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ABSTRACT

Miller, Brittney R. PhD, Purdue University, May 2016. Kernels of Adjoints of Com-
position Operators on Hilbert Spaces of Analytic Functions . Major Professor: Carl
C. Cowen.

This thesis contains a collection of results in the study of the adjoint of a com-

position operator and its kernel in weighted Hardy spaces, in particular, the classical

Hardy, Bergman, and Dirichlet spaces. In 2006, Cowen and Gallardo-Gutiérrez laid

the groundwork for an explicit formula for the adjoint of a composition operator with

rational symbol acting on the Hardy space, and in 2008, Hammond, Moorhouse, and

Robbins established such a formula. In 2014, Goshabulaghi and Vaezi obtained analo-

gous formulas for the adjoint of a composition operator in the Bergman and Dirichlet

spaces. While it is known that the kernel of the adjoint of a composition operator

whose symbol is not univalent on the complex unit disk is infinite-dimensional, no

classification has been given for functions in this kernel.

Chapter 1 introduces the relevant definitions in the study of composition oper-

ators and their adjoints. Chapter 2 provides the background for results obtained

by Cowen and Gallardo-Gutiérrez, and Hammond, Moorhouse, and Robbins in the

Hardy space. The results by Goshabulaghi and Vaezi for the Bergman and Dirichlet

spaces are also given. Chapter 3 contains explicit descriptions of the kernel of the

adjoint of a composition operator in a particular class on general weighted Hardy

spaces. Chapter 4 uses the adjoint formula by Hammond, Moorhouse, and Robbins

to give a functional equation that characterizes functions in the kernel of the adjoint

of a composition operator with a rational symbol of degree two on the Hardy space.

Chapters 5 and 6 use the adjoint formulas by Goshabulaghi and Vaezi to prove some

results about the kernels of adjoints of composition operators on the Bergman and

Dirichlet spaces.
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1. Introduction

We begin by introducing Hilbert spaces of analytic functions, composition opera-

tors, and other definitions needed to develop the theory used to describe adjoints of

composition operators from Cowen and MacCluer’s [1] book.

1.1 Hilbert Spaces of Analytic Functions

Definition 1.1.1 A Banach space of complex-valued functions on a set X is called

a functional Banach space on X if the vector operations are the pointwise oper-

ations, f(x) = g(x) for each x in X implies f = g, f(x) = f(y) for each function in

the space implies x = y, and the linear functional f �→ f(x) is continuous for each x

in X. A functional Banach space whose functions are analytic on the underlying set

X is called a Banach space of analytic functions.

Suppose H is a Hilbert space of analytic functions on X, i.e., a Banach space of

analytic functions with an inner product. Because point evaluation for each x in X is

a continuous linear functional, the Riesz Representation Theorem implies that there

is a function Kx in H that induces this linear functional such that f(x) = 〈f,Kx〉H
for each f in H.

Definition 1.1.2 In a Hilbert space of analytic functions H, the functions Kx are

called the reproducing kernel functions and H is called a reproducing kernel

Hilbert space.

1.2 Some Special Hilbert Spaces of Analytic Functions

Now, we consider Hilbert spaces of analytic functions on the complex unit disk,

D = {z ∈ C : |z| < 1}.
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1.2.1 The Hardy Space, H2(D)

Definition 1.2.1 For 0 < p < ∞, the Hardy space Hp(D) is the set of analytic

functions on the complex unit disk for which

sup
0<r<1

∫ 2π

0

∣∣f (reiθ)∣∣p dθ
2π

< ∞.

In fact, the supremum in the definition above is actually a limit as r tends to 1. Note

that if f∗(eiθ) = lim
r→1−

f
(
reiθ
)
, then ||f∗||Lp(∂D) = ||f ||Hp(D).

For p = 2, we recover the classical Hardy space H2(D) which is a Hilbert space

with the inner product

〈f, g〉H2 =

∫ 2π

0

f
(
eiθ
)
g (eiθ)

dθ

2π
.

Alternatively, if we write f and g as their Maclaurin series with f(z) =
∞∑
n=0

anz
n and

g(z) =
∞∑
n=0

bnz
n where z ∈ D and an, bn ∈ C, then

〈f, g〉H2 =
∞∑
n=0

anbn.

We also have that the square of the norm of f is

||f ||2H2 =

∫ 2π

0

∣∣f (eiθ)∣∣2 dθ
2π

=
∞∑
n=0

|an|2 .

The reproducing kernel function, Kα, in the Hardy space H2(D) that evaluates at α

in D is given by

Kα(z) =
1

1− αz
and ||Kα||H2 =

1√
1− |α|2 .

1.2.2 The Bergman Space, A2(D)

Definition 1.2.2 For 0 < p < ∞, the Bergman space Ap(D) is the set of analytic

functions on the complex unit disk for which∫
D

|f(z)|p dA(z)
π

< ∞

where dA(z) is the Lebesgue area measure on the complex unit disk.
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For p = 2, we recover the classical Bergman space A2(D) which is a Hilbert space

with the inner product

〈f, g〉A2 =

∫
D

f(z)g(z)
dA(z)

π
.

Alternatively, if we write f and g as their Maclaurin series with f(z) =
∞∑
n=0

anz
n and

g(z) =
∞∑
n=0

bnz
n where z ∈ D and an, bn ∈ C, then

〈f, g〉A2 =
∞∑
n=0

anbn
n+ 1

.

We also have that the square of the norm of f is

||f ||2A2 =

∫
D

|f(z)|2 dA(z)
π

=
∞∑
n=0

|an|2
n+ 1

.

The reproducing kernel function, Kα, in the Bergman space A2(D) that evaluates at

α in D is given by

Kα(z) =
1

(1− αz)2
and ||Kα||A2 =

1

1− |α|2 .

1.2.3 The Dirichlet Space, D

Definition 1.2.3 The Dirichlet space D is the set of analytic functions on the

complex unit disk for which ∫
D

|f ′(z)|2 dA(z)
π

< ∞

where dA(z) is the Lebesgue area measure on the complex unit disk.

Writing f and g as their Maclaurin series with f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n

where z ∈ D and an, bn ∈ C, the inner product on D is

〈f, g〉D = f(0)g(0) +

∫
D

f ′(z)g′(z)
dA(z)

π
= a0b0 +

∞∑
n=1

nanbn

and the square of the norm of f is

||f ||2D = |f(0)|2 +
∫
D

|f ′(z)|2 dA(z)
π

= |a0|2 +
∞∑
n=1

n |an|2 .
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1.2.4 Weighted Hardy Spaces, H2(β)

Definition 1.2.4 A Hilbert space H whose vectors are analytic functions on the com-

plex unit disk is called a weighted Hardy space if the monomials 1, z, z2, . . . con-

stitute a complete orthogonal set of non-zero vectors in H.

Assuming that the norm on H satisfies ||1||H = 1 and taking β(n) = ||zn||H, then for

f and g in H with f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n where z ∈ D and an, bn ∈ C,

the inner product on H is given by

〈f, g〉H =
∞∑
n=0

anbnβ(n)
2

and the square of the norm of f is given by

||f ||2H =
∞∑
n=0

|an|2 β(n)2.

The weighted Hardy space with weight sequence {β(n)}∞n=0 will be denoted H2(β).

Remark 1.2.1 We note that each weighted Hardy space H2(β) is a reproducing ker-

nel Hilbert space with

Kα(z) =
∞∑
n=0

αnzn

β(n)2

for each point α in D. For each positive integer m, evaluation of the mth derivative of

f in H2(β) at α is a bounded linear functional and f (m)(α) =
〈
f,K

(m)
α

〉
H2(β)

where

K(m)
α (z) =

∞∑
n=m

n!

(n−m)!

αn−mzn

β(n)2
.

Remark 1.2.2 The classical Hardy space, the classical Bergman space, and the Dirich-

let space are weighted Hardy spaces with β(n) = 1, β(n) = (n+1)−1/2, and (up to an

equivalent norm) β(0) = 1 and β(n) = n1/2, respectively.

We also define a class of weighted Hardy spaces called the weighted Bergman

spaces (sometimes called the standard weight Bergman spaces).
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Definition 1.2.5 For α > −1, the weighted Bergman space A2
α(D) is the set of

analytic functions on the complex unit disk for which∫
D

|f(z)|2 (1− |z|2)α dA(z)

π
< ∞

where dA(z) is the Lebesgue area measure on the complex unit disk.

Note that the classical Bergman space A2(D) is recovered when α = 0.

1.3 Composition Operators on Hilbert Spaces of Analytic Functions

We now give the definition of a composition operator on a Hilbert space of analytic

functions.

Definition 1.3.1 Let H be a Hilbert space of analytic functions on D and let

ϕ : D → D be analytic. The composition operator Cϕ, with symbol ϕ, acting on

H is defined by

(Cϕf)(z) = f(ϕ(z))

for z ∈ D and f ∈ H.

If, in addition, ψ is a complex-valued function defined on D, the weighted com-

position operator Wϕ,ψ is defined by

(Wϕ,ψf)(z) = ψ(z)f(ϕ(z)).

Note that Cϕ and Wϕ,ψ are linear operators.

Remark 1.3.1 Composition operators with analytic symbols ϕ that map D to D act-

ing on a Hardy space Hp(D) for p ≥ 1 or a weighted Bergman space A2
α(D) for

α > −1 are well-behaved, i.e., bounded. Cowen and MacCluer [1] showed that on a

Hardy space Hp(D) for p ≥ 1, the operator norm of Cϕ where ϕ is an analytic map

of D to D satisfies (
1

1− |ϕ(0)|2
)1/p

≤ ||Cϕ|| ≤
(
1 + |ϕ(0)|
1− |ϕ(0)|

)1/p

.
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Hurst [2] showed a similar inequality on a weighted Bergman space A2
α(D) for α > −1:(

1

1− |ϕ(0)|2
)(α+2)/2

≤ ||Cϕ|| ≤
(
1 + |ϕ(0)|
1− |ϕ(0)|

)(α+2)/2

.

However, composition operators with analytic symbols ϕ that map D to D acting on

the Dirichlet space D are not bounded unless ϕ ∈ D and has bounded multiplicity [3].

Indeed, since f(z) = z ∈ D, then (Cϕf)(z) = ϕ(z) must be in D if Cϕ is a bounded

operator. The norm of a function f ∈ D measures the area of the image of f ,

counting multiplicity. If we consider the analytic function ϕ(z) = e
z+1
z−1 , then ϕ is an

infinite-to-one map of D to D but ϕ is not in D. Therefore, Cϕ is not bounded on D.

One important consequence of studying composition operators on weighted Hardy

spaces is their relationship to unilateral weighted shifts. For example, consider the

Hilbert space 	2(N) regarded as a space of complex-valued functions on the set of non-

negative integers N and define ϕ on N such that ϕ(n) = n+1. Then, the composition

operator Cϕ acting on 	2(N) is

(f(0), f(1), f(2), . . .) �→ (f(1), f(2), . . .)

which is the backward shift of multiplicity one. In fact, 	2(N) is isomorphic to the

classical Hardy space H2(D) and multiplication by z on H2(D) gives rise to the

forward shift operator on 	2(N), the adjoint of the backward shift.

1.4 Adjoints of Composition Operators on Hilbert Spaces of Analytic

Functions

Definition 1.4.1 Let H be a Hilbert space of analytic functions and let ϕ : D → D

be analytic. The adjoint of the composition operator with symbol ϕ acting

on H is denoted C∗
ϕ and is defined by

〈
C∗
ϕ f, g

〉
H = 〈f, Cϕg〉H

for f, g ∈ H.
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If H is the classical Hardy space or the classical Bergman space, the adjoint of a

composition operator can be written immediately in integral form. Indeed,

(C∗
ϕ f)(z) =

〈
C∗
ϕ f,Kz

〉
H = 〈f, CϕKz〉H (1.1)

which gives

in H2(D) : (C∗
ϕ f)(z) =

∫ 2π

0

f
(
eiθ
)

1− ϕ (eiθ)z

dθ

2π

in A2(D) : (C∗
ϕ f)(z) =

∫
D

f(w)

(1− ϕ(w)z)2
dA(w)

π

Unfortunately, these adjoint formulas do not provide much insight to the structure

of C∗
ϕ , but the work of Cowen and Gallardo-Gutiérrez [4] followed by Hammond,

Moorhouse, and Robbins [5] led to a more explicit formula for C∗
ϕ in the Hardy

space. In Chapter 5, we provide partial results leading to a more explicit formula for

C∗
ϕ in the Bergman space. In 2014, Goshabulaghi and Vaezi [6] established analogous

formulas for C∗
ϕ in the Bergman space and the Dirichlet space.



8



9

2. Background

In establishing a formula without using an integral for the adjoint of a composition op-

erator on the Hardy space, Cowen and Gallardo-Gutiérrez [4] introduced compatible

pairs of multiple-valued functions and multiple-valued weighted composition opera-

tors. We give these definitions and the results leading to the adjoint formula in the

Hardy space finalized by Hammond, Moorhouse, and Robbins [5]. Then, Goshabu-

laghi and Vaezi [6] use this formula to recover analogous formulas for the adjoint of

a composition operator in the Bergman and Dirichlet spaces.

From [4], we have the following definitions:

Definition 2.0.1 Let Ω ⊂ C be a domain and z0 a point of Ω. Let K be a finite set

in Ω that does not include z0. Suppose σ and ψ are functions analytic in a simply-

connected neighborhood of z0 in Ω\K and suppose they are arbitrarily continuable in

Ω\K. We say (σ, ψ) is a compatible pair of multiple-valued functions on Ω

if for any path γ in Ω\K along which the continuation of σ yields the same branch

as at the beginning, it is also the case that continuation of ψ along γ yields the same

branch as at the beginning.

As a consequence of this definition, if (σ, ψ) is a compatible pair of multiple-

valued functions on Ω, then the number of branches of ψ at any point is a divisor of

the number of branches of σ at that point.

Definition 2.0.2 Suppose Ω ⊂ C is a domain and K is a finite set in Ω. Suppose that

σ is an n-valued analytic function that is arbitrarily continuable in Ω\K and takes

values in Ω. Assume that ψ is an m-valued (where m divides n) bounded analytic

function that is arbitrarily continuable in Ω\K. The multiple-valued weighted
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composition operator Wσ,ψ on a Hilbert space of analytic function H is the operator

defined by

(Wσ,ψf) (z) =
∑

ψ(z)f(σ(z))

for f in H and where the sum is taken over all branches of the compatible pair (σ, ψ)

for z in Ω\K.

We note that if σ has a removable singularity at a point ξ ∈ K and if ψ is

bounded in a punctured neighborhood of ξ, then ψ also has a removable singularity

at ξ. Indeed, each branch of σ is single-valued in a neighborhood of ξ and each branch

of σ is associated with a particular branch of ψ. Therefore, ψ is also single-valued in

a neighborhood of ξ.

2.1 An Adjoint Formula in the Hardy Space

From [5], we have the following explicit formula for the adjoint of a composition

operator with rational symbol on the Hardy space H2(D):

Theorem 2.1.1 Let ϕ : D → D be a non-constant rational map, and let Cϕ act on

H2(D). Set σ(z) =
1

ϕ−1(1/z)
, ψ(z) =

zσ′(z)
σ(z)

, and ϕ(∞) = lim
|z|→∞

ϕ(z). Then,

(
C∗
ϕ f
)
(z) =

f(0)

1− ϕ(∞)z
+
∑

ψ(z)f(σ(z)) (2.1)

where the sum is taken over the branches of σ.

In considering ϕ to be a map from the extended complex plane Ĉ = C ∪ {∞} to

itself, note that the number of branches of ϕ−1 matches the degree of ϕ and hence,

the number of branches of σ matches the degree of ϕ. Furthermore, the multiple-

valued function σ has a corresponding ψ for which (σ, ψ) is a compatible pair of

multiple-valued functions on D.

Corollary 2.1.1 Suppose that ϕ : D → D is a rational map, and let Cϕ act on

H2(D). If ϕ(∞) = ∞, then C∗
ϕ is a (multiple-valued) weighted composition operator.
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2.2 An Adjoint Formula in the Bergman Space

In the formula for the adjoint of a composition operator with rational symbol

on the Bergman space A2(D), Goshabulaghi and Vaezi [6] use the integral operator

Q : A2(D) → A2(D) defined by Qf = F where F is the antiderivative of f in A2(D)

with F (0) = 0.

Theorem 2.2.1 Let ϕ : D → D be a non-constant rational map, and let Cϕ act on

A2(D). Set σ(z) =
1

ϕ−1(1/z)
, u(z) =

z2σ′(z)
σ(z)2

, and ϕ(∞) = lim
|z|→∞

ϕ(z). Then,

(
C∗
ϕ f
)
(z) =

f(0)(
1− ϕ(∞)z

)2 +
∑

u′(z)(Qf)(σ(z)) +
∑

u(z)σ′(z)f(σ(z)) (2.2)

where each sum is taken over the branches of σ.

Note that each branch of σ has a corresponding u used in the sums of Equation 2.2.

2.3 An Adjoint Formula in the Dirichlet Space

Lastly, we give the formula for the adjoint of a composition operator with rational

symbol on the Dirichlet space D [6].

Theorem 2.3.1 Let ϕ : D → D be a non-constant rational map, and let Cϕ act on

D. Set σ(z) =
1

ϕ−1(1/z)
and ϕ(∞) = lim

|z|→∞
ϕ(z). Then,

(
C∗
ϕ f
)
(z) = f(0)Kϕ(0)(z) +

∑
f(σ(z))−

∑
f(σ(0))

where each sum is taken over the branches of σ.
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3. Results in Weighted Hardy Spaces

We develop results about the kernel of the adjoint of a composition operator whose

symbol is rational acting on a weighted Hardy space and provide an explicit descrip-

tion of the kernels of some of these adjoints. First, we state the relationship between

the range of a linear operator and the kernel of its adjoint [7].

Theorem 3.0.1 Let H be a Hilbert space and let T be a bounded linear operator from

H to H. Then

ker(T∗) = rng(T )⊥.

We now identify the range of a composition operator acting on a weighted Hardy

space.

Lemma 3.0.1 Let H2(β) be a weighted Hardy space and let ϕ : D → D be analytic.

If Cϕ is a bounded operator on H2(β), then span {ϕn}∞n=0 is dense in rng(Cϕ).

Proof Since {pn(z) = zn}∞n=0 is a complete orthogonal set inH2(β), i.e., span{pn}∞n=0

is dense in H2(β), we have that span {Cϕpn}∞n=0 = span {ϕn}∞n=0 is dense in rng(Cϕ).

We also have the following lemma for the constant term of a function in the kernel

of the adjoint of a composition operator acting on a weighted Hardy space.

Lemma 3.0.2 Let H2(β) be a weighted Hardy space and let ϕ : D → D be analytic.

If Cϕ is a bounded operator on H2(β) and if f is in ker(C∗
ϕ ), then f(0) = 0.
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Proof Since ϕ0 = 1 is in rng(Cϕ) by Lemma 3.0.1 and if f is in ker(C∗
ϕ ), then

〈f, 1〉H2(β) = 0. Writing f as its Maclaurin series f(z) =
∞∑
n=0

anz
n, we have

0 = 〈f, 1〉H2(β)

= a0

= f(0)

3.1 Composition Operators Whose Adjoints Have Trivial Kernels

We begin by identifying the kernel of the adjoint of a composition operator with

linear fractional symbol on weighted Hardy spaces.

Definition 3.1.1 If a, b, c, d are complex numbers such that ad−bc 
= 0, the mapping

z �→ az + b

cz + d

is called a linear fractional transformation (or LFT).

Lemma 3.1.1 Let H2(β) be a weighted Hardy space, and let ϕ(z) = az + b be a

non-constant map such that ϕ : D → D. If Cϕ is a bounded operator on H2(β), then

ker(C∗
ϕ ) = {0}.

Proof Note that ϕ(z) = az + b is in span {1, z}. Since span {ϕn}∞n=0 is dense in

rng(Cϕ) by Lemma 3.0.1, then span {ϕn}∞n=0 = span {zn}∞n=0 is dense in rng(Cϕ).

Therefore,

ker(C∗
ϕ ) = rng(Cϕ)

⊥ = {0}.

Lemma 3.1.2 Let ϕ : D → D be an LFT with ϕ(z) =
az + b

cz + d
. If c 
= 0 and α = − c

d
,

then ϕn is in span
{
1, K

(m)
α

}n−1

m=0
where Kα(z) =

1

1− αz
is the reproducing kernel
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function at α in the classical Hardy space H2(D) and K
(m)
α (z) =

∞∑
n=m

n!

(n−m)!
αn−mzn

is the kernel function that evaluates the mth derivative of a function in H2(D) at α

as in Remark 1.2.1.

Proof Observe that

K(m)
α (z) =

∞∑
n=m

n!

(n−m)!
αn−mzn

= zmα−m
∞∑
n=m

n!

(n−m)!
αnzn−m

= zmα−m dm

dzm

∞∑
n=0

αnzn

= zmα−m dm

dzm
1

1− αz

= zmα−mαm
m!

(1− αz)m+1

=
m!zm

(1− αz)m+1

Since ϕ maps D to D, then d 
= 0 and we can rewrite ϕ as

ϕ(z) =
az + b

d
(
1− (− c

d

)
z
) =

az + b

d(1− αz)

which is in span {1, Kα}. Now, consider ϕ(z)n =
(az + b)n

dn (1− αz)n
and rewrite ϕ(z)n as

ϕ(z)n = A0 +
A1

1− αz
+

A2z

(1− αz)2
+ · · ·+ Anz

n−1

(1− αz)n

= A0 + A1Kα(z) + B2K
′
α(z) + · · ·+BnK

(n−1)
α (z)

which is in span
{
1, K

(m)
α

}n−1

m=0
.

Theorem 3.1.1 Let ϕ : D → D be an LFT with ϕ(z) =
az + b

cz + d
. If Cϕ acts on

H2(D), then ker(C∗
ϕ ) = {0}.
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Proof Since ϕ maps D to D, then d 
= 0. If c = 0, then ϕ is a polynomial of degree

one and Lemma 3.1.1 shows ker(C∗
ϕ ) = {0}. Otherwise, if c 
= 0, we can rewrite ϕ as

ϕ(z) =
az + b

d
(
1− (− c

d

)
z
) =

az + b

d(1− αz)
where α = − c

d
which is in span {1, Kα}. Since

span {ϕn}∞n=0 is dense in rng(Cϕ) by Lemma 3.0.1, then span
{
1, K

(n)
α

}∞

n=0
is dense in

rng(Cϕ) by Lemma 3.1.2. For f in ker(C∗
ϕ ) = rng(Cϕ)

⊥, we have from Remark 1.2.1

that

0 =
〈
f,K(n)

α

〉
H2 = f (n)(α)

for n = 0, 1, 2, . . . which implies that f(z) =
∞∑
n=0

f (n)(α)

n!
(z − α)n = 0. Therefore,

ker(C∗
ϕ ) = {0}.

In fact, we have the same result for Cϕ with linear fractional symbol acting on

weighted Bergman spaces and we give a different proof from Theorem 3.1.1. Before

proceeding, we state the definition of an analytic Toeplitz operator.

Definition 3.1.2 Let H be the Hardy space H2(D) or a weighted Bergman space

A2
α(D) and let ϕ be a function in H∞(D). The analytic Toeplitz operator Tϕ,

with symbol ϕ, acting on H is defined by

(Tϕh)(z) = (ϕh)(z)

for z ∈ D, and h ∈ H.

Following Cowen’s [9] work that established a formula for the adjoint of a com-

position operator with linear fractional symbol on the Hardy space H2(D), Hurst [2]

proved an analogous formula for the adjoint of the same type of composition operator

acting on a weighted Bergman space.

Theorem 3.1.2 Let ϕ : D → D be an LFT with ϕ(z) =
az + b

cz + d
. Then, the map

σ(z) =
az − c

−bz + d
takes D to D, g(z) =

(−bz + d
)−1

and h(z) = cz + d are in H∞(D),

and as operators on the Hardy space H2(D),

C∗
ϕ = TgCσT

∗
h .
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Theorem 3.1.3 Let ϕ : D → D be an LFT with ϕ(z) =
az + b

cz + d
and let α > −1.

Then, σ(z) =
az − c

−bz + d
maps D to D, g(z) =

(−bz + d
)−(α+2)

and h(z) = (cz + d)α+2

are in H∞(D), and as operators on the weighted Bergman space A2
α(D),

C∗
ϕ = TgCσT

∗
h .

For ϕ in these two theorems, we show that C∗
ϕ has trivial kernel in the Hardy

space H2(D) and the weighted Bergman spaces A2
α(D) for α > −1.

Theorem 3.1.4 Let ϕ : D → D be an LFT with ϕ(z) =
az + b

cz + d
. If Cϕ acts on the

Hardy space H2(D) or a weighted Bergman space A2
α(D) for α > −1, then

ker(C∗
ϕ ) = {0}.

Proof We have from Theorems 3.1.2 and 3.1.3 that C∗
ϕ = TgCσT

∗
h . Note that g

and h are non-zero, and T∗h is invertible if Th is invertible. Indeed, since ϕ maps D

to D, then
1

cz + d
is bounded on D and so h is bounded above and bounded below

by a non-zero constant on D. Therefore, Th is invertible.

Now, if f is in ker(C∗
ϕ ), then for z ∈ D

0 = (C∗
ϕ f)(z)

= (TgCσT
∗
h f)(z)

= g(z)(CσT
∗
h f)(z)

0 = (CσT
∗
h f)(z)

0 = (T∗h f)(z)

We have (T∗h f)(z) = 0 because ker(Cσ) = {0}. Therefore, f ≡ 0 since ker(T∗h ) = {0}.

In addition to adjoints of composition operators with linear fractional symbols

having trivial kernels, those with univalent polynomial symbols on D also have trivial

kernels, that is, polynomials that are one-to-one on D. We introduce a couple of

definitions and a proposition from Sarason’s [10] paper on Weak-Star Generators of

H∞(D).



18

Definition 3.1.3 If B is a bounded domain in the plane, then the Carathéodory

hull (or C -hull) of B is the complement of the closure of the unbounded component

of the complement of the closure of B.

The C -hull of B is denoted B∗.

Definition 3.1.4 A conformal map ϕ of D onto a bounded simply connected domain

G is a sequential generator if every function in H∞(D) is the weak-star limit of

a sequence of polynomials in ϕ.

Proposition 3.1.1 Let ϕ be a conformal map of D onto a bounded simply connected

domain G. The function ϕ is a sequential generator if and only if G is a component

of its C -hull.

We combine these notions to prove the following.

Lemma 3.1.3 If ϕ is a polynomial univalent on D, then ϕ is a weak-star generator

of H∞(D).

Proof Since ϕ is a polynomial that is univalent on D, then ϕ is a conformal map

of D onto G = ϕ(D) and ϕ : D → G is one-to-one and onto. Now, G is a compo-

nent of its C -hull, and in fact, G = G∗. Therefore, ϕ is a sequential generator by

Proposition 3.1.1.

Theorem 3.1.5 Let H be the Hardy space H2(D) or a weighted Bergman space A2
α(D)

for α > −1, and let ϕ be a polynomial that is univalent on D. If Cϕ acts on H, then

ker(C∗
ϕ ) = {0}.

Proof If ϕ is a polynomial univalent on D, then ϕ is a weak-star generator of

H∞(D) by Lemma 3.1.3. Since ϕ is a weak-star generator of H∞(D), then any poly-

nomial can be approximated by polynomials in ϕ which are dense in H. Therefore,

ker(C∗
ϕ ) = rng(Cϕ)

⊥ = {0}.

Example 3.1.1 Let ϕ(z) =
z2 + 10z + 9

20
. If z ∈ D with ϕ(z) = ϕ(w), then either

w = z ∈ D or w = −z − 10 
∈ D which shows that ϕ is univalent on D. Therefore, ϕ

is a weak-star generator of H∞(D) and the kernel of C∗
ϕ is {0} by Theorem 3.1.5.
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3.2 Composition Operators Whose Adjoints Have Non-trivial Kernels

We give results on some composition operators whose adjoints have non-trivial

kernels and are, in fact, spanned by a subset of the monomials {zn}∞n=0.

Theorem 3.2.1 Let ψ : D → D be analytic, let d be an integer with d ≥ 2, and

consider ϕ(z) = ψ(zd) and M = span{zk : k 
∈ dN}. If Cϕ acts on the Hardy space

H2(D) or a weighted Bergman space A2
α(D) for α > −1, then

ker(C∗
ϕ ) ⊃ M.

Furthermore, if ker(C∗
ψ ) = {0}, then ker(C∗

ϕ ) = M .

Proof Let H be the Hardy space H2(D) or a weighted Bergman space A2
α(D) for

α > −1. If f ∈ H, then

(Cϕf)(z) = f(ψ(zd))

= (Czd(f ◦ ψ)) (z)
= (CzdCψf) (z)

and so Cϕ = CzdCψ and C∗
ϕ = C∗

ψC
∗
zd
. Now, we have that ker(C∗

ϕ ) ⊃ ker(C∗
zd
) and

ker(C∗
zd
) = rng(Czd)

⊥ = span
{
zdn
}∞
n=0

⊥
= span {zk : k 
= dn} = M .

If ker(C∗
ψ ) = {0}, then rng(Cψ) = H, i.e., Cψ has dense range in H. Therefore,

Cϕ has dense range in CzdH, and

ker(C∗
ϕ ) = rng(Cϕ)

⊥ = span
{
zdn
}∞
n=0

⊥
= span {zk : k 
= dn} = M.

Theorem 3.2.2 Let ϕ be a rational map from D to D such that ϕ(z) = zdψ(z) for

some integer d ≥ 2 and ψ an analytic map with ψ(0) 
= 0. Let H be the Hardy

space H2(D) or a weighted Bergman space A2
α(D) for α > −1, let Cϕ act on H, and

set N = ker(C∗
ϕ ), Pm = {polynomials of degree ≤ m}, and Nm = N ∩ Pm. Then,

dim(Nm) = m if 1 ≤ m ≤ d−1 and dim(Nm) = (d−1)k if m = dk−1 for k = 1, 2, . . . .
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Proof Write ϕ as its Maclaurin series ϕ(z) =
∞∑
n=d

anz
n where ad 
= 0 and

ϕ(z)l =
∞∑
n=dl

bnz
n

where bdl = ald 
= 0.

If 1 ≤ m ≤ d − 1, then dim(Nm) = m. Indeed, if f(z) =
m∑
j=0

cjz
j is in Nm,

then c0 = 0 by Lemma 3.0.2 and
〈
f, ϕl

〉
H = 0 for each l = 1, 2, . . . and for any

cj ∈ C, j = 1, 2, . . . ,m.

If m = dk − 1 for k = 1, 2, . . . , proceed by induction on k. If k = 1, then

m = d − 1 and dim(Nd−1) = d − 1. Now, assume that dim(Ndk−1) = (d − 1)k.

Consider f ∈ Nd(k+1)−1 and write f(z) =

d(k+1)−1∑
j=1

cjz
j. Note that c0 = 0, and the

matrix of coefficients for the system of equations
{〈

f, ϕl
〉
H = 0

}k
l=1

has rank k. For

l > k,
〈
f, ϕl

〉
H = 0 since the degree of f is less than dl. The Rank-Nullity Theorem

gives dim (Nk+1) = (d(k + 1)− 1)− k = (d− 1)(k + 1).

Corollary 3.2.1 With hypotheses as in Theorem 3.2.2, if m = dk for k = 1, 2, . . .,

then dim(Nm) = (d− 1)k.

Proof Note that Pdk−1 ⊂ Pdk and hence Ndk−1 ⊂ Ndk.

Suppose there exists f ∈ Pdk of degree dk and write f(z) =
dk∑
j=1

cjz
j where cdk 
= 0.

Then,
〈
f, ϕk

〉
H = cdkadkβ(dk)

2 
= 0 and so f 
∈ N , i.e., N does not contain any

polynomials of degree dk. Therefore, Ndk−1 = Ndk.



21

4. Results in the Hardy Space

We turn our attention to adjoints of composition operators with kernels that are non-

trivial, specifically those composition operators whose symbols are rational of degree

two. Our main result is a functional equation that is satisfied by functions in the

kernel of the adjoint of a composition operator of this type acting on the classical

Hardy space H2(D).

4.1 Composition Operators with Rational Symbols of Degree Two

Consider composition operators whose symbols are not univalent on the complex

unit disk. The kernel of the adjoint of a composition operator in this class is non-

trivial and, in fact, is infinite-dimensional.

Lemma 4.1.1 Let H be the Hardy space H2(D) or a weighted Bergman space A2
α(D)

for α > −1. If α1, α2, . . . , αn are n distinct points in D, then the set of reproducing

kernels {Kα1 , Kα2 , . . . , Kαn} is linearly independent.

Proof Consider q(z) = (z − α1)(z − α2) · · · (z − αn) and qj(z) =
q(z)

z − αj
. Note

that qj(αj) 
= 0. Now, if c1Kα1 + c2Kα2 + · · · + cnKαn = 0 for some constants

c1, c2, . . . , cn ∈ C, then 〈f, c1Kα1 + c2Kα2 + · · ·+ cnKαn〉H = 0 for any f ∈ H. In

particular, for each j = 1, . . . , n,

0 = 〈qj, c1Kα1 + c2Kα2 + · · ·+ cnKαn〉H
= cjqj(αj)

0 = cj

Therefore, {Kα1 , Kα2 , . . . , Kαn} is linearly independent.
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Theorem 4.1.1 Let H be the Hardy space H2(D) or a weighted Bergman space A2
α(D)

for α > −1. If ϕ is not univalent on D, then ker(C∗
ϕ ) is infinite-dimensional.

Proof Note that for every α in D, C∗
ϕKα(z) = Kϕ(α)(z) since

C∗
ϕKα(z) =

〈
C∗
ϕKα, Kz

〉
H

= 〈Kα, CϕKz〉H
= CϕKz(α)

= Kz(ϕ(α))

=
〈
Kϕ(α), Kz

〉
H

= Kϕ(α)(z)

Now, take α, β in D such that α 
= β, ϕ(α) = ϕ(β). Then Kα − Kβ is in ker(C∗
ϕ )

since
(
C∗
ϕ (Kα −Kβ)

)
(z) = Kϕ(α)(z) − Kϕ(β)(z) = 0. Because ϕ is not univalent

on D, there exist an open set in D containing α, say U , and an open set in D

containing β, say V , such that U ∩ V = ∅ and ϕ(U) = ϕ(V ). Now, the set

S = {Kα −Kβ : ϕ(α) = ϕ(β), α ∈ U, β ∈ V } is linearly independent by Lemma 4.1.1

and hence, span(S) is an infinite-dimensional subspace of ker(C∗
ϕ ).

While the kernel of the adjoint of a composition operator with a non-univalent

symbol on the complex unit disk has been well-known to be infinite-dimensional, no

classification has been given for functions in this kernel. Using Equation 2.1, we give

a functional equation that characterizes functions in the kernel of the adjoint of a

composition operator with a rational symbol of degree two acting on the classical

Hardy space H2(D).
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4.1.1 Main Results

Let ϕ be a rational map of degree two from D to D with ϕ(z) =
a1z

2 + b1z + c1
a2z2 + b2z + c2

.

When referring to such a degree two rational map, we assume that the numerator

and denominator have no common factors. Recall from Theorem 2.1.1,

(
C∗
ϕ f
)
(z) =

f(0)

1− ϕ(∞)z
+

2∑
j=1

ψj(z)f(σj(z))

where σ(z) =
1

ϕ−1 (1/z)
and ψ(z) =

zσ′(z)
σ(z)

. Since ϕ is a rational map of degree

two, ϕ−1 has two branches and therefore σ has two branches, say σ1 and σ2, defined

on the extended complex plane Ĉ = C ∪ {∞}. Furthermore, ψ1(z) =
zσ′

1(z)

σ1(z)
and

ψ2(z) =
zσ′

2(z)

σ2(z)
, and (σ, ψ) is a compatible pair of multiple-valued functions on D.

Theorem 4.1.2 Let ϕ be a rational map of degree two from D to D with

ϕ(z) =
a1z

2 + b1z + c1
a2z2 + b2z + c2

.

There exists a function ζ, not the identity, such that

ζ(z) =
1

ϕ−1(ϕ(1/z))
,

ζ(σ1) = σ2 where σ1 and σ2 are the branches of σ in Theorem 2.1.1, and ζ ◦ ζ = id.

Furthermore,

ζ(z) = −
(
a1b2 − b1a2

)
+ (a1c2 − c1a2)z

(a1c2 − c1a2) +
(
b1c2 − c1b2

)
z
.

Proof Solve for ζ(z) by solving for w in ϕ

(
1

z

)
= ϕ

(
1

w

)
:

a1/z
2 + b1/z + c1

a2/z
2 + b2/z + c2

=
a1/w

2 + b1/w + c1
a2/w

2 + b2/w + c2

a1 + b1z + c1z
2

a2 + b2z + c2z
2 =

a1 + b1w + c1w
2

a2 + b2w + c2w
2

(a1 + b1z + c1z
2)(a2 + b2w + c2w

2) = (a1 + b1w + c1w
2)(a2 + b2z + c2z

2)

(a1 + b1z + c1z
2)(a2 + b2w + c2w

2)− (a1 + b1w + c1w
2)(a2 + b2z + c2z

2) = 0
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(w − z)
[
a1b2 − b1a2 + (a1c2 − c1a2)(w + z) + (b1c2 − c1b2)zw

]
= 0

Therefore, the two branches of
1

ϕ−1(ϕ(1/z))
are ζ0(z) = w = z and

ζ(z) = w = −
(
a1b2 − b1a2

)
+ (a1c2 − c1a2)z

(a1c2 − c1a2) +
(
b1c2 − c1b2

)
z

which are both single-valued functions on Ĉ.

To show that ζ(σ1) = σ2, suppose the two branches of ϕ−1 are ϕ−1
1 and ϕ−1

2 and

write σ1 and σ2 from Theorem 2.1.1 as follows:

σ1(z) =
1

ϕ−1
1 (1/z)

σ2(z) =
1

ϕ−1
2 (1/z)

Solving for 1/z gives

1

z
= ϕ

(
1

σ1(z)

)
= ϕ

(
1

σ2(z)

)
.

Since ζ is not the identity, then

ζ(σ1(z)) =
1

ϕ−1
2 (ϕ(1/σ1(z))

=
1

ϕ−1
2 (ϕ(1/σ2(z))

= σ2(z)

and it follows that ζ ◦ ζ = id.

Our main result follows from Theorems 2.1.1 and 4.1.2.

Theorem 4.1.3 Let ϕ be a rational map of degree two mapping D into D and let Cϕ

act on the Hardy space H2(D). For ζ as in Theorem 4.1.2, f is in ker(C∗
ϕ ) if and

only if

ζ(z)f(z) + zζ ′(z)f(ζ(z)) = 0. (4.1)

Proof Recall that f(0) = 0 for f ∈ ker(C∗
ϕ ) by Lemma 3.0.2. Using Theorem 2.1.1,

0 = C∗
ϕ f(z)

=
f(0)

1− ϕ(∞)z
+

2∑
j=1

ψj(z)f(σj(z))

= ψ1(z)f(σ1(z)) + ψ2(z)f(σ2(z))
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Set w = σ1(z). Then z = σ−1
1 (w). From Theorem 4.1.2, ζ(w) = ζ(σ1(z)) = σ2(z).

Rewrite ψ1 and ψ2 as follows:

ψ1(z) =
zσ′

1(z)

σ1(z)

=
σ−1
1 (w)σ′

1(σ
−1
1 (w))

w

ψ2(z) =
zσ′

2(z)

σ2(z)

=
σ−1
1 (w)ζ ′(w)σ′

1(σ
−1
1 (w))

ζ(w)

=
σ−1
1 (w)σ′

1(σ
−1
1 (w))ζ ′(w)

ζ(w)

Therefore,

0 = ψ1(z)f(σ1(z)) + ψ2(z)f(σ2(z))

=
σ−1
1 (w)σ′

1(σ
−1
1 (w))

w
f(w) +

σ−1
1 (w)σ′

1(σ
−1
1 (w))ζ ′(w)

ζ(w)
f(ζ(w))

0 =
1

w
f(w) +

ζ ′(w)
ζ(w)

f(ζ(w))

0 = ζ(w)f(w) + wζ ′(w)f(ζ(w)).

This shows that if f is in ker(C∗
ϕ ), then f satisfies Equation 4.1.

Now, if f satisfies Equation 4.1, we show that f(0) = 0 and f is in ker(C∗
ϕ ).

Solving for f(z) in Equation 4.1 gives

f(z) = −zζ ′(z)
ζ(z)

f(ζ(z)).
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If ζ(0) 
= 0, then f(0) = −0 · ζ ′(0)
ζ(0)

f(ζ(0)) = 0. Otherwise, if ζ(0) = 0, then ζ has the

form ζ(z) =
az

cz + d
since ζ is an LFT by Theorem 4.1.2. Therefore, ζ ′(z) =

ad

(cz + d)2

and

f(0) = lim
z→0

(
−zζ ′(z)

ζ(z)
f(ζ(z))

)

= lim
z→0

(
− d

cz + d
f(ζ(z))

)
= − d

c · 0 + d
f(ζ(0))

= −f(0)

f(0) = 0

To see that f ∈ ker(C∗
ϕ ), set w = σ1(z) and ζ(w) = ζ(σ1(z)) = σ2(z) to transform

Equation 4.1 back to

0 = ψ1(z)f(σ1(z)) + ψ2(z)f(σ2(z))

=
f(0)

1− ϕ(∞)z
+

2∑
j=1

ψj(z)f(σj(z))

= C∗
ϕ f(z)

Corollary 4.1.1 Let ϕ be a rational map of degree two mapping D into D and let

Cϕ act on the Hardy space H2(D). If f is in ker(C∗
ϕ ) and D ∩ ζ(D) 
= ∅, then f can

be extended to be analytic on D ∪ ϕ(D).

Proof From Theorem 4.1.2, we have that ζ is an LFT, and write ζ(z) =
az + b

cz + d
and

ζ ′(z) =
ad− bc

(cz + d)2
. If f is in ker(C∗

ϕ ), then f(0) = 0 from Lemma 3.0.2 and therefore
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f is in zH2(D), i.e., there is g ∈ H2(D) such that f(z) = zg(z). From Equation 4.1,

we have that ζ(z)f(z) + zζ ′(z)f(ζ(z)) = 0, or solving for f(ζ(z)) yields

f(ζ(z)) = − ζ(z)

zζ ′(z)
f(z)

= − (az + b)(cz + d)2

(ad− bc)(cz + d)z
zg(z)

= −(az + b)(cz + d)

ad− bc
g(z)

where −(az + b)(cz + d)

ad− bc
g(z) is analytic for z ∈ D. Therefore, f(ζ(z)) is analytic for

z ∈ D or f is analytic on ζ(D). Thus, f is analytic on D and ζ(D).

4.1.2 Examples

Example 4.1.1 Let ϕ(z) =
z2 + 1

2
, a map for which ϕ(D) ⊂ D and, in fact, is

two-to-one on D. Then ζ(z) = −z and by Theorem 4.1.3,

ker(C∗
ϕ ) =

{
f ∈ H2(D)

∣∣ f(z) = −f(−z)
}

which agrees with Corollary 3.2.1. Let W = span {Kα −Kβ | ϕ(α) = ϕ(β), α, β ∈ D}.
We show that W = ker(C∗

ϕ ). From Theorem 4.1.1, we have that W ⊂ ker(C∗
ϕ ).

Proceeding by contradiction, assume W 
= ker(C∗
ϕ ). There exists f ∈ ker(C∗

ϕ ) such

that f = g + h where g ∈ W , h ∈ W⊥, and h 
= 0. Now, h = f − g ∈ ker(C∗
ϕ ).

Suppose ϕ(α) = ϕ(β). If β 
= α, then β = −α. For every α ∈ D,

0 = 〈h,Kα −Kβ〉H2

= 〈h,Kα −K−α〉H2

= h(α)− h(−α)

= 2h(α)

0 = h(α)

Therefore, h = 0 which is a contradiction, and so W = ker(C∗
ϕ ). In fact, the same

conclusion holds in any weighted Bergman space A2
α(D) for α > −1.
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Example 4.1.2 Let ϕ(z) =
z2 + z

2
, a map for which ϕ(D) ⊂ D, is two-to-one on

S = {z ∈ D : Re (z) > −1/2}, and is univalent on D\S. Then ζ(z) = − z

z + 1
.

Theorem 4.1.3 gives f ∈ ker(C∗
ϕ ) if and only if

− z

z + 1
f(z) + z

−1

(z + 1)2
f

(
− z

z + 1

)
= 0

(z + 1)f(z) + f

(
− z

z + 1

)
= 0 (4.2)

If f ∈ H2(D), then (z + 1)f ∈ H2(D) and hence, (z + 1)f is analytic for z ∈ D.

Note that for some z ∈ D, we have ζ(z) 
∈ D, and in fact, the linear fractional

transformation ζ maps D onto the half-plane {w : Re (w) > −1/2}. Therefore, the

result from Theorem 4.1.3 shows that if f ∈ ker(C∗
ϕ ), then f is analytic in a set larger

than D, namely in D∪{w : Re (w) > −1/2}. Indeed, for w ∈ C with Re (w) > −1/2,

we have that ζ−1(w) = ζ(w) ∈ D. Rearranging Equation 4.2 gives

f(w) = −(ζ(w) + 1)f(ζ(w))

and so f is analytic in the half-plane {w : Re (w) > −1/2} as well as in D.

4.2 More Composition Operators Whose Adjoints Have Trivial Kernels

We describe some more composition operators whose adjoints have trivial kernels.

Theorem 4.2.1 Let ϕ be a rational map of degree two mapping D into D and let Cϕ

act on the Hardy space H2(D). Consider ζ as in Theorem 4.1.2. If ζ(z0) = ∞ for

some z0 ∈ D and D ∪ ζ(D) = Ĉ, then ker(C∗
ϕ ) = {0}.

Proof Since ζ is an LFT, we can write ζ as ζ(z) =
az + b

z − z0
where az0 + b 
= 0 and

ζ ′(z) = − az0 + b

(z − z0)2
. If f is in ker(C∗

ϕ ), then f satisfies Equation 4.1:

0 = ζ(z)f(z) + zζ ′(z)f(ζ(z))

0 =
az + b

z − z0
f(z)− z(az0 + b)

(z − z0)2
f(ζ(z)) (4.3)
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If z0 = 0, then multiplying both sides of Equation 4.3 by z gives

0 = (az + b)f(z)− bf(ζ(z)) (4.4)

and evaluating at z = 0 results in f(∞) = 0 since f(0) = 0 by Lemma 3.0.2.

If z0 
= 0, then multiplying both sides of Equation 4.3 by (z − z0)
2 gives

0 = (az + b)(z − z0)f(z)− z(az0 + b)f(ζ(z))

and evaluating at z = z0 results in f(∞) = 0.

Note that ζ(D) is an open set in Ĉ and is the complement of a closed disk in D.

Indeed, since D∪ ζ(D) = Ĉ, then D∩ ζ(D) is open and non-empty, and as an LFT, ζ

maps the unit circle ∂D to a circle contained in D. Now, there exists 0 < r0 < 1 such

that the circle of radius r0 centered at the origin is contained in D ∩ ζ(D). Consider

the compact sets rD and ζ
(
rD
)
for r0 ≤ r < 1. Since f is a function in H2(D), then

f is bounded on compact subsets of D, and thus f is bounded on rD. For z ∈ ζ(D),

there is w ∈ D such that ζ(w) = z and f(z) = f(ζ(w)) =
(z − z0)(az + b)

z(az0 + b)
f(w) from

Equation 4.4 shows that f is bounded on ζ
(
rD
)
. Therefore, f is a bounded and

analytic function on Ĉ, and f ≡ 0 by Liouville’s Theorem.

Example 4.2.1 Let ϕ(z) =
3z

4− z2
, a map for which ϕ(D) ⊂ D, and in fact, is

univalent on D. Then, ζ(z) =
1

4z
maps D to Ĉ\1

4
(D ∪ ∂D) and so D ∪ ζ(D) = Ĉ.

Therefore, ker(C∗
ϕ ) = {0} by Theorem 4.2.1.

Theorem 4.2.2 For ϕ(z) = az2 + bz + c mapping D to D, ϕ is univalent on D if

and only if

∣∣∣∣ ba
∣∣∣∣ ≥ 2. Furthermore, if Cϕ acts on the Hardy space H2(D) or a weighted

Bergman space A2
α(D) for α > −1, then ker(C∗

ϕ ) = {0}.

Proof Suppose ϕ(z) = ϕ(w) and solve for w:

az2 + bz + c = aw2 + bw + c

az2 − aw2 + bz − bw = 0

a(z + w)(z − w) + b(z − w) = 0

(z − w)(az + aw + b) = 0
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Either w = z or w = −az + b

a
= −

(
z +

b

a

)
. Now, ϕ is univalent on D if and only if

−
(
z +

b

a

)

∈ D if and only if

∣∣∣∣ ba
∣∣∣∣ ≥ 2.

If ϕ is univalent on D and if Cϕ acts on the Hardy space H2(D) or a weighted

Bergman space A2
α(D) for α > −1, then ker(C∗

ϕ ) = {0} by Theorem 3.1.5.

4.3 Composition Operators with Monomial Symbols

We now investigate a couple of composition operators with special rational sym-

bols.

Theorem 4.3.1 Let n be an integer with n ≥ 2 and ϕ(z) = zn. Let Cϕ act on

H2(D). Then, f is in ker(C∗
ϕ ) if and only if

n∑
j=1

f (ζj(z)) = 0

where ζ(z) = e2πik/nz, k and n are relatively prime, ζj = ζ ◦ ζ ◦ . . . ◦ ζ︸ ︷︷ ︸
j times

, and z ∈ D.

Proof Observe the branches of ϕ−1(z) = e2πim/nz1/n for m = 1, 2, . . . , n, and the

branches of σ from Theorem 2.1.1 are σ(z) =
1

ϕ−1(1/z)
= e2πim/nz1/n with the

corresponding maps

ψ(z) =
zσ′(z)
σ(z)

=
z 1
n
e2πim/nz1/n−1

e2πim/nz1/n
=

1

n
.

Also, note the branches of

ζ(z) =
1

ϕ−1(ϕ(1/z))
= σ

(
1

ϕ(1/z)

)
= e2πim/nz.

If 1 ≤ k < n is relatively prime to n, then e2πik/n is a primitive nth root of unity

and ζn = id. Furthermore, for ζ(σ(z)) = e2πi(k+m)/nz1/n, a different branch of σ, for

m = 1, 2, . . . , n.
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Now, if f ∈ ker(C∗
ϕ ), then f(0) = 0 from Lemma 3.0.2, and we have from Theo-

rem 2.1.1 that

0 = (C∗
ϕ f)(z)

=
f(0)

1− ϕ(∞)z
+
∑

ψ(z)f(σ(z))

=
∑ 1

n
f(σ(z))

0 =
∑

f(σ(z)) (4.5)

where the sum is taken over the branches of σ. For a particular branch of σ, set

w = σ(z) in Equation 4.5 and so

n∑
j=1

f(ζj(w)) = 0.
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5. Results in the Bergman Space

Before Goshabulaghi and Vaezi’s [6] paper, we established some preliminary results

describing more explicitly the adjoint of a composition operator on the classical

Bergman space A2(D).

5.1 Some Useful Calculations

We first give a few calculations that will help prove these results.

5.1.1 Partial Fraction Decomposition of a Rational Map

For α in D\{0} and a polynomial p(z) for which p(1/α) 
= 0, consider the fraction
1

(1− αz)2p(z)2
and the following partial fraction decomposition:

1

(1− αz)2p(z)2
=

A

(1− αz)2
+

B

1− αz
+

C

p(z)2
+

D

p(z)
(5.1)

where A,B are constants in C and C,D are polynomials in z. We solve for A by

multiplying each side of Equation 5.1 by (1− αz)2 and evaluating at z = 1/α:

(1− αz)2

(1− αz)2p(z)2
=

A(1− αz)2

(1− αz)2
+

B(1− αz)2

1− αz
+

C(1− αz)2

p(z)2
+

D(1− αz)2

p(z)

1

p(z)2
= A+B(1− αz) +

C(1− αz)2

p(z)2
+

D(1− αz)2

p(z)

1

p(1/α)2
= A+B · 0 + C · 0

p(1/α)2
+

D · 0
p(1/α)

1

p(1/α)2
= A (5.2)
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Now we have

1

(1− αz)2p(z)2
=

1

p(1/α)2(1− αz)2
+

B

1− αz
+

C

p(z)2
+

D

p(z)

1

(1− αz)2p(z)2
− 1

p(1/α)2(1− αz)2
=

B

1− αz
+

C

p(z)2
+

D

p(z)

p(1/α)2 − p(z)2

p(1/α)2(1− αz)2p(z)2
=

B

1− αz
+

C

p(z)2
+

D

p(z)
(5.3)

and we solve for B by multiplying each side of Equation 5.3 by 1−αz and evaluating

at z = 1/α:

(p(1/α)2 − p(z)2) (1− αz)

p(1/α)2(1− αz)2p(z)2
=

B(1− αz)

1− αz
+

C(1− αz)

p(z)2
+

D(1− αz)

p(z)

p(1/α)2 − p(z)2

p(1/α)2(1− αz)p(z)2
= B +

C(1− αz)

p(z)2
+

D(1− αz)

p(z)

p(1/α) + p(z)

p(1/α)2p(z)2
· p(1/α)− p(z)

1− αz
= B +

C(1− αz)

p(z)2
+

D(1− αz)

p(z)
(5.4)

In evaluating
p(1/α)− p(z)

1− αz
at z = 1/α, we use l’Hôspital’s rule in finding the limit:

lim
z→1/α

p(1/α)− p(z)

1− αz
= lim

z→1/α

−p′(z)
−α

=
p′(1/α)

α

Finally, evaluating Equation 5.4 at z = 1/α, we obtain

p(1/α) + p(1/α)

p(1/α)2p(1/α)2
· p

′(1/α)
α

= B +
C · 0

p(1/α)2
+

D · 0
p(1/α)

2p′(1/α)
p(1/α)3

= B (5.5)

Now, let α1, α2, . . . , αn be n distinct points in D\{0} and consider

q(z) = (1− α1z)(1− α2z) · · · (1− αnz).

Setting qj(z) =
q(z)

1− αjz
, we use partial fractions to expand 1/q(z)2 as above:

1

q(z)2
=

1

(1− αjz)2qj(z)2

=
Aj

(1− αjz)2
+

Bj

1− αjz
+
∑

1≤k≤n
k �=j

(
Ak

(1− αkz)2
+

Bk

1− αkz

)
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Using Equations 5.2 and 5.5, we solve for Aj and Bj:

Aj =
1

qj(1/αj)2
(5.6)

Bj =
2q′j(1/αj)

qj(1/αj)3
(5.7)

5.1.2 Roots of Unity

Let ξ be an nth root of unity, i.e., ξ = e2πik/n for some k = 1, 2, . . . , n. Consider

the polynomial 1− zn and rewrite it as follows:

1− zn = 1− ξnzn

1− zn = (1− ξz)(1 + ξz + ξ2z2 + · · ·+ ξn−1zn−1) (5.8)

Dividing each side of Equation 5.8 by 1 − ξz and evaluating the limit as z → 1/ξ

results in

lim
z→1/ξ

1− zn

1− ξz
= 1 + ξ · 1

ξ
+ ξ2 ·

(
1

ξ

)2

+ · · ·+ ξn−1 ·
(
1

ξ

)n−1

lim
z→1/ξ

1− zn

1− ξz
= n (5.9)

5.1.3 An Integral Operator

We define an integral operator and show some of its properties acting on a Hilbert

space of analytic functions.

Definition 5.1.1 Let H be a Hilbert space of analytic functions on D. The integral

operator A acting on H is defined by

(Af)(z) =

∫ z

0

f(w)dw

for z ∈ D and f ∈ H.
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Recall that the reproducing kernel function at α in A2(D) is Kα(z) =
1

(1− αz)2
.

Then,

(AKα)(z) =

∫ z

0

1

(1− αw)2
dw

=
1

α
· 1

1− αz

α(AKα)(z) =
1

1− αz
(5.10)

Suppose f is in A2(D). Write f as f(z) =
∞∑
n=0

anz
n and α(AKα)(z) =

∞∑
n=0

αnzn.

Now, consider 〈f, αAKα〉A2 :

〈f, αAKα〉A2 = α
anα

n

n+ 1

=
anα

n+1

n+ 1

〈f, αAKα〉A2 = (Af)(α) (5.11)

5.2 Preliminary Results

We turn to preliminary results obtained in attempting to find an explicit formula

for the adjoint of a composition operator acting on the Bergman space A2(D). Recall

Equation 1.1:

(C∗
ϕ f)(α) =

〈
C∗
ϕ f,Kα

〉
A2 = 〈f, CϕKα〉A2

Lemma 5.2.1 Let ϕ(z) = z2 and let Cϕ act on A2(D). Then,

C∗
ϕ =

1

4
C√

z +
1

4
C−√

z +
1

4
C√

zA+
1

4
C−√

zA.
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Proof Consider CϕKα(z):

CϕKα(z) = Kα (ϕ(z))

= Kα(z
2)

=
1

(1− αz2)2

=
1[(

1−√
αz
) (

1 +
√
αz
)]2

=
A(

1−√
αz
)2 +

B

1−√
αz

+
C(

1 +
√
αz
)2 +

D

1 +
√
αz

From Equations 5.6 and 5.7, we compute the constants A,B,C,D:

A =
1(

1 +
√
α · 1√

α

)2 =
1

4
B =

2
√
α

√
α

(
1 +

√
α · 1√

α

)3 =
1

4

C =
1(

1−√
α · 1

−√
α

)2 =
1

4
D =

−2
√
α

−√
α

(
1−√

α · 1

−√
α

)3 =
1

4

Now,

CϕKα(z) =
1/4(

1−√
αz
)2 +

1/4

1−√
αz

+
1/4(

1 +
√
αz
)2 +

1/4

1 +
√
αz

=
1/4(

1−√
αz
)2 +

1/4(
1 +

√
αz
)2 +

1/4

1−√
αz

+
1/4

1 +
√
αz

Using Equation 5.10, we obtain

CϕKα(z) =
1

4
K√

α(z) +
1

4
K−√

α(z) +
1

4

√
α(AK√

α)(z) +
1

4

(
−
√
α
)
(AK−√

α)(z).

Therefore, using Equation 5.11, we have that

(C∗
ϕ f)(α) = 〈f, CϕKα〉A2

=
1

4
f
(√

α
)
+

1

4
f
(−√

α
)
+

1

4
(Af)

(√
α
)
+

1

4
(Af)

(−√
α
)

=
1

4
(C√

zf)(α) +
1

4
(C−√

zf)(α) +
1

4
(C√

zAf)(α) +
1

4
(C−√

zAf)(α)
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Lemma 5.2.2 Let ϕ(z) = z3 and let Cϕ act on A2(D). Then,

C∗
ϕ =

3∑
k=1

1

9
Cσk +

3∑
k=1

2

9
CσkA

where σk(z) = e2πik/3z1/3.

Proof Let ak = σk(α) = e2πik/3α1/3 for k = 1, 2, 3, and consider CϕKα(z):

CϕKα(z) = Kα (ϕ(z))

= Kα(z
3)

=
1

(1− αz3)2

=
1[

(1− a1z) (1− a2z) (1− a3z)
]2

=
A1

(1− a1z)
2 +

B1

1− a1z
+

A2

(1− a2z)
2 +

B2

1− a2z
+

A3

(1− a3z)
2 +

B3

1− a3z

Using Equations 5.6 and 5.7, we compute the constants A1, A2, A3, B1, B2, B3 where

qj(z) =
1− αz3

1− ajz
:

A1 =
1

9
B1 =

2

9

A2 =
1

9
B2 =

2

9

A3 =
1

9
B3 =

2

9

Now,

CϕKα(z) =
1/9

(1− a1z)
2 +

2/9

1− a1z
+

1/9

(1− a2z)
2 +

2/9

1− a2z
+

1/9

(1− a3z)
2 +

2/9

1− a3z

=
1/9

(1− a1z)
2 +

1/9

(1− a2z)
2 +

1/9

(1− a3z)
2 +

2/9

1− a1z
+

2/9

1− a2z
+

2/9

1− a3z

Using Equation 5.10, we obtain

CϕKα(z) =
1

9
Ka1(z) +

1

9
Ka2(z) +

1

9
Ka3(z)

+
2a1
9

(AKa1)(z) +
2a2
9

(AKa2)(z) +
2a3
9

(AKa3)(z)
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Therefore, using Equation 5.11, we have that

(C∗
ϕ f)(α) = 〈f, CϕKα〉A2

=
1

9
f (a1) +

1

9
f (a2) +

1

9
f (a3) +

2

9
(Af) (a1) +

2

9
(Af) (a2) +

2

9
(Af) (a3)

=
1

9
(Cσ1f)(α) +

1

9
(Cσ2f)(α) +

1

9
(Cσ3f)(α)

+
2

9
(Cσ1Af)(α) +

2

9
(Cσ2Af)(α) +

2

9
(Cσ3Af)(α)

Theorem 5.2.1 Let ϕ(z) = zn and let Cϕ act on A2(D). Then,

C∗
ϕ =

n∑
k=1

1

n2
Cσk +

n∑
k=1

n− 1

n2
CσkA

where σk(z) = e2πik/nz1/n.

Proof Let q(z) = 1− αzn =
n∏
k=1

(1− akz) and qj(z) =
q(z)

1− ajz
where

ak = σk(α) = e2πik/nα1/n

for 1 ≤ k ≤ n. Then, for 1 ≤ j ≤ n,

(CϕKα)(z) =
n∏
k=1

1

(1− akz)
2

=
Aj

(1− ajz)2
+

Bj

1− ajz
+
∑

1≤k≤n

k �=j

[
Ak

(1− akz)2
+

Bk

1− akz

]

We compute Aj and Bj using Equations 5.6 and 5.7. Consider

qj(z) =
∏

1≤k≤n

k �=j

(1− akz)
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and

qj(1/aj) =
∏

1≤k≤n

k �=j

(
1− ak

aj

)

=
∏

1≤k≤n

k �=j

(
1− e−2πi(k−j)/n)

= n

using Equation 5.9. Now,

q′j(z) =
(1− ajz)q

′(z) + ajq(z)

(1− ajz)2

=
(1− ajz)(−nαzn−1) + aj(1− αzn)

(1− ajz)2

=
−nαzn−1 + najαz

n + aj − ajαz
n

(1− ajz)2

=
aj − nαzn−1 + (n− 1)ajαz

n

(1− ajz)2

Therefore,

q′j(1/aj) = lim
z→1/aj

aj − nαzn−1 + (n− 1)ajαz
n

(1− ajz)2

= lim
z→1/aj

−n(n− 1)αzn−2 + n(n− 1)ajαz
n−1

−2aj(1− ajz)

= lim
z→1/aj

−n(n− 1)(n− 2)αzn−3 + n(n− 1)2ajαz
n−2

2aj
2

= lim
z→1/aj

−n(n− 1)αzn−3 (n− 2− (n− 1)ajz)

2aj
2

=
−n(n− 1)α(1/aj)

n−3(−1)

2aj
2

=
n(n− 1)aj

naj
3−naj−2

2

=
n(n− 1)aj

2
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We obtain

Aj =
1

qj(1/aj)2
=

1

n2

and

Bj =
2q′j(1/aj)

qj(1/aj)3
=

n− 1

n2
.

Thus,

(CϕKα)(z) =
n∑
k=1

Kak(z) +
n∑
k=1

n− 1

n2
ak(AKak)(z)

and

(C∗
ϕ f)(z) = 〈f, CϕKα〉A2

=
n∑
k=1

1

n2
(Cσkf)(α) +

n∑
k=1

n− 1

n2
(CσkAf)(α)

Corollary 5.2.1 Let ϕ(z) = zn and let Cϕ act on A2(D). Then, CϕKα is not a

linear combination of kernel functions Kaj .

Proof Rewrite (CϕKα)(z) as

(CϕKα)(z) =
n∑
k=1

1/n2

(1− akz)2
+

n∑
k=1

(n− 1)/n2

1− akz

=
n∑
k=1

1

n2
· 1 + (n− 1)(1− akz)

(1− akz)2

=
n∑
k=1

(
1

n
− n− 1

n2
akz

)
Kak(z)

5.3 Relating the Adjoint of a Composition Operator on the Hardy Space

and Bergman Space

In arriving at formulas for the adjoint of a composition operator with rational

symbol on the Bergman and Dirichlet spaces, Goshabulaghi and Vaezi [6] introduce

an operator T that maps one weighted Hardy space to another.
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Definition 5.3.1 Let H2(γ) and H2(β) be weighted Hardy spaces with weight se-

quences {γ(n) = γn}∞n=0 and {β(n) = βn}∞n=0, respectively. Then T : H2(β) → H2(γ)

is defined by

T

( ∞∑
n=0

anz
n

)
=

∞∑
n=0

an
βn
γn

zn.

If H2(γ) = H2(D) and H2(β) = A2(D), then T : A2(D) → H2(D) and

T

( ∞∑
n=0

anz
n

)
=

∞∑
n=0

an√
n+ 1

zn.

Letting S0 denote the adjoint of Cϕ on H2(D) and S1 denote the adjoint of Cϕ on

A2(D), Goshabulaghi and Vaezi [6] show in their proof of the formula for S1 that S0

and S1 are related by

(S1f)(z) = (zS0(T (Tf)))
′(z).

Furthermore, we show how the kernels of S0 and S1 are related.

Theorem 5.3.1 If f is in ker(S1), then T (Tf) is in ker(S0), i.e.,

T (T (ker(S1))) ⊂ ker(S0).

Proof Let f be in ker(S1). Then

(zS0(T (Tf)))
′(z) = 0

and so

(zS0(T (Tf)))(z) = c

for some constant c in C. Since S0 is a map of H2(D) to H2(D), (zS0(T (Tf)))(z) is

in zH2(D) and hence c = 0. Therefore, T (Tf) is in ker(S0).

In her 2007 paper, Wahl [11] gave a complete characterization of functions in the

kernel of C∗
ϕ acting on H2(D) with symbols ϕ(z) =

(1− 2c)z2

1− 2cz
for 0 < c < 1/2:
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Theorem 5.3.2 Let ϕ(z) =
(1− 2c)z2

1− 2cz
for 0 < c < 1/2. Suppose f is in H2(D) with

constant term equal to 0. Then, f is in ker(S0) if and only if f satisfies the successive

derivative condition〈
f,

K
(2j)
c

(2j)!
− c

K
(2j+1)
c

(2j + 1)!

〉
H2

= 0 for j = 0, 1, 2, . . . .

Applying Theorem 5.3.1 proves the following corollary:

Corollary 5.3.1 Suppose f is in A2(D) with constant term equal to 0. If f is in

ker(S1), then T (Tf) satisfies the successive derivative condition〈
T (Tf),

K
(2j)
c

(2j)!
− c

K
(2j+1)
c

(2j + 1)!

〉
H2

= 0 for j = 0, 1, 2, . . . .
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6. Results in the Dirichlet Space

From the adjoint formula on the Dirichlet space given in Goshabulaghi and Vaezi’s [6]

paper, we give an analogous characterization of functions in the kernel of C∗
ϕ to

Theorem 4.1.3. Recall that the formula for the adjoint of a composition operator on

the Dirichlet space is

(C∗
ϕ f)(z) = f(0)Kϕ(0)(z) +

∑
f(σ(z))−

∑
f(σ(0))

where the each sum is taken over the branches of σ as defined in Theorem 2.1.1. Also,

if f is in ker(C∗
ϕ ), then f(0) = 0 by Lemma 3.0.2.

Note that if ϕ : D → D is rational, then Cϕ is bounded on D. Indeed, if the degree

of ϕ is the positive integer n, then ϕ is at most n-to-1 on D and the norm of ϕ is

at most n times the image of ϕ from Remark 1.3.1. Therefore, ϕ ∈ D, has bounded

multiplicity, and Cϕ is bounded.

6.1 Main Results

Theorem 6.1.1 Let ϕ be a rational map of degree two mapping D into D and let Cϕ

act on the Dirichlet space D. Suppose ϕ(∞) = ∞, i.e., ϕ(z) =
a1z

2 + b1z + c1
b2z + c2

where

a1 
= 0. For ζ as in Theorem 4.1.2, f is in ker(C∗
ϕ ) if and only if

f(z) + f(ζ(z)) = 0.

Proof Consider σk(0) for k = 1, 2 where σk(0) = lim
z→0

1

ϕ−1(1/z)
. Since ϕ(∞) = ∞

and ϕ is a rational map of degree two, then the only preimage of ∞ under ϕ is ∞.

Therefore, σ1(0) = 0 and σ2(0) = 0.
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For f in ker(C∗
ϕ ),

0 = (C∗
ϕ f)(z)

= f(σ1(z)) + f(σ2(z))− f(σ1(0))− f(σ2(0))

= f(σ1(z)) + f(σ2(z))

Setting w = σ1(z), we have ζ(w) = σ2(z) and therefore, f(w) + f(ζ(w)) = 0.

Theorem 6.1.2 Let ϕ be a rational map of degree two mapping D into D and let Cϕ

act on the Dirichlet space D. Suppose ϕ(∞) 
= ∞. For ζ as in Theorem 4.1.2, f is

in ker(C∗
ϕ ) if and only if

f(z) + f(ζ(z)) = f(σ1(0)) + f(σ2(0)).

Proof For f in ker(C∗
ϕ ),

0 = (C∗
ϕ f)(z)

= f(σ1(z)) + f(σ2(z))− f(σ1(0))− f(σ2(0))

Setting w = σ1(z), we have ζ(w) = σ2(z) and therefore,

f(w) + f(ζ(w))− f(σ1(0))− f(σ2(0)) = 0.

Theorem 6.1.3 Let ϕ be a rational map of degree two mapping D into D and let Cϕ

act on the Dirichlet space D. If f is in ker(C∗
ϕ ), then f is analytic on D ∪ ζ(D).

Proof If ϕ(∞) = ∞, then f(z) = −f(ζ(z)) by Theorem 6.1.1. Since f(z) is analytic

on D, then f(ζ(z)) is analytic in ζ(D) and so f is analytic on D ∪ ζ(D).

If ϕ(∞) 
= ∞, then f(z) = −f(ζ(z)) + f(σ1(0)) + f(σ2(0)) by Theorem 6.1.2.

Since f(z) is analytic in D, then −f(ζ(z)) + f(σ1(0)) + f(σ2(0)) is analytic in ζ(D)

and so f is analytic on D ∪ ζ(D).
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6.2 Relating the Adjoint of a Composition Operator on the Hardy Space

and Dirichlet Space

Using Definition 5.3.1, we take H2(γ) to be the Dirichlet space and H2(β) to be

the Hardy space so that T : H2(D) → D, that is to say,

T

( ∞∑
n=0

anz
n

)
= a0 +

∞∑
n=1

an
√
nzn

for
∞∑
n=0

anz
n ∈ H2(D). Note that T is an isometry. Let S0 be the adjoint of a

composition operator on D and let S1 be the adjoint of the same composition operator

on H2(D). In their proof of the adjoint of a composition operator on the Dirichlet

space, Goshabulaghi and Vaezi [6] relate S0 and S1 by

(S0f)(z) = T (T (S1(T
−1(T−1f))))(z) (6.1)

where f is a polynomial.

Using Equation 6.1, we relate the kernel of S0 and the kernel of S1.

Theorem 6.2.1 If f is a polynomial in ker(S0), then T−1(T−1f) is in ker(S1).

Proof If f is in ker(S0), then

0 = (S0f)(z)

= T (T (S1(T
−1(T−1f))))(z)

Since T is an isometry between D and H2(D), we have that S1(T
−1(T−1f)) = 0 or

T−1(T−1f) is in ker(S1).
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7. Summary

We have seen that in the Hardy space, perhaps the most-studied Hilbert space of

analytic functions, characterizing functions in ker
(
C∗
ϕ

)
is non-trivial for non-univalent

symbols on D, and there is still more to be done for rational symbols of higher degrees.

The characterization as developed in Chapter 4 becomes more complex due to the

additional branches of ϕ−1 that come with a rational ϕ of degree larger than 2. Even

less is known in the Bergman and Dirichlet spaces, but results obtained in the Hardy

space will hopefully lead to analogous results in other weighted Hardy spaces.
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