
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

4-2016

Content-based image analysis with applications to
the multifunction printer imaging pipeline and
image databases
Cheng Lu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Lu, Cheng, "Content-based image analysis with applications to the multifunction printer imaging pipeline and image databases"
(2016). Open Access Dissertations. 673.
https://docs.lib.purdue.edu/open_access_dissertations/673

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/673?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages






CONTENT-BASED IMAGE ANALYSIS WITH APPLICATIONS TO THE

MULTIFUNCTION PRINTER IMAGING PIPELINE AND IMAGE DATABASES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Cheng Lu

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2016

Purdue University

West Lafayette, Indiana



ii

To my parents.



iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest appreciation to my advisor,

Prof. Allebach for his great support on my research and project. His enthusiasm about

research and supportive attitude to my project has been a great inspiration to me.

Particularly, he helped me realize the importance of communication, presentation and

gave me a lot of guidance. He always supported my internship and conference trip

which all turned out to be great experience for me. With this experience, I got the

chance to build my skills and know peers in the area.

I would also thank to Hewlett-Packard Company for their continuous financial

support during my entire Ph.D. period and three summer internship in 2013, 2014

and 2015. I would especially thank to Jerry Wagner, Mark Shaw, Brandi Pitta,

David Lawson, Collin Day, Randy Guay, Lisa Li, Mike Shelton, Gorge Kerby and

Peter Bauer at HP Boise for their great mentorship. Also, I’d like to say thanks to

Jian Fan, Yang Lei, Jerry Liu and Steve Simske at HP 3D&printing lab for their

support during my internship.

I deeply appreciate my family for their great support and shape who I am. My

parents, grandpa, uncle and aunts, plus my sister and brother. They are always my

unbreakable inspiration.

Thanks to anyone significant in my life.

Thanks to my home city.

Thanks to all my friends.

They are all my reasons.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 ONLINE LEARNING IMAGE CLASSIFICATION UNDER MONOTONIC
DECISION BOUNDARY CONSTRAINT . . . . . . . . . . . . . . . . . 3

2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Classification flowchart and features . . . . . . . . . . . . . . . . . 6

2.4.1 Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.4 Histogram flatness score . . . . . . . . . . . . . . . . . . . . 8

2.4.5 Histogram variability score . . . . . . . . . . . . . . . . . . . 10

2.4.6 Text edge count . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.7 Stroke color variance . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Quick decision and online SVM . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Quick decision . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Online SVM training . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Experimental result . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.2 Offline training . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.3 Quick decision . . . . . . . . . . . . . . . . . . . . . . . . . . 23



v

Page

2.6.4 Online training . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 EXTENDED SCANNED IMAGE CLASSIFICATION FOR ALL-IN-ONE
PRINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Chroma histogram flatness . . . . . . . . . . . . . . . . . . . 35

3.3.2 Chroma around text . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Color block ratio . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.4 White block ratio . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Classification structure . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 DYNAMIC PRINT STREAM CLASSIFICATION AND OPTIMAL JPEG
COMPRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Printing system description . . . . . . . . . . . . . . . . . . . . . . 49

4.4 DPSC engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2 Lossy vs. lossless classification . . . . . . . . . . . . . . . . . 50

4.5 Lossless classification . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Optimal JPEG compression . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7.1 lossy vs. lossless classification . . . . . . . . . . . . . . . . . 55

4.7.2 Lossless classification . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



vi

Page

5 HIERARCHICAL CONTENT-BASED IMAGE RETRIEVAL FOR HYBRID
LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Image Retrieval Engine Description . . . . . . . . . . . . . . . . . . 62

5.3.1 Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Bag-of-Word Training . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 BoW Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.4 Hierarchical Weighted Spatial Ranking . . . . . . . . . . . . 67

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 TAG RECOMMENDATION VIA ROBUST PROBABILISTIC DISCRIM-
INATIVE MATRIX FACTORIZATION . . . . . . . . . . . . . . . . . . 72

6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Robust probability discriminative matrix factorization . . . . . . . . 74

6.3.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



vii

LIST OF TABLES

Table Page

2.1 Number of documents of every class in the image library . . . . . . . . 21

2.2 Overall classification accuracy based on our proposed method . . . . . 22

2.3 Overall classification accuracy based method in [9] . . . . . . . . . . . . 23

2.4 Weights of misclassifications for both color and mono. . . . . . . . . . . 23

2.5 Speedup for quick decision and feature discard. . . . . . . . . . . . . . 24

2.6 Average classification time for each type of document on Beagle Board 24

3.1 Feature impact factor and time consumption . . . . . . . . . . . . . . 43

3.2 Weights of misclassifications w(i, j) . . . . . . . . . . . . . . . . . . . . 44

3.3 Confusion matrix n(i, j) in YUV space . . . . . . . . . . . . . . . . . . 45

3.4 Confusion matrix n(i, j) in LCH space . . . . . . . . . . . . . . . . . . 45

4.1 Best F1 score in cross validation for lossy vs. lossless . . . . . . . . . . 56

4.2 Confusion matrix at F ∗1 for lossy vs. lossless . . . . . . . . . . . . . . . 57

4.3 Best F1 score in cross validation for RLE vs. DRC . . . . . . . . . . . 58

4.4 Confusion matrix at F ∗1 for RLE vs. DRC . . . . . . . . . . . . . . . . 58

5.1 Retrieval accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Time of retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Dimensionality of the three datasets . . . . . . . . . . . . . . . . . . . 78

6.2 mFmax
1 scores on three datasets for 3 methods as noise level σ increases 82



viii

LIST OF FIGURES

Figure Page

2.1 Examples of three types of image . . . . . . . . . . . . . . . . . . . . . 4

2.2 Image quality of original/ picture mode/ text mode . . . . . . . . . . . 4

2.3 Classification structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Example of histogram flatness for text and picture documents . . . . . 9

2.5 Example of block mean-histogram of text/nontext documents . . . . . 11

2.6 An example of candidate text region . . . . . . . . . . . . . . . . . . . 13

2.7 Examples of quick decision and feature discard . . . . . . . . . . . . . . 15

2.8 Examples illustrating the role of decision boundary monotonicity . . . 27

2.9 Text/nontext SVM classification boundary . . . . . . . . . . . . . . . . 28

2.10 Mix/picture SVM classification boundary . . . . . . . . . . . . . . . . . 29

2.11 Decision boundary evolution . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Examples of receipt and hightlighted-text . . . . . . . . . . . . . . . . 32

3.2 Highlighted colors that are difficult to capture . . . . . . . . . . . . . . 34

3.3 LUV and LCH color space histogram . . . . . . . . . . . . . . . . . . . 36

3.4 natural image v.s. highlighted text . . . . . . . . . . . . . . . . . . . . 37

3.5 Highlighted colors around text . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Calculate c(m,n) of two pixels which are cover by blue . . . . . . . . . 39

3.7 Text with yellow background . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 DAG-SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Printing system structure . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 DPSC engine structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Natural and simple structure image histogram comparison . . . . . . . 52

4.4 MOS prediction trained by two groups of images . . . . . . . . . . . . . 55

4.5 lossy and lossless classification in feature space . . . . . . . . . . . . . . 56



ix

Figure Page

4.6 RLE and DRC classification in feature space and its decision boundary 58

5.1 METIS system flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Proposed IR engine flowchart . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 BoW training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Capture image with perspective distortion and noisy background . . . . 66

5.5 Example of difficult case for naive BoW . . . . . . . . . . . . . . . . . 68

6.1 Synthetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 NUS-WIDE TAGGED . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 MIRFLICKR-25K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



x

ABSTRACT

Lu, Cheng PhD, Purdue University, May 2016. Content-Based Image Analysis with
Applications to the Multifunction Printer Imaging Pipeline and Image Databases .
Major Professor: Jan P. Allebach.

Image understanding is one of the most important topics for various applications.

Most of image understanding studies focus on content-based approach while some oth-

ers also rely on meta data of images. Image understanding includes several sub-topics

such as classification, segmentation, retrieval and automatic annotation etc., which

are heavily studied recently. This thesis proposes several new methods and algorithms

for image classification, retrieval and automatic tag generation. The proposed algo-

rithms have been tested and verified in multiple platforms. For image classification,

our proposed method can complete classification in real-time under hardware con-

straints of all-in-one printer and adaptively improve itself by online learning. Another

image understanding engine includes both classification and image quality analysis is

designed to solve the optimal compression problem of printing system. Our proposed

image retrieval algorithm can be applied to either PC or mobile device to improve the

hybrid learning experience. We also develop a new matrix factorization algorithm to

better recover the image meta data (tag). The proposed algorithm outperforms other

existing matrix factorization methods.
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1. INTRODUCTION

Content-based image analysis [1,2] has been intensively studied recently. Many appli-

cations built in different platforms like printer, PC or mobile devices, require content-

based image analysis. These applications typically rely on techniques including image

classification [3], image retrieval [4], image segmentation [5], object recognition [6] etc.

Some content-based applications also utilize image meta-data [7] like tags or labels

as supporting information to improve system performance. All these applications

heavily rely image database to train and verify the algorithms. In this paper, we

discuss several topics regarding the content-based image analysis and its applications

in image databases with emphasis on multifunction printer.

In Chap. 2, Chap. 3, we introduce an image classification system which analyses

the input images scanned by multifunction printer. The multifunction printer should

choose the optimal processing pipeline for input image based on the classification re-

sult. The image content analysis in multifunction printer could significantly improve

the copy image quality by applying certain enhancement algorithms. Reversely, in-

correct analysis (misclassification) could cause severe image quality degradation. For

example, if a text is scanned by picture pipeline, we will find blur edges of text strokes

which are undesirable. In these two chapters, we also introduce new funcionalities

on top of transitional image classification to speedup the analysis process and al-

low adaptive online learning. To verify our proposed algorithm, we build an image

database which includes representative images of each type.

Different from Chap. 2, Chap. 3 where we target the entire raster image, we

analyze each object from a vector image file in Chap. 4. The goal of this chapter is to

optimally compress each object in a vector image file by applying the best compression

algorithm. To achieve this goal, we need to analyse content of each object and process

it properly. The processing includes 1) decide if the input image should be compressed
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losslessly or lossily; 2) find the optimal Q factor if it is compressed by lossy algorithm;

3) decide which lossless algorithm is better for the given object if it is compressed by

lossless algorithm.

Chap. 5 discusses a content-based analysis method for image retrieval. Similar

to Chap. 2 and Chap. 3, it again takes raster image as input. However, the input

image is captured by PC top-view camera or mobile devices. It compares the visual

similarity between the query image and the images in the database, then finds the

best match. The analysis includes two stages: 1)Bag-of-Word initial retrieval; 2)

Hierarchial Weighted Spatial Ranking. The image database for this application is

carefully designed for robustness. It includes challenging cases that are very visually

similar.

Chap. 6 introduces a novel method for matrix factorization which can be used to

improve the meta-data of image database. It is capable of correcting potential tagging

errors in an image database. It serves as a supplementary technique to improve the

content-based image analysis. That is because lots of content-based methods take

tag information as ground truth for training and testing. With more correct tags as

ground truth, we can develop reliable content-based analysis algorithms. Experimen-

tally, we show that our proposed method outperforms other existing methods.
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2. ONLINE LEARNING IMAGE CLASSIFICATION
UNDER MONOTONIC DECISION BOUNDARY

CONSTRAINT

2.1 Problem statement

All-in-one (AIO) devices are now widely used for various purposes. They typically

provide scanning, copying and printing services. One major issue for an AIO device is

its copy quality. In order to optimally process different types of input images, multiple

processing pipelines [8] are included in an AIO device. Each of these processing

pipelines is purposefully designed for one type of image. In our application, the

AIO device includes three processing pipelines which target three types of images,

respectively. Theses three types are: pure text, picture, and mix as is illustrated by

the three examples in Fig. 2.1. An incorrect choice of processing pipeline (mode)

when copying an image will lead to significantly worse output quality. As shown in

Fig. 2.2, if a pure text image is chosen to be copied under the picture mode, the

characters on the output image will have poor edge sharpness and low visual contrast

both of which harm the reading experience [9]. Different types of misclassifications

do not cause equally severe image quality degradations. This suggests that we need

to apply a discriminative training strategy, which will be discussed later. Given this

problem, an embeded-firmware-friendly automatic classification algorithm is required

before sending the input image to its corresponding processing pipeline.

This classification algorithm is implemented in the firmware of low-end AIO de-

vice, so computational load is also one of our primary concern. We need to do the

classification in real-time so that the customer will not experience noticeable wait

after pushing the copy button.
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(a) Mix (b) Picture (c) Text

Fig. 2.1.: Examples of three types of image

Fig. 2.2.: Image quality of original/ picture mode/ text mode

2.2 Related work

There has been a significant amount of research on the image classification topic

and some methods have been proposed specifically to address this issue. A very

important fact is that any algorithm applicable to our low-end copy pipeline must

process image data one strip at a time and never revisit previously processed strips.

This makes it impossible to apply some existing approaches [10] [11] [12] [13] [14].

Dong et al. [9] introduced several features which are statistically significant to clas-

sify different types of images. He used a simple threshold method to the make final

classification decision. However, this method relies on having a 300 dpi high resolu-

tion input image, which is computationally expensive. This approach also lacked a
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basis in a statistical machine learning method. Lu et al. [15] proposed a classifica-

tion algorithm for digital copier based on Support Vector Machine [16]. This method

allows limited quick decision capability, which may speed up classification for mix im-

ages. However, it applies only offline training. Therefore it excludes AIO users from

training the AIO device in the future to expand the training set and thus customize

the product’s behavior. One of major challenges in this project is text recognition.

There have been many approaches proposed to address this issue. Typically, these

approaches can be summarized into three categories. The first category is based on

the assumption that text characters have constant stroke width. Srivastav et al. [17]

proposed to divide text detection into five stages: (1) preprocessing, (2) adaptive edge

detection, (3) basic filtering, (4) classification based on nearest-neighbor constraints,

and (5) classification based on stroke width and foreground color constraints. The

second category assumes that the text string contains uniform color. Jain et al. [18]

first does foreground extraction, and then applies connected components analysis to

locate the text region. The third category [19] assumes that the text strokes have high

contrast compared to the background. Since typical algorithms based on stroke-width

constancy require horizontal or vertical alignment of the text strings, in our applica-

tion we use both Categories 2 and 3 to guarantee accuracy and speed. Foreground

and background extraction [20] [21] can also used to address this problem.Overall,

image classification is extensively studied, and many publications discuss this issue

from different perspectives [22] [23] [24] [25] [26] [27]. [22] mainly discusses how to

use textual information in image to do classification. [23] approach this problem by

utilizing global histogram information and support vector machines. Besides, some

other works have also been done based on histogram as well [28] [29] [30].

2.3 Chapter organization

In this chapter, we present an algorithm which includes online SVM training [31]

that allows the algorithm to be improved and customized by the users as the input
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images accumulate. At the same time, it enables quick decision for mix images which

is the most frequently copied image type, and significantly speeds up classification for

picture documents. We will also introduce a method to make online SVM training

and quick decision compatible with each other. The rest of the chapter is laid out

as follows. Section 2.4 introduces overall structure and each feature for classification.

Section 2.5 presents online SVM training, quick decision and how they combine.

Section 2.6 describes experimental results. Finally, conclusions are provided in Sec.

2.7.

2.4 Classification flowchart and features

2.4.1 Overall Structure

The proposed classification strategy follows a hierarchical decision structure as

shown in Fig. 2.3. The first SVM classifier is responsible to classify text vs. nontext

images while the subsequent classifier takes charge of picture vs. mix. Both classifiers

require a two dimensional feature vector. Given that the intended use of the page

classification algorithm is as a real time application in a low-end digital copier, two

pre-processing procedures are necessary for every original scanned document to reduce

the computational load. We first transform the original scanned document into a gray

scale image by averaging over the three RGB channels, which is easy for hardware

implementation. Then, this gray level image is down-sampled to 75 dpi by block-

averaging. So the input to the subsequent classifiers is a low-resolution gray-level

image which makes the classification more challenging.
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Fig. 2.3.: Classification structure

2.4.2 Pre-processing

As mentioned in Sec.2.1, we want to reduce the computational load in the firmware

for real-time processing purpose. So we first transform the input RGB space image

to NIQ space image. The NIQ color space is defined as followed
N
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Q

 =


1
3

1
3

1
3

1
2
−1

2
0

1
4

1
4
−1

2



R

G

B

 +


0

128

128

 (2.1)

In equation 2.1, N is the luminance channel, I is the red-green color channel, and

Q is the yellow-blue color channel. Compared with other existing opponent color

space, NIQ color space is computationally efficient for the firmware. Unlike typical

opponent color space, it simply averages over R, G and B channels to get luminance

information, which can be easily achieved by printer firmware. Besides, we can obtain

both I and Q channels by applying bit shift which is significantly faster than float

point operation that is required in other opponent color space calculation.

By transforming the input RGB space to this opponent NIQ color space, we can

obtain the luminance information from N channel which is the only channel we need

for doing classification to reduce computational load. After getting the luminance

channel information, we down-sample the input 300 dpi luminance image to 75 dpi
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by block-averaging. The averaged 75 dpi image O is obtained from original 300 dpi

luminance image N through

O(m,n) =
3∑
i=0

3∑
j=0

N(4m+ i, 4m+ j)

16
(2.2)

2.4.3 Features

The first two features are inputs for the text/nontext classifier as shown in Fig.

2.3. The latter two features are the input features for the subsequent picture/mix

classifier.

2.4.4 Histogram flatness score

This feature is proven effective in [9]. Typically, the histogram for a text

image tends to have sharper peaks while the histogram for a non-text image is more

uniform. An example to illustrate this is given in Fig. 2.4

We divide the input image into blocks of 8×64 pixels. For every block, we build a

64 bin histogram. The span of a histogram for every block is defined as the maximum

number of consecutive bins whose values are greater than a threshold value K. The

span of an image is defined as the maximal span over all blocks. The feature vector X

of one image consists of the spans of the image for different threshold values. In our

experiments, K = 3, 6, ..., 30. (X is a 10×1 vector). The feature vector X is assumed

to be a Gaussian Mixture [32] random variable with mean mi, covariance matrix Λi,

and prior probability πi = 0.5 (i = text, nontext). mi and Λi are estimated from the

feature vectors of all text and nontext images in the training set respectively. For a

given feature vector X of a target image, the log-likelihood ratio L(X) is defined as:

L(X) = ln(πnontextP (X|mnontext,Λnontext))− ln(πtextP (X|mtext,Λtext)) (2.3)

From 2.3 we can have

L(X) ∝ −(X−mnontext)
TΛ−1

nontext(X−mnontext)+(X−mtext)
TΛ−1

text(X−mtext) (2.4)
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(a) Text patch (b) Nontext patch

(c) Histogram of (a) (d) Histogram of (b)

Fig. 2.4.: Example of histogram flatness for text and picture documents

If we assume the two class have the same covariance matrix Λ = Λtext = Λnontext, we

now define the histogram flatness score based on 2.4

HF = (mnontext −mtext)Λ
−1X. (2.5)

Here, mnontext and mtext are the average span vectors we obtain from the training sets

for text and non-text documents, respectively; and Λ is covariance matrix between

the text and non-text documents in the two training sets. Because the histogram

flatness score for the image is defined as the maximum HF over all the blocks, we

can tell that it is always monotonically increasing.
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2.4.5 Histogram variability score

It is reasonable to assume that the non-text region of a text document contains

only a few gray level values. So we build a block-mean histogram for the image to

calculate a histogram variability score. We first cut the image into blocks of 8 × 8

pixels and calculate the mean pixel value of each block that contains no text edge.

Text edges are defined as three neighboring pixels in either the horizontal or vertical

direction satisfying the following two criteria: (1) their pixel values are monotonically

increasing or decreasing; and (2) the difference between the first and third values

is larger than a threshold T (T = 100 in our application). So we build a 256-bin

histogram of mean values of all blocks that do not contain a text edge. Finally, the

histogram variability score of an image is defined as the largest number of non-zero

bins of the block mean histogram. Figure. 2.5 gives an example to show typical

difference between text and nontext documents in terms of block-mean histogram.

We can see that in the example given in 2.5, the text document has more zero-value

bins in 8 × 8 block-mean histogram compared to the nontext document, especially

in the low-luminance region. It is also a feature that increases monotonically as the

algorithm processes the image in raster order.

2.4.6 Text edge count

The text edge count utilizes the fact that mix images typically have more edges

compared to picture images [9]. Several publications have discussed text edge in

an image [33] [34] [35] [36]. For our application, text edges are defined as three

neighboring pixels in either the horizontal or vertical direction satisfying the following

two criteria: (1) their pixel values are monotonically increasing or decreasing; and

(2) the difference between the first and third values is larger than a threshold T . The

text edge count is the maximum number of edges over all the 64× 64 blocks. Thus it

is also a monotonically increasing feature.
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(a) Nontext document (b) Text document

0 50 100 150 200 250
0

50

100

150

(c) 8× 8 block-mean histogram of (a)

0 50 100 150 200 250
0

50

100

150

(d) 8× 8 block-mean histogram of (b)

Fig. 2.5.: Example of block mean-histogram of text/nontext documents

2.4.7 Stroke color variance

The second feature stroke color variance uses the fact that there is high color

consistency inside a character stroke. We cut the image into blocks of 64× 64 pixels.

For every block, we first distinguish background pixels, edge pixels, and potential

character stroke pixels. The K-means clustering algorithm is used in this process to
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distinguish among these three types of pixels. The feature vector of every pixel for

K-means clustering includes two elements: pixel value and pixel local variance. Pixel

local variance is defined as the sum of the absolute differences between a given pixel

p(m,n) and its neighbours

D(m,n) =
∑

(i,j)∈{±1,±1}

|p(m,n)− p(m+ i, n+ j)|. (2.6)

We normalize the feature vector for every pixel and classify it into one of

three clusters. These three clusters represent: (1) pixels with low gray value and low

local variance (background or stroke), (2) pixels with high gray value and low local

variance (background or stroke), and (3) pixels with high local variance (edges). The

smaller cluster with low local variance is identified as the possible stroke region. An

example for this clustering process is given in Fig. 2.6. We calculate the pixel value

variance β in this cluster to get the stroke color variance of this block. The stroke

color variance β∗ of an image is defined as

β∗ = min(
√
β) (2.7)

Since the stroke color variance of an image is the minimum of β overall the blocks,

we can conclude that it is a feature that decreases monotonically as the algorithm

processes the image in raster order.
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(a) Original 64× 64 block

(b) Pixel clustering

(c) Block with candidate region

Fig. 2.6.: An example of candidate text region
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2.5 Quick decision and online SVM

2.5.1 Quick decision

Among the three types of image, the mix type is most frequently copied by AIO

devices. This fact motivates us to come up with a strategy to speed up the mix

decision. In fact, for many mix images, it is not necessary to wait until the very last

block to make a final decision. Existence of both text and picture components may

be already detected before reaching a certain block, which allows an early decision

for the mix type. Figure 2.7(a) illustrates the mix quick decision. The program

initially calculates all four features during processing of the gray blocks. When the

program reaches the black block, it has obtained sufficient evidence of both textual

and pictorial components. So the remaining white blocks are ignored and the image

is classified as mix.

A relatively weaker version of quick decision for picture type images is feature

discard. The hierarchical decision structure shown in Fig. 2.1 suggests that if we

find pictorial components in certain block, we may skip the text/nontext classifier

for the remaining blocks. This is based on the fact that the existence of pictorial

components eliminates the possibility of pure text; and thus only text detection is

necessary to distinguish between mix and picture. An example of the feature discard

for the picture type is given in Fig. 2.7(b). The program initially calculates all four

features when processing dark-gray blocks. When the program reaches the black

block, the pictorial components are detected and the text/nontext classifier will be

skipped for the remaining blocks. Then only the features for the mix/picture classifier

need to be calculated in the light-gray blocks, which leads to a speedup.

It is also possible that the program decides to apply the feature discard followed by

a quick decision. This happens when the program first detects a pictorial component,

and start skipping the text/nontext classifier. Then it confirms the textual parts

which leads termination.
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(a) Quick decision (b) Feature discard

Fig. 2.7.: Examples of quick decision and feature discard

A very important foundation of the quick decision and feature discard is that the

SVM classification requires much less computation compared to feature extraction.

Based on that, we can afford to apply SVM classification in every block.

2.5.2 Online SVM training

Offline algorithm provides little flexibility for users to customize and improve the

AIO devices [15]. However, one major issue for the online SVM [31] is that it is not

naturally compatible with the quick decision capability. In our application, the two

SVM decision boundaries of text/nontext and mix/picture classifiers are:

y1 = ft(x1), (2.8)

y2 = fm(x2), (2.9)
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where x1 is the histogram flatness score, y1 is the color variability score, x2 is stroke

color variance, and y2 is the text edge count. We require that ft be monotonically

decreasing and fm monotonically decreasing to guarantee the quick decision capa-

bility. Examples to illustrate this are given in Fig. 2.8. Assume that i blocks of

an input image have been processed and the feature vectors at i are Sit = (xi1, y
i
1)T ,

Sim = (xi2, y
i
2)T . Based on the design of features in Sec. 2.4.3, we have

xj1 ≥ xi1, y
j
1 ≥ yi1, x

j
2 ≤ xi2, y

j
2 ≥ yi2; ∀j > i, (2.10)

This means the final feature vectors St should be located in the first quadrant with

respect to (xi1, y
i
1), as indicated by the dashed lines in Fig. 2.8(a). Similarly, the final

feature vector Sm should be located in the second quadrant with respect to (xi2, y
i
2)T

as indicated by the dashed lines in Fig. 2.8(b). Assume there is a SVM decision

boundary as shown Fig. 2.8(a), which is convex. At the ith block, the feature vector

(xi1, y
i
1)T is already in the nontext area. According to our design of the quick decision

in Sec. 2.5.1, the text/nontext classifier should be skipped from now on, because

we can conclude that this image belongs to the nontext type. However, because the

decision boundary starts to increase and crosses the dashed line, it generates a shad-

owed area that the early decision will be incorrect. So ft needs to be monotonically

decreasing; and similarly, fm should be monotonically increasing.

In order to guarantee the validity of this early decision, we need to choose the appro-

priate kernels and parameters in the initial offline SVM training. More importantly,

we need to preserve the monotonicity of the decision boundaries during the online

SVM training process.

In SVM training, separating function is defined as

f(x) =
∑
j

αjyjK(xj, x) + b, (2.11)

where xj is every training vector, and yj = ±1 represents its label. In order to obtain

αj, we need to minimize a convex quadratic function under constraints

min
0≤αi≤C

: W =
1

2

∑
i,j

αiQijαj −
∑
i

αi + b
∑
i

yiαi, (2.12)
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where Qij = yiyjK(xi, xj) and with Kuhn-Tucker conditions:

gi =
∂W

∂αi
= yif(xi)− 1 =


≥ 0; αi = 0

= 0; 0 ≤ αi ≤ Ci

≤ 0; αi = Ci

(2.13)

∂W

∂b
=

∑
j

yjαj = 0, (2.14)

where Ci is the penalty constant for each training image. Since different kinds of

misclassifications are not equally severe in our application, we assign different C values

for each image type, which means Ci ∈ {Ct
text, C

t
nontext, C

m
mix, C

m
picture}. Three types of

vectors are: the set S of margin support vectors strictly on the margin (yif(xi) = 1);

the set E of error support vector exceeding the margin; and the remaining set R are

ignored vectors within the margin. The entire training data set is denoted as D.

If a new vector with coefficient αc is added, the margin vector coefficients change

accordingly to keep the KT conditions satisfied. Since gi ≡ 0, we have

∆b = β∆αc, (2.15)

∆αj = βj∆αc; ∀j ∈ D. (2.16)

The coefficient sensitivities are given by


β

βs1
...

βslsc

 = −Θ


yc

Qs1c

...

QslS c

 , (2.17)

where Q is the extended kernel Jacobian, Θ = Q−1, and βj ≡ 0 for all j outside S.

Combined with the differential expression of gi, we have:

∆gi = γi∆αc; ∀i ∈ D ∪ {c}, (2.18)

where γi is the sensitivity defined as

γi = Qic +
∑
j∈S

Qij + yiβ; ∀i 6∈ S. (2.19)
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Given the equations 2.15 and 2.17, we can implement the bookkeeping step which

determines the largest possible increment ∆αc according to:

1. gc ≤ 0, with equality when c joins S;

2. αc ≤ Cc, with equality when c joins E;

3. 0 ≤ αj ≤ Cj, ∀j ∈ S, with equality 0 when j transfer from S to R, and equality

Cj when j transfer from S to E;

4. gi ≤ 0, ∀i ∈ E, with equality when i transfer from E to S;

5. gi ≥, ∀i ∈ R, with equality when i transfer from R to S.

Lastly, we need to recursively update Θ for all c to S according to the equation

2.19 in [31].

Θ←

 Θ
0

...

0 · · · 0

 +
1

γc



β

βs1
...

βsls

1


(2.20)

At this point, we can obtain the unconstrained SVM decision boundary by setting

f(X) = 0 in 2.11, where X is a two dimensional feature vector X = (x, y)T as given

in 2.8 and 2.9. Both classifiers apply polynomial kernels with order of 2 because a

low-order polynomial kernel is more likely to generate smooth and monotonic decision

boundary in the feature domain. More importantly, the monotonicity of a decision

boundary which is generated by the second-order polynomial kernel can be easily

decided by solving two quadratic equations. So the kernel function K(Xj, X) in

equation 2.11 can be expressed as:

K(Xj, X) = (XT
j X + c)2. (2.21)
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Based on equation 2.16, we can conclude that the decision boundary which is gener-

ated by setting f(X) = 0 in equation 2.11 has the form:

P (x, y) = Ax2 +Bxy + Cy2 + b = 0. (2.22)

Subsequently, equation 2.16 is expressed differentially as:

∂y

∂x
= −2Ax+By

Bx+ 2Cy
. (2.23)

To guarantee the monotonicity of f(x) in the feasible feature domain is equivalent to

satisfying the following conditions:

1. There is no more than one solution x0 ∈ (xmin, xmax) to the quadratic equation

P (x, y0) = 0, ∀y0 ∈ (ymin, ymax);

2. There is no more than one solution y0 ∈ (ymin, ymax) to the quadratic equation

P (x0, y) = 0, ∀x0 ∈ (xmin, xmax);

3. ∂y
∂x
≥ 0 for all solutions (x0, y0).

Note that we choose polynomial kernel with order of 2 only because of its sim-

plicity. Actually, any kernel which is partially differentiable with respect to X can be

used to check the monotonicity since we use only two dimensional feature vector.

Finally, the overall incremental procedure can be described as algorithm 1 . Af-

ter the initial offline training, assume that a new training point c is added into the

training set D. So l → l + 1 and Dl+1 = Dl ∪ {c}. The solution {αl+1
i , bl + 1},

i = 1, · · · , l + 1 should be calculated based on {αli, bl}, the Jacobian inverse Θ and

the new training data (xc, yc).

Algorithm 1

1. Initialize αc to 0;

2. If gc > 0, terminate (c does not belong to either margin or error vector);



20

3. If gc ≤ 0,apply the largest possible increment αc so that (the first) one of the

following conditions occurs:

(a) gc = 0: Add c to margin set S, update Θ accordingly, and terminate;

(b) αc = C: Add c to error set E, and terminate;

(c) Element of Dl move across S, E, and R (ignored set) as described in

bookkeeping : Update membership of elements and, if S changes, update R

accordingly;

(d) Check the monotonicity of the updated decision boundary y = f l+1(x) in

the feasible feature domain. Reject the update if the monotonicity of f l+1

is inconsistent with f l;

4. For the text image defined by the user, apply steps 1-3 for the text/nontext

classifier. For the mix and picture images defined by the user, apply steps 1-3

for both text/nontext and mix/picture classifiers.

2.6 Experimental result

2.6.1 Dataset description

For our experiment, we have a library of 888 images. These images were

carefully selected and labelled by HP engineers based on their contents. This library

covers a variety of images which are representative of frequently scanned or copied

pages. Details of this library are listed in Table 2.1 below.

2.6.2 Offline training

Since we require the user to choose color/mono mode, we can train separate pairs of

classifiers for text/non-text and mix/picture for the two cases of mono and color to op-

timize overall classification performance. The two training results for the text/nontext



21

Table 2.1.: Number of documents of every class in the image library

color mix color text color picture color total

number 132 110 225 467

mono mix mono text mono picture mono total

number 93 105 223 421

classifier are provided in Fig. 2.9. In Fig. 2.9, the green dots represent text images in

the library set while the red dots are nontext images in the library. The two training

results for the subsequent mix/picture classifier are given in Fig. 2.10. In Fig. 2.10,

the green dots represent mix images while the red dots represent picture images. In

the training process, we need to consider a balance between accuracy and overfitting

by choosing appropriate kernel functions and their corresponding parameters. Thus,

we apply nonlinear kernels in the SVM for the text/nontext classifier. For both mono

and color text/non-text classifiers, we apply polynomial kernels. For mono docu-

ments. the degree of the polynomial is d = 2. For color documents, the degree is

d = 3. The polynomial kernel is defined as

K(x, y) = (xTy + c)d (2.24)

Similarly, we apply kernels in the SVM for the mix/picture classifier. For both

mono and color mix/picture classifiers, we apply Gaussian radial basis function ker-

nels. For mono documents, we apply a Gaussian radial basis function kernel with free

parameter σ = 1.1. For color documents, we use σ = 0.8. The Gaussian radial basis

function kernel is defined as

K(x, y) = exp(−||x− y||
2

2σ2
). (2.25)

To evaluate the performance of our algorithm, we perform a full-fold cross vali-

dation and compare it with the algorithm in [9] The overall classification accuracy of

both algorithms is provided below in Table 3. For our application, misclassifications



22

are not equally weighted. For example, misclassifying mix as text is a more severe

error than misclassifying picture as mix, due to the viewer’s sensitivity to text dis-

tortion. So in the training process, our goal is to minimize the cost function

F =
∑
i

PiWi (2.26)

where i is type of misclassification and Pi represents the percentage of misclassification

for misclassification type i. Weights for all types of misclassifications are given in

Table 4.

Table 2.2.: Overall classification accuracy based on our proposed method

classification results

ground truth mix text picture

mix 83.9% 6.3% 9.7%

text 16.2% 83.8% 0.0%

picture 17.5% 0.0% 82.5%

(a) Mono document accuracy

classification results

ground truth mix text picture

mix 94.1% 0.7% 5.2%

text 22.7% 75.5% 1.8%

picture 20.9% 0.0% 79.1%

(b) Color document accuracy

By comparing Tab. 2.2 and Tab. 2.3, we plug them it to 2.26 and we find that for

color image, the weighted error improvement is 39.1%. For mono image, the weighted

error improvement is 9.4%
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Table 2.3.: Overall classification accuracy based method in [9]

classification results

ground truth mix text picture

mix 83.9% 10.7% 5.4%

text 9.4% 89.6% 1.0%

picture 42.3% 0.0% 57.7%

(a) Mono document accuracy

classification results

ground truth mix text picture

mix 96.9% 2.3% 0.8%

text 22.7% 77.3% 0.0%

picture 81.0% 0.4% 18.6%

(b) Color document accuracy

Table 2.4.: Weights of misclassifications for both color and mono.

classification results

ground truth mix text picture

mix 0 5 5

text 3 0 5

picture 1 5 0

2.6.3 Quick decision

We compare the average processing time for every image before and after applying

quick decision and feature discard. The timing analysis is based on the personal

computer as shown in Tab. 2.5
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Table 2.5.: Speedup for quick decision and feature discard.

Image type Quick decision Original Speedup

Color mix 24.9 ms 77.0 ms 3.09

Color text 79.9 ms 79.3 ms 0.99

Color picture 35.7 ms 44.1 ms 1.24

Mono mix 21.1 ms 92.4 ms 4.38

Mono text 84.2 ms 83.2 ms 0.99

Mono picture 44.1 ms 50.2 ms 1.14

Table 2.6.: Average classification time for each type of document on Beagle Board

Color mix Color text Color picture Mono mix Mono text Mono picture

Time 302 ms 910 ms 413 ms 291 ms 954 ms 527 ms

According to Tab. 2.5, we can see that our algorithm significantly speeds up

the classification for mix document because of quick decision strategy. As expected,

it also speeds up the classification for picture document which is cause by feature

discard strategy. However, we can see that it slightly slows down classification for text

document. That is because we need to do extra SVM classification after each block.

However, the computation for SVM is much smaller than feature extraction for each

block, so quick decision and feature discard which save extra feature extraction could

significantly speeds up the whole process even we apply extra SVM classification.

In order to test the real-time capability of our proposed algorithm, we implement

it on the Beagle Board which is close to the AIO device firmware environment. We

record the average processing time for each type of document, and the results are

given in Tab. 2.6. We can see that the average processing time for every type of

document is no more than 1 second.
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2.6.4 Online training

In our online training experiment, we use Ct
text = 1, Ct

nontext = 2, Cm
picture = 1,

Cm
mix = 2. Figure. 2.11 illustrates our experimental online training process. The

dashed line represents the initial decision boundary based on the offline training (31

nontext, 41 text). The solid line is the decision boundary after processing 20 more

online training images (10 nontext, 10 text), which simulates 20 user inputs. We can

see that the initial monotonicity is preserved. In real situation, we also need to store

the initial decision boundary before any online learning. So that customer can always

reset classification to the default settings.

2.7 Summary

In this chapter, we have presented an SVM-based algorithm to classify the input

image for a digital copier. The proposed classification algorithm follows a binary-tree,

two-stage decision structure. Each individual classifier takes two input features and

makes a decision based on them. To control the error rate and model complexity,

we apply polynomial and Gaussian radial basis kernel functions. Based on the clas-

sification result, digital copier chooses corresponding processing pipeline to produce

relatively high quality output. The classification is based on the low resolution image

which is 75 dpi. We utilize only local features for both classifier input, and that enable

the quick decision and feature discard strategies. With quick decision strategy, we

significantly speeds up the classification process. Besides local monotonic features,

we also require monotonicity of SVM decision boundary to enable quick decision. We

also introduced an online image classification algorithm for the AIO device. Unlike

the traditional incremental and decremental SVM, our algorithm requires that the

derived decision boundaries preserve the initial monotonicity, so that quick decision

conditions will not be destroyed. With this constraint, user can add new training

images to improve the performance of the AIO device.
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Because this algorithm is used in the low-end AIO product, we can not afford

extensive computation for classification. Given this fact, we only extract two features

for every classifier. For the same reason, we choose polynomial kernel with order of

2 when applying online SVM update. However, same idea can be applied to feature

vectors with higher dimension and other kernels which are differentiable.
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(a) Text/nontext feature space

(b) Mix/picture feature space

Fig. 2.8.: Examples illustrating the role of decision boundary monotonicity
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Fig. 2.9.: Text/nontext SVM classification boundary
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Fig. 2.10.: Mix/picture SVM classification boundary
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3. EXTENDED SCANNED IMAGE CLASSIFICATION FOR
ALL-IN-ONE PRINTER

3.1 Problem statement

In Chapter 2, we discuss the scanned image classification problem for AIO printer.

The purpose for the classification is sending image to its optimal processing pipeline to

reach the best output image quality. However, we discussion is limited to classify the

input image into one of three classes: mix, text or picture. In some other applications,

we need to distinguish more than 3 classes. Some printers are equipped with other

processing pipelines which can better handle more than mix, text and picture. At the

same time, high-end product with more processing pipelines typically have greater

computational power, and thus quick decision is not necessary.

3.2 Introduction

For some AIO printers, there are several processing pipelines which are designed

specifically for a type of image. These processing pipelines can perform content-based

optimization for the input images and thus reach the optimal copy quality for each

input. In Chapter 2, we discuss this problem when we have three target types and

quick decision for mix type is required. However, we’d like to extend this topic in this

chapter to make out system more comprehensive. First, we now consider a high-end

AIO device which is equipped with 5 processing pipelines instead of 3. Second, given

the greater computational power of the device, we do not require quick decision for

certain type any more. Our AIO device can safely calculate all features and make

classification in real-time so we do not need to bias to certain type like in Chapter



32

2. These two differences lead to changes in both feature design and classification

structure compared with Chapter. 2.

Other than the three types we discuss in Chapter 2, we now introduce two more

types: receipt and highlighted-text. Examples of these two types are given in Fig. 3.1.

(a) Receipt (b) Highlighted-text

Fig. 3.1.: Examples of receipt and hightlighted-text

Receipt represents a type of document images that have very low contrast and

faded text. Its corresponding processing pipeline needs very strong contrast enhance-

ment and text recovery [37, 38] to guarantee readability of the copy. Compared with

example given in Fig. 2.2, receipt type needs even stronger enhancement for better

quality. Highlighted type typically contains colors that are more saturated compared

with color in the natural images. An example is people using fluorecent pen to high-

light text line in a document image. These highlighter usually produces very saturated

color in order to attract attention of readers. However, these saturated colors [39,40]

are sometimes difficult to captured by the scanning devices, or it is sensed as less
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saturated color by the scanner. Figure 3.2 shows an captured image with highlight

colors, which illustrate the vision of our device when sensing those colors. WE can

tell the colors in upper half are very weak in eyes of scanners, but colors in lower half

are much more visible. However, if all these colors are very visible and clear on the

physical page on which we put highlight marker. So if we can tell the input image

is a highlighted text document, we can produce more saturated color when gener-

ating output to match the appearance of actual highlighter ink. This can improve

user experience when copying highlighted document page for better readability and

preserving important area in the page.

But still, our device can only process the input image strip by strip without

knowing the global information. And input color space is either RGB or LCH from

hardware [41].
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Fig. 3.2.: Highlighted colors that are difficult to capture

Subsequently, we need to develop new features which can distinguish these two

types on top of features we used in Sec. 2.4.3. These features will be introduced in the

latter section. Also, since quick decision in not necessary in this case any more, we do
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not need to terminate the classification process before scanning the entire page. This

gives us more flexibility when designing the classifiers and their structures. So we do

not need to follow the hierarchical structure in Fig. 2.3 which is designed specifically

for early termination of mix type.

3.3 Features

3.3.1 Chroma histogram flatness

Although both natural images and highlighted text have chroma information, a

very significant difference between natural color image and highlight text is that

highlighted text tends to include only one or few color while natural images have

richer color information. This can be illustrated in Fig. 3.4 where we can find only

pink in highlighted text image while chroma in natural image is very rich. Then we

need a numerical value to represents this difference.

In Sec. 2.4.4, we introduce the Histogram Flatness Score in the luminance channel

and it assumes that text image has more peaky histogram. Similarly, if we build a

histogram for a highlighted text in chroma space, we can expect that there is a single

or few peaks, while histogram for the natural image is more flat. Different from

luminance histogram, chroma histogram is two-dimensional. Since our input image

can be either RGB or LCH color space, we need to build histogram correspondingly.

For RGB input, we transform it to YUV space and build histogram on UV plane.

For YUV input, we can build histogram on CH space directly. As shown in Fig.

3.3(a), UV space is in Cartesian coordinate system so we can uniformly partition it

into 8 ∗ 8 areas and build histogram based on that. However, CH space is described

in polar coordinate system so we need to partition it differently. We uniformly divide

the hue and chroma into 8 segments respectively, and thus give us 64 areas which is

not uniform in terms of space. LCH partition for building histogram is shown in Fig.

3.3(b) For every input image, we cut it into 32×32 pixel block and build a histogram
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for pixels in the block i which is denoted as hi. The Chroma Histogram Flatness for

the block i is denoted as fi

fi =

N

√∏N−1
n=0 hi(n)∑N−1

n=0 hi(n)

N

(3.1)

where N = 60 in our case. It is worth noticing that we do not use all the bins

of histogram to calculate fi. That is because we should only focus on the chroma

flatness and exclude those areas which are close to gray. Highlight-text will also have

very low flatness if we consider those gray pixels which correspond to black text and

white background. For YUV space, we ignore the central four bins and for LCH space

we ignore the central 8 bins that are inside the smallest circle.

the Chroma Histogram Flatness F for the entire image is define as maximum fi

in of all blocks in the image.

F = max(fi) (3.2)

Because we do not expect seeing flat histogram of any block in the highlighted text

image.

(a) LUV space partition (b) LCH space partition

Fig. 3.3.: LUV and LCH color space histogram
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(a) Natural image (b) Highlighted-text

Fig. 3.4.: natural image v.s. highlighted text

3.3.2 Chroma around text

On top of Chroma Histogram Flatness, we design another feature to detect chroma

information of highlighted text image. Typically, we can expect that people put

use highlighter to emphasize text information, which means text strokes are usually

covered and surrounded by highlight colors as shown in Fig. 3.5. However for natural

images, chroma information does not necessarily exists around edges. Given the fact,

we can try to detect if there is chroma existence along the text edges in the image.
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Fig. 3.5.: Highlighted colors around text

To find chroma around the text strokes, we first need to find text edges in the image

block. We follow the method introduced in Sec. 2.4.6 to find text edges. However, we

need to note that reverse contrast text should not be considered any more. That is

because it is rare that people mark light text with darker highlight which will cause

poor readability. After finding a text edge, we search along its luminance increase

direction to find if there is any chroma existence. Then we calculate chroma strength

(c) for two pixels along the luminance increase direction outside of text edge. In YUV

space, chroma strength of a target pixel at position of (m,n) is defined as

c(m,n) = u(m,n) + v(m,n) (3.3)

Note that we use simple summation of u and v here as approximation for faster

computation. In case of LCH space, chroma strength is equivalent to c(m,n). The

process can be illustrated in Fig. 3.6 after finding a text edge.
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Fig. 3.6.: Calculate c(m,n) of two pixels which are cover by blue

Similarly, we cut the input image into blocks with 32 × 32 pixels and then find

c(m,n) for all pixels outside text edges. Chroma Around Text (ci) of a block i is

defined as

ci =
mean(c(m,n))

std(c(m,n))
(3.4)

We also consider standard deviation of c(m,n) because highlight should be con-

sistent in a single block. Small std(c(m,n)) indicates that this block is more likely

to contain highlight color. Similarly, chroma around text (C) of a image defined as

maximum of ci of all blocks.

C = max(ci) (3.5)

3.3.3 Color block ratio

Chroma Flatness and Chroma Around Text together can provide good discrimi-

native power for detecting highlight image. However, they is not capable of handling

text with color background. One such example is given in Fig. 3.7. According to our

feature design in Sec. 3.3.1 and Sec.3.3.2, both features would strongly indicates that
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Fig.3.7 should be classified as highlighted text. That is because both features only

focus on local chroma and ignore global information.

Fig. 3.7.: Text with yellow background

To address this problem, we introduce Color Block Ratio. We calculate number

of color pixels in every 32 × 32 pixel block. A pixel is defined as color if its chroma

strength is greater than a threshold value Tc = 10. The chroma strength is defined in

Eqa. 3.3 for YUV space. In LCH space is simply C channel. A block i is considered

color if 10% of its pixels are color. We set mi = 1 if the block is color otherwise

mi = 0. Color block ratio (Rc) of an image is defined as

Rc =

∑
mi∑
i

(3.6)
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3.3.4 White block ratio

Compared with text image, receipt typically only occupies small part of area on

flat-bed scanner. An example is given in Fig. 3.1(a) which shows that scanned receipt

only occupies upper-left corner of the plane. To utilize this difference, we design White

Block Ratio. Again, we cut the input image into 32× 32 pixel blocks. For each block

i, we check if 95% of pixels have luminance value larger than 230. If this is true, we

consider this block to be a white block wi = 1, otherwise wi = 0. White block ratio

(Rw) of an image is defined as

Rw =

∑
wi∑
i

(3.7)

3.4 Classification structure

As stated in Sec. 3.2, we do not need quick decision now thus structure in Fig.2.3

is not necessary. In order to make a more balance multi-class classification and

for easier tuning, we apply Directed Acyclic Graph-Support Vector Machine (DAG-

SVM) [42]. DAG-SVM is a tree-structured classifiers that capable of making multi-

class classification. Instead of making one v.s. rest decision, it tentatively make

one v.s. one decision which allows more judgement from lower nodes. DAG-SVM

classifiers that we use are shown in Fig. 3.8
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Fig. 3.8.: DAG-SVM

It first decide if the input is non-mix or non-highlight. If the image is classified

as non-mix, then it is sent to the right node, other wise it is sent to the left node.

As we can see, this tentative solution can make more careful decision compared with

one v.s. rest structure as shown in Fig. 2.3.

3.5 Feature selection

In Sec. 3.3, we introduce four new features to detect receipt and highlight. To-

gether with features we discussed in Sec. 2.4.3, we can represent each image k with a

feature vector fk ∈ R8. However, we need to evaluate the contribution of each feature

to the classification. To test the impact of each feature on the overall classification

accuracy and time consumption, we adopt the leave-one-out feature selection.

Because misclassifications are not equally weighted, we need to first consider the

metric for feature selection. We define the weighted misclassification rate (Wm) as

below

Wm =

∑
i,j w(i, j)n(i, j)∑

j n(i, j)
(3.8)

where w(i, j) is the weight of misclassification given in Table 3.2 and n(i, j) is number

of images in this corresponding entry. To avoid biased measure due to different size
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of image set, the weighted sum needs to be normalized by the size of image set of

each type. In our case, we have
∑

j n(i, j) = 100 for all the five types. But for

completeness, we still keep the normalization term in Equation 3.8.

We first evaluate M8
m when we used all 8 features. Then we drop each feature d

at a time and evaluate M d̄
m. Then the feature impact factor for d is defined as

Id =
M d̄

m −M8
m

M8
m

(3.9)

According to the Equation 3.9, the feature with larger Id is more important to our

classification. Also, we measure time consumption for each feature and take average

over all the images. The results are shown in Table 3.1.

Table 3.1.: Feature impact factor and time consumption

feature
histogram

flatness

color

variability

text

edge

count

text

color

variance

chroma

around

text

chroma

histogram

flatness

white

block

ratio

color

block

ratio

time (ms) 12.01 12.51 14.97 73.92 36.12 11.45 0.67 0.81

Id 24.61% 13.84% 11.02% 1.9% 10.2% 3.4% 48.43% 13.65%

According to Table 3.1, we find text color variability has the smallest impact

on overall classification accuracy and it consumes the most time. Subsequently, we

exclude this feature from our application and the final feature vector of an image k

is a 7-dimensional vector fk ∈ R7. This fk serves as the input to the DAG-SVM

classifiers discussed in Sec. 3.4.

3.6 Experimental results

To test the performance of our designed system, we build an image set which

includes 500 images scanned by flat-bed scanner. Each type of images have 100

images.
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Except for text color variance in Sec. 2.4.7, we utilize all feature in Sec. 2.4.3 plus

the features we discuss in Sec. 3.3. We exclude Stroke Color Variance because this

feature is computationally expensive.

Similar to Sec. 2.6.2, different misclassification is weighted differently due to

its impact to image quality. Some misclassifications lead to larger image quality

degradation and they should be assigned larger weight. Some other misclassification

cause small impact on image quality and should be assign lower weight. The weight

table of misclassification is given in Table. 3.2.

Table 3.2.: Weights of misclassifications w(i, j)

classification results

ground truth mix text picture receipt highlight

mix 0 3 5 6 4

text 3 0 10 6 2

picture 3 10 0 10 15

receipt 6 8 3 0 8

highlight 10 10 10 10 0

To test the performance of our proposed algorithm, we conduct leave-one-out

cross validation. We use rbf kernel with σ for every node in Fig. 3.8. Then we

do exhaustive search for σ and box constraint C to find the best combination that

produce the best cross validation result. The goodness of cross-validation result is

measured by weight misclassification rate (Wm) which is defined in Equation 3.8.

When Wm = W ∗
m reaches minimum, the corresponding confusion matrix n(i, j) in

different color spaces are given in Table. 3.3 and Table. 3.4.
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Table 3.3.: Confusion matrix n(i, j) in YUV space

classification results

ground truth mix text picture receipt highlight

mix 78 5 11 2 4

text 3 68 0 4 25

picture 5 0 94 1 0

receipt 0 3 3 88 6

highlight 4 8 1 5 82

Table 3.4.: Confusion matrix n(i, j) in LCH space

classification results

ground truth mix text picture receipt highlight

mix 76 6 12 1 5

text 4 72 0 9 15

picture 7 0 92 0 1

receipt 0 6 0 89 5

highlight 3 14 1 6 76

3.7 Conclusion

In this chapter, we introduce some novel features to handle multi-class classifica-

tion for AIO printer with scanning functionality. It extends the scope of the topic

discussed in Chapter. 2. Our proposed algorithm utilize the chroma information of

input image for better classification. In this case, quick decision is not necessary so

DAG-SVM can be applied.
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4. DYNAMIC PRINT STREAM CLASSIFICATION AND
OPTIMAL JPEG COMPRESSION

4.1 Problem statement

Image compression is the prerequisite for many applications. In some applications,

different types of images may favor different compressions. For PC printing purpose,

the system needs to choose optimal compression algorithm and parameters in order to

obtain the best balance between image quality and compressed file size. For example,

pure text with simple background image is suitable for lossless compression like Run

Length Encoding, because it preserves the image quality while having small com-

pressed file size. However, complex natural image may favor lossy compression like

JPEG since it reaches good compression ratio at the price of image quality. In this

case, we need to find an optimal compression level so that it reaches the best balance

between the image quality and the compression ratio. In this chapter, we propose a

system that finds an optimal compression algorithm given the input image. Also, if

the input image is decided to be compressed by the lossy compression (JPEG), the

system will find the optimal compression level.

4.2 Introduction

Image compression is becoming increasing crucial for various purpose in today’s

information age [43–47]. One of these applications is image compression for printing

[48, 49]. People nowadays print a variety of images or documents from either mobile

devices or PC. When printing images or documents, there are two major factors which

impact user experience: image quality [50, 51] and printer process time. Ideally, we

hope to reach image quality as high as possible while process time as quick as possible.



47

However, the two factors here can not be improved simultaneously. Improving image

quality is typically at the expense of longer processing time because we need to

deal with larger file size which is caused by less lossy compression [52]. Heavily lossy

compressed images can be processed very fast by printer due to small file size, however

it generates poor image quality outputs. So we propose a new approach which could

jointly optimize both of these factors under the constrains given by current printer

system.

The current printing system supports three compression modes: Delta Row Com-

pression (DRC) [53], Run Lenth Encoding(RLE) [54] and JPEG [55]. In these three

modes, DRC and RLE are lossless compression while JPEG is a lossy compression

algorithm. Processing natural images using DRC or RLE is very inefficient. First,

Human Vision System (HVS) is not sensitive to high frequency information in the

image [56, 57], so it can not perceive some information loss in the lossy compression

process. Secondly, using RLE and DRC will yield to very large file size for natural

images, because typical natural images do not have much spacial redundancy [58,59].

These two reasons drive us to use lossy compression algorithm such as JPEG to pro-

cess natural images. On the other hand, simple structure image is more suitable for

DRC or RLE lossless compressions. Simple structure image such as small logo or

pure text have very high spatial redundancy which can be compressed heavily by

RLE or DRC with no cost of image quality. Plus, JPEG compression will blur edges

of text [60], which is undesirable in case of simple structure image.

Given these facts and constraints, it is clear that the proposed system need to

first distinguish if the input belongs to natural image or simple structure image. This

requires a classifier which extracts certain features from the input images, then makes

a binary decision. If the decision is a natural image, we feed the image to the JPEG

compressor. Otherwise, if it is decided to be a simple structured image, we send it to

one of lossless, RLE or DRC, compressors. For natural images, we need to control the

image quality by choosing optimal Q factor [61]in JPEG compressor which reaches
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a good balance between output image quality and compressed file size. A larger Q

factor yields to better image quality at the expense of larger file size.

Image quality is not our concern if the input is classified as simple structure image

because both RLE and DRC are lossless compressions, which means they are equiv-

alent in terms of image quality. However, they may differ in terms of decompression

time at printer firmware. So we need to make choice between RLE and DRC based

on only one metric: decompressed time at printer. Unfortunately, decompression al-

gorithms are only available in printer firmware but not PC, so we need to develop an

classification algorithm in PC or mobile devices which can predict the decompression

time consumed by printer, if the input image needs to be losslessly compressed.

Content-based image classification [3,25,26], compression and image quality have

been intensively studied separately. In this chapter, we combine these three factors

together to optimize the printing performance. This system can also apply to other

platforms that require balance between image quality and compression ratio.

We applied the Support Vector Machine [62] for classification purpose at the

first stage which distinguishes lossy and lossless compressions. With more than 7000

training images, we managed to build a robust SVM classifier. JPEG compressed

image quality is a long-studied topic [63–65]. Most of these studies focus on finding

correlation between human perceived image quality and certain features [63]. In this

chapter, we propose a Dynamic Print Stream Compression (DPSC) engine to finding

the optimal compression level (Q factor) in JPEG compression, which could reach

a good balance between image quality and compression ratio. This would largely

enhance the PC printing performance. With DPSC engine, we could significantly

improve the efficiency of printing. Proper compression for different types of input

images could reduce the decompression time in the printer firmware while preserving

good print quality. It makes sure that we get good print quality at the lowest price

of decompression load.
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Fig. 4.1.: Printing system structure

4.3 Printing system description

As described in introduction, we have a printing system as shown in Fig. 4.1. Our

input page is a document file such as PDF, Word or HTML Web, and it is first sent

to print driver. The print driver generates a list of all the objects in the page and

describes the page in high-level page description language [66]. Each object in the

print list is then sent to our proposed DPSC engine to choose its optimal compression

algorithm.

Our proposed DPSC engine and three compressors are implemented in PC or

mobile devices. Computationally, PC or mobile devices are much more powerful

compared with printer firmware. So we can safely ignore processing time at PC

end, which is shown to the left of dash line in Fig. 4.1. Then we assume that

overall processing time is fully determined by decompression time consumed by printer

firmware.

4.4 DPSC engine

4.4.1 structure

Our proposed DPSC engine follows a hierarchical decision structure as shown in

Fig. 4.2. Since we will only only use luminance channel information in the DPSC
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Fig. 4.2.: DPSC engine structure

engine, we first transform the original image into LUV color space and keep only lu-

minance channel. Using only luminance channel information will significantly speed

up subsequent image classification and image quality analysis. At the first classifica-

tion stage, DPSC engine decides if the input image should be compressed by lossy or

lossless compressors. If the input is a natural image, we will use JPEG to compress

it and find its optimal Q factor. If it is a simple structure image such as pure text or

small logo, we apply the second stage classification between RLE and DRC depending

on the prediction of the decompression time consumed by printer firmware.

4.4.2 Lossy vs. lossless classification

As described in introduction 4.2, we first need to decide if the input image is

a natural image or simple structure image, then apply compressor correspondingly.

With more than 7000 training images, we develop a SVM classifier for the task. The

input of this SVM classifier is a 3-dimensional feature vector. The three elements in

the feature vectors are Histogram Flatness, Histogram Span and Luminance Variablity

Score. We use these three features to train our first lossy vs. lossless SVM classifier.
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Histogram flatness

If we build a histogram for a simple structure image such as pure text or logo,

we can expect that this histogram is very peaky. There are roughly two peaks in

this kind of histogram, one for text pixels and the other one for background pixels.

However, if build the same histogram for a natural image, it should be more flat

and widespread. A typical example of the histogram difference is given in Fig. 4.3.

In order quantify this difference, we define the histogram flatness as its geometric

average over arithmetic average

Flatness =

N

√∏N−1
n=0 x(n)∑N−1

n=0 x(n)

N

(4.1)

where x(n) is the number in bin n.

Histogram span

The first feature may not work very well when histogram is relatively sparse. For

example, if we have a histogram which satisfies X(2n) = k and X(2n + 1) = 0, its

corresponding image should be closer to natural but rather simple structure. However,

the first feature would decide the image is very peaky. To solve this issue, we develop

the second feature HistogramSpan. It is defined as width of the smallest interval

that includes 75% pixels.

Luminance variability score

This feature is developed in [9]. This feature is based on the fact that the nontext

region of a text image typically contains only a few gray level value. We cut the

input image into 8× 8 pixel blocks and calculate the mean value of the block. Then

we build a 16-bin histogram for these block-mean values in the entire image. The

Luminace Variability Score is defined as the number of non-zero bins in this block-

mean histogram.
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(b) Simple structure image histogram (c) Natural image histogram

Fig. 4.3.: Natural and simple structure image histogram comparison

4.5 Lossless classification

Run Length Encoding and Delta Row Compression are two widely used lossless

compression algorithm. As described in Sec. 4.2, we only need to consider the de-

compression time in the printer firmware.

Here we describe how we generate ground truth to train this classifier. For all the

images which are labeled as simple structure in the training set, we compressed and

decompressed it by both DRC and RLE. Then we measure its decompression time

T dDRC and T dRLE respectively. If T dDRC < T dRLE, we label this image as DRC, otherwise

we label it as RLE. This gives a two-class training set to train the classifier.

The most intuitive solution to finding faster decompression in printer firmware

is doing both RLE and DRC decompression at PC or mobile end, then choose the

faster one. However, due to our system constraint, we are not allowed to implement

decompression algorithm on PC or mobile devices. So we need to resort to other

features to do this prediction on PC or mobile end.

Although we can not apply decompression on PC or mobile, we can still compress

the input image in both ways and find good predictors in the compression process.

Two feature we find useful are compression time ratio (CTR) and compression size

ratio (CSR)
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For every input image, we compress it by both RLE and DRC. We measure com-

pression time T cRLE and T cDRC respectively. Also, we measure the compressed file size

FRLE and FDRC . Two features are defined as

CTR =
T cRLE
T cDRC

(4.2)

CSR =
FRLE
FDRC

(4.3)

With training set and features above, we can train a SVM classifier which is able

to classify simple structure image into RLE or DRC.

4.6 Optimal JPEG compression

If the input image is classified as a natural image, we will use JPEG to compress

it. In this case, we want to compress it as heavily as possible to reach smaller file size.

However, if we compress it too hard, we will have very poor image quality output. In

order to reach a balance between the compressed file size and output image quality,

we need to find an optimal Q factor which is a variable in JPEG that controls the

compression ratio and image quality.

However, Q factor does not change linearly with either compression ratio or image

quality. [63] introduces three features that can quantify the JPEG image quality. All

of these features are calculated horizontally and then vertically. The three features

are average differences across block boundaries (B), in-block absolute difference (A)

and zero-crossing rate (C).

If we have a image signal as x(m,n) for m ∈ [1,M ] and n ∈ [1, N ], and calculate

a difference signal along each horizontal lines:

dh(m,n) = x(m,n+ 1)− x(m,n), x ∈ [1, N − 1] (4.4)
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Average differences across block boundaries shows blockiness effect caused by JPEG

compression, and it is defined as

Bh =
1

M(bN/8c − 1)

M∑
i=1

bN/8c−1∑
j=1

|dh(i, 8j)| (4.5)

The other two features are related to the activity of the image signal. The activity

is measured by two factors. The first is in-block absolute difference which is defined

as

Ah =
1

7
[

8

M(N − 1)

M∑
i=1

N−1∑
j=1

|dh(i, j)−Bh|] (4.6)

The second activity measure is the zero-crossing rate. We first define

zh(m,n) =

1, horizontal zero-crossing at dh(m,n)

0, otherwise
(4.7)

The horizontal zero-crossing rate then can be estimated as:

Zh =
1

M(N − 2)

M∑
i=1

N−2∑
j=1

Zh(m,n) (4.8)

Similarly, we can get vertical features Bv, Av and Zv. We average over horizontal

and vertical features to get the overall features;

B =
Bh +Bv

2
, A =

Ah + Av
2

, Z =
Zh + Zv

2
. (4.9)

The final prediction of Mean Opinion Score (MOS) can be calculated using the above

three features as

MOS = α + βBγ1Aγ2Cγ3 , (4.10)

Figure.4.4 shows the result of MOS prediction trained by two groups of images.

We set a threshold Mean Opinion Score MOST depending on how good image

quality we want to reach.

For any input natural image, we compress it starting from Qi = 10, 20, 30...., 100.

At each Qi, we extract 3 features of compressed image as described in [63]. Then we
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Fig. 4.4.: MOS prediction trained by two groups of images

calculate the predicted MOSi at Qi based on these 3 features. We find the first Qi

which has MOSi > MOST , and set i∗ = i. Thus, the optimal Q factor is defined as

Q∗ = Qi∗ (4.11)

Then we send the JPEG compressed image at the Q∗ to printer.

4.7 Experimental results

4.7.1 lossy vs. lossless classification

To train the lossy vs. lossless classifier, we generate 8565 images from print drive

engine. Among these 8565 images,4535 of them are labeled as natural images which

ideally should be sent to lossy compressor (JPEG), while the other 4030 images are

simple structure images which should be sent to lossless compressors (RLE or DRC).
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We use standard F1 metric [67] to evaluate the performance of this binary classification

problem. 4-fold cross validation is conducted in our experiment. The SVM classifier

utilize the RBF kernl. Subsequently, the best F1 score, precision, recall are shown in

Table. 4.1, and its corresponding confusion matrix is given in Table. 4.2. In order to

visualize this classification, we show the feature distribution of the image set in Fig.

4.5.
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Fig. 4.5.: lossy and lossless classification in feature space

Table 4.1.: Best F1 score in cross validation for lossy vs. lossless

metric precision recall F ∗1

data 0.946 0.898 0.924
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Table 4.2.: Confusion matrix at F ∗1 for lossy vs. lossless

outcome
lossy lossless

groundtruth

lossy 4291 244

lossless 488 3532

4.7.2 Lossless classification

To train the RLE vs. DRC classifier, we have a training set with 4027 simple

structure images. They are either pure text documents or simple logo image patches.

As described in Sec. 4.5, we labeled these simple structure images based on their

decompression time. Each image is labeled as the algorithm which is faster to decom-

press. Similar to lossy vs. lossless classification evaluation , 4-fold cross validation is

conducted. And we also use RBF kernel in the SVM classifier. The best F1 score,

precision, recall are shown in Table. 4.3, and its corresponding confusion matrix is

given in Table. 4.4. In order to visualize this classification, we show the feature

distribution and decision boundary of the training set in Fig. 4.6.
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Fig. 4.6.: RLE and DRC classification in feature space and its decision boundary

Table 4.3.: Best F1 score in cross validation for RLE vs. DRC

metric precision recall F ∗1

data 0.899 0.967 0.932

Table 4.4.: Confusion matrix at F ∗1 for RLE vs. DRC

outcome
lossy lossless

groundtruth

lossy 3075 344

lossless 104 504
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4.8 Conclusion

In this chapter, we propose a dynamic printing stream compression engine which is

able to choose best strategy to compress the input image. The DPSC engine follows a

hierarchical decision structure. It first decides if the input is a natural image or simple

structure image. The natural image will be sent to JPEG compressor while the simple

structure image will be compressed losslessly. The second classifier will decide if the

simple structure image should be compressed by RLE or DRC based on prediction of

decompression time in each way. If the image is decided to be compressed by JPEG,

DPSC engine will choose the optimal Q factor to reach good balance between image

quality and compressed file size.
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5. HIERARCHICAL CONTENT-BASED IMAGE
RETRIEVAL FOR HYBRID LEARNING

5.1 Problem statement

Image retrieval (IR) has been intensively studied recently. Primarily, there are

two search methods based on different query input: image meta search and content-

based image retrieval (CBIR). Image meta search takes keywords or text as input and

then makes query in the database to search for the corresponding image. However,

CBIR relies on a query image as input and then search for the similar or same image

in the database. In this chapter, we introduce a IR engine which requires CBIR for

educational purpose. Different from typical image retrieval engines, our engine should

find the exactly same image in the database but not very similar one, which poses

more difficulties when dealing with images with very minor difference. Compared with

traditional Bag-of-Word(BoW) approach, we introduce a new search metric when

ranking the images in the database so it can better distinguish the similar results to

reduce confusion. Besides, we utilize spatial information of query image hierarchically

to refine the results from BoW stage, which is ignored by BoW.

5.2 Introduction

Significant amount of research work has been done in the field of image retrieval

[68–71] recently. Based on different query inputs to the image retrieval system, most

of these research focus on two approaches: image meta search [72] and content-based

image retrieval(CBIR) [4]. Image meta search requires descriptive keywords or text

as input and then search for the images which most accurately display the semantic

meaning of keywords or text. The difficulty of image meta search is how to do
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indexing and build database efficiently, especially when database is huge and real-

time is required [72], so that retrieval can be done fast and accurate. In contrast,

CBIR takes an query image as input and search for images in the database based

on visual similarity. CBIR servers as the prerequisite for many applications such

as annotation extraction, reader evaluation and supplementary content embedding

etc. We developed an blended-reality image retrieval engine which bridges hardcopy

chapter to its digital version in the database. The retrieval engine utilizes both

feature-space and spatial information in a hierarchical structure. The IR engine we

propose can be applied to different platforms like PC or mobile devices.

The CBIR engine we introduce in this chapter is primarily used for educational

purpose. It is integrated into a larger educational system called HP METIS. The

METIS system improves teaching and learning experience for teachers and students.

The METIS system provides a powerful tool for teachers to publish notes or material

for students through blended-reality. It can project notes, URLs or supplementary

content which help student understanding on the hardcopy textbook. It also includes

other functionalities such as student reading behavior evaluation, automatic annota-

tion generation, learning concept map generation and student peer review etc. All

these functionalities of the system requires CBIR as a prerequisite. For example, if

the teacher needs to know where is the most difficult part for students to understand,

a very important indicator is how long the students stay on each page of text book.

Longer stay on certain page indicates that it is more difficult for student to digest

content on this page compared with others. However, student may prefer hardcopy

text book rather than digital version since it is more readable and easier to make

notes. Fortunately, we can easily capture the current page that the student is reading

using a top-view camera or mobile device. Besides, our IR system store a digital copy

of the textbook in the database. By matching the captured page with the digital

version in the database, we can know which page the student is reading and evaluate

how long the student stay on this page. This evaluation based on reading time will

be sent to teacher so that teaching plan can be improved accordingly. Similarly, if
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the teach makes any note on the textbook and need to project these notes on the

hardcopy textbook of student, a retrieval process is also necessary to find the corre-

sponding page. The flowchart how our IR engine is integrated into the METIS system

is illustrated in Fig.5.1.

CBIR has been discussed in many literatures. Most of these techniques requires to

represent the query image using a feature vector, then compare this feature vector with

other feature vectors generated in the database to obtain similarity. Traditionally,

people consider three types of features for image retrieval: color feature, texture

feature or shape feature [73]. However, all of these approaches suffer some limitation.

Color feature can not make distinguish between document image which carry different

semantic meaning. texture feature typically requires transformation into a frequency

domain for similarity comparison which ignores spatial information. Shape feature

usually needs existence of certain object in the image which is not always guaranteed

in application [74]. In [75], author propose a similarity ranking method based on

nearest neighbor distance which outperforms SVM-based image retrieval method.

In this chapter, we propose a new Hierarchical Weighted Spatial Ranking which

better utilize spatial information for CBIR on top of BoW approach. Our testing

image set includes 5523 images and lots of them have high visual similarity, such as

printed form with minor different hand-writing text.

5.3 Image Retrieval Engine Description

5.3.1 Overall Structure

Our image retrieval system follows a hierarchical structure which applies Bag-of-

Word [76] first followed by spatial verification. BoW stage utilize SIFT [6] feature and

apply K-means clustering [77] to generate centroid in feature space. If the BoW finds

a highly significant matched image in our database, our IR engine will terminate

the retrieval process and output this significant result. Otherwise, the BoW stage

will output 5 most likely images in the database according to feature-space similarity
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Fig. 5.1.: METIS system flowchart

score and feed them to subsequent spatial verification stage. We put BoW stage

first because spatial verification requires point-wise matching between query image

and stored images, and this process is computationally expensive. It will become

computationally impossible if we apply spatial verification first. Instead, we apply

BoW first to narrow down the possible matching candidates and then conduct point-

wise spatial verification. The overall structure of our proposed IR engine is shown in

Fig. 5.2

5.3.2 Bag-of-Word Training

Instead of matching each individual points in two images which is computationally

intensive, BoW feature reduction can significantly improve the retrieval speed. Sim-

ilar to traditional BoW approach, we first need to train a code book in the feature

descriptor space which are N centroids in the feature descriptor space. There are

some studies about how to pick optimal N for different applications. In our case, we

choose N = 400 empirically. And we choose SIFT descriptor to build the BoW code

book. The training process of BoW is shown in Fig. 5.3
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Fig. 5.2.: Proposed IR engine flowchart

Fig. 5.3.: BoW training
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In order to build the code book, we extract points of interest of all images in the

database and then find the descriptors associated with all these points of interest. In

our case, these descriptors are 128-dimensional vectors. Then we can apply K-means

clustering for all the descriptors. However, given the scale of our image set, such

clustering process turns out to be extremely difficult in terms of computational load.

That is because complexity of this unsupervised learning process grows exponentially

with the number of descriptors. Fortunately, we only need these code book centroids

to describe distribution of descriptors in each image, so we do not necessarily requires

the exact clustering results. Instead of clustering all descriptor collectively, we can

apply sequential K-means which has the same descriptive power. Compared with

standard K-means clustering, it only requires small number of descriptors to initialize

the clustering process and then feed the rest descriptors sequentially. This reduces

complexity of building code book centroids from exponential to linear. With the

code book centroids, we can build a feature vector for each image in the image set.

In each image in the image set, we assign every point of interest to its closest code

book centroid. Then we can build a histogram for each image, where every bin in

this histogram represents number of points assigned to this centroid. So in our case,

image i in the database is represented by a 400-bin histogram which is equivalent to

a 400-dimensional vector Vi.

5.3.3 BoW Retrieval

In the retrieval process, some preprocessing is necessary under certain capture

situations. Two situations we consider there are: perspective distortion and noisy

background. One example which suffers both situations is given in Fig. 5.4. With

complex background like in Fig.5.4, IR engine will get many noisy points of interest

and descriptors that break the BoW description. In such case, we need to calibrate our

capture device and make perspective correction accordingly. In our case, we create a

bounding box on our captured plane and make sure the image is in the bounding box.
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We can easily get homography matrix by calibrating this bounding box in capture

image. Therefore it solves both problems.

Fig. 5.4.: Capture image with perspective distortion and noisy background

After preprocessing, we follow the similar training process in Sec. 5.3.2. We

extract all points of interest and associated descriptors in the captured image. Then

assign each descriptor to the closet centroid we obtain in Sec. 5.3.2. Again, we build

a 400-bin histogram where each bin represents how many descriptors are assigned

to each centroid. By doing this, we can again represent the capture image using a

400-dimensional vector Vc.
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Traditionally, BoW approach will just find a Vi which has the largest cosine simi-

larity with Vc and declare i∗ as the final result like in Eqa. 5.1.

i∗ = arg max (Si =
VcVi
|Vc||Vi|

) (5.1)

However, this solution has two potential problems. First, as discussed earlier it

ignores the spatial information of the image. For example, two images may have same

content but are organized spatially different may have very high similarity score but

they are not a good match. Secondly, cosine similarity only evaluates the angle of

two vectors and ignores their magnitudes. For example, Fig. 5.5(a) and Fig. 5.5(b)

ideally should have feature vector of the almost identical direction, but feature vector

of fig.5.5(b) should roughly double the magnitude of fig. 5.5(a). When doing retrieval,

BoW can not tell the difference of these two images because their feature vectors are

pointing to the identical direction however they are visually very different.

But still for some images in database, we can expect that BoW itself has enough

discriminative power for retrieval. In real case, one Si∗ can be significantly higher

than other result. This fact suggests that if we can obtain a significant result using

only BoW, it does not worth more effort to make any refinement of the result. So

if have an Si∗ − Si∗∗ > T1 where Si∗∗ is the second largest similarity score in the

database, our IR engine will terminate the retrieval process and output i∗. For most

other query images, we will get several top results which have close similarity scores.

And we need more processing to refine the results. In our case, we send the top 10

candidates to the subsequent stage.

5.3.4 Hierarchical Weighted Spatial Ranking

To address above problems, we propose the Hierarchical Weight Similarity Rank-

ing(HWSR). Instead of searching for the feature vector Vi in the database which has

largest cosine similarity, we also consider the spatial consistency which is weighted

by the number of matched points used for generating homography.
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(a) image 1 (b) image 2

Fig. 5.5.: Example of difficult case for naive BoW

For each candidate image, we conduct point-wise matching with the query image

in the feature descriptor space and find a group of points that have smallest distances.

These points are considered possible matches in feature descriptor space. However, we

need to verify them spatially. With the group of matched points and their coordinates,

we can build a homography which represents the possible perspective relation between

these two images. We can expect that a real matched candidate in the database should

have very good homography. In contrast, false candidate may have good similarity

in BoW, but will show a poor homography with query image. For each candidate

j, we have a homography (Hj)3×3 associated with query image. In order to evaluate

the goodness of Hj we need to apply SVD to the (Hj)3×3. Then we compute the

eigen value ratio R. Smaller R indicates that we get a good homography. However,

small R itself can not guarantee that we find a good match. Some candidates may

have very significant homography because it relies on only small number of matched

points. However, some good candidates may have relatively larger R because small
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number of points are not matched correctly. So instead of using R alone, we introduce

Weighted Spatial Ranking Score (WR)

WRj =
Rj

Nj

(5.2)

where Nj is number of points we used for generating (Hj)3×3. Now, we can re-rank

the similarity of all candidates using WRj(j = 1, 2...10) and note top result as j∗.

Similarly, if we can find a significant WR∗j so that WRj∗ −WRj∗∗ > T2 where j∗∗ is

the second best result, we terminate the process and output j∗

At this point, it is still possible that we get more than one good results which

all have good homography. A good homography indicates that there exists a solid

perspective transformation. However, if we find more than one good perspective

transformation, we can compare if any candidate has even stronger spatial relation-

ship: affine transformation. We can obtain the strongness of affinity Aj from (Hj)3×3

Aj = |Hj(3, 1)|+ |Hj(3, 2)| (5.3)

The we can find the answer by affine strongness

j∗ = arg min (Aj) (5.4)

By imposing this more strict verification, we can refine and improve the results if

there are multiple close candidates.

5.4 Experimental Results

5.4.1 Dataset description

We collect 5523 images to test performance of our system. It covers various types

of images which includes document image, natural photo, hand-written forms etc.

Some images in the data set are very visually similar and challenging to retrieve.

Especially some form with hand-written entries, only minor visual difference exists in

small part of images.
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5.4.2 Accuracy

To test the performance of our system, we randomly select 336 images in our data

set and print them out using HP all-in-one printer. These images are then captured

by PC(HP Sprout) top-view camera as query images. The captured images may suffer

from perspective distortion, noisy background and various illuminance condition. The

testing results are shown in Table. 5.1.

As we mentioned in Sec. 5.2, the retrieval needs to be real-time to guarantee

the user experience. As the image set (search pool) expands, computational load

can grow very significantly and thus violate the real-time requirement. To verify the

computational performance, we conduct retrieval on the same PC which is used for

image capture and time each query. Since we apply two-stage hierarchical structure,

some images can stand out right after the first stage while others require HWSR.

Subsequently, we time these two cases separately and average results are shown in

Table. 5.2.

Table 5.1.: Retrieval accuracy

success fail total

294 42 336

87.5% 12.5% 100%

Table 5.2.: Time of retrieval

with HWSR without HWSR

1.50s 2.01s
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5.5 Conclusions

In this chapter, we propose a image retrieval engine to improve hybrid learning ex-

perience for students and teachers. It utilizes the BoW approach to find the candidate

pool first. Then the candidate images will be re-ranked by our proposed Hierarchical

Weighted Spatial Ranking to find the best match in the data set.
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6. TAG RECOMMENDATION VIA ROBUST
PROBABILISTIC DISCRIMINATIVE MATRIX

FACTORIZATION

6.1 Problem statement

Low-rank matrix factorization serves as a key technique in learning latent factor

models for many applications in machine learning. However, in many applications,

observed data often exhibits different levels of noise. To address this issue, we propose

a Robust Probabilistic Discriminative Matrix Factorization (RPDMF) method for bi-

nary matrix factorization on noise polluted data. We illustrate the benefits of our

approach in real examples, and show how our method significantly outperforms Prob-

abilistic Discriminative Matrix Factorization (PDMF) and classical method Weighted

Nonnegative Matrix Factorization (WNMF) in the application of image tag comple-

tion.

6.2 Introduction

Low-rank matrix factorization serves as a key technique in learning latent factor

models for many applications. Most matrix factorization methods seek to represent

the original matrix as the product of two low-rank matrices. Typical applications of

matrix factorization include image annotation [78], image tag completion [79–81], col-

laborative prediction [82] and clustering [83]. For any specific real application [84,85],

the corresponding optimality criterion is defined so that the difference between the

original matrix and its factorized form is expected to be minimized. Matrix factor-

ization serves as a very effective method to address problems of missing data recovery

and prediction. Because matrix factorization can recover missing data without help
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of extra features, it can be applied to different fields without designing new features

which may require domain-specific knowledge.

Among all collaborative filtering problems [86–88], image tag completion is a very

typical application in matrix factorization. Different from movie ratings and rec-

ommendations [89, 90], the matrix representation of image tag contains only binary

elements. A positive sample in the matrix means that a certain tag data is associated

with a given image, while a negative sample means that the information described by

this tag has not been assigned to the given image.

Many methods [91–93] have been proposed for matrix factorization. However,

these methods assume that the observed matrix is noise-free. Besides, the data in

typical matrix factorization with missing elements can take on any arbitrary real

value. The factorization is performed so that an objective function is minimized.

The objective function is usually composed of the observed data in the original matrix

and a regularizer that controls the model complexity. Some factorization methods are

performed under certain restrictions. For example, Nonnegative Matrix Factorization

(NMF) [91, 94], as suggested by its name, requires that all elements of the original

matrix be nonnegative.

In this chapter, motivated by the image tag completion task, we discuss a specific

setting of matrix factorization with entries restricted to binaries, representing positive

and negative samples respectively. Also in this setting, some observed elements are

polluted by noise. In order to perform the data recovery, we mask some of the elements

in the original matrix as unknown. An example of observed matrix is
? ns ps ps

ps ? ps ns

ns ps ? ns


,

where ps represents a positive sample, ns is a negative sample, and the ‘?’ rep-

resents our masked missing data. We should notice that some of the elements with

value ps or ns are mislabelled (flipped) in the observed matrix due to the noise. As
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we discussed previously, image tag completion falls exactly into this category. Given

the original matrix representation X of an image set Xij = ps means that the ith

image has the tag indexed as j, while Xij = ns means that the ith image does not

include the information of tag j. We may lose some tags because the user input is

not trusted, or because the information conveyed by a certain tag is difficult to dis-

tinguish in a given image. Those tags are represented by ‘?’ in the matrix. And the

noise (mislabelling) may be introduced during transmission or by human error.

We propose Robust Probabilistic Discriminative Matrix Factorization (RPDMF)

in order to recover those missing elements which are labeled as ‘?’ in the noisy binary

matrix, i.e., to predict whether any missing element is either ps or ns. Another method

proposed specifically to deal with missing data in a matrix is Weighted Nonnegative

Matrix Factorization (WNMF) [95], which excludes missing data in the cost function

by introducing a masking matrix as part of the optimization.

6.3 Robust probability discriminative matrix factorization

Given a matrix X ∈ Sm×n, S = {ps, ns} with missing values, let G denote the set

of observed elements in the matrix X. All these observed entries are either 1 or −1,

i.e., ps = 1, ns = −1. All the missing elements are denoted as 0. Given the observed

set G, our goal is to predict weather Xij = 1 or −1 for all Xij 6∈ G.

We need to find a low-rank matrix X̂ = Ŵ × ĤT to approximate the target

matrix X. We obtain X̂ by minimizing a linear combination of the norms of W

and H, which are two regularizers intended, respectively, to avoid overfitting, and to

control its logistic loss:

min
W∈Rm×p, H∈Rn×p

C
∑

(i,j)∈G

log(1 + e−Xi,j〈Wi., Hj.〉)

+ α‖W‖2
F + β‖H‖2

F .

(6.1)

Here α and β are parameters controlling the strength of regularizers for W and

H. In our case, α = β since they are of equal importance. Since the logistic loss



75

has probabilistic interpretation [96], we call this Probabilistic Discriminative Matrix

Factorization (PDMF).

In real-world applications, the training data X may be polluted by noise. To

handle the noise, we propose a robust version of PDMF that is called Robust Proba-

bilistic Discriminative Matrix Factorization (RPDMF). For any Xi,j, we introduce a

random variable Ii,j where Ii,j = 1, if Xi,j is not polluted; and Ii,j = 0, otherwise.

min
W∈Rm×p, H∈Rn×p

C
∑

(i,j)∈G

Ii,j log(1 + e−Xi,j〈Wi., Hj.〉)

+ α‖W‖2F + β‖H‖2F − q
∑

(i,j)∈G

Ii,j .
(6.2)

Here, q is parameter that controls the noise level; and C is the box constraint.

6.3.1 Optimization

We now discuss the optimization shown in (6.2) with respect to W ∈ Rm×p,

H ∈ Rp×n and {Ii,j|(i, j) ∈ G}. Joint optimization [97] with respect to W , H, and

{Ii,j|(i, j) ∈ G} is very difficult due to nonconvexity of the cost function. However,

if we optimize only one of W , H, or {Ii,j|(i, j) ∈ G} at a time, the problem becomes

easy to solve. So we propose an alternate optimization method by repeating following

three steps until convergence is reached.

Note that PDMF is a special case RPDMF, when all Ii,j are set to 1 for (i, j) ∈ G.

Step 1: Fix H and {Ii,j|(i, j) ∈ G}, optimize W . Optimize (6.2) with respect

to W .

W ∗ =arg min
W∈Rm×p, H∈Rn×p

C
∑

(i,j)∈G

Ii,j log(1 + e−Xi,j〈Wi., Hj.〉)

+ α‖W‖2F + β‖H‖2F − q
∑

(i,j)∈G

Ii,j

=arg min
W∈Rm×p, H∈Rn×p

∑
(i,j)∈G

Ii,j log(1 + e−Xi,j〈Wi., Hj.〉)

+ α‖W‖2F .

(6.3)
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We can further decompose the problem in (6.3) into a set of independent subproblems,

where each subproblem is optimization over a row of W . If we assume that we need

to optimize with respect to i-th row of W denoted as Wi.

W ∗i. =arg min
Wi.∈Rp

1

2
‖Wi.‖2F + C

∑
(i,j)∈G

Ii,j log(1 + e−Xi,j〈Wi., Hj.〉). (6.4)

Then the problem above become a standard convex optimization problem which

can be easily solved by any gradient method.

Step2: Fix W and {Ii,j|(i, j) ∈ G}, optimize H. Symmetrically, we optimize

respect to each row of H in the same manner.

Step 3: Fix W and H, optimize {Ii,j|(i, j) ∈ G}.
This problem can be decomposed into a set of independent problems, each of

which responds to Ii,j:

I∗i,j =argmin
Ii,j

CIi,j log(1 + e−Xi,j〈Wi.,Hj.〉)

+ α‖W‖2F + β‖H‖2F − qIi,j

=argmin
Ii,j

CIi,j log(1 + e−Xi,j〈Wi.,Hj.〉)− qIi,j .

(6.5)

Then the optimization can be easily done by setting Ii,j to 1 if log(1+e−Xi,j〈Wi.,Hj.〉) <

q/C; and setting Ii,j to 0 otherwise.

We summarize these three steps in the Algorithm 1. Overall, in every iteration, we

first fix H, I and update all rows of W . Then we fix W , I and update all rows of H.

Finally, we fix W , H and update I. In each step, a convex optimization problem is

solved by a gradient-descent method. Since different rows of W or H can be updated

independently given fixed H or W , respectively, the optimization methods can be

easily run in parallel to speed up computation.

Our proposed algorithm is guaranteed to converge, since the objective function is

lower bounded by zero, and each of the updating steps can only decrease the objective

function, or leave it unchanged.
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Algorithm 1 One-Class Maximum Margin Matrix Factorization
Require: X ∈ {1,−1}m×n with G, the set of observed entries; p, the dimension of

the latent space.

1: Initialize W ∈ Rm×p, H ∈ Rn×p

2: for t = 1,...,max_iter do

3: for i = 1,..., m do

4: Update Wi..

5: end for

6: for i = 1,..., n do

7: Update Hi..

8: end for

9: for i, j ∈ G do

10: Update Ii,j.

11: end for

12: end for

13: return W, H

6.4 Experimental results

In order to evaluate our proposed RPDMFmethod, we first conduct an experiment

on a synthetic dataset. Then we apply PDMF to the task of image tag completion.

The two public datasets used for performing image tag completion are NUS-WIDE

TAGGED [98] and MIRFLICKR-25K [99].

To create the synthetic dataset, we first generate two base matrices W ′ =

(w′ij)m×p and H ′ = (h′ij)n×p, where the elements of W ′ and H ′ are uniformly dis-

tributed w′ij ∼ U [0, 1], h′ij ∼ U [0, 1]. Then we threshold the matrix X ′ = W ′ × (H ′)T

to obtain the binary matrix X so that approximately 50% of elements in X are

positive samples while the rest are negative samples.



78

The NUS-WIDE TAGGED dataset includes 269, 648 images and 81 associated

tags (e.g airport, animal, beach, bear, etc.). So the original X ′ is a 269, 648 × 81

matrix in which each row represents a tagged image, while each column represents a

possible tag. If the ith image has a specific tag j, then the X ′(i, j) should be a positive

sample. However, many images in this dataset have a small number of tags. Thus

they provide little information about statistical correlations among different tags. So

we apply preprocessing to this dataset to exclude those images that have fewer than

10 tags. Because of this preprocessing, the matrix X = (xij)m×n to be factorized has

much fewer rows than the original matrix X ′.

Similarly, MIRFLICKR-25K contains 25, 000 tagged images with 38 different

tags. We generate a matrix representation to this dataset as described above. Again,

we apply preprocessing to this datasets to exclude the images which provide insuffi-

cient tag information. On MIRFLICKR-25K, we only use images that have more

than 12 tags. The dimensionality of matrix representation (after preprocessing) for

these three datasets is give in Table 6.1.

Table 6.1.: Dimensionality of the three datasets

Dataset m n p

Synthetic 100 100 40

NUS_WIDE TAGGED 89 81 40

MIRFLICKR-25K 104 38 20

We compare RPDMF with the competing methods PDMF and weighted nonneg-

ative matrix factorization (WNMF).

Now we discuss the parameters and performance measures for these three methods.

On all three datasets, we label the positive samples in X as 1. However, due to the

different nature of WNMF, PDMF, and RPDMF, we need to label negative samples

inX differently depending on which method is applied. For WNMF, we label negative
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samples as 0, since Xij should be nonnegative value. For PDMF and RPDMF, we

should label negative samples as −1. After that, we randomly mask 20% of elements

in X, and use them as the testing set while the rest are used as the training set. For

PDMF and RPDMF, the masked elements are labeled as 0. These are expected to

be recovered. For WNMF, we can achieve masking by specifying the weight matrix

M in the objective cost function:

Ownmf = ||M � (X −WH)||F2 , (6.6)

where mij = 0 if this element is masked for testing, while mij = 1 if it is in the

training set. In order to test the robustness of these three methods, we randomly flip

a portion of σ elements in the training set. This process introduces noise into our

training set as discussed in Sec. 6.3. A larger value of σ means that the training data

is more heavily polluted.

For faster convergence of RPDMF, we initialize W 0 = (w0
ij)m×p, H0 = (h0

ij)n×p

as w0
ij ∼ N(0, 1), h0

ij ∼ N(0, 1), and Iij = 1. On all the datasets, our experiments

suggest that 30 iterations are sufficient for RPDMF to reach convergence. In every

iteration k, we sequentially optimize all rows of W k followed by all rows of Hk, and

finally I. To update each row W k
i. , all the rows of Hk which correspond to non-zero

entries in X are viewed as samples. And we update each row Hk
j. symmetrically.

We use BFGS Quasi-Newton approach [100] in every iteration to update from W k,

Hk to W k+1, Hk+1. Our experiment show that BFGS has the fastest convergence

compared to other gradient methods such as DFP or Conjugate Gradient [100]. After

30 iterations, we calculate X̂ ′ = W 30 × (H30)T . For the WNMF method, we simply

update W k and Hk in very iteration as in [95]. Our experiments suggest that 40

iterations are sufficient for WNMF to reach convergence. So X̂ ′ = W 40 × (H40)T for

WNMF. For all the three methods, X̂ ′ is binarized at threshold value T to obtain the

recovered binary matrix X̂. Finally, we evaluate the performance of factorization in

the testing set, which are those masked elements that we choose at the beginning.
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For both PDMF and RPDMF, different values for box constraint C and threshold

T will generate different estimates X̂. We perform an exhaustive search on C and T to

find the best combination (C∗, T ∗) that can maximize the F1 score in the testing set.

For WNMF, we only need to search for the optimal T ∗ that leads to the maximum F1

score in the testing set. Because of the randomness in initialization and optimization,

we repeat the whole factorization process five times for each method, at every level

of σ, to obtain five maximum F1 scores. For every σ, we calculate its corresponding

mean maximum F1 score mFmax
1 for all three methods. The testing results on three

datasets at different noise levels σ = 0.1, 0.2, 0.3, 0.35, 0.4 are given in Table 6.2. As

a visualization of Table. 6.2, we also present our testing results in Fig. 6.1, Fig. 6.2

and Fig. 6.3.

According to Table. 6.2, we can conclude that RPDMF achieves the highest

mFmax
1 score when compared to WNMF and PDMF on all three datasets in very

case but one. Even for that particular case, its score is very close to that of the
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Table 6.2.: mFmax
1 scores on three datasets for 3 methods as noise level σ increases

Dataset Synthetic NUS-WIDE TAGGED MIRFLICKR-25K

σ WNMF PDMF RPDMF WNMF PDMF RPDMF WNMF PDMF RPDMF

0.1 0.7807 0.8688 0.8761 0.4760 0.7493 0.7544 0.6696 0.7987 0.7990

0.2 0.7421 0.8563 0.8602 0.3649 0.6654 0.6743 0.6039 0.7290 0.7655

0.3 0.6682 0.8208 0.8201 0.2936 0.6067 0.6672 0.5725 0.7171 0.7301

0.4 0.6686 0.6925 0.7481 0.2804 0.5623 0.5962 0.5544 0.6081 0.6190

0.5 0.6494 0.6487 0.7121 0.2761 0.3902 0.4442 0.5510 0.5604 0.5847

best result. Our method significantly outperforms WNMF in terms of mFmax
1 score

on all three datasets. We can also see that the performance of PDMF degrades

more rapidly compared to RPDMF, as we increase the number of polluted (flipped)

elements. This points to the robustness of our algorithm. In the three plots, we see

that the mFmax
1 scores of RPDMF drop faster in the tails compared to WNMF as

σ increases, primarily because the performance of WNMF is already at a very low

level. Since our original matrix is binary, it should be noted that any result close

to P (Xij = ps) means that the factorization provides little practical value. That is

because the probability of a random guess for any element in this matrix should be

P (Xij = ps).

However, RPDMF is more computationally expensive compared to WNMF and

PDMF, according to our experiment. Even though we avoid joint optimization and

apply the Quasi-Newton approach BFGS, we still need to do intensive convex opti-

mization in every iteration when updating W k
i. or Hk

j. based on ‘samples’ in the other

matrix. So the computational complexity of RPDMF grows exponentially with the

size of the original matrix X. In contrast, WNMF utilizes simple gradient-based

method to reach convergence for both W k and Hk. In every iteration of WNMF,

W k and Hk update once respectively, and the updates involve only simple matrix

multiplication. In terms of computational complexity, RPDMF is almost equivalent

to multiple (≈ 10) iterations of PDMF, because we need to tune one more parameter

q in (6.2).
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6.5 Conclusion

In this chapter, we presented a new method RPDMF, which can be used to recover

missing data in a noisy binary matrix. This method is motivated by the real-word

application: image tag completion. In RPDMF, we introduce the logistic loss into the

cost function and optimize two base matrices W and H alternately to reach conver-

gence. We evaluate RPDMF on three datasets, and compare it with the competing

methods WNMF and PDMF. According to our experiment, we see that RPDMF has

a significant advantage over WNMF and PDMF in terms of the F1 measure when

dealing with noisy matrices.
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7. CONCLUSION

In this thesis, we propose several new algorithms targeting different image understand-

ing tasks and these algorithms have been tested and verified on multiple platforms.

For the image classification discussed in Chap. 2, we designed new features which

can help distinguish text, mix and picture images. These features are designed to

meet the monotonicity requirement so that quick decision can be achieved. Also for

the reason of quick decision, we re-designed the SVM classifiers carefully to meet the

monotonicity requirement. Compared with the traditional image classification meth-

ods, the proposed algorithm do not require the global information of image. Instead,

it only requires a strip at a time for feature calculation, which is computationally af-

fordable to low-end AIO printer. Besides, the proposed algorithm is capable of making

quick decision for certain type of images by our design of features and classifiers. On

top of that, we creatively incorporate the adaptive learning into our system while

preserving the quick decision functionality. We formulate the problem of combining

the online SVM training with quick classification decision. This problem is solved by

controlling the decision boundary when using different kernels and selectively adding

new training data.

For the extend scanned image classification problem discussed in Chap. 3, we

designed several new features to distinguish highlighted text and receipt plus the

three types in Chap. 2. Unlike the algorithm introduced in Chap. 2 which only uses

luminance information, we also utilize the chroma information to find indicators to

these 5 types. These new features are Chroma Histogram Flatness, Chroma Around

Text, Color Block Ratio and White Block Ratio. Experimentally, these features show

discriminative powers for highlighted text and receipt.

In Dynamic Print Stream Compression discussed in Chap. 4, we propose a new

engine which is capable of choosing the optimal compression algorithm for input im-
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age given the system constraint. we use similar features discussed in early chapters

for first stage classification. However, these features are re-design to be more compu-

tationally efficient. We design new features to make better choice between RLE and

DRC compression, where the goodness of the choice is determined by their decom-

pression time at the firmware. We also introduce a tunable system for optimal JPEG

compression. With image quality requirement from the users, the system can make

the optimal JPEG compression by balancing between image quality and compression

ratio.

For image retrieval task discussed in Chap.5, we follow the BoW approach when

doing the initial retrieval. At the second stage, we propose Hierarchical Weighted

Spatial Ranking to find the best match in the database. Compared with traditional

homography goodness test through SVD, the proposed method can handle some chal-

lenging cases by introducing a new term when doing similarity ranking. Also, we hi-

erarchically search for the best match if more than one good homographies are found.

To find the best result from several top candidates, we apply affinity goodness check

for better accuracy.

For the image tag recommendation discussed in Chap. 6, we propose a new method

for matrix factorization. This method can better handle binary matrix with errors

by introducing a robust term in the cost function. It strengthens the probabilistic

approach of matrix factorization with more tolerance to noisy input. Experimentally,

it outperforms other existing matrix factorization methods in the task of image tag

recommendation.

To conclude, the primary contribution of the work is listed as below

• Scanned Image Classification

⇒ novel features for image classification

⇒ quick decision functionality which is based on feature design and classi-

fication decision boundary control
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⇒ online SVM adaptive learning of system which is compatible with quick

decision functionality

• Extended Scanned Image classification

⇒ novel features to recognize receipt and hightlight text images

⇒ chroma information analysis

• Dynamic Print Stream Compression

⇒ design features which are more computationally efficient

⇒ new features to choose between RLE and DRC

⇒ introduce a tunable system which is used for optimal JPEG compression

• Image Retrieval for Hybrid Learning

⇒ propose hierarchical weighted spatial ranking to achieve better point

matching

• Tag Recommendation via Robust Probabilistic Discriminative Matrix Factor-

ization

⇒ a new method can better handle binary matrix with errors

⇒ introduce the robust term in the cost function

⇒ outperform existing methods experimentally
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