<-ifelse(x05>4, c(1),c(0)) 

x066<-ifelse(x06>2, c(1),c(0)) 

x099<-ifelse(x09>0.1, c(1),c(0)) 

x011<-ifelse(x11>0.5, c(1),c(0)) 

x07w11<-log(x07w1) 

x04w22<-ifelse(x04w2>1, c(1),c(0)) 

x07w22<-log(x07w2) 

 

#Binding data into different Models 

 

Xm<-cbind(x02, x044, x055, x07, x099, x10, xx044, xx09) 

Xmm<-cbind(x02, x044, x055, x07, x099, x10) 

Xw1<-cbind(x02w1, x03w1, x04w1, x05w1, x07w11, x09w1, x10w1, x11w1) 

Xw11<-cbind(x03w1, x07w11) 

Xw2<-cbind(x02w2, x03w2, x04w22, x05w2, x07w22, x09w2, x10w2, x11w2) 

Xw22<-cbind(x02w2, x03w2, x04w22, x10w2) 

Xc<-cbind(Xm,Xw1,Xw2) 

Xcc<-cbind(Xmm,Xw11,Xw22) 

Xcc1<-cbind(Xmm, Xw11) 

Xc12<-cbind(Xw1, Xw2) 

Xc12a<-cbind(Xw11,Xw22) 

#get the rank of a matrix 

rank<-rankMatrix(Xc, tol = NULL, method = c("tolNorm2", "qr.R", "qrLINPACK", "qr", 

                                             "useGrad", "maybeGrad"),sval = svd(Xc, 0, 

0)$d, warn.t = TRUE)  # 3 

rank1<-as.data.frame(rank) 

rank1 

corr<-rcorr(as.matrix(Xc)) 

corr 

rank2<-rankMatrix(Xcc, tol = NULL, method = c("tolNorm2", "qr.R", "qrLINPACK", "qr", 

                                             "useGrad", "maybeGrad"),sval = svd(Xcc, 0, 

0)$d, warn.t = TRUE)  # 3 

rank3<-as.data.frame(rank2) 

rank3 

corr2<-rcorr(as.matrix(Xcc)) 

corr2 

# 

#Write variables in CSV file 

write.csv(Xc, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\SEM.csv") 

write.csv(Xcc, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\SEM1.csv") 

 

#---Different Models as Matrix 

 

Xc=as.matrix(Xc) 

Xcc=as.matrix(Xcc) 

Xc12=as.matrix(Xc12) 

Xc12a=as.matrix(Xc12a) 

 

Xcc1=as.matrix(Xcc1) 

y1=as.matrix(y1) 

dat = data.frame(y1,Xc) 

dat1 = data.frame(y1,Xcc) 

dat2 = data.frame(y1,Xc12) 

dat3 = data.frame(y1,Xc12a) 

 

#*Probit_Centralities_for_both_weights 

probitw1w2<-glm(y1 ~Xc12) 

summary(probitw1w2) 

probitmfx(probitw1w2, data=dat1) 

 

#**SEM Model 

semprobit.fit1 <- semprobit(y1~Xc, gmat, ndraw=500, burn.in=100, thinning=1, prior=NULL) 

summary(semprobit.fit1) 

 

class(gmat) 
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semprobit.fit2 <- semprobit(y1~Xcc, gmat2, ndraw=1000, burn.in=100, thinning=1, 

prior=NULL) 

summary(semprobit.fit2) 

logLik(semprobit.fit2) 

AIC(semprobit.fit2) 

marginal.effects(semprobit.fit2) 

impacts.semprobit(semprobit.fit2) 

yfit<-fitted.values(semprobit.fit2) 

yfit<-as.matrix(yfit) 

res<-y1-yfit 

res1<-as.numeric(res) 

class(res) 

moran.test(res,nb1) 

moran.plot(res1,nb1) 

 

semprobit.fit.12a <- semprobit(y1~Xc12a, gmat2, ndraw=1000, burn.in=100, thinning=1, 

prior=NULL) 

summary(semprobit.fit.12a) 

logLik(semprobit.fit.12a) 

AIC(semprobit.fit.12a) 

 

#marginal.effects(semprobit.fit2) 

semprobit.fit2a <- semprobit(y1~Xcc1, gmat2, ndraw=1000, burn.in=100, thinning=1, 

prior=NULL) 

summary(semprobit.fit2a) 

logLik(semprobit.fit2a) 

AIC(semprobit.fit2a) 

 

sem.probit3<-sem_probit_mcmc(y1, Xcc, gmat2, ndraw = 1000, burn.in = 100, thinning = 1,  

                             prior=list(a1=1, a2=1, c=rep(0, ncol(X)), 

T=diag(ncol(X))*1e12, 

                                        nu = 0, d0 = 0, lflag = 0),  

                             start = list(rho = 0.75, beta = rep(0, ncol(X)), sige = 1), 

                             m=10, showProgress=FALSE) 

summary(sem.probit3) 

 

#LR  

LR.test.stat.sem <- as.numeric(2*(logLik(semprobit.fit2) - logLik(semprobit.fit2a))) ##  

getting the LR tests 

print(LR.test.stat.sem)## display the LR tests 

pchisq(LR.test.stat.sem, 1, lower=F) ## getting the P-value 

 

##---------Interation Models 

 

 

#Generating interaction terms with X077 (Citation dummy) 

x703<-x077*x03 #Boncent and citation dummy 

x705<-x077*x055 #Betcent and citation dummy 

x706<-x077*x066 #clocent and citation dummy 

x708<-x077*x08 # degree and citation dummy 

x710<-x077*x100 # Eigenvector and citation dummy 

x712<-x077*x112 #googlepgrank and citation dummy 

 

 

# 

X=cbind(x01,x022,x03,x04,x055,x066,x077,x08,x09,x100, x11, x112, x703, x705, x706, x708, 

x710, x712) 

Model_1a=cbind(x03,x04,x055, x066, x077, x08, x100, x112) 

Model_1b=cbind(x03,x04,x055, x066, x08, x100, x112) 

Model_1c=cbind(x03,x04,x055, x066, x077, x08, x100) 

Model_1d=cbind(x03,x04,x055, x066, x077, x08, x100, x112, x703, x705, x706, x708, x710, 

x712) 

Model_1s=cbind(x04,x055, x066, x077, x08, x100) 

Model_1si=cbind(x04,x055, x066, x077, x08, x100, x705, x706, x708, x710) 

Model_1sr=cbind(x04,x055, x066, x08, x100) 

 

X=as.matrix(X) 

y1=as.matrix(y1) 

dat = data.frame(y1,X) 
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##Save data to stata format 

library(foreign) 

write.dta (dat, "C:/Users/Philipmunyua/Google Drive/nanoHUB research/02 analysis/04 

develop level _test spatial/02 input data/dat.dta") 

##End save data to stata format 

 

#Probit for model 1c 

probit1a<-glm(y1 ~Model_1a) 

summary(probit1a) 

probitmfx(probit1a, data=dat) 

 

#mixed model 

#probit1e<-lmer(y1 ~Model_1a + (1|x703) + (1|x705), data=dat) 

#summary(probit1e) 

 

##Spatial Auto Regressive (SAR) probit bayesian-based on social networksarprobit.fit1a <- 

sarprobit(y1~ Model_1a, gmat, ndraw =1000, burn.in = 477,thinning = 1) 

 

sarprobit.fit1a <- sarprobit(y1~ Model_1a, gmat, ndraw =1000, burn.in = 477,thinning = 1) 

summary(sarprobit.fit1a) 

logLik(sarprobit.fit1a) 

AIC(sarprobit.fit1a) 

marginal.effects(sarprobit.fit1a) 

 

#Probit for model 1b 

probit1b<-glm(y1 ~Model_1b) 

summary(probit1b) 

probitmfx(probit1b, data=dat) 

 

#** 

sarprobit.fit1b <- sarprobit(y1~ Model_1b, gmat, ndraw =1000, burn.in = 477,thinning = 1) 

summary(sarprobit.fit1b) 

logLik(sarprobit.fit1b) 

AIC(sarprobit.fit1b) 

marginal.effects(sarprobit.fit1b) 

 

#Probit for model 1c 

probit1c<-glm(y1 ~Model_1c) 

summary(probit1c) 

probitmfx(probit1c, data=dat) 

 

#** 

sarprobit.fit1c <- sarprobit(y1~ Model_1c, gmat, ndraw =1000, burn.in = 477,thinning = 1) 

summary(sarprobit.fit1c) 

logLik(sarprobit.fit1c) 

AIC(sarprobit.fit1c) 

marginal.effects(sarprobit.fit1c) 

 

#Probit for model 1d 

probit1d<-glm(y1 ~Model_1d) 

summary(probit1d) 

probitmfx(probit1d, data=dat) 

 

#** 

sarprobit.fit1d <- sarprobit(y1~ Model_1d, gmat, ndraw =1000, burn.in = 477,thinning = 1) 

summary(sarprobit.fit1d) 

logLik(sarprobit.fit1d) 

AIC(sarprobit.fit1d) 

marginal.effects(sarprobit.fit1d) 

 

#Probit for model 1S 

probit1s<-glm(y1 ~Model_1s) 

summary(probit1s) 

probitmfx(probit1s, data=dat) 

 

 

#** 

sarprobit.fit1s <- sarprobit(y1~ Model_1s, gmat, ndraw =1000, burn.in = 477,thinning = 1) 
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summary(sarprobit.fit1s) 

logLik(sarprobit.fit1s) 

AIC(sarprobit.fit1s) 

marginal.effects(sarprobit.fit1s) 

 

#Probit for model 1Sr 

probit1sr<-glm(y1 ~Model_1sr) 

summary(probit1sr) 

probitmfx(probit1sr, data=dat) 

 

#** 

sarprobit.fit1sr <- sarprobit(y1~ Model_1sr, gmat, ndraw =1000, burn.in = 477,thinning = 

1) 

summary(sarprobit.fit1sr) 

logLik(sarprobit.fit1sr) 

AIC(sarprobit.fit1sr) 

 

#Probit for model 1si 

probit1si<-glm(y1 ~Model_1si) 

summary(probit1si) 

probitmfx(probit1si, data=dat) 

 

#** 

sarprobit.fit1si <- sarprobit(y1~ Model_1si, gmat, ndraw =1000, burn.in = 477,thinning = 

1) 

summary(sarprobit.fit1si) 

logLik(sarprobit.fit1si) 

AIC(sarprobit.fit1si) 

marginal.effects(sarprobit.fit1si) 

 

 

##Likelihood ratio test 

LR.test.stat.s <- as.numeric(2*(logLik(sarprobit.fit1s) - logLik(sarprobit.fit1sr))) ##  

getting the LR tests 

print(LR.test.stat.s)## display the LR tests 

pchisq(LR.test.stat.s, 1, lower=F) ## getting the P-value 

 

 

##Likelihood ratio test based on authorship dummy restriction 

LR.test.stat2 <- as.numeric(2*(logLik(probit1s) - logLik(probit1sr))) ##  getting the LR 

tests 

print(LR.test.stat2)## display the LR tests 

pchisq(LR.test.stat2, 1, lower=F) ## getting the P-value 

 

##Likelihood ratio test of interaction term model 

LR.test.stat3 <- as.numeric(2*(logLik(probit1si) - logLik(probit1s))) ##  getting the LR 

tests 

print(LR.test.stat3)## display the LR tests 

pchisq(LR.test.stat3, 1, lower=F) ## getting the P-value 

 

 

##Essay  

## Least Square Iterative Process for estimating degree of attachment (randomeness to 

preferential) 

#--load data set (data frame) 

 

deg06<-read.csv("t06.csv",header=TRUE) 

 

# converting data in table format and generate frequency  distribution 

mytable <- table(deg06$In)  

relFreq <- prop.table(mytable) #Generating frequency distribution 

dd<-as.data.frame(relFreq) #converting data to data frame  

dd<- rename(dd, c(Var1="degree")) 

 

write.csv(dd, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\t06_deg_freq.csv") 

dat<-read.csv("t06_deg_freq.csv") 
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dat$X<-NULL 

dat$ln_deg<-log(dat$degree) 

dat$ln_freq<-log(dat$Freq) 

 

# Generating alpha and model distribution 

summary(dat) 

a<-0.98 

a1<-range(0.000,1.000) 

m<-(weighted.mean(dat$degree, dat$Freq)*0.5) 

d<-as.matrix(dat$degree) 

fd<-as.matrix(dat$Freq) 

xd<-as.matrix(dat$degree+((2*m*a)/(1-a))) 

y<-log(fd) 

x<-log(xd) 

fit <- lm(y ~ x, data=dat) 

#summary(fit) # show results 

b.fit<-coef(fit) 

b<-b.fit[2] 

t<-((b-2)/b) 

a1<-ifelse(t>max(a1),max(a1),t) 

 

#model distribution  

#Random model F(d)=1-(e-(d-m/m)) 

tau<--((d-m)/m) 

fd2<-1-exp(tau) 

dat$fd2<-fd2 

dat$ln_fd2<-log(dat$fd2) 

dat$ln_fd2[is.nan(dat$ln_fd2)] <--4 ##replacing NaNs with value 

write.csv(dat, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\t06_dat.csv") 

 

 

##-------------------ERGM Model 

 

 

### Converting from Matrix to ListW object for spatial regression ###  

 

## set the working directory to Nanohub 

rm(list=ls()) 

setwd("C:\\Users\\mutuma15\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level 

_test spatial\\02 input data") 

setwd("C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level 

_test spatial\\02 input data") 

setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop 

level _test spatial\\02 input data") 

 

library(spdep) 

library(Matrix) 

library(igraph) 

library(lmtest) 

library(sphet) 

library(AER) 

library(spatstat) 

library(spatialprobit) 

library(McSpatial) 

library(mfx)  

library(stats) 

library(Hmisc) 

library(utils) 

library(Zelig) 

library(base) 

library(reshape) 

library(ggplot2) 

library(statnet) 

library(network) 

library(ergm) 

library(sna) 

library(coda) 
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graph_list<-read.csv("time_slice_2.csv") ## logged edge_list 

graph_list$X<-NULL 

graph_list$WEIGHT<-log(1+graph_list$WEIGHT)#logging the weights 

mat<-as.matrix(graph_list[,1:2]) 

 

## Make an directed graph  

graph<-graph.edgelist(mat,directed=TRUE) 

E(graph)$weight<-graph_list[,3] 

gmat<-get.adjacency(graph,attr="weight") 

class(graph) 

class(gmat) 

adjmat<-as.matrix(gmat) 

gmat1<-network(gmat) 

 

###-------KS test for Stochastic Dominance-------------------------#  

 

## set the working directory to Nanohub 

setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop 

level _test spatial\\02 input data") 

 

#load data 

 

dat<-read.csv("distributions2_8.csv") 

gp2<-dat$freq2 

gp3<-dat$freq3 

gp4<-dat$freq4 

gp5<-dat$freq5 

gp6<-dat$freq6 

gp7<-dat$freq7 

gp8<-dat$freq8 

 

 

#KS-Test 

ks23<-ks.test(gp2, gp3, alternative="two.sided") 

ks24<-ks.test(gp2, gp4, alternative="two.sided") 

ks25<-ks.test(gp2, gp5, alternative="two.sided") 

ks26<-ks.test(gp2, gp6, alternative="two.sided") 

ks27<-ks.test(gp2, gp7, alternative="two.sided") 

ks28<-ks.test(gp2, gp8, alternative="two.sided") 

#3 

ks34<-ks.test(gp3, gp4, alternative="two.sided") 

ks35<-ks.test(gp3, gp5, alternative="two.sided") 

ks36<-ks.test(gp3, gp6, alternative="two.sided") 

ks37<-ks.test(gp3, gp7, alternative="two.sided") 

ks38<-ks.test(gp3, gp8, alternative="two.sided") 

#4 

ks45<-ks.test(gp4, gp5, alternative="two.sided") 

ks46<-ks.test(gp4, gp6, alternative="two.sided") 

ks47<-ks.test(gp4, gp7, alternative="two.sided") 

ks48<-ks.test(gp4, gp8, alternative="two.sided") 

#5 

ks56<-ks.test(gp5, gp6, alternative="two.sided") 

ks57<-ks.test(gp5, gp7, alternative="two.sided") 

ks58<-ks.test(gp5, gp8, alternative="two.sided") 

#6 

ks67<-ks.test(gp6, gp7, alternative="two.sided") 

ks68<-ks.test(gp6, gp8, alternative="two.sided") 

#7 

ks78<-ks.test(gp7, gp8, alternative="two.sided") 

 

 

ks23 

ks24 

ks25 

ks26 

ks27 

ks28 
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ks34 

ks35 

ks36 

ks37 

ks38 

 

ks45 

ks46 

ks47 

ks48 

 

ks56 

ks57 

ks58 

 

ks67 

ks68 

 

ks78 

 

#---------Dominating Distribution Statistics 

 

 

### Converting from Matrix to ListW object for spatial regression ###  

 

## set the working directory to Nanohub 

rm(list=ls()) 

setwd("C:\\Users\\mutuma15\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level 

_test spatial\\02 input data") 

setwd("C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level 

_test spatial\\02 input data") 

setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop 

level _test spatial\\02 input data") 

 

library(spdep) 

library(Matrix) 

library(igraph) 

library(lmtest) 

library(sphet) 

library(AER) 

library(spatstat) 

library(spatialprobit) 

library(McSpatial) 

library(mfx)  

library(stats) 

library(Hmisc) 

library(utils) 

library(Zelig) 

library(base) 

library(reshape) 

library(ggplot2) 

library(boot) 

 

graph_list<-read.csv("time_slice_2.csv") ## logged edge_list 

graph_list$X<-NULL 

graph_list$WEIGHT<-log(1+graph_list$WEIGHT)#logging the weights 

mat<-as.matrix(graph_list[,1:2]) 

 

## Make an directed graph  

graph<-graph.edgelist(mat,directed=TRUE) 

E(graph)$weight<-graph_list[,3] 

gmat<-get.adjacency(graph,attr="weight") 

class(graph) 

class(gmat) 

adjmat<-as.matrix(gmat) 

 

for(i in 1:477) 

{ 

  adjmat[i,i]= 1.0 
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} 

 

nb<-mat2listw(adjmat) 

class(nb) 

## Row standardized weigth matrix:Row standardization creates proportional 

##weights in cases where features have an unequal number of neighbors 

nb1<-nb2listw(nb$neighbours, style="W")  

class(nb1) 

 

 

#Degree Centrality (p. 69) 

deg<-degree(gmat, v=V(graph), 

mode=c("all","out","in","total"),loops=TRUE,normalized=FALSE) 

deg1<-as.data.frame(deg) 

deg.dis<-degree.distribution(graph, cumulative=FALSE) 

dd<-as.data.frame(deg.dis) 

dd$degree<-c(1:339) 

dd$Freq<-dd[,1] 

dd$ln_degree<-log(dd$degree) 

dd$ln_Freq<-log(dd$Freq) 

dd$deg.dis<-NULL 

 

write.csv(dd, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\ts_02_dat.csv") 

dat<-read.csv("ts_02_dat.csv") 

dat$X<-NULL 

 

# Generating alpha and model distribution 

summary(dat) 

dat1 <- dat[which(dat$Freq>0.0000000),] 

sum(dat1$Freq) 

summary(dat1) 

 

a<-0.998 

a1<-range(0.000,1.000) 

m<-(weighted.mean(dat1$degree, dat1$Freq)*0.5) 

d<-as.matrix(dat1$degree) 

fd<-as.matrix(dat1$Freq) 

xd<-as.matrix(dat1$degree+((2*m*a)/(1-a))) 

y<-log(fd) 

x<-log(xd) 

fit <- lm(y ~ x, data=dat1) 

#summary(fit) # show results 

b.fit<-coef(fit) 

b<-b.fit[2] 

t<-((b-2)/b) 

a1<-ifelse(t>max(a1),max(a1),t) 

 

#model distribution  

#Hybrid model F(d)=1-((m+(2am/1-a))/(d+(2am/1-a)))^2/(1-a) 

a<-0.999 

tau<-(2/(1-a)) 

tau1<-(2*a*m)/(1-a) 

num<-m+tau1 

den<-d+tau1 

fd2<-range(0, 1000) 

con<-1-(num/den)^tau 

fd2<-ifelse(con>=min(fd2),con,min(fd2))  

dat1$fd2<-fd2 

dat1$ln_fd2<-log(dat1$fd2) 

dat1$ln_fd2[dat1$ln_fd2==-Inf] <-dat1$ln_Freq###replacing infinit with value 

corr<-rcorr(dat1$ln_Freq, dat1$ln_fd2) 

corr 

dat1$ff<-dat1$ln_fd2 

dat1$ff[dat1$ff==-2.9] <-dat1$ln_Freq##replacing NaNs with value 

  

write.csv(dat1, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\ts_02_dat1.csv") 
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attach(dat1) 

plot(ln_degree, ln_Freq, main="Time slice02", xlab="Log(degree)", ylab="log(Frequency) ", 

pch=19)#,the data plot 

summary(dat1) 

class(dat1) 

 

y1<-as.matrix(dat1$ln_Freq) 

x1<-as.matrix(dat1$ln_degree) 

y<-as.matrix(dat1$Freq) 

d<-as.matrix(dat1$degree) 

cr<-fit <- lm(x1 ~ y1, data=dat1) 

summary(cr) 

 

#-------------Fitting results to models via bootstrap 

#---Bootstrap (ln_degree) 

n <-length(dat1$ln_degree) 

B <- 1000 

results <- rep(NA, B) 

for (i in 1:B){ 

  boot.sample <- sample(n, replace=TRUE) 

  results[i] <- mean(dat1$ln_degree[boot.sample]) 

} 

with(dat1, mean(ln_degree) + c(-1,1)*2*sd(results)) 

 

bb<-mean(results) 

bb 

#---Bootstraping the variance 

 

var.boot <- function(x,i){var(y1[i])} 

boot<-boot(dat1,var.boot,1000) 

out <- boot(dat1,var.boot,1000) 

out 

ci.var<-boot.ci(out,type="perc") 

ci.var 

hist(out$t) 

hist(out$t, xlim=c(0.42,1.3), nclass=30, col=3, main="Histogram of Randomly Generated 

Data for Variance") 

abline(v=q95.np,lty=2) 

abline(v=c(ci.var)) 

abline(v=c(ci.u,ci.l)) 

hist(theta.rand.median, xlim=c(-.2,.2), nclass=100, col=3, main="Histogram of Randomly 

Generated Data for Medians") 

 

hist(theta.rand.mean, xlim=c(-.2,.2), nclass=50, col=3, main="Histogram of Randomly 

Generated Data for Means") 

abline(v=c(ci.u,ci.l)) 

#---Bootstraping the Median 

var.boot.1 <- function(x,i){median(y1[i])} 

boot.1<-boot(dat1,var.boot.1,1000) 

boot.1 

out.1 <- boot(dat1,var.boot.1,1000) 

ci.var.1<-boot.ci(out.1,type="perc") 

ci.var.1 

hist(out.1$t) 

#---Bootstraping the Mean 

var.boot.2 <- function(x,i){mean(y1[i])} 

boot.2<-boot(dat1,var.boot.2, 1000) 

boot.2 

out.2 <- boot(dat1,var.boot.2, 1000) 

ci.var.2<-boot.ci(out.2,type="perc") 

ci.var.2 

hist(out.2$t) 

#--Bootstrapping the Sample Median--1 

 

ns<-1000 

res<-numeric(ns) 

for (i in 1:ns) { 

res[i] <- median(sample(y1, replace=T)) 

se.b<-sqrt(var(res)) 
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} 

se.b 

quantile(res, p = c(0.025, 0.975)) 

par(mfrow=c(1,1)) 

hist(res) 

qqnorm(res) 

 

#-Bootstrapping a Trimmed Mean 

 

tm <- mean(y1, trim = 0.10) 

nsamp <- 1000 

res <- numeric(nsamp) 

for (i in 1:nsamp) { 

  res[i] <- mean(sample(y1, replace = TRUE), trim=0.10) 

} 

hist(res) 

abline(v = tm, lty = 4) 

sd(res) 

quantile(res, p = c(0.05, 0.95)) 

 

 

#-------Bootstrap degree 

#---Bootstraping the variance 

 

var.boot <- function(x,i){var(d[i])} 

boot<-boot(dat1,var.boot,1000) 

out <- boot(dat1,var.boot,1000) 

out 

ci.var<-boot.ci(out,type="perc") 

ci.var 

hist(out$t) 

 

#---Bootstraping the Median 

var.boot.1 <- function(x,i){median(d[i])} 

boot.1<-boot(dat1,var.boot.1,1000) 

boot.1 

out.1 <- boot(dat1,var.boot.1,1000) 

ci.var.1<-boot.ci(out.1,type="perc") 

ci.var.1 

hist(out.1$t) 

#---Bootstraping the Mean 

var.boot.2 <- function(x,i){mean(d[i])} 

boot.2<-boot(dat1,var.boot.2, 1000) 

boot.2 

out.2 <- boot(dat1,var.boot.2, 1000) 

ci.var.2<-boot.ci(out.2,type="perc") 

ci.var.2 

hist(out.2$t) 

 

#----End 

 

dat2 <- dat1[,c("ln_degree", "ln_Freq", "ff")] 

x1<-as.matrix(dat2$ln_degree) 

y1<-as.matrix(dat2$ln_Freq) 

x2<-as.matrix(dat2$ln_degree) 

y2<-as.matrix(dat2$ff) 

class(x1) 

 

plot(x1,y1,xlim=range(c(x1,x2)),ylim=range(c(y1,y2)),col="red") 

points(x2,y2,col="blue")  

 

#compling vector of new variables 

object<-data.frame(BC,BeC,CC, dC,evcent1, dcomp, googpr.old1) 

file_cc<-file("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 

develop level _test spatial\\02 input data\\centrality1219.csv","w") 

write.csv(object, file_cc) 

close(file_cc) 

 

#Merging data sets 
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object1<-read.csv("centrality1219.csv",header=TRUE) 

colnames(object1)[1] <- "Dev_Name" #Renaming a column 

class(object1) 

newdev<-merge(dev, object1, by="Dev_Name") #Merging developer network with the new 

variables by the common variable "Dev_Name" 

newdev$X<-NULL 

class(newdev) 

 

file_dev<-file("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 

develop level _test spatial\\02 input data\\dev_attrib_ver1219.csv","w") 

write.csv(newdev, file_dev) 

close(file_dev) 

 

##Test for powerlaw for indegree (d=degree and x1=log_indegree) 

#Fitting Power Law (p.239) 

#fitting a power-law distribution 

#d-degree 

powerlawfit<-power.law.fit(d, dmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlawx<-as.data.frame(powerlawfit) 

#x1-log_indegree 

powerlawfit1<-power.law.fit(x1, x1min=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlawx1<-as.data.frame(powerlawfit) 

 

###Timeline descriptives 

#Assortivity  

V(graph)$foo <- sample(1:3, replace=TRUE, vcount(graph)) 

assort<-assortativity.nominal(graph, types=V(graph)$foo) 

 

#clusters  

#calculates the maximal (weakly or strongly) connected components of a graph 

isclus<-is.connected(graph, mode=c("weak", "strong")) #decided whether the graph is 

weakly or strongly connected 

 

#Diameter 

#calculates the length of the longest geodesic 

getdiam<-get.diameter(graph, directed=TRUE, unconnected=TRUE, weights=NULL) # retunrs a 

path with actual diameter  

getdiam1<-as.data.frame(getdiam) 

 

#Dyad Census 

dyads<-dyad.census(graph) 

dyads1<-as.data.frame(dyads) 

 

#Graph density 

#Density is the ratio of the number of edges (links) and the number of possible edges 

density<-graph.density(graph, loops=FALSE) 

density1<-as.data.frame(density) 

 

#Average nearest neighbor degree 

# calculates  the average nearest neighbor degree of the given vertices and the same 

quantity in the function of the vertex degree 

avneigh<-graph.knn(graph, vids=V(graph),weights=NULL) 

avneigh1<-as.data.frame(avneigh) 

 

#Neighborhood of graph vertices 

#finds nodes that are not farther than a given limit from another fixed node 

(neighborhood of the node) 

neigh.size<-neighborhood.size(graph, 1, nodes=V(graph), mode=c("all","out","in")) # 

calculates the size of neighborhood 

neigh.size1<-as.data.frame(neigh.size) 

 

#Reciprocity of graphs 

recipro<-reciprocity(graph, ignore.loops=TRUE, mode=c("default", "ratio")) 

recipro1<-as.data.frame(recipro) 

 

#Shortest Path 

#Calculates the shortest paths between vertices 
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shortpath<-shortest.paths(graph, v=V(graph),mode=c("all","out","in"), 

                          weights=NULL, 

algorithm=c("automatic","unweighted","dijkstra","bellman-ford","johnson")) 

getshortpath<-get.shortest.paths(graph, 2, to=V(graph), mode = c("out", "all", 

                                                                 "in"), weights = NULL, 

output=c("vpath", "epath", "both"), predecessors = FALSE, inbound.edges = FALSE) 

getallshortpath<-get.all.shortest.paths(graph, 2, to = V(graph), mode = c("out", 

                                                                          "all", "in"), 

weights=NULL) 

avshortpath<-average.path.length(graph, directed=TRUE, unconnected=TRUE) 

avshortpath1<-as.data.frame(avshortpath) 

pathlenngthhist<-path.length.hist (graph, directed = TRUE) 

 

#Transivity or clustering coefficient 

#A measure of the probability that the adjacency nodes of a node are connected (also 

known as clustering coefficient) 

clustcoeff<-transitivity(graph, type=c("undirected", "global", "globalundirected", 

                                       "localundirected", "local", "average", 

"localaverage", 

                                       "localaverageundirected", "barrat", "weighted"), 

vids=NULL, 

                         weights=NULL, isolates=c("NaN", "zero")) 

clustcoeff1<-as.data.frame(clustcoeff) 

 

#Triad Census 

triads<-triad.census(graph) 

 

 

##----------ERGM Models 

 

ERGM1<-gmat1~mutual 

ERGM2<-gmat1~mutual+transitive 

ERGM3<-gmat1~mutual+istar(3)+transitive 

ERGM4<-gmat1~mutual+gwidegree(2.5, fixed=TRUE) 

ERGM5<-gmat1~edges+mutual 

ERGM6<-gmat1~edges+mutual+transitive 

ERGM7<-gmat1~edges+mutual+istar(3)+transitive 

ERGM8<-gmat1~edges+mutual+gwidegree(2.5, fixed=TRUE) 

 

ERGM.Model.1<-ergm(ERGM1) 

summary(ERGM.Model.1) 

mcmc.diagnostics(ERGM.Model.1) 

gof.1<-gof(ERGM.Model.1) 

summary(gof.1) 

plot(gof.1) 

ERGM.Model.2<-ergm(ERGM2) 

summary(ERGM.Model.2) 

gof.2<-gof(ERGM.Model.2) 

summary(gof.2) 

plot(gof.2) 

 

ERGM.Model.3<-ergm(ERGM3) 

summary(ERGM.Model.3) 

plot(ERGM.Model.3$sample, ask=FALSE) 

gof.3<-gof(ERGM.Model.3) 

plot(gof.3) 

summary(gof.3) 

ERGM.Model.4<-ergm(ERGM4) 

summary(ERGM.Model.4) 

gof.4<-gof(ERGM.Model.4) 

plot(gof.4) 

summary(gof.4) 

mcmc.diagnostics(ERGM.Model.4) 

ERGM.Model.5<-ergm(ERGM5) 

summary(ERGM.Model.5) 

gof.5<-gof(ERGM.Model.5) 

plot(gof.5) 

summary(gof.5) 

mcmc.diagnostics(ERGM.Model.5) 



189 

 

 

 

 

ERGM.Model.6<-ergm(ERGM6) 

summary(ERGM.Model.6) 

gof.6<-gof(ERGM.Model.6) 

plot(gof.6) 

summary(gof.6) 

mcmc.diagnostics(ERGM.Model.6) 

 

ERGM.Model.7<-ergm(ERGM7) 

summary(ERGM.Model.7) 

gof.7<-gof(ERGM.Model.7) 

plot(gof.7) 

summary(gof.7) 

mcmc.diagnostics(ERGM.Model.7) 

 

ERGM.Model.8<-ergm(ERGM8) 

summary(ERGM.Model.8) 

gof.8<-gof(ERGM.Model.8) 

plot(gof.8) 

summary(gof.8) 

mcmc.diagnostics(ERGM.Model.8) 

#Anova test for models 

Anova12<-anova(ERGM.Model.1,ERGM.Model.2) 

Anova12 

Anova13<-anova(ERGM.Model.1,ERGM.Model.3) 

Anova13 

Anova14<-anova(ERGM.Model.1,ERGM.Model.4) 

Anova14 

 

###Essay #3 

##Essay  

## Least Square Iterative Process for estimating degree of attachment (randomeness to 

preferential) 

#--load data set (data frame) 

 

deg06<-read.csv("t06.csv",header=TRUE) 

 

# converting data in table format and generate frequency  distribution 

mytable <- table(deg06$In)  

relFreq <- prop.table(mytable) #Generating frequency distribution 

dd<-as.data.frame(relFreq) #converting data to data frame  

dd<- rename(dd, c(Var1="degree")) 

 

write.csv(dd, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\t06_deg_freq.csv") 

dat<-read.csv("t06_deg_freq.csv") 

dat$X<-NULL 

dat$ln_deg<-log(dat$degree) 

dat$ln_freq<-log(dat$Freq) 

 

# Generating alpha and model distribution 

summary(dat) 

a<-0.98 

a1<-range(0.000,1.000) 

m<-(weighted.mean(dat$degree, dat$Freq)*0.5) 

d<-as.matrix(dat$degree) 

fd<-as.matrix(dat$Freq) 

xd<-as.matrix(dat$degree+((2*m*a)/(1-a))) 

y<-log(fd) 

x<-log(xd) 

fit <- lm(y ~ x, data=dat) 

#summary(fit) # show results 

b.fit<-coef(fit) 

b<-b.fit[2] 

t<-((b-2)/b) 

a1<-ifelse(t>max(a1),max(a1),t) 

 

#model distribution  
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#Random model F(d)=1-(e-(d-m/m)) 

tau<--((d-m)/m) 

fd2<-1-exp(tau) 

dat$fd2<-fd2 

dat$ln_fd2<-log(dat$fd2) 

dat$ln_fd2[is.nan(dat$ln_fd2)] <--4 ##replacing NaNs with value 

write.csv(dat, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\t06_dat.csv") 

 

 

##-------------------ERGM Model 

 

 

### Converting from Matrix to ListW object for spatial regression ###  

 

## set the working directory to Nanohub 

rm(list=ls()) 

setwd("C:\\Users\\mutuma15\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level 

_test spatial\\02 input data") 

setwd("C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level 

_test spatial\\02 input data") 

setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop 

level _test spatial\\02 input data") 

 

library(spdep) 

library(Matrix) 

library(igraph) 

library(lmtest) 

library(sphet) 

library(AER) 

library(spatstat) 

library(spatialprobit) 

library(McSpatial) 

library(mfx)  

library(stats) 

library(Hmisc) 

library(utils) 

library(Zelig) 

library(base) 

library(reshape) 

library(ggplot2) 

library(statnet) 

library(network) 

library(ergm) 

library(sna) 

library(coda) 

 

 

graph_list<-read.csv("time_slice_2.csv") ## logged edge_list 

graph_list$X<-NULL 

graph_list$WEIGHT<-log(1+graph_list$WEIGHT)#logging the weights 

mat<-as.matrix(graph_list[,1:2]) 

 

## Make an directed graph  

graph<-graph.edgelist(mat,directed=TRUE) 

E(graph)$weight<-graph_list[,3] 

gmat<-get.adjacency(graph,attr="weight") 

class(graph) 

class(gmat) 

adjmat<-as.matrix(gmat) 

gmat1<-network(gmat) 

 

###-------KS test for Stochastic Dominance-------------------------#  

 

## set the working directory to Nanohub 

setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop 

level _test spatial\\02 input data") 

 

#load data 
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dat<-read.csv("distributions2_8.csv") 

gp2<-dat$freq2 

gp3<-dat$freq3 

gp4<-dat$freq4 

gp5<-dat$freq5 

gp6<-dat$freq6 

gp7<-dat$freq7 

gp8<-dat$freq8 

 

 

#KS-Test 

ks23<-ks.test(gp2, gp3, alternative="two.sided") 

ks24<-ks.test(gp2, gp4, alternative="two.sided") 

ks25<-ks.test(gp2, gp5, alternative="two.sided") 

ks26<-ks.test(gp2, gp6, alternative="two.sided") 

ks27<-ks.test(gp2, gp7, alternative="two.sided") 

ks28<-ks.test(gp2, gp8, alternative="two.sided") 

#3 

ks34<-ks.test(gp3, gp4, alternative="two.sided") 

ks35<-ks.test(gp3, gp5, alternative="two.sided") 

ks36<-ks.test(gp3, gp6, alternative="two.sided") 

ks37<-ks.test(gp3, gp7, alternative="two.sided") 

ks38<-ks.test(gp3, gp8, alternative="two.sided") 

#4 

ks45<-ks.test(gp4, gp5, alternative="two.sided") 

ks46<-ks.test(gp4, gp6, alternative="two.sided") 

ks47<-ks.test(gp4, gp7, alternative="two.sided") 

ks48<-ks.test(gp4, gp8, alternative="two.sided") 

#5 

ks56<-ks.test(gp5, gp6, alternative="two.sided") 

ks57<-ks.test(gp5, gp7, alternative="two.sided") 

ks58<-ks.test(gp5, gp8, alternative="two.sided") 

#6 

ks67<-ks.test(gp6, gp7, alternative="two.sided") 

ks68<-ks.test(gp6, gp8, alternative="two.sided") 

#7 

ks78<-ks.test(gp7, gp8, alternative="two.sided") 

 

 

ks23 

ks24 

ks25 

ks26 

ks27 

ks28 

 

ks34 

ks35 

ks36 

ks37 

ks38 

 

ks45 

ks46 

ks47 

ks48 

 

ks56 

ks57 

ks58 

 

ks67 

ks68 

 

ks78 

 

#---------Dominating Distribution Statistics 
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### Converting from Matrix to ListW object for spatial regression ###  

 

## set the working directory to Nanohub 

rm(list=ls()) 

setwd("C:\\Users\\mutuma15\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level 

_test spatial\\02 input data") 

setwd("C:\\Users\\pmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop level 

_test spatial\\02 input data") 

setwd("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 develop 

level _test spatial\\02 input data") 

 

library(spdep) 

library(Matrix) 

library(igraph) 

library(lmtest) 

library(sphet) 

library(AER) 

library(spatstat) 

library(spatialprobit) 

library(McSpatial) 

library(mfx)  

library(stats) 

library(Hmisc) 

library(utils) 

library(Zelig) 

library(base) 

library(reshape) 

library(ggplot2) 

library(boot) 

 

graph_list<-read.csv("time_slice_2.csv") ## logged edge_list 

graph_list$X<-NULL 

graph_list$WEIGHT<-log(1+graph_list$WEIGHT)#logging the weights 

mat<-as.matrix(graph_list[,1:2]) 

 

## Make an directed graph  

graph<-graph.edgelist(mat,directed=TRUE) 

E(graph)$weight<-graph_list[,3] 

gmat<-get.adjacency(graph,attr="weight") 

class(graph) 

class(gmat) 

adjmat<-as.matrix(gmat) 

 

for(i in 1:477) 

{ 

  adjmat[i,i]= 1.0 

} 

 

nb<-mat2listw(adjmat) 

class(nb) 

## Row standardized weigth matrix:Row standardization creates proportional 

##weights in cases where features have an unequal number of neighbors 

nb1<-nb2listw(nb$neighbours, style="W")  

class(nb1) 

 

 

#Degree Centrality (p. 69) 

deg<-degree(gmat, v=V(graph), 

mode=c("all","out","in","total"),loops=TRUE,normalized=FALSE) 

deg1<-as.data.frame(deg) 

deg.dis<-degree.distribution(graph, cumulative=FALSE) 

dd<-as.data.frame(deg.dis) 

dd$degree<-c(1:339) 

dd$Freq<-dd[,1] 

dd$ln_degree<-log(dd$degree) 

dd$ln_Freq<-log(dd$Freq) 

dd$deg.dis<-NULL 
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write.csv(dd, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\ts_02_dat.csv") 

dat<-read.csv("ts_02_dat.csv") 

dat$X<-NULL 

 

# Generating alpha and model distribution 

summary(dat) 

dat1 <- dat[which(dat$Freq>0.0000000),] 

sum(dat1$Freq) 

summary(dat1) 

 

a<-0.998 

a1<-range(0.000,1.000) 

m<-(weighted.mean(dat1$degree, dat1$Freq)*0.5) 

d<-as.matrix(dat1$degree) 

fd<-as.matrix(dat1$Freq) 

xd<-as.matrix(dat1$degree+((2*m*a)/(1-a))) 

y<-log(fd) 

x<-log(xd) 

fit <- lm(y ~ x, data=dat1) 

#summary(fit) # show results 

b.fit<-coef(fit) 

b<-b.fit[2] 

t<-((b-2)/b) 

a1<-ifelse(t>max(a1),max(a1),t) 

 

#model distribution  

#Hybrid model F(d)=1-((m+(2am/1-a))/(d+(2am/1-a)))^2/(1-a) 

a<-0.999 

tau<-(2/(1-a)) 

tau1<-(2*a*m)/(1-a) 

num<-m+tau1 

den<-d+tau1 

fd2<-range(0, 1000) 

con<-1-(num/den)^tau 

fd2<-ifelse(con>=min(fd2),con,min(fd2))  

dat1$fd2<-fd2 

dat1$ln_fd2<-log(dat1$fd2) 

dat1$ln_fd2[dat1$ln_fd2==-Inf] <-dat1$ln_Freq###replacing infinit with value 

corr<-rcorr(dat1$ln_Freq, dat1$ln_fd2) 

corr 

dat1$ff<-dat1$ln_fd2 

dat1$ff[dat1$ff==-2.9] <-dat1$ln_Freq##replacing NaNs with value 

  

write.csv(dat1, file="C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 

analysis\\04 develop level _test spatial\\02 input data\\ts_02_dat1.csv") 

 

attach(dat1) 

plot(ln_degree, ln_Freq, main="Time slice02", xlab="Log(degree)", ylab="log(Frequency) ", 

pch=19)#,the data plot 

summary(dat1) 

class(dat1) 

 

y1<-as.matrix(dat1$ln_Freq) 

x1<-as.matrix(dat1$ln_degree) 

y<-as.matrix(dat1$Freq) 

d<-as.matrix(dat1$degree) 

cr<-fit <- lm(x1 ~ y1, data=dat1) 

summary(cr) 

 

#-------------Fitting results to models via bootstrap 

#---Bootstrap (ln_degree) 

n <-length(dat1$ln_degree) 

B <- 1000 

results <- rep(NA, B) 

for (i in 1:B){ 

  boot.sample <- sample(n, replace=TRUE) 

  results[i] <- mean(dat1$ln_degree[boot.sample]) 

} 
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with(dat1, mean(ln_degree) + c(-1,1)*2*sd(results)) 

 

bb<-mean(results) 

bb 

#---Bootstraping the variance 

 

var.boot <- function(x,i){var(y1[i])} 

boot<-boot(dat1,var.boot,1000) 

out <- boot(dat1,var.boot,1000) 

out 

ci.var<-boot.ci(out,type="perc") 

ci.var 

hist(out$t) 

hist(out$t, xlim=c(0.42,1.3), nclass=30, col=3, main="Histogram of Randomly Generated 

Data for Variance") 

abline(v=q95.np,lty=2) 

abline(v=c(ci.var)) 

abline(v=c(ci.u,ci.l)) 

hist(theta.rand.median, xlim=c(-.2,.2), nclass=100, col=3, main="Histogram of Randomly 

Generated Data for Medians") 

 

hist(theta.rand.mean, xlim=c(-.2,.2), nclass=50, col=3, main="Histogram of Randomly 

Generated Data for Means") 

abline(v=c(ci.u,ci.l)) 

#---Bootstraping the Median 

var.boot.1 <- function(x,i){median(y1[i])} 

boot.1<-boot(dat1,var.boot.1,1000) 

boot.1 

out.1 <- boot(dat1,var.boot.1,1000) 

ci.var.1<-boot.ci(out.1,type="perc") 

ci.var.1 

hist(out.1$t) 

#---Bootstraping the Mean 

var.boot.2 <- function(x,i){mean(y1[i])} 

boot.2<-boot(dat1,var.boot.2, 1000) 

boot.2 

out.2 <- boot(dat1,var.boot.2, 1000) 

ci.var.2<-boot.ci(out.2,type="perc") 

ci.var.2 

hist(out.2$t) 

#--Bootstrapping the Sample Median--1 

 

ns<-1000 

res<-numeric(ns) 

for (i in 1:ns) { 

res[i] <- median(sample(y1, replace=T)) 

se.b<-sqrt(var(res)) 

} 

se.b 

quantile(res, p = c(0.025, 0.975)) 

par(mfrow=c(1,1)) 

hist(res) 

qqnorm(res) 

 

#-Bootstrapping a Trimmed Mean 

 

tm <- mean(y1, trim = 0.10) 

nsamp <- 1000 

res <- numeric(nsamp) 

for (i in 1:nsamp) { 

  res[i] <- mean(sample(y1, replace = TRUE), trim=0.10) 

} 

hist(res) 

abline(v = tm, lty = 4) 

sd(res) 

quantile(res, p = c(0.05, 0.95)) 

 

 

#-------Bootstrap degree 
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#---Bootstraping the variance 

 

var.boot <- function(x,i){var(d[i])} 

boot<-boot(dat1,var.boot,1000) 

out <- boot(dat1,var.boot,1000) 

out 

ci.var<-boot.ci(out,type="perc") 

ci.var 

hist(out$t) 

 

#---Bootstraping the Median 

var.boot.1 <- function(x,i){median(d[i])} 

boot.1<-boot(dat1,var.boot.1,1000) 

boot.1 

out.1 <- boot(dat1,var.boot.1,1000) 

ci.var.1<-boot.ci(out.1,type="perc") 

ci.var.1 

hist(out.1$t) 

#---Bootstraping the Mean 

var.boot.2 <- function(x,i){mean(d[i])} 

boot.2<-boot(dat1,var.boot.2, 1000) 

boot.2 

out.2 <- boot(dat1,var.boot.2, 1000) 

ci.var.2<-boot.ci(out.2,type="perc") 

ci.var.2 

hist(out.2$t) 

 

#----End 

 

dat2 <- dat1[,c("ln_degree", "ln_Freq", "ff")] 

x1<-as.matrix(dat2$ln_degree) 

y1<-as.matrix(dat2$ln_Freq) 

x2<-as.matrix(dat2$ln_degree) 

y2<-as.matrix(dat2$ff) 

class(x1) 

 

plot(x1,y1,xlim=range(c(x1,x2)),ylim=range(c(y1,y2)),col="red") 

points(x2,y2,col="blue")  

 

#compling vector of new variables 

object<-data.frame(BC,BeC,CC, dC,evcent1, dcomp, googpr.old1) 

file_cc<-file("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 

develop level _test spatial\\02 input data\\centrality1219.csv","w") 

write.csv(object, file_cc) 

close(file_cc) 

 

#Merging data sets 

object1<-read.csv("centrality1219.csv",header=TRUE) 

colnames(object1)[1] <- "Dev_Name" #Renaming a column 

class(object1) 

newdev<-merge(dev, object1, by="Dev_Name") #Merging developer network with the new 

variables by the common variable "Dev_Name" 

newdev$X<-NULL 

class(newdev) 

 

file_dev<-file("C:\\Users\\Philipmunyua\\Google Drive\\nanoHUB research\\02 analysis\\04 

develop level _test spatial\\02 input data\\dev_attrib_ver1219.csv","w") 

write.csv(newdev, file_dev) 

close(file_dev) 

 

##Test for powerlaw for indegree (d=degree and x1=log_indegree) 

#Fitting Power Law (p.239) 

#fitting a power-law distribution 

#d-degree 

powerlawfit<-power.law.fit(d, dmin=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlawx<-as.data.frame(powerlawfit) 

#x1-log_indegree 
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powerlawfit1<-power.law.fit(x1, x1min=NULL, start=2, force.continuous=FALSE, 

implementation=c("plfit", "R.mle")) 

powerlawx1<-as.data.frame(powerlawfit) 

 

###Timeline descriptives 

#Assortivity  

V(graph)$foo <- sample(1:3, replace=TRUE, vcount(graph)) 

assort<-assortativity.nominal(graph, types=V(graph)$foo) 

 

#clusters  

#calculates the maximal (weakly or strongly) connected components of a graph 

isclus<-is.connected(graph, mode=c("weak", "strong")) #decided whether the graph is 

weakly or strongly connected 

 

#Diameter 

#calculates the length of the longest geodesic 

getdiam<-get.diameter(graph, directed=TRUE, unconnected=TRUE, weights=NULL) # retunrs a 

path with actual diameter  

getdiam1<-as.data.frame(getdiam) 

 

#Dyad Census 

dyads<-dyad.census(graph) 

dyads1<-as.data.frame(dyads) 

 

#Graph density 

#Density is the ratio of the number of edges (links) and the number of possible edges 

density<-graph.density(graph, loops=FALSE) 

density1<-as.data.frame(density) 

 

#Average nearest neighbor degree 

# calculates  the average nearest neighbor degree of the given vertices and the same 

quantity in the function of the vertex degree 

avneigh<-graph.knn(graph, vids=V(graph),weights=NULL) 

avneigh1<-as.data.frame(avneigh) 

 

#Neighborhood of graph vertices 

#finds nodes that are not farther than a given limit from another fixed node 

(neighborhood of the node) 

neigh.size<-neighborhood.size(graph, 1, nodes=V(graph), mode=c("all","out","in")) # 

calculates the size of neighborhood 

neigh.size1<-as.data.frame(neigh.size) 

 

#Reciprocity of graphs 

recipro<-reciprocity(graph, ignore.loops=TRUE, mode=c("default", "ratio")) 

recipro1<-as.data.frame(recipro) 

 

#Shortest Path 

#Calculates the shortest paths between vertices 

shortpath<-shortest.paths(graph, v=V(graph),mode=c("all","out","in"), 

                          weights=NULL, 

algorithm=c("automatic","unweighted","dijkstra","bellman-ford","johnson")) 

getshortpath<-get.shortest.paths(graph, 2, to=V(graph), mode = c("out", "all", 

                                                                 "in"), weights = NULL, 

output=c("vpath", "epath", "both"), predecessors = FALSE, inbound.edges = FALSE) 

getallshortpath<-get.all.shortest.paths(graph, 2, to = V(graph), mode = c("out", 

                                                                          "all", "in"), 

weights=NULL) 

avshortpath<-average.path.length(graph, directed=TRUE, unconnected=TRUE) 

avshortpath1<-as.data.frame(avshortpath) 

pathlenngthhist<-path.length.hist (graph, directed = TRUE) 

 

#Transivity or clustering coefficient 

#A measure of the probability that the adjacency nodes of a node are connected (also 

known as clustering coefficient) 

clustcoeff<-transitivity(graph, type=c("undirected", "global", "globalundirected", 

                                       "localundirected", "local", "average", 

"localaverage", 

                                       "localaverageundirected", "barrat", "weighted"), 

vids=NULL, 
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                         weights=NULL, isolates=c("NaN", "zero")) 

clustcoeff1<-as.data.frame(clustcoeff) 

 

#Triad Census 

triads<-triad.census(graph) 

 

 

##----------ERGM Models 

 

ERGM1<-gmat1~mutual 

ERGM2<-gmat1~mutual+transitive 

ERGM3<-gmat1~mutual+istar(3)+transitive 

ERGM4<-gmat1~mutual+gwidegree(2.5, fixed=TRUE) 

ERGM5<-gmat1~edges+mutual 

ERGM6<-gmat1~edges+mutual+transitive 

ERGM7<-gmat1~edges+mutual+istar(3)+transitive 

ERGM8<-gmat1~edges+mutual+gwidegree(2.5, fixed=TRUE) 

 

ERGM.Model.1<-ergm(ERGM1) 

summary(ERGM.Model.1) 

mcmc.diagnostics(ERGM.Model.1) 

gof.1<-gof(ERGM.Model.1) 

summary(gof.1) 

plot(gof.1) 

ERGM.Model.2<-ergm(ERGM2) 

summary(ERGM.Model.2) 

gof.2<-gof(ERGM.Model.2) 

summary(gof.2) 

plot(gof.2) 

 

ERGM.Model.3<-ergm(ERGM3) 

summary(ERGM.Model.3) 

plot(ERGM.Model.3$sample, ask=FALSE) 

gof.3<-gof(ERGM.Model.3) 

plot(gof.3) 

summary(gof.3) 

ERGM.Model.4<-ergm(ERGM4) 

summary(ERGM.Model.4) 

gof.4<-gof(ERGM.Model.4) 

plot(gof.4) 

summary(gof.4) 

mcmc.diagnostics(ERGM.Model.4) 

ERGM.Model.5<-ergm(ERGM5) 

summary(ERGM.Model.5) 

gof.5<-gof(ERGM.Model.5) 

plot(gof.5) 

summary(gof.5) 

mcmc.diagnostics(ERGM.Model.5) 

 

ERGM.Model.6<-ergm(ERGM6) 

summary(ERGM.Model.6) 

gof.6<-gof(ERGM.Model.6) 

plot(gof.6) 

summary(gof.6) 

mcmc.diagnostics(ERGM.Model.6) 

 

ERGM.Model.7<-ergm(ERGM7) 

summary(ERGM.Model.7) 

gof.7<-gof(ERGM.Model.7) 

plot(gof.7) 

summary(gof.7) 

mcmc.diagnostics(ERGM.Model.7) 

 

ERGM.Model.8<-ergm(ERGM8) 

summary(ERGM.Model.8) 

gof.8<-gof(ERGM.Model.8) 

plot(gof.8) 

summary(gof.8) 

mcmc.diagnostics(ERGM.Model.8) 
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#Anova test for models 

Anova12<-anova(ERGM.Model.1,ERGM.Model.2) 

Anova12 

Anova13<-anova(ERGM.Model.1,ERGM.Model.3) 

Anova13 

Anova14<-anova(ERGM.Model.1,ERGM.Model.4) 

Anova14 
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