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ABSTRACT

Li, Zhang PhD, Purdue University, May 2016. Optimal Monitoring and Mitigation
of Systemic Risk in Lending Networks. Major Professors: Ilya Pollak and Borja
Peleato.

This thesis proposes optimal policies to manage systemic risk in financial networks.

Given a one-period borrower-lender network in which all debts are due at the same

time and have the same seniority, we address the problem of allocating a fixed amount

of cash among the nodes to minimize the weighted sum of unpaid liabilities. Assum-

ing all the loan amounts and cash flows are fixed and that there are no bankruptcy

costs, we show that this problem is equivalent to a linear program. We develop a

duality-based distributed algorithm to solve it which is useful for applications where

it is desirable to avoid centralized data gathering and computation. Since some appli-

cations require forecasting and planning for a wide variety of different contingencies,

we introduce a stochastic model for the institutions operating cash and consider the

problem of minimizing the expectation of the weighted sum of unpaid liabilities. We

show that this problem is a two-stage stochastic linear program and develop an online

learning algorithm based on stochastic gradient descent to solve it. We consider a

number of further extensions of our deterministic scenario by incorporating various

additional features of real-world lending networks into our model. For example, we

show that if the defaulting nodes do not pay anything, then the optimal cash injec-

tion allocation problem is a mixed-integer linear program. In addition, we develop

and evaluate two heuristic algorithms to allocate the cash injection amount so as to

minimize the number of nodes in default. Our results provide algorithmic tools to

help financial institutions, banking supervisory authorities, regulatory agencies, and

clearing houses in monitoring and mitigating systemic risk in financial networks.
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1. OPTIMAL MONITORING AND MITIGATION OF

SYSTEMIC RISK IN FINANCIAL NETWORKS UNDER

THE DETERMINISTIC MODEL

1.1 Introduction

The events of the last several years revealed an acute need for tools to system-

atically model, analyze, monitor, and control large financial networks. Motivated by

this need, we propose to address the problem of optimizing the amount and structure

of liquidity assistance in a distressed financial network, under a variety of modeling

assumptions and implementation scenarios.

Two broad applications motivate our work: day-to-day monitoring of financial

systems and decision making during an imminent crisis. Examples of the latter in-

clude the decision in September 1998 by a group of financial institutions to rescue

Long-Term Capital Management, and the decisions by the Treasury and the Fed in

September 2008 to rescue AIG and to let Lehman Brothers fail. The deliberations

leading to these and other similar actions have been extensively covered in the press.

These reports suggest that the decision making processes could have benefited from

quantitative methods for analyzing potential policies and their likely outcomes. In

addition, such methods could help avoid systemic crises in the first place, by inform-

ing day-to-day actions of financial institutions, regulators, supervisory authorities,

and legislative bodies.

Given a financial network model, we are interested in addressing the following

problem.

Problem I: Allocate a fixed amount of cash assistance among the nodes in a

financial network in order to minimize the (possibly weighted) sum of unpaid

liabilities in the system.
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An alternative formulation of the same problem, is to both select the amount of

injected cash and determine how to distribute it among the nodes in order to minimize

the overall cost equal to a linear combination of the weighted sum of unpaid liabilities

and the amount of injected cash.

We consider a static model with a single maturity date, and with a known network

structure. We assume that we know both the amounts owed by every node in the

network to every other node, and the net asset amounts available to every node from

sources external to the network. Even for this relatively simple model, Problem I is far

from straightforward, because of a nonlinear relationship between the cash injection

amounts and the loan repayment amounts. Building upon the results from [1], we

construct algorithms for computing exact solutions for Problem I and its alternative

variant, by showing in Section 1.3 that both formulations are equivalent to linear

programs under a proportional payment scheme, such as the one assumed in [1].

We consider a number of extensions of our model by adding to it various features

that characterize real-world lending networks. In Section 1.4, we allow the obligations

in the network to have multiple seniorities, so that a node may only satisfy a liability

once it fully repays all of its more senior liabilities. Within each seniority, we still

assume the same proportional payment scheme as in [1]. We show that in this case,

Problem I is an NP-hard mixed-integer linear program. However, we show through

simulations that use optimization package CVX [2,3] that this problem can be accu-

rately solved in a few seconds on a personal computer for a network size comparable

to the size of the US banking network.

In Section 1.5, we incorporate credit default swaps (CDSs) into our model: any

node in the network can now sell a CDS to any other node that insures the latter

against the default of one of its borrowers. In this case, we show that simultaneous

bilateral clearing assumed in [1] does not necessarily guarantee the existence of a

solution even for very simple networks with loops. We instead adopt a three-round

clearing scheme: first, the payments on the underlying obligations are cleared; the

second round consists of the payments from the CDSs triggered by the first-round
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defaults; and in the third round additional payments can be made on the underlying

obligations. We show that under this scheme, Problem I is also a mixed-integer linear

program that can be efficiently solved for networks of relevant sizes.

We show in Section 1.8 that under the all-or-nothing payment scheme where the

defaulting nodes do not pay at all, Problem I is also a mixed-integer linear program

which can be accurately and efficiently solved.

We also consider another problem where the objective is to minimize the number

of defaulting nodes rather than the weighted sum of unpaid liabilities:

Problem II: Allocate a fixed amount of cash assistance among the nodes in a

financial network in order to minimize the number of nodes in default.

For Problem II, we develop two heuristic algorithms in Section 1.6: a reweighted

ℓ1 minimization approach inspired by [4] and a greedy algorithm. We illustrate our

algorithms using examples with synthetic data for which the optimal solution can be

calculated exactly. We show through numerical simulations that the solutions calcu-

lated by the reweighted ℓ1 algorithm are close to optimal, and that the performance of

the greedy algorithm highly depends on the network topology. We also compare these

two algorithms using three types of random networks for which the optimal solution

is not available. In one of these three examples the performance of these two algo-

rithms is statistically indistinguishable; in the second example the greedy algorithm

outperforms reweighted ℓ1 minimization; and in the third example the reweighted ℓ1

minimization algorithm outperforms the greedy approach.

While Problem II is unlikely to be of direct practical importance (indeed, it is

difficult to imagine a situation where a regulator would consider the failures of a small

local bank and Citi to be equally bad), it serves as a stepping stone to a more practical

and more difficult scenario where the optimization objective is a linear combination

of the weighted unpaid liabilities (as in Problem I) and the sum of weights over the

defaulted nodes (an extension of Problem II).
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Problem III: Given a fixed amount of cash to be injected into the system,

we consider an objective function which is a linear combination of the sum of

weights over the defaulted nodes and the weighted sum of unpaid liabilities.

We show in Section 1.7 that this problem is equivalent to a mixed-integer linear

program.

1.1.1 Related Literature

Contagion in financial networks has been frequently studied in the past, especially

after the financial crisis in 2007-2008. Notable examples of network topology analysis

based on real data are [5–8]. Real data informs the new approaches for assessing

systemic financial stability of banking systems developed in [9–22].

Often, systemic failures are caused by an epidemic of defaults whereby a group of

nodes unable to meet their obligations trigger the insolvency of their lenders, leading

to the defaults of lenders’ lenders, etc, until this spread of defaults infects a large

part of the system. For this reason, many studies have been devoted to discovering

network structures conducive to default contagion [23–29]. The relationships between

the probability of a systemic failure and the average connectivity in the network are

investigated in [23, 26, 29]. Other features, such as as the distribution of degrees and

the structure of the subgraphs of contagious links, are examined in [27].

While potentially useful in policymaking, most of these references do not provide

specific policy recipes. One strand of literature on quantitative models for optimizing

policy decisions has focused on analyzing the efficacy of bailouts and understanding

the behavior of firms in response to bailouts. To this end, game-theoretic models are

proposed in [30] and [31] that have two agents: the government and a single private

sector entity. The focus of another set of research efforts has been on the setting of

capital and liquidity requirements [24, 32–34] in order to reduce systemic risk.

Our work contributes to the literature by taking a network-level view of optimal

policies and proposing optimal cash injection strategies for networks in distress. This
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chapter extends our earlier work reported in [35–37]. In addition to ours, several other

papers have recently considered cash injection policies for lending networks [38–44],

all based on the framework proposed in [1].

Under the proportional payment mechanism presented in [1], the problem of de-

termining the clearing vector is formulated as a linear program in [38]. Two systemic

risk measures are obtained by considering the associated dual problem of the linear

program: Contagion Risk Indicator and Funding Risk Indicator. Furthermore [38]

develops optimal bailout strategies for two objectives: minimizing the total amount

of cash injection given a constraint on the weighted number of defaults and mini-

mizing the weighted number of defaults given a budget of cash injection. It is shown

in [38] that both these problems are mixed-integer linear programs. Our work on pro-

portional payment scheme is also based on the linear program formulation extended

from [1]. Our objective in Problem I is minimizing the weighted sum of unpaid lia-

bilities, which is different from any objectives in [38]. Our problem II also aims to

minimize the number of defaults. But instead of formulating it as a MILP, which is

hard to solve for large networks, we propose two scalable heuristic algorithms. Beside

the proportional payment scheme in [38], we also consider problem II with the all-

or-nothing payment scheme. We adapt the model with multiple seniorities in [38] to

our Problem I. For the model with CDS, there exists an issue in [38]: the one-period

simultaneous clearing model in [1] cannot be simply extended to the one with CDS

since simultaneous bilateral clearing does not necessarily guarantee the existence of

a solution even for very simple networks with loops. In our work, we circumvent this

issue with a three-round clearing scheme.

A cash injection targeting policy is developed in [39–41] for an infinitesimally small

amount of injected cash. The basic idea of the policy is to inject the cash into the

node with the largest “threat index” which is the same as the funding risk indicator

from [38]. This targeting policy is optimal when the amount of the injected cash is

small enough to keep the set of defaulting nodes unchanged. However, as pointed

out in [41], the targeting policy is not monotone in the cash injection amount, and
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therefore this algorithm cannot be easily extended to non-infinitesimal cash injection

amounts.

In [42, 43], bankruptcy costs are incorporated into the model of [1]. The main

contribution of that work is showing that because of the bankruptcy costs, it is

sometimes beneficial for some solvent banks to form bailout consortia and rescue

failing banks. However, it may happen that the solvent banks do not have enough

means to effect a bailout, and in this case external intervention may still be needed.

A multi-period stochastic clearing framework based on [1] is proposed in [44],

where a lender of last resort monitors the network and may provide liquidity assistance

loans to failing nodes. The paper proposes several strategies that the lender of last

resort might follow in making its decisions. One of these strategies, the so-called

max-liquidity policy, aims to solve our Problem I during each period. However, [44]

does not describe an algorithm for solving this problem.

Another related work is [45]. Based on the clearing payment framework in [1], the

authors of [45] study the probability of contagion and amplification of losses due to

network effects when the system suffers a random shock.

1.1.2 Outline of this chapter

This chapter is organized as follows. Section 1.2 describes the model of financial

networks, the clearing payment mechanism, and the notation. Section 1.3 shows that

if each defaulting node pays its creditors in proportion to the owed amounts, then

Problem I and its alternative formulation are equivalent to linear programs. Sec-

tion 1.4 investigates the model with multiple seniorities and Section 1.5 incorporates

CDS in the model. Two heuristic algorithms are developed in Section 1.6 to solve

Problem II under the proportional payment mechanism: a reweighted ℓ1 minimiza-

tion algorithm and a greedy algorithm. Problem III is considered in Section 1.7.

Section 1.8 analyzes Problem I under the assumption that the defaulting nodes do

not pay anything. We prove that it is then an NP-hard mixed-integer linear pro-
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Table 1.1.
Notation for several vector quantities.

vector i-th component

0 0

1 1

e ≥ 0 net external assets at node i before cash injection

c ≥ 0 external cash injection to node i

p̄ the amount node i owes to all its creditors

p ≤ p̄ the total amount node i actually repays all its creditors on the due date

of the loans

p̄− p node i’s total unpaid liabilities

r remaining cash of node i after clearing payment

w the weight of $1 of unpaid liability at node i

v the weight of node i’s default

d indicator variable of whether node i defaults, i.e., di = 1 if node i

defaults; di = 0 otherwise

gram and show that can be efficiently solved using modern optimization software for

network sizes comparable to the size of the US banking system.

1.2 Model and Notation

Our network model is a directed graph with N nodes where a directed edge from

node i to node j with weight Lij > 0 signifies that i owes $Lij to j. This is a one-

period model with no dynamics—i.e., we assume that all the loans are due on the

same date and all the payments occur on that date. We use the following notation:

• any inequality whose both sides are vectors is component-wise;
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• 0, 1, e, c, p̄, p, r, w, v, and d are all vectors in R
N defined in Table 1.1;

• W = wT (p̄− p) is the weighted sum of unpaid liabilities in the system;

• Nd is the number of nodes in default, i.e., the number of nodes i whose payments

are below their liabilities, pi < p̄i;

• Πij is what node i owes to node j, as a fraction of the total amount owed by

node i,

Πij =







Lij

p̄i
if p̄i 6= 0,

0 otherwise;

• Π and L are the matrices whose entries are Πij and Lij , respectively.

Given the above financial system, we consider the proportional payment mech-

anism and the all-or-nothing payment mechanism. The latter can be alternatively

interpreted as the proportional payment mechanism with 100% bankruptcy costs. As

proposed in [1], the proportional payment mechanism without bankruptcy costs is

defined as follows.

Proportional payment mechanism with no bankruptcy costs:

• If i’s total funds are at least as large as its liabilities (i.e.,
N
∑

j=1

Πjipj+ei+ci ≥ p̄i),

then all i’s creditors get paid in full.

• If i’s total funds are smaller than its liabilities, then i pays all its funds to its

creditors.

• All i’s debts have the same seniority. This means that, if i’s liabilities exceed its

total funds then each creditor gets paid in proportion to what it is owed. This

guarantees that the amount actually received by node j from node i is always

Πijpi. Therefore, the total amount received by any node i from all its borrowers

is
N
∑

j=1

Πjipj .



9

Under these assumptions, a node will pay all the available funds proportionally to its

creditors, up to the amount of its liabilities. The payment vector can lie anywhere in

the rectangle [0, p̄]. Under the all-or-nothing payment scenario, the defaulting nodes

do not pay at all, so each component i of the payment vector is either 0 or p̄i

All-or-nothing payment mechanism:

• If i’s total funds are at least as large as its liabilities, then all i’s creditors get

paid in full.

• If i’s total funds are smaller than its liabilities, then i pays nothing.

As defined in [1], a clearing payment vector p is a vector of borrower-to-lender

payments that is consistent with the conditions of the payment mechanism.

In this chapter, we are mostly concerned with Problems I and II under the pro-

portional payment scenario with no bankruptcy costs. We also prove that the all-

or-nothing payment scenario makes Problem I NP-hard. In this case, Problem I can

be formulated as a mixed-integer linear program that can be efficiently solved on a

personal computer using modern optimization software for network sizes comparable

to the size of the US banking system.

1.3 Optimal Solution

Consider a network with a known structure of liabilities L and a known vector e

of net assets before cash injection. Using the notation established in the preceding

section, Problem I seeks a cash injection allocation vector c ≥ 0 to minimize the

following weighted sum of unpaid liabilities,

W = wT (p̄− p),

subject to the constraint that the total amount of cash injection does not exceed some

given number C:

1Tc ≤ C.



10

In this section, we assume proportional payments with no bankruptcy costs. We first

prove that, for any cash injection vector c, there exists a unique clearing payment

vector that minimizes the cost W .

Lemma 1 Given a financial system (Π, p̄, e), a cash injection vector c and a weight

vector w > 0, there exists a unique clearing payment vector p minimizing the weighted

sum W = wT (p̄− p).

Proof First, note that since w and p̄ do not depend on p or c, minimizing W is

equivalent to maximizing wTp. With a fixed cash injection vector c, the financial

system is equivalent to (Π, p̄, e + c). Since w > 0, we have that wTp is a strictly

increasing function of p. By Lemma 4 in [1], the clearing payment vector p can be

obtained by solving the following linear program:

max
p

wTp (1.1)

subject to

0 ≤ p ≤ p̄, (1.2)

p ≤ ΠTp + e + c. (1.3)

From Theorem 1 in [1], there exists a greatest clearing payment vector p∗. Since W

is a strictly increasing function of p, p∗ is a solution of LP (1.1-1.3). For any other

p 6= p∗, we have pi ≤ p∗i for i = 1, 2, · · · , N and at least one of these inequalities is

strict. Thus, wTp < wTp∗. Therefore p∗ is the unique solution of LP (1.1-1.3). This

completes the Proof of Lemma 1.

We now establish the equivalence of Problem I and a linear programming problem.

Theorem 1 Assume that the liabilities matrix L, the asset vector e, the weight vec-

tor w, and the total cash injection amount C are fixed and known. Assume that the

system utilizes the proportional payment mechanism with no bankruptcy costs. Con-

sider Problem I, i.e., the problem of calculating a cash injection allocation c ≥ 0 to
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minimize the weighted sum of unpaid liabilities W = wT (p̄ − p) subject to the bud-

get constraint 1Tc ≤ C. A solution to this problem can be obtained by solving the

following linear program:

max
p,c

wTp (1.4)

subject to

1Tc ≤ C, (1.5)

c ≥ 0, (1.6)

0 ≤ p ≤ p̄, (1.7)

p ≤ ΠTp + e + c. (1.8)

Proof Since the constraints on c and p in LP (1.4-1.8) form a closed and bounded

set in R
2N , a solution exists. Moreover, for any fixed c, it follows from our Lemma 1

and Lemma 4 in [1] that the linear program has a unique solution for p which is the

clearing payment vector for the system.

Let (p∗, c∗) be a solution to (1.4-1.8). Suppose that there exists a cash injection

allocation that leads to a smaller cost W than does c∗. In other words, suppose that

there exists c′ > 0, with 1Tc′ ≤ C, such that the corresponding clearing payment

vector p′ satisfies wT (p̄− p′) < wT (p̄− p∗), or, equivalently,

wTp∗ < wTp′. (1.9)

Note that c′ satisfies the first two constraints of (1.4-1.8). Moreover, since p′ is

the corresponding clearing payment vector, the last two constraints are satisfied as

well. The pair (p′, c′) is thus in the constraint set of our linear program. Therefore,

Eq. (1.9) contradicts the assumption that (p∗, c∗) is a solution to (1.4-1.8). This

completes the Proof that c∗ is the allocation of C that achieves the smallest possible

cost W .
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In an alternative formulation of Problem I, we are given a weight λ and must

choose the total cash injection amount C and its allocation c to minimize λC + W .

This is equivalent to the following linear program:

max
C,c,p

wTp− λC (1.10)

subject to

1Tc = C,

c ≥ 0,

0 ≤ p ≤ p̄,

p ≤ ΠTp + e + c.

This equivalence follows from Theorem 1: denoting a solution to (1.10) by (C∗,p∗, c∗),

we see that the pair (p∗, c∗) must be a solution to (1.4-1.8) for C = C∗. At the

same time, the fact that C∗ maximizes the objective function in (1.10) means that it

minimizes λC + W = λC + wT (p̄− p), since p̄ is a fixed constant.

1.4 Problem I with Multiple Seniorities

1.4.1 Assumptions and Notation

We now extend our model of Section 1.2 to the case of multiple seniorities. We

assume that a node may only satisfy a liability once it fully repays all of its more senior

liabilities. Within each seniority, we still assume the same proportional payment

scheme as in Section 1.3, and we still assume that there are no bankruptcy costs,

and that each node either pays all its liabilities in full or pays out all its available

funds to its creditors. For all the variables that involve liabilities and payments, we

augment our notation of Section II with superscript k to denote the seniority. For

example, now Lk
ij is the amount that node i owes to node j at seniority k; dki denotes

whether node i’s liabilities at seniority k are paid in full, etc. Larger numbers denote

more junior obligations. This means that a nonzero payment pki > 0 can only occur
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if all node i’s obligations more senior than k are satisfied in full, i.e., if phi = p̄hi for

all h < k. This also means that an incomplete payment pki < p̄ki at any seniority k

can only occur if i repays nothing for any of its more junior obligations than k, i.e.,

if phi = 0 for all h > k. We denote the number of distinct seniorities among node i’s

obligations by Ki, and we let K = max
i

Ki. We denote the most senior obligation of

each node by k = 1.

As in Section 1.3, we allow the unpaid liabilities in the objective function to

have different weights for different nodes. In addition, we allow different weights

for different seniorities. Thus, we seek a cash injection allocation vector c ≥ 0 to

minimize

W =
K
∑

k=1

wkT (p̄k − pk),

subject to 1Tc ≤ C. We assume that all the weights are strictly positive: wk
i > 0 for

all nodes i and liabilities k.

1.4.2 Optimal Solution to Problem I with Multiple Seniorities

Theorem 2 Assume that the system utilizes the proportional payment mechanism

with multiple seniorities, as defined in Section 1.4.1. Then the optimal cash injection
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vector c∗ and its corresponding clearing payment vectors pk∗, k = 1, 2, . . . , K, are

found from the following mixed integer linear program:

max
pk,c,dk

K
∑

k=1

wkTpk (1.11)

subject to

1Tc ≤ C, (1.12)

c ≥ 0, (1.13)

K
∑

k=1

N
∑

j=1

Πk
jip

k
j + ei + ci ≥

K
∑

k=1

pki , for i = 1, 2, . . . , N, (1.14)

0 ≤ pk ≤ p̄k, for k = 1, 2, . . . , K, (1.15)

(1− dki )p̄
k
i ≤ pki , for i = 1, 2, . . . , N and k = 1, 2, . . . , K, (1.16)

pk+1
i ≤ (1− dki )p̄k+1

i , for i = 1, 2, . . . , N and k = 1, 2, . . . , K − 1, (1.17)

dki ∈ {0, 1}, for i = 1, 2, . . . , N and k = 1, 2, . . . , K. (1.18)

Proof Assume the solution to MILP (1.11) is (c∗, pk∗, dk∗), k = 1, 2, . . . , K. First,

we prove that pk∗, k = 1, 2, . . . , K, are clearing payment vectors for cash injection

vector c∗. In a clearing payment, node i either fully pays its liabilities or pays all its

available funds. In addition, if node i fails to fully pay its liabilities, it must pay off

the more senior liabilities in full before it starts to pay off the more junior ones.

If pk∗l = p̄kl for k = 1, 2, . . . , K, then node l pays all its liabilities in full, which

satisfies the requirements of the clearing payment vectors.

If node l does not pay its liabilities in full, in other words, if there exists a seniority

h such that ph∗l < p̄hl , then we prove that node l repays no liabilities more junior than

h and pays all its available funds. If h = K or p̄h+1
l = 0, there are no liabilities junior

to h for node l. If h < K and p̄h+1
l > 0, we have dh∗l = 1 due to constraints (1.16)

and (1.18) and then as a consequence of constraint (1.17), ph+1∗
l = 0. Moreover, we

have ph+1∗
l < p̄h+1

l . Thus, by induction, for all k > h, we have pk∗l = 0, which proves

that node l does not repay any liabilities more junior than h.
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We furthermore prove that if there is a nonzero payment phl > 0 at some seniority

h, this means that node l repays in full all its obligations more senior than h. If h = 1

then there are no liabilities senior to h for node l. If h > 1, then constraints (1.17)

and (1.18) imply that dh−1
l = 0. But then constraints (1.15) and (1.16) imply that

ph−1
l = p̄h−1

l , and so l’s obligations at seniority h − 1 are paid in full. Applying this

argument inductively for seniorities h − 1, h − 2, . . . , 1 shows that all l’s obligations

more senior than h are paid in full.

Now we prove that node l pays out all its available funds, i.e., that for node l, we

have:
K
∑

k=1

N
∑

j=1

Πk
jlp

k∗
j + el + cl =

K
∑

k=1

pk∗l . (1.19)

If this is not the case, then

K
∑

k=1

N
∑

j=1

Πk
jlp

k∗
j + el + cl >

K
∑

k=1

pk∗l . We construct a new

solution pkǫ, k = 1, 2, . . . , K, which is equal to pk∗, k = 1, 2, . . . , K, in all components

except phl . We set phǫl = ph∗l + ǫ, where ǫ > 0 is small enough to ensure that phǫl < p̄hl

and
K
∑

k=1

N
∑

j=1

Πk
jlp

kǫ
j + el + cl >

K
∑

k=1

pkǫl . Since Π is a three-dimensional matrix with

non-negative entries, for any node i 6= l, we have:

K
∑

k=1

N
∑

j=1

Πk
jip

kǫ
j + ei + ci ≥

K
∑

k=1

N
∑

j=1

Πk
jip

k∗
j + ei + ci ≥

K
∑

k=1

pk∗i =
K
∑

k=1

pkǫi ,

Thus, the new solution (c∗, pkǫ, dk∗), k = 1, 2, . . . , K, is also in the feasible region

of (1.12 - 1.18) and achieves a larger value of the objective function than (c∗, pk∗,

dk∗), k = 1, 2, . . . , K. This contradicts the fact that (c∗, pk∗, dk∗), k = 1, 2, . . . , K,

is a solution to (1.11). Hence, Eq. (1.19) holds and pk∗, k = 1, 2, . . . , K, are clearing

payment vectors.

Second, we prove by contradiction that c∗ is the optimal cash injection allocation.

Assume c+ 6= c∗ leads to a strictly smaller value of the weighted sum of unpaid

liabilities than does c∗. In other words, suppose that c+ satisfies the constraints
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(1.12) and (1.13) and that the corresponding clearing payment vectors pk+ satisfy
K
∑

k=1

wkT (p̄k − pk+) <
K
∑

k=1

wkT (p̄k − pk∗), which is equivalent to:

K
∑

k=1

wkTpk+ >

K
∑

k=1

wkTpk∗.

Since pk+, k = 1, 2, . . . , K, are the corresponding clearing payment vectors, con-

straints (1.14) and (1.15) are satisfied. Moreover, if we define dk+i as the binary

variable indicating whether node i fully repays its liabilities with seniority k, then con-

straints (1.16), (1.17) and (1.18) are also satisfied. So (c+,pk+,dk+), k = 1, 2, . . . , K,

is in the feasible region of (1.11–1.18) and achieves a larger value of the objective

function than (c∗, pk∗, dk∗), k = 1, 2, . . . , K, which contradicts the fact that (c∗, pk∗,

dk∗), k = 1, 2, . . . , K, is the solution of (1.11–1.18).

In MILP (1.11), constraints (1.12)-(1.13) are on the cash injection vector. All the

cash injections must be non-negative and the total amount must not exceed the over-

all cash injection budget. Constraints (1.14)-(1.15) ensure that the actual payment of

a node cannot exceed its total liability or its total available funds. Constraints (1.16)-

(1.18) enforce the requirements that any node i can only make an incomplete repay-

ment at any seniority k if its repayments at the more junior seniorities are all zeros;

and that it can only make a nonzero repayment at seniority k if it repays in full all

the obligations senior to k.

1.4.3 Numerical Simulations

To solve MILP (1.11), we use CVX, a package for specifying and solving convex

programs and also MILPs [2,3]. In CVX, we select Mosek to be the solver [46]. A vari-

ety of prior literature, e.g. [6], suggests that the US interbank network is well modeled

as a core-periphery network that consists of a core of about 15 highly interconnected

banks to which most other banks connect. Therefore, we test the running time on

a modified core-periphery network with multiple seniorities, as shown in Fig. 1.1. It
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15 core nodes: fully connected; five seniorities for each core node

70 periphery nodes: 

1st seniority link to a core node

2nd seniority link to another core node

Fig. 1.1. A core-periphery network with liabilities with multiple seniorities.
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contains 15 fully connected core nodes, denoted by core node 1 to core node 15. For

each pair of core nodes i and j, there are five links with different seniorities. The

amount of liability Lk
ij (k = 1, 2, . . . , 5) is uniformly distributed in [0, 10]. Each core

node i has 70 periphery nodes. Each periphery node has a single link with seniority

1 pointing to the corresponding core node. In addition, each periphery node of core

node i has another link with seniority 2 pointing to a random core node (uniformly

selected among core nodes 1 to 15). For a core node i and its periphery node l, the

obligation amount Lk
li (k = 1, 2) is uniformly distributed in [0, 1]. All the obligation

amounts are independent. Every node has zero external assets: e = 0. For a core

node i, we set the weight wk
i = 10 for k = 1, 2, . . . , 5; for a periphery node l, we set the

weight wk
l = 1 for k = 1, 2. The regulator has $300 to be injected into the network.

For this modified core-periphery network, we generate 100 samples. We run the CVX

code on a personal computer with a 2.66GHz Intel Core2 Duo Processor P8800. The

average running time is 9.85s and the sample standard deviation is 0.15s. The rela-

tive gap between the objective of the solution and the optimal objective is less than

10−4. (This bound is obtained by calculating the optimal value of the objective for

the corresponding linear program, which is an upper bound for the optimal objective

value of the MILP.) We can see that for the core-periphery network, MILP (1.11) can

be solved by CVX efficiently and accurately. The CVX code is given in Appendix B.1.

1.5 Problem I with Credit Default Swaps

1.5.1 Clearing with CDSs

In this section, we incorporate credit default swaps (CDSs) into our framework.

For simplification, we just consider the system with only one seniority. As defined

in [38], a CDS is a contract whereby the seller node i insures the buyer node j against

the default of node l on its underlying liabilities. In other words, a liability from node

i to node j is created if node l does not pay its liability in full.
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B C

A
D

$10

$10
$10

$10

$10

Original liability

Liability due to CDS

$10

$0

$0

$0

Fig. 1.2. Example showing a simultaneous clearing payment vector
may not exist in a system with CDSs.
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With CDSs in the system, a simultaneous clearing payment vector does not nec-

essarily exist. For example, in Fig. 1.2, node A owes $10 to node B; node B owes $10

to node C and node C owes $10 to A and $10 to D. Node D sells a CDS to node

C such that if node B defaults, node D will pay $10 to node C as a compensation.

Initially, there is no cash among A, B and C. Node D has $10 on hand. Without

CDSs, no nodes are able to make their payments so that A, B and C default. Then

node D pays node C $10 according to the CDS contract. With this $10 on C’s hand,

all the liabilities in the system are cleared so that all nodes are rescued including B,

which makes C ineligible for D’s payment. Thus, there is no simultaneous clearing

payment vector in this network.

Instead of the simultaneous clearing scheme, we clear the system with CDSs in

three stages:

1. The system clears its original liabilities without considering CDSs.

2. New liabilities due to CDSs are created. The system clears these liabilities due

to CDSs.

3. The system clears the remaining original liabilities.

In each stage above, the system is cleared according to the simultaneous clearing

method in [1]. Thus, there exists a unique clearing payment vector for each stage.

As defined in Section 1.2, the cash owned by node i, the external cash injection

into node i, and the original liability from node i to node j are denoted by ei, ci, and

Lij , respectively. We let di be the stage 1 default indicator for node i. The CDS-

induced obligation from node i to node j triggered by the default of node l is denoted

by Dl
ij . We define xi and zi to be the fractions of node i’s total underlying liability

N
∑

j=1

Lij that node i repays during stages 1 and 3, respectively. Thus, node i’s total

payments during stages 1 and 3 are, respectively,

(

N
∑

j=1

Lij

)

xi and

(

N
∑

j=1

Lij

)

zi, and

node i’s total unpaid underlying liability is

(

N
∑

j=1

Lij

)

(1− xi − zi).



21

We moreover let yi be the fraction of node i’s total CDS-induced liability that

node i repays during stage 2. Furthermore, for any two nodes l and i, we define

yli =







yi if node l defaults during stage 1,

0 if node l does not default during stage 1.

Then node i’s stage 2 payment that is determined by node l’s stage 1 default status

is

(

N
∑

j=1

Dl
ij

)

yli. Note that node i’s stage 2 liability related to node l’s stage 1 default

status is

(

N
∑

j=1

Dl
ij

)

dl where dl is node l’s stage 1 default indicator. In other words,

if l defaults in stage 1, i.e., if dl = 1, then i owes
N
∑

j=1

Dl
ij in CDS-induced liabilities

related to l; and if l does not default, i.e., if dl = 0, then i does not have any

CDS-induced liabilities related to l. Therefore, node i’s total unpaid CDS-induced

liabilities related to node l’s stage 1 default status are

(

N
∑

j=1

Dl
ij

)

(dl− yli). Thus, the

total unpaid liability for the system over the three stages is:

N
∑

i=1

(

N
∑

j=1

Lij

)

(1− xi − zi) +
N
∑

l=1

N
∑

i=1

(

N
∑

j=1

Dl
ij

)

(dl − yli).

This is the objective function we would like to minimize. As previously, the framework

we develop in this section is applicable to weighted sums of liabilities; however, we

omit the weights in order to simplify notation.

1.5.2 Minimizing the weighted sum of unpaid liabilities with CDSs

Assume the system clears the liabilities as described in Section 1.5.1. We inves-

tigate the problem of minimizing the sum of unpaid liabilities under the model with

CDSs.

In [1], it is proved that the clearing payment is unique when the system is regular,

which is always the case if all nodes have some cash on hand. In this section, we

assume the system is regular. Otherwise, we just give each node $1 to make it

regular.
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The following constraints for all i combined with constraints (1.5) and (1.6) will

guarantee a clearing payment for the system in stage 1:

0 ≤ xi ≤ 1 (1.20)
(

N
∑

j=1

Lij

)

xi ≤
N
∑

j=1

Ljixj + ei + ci, (1.21)

N
∑

j=1

Ljixj + ei + ci −

(

N
∑

j=1

Lij

)

xi ≤
1

ǫ
(1− di), (1.22)

(1− di) ≤ xi, (1.23)

di ∈ {0, 1}, (1.24)

1− xi ≥ ǫdi. (1.25)

where ǫ is a small positive constant.

To show that these constraints are consistent with our definitions of x as stage 1

clearing payment vector rescaled to [0, 1] and d as stage 1 default indicator vector, first

note that, because of constraints (1.20) and (1.23), having di = 0 would imply that

xi = 1, i.e., that node i fully repays its obligations during stage 1. Furthermore, if di =

1, then constraints (1.21) and (1.22) force node i’s outgoing payments

(

N
∑

j=1

Lij

)

xi to

be equal to its available funds
N
∑

j=1

Ljixj + ei + ci. Thus, any feasible x in the region

defined by constraints (1.20) - (1.25) is a valid clearing payment vector. Conversely,

note that if xi = 1 (i.e., if node i fully repays its liabilities during stage 1), then

constraints (1.24) and (1.25) imply di = 0. If xi < 1 (i.e., if node i does not repay

its entire liability during stage 1), then constraints (1.23) and (1.24) imply di = 1.

Thus, di is a valid default indicator for node i. Therefore, for any feasible point in

the region defined by constraints (1.20) - (1.25), x is a valid clearing payment vector

rescaled to [0, 1], and d is a valid indicator showing whether node i is in default after

stage 1.

Note that the LP from Theorem 1 which is formulated in Eqs. (1.4 - 1.8), is

somewhat different from the optimization problem of maximizing the objective of
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Eq. (1.4) subject to the constraints of Eqs. (1.5,1.6, 1.20 - 1.25), in the sense that

there are some cases when the latter is infeasible, and there are also cases when the

solutions to the two problems slightly differ. To explain this, we denote the latter

optimization problem by P1. When the total available funds of node i are smaller

than but very close to its total liability, xi might be less than 1 and greater than

1 − ǫ. Then from constraint (1.23), we have di = 0 and from constraint (1.25), we

have di = 1, which is a contradiction. Then, the feasible region of P1 would be empty.

Such cases are atypical since the problematic region for clearing vectors is very small

when ǫ is small. Algorithmically, such cases can be resolved by slightly increasing

the total cash amount C to let node i fully repay its liabilities, i.e., to let xi = 1.

Now suppose that the optimal solution to LP (1.4 - 1.8) has 1− ǫ < xi < 1 and that

P1 is feasible. Then the optimal solution to P1 would use a small amount of cash

injection to ensure xi = 1. In this case, the solution to P1 will be slightly different

from the solution to LP (1.4 - 1.8), but the difference between the values of xi in the

two solutions will be smaller than ǫ.

Now we consider stage 2: clearing the liabilities due to CDSs. After stage 1,

the cash on hand at node i is fi =

N
∑

j=1

Ljixj + ei + ci −

(

N
∑

j=1

Lij

)

xi. Note that

during stage 2, there may be further defaults among the sellers of the CDSs. The
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clearing payment for the liabilities due to CDSs is located in the region defined by

the following constraints:

0 ≤ yli ≤ dl, (1.26)

yi − yli ≤ 1− dl, (1.27)

yli − yi ≤ 1− dl, (1.28)

N
∑

l=1

N
∑

j=1

Dl
ijy

l
i ≤

N
∑

l=1

N
∑

j=1

Dl
jiy

l
j + fi, (1.29)

N
∑

l=1

N
∑

j=1

Dl
jiy

l
j + fi −

N
∑

l=1

N
∑

j=1

Dl
ijy

l
i ≤

1

ǫ
(1− dCDS

i ), (1.30)

1− dCDS
i ≤ yi, (1.31)

dCDS
i ∈ {0, 1}. (1.32)

Constraint (1.26) ensures that if node l is not in default, then yli = 0 so that there are

no payments associated with any CDSs written against l’s default. Constraints (1.27)

and (1.28) guarantee that if both node l and node h are in default, the liabilities due

to the defaults of l and h are paid proportionally, i.e., yli = yhi = yi. Binary variable

dCDS
i is used to enforce the condition that any node whose stage 2 funds do not exceed

the total stage 2 liability must pay out all its funds during stage 2. In most cases,

dCDS
i is the stage 2 default indicator variable for node i. However, in a degenerate

case when node i’s stage 2 funds are exactly equal to its stage 2 total liabilities, dCDS
i

may be either 0 or 1.

In stage 3, we clear the remaining original liabilities which are not fully paid

in stage 1. The cash on hand at node i after stage 2 is ri =

N
∑

l=1

N
∑

j=1

Dl
jiy

l
j + fi −

N
∑

l=1

N
∑

j=1

Dl
ijy

l
i. Then the constraints to obtain the clearing payment in stage 3 are:

0 ≤ zi ≤ 1− xi (1.33)
(

N
∑

j=1

Lij

)

zi ≤

N
∑

j=1

Ljizj + ri, (1.34)
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where xi is the fraction of node i’s underlying liabilities paid off in stage 1. Here we do

not need the binary indicator any more since it is the last round so that the clearing

payment is achieved if the objective function is strictly increasing with respect to zi.

We therefore have the following result.

Theorem 3 Optimal cash allocation to minimize the sum of the unpaid liabilities in

the model with CDSs can be obtained via the following mixed integer linear program:

max
x,y,z,d,dCDS,c

N
∑

i=1

(

N
∑

j=1

Lij

)

(xi + zi) +
N
∑

l=1

N
∑

i=1

(

N
∑

j=1

Dl
ij

)

(yli − dl) (1.35)

subject to

N
∑

i=1

ci ≤ C, (1.36)

ci ≥ 0, (1.37)

(1.20)− (1.34).

1.5.3 Numerical Simulations

To solve MILP (1.35), we use CVX, a package for specifying and solving convex

programs and also MILPs [2, 3]. In CVX, we select Gurobi to be the solver [47].

1.5.3.1 Example 1: A Five-Node Network

In this section, we illustrate and verify Theorem 3 on the five-node network shown

in Fig. 1.3(a). Node A owes $10 to B, B owes $10 to C, C owes $10 to A and $10 to

D respectively. If node C defaults in stage 1, node D has a $5 CDS-induced liability

to node A. If node B defaults in stage 1, node D has a $10 CDS-induced liability to

node C. If node D defaults in stage 1, node E has a $10 CDS-induced liability to

node C. Node A, B and C have no cash on hand. Node C has $3. Nodes D and E

each have $10 on hand. The regulator has $3 to be injected into the system.
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(d) After stage 3.

Fig. 1.3. A five-node network.

We solve MILP (1.35) for this network via CVX and obtain cash injection vector

c = [0, 0, 3, 0, 0]T , which directs the regulator to inject $3 into node C. With $3 cash

injection to C, the original liabilities are cleared in stage 1. After the clearance in

stage 1, the network is reduced to Fig. 1.3(b). The scaled payment vector is x =

[0.3, 0.3, 0.3, 0, 0]T , which means that nodes A, B and C pay 30% of their liabilities.

The stage 1 default indicator vector is d = [1, 1, 1, 0, 0]T , so nodes A, B and C are in

default in stage 1, while D and E are safe.

Since nodes B and C default in stage 1, the CDS-induced liabilities related to B

and C are created in stage 2, i.e., node D owes $5 to A and $10 to C in stage 2.

The CDS-induced liability from E to C is not triggered since D does not default in

stage 1. In the solution of MILP (1.35) for this network, we have yAD = yCD = yD = 0.4

so that in stage 2, node D pays 40% of its CDS-induced liabilities. In addition, the
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scaled payment from E to C is yCE = 0 due to constraint (1.26). The network after

stage 2 is shown in Fig. 1.3(c).

In stage 3, the remaining original liabilities are cleared. The final network af-

ter stage 3 is shown in Fig. 1.3(d). The scaled clearing payment vector is z =

[0.7, 0.7, 0.55, 0, 0]T .

To sum up, nodes A and B pay 30% of their original liabilities in stage 1 and 70%

of their original liabilities in stage 3. Technically they are both in default, since in our

model the inability to fully repay the underlying obligations in stage 1 is defined as

default. Note, however, that because of the CDS-related payments cleared in stage 2,

both of them are able to fully repay their remaining underlying obligations in stage 3.

Thus, even though A and B both default, their defaults have a 100% recovery rate,

i.e., their creditors are fully repaid after stage 3. Node C defaults and has $3 unpaid

liabilities after three-stage clearing. Node D does not have any original liabilities, but

it defaults in stage 2 since it fails to fully pay its CDS-induced liabilities. Node E

stays safe since it does not have any original liabilities and the CDS-induced liability

is not triggered.

1.5.3.2 Example 2: A Core-Periphery Network

In this section we examine the practicality of the mixed-integer linear program.

We test the running time on a core-periphery network with CDSs shown in Fig. 1.17.

It contains 15 fully connected core nodes. Each core node has 70 periphery nodes.

Each periphery node has a single link pointing to the corresponding core node. The

asset of each node is uniformly distributed in [0, 0.01] so that the system is regular.

All the obligation amounts Li,j are independent uniform random variables. For each

pair of core nodes i and j the obligation amount Lij is uniformly distributed in [0, 10].

For a core node i and its periphery node k, the obligation amount Lki is uniformly

distributed in [0, 1]. We assume only core nodes buy and sell CDSs. For any pair of

core nodes i, j, and the underlying, node l, node i sells a CDS with underlying l to
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15 core nodes: fully connected

70 periphery nodes for each core node: 

1 link to the core node

Original liability

Liability due to CDS

Fig. 1.4. A core-periphery network with CDSs.
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node j with probability 0.01. The amount of the CDS-induced liability is uniform

in [0, 1]. In other words, Dl
ij is uniformly distributed in [0, 1] with probability 0.01,

and zero with probability 0.99. The weights of original liabilities and the weights

of CDS-induces liabilities are all the same , i.e., w = 1. The regulator has $100

to be injected into the network. For this core-periphery network, we generate 100

samples. We run the CVX code on a personal computer with a 2.66GHz Intel Core2

Duo Processor P8800. The average running time is 7.0s and the sample standard

deviation is 3.6s. The relative gap between the objective of the solution and the

optimal objective is less than 10−4. (This bound is obtained by calculating the optimal

value of the objective for the corresponding linear program, which is an upper bound

for the optimal objective value of the MILP.) We can see that for the core-periphery

network, MILP (1.35) can be solved by CVX efficiently and accurately. The CVX

code is given in Appendix B.2.

1.6 Heuristic Algorithms for Problem II under the Proportional Payment

Mechanism

Given that the total amount of cash injection is C, Problem II seeks to find a cash

injection allocation vector c to minimize the number of defaults Nd, i.e., the number

of nonzero entries in vector p̄ − p. In other words, in Problem II, we would like to

make vector p̄− p as sparse as possible.

In this section, we propose two heuristic algorithms to solve Problem II approx-

imately. First, we adapt the reweighted ℓ1 minimization strategy approach from

Section 2.2 of [4]. Our algorithm solves a sequence of weighted versions of the linear

program (1.4-1.8), with the weights designed to encourage sparsity of p̄ − p. In the

following pseudo code of our algorithm, w(m) is the weight vector during the m-th

iteration.

Reweighted ℓ1 minimization algorithm:

1. m← 0.
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2. Select w0 (e.g., w0 ← 1).

3. Solve linear program (1.4-1.8) with objective function replaced by w(m)Tp.

4. Update the weights: for each i = 1, · · · , N ,

w
(m+1)
i ←

1

exp
(

p̄i − p
∗(m)
i

)

− 1 + ǫ
,

where ǫ > 0 is constant, and p∗(m) is the clearing payment vector obtained in

Step 3.

5. If ‖w(m+1)−w(m)‖1 < δ, where δ > 0 is a constant, stop; else, increment m and

go to Step 3.

Note that nodes for which p̄i − p
∗(m)
i is very small require very little additional

resources to avoid default. This is why Step 4 is designed to give more weight to

such nodes, thereby encouraging larger cash injections into them. On the other hand,

nodes for which p̄i − p
∗(m)
i is very large require a lot of cash to become solvent. The

algorithm essentially “gives up” on such nodes by assigning them small weights.

The second heuristic algorithm we develop is a greedy algorithm. At each iteration

of the greedy algorithm, we calculate the clearing payment vector and select the

node with the smallest unpaid liability among all the defaulting nodes. We inject

cash into that node to rescue it so that during each iteration, we save the one node

that requires the smallest cash expenditure. In this procedure, we inject the cash

sequentially, bailing out some nodes completely before they fully receive the payments

from their borrowers. These nodes may subsequently receive some more cash from

their borrowers if their borrowers are rescued several steps later. Because of this, a

rescued node may end up with a surplus. If this happens, the node would use its

surplus to repay its cash injection. Such repayments can then be used to assist other

nodes. The algorithm terminates either when there are no defaults in the system or

when the injected cash reaches the total amount C and no rescued node has a surplus.

Greedy algorithm:
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Fig. 1.5. Binary tree network.

1. Cr ← C, c← 0, w← 1.

2. Solve linear program (1.1-1.3) to obtain the clearing payment vector p.

3. Calculate the surplus of each node after clearing: r← ΠTp + e + c− p.

4. Update the remaining cash to be injected into the system after the rescued nodes

repay their cash injections: Cr ← Cr +

N
∑

i=1

min{ri, ci}, ci ← ci −min{ci, ri} for

i = 1, 2, · · · , N .

5. If Cr = 0 or there are no defaults in the system, stop.

6. Find node k with the minimum unpaid liability p̄k − pk among all defaulting

nodes.

7. ck ← min{Cr, p̄k − pk}, Cr ← Cr − ck, go to Step 2.

We now illustrate our two heuristic algorithms using three simple synthetic net-

works for which the optimal solutions can be calculated exactly.
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Fig. 1.6. Our algorithms for minimizing the number of defaults vs
the optimal solution calculated in Section 1.6.1, for the binary tree
network of Fig. 1.5.

1.6.1 Example: A Binary Tree Network

First, we use a full binary tree with S levels and N = 2S − 1 nodes. As shown in

Fig. 1.5, levels 0 and S− 1 correspond to the root and the leaves, respectively. Every

node at level s < S − 1 owes $2S−s to each of its two creditors (children). We set

e = 0.

If C < 8, then all 2S−1 − 1 non-leaf nodes are in default, and the 2S−1 leaves are

not in default. In aggregate, the nodes at any level s < S − 1 owe $2S+1 the nodes

at level s+ 1. Therefore, if C ≥ 2S+1, then Nd = 0 can be achieved by allocating the

entire amount to the root node.

For 8 ≤ C < 2S+1, we first observe that if C = 2S+1−s for some integer s, then

the optimal solution is to allocate the entire amount to a node at level s. This would

prevent the defaults of this node and all its 2S−s−1 − 2 non-leaf descendants, leading

to 2S−1− 2S−s−1 defaults. If C is not a power of two, we can represent it as a sum of
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powers of two and apply the same argument recursively, to yield the following optimal

number of defaults:

Nd = T (S)−

U
∑

u=4

b(u) · T (u− 2),

where T (x) = 2x−1− 1 is the number of non-leaf nodes in an x-level complete binary

tree, b(u) is the u-th bit in the binary representation of C (right to left) and U is the

number of bits. To summarize, the smallest number of defaults Nd, as a function of

the cash injection amount C, is:

Nd(C)=



























T (S) if C < 8,

T (S)−

U
∑

u=4

b(u)T (u− 2) if 8 ≤ C < 2S+1,

0 if C ≥ 2S+1.

(1.38)

In our test, we set S = 10. The green line in Fig. 1.6 represents the minimum

number of defaults as a function of C, as shown in Eq. (1.38). The blue line is the

solution calculated by the reweighted ℓ1 minimization algorithm with ǫ = 0.001 and

δ = 10−6. The algorithm was run using six different initializations: five random ones

and w(0) = 1. Among the six solutions, the one with the smallest number of defaults

was selected. The red line is the solution provided by the greedy algorithm. Fig. 1.6

shows that the results of the reweighted ℓ1 minimization algorithm are very close to

the optimal for the entire range of C, while the performance of the greedy algorithm

is poor. The greedy algorithm always injects cash into the nodes at level S− 2 which

have the smallest unpaid liabilities. For C ≥ 16, this strategy is inefficient since

spending $16 on a node at level S − 3 rescues both that node and its two children,

whereas spending $16 on two nodes at level S − 2 only rescues those two nodes.

To investigate the sensitivity of the reweighted ℓ1 minimization algorithm to our

random initialization strategy, we conduct the following experiment with the binary

tree topology. For each of the 11 amounts of cash injection C = 0, 200, 400, . . . , 2000,

we repeat the algorithm 100 times. The five random initial weights in all these runs

are chosen independently. The results are shown in Fig. 1.7. The green squares mark

the numbers of defaults for the optimal solutions. The blue crosses show, for each
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Fig. 1.7. Reweighted ℓ1 minimization algorithm with different initial-
izations for the binary tree network of Fig. 1.5.

of the 11 values of C, the average number of defaults over 100 repetitions of the

reweighted ℓ1 minimization algorithm. The dashed blue lines show the band of ±1

standard deviations around the mean. Note that the means are close to the optimal

solutions, and that the standard deviations are small, indicating that the algorithm

is robust to the initial weights.

1.6.2 Example: A Network with Cycles

Second, we test our algorithms on the network with cycles shown in Fig. 1.8. The

network contains M cycles with six nodes each. The nodes in the k-th cycle are

denoted nk1, nk2, · · · , nk6. Node nk1 owes $2a to nk2. Node nk6 owes $a to nk1. For

i = 2, · · · , 5, nki owes $a to nk(i+1). The root node, denoted as nR, owes $a to nk1,

for every k = 1, 2, · · · ,M . We set e = 0.

If C < a, then the root node and all M nodes connected to the root, nk1(k =

1, 2, . . . ,M), are in default. The remaining 5M nodes are not in default.



35

n11

n12

n13

n16

n15

n14

$2a
n21

n22

n23

n26

n25

n24

nM1

nM2

nM3

nM6

nM5

nM4

⋯

nR

$a
$a

$a

$a

$a

$a

$a $a

$a

$a $a

$a $a

$a $a

$a

$a $a

$2a $2a
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Fig. 1.9. Our algorithms for minimizing the number of defaults vs
the optimal solution calculated in Section 1.6.2, for the network of
Fig. 1.8.
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If C ≥ aM , then allocating the entire amount C to the root yields zero defaults.

If a ≤ C < aM , then giving $a to node nk1 will prevent it from defaulting. Thus,

the total number of defaults in this case is M + 1− [C/a].

Summarizing, for this network structure, the smallest number of defaults Nd, as

a function of the cash injection amount C, is:

Nd(C) =



















M + 1 if C < a,

M + 1− [C/a] if a ≤ C < aM,

0 if C ≥ aM.

(1.39)

In our test, we set a = 10 and M = 100. In Fig. 1.9, the green line is a plot of

the minimum number of defaults as a function of C. The blue line is the solution

calculated by the reweighted ℓ1 minimization algorithm with ǫ = 0.001 and δ =

10−6. The algorithm was run using six different initializations: five random ones and

w(0) = 1. Among the six solutions, the one with the smallest number of defaults

was selected. The red line is the solution calculated by the greedy algorithm. As

evident from Fig. 1.9, the results produced by both algorithms are very close to

the optimal ones. The greedy algorithm achieves the optimal solution for the entire

range of C except the point C = 1000. When C = 1000, the optimal strategy is to

inject $1000 into the root node whereas the greedy algorithm injects $10 into nk1 for

k = 1, 2, · · · , 100.

1.6.3 Example: A Core-Periphery Network

Third, we test our algorithm on a simple core-periphery network, since core-

periphery models are widely used to model banking systems [7,8,48,49]. In Fig. 1.10,

i, ii, and iii are the three core nodes. Node i owes $100 each to nodes ii and iii, and

node ii owes $100 to iii. Ten periphery nodes are attached to each core node, and

each periphery node owes $20 to its core node. There are no external assets in the

system, so in the absence of an external injection of cash, all the nodes are in default

except node iii.
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Fig. 1.10. Core-periphery network topology.

If the cash injection amount is C < 100, the optimal solution is to select any

[C/20] periphery nodes and give $20 to each of them. This reduces the number of

defaults by [C/20].

If 100 ≤ C < 200, we first select any five periphery nodes of core node ii and give

$20 to each of them, because this saves both node ii and these five periphery nodes.

Then we select any other ⌊(C − 100)/20⌋ periphery nodes and give $20 to each. This

decreases the number of defaults by ⌊C/20⌋+ 1.

If 200 ≤ C < 600, we first use $200 to rescue all 10 periphery nodes of core node

i, saving i, ii, and these 10 periphery nodes. Then we select any other ⌊(C−200)/20⌋

periphery nodes and give $20 to each. This decreases the number of defaults by

⌊C/20⌋+ 2.

If C ≥ 600, then all the nodes can be rescued by giving $20 to each periphery

node.
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Fig. 1.11. Our algorithms for minimizing the number of defaults vs
the optimal solution calculated in Section 1.6.3, for the network of
Fig. 1.10.

To sum up, for this core-periphery network structure, the smallest number of

defaults Nd, as a function of the cash injection amount C, is:

Nd(C) =































32− ⌊C/20⌋ if C < 100,

31− ⌊C/20⌋ if 100 ≤ C < 200,

30− ⌊C/20⌋ if 200 ≤ C < 600,

0 if C ≥ 600.

(1.40)

In Fig. 1.11, the green line is a plot of this minimum number of defaults as a

function of C. The blue line is the solution calculated by our reweighted ℓ1 mini-

mization algorithm with ǫ = 0.001 and δ = 10−6. The algorithm was run using six

different initializations: five random ones and w(0) = 1. Among the six solutions, the

one with the smallest number of defaults was selected. The red line is the solution

calculated by the greedy algorithm. As evident from Fig. 1.11, the results produced

by the reweighted ℓ1 algorithm are very close to the optimal ones for the entire range

of C. Note that for the greedy algorithm, the performance depends on the order of
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5 core nodes: fully connected

20 periphery nodes for each core node: 

1 link to the core node

Fig. 1.12. Random core-periphery network to compare the reweighted
ℓ1 algorithm and the greedy algorithm.

rescuing nodes with the same unpaid liability amounts. For example, if the greedy

algorithms rescue the periphery nodes of core node iii first, the performance would

be poor.

1.6.4 Example: Three Random Networks

We now compare the reweighted ℓ1 minimization algorithm to the greedy algo-

rithm using more complex network topologies in which the optimal solution is difficult

to calculate directly.

We construct three types of random networks, all having external asset vector

e = 0. The first one is a random graph with 30 nodes. For any pair of nodes i and j,
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5 core nodes: fully connected

20 periphery chains

for each core node: 

1 link to the core node
v

Fig. 1.13. Random core-periphery network with long chains to com-
pare the reweighted ℓ1 algorithm and the greedy algorithm.

Lij is zero with probability 0.8 and is uniformly distributed in [0, 2] with probability

0.2.

The second one is a random core-periphery network which is illustrated in Fig. 1.12.

The core contains five nodes which are fully connected. The liability from one core

node to every other core node is uniformly distributed in [0, 20]. Each core node has

20 periphery nodes. Each periphery node owes money only to its core node. This

amount of money is uniformly distributed in [0, 1].

The third one is a random core-periphery network with chains of periphery nodes.

As shown in Fig. 1.13, the core contains five nodes which are fully connected. The

liability from one core node to every other core node is uniformly distributed in [0,20].

Each core node has 20 periphery chains connected to it, each chain consisting of either
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a single periphery node (short chains) or 3 periphery nodes (long chains). Each core

node has either only short periphery chains connected to it or only long periphery

chains connected to it. There are two core nodes with long periphery chains. The

liability amounts along each long chain are the same, and are uniformly distributed

in [0,1]. The liability amounts along each short chain are also uniformly distributed

in [0,1].

For each of these three random networks, we generate 100 samples from the dis-

tribution and run both the reweighted ℓ1 minimization algorithm and the greedy

algorithm on each sample network. In the reweighted ℓ1 minimization algorithm, we

set ǫ = 0.001, δ = 10−6. We run the algorithm using six different initializations:

five random ones and w(0) = 1. Among the six solutions, the one with the smallest

number of defaults is selected.

The results are shown in Figs. 1.14, 1.15, and 1.16. The blue and red solid lines

represent the average numbers of defaulting nodes after the cash injection allocated by

the two algorithms: blue for the reweighted ℓ1 minimization and red for the greedy

algorithm. The dashed lines show the error bars for the estimates of the average.

Each error bar is ±two standard errors.

From Fig. 1.14, we see the performance of the reweighted ℓ1 algorithm is close to

the greedy algorithm on the random networks. From Fig. 1.15 and Fig. 1.16, we see

that on random core-periphery networks, the greedy algorithm performs better than

the reweighted ℓ1 algorithm, while on random core-periphery networks with chains,

the reweighted ℓ1 algorithm is better.

1.7 Problem III under the Proportional Payment Mechanism

We now investigate Problem III which is a combination of Problem I and Prob-

lem II. Instead of just minimizing the weighted sum of unpaid liabilities or the number

of defaulting nodes, we consider an objective function which is a linear combination
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Fig. 1.14. Two heuristic algorithms for minimizing the number of
defaults: evaluation on random networks.
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Fig. 1.15. Two heuristic algorithms for minimizing the number of
defaults: evaluation on random core-periphery networks.
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Fig. 1.16. Two heuristic algorithms for minimizing the number of
defaults: evaluation on random core-periphery networks with long
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of the sum of weights over the defaulting nodes and the weighted sum of unpaid

liabilities:

D = wT (p̄− p) + vTd.

As defined in Table 1.1, di is a binary variable indicating whether node i defaults:

di = 1 if p̄i − pi > 0 and di = 0 if p̄i − pi = 0. vi is the weight of node i’s default.

Since D is strictly decreasing with respect to p, Lemma 4 in [1] implies that

minimizing D will yield a clearing payment vector. In light of this fact, we prove that

minimizing D subject to a fixed injected cash amount C is equivalent to a mixed-

integer linear program.

Theorem 4 Assume that the liabilities matrix L, the external asset vector e, the

weight vectors w > 0 and v > 0 and the total cash injection amount C are fixed and

known. Assume that the system utilizes the proportional payment mechanism with no

bankruptcy costs. Define d as in Table 1.1. Then the optimal cash allocation policy

to minimize the cost function D = wT (p̄ − p) + vTd can be obtained by solving the

following mixed-integer linear program:

max
p,c,d

wTp− vTd (1.41)

subject to

1Tc ≤ C, (1.42)

c ≥ 0, (1.43)

0 ≤ p ≤ p̄, (1.44)

p ≤ ΠTp + e + c, (1.45)

p̄i − pi ≤ p̄idi, for i = 1, 2, · · · , N, (1.46)

di ∈ {0, 1}, for i = 1, 2, · · · , N. (1.47)

Proof Let (p∗, c∗, d∗) be a solution of the mixed-integer linear program (1.41–

1.47). We first show that p∗ is a clearing payment vector, i.e., that for each i, we

have p∗i = p̄i or p∗i =
N
∑

j=1

Πjip
∗
j + ei + ci. Assume that this is not the case for some
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node k, i.e., that p∗k < p̄k and p∗k <

N
∑

j=1

Πjkp
∗
j + ek + ck. We construct a vector pξ

which is equal to p∗ in all components except the k-th component. We set the k-th

component of pξ to be pξk = p∗k+ξ, where ξ > 0 is small enough to ensure that pξk < p̄k

and pξk <

N
∑

j=1

Πjkp
ξ
j + ek + ck. Since Π is a matrix with non-negative entries, for any

i 6= k, we have:

pξi = p∗i <

N
∑

j=1

Πjip
∗
j + ei + ci <

N
∑

j=1

Πjip
ξ
j + ei + ci.

In addition, p̄k − pξk < p̄k − p∗k ≤ p̄kdk. Thus, (pξ, c∗, d∗) is also in the feasible region

of (1.41–1.47) and achieves a larger value of the objective function than (p∗, c∗, d∗).

This contradicts the fact that (p∗, c∗, d∗) is a solution of (1.41–1.47). Hence, p∗ is a

clearing payment vector.

Second, we show that d∗i indicates whether node i defaults, i.e., d∗i = Ip̄i−p∗i>0. If

p̄i − p∗i > 0, then d∗i = 1 due to constraints (1.46) and (1.47). If p̄i − p∗i = 0, then

constraint (1.46) is always true. In this case the fact that vi > 0 implies that, in order

to maximize the objective function, d∗i must be zero. Thus, d∗i = Ip̄i−p∗i>0.

So far, we have proved that p∗ and d∗ are the clearing payment vector and default

indicator vector, respectively, for cash injection vector c∗. We now prove by contradic-

tion that c∗ is the optimal cash injection allocation. Assume c′ 6= c∗ leads to a strictly

smaller value of the cost function D than does c∗. In other words, suppose that c′ sat-

isfies the constraints (1.42) and (1.43), and that the corresponding clearing payment

vector p′ and default indicator vector d′ satisfy wT (p̄−p′)+vTd′ < wT (p̄−p∗)+vTd∗,

which is equivalent to:

wTp′ − vTd′ > wTp∗ − vTd∗.

Since p′ is the corresponding clearing payment vector, constraint (1.44) and (1.45)

are satisfied. Moreover, d′ is the corresponding default indicator vector satisfying

constraint (1.46) and (1.47) for c′. So (p′,c′,d′) is in the feasible region of (1.41–1.47)

and achieves a larger objective function than (p∗, c∗, d∗), which contradicts the fact

that (p∗, c∗, d∗) is the solution of (1.41–1.47).
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15 core nodes: fully connected

70 periphery nodes for each core node: 

1 link to the core node

Fig. 1.17. A core-periphery network.

1.7.1 Numerical Simulations

We use CVX with solver Gurobi [47] to solve MILP (1.41). We test the running

time on the core-periphery network shown in Fig. 1.17, which contains 15 fully con-

nected core nodes and 70 periphery nodes for each of them. Each periphery node

has a single link pointing to the corresponding core node. Every node has zero exter-

nal assets: e = 0. All the obligation amounts Li,j are independent uniform random

variables. For each pair of core nodes i and j the obligation amount Lij is uniformly

distributed in [0, 10]. For a core node i and its periphery node k, the obligation

amount Lki is uniformly distributed in [0, 1]. The weights of defaults are 1 for all core

nodes, and are 0.1 for all periphery nodes. The weights of unpaid liabilities are uni-

form in [0, 0.1] for all nodes. The regulator has $300 to be injected into the network.



47

1 2 M…

M+1 M+2 2M…

e = 0

1
p

2
p

M
p

Fig. 1.18. Financial network used in the Proof of Theorem 5. For this
network, Problem I under the all-or-nothing payment mechanism is a
knapsack problem.

For this core-periphery network, we generate 100 samples. We run the CVX code on

a personal computer with a 2.66GHz Intel Core2 Duo Processor P8800. The average

running time is 0.90s and the sample standard deviation is 0.55s. The relative gap

between the objective of the solution and the optimal objective is less than 5× 10−3.

(This bound is obtained by calculating the optimal value of the objective for the cor-

responding linear program, which is an upper bound for the optimal objective value

of the MILP.) MILP (1.41) can be solved by CVX efficiently and accurately. The

CVX code is given in Appendix B.3.

1.8 All-or-Nothing Payment Mechanism

We now show that under the all-or-nothing payment mechanism, Problem I is

NP-hard. Despite this fact, we show through simulations that for network sizes

comparable to the size of the US banking system, this problem can be solved in a few

seconds on a personal computer using modern optimization software.
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Theorem 5 With the all-or-nothing payment mechanism, Problem I is NP-hard since

the knapsack problem is reducible to Problem I.

Proof Consider the network depicted in Fig. 1.18. The network has N = 2M nodes

where M is a positive integer. We let Li,M+i = p̄i for i = 1, 2, · · · ,M ; for all other

pairs (i, j), we set Lij = 0. We set the external asset vector to zero: e = 0. We set

all the weights to 1: w = 1. We let xi be the rescue indicator variable for node i, i.e.,

xi = 0 if i is in default and xi = 1 if i is fully rescued, for i = 1, · · · ,M .

Note that under the all-or-nothing payment mechanism, fully rescuing node i for

any i = 1, · · · ,M in Fig. 1.18 means injecting ci = p̄i. On the other hand, injecting

any other nonzero amount ci < p̄i is wasteful, as it does not reduce the total amount

of unpaid liabilities in the system. Therefore, for each defaulting node i we have

xi = 0, ci = 0, and pi = 0, and for each rescued node i we have xi = 1, ci = p̄i, and

pi = p̄i. The reduction in the total amount of unpaid obligations due to the cash

injection is
M
∑

i=1

xip̄i.

We must select x to maximize this amount, subject to the budget constraint

M
∑

i=1

xip̄i ≤

C that says that the total amount of cash injection spent on fully rescued nodes must

not exceed C:

max
x

M
∑

i=1

xip̄i (1.48)

subject to

M
∑

i=1

xip̄i ≤ C,

xi ∈ {0, 1}, for i = 1, 2, · · · ,M.

If any cash remains, it can be arbitrarily allocated among the remaining nodes or

not spent at all, because partially rescuing a node does not lead to any improvement
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of the objective function. Program (1.48) is a knapsack problem, a well-known NP-

hard problem. Thus, Problem I under the all-or-nothing payment mechanism is an

NP-hard problem.

We now establish a mixed-integer linear program to solve Problem I with the

all-or-nothing payment mechanism.

Theorem 6 Assume that the liabilities matrix L, the external asset vector e, the

weight vector w > 0 and the total cash injection amount C are fixed and known.

Assume the all-or-nothing payment mechanism. Then Problem I is equivalent to the

following mixed-integer linear program:

max
p,c,d

wTp (1.49)

subject to

1Tc ≤ C, (1.50)

c ≥ 0, (1.51)

pi = p̄i(1− di), for i = 1, 2, · · · , N, (1.52)

p̄i −

N
∑

j=1

Πjipj − ei − ci ≤ p̄idi, for i = 1, 2, · · · , N, (1.53)

di ∈ {0, 1}, for i = 1, 2, · · · , N. (1.54)

Proof Let (p∗, c∗,d∗) be a solution of the mixed-integer linear program (1.49–1.54).

We first show that p∗ is the clearing payment vector corresponding to c∗. For node

i, if p̄i >
N
∑

j=1

Πjip
∗
j + ei + ci, then from constraints (1.53) and (1.54) it follows that

d∗i = 1 so that p∗i = 0. If p̄i ≤

N
∑

j=1

Πjip
∗
j + ei + ci, then constraint (1.53) is satisfied

for both di = 0 and di = 1. In this case, in order to maximize the objective function,

it must be that d∗ = 0 and p∗i = p̄i. This completes the Proof that p∗ is the clearing

payment vector corresponding to c∗ under the all-or-nothing payment mechanism.

Second, we prove by contradiction that c∗ is the optimal allocation. Assume that

c′ leads to a smaller weighted sum of unpaid liabilities, or equivalently, a larger value
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of wTp′, where p′ is the clearing payment vector corresponding to c′. Since p′ is a

clearing payment vector, we have that if p̄i >

N
∑

j=1

Πjip
′
j + ei + c′i then p′i = 0; and if

p̄i ≤
N
∑

j=1

Πjip
′
j + ei + c′i then p′i = p̄i. We define vector d′ as d′i = 0 for p′i = p̄i and

d′i = 1 otherwise. Then (p′, c′,d′) is located in the feasible region of MILP (1.49–1.54)

but leads to a larger value of the objective function than (p∗, c∗,d∗). This contradicts

the fact that (p∗, c∗,d∗) is a solution of (1.49–1.54).

Under the all-or-nothing payment mechanism, Problem I with multiple seniorities

is equivalent to the one with single seniority because an institution either pays off all

the liabilities at different seniorities or none of them.

Now we consider Problem II and Problem III under the all-or-nothing payment

mechanism. The objective that we aim to maximize in Problem II is the number

of non-defaulting nodes. If node i defaults, it repays zero liabilities and contributes

zero to the objective; if node i does not default, it pays off p̄i and contributes one

to the objective, which means that the weight for node i in the objective is 1/p̄i.

Therefore, under the all-or-nothing payment mechanism, Problem II is a special case

for Problem I when we set the weight wi = 1/p̄i for nonzero p̄i and wi = 0 for zero

p̄i in MILP (1.49). Similarly, Problem III can also be transformed to Problem I by

setting wi = w′
i + vi/p̄i for nonzero p̄i and wi = w′

i for zero p̄i in MILP (1.49), where

w′
i is the original weight for node i’s unpaid liabilities in Problem III and vi is the

weight of node i’s default.

1.8.1 Numerical Simulations

To solve MILP (1.49), we use CVX, a package for specifying and solving convex

programs and also MILPs [2, 3]. In CVX, we select Mosek to be the solver [46].

We test the running time on the core-periphery network shown in Fig. 1.17, which

contains 15 fully connected core nodes and 70 periphery nodes for each of them. Each

periphery node has a single link pointing to the corresponding core node. Every node
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has zero external assets: e = 0. All the obligation amounts Li,j are independent

uniform random variables. For each pair of core nodes i and j the obligation amount

Lij is uniformly distributed in [0, 10]. For a core node i and its periphery node k,

the obligation amount Lki is uniformly distributed in [0, 1]. For a core node i, we

set the weight wi = 10; for a periphery node k, we set the weight wk = 1. The

regulator has $300 to be injected into the network. For this core-periphery network,

we generate 100 samples. We run the CVX code on a personal computer with a

2.66GHz Intel Core2 Duo Processor P8800. The average running time is 1.9s and

the sample standard deviation is 2.0s. The relative gap between the objective of the

solution and the optimal objective is less than 10−4. (This bound is obtained by

calculating the optimal value of the objective for the corresponding linear program,

which is an upper bound for the optimal objective value of the MILP.) If the optimal

value of the objective is in the millions of dollars, a relative error of 10−4 means that

we are within a few hundred dollars away from that optimum, which is a reasonable

precision. MILP (1.49) can be solved by CVX efficiently and accurately. The CVX

code is given in Appendix B.4.

1.9 Conclusions

In this chapter, we have developed a linear program to obtain the optimal cash

injection policy to minimize the weighted sum of unpaid liabilities in a basic model

with one period and a single seniority. We also incorporate multiple seniorities and

CDS into the basic model so that it could be adapted to more realistic financial

systems. With such extensions, the linear program turns into mixed-integer linear

programs. We have further proposed a reweighted ℓ1 minimization algorithm based

on this linear program and a greedy algorithm to find the cash injection allocation

strategy which minimizes the number of defaults in the system. By constructing three

topologies in which the optimal solution can be calculated directly, we have tested

both algorithms and shown through simulation that the results of the reweighted
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ℓ1 minimization algorithm are close to optimal, and that the performance of the

greedy algorithm highly depends on the network topology. We also compare these

two algorithms using three types of random networks for which the optimal solution is

not available. In addition, we have shown that the introduction of the all-or-nothing

payment mechanism turns the optimal cash injection allocation problem into an NP-

hard mixed-integer linear program. We have shown through simulations that this

problem can be accurately solved in a few seconds for a network size comparable

to the size of the US banking network. Our results provide algorithmic tools to

help financial institutions, banking supervisory authorities, regulatory agencies, and

clearing houses in monitoring and mitigating systemic risk in financial networks.
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2. A DISTRIBUTED ALGORITHM FOR SYSTEMIC

RISK MITIGATION IN FINANCIAL SYSTEMS

2.1 Introduction

In Chapter 1, we showed in Theorem 1 that Problem I without bankruptcy costs

is equivalent to a linear program, and therefore can be solved exactly, for any network

topology, using standard LP solvers. In some scenarios, however, this approach may

be impractical or undesirable, as it requires the solver to know the entire network

structure, namely, the net external assets of every institution, as well as the amounts

owed by each institution to each other institution. To collect and effectively use all

this information in a centralized fashion would impose a prohibitive regulatory burden

both on the financial institutions and on the regulators themselves.

In this chapter, we adapt our framework to applications where it is necessary to

avoid centralized data gathering and computation. We propose a distributed algo-

rithm to solve our linear program. The algorithm is iterative and is based on message

passing between each node and its neighbors. During each iteration of the algorithm,

each node only needs to receive a small amount of data from its neighbors, perform

simple calculations, and transmit a small amount of data to its neighbors. During the

message passing, no node will reveal to any other node any proprietary information

on its asset values, the amounts owed to other nodes, or the amounts owed by other

nodes.

We verify the convergence of the distributed algorithm on a four-node network and

estimate the practical time to converge. While the algorithm is slower than standard

centralized LP solvers, simulations suggest its practicality for the US banking system

which we model as a core-periphery network with 15 core nodes and 1050 periphery

nodes.
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Our algorithm can be used both to monitor financial networks and to simulate

stress-testing scenarios. The integrity of the process can be enforced by the supervi-

sory authorities through auditing.

This chapter is organized as follows. A duality-based distributed algorithm for

Problem I under the proportional payment mechanism is proposed in Section 2.2. In

Section 2.3, we further extend the distributed algorithm for the alternative formula-

tion of Problem I. We illustrate the practicality of the distributed algorithm for the

network with the same size as the US banking system by simulations in Section 2.4

and conclude in Section 2.5.

2.2 Problem I under the Proportional Payment Mechanism

2.2.1 A Distributed Algorithm

In this chapter, we follow the same notations defined in Section 1.2 of Chapter 1.

To develop a distributed algorithm for LP (1.4-1.8), we formulate its dual problem and

solve it via gradient descent. We solve the dual problem because unlike the primal,

it has simpler constraints which are easily decomposable. It turns out that every

iteration of the gradient descent involves only local computations, which enables a

distributed implementation.

In order to apply the gradient descent method to the dual problem, we need the

objective function in (1.4) to be strictly concave, which would guarantee that the dual

problem is differentiable at any point [50]. However, the objective function of LP (1.4)

is not strictly concave so we apply the Proximal Optimization Algorithm [51,52]. The

basic idea is to make the objective function strictly concave by adding quadratic terms

that converge to zero at the optimal, so as to avoid changing the solution. A popular

choice for these quadratic terms are the residuals from equality constraints.

We introduce two N × 1 vectors y and z and add two quadratic terms

‖p− y‖2 =

N
∑

i=1

(pi − yi)
2, ‖c− z‖2 =

N
∑

i=1

(ci − zi)
2
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to (1.4). Then we proceed as follows.

Algorithm P:

At the t-th iteration,

• P1) Fix y = y(t) and z = z(t) and maximize the objective function with

respect to p and c:

max
p,c

wTp− ‖p− y‖2 − ‖c− z‖2 (2.1)

subject to

1Tc ≤ C, (2.2)

c ≥ 0,

0 ≤ p ≤ p̄,

p ≤ ΠTp + e + c. (2.3)

Note that since the objective function is strictly concave, a unique solution

exists. Denote it as p∗ and c∗.

• P2) Set y(t + 1) = p∗, z(t + 1) = c∗.

It is proved in Proposition 4.1 in [52] that algorithm P will converge to the optimal

solution of LP (1.4-1.8).

2.2.2 Implementation of Algorithm P

In Step P1, for fixed y and z, the objective function of (2.1) is strictly concave

so that the dual problem is differentiable at any point [50]. Hence, we can solve the

dual problem using gradient descent.

Let a scalar λ and an N × 1 vector q be Lagrange multipliers for constraints (2.2)

and (2.3), respectively. We define the Lagrangian as follows:

L(p, c, λ,q,y, z) = wTp−λ(1T c−C)−qT ((IN−ΠT )p−e−c)−‖p−y‖2−‖c−z‖2,

(2.4)
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where λ and q are non-negative and IN is an N × N identity matrix. We further

expand (2.4):

L(p, c, λ,q,y, z) =
N
∑

i=1

wipi − λ
N
∑

i=1

ci + λC −
N
∑

i=1

qi(pi −
N
∑

j=1

Πjipj − ei − ci)

−

N
∑

i=1

(pi − yi)
2 −

N
∑

i=1

(ci − zi)
2 (2.5)

= −
N
∑

i=1

[

p2i − (wi − qi + 2yi +
N
∑

j=1

qjΠij)pi

]

−
N
∑

i=1

[

c2i − (qi − λ + 2zi)ci
]

+
N
∑

i=1

[

qiei − y2i − z2i
]

+ λC.

(2.6)

To obtain Eq. (2.6) from Eq. (2.5), we use the following equation:
N
∑

i=1

N
∑

j=1

qiΠjipj =

N
∑

i=1

N
∑

j=1

qjΠijpi. Then the objective function of the dual problem is:

D(λ,q,y, z) = max
0≤p≤p̄,c≥0

L(p, c, λ,q,y, z). (2.7)

In Eq. (2.6), the term qjΠij is 0 if node i is not a borrower of j. Thus, if node i

receives all the qj from its lenders, it can determine pi and ci to achieve the maximum

of the Lagrangian L(p, c, λ,q,y, z).

Given y and z, the dual problem of (2.1) is then minimizing (2.7) over Lagrange

multipliers λ and q:

min
λ≥0,q≥0

D(λ,q,y, z). (2.8)

The objective of the dual problem is differentiable at any point since the objective

function of the primal is strictly concave [50]. Hence, gradient descent iterations can

be applied to solve the dual.

Let λ(u) and q(u) respectively denote the values of λ and q at iteration u. Then

the gradients of D with respect to λ and q at this point are:

∂D

∂λ
= C − 1Tc(u),
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∂D

∂q
= e + c(u)− (IN − ΠT )p(u),

where p(u) and c(u) solve (2.7) for λ = λ(u) and q = q(u):

pi(u) =



















0 if p̃i(u) < 0

p̄i if p̃i(u) > p̄i

p̃i(u) otherwise

(2.9)

where p̃i(u) = yi(t) + 1
2

(

wi − qi(u) +
∑

j∈Ci

qj(u)Πij

)

, and

ci(u) =

[

zi(t) +
1

2
(qi(u)− λ(u))

]+

. (2.10)

Therefore, taking into account the non-negativity of λ and q, the gradient descent

equations are:

λ(u + 1) =

[

λ(u)− α

(

C −

N
∑

i=1

ci(u)

)]+

, (2.11)

q(u + 1) =
[

q(u)− β
(

e + c(u)− p(u) + ΠTp(u)
)]+

. (2.12)

where α and β are the step sizes, and [x]+ = max{0, x}. For fixed y and z, the

dual update will converge to the minimizer of D as u → ∞, if the step size is small

enough [52].

From (2.11), we notice that in order to update λ, ci is required from all the N

nodes. It means at each iteration u, each node should send ci(u) to a central node

which updates λ and send it back to every node in the system.

If node j is not a borrower of node i, then Πjipj(u) = 0; otherwise, Πjipj(u)

represents the amount of money that node j pays to node i at u-th iteration. Hence,

with the information of Πjipj(u) from all its borrowers, node i is able to update qi

based on (2.12).

2.2.3 A More Efficient Algorithm

As shown in Fig. 2.1, in the algorithm P first fixes y and z and solve (2.1) by

updating λ, q and p, c iteratively until they converge. Then we update y and z. This
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Fig. 2.1. Duality-based approach.
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is a two-stage iteration, which is likely to slow down the convergence of the entire

algorithm as too many dual updates are wasted for each fixed y and z [51]. To avoid

the two-stage iteration structure, we consider the following algorithm.

Algorithm A:

At the t-th iteration,

• A1) Fix y = y(t) and z = z(t), maximize L with respect to p and c,

[p(t), c(t)] = arg max
0≤p≤p̄,c≥0

L(p, c, λ(t),q(t),y(t), z(t)).

• A2) Update Lagrange multipliers λ(t + 1) and q(t + 1) by

λ(t + 1) =

[

λ(t)− α

(

C −

N
∑

i=1

ci(t)

)]+

, (2.13)

q(t + 1) =
[

q(t)− β(e + c(t)− p(t) + ΠTp(t))
]+

. (2.14)

• A3) Update y and z with

[y(t + 1), z(t + 1)] = arg max
0≤p≤p̄,c≥0

L(p, c, λ(t + 1),q(t + 1),y(t), z(t)).

In algorithm A, instead of an infinite number of dual updates, we only update La-

grange multipliers λ and q once for each fixed y and z. The following theorem

guarantees the convergence of algorithm A.

Theorem 7 Algorithm A will converge to the optimal solution of LP (1.4-1.8) pro-

vided the step sizes α and β are sufficiently small.

Theorem 7 is an extension of Proposition 4 in [53].

2.2.4 Implementation of Algorithm A

Assume Bi and Ci are the sets of borrowers and creditors of node i respectively.

Then the t-th iteration of algorithm A is as follows.
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Fig. 2.2. The t-th iteration of the distributed algorithm A for a fixed
maximum total amount of injected cash.
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1. For each node i, fix yi = yi(t), zi = zi(t), λ = λ(t) and q = q(t), and calculate

pi and ci:

pi(t) =



















0 if p̃i(t) < 0

p̄i if p̃i(t) > p̄i

p̃i(t) otherwise,

where p̃i(t) = yi(t) + 1
2

(

wi − qi(t) +
∑

j∈Ci

qj(t)Πij

)

, and

ci(t) =

[

zi(t) +
1

2
(qi(t)− λ(t))

]+

.

Then send Πijpi(t) to every node j ∈ Ci, and send the updated ci(t) to node

Nc.

2. Each node i receives Πkipk(t) from every k ∈ Bi and updates qi:

qi(t + 1) =

[

qi(t) + β(pi(t)− ei − ci(t)−
∑

k∈Bi

Πkipk(t))

]+

.

Then each node i sends the updated qi(t + 1) to every node k ∈ Bi.

Node Nc receives ci from all nodes i and updates λ:

λ(t + 1) =

[

λ(t) + α

(

N
∑

i=1

ci(t)− C

)]+

.

Then node Nc send the updated λ(t + 1) to every node i.

3. Every node i receives qj(t+ 1) from each j ∈ Ci and receives λ(t+ 1) from node

Nc, then updates yi and zi:

yi(t + 1) =



















0 if ỹi(t + 1) < 0

p̄i if ỹi(t + 1) > p̄i

ỹi(t + 1) otherwise

where ỹi(t + 1) = yi(t) + 1
2
(wi − qi(t + 1) +

∑

j∈Ci

qj(t + 1)Πij), and

zi(t + 1) = [z̃i(t + 1)]+ ,
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where z̃i(t + 1) = zi(t) + 1
2
(qi(t + 1)− λ(t + 1)).

Every node i then checks the conditions |ỹi(t + 1)− ỹi(t)| < δ1 and |z̃i(t + 1)−

z̃i(t)| < δ2. If both conditions hold, node i sets bi = 1; otherwise it sets bi = 0.

It then sends bi to the central node Nc. If bi = 1 for all i, then Nc directs all

nodes to terminate the algorithm.

These steps are illustrated in Fig. 2.2.

In Step 3, δ1 and δ2 are the stopping tolerances, which are usually set as small

positive numbers according to the accuracy requirement. We utilize ỹ and z̃ rather

than their projections y and z in the stopping criterion because the convergence of

ỹ and z̃ implies the convergence of the Lagrange multipliers q and λ, whereas the

convergence of y and z does not.

In the implementation of algorithmA, we include a central node. At each iteration

the central node has two functions. One is to sum the ci(t) and calculate λ(t + 1)

in Step 2; the other is to test whether bi = 1 for all nodes i in Step 3. For both

functions, the central node only collects a small amount of data and performs simple

calculations. We could entirely exclude the central node by calculating the sum of

ci(t) and communicating the stopping sign in a distributed way, at the cost of added

computational burden during each iteration.

2.3 The Alternative Formulation of Problem I

We now apply the duality-based distributed algorithm to LP (1.10), the alternative

formulation of Problem I. Note that now λ represents the importance of the injected

cash amount in the overall cost function. The algorithm is similar to Section 2.2
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except for the fact that λ is not updated at each iteration because λ is fixed and

given. Similar to (2.4), we define the Lagrangian as:

L(p, c,q,y, z) = wTp− λ1Tc− qT ((IN −ΠT )p− e− c)− ‖p− y‖2 − ‖c− z‖2

= −
N
∑

i=1

[

p2i − (wi − qi + 2yi +
N
∑

j=1

qjΠij)pi

]

−

N
∑

i=1

[

c2i − (qi − λ + 2zi)ci
]

+

N
∑

i=1

[

qiei − y2i − z2i
]

. (2.15)

The objective function of the dual problem is:

D(q,y, z) = max
0≤p≤p̄,c≥0

L(p, c,q,y, z)

Then the dual problem is:

min
q≥0

D(q,y, z)

The Lagrange multipliers q are updated by (2.14), where p and c maximize La-

grangian (2.15).

2.3.1 Implementation of Algorithm A′

Our algorithm for this problem is a simple modification of Algorithm A. We call

it Algorithm A′. Its t-th iteration is as follows.

1. Each node i fixes yi = yi(t), zi = zi(t), and q = q(t), and calculates pi and ci:

pi(t) =



















0 if p̃i(t) < 0

p̄i if p̃i(t) > p̄i

p̃i(t) otherwise

where p̃i(t) = yi(t) + 1
2
(wi − qi(t) +

∑

j∈Ci

qj(t)Πij), and

ci(t) =

[

zi(t) +
1

2
(qi(t)− λ)

]+

.

Then each node i sends Πijpi(t) to every node j ∈ Ci.
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Fig. 2.3. The t-th iteration of the distributed algorithm A′ that in-
cludes optimizing the total amount of injected cash.
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2. Each node i receives Πkipk(t) from every k ∈ Bi and updates qi:

qi(t + 1) =

[

qi(t) + β(pi(t)− ei − ci(t)−
∑

k∈Bi

Πkipk(t))

]+

.

Then each node i sends the updated qi(t + 1) to every k ∈ Bi.

3. Each node i receives qj(t + 1) from every j ∈ Ci and updates yi and zi:

yi(t + 1) =



















0 if ỹi(t + 1) < 0

p̄i if ỹi(t + 1) > p̄i

ỹi(t + 1) otherwise

where ỹi(t + 1) = yi(t) + 1
2
(wi − qi(t + 1) +

∑

j∈Ci

qj(t + 1)Πij), and

zi(t + 1) = [z̃i(t + 1)]+ ,

where z̃i(t + 1) = zi(t) + 1
2
(qi(t + 1)− λ).

Each node i checks the conditions |ỹi(t+1)−ỹi(t)| < δ1 and |z̃i(t+1)−z̃i(t)| < δ2.

If both conditions hold, it sets bi = 1; otherwise, it sets bi = 0. It then sends bi

to the central node Nc. If bi = 1 for all i then Nc asks all nodes to terminate

the algorithm.

These steps are illustrated in Fig. 2.3. Unlike the one in Algorithm A, the central

node does not need to collect ci at each iteration in Algorithm A′.

2.4 Numerical Results

2.4.1 Example 1: A Four-Node Network

In this section, we illustrate the convergence of our distributed algorithm to the

optimal solution. We use the four-node network shown in Fig. 2.4(a). Node A owes

$50 to B and C, node B owes $20 to C, node C owes $80 to A, and node D owes $10

to C. Each node has $1 on hand. After all the clearing payments, the borrower-lender
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network reduces to Fig. 2.4(b). Without any external financial support, nodes A, C,

and D are in default, and the total amount of unpaid liability is $98. Assume that

wi = 0.45 for i = 1, 2, · · · , N in LP (1.4), i.e., that each dollar of unpaid liability

contributes 0.45 to the cost. Without any external cash injection, the value of the

cost function is 98× 0.45 = 44.1.

We first study Problem I, the case with a fixed maximum total amount of injected

cash. We assume that we can inject at most $15 into the system. We run our algorithm

with initial y(0) = z(0) = q(0) = 0 and λ = 0. The step size is α = β = 0.1, and the

stopping tolerance is δ1 = δ2 = 10−6. Figs. 2.6(a) and 2.6(b) illustrate the evolution

of payment vector p and cash injection vector c, respectively, as a function of the

number of iterations of the proposed distributed algorithm. The payment vector

converges to [pA, pB, pC , pD] = [76, 20, 75, 10]; the cash injection vector converges to

[cA, cB, cC , cD] = [0, 0, 6.0, 9.0]. These are optimal, as verified by solving the LP (1.4-

1.8) directly. With external cash injection, the borrower-lender network reduces to

Fig. 2.5 after all the payments. Now the total unpaid liability is $29. Thus the value

of the cost due to unpaid liability after the optimal bailout is 29× 0.45 = 13.05.

Second, we test our algorithm on the alternative formulation of Problem I. In this

example, the initial settings are the same as in the previous example. In addition,

we fix the weight λ = 1. As shown in Fig. 2.8(a) and Fig. 2.8(b), the payment

vector converges to [pA, pB, pC , pD] = [81, 20, 80, 10], and the cash injection vector

converges to [cA, cB, cC , cD] = [0, 0, 8.5, 9.0]. These are optimal, as verified by solving

the LP (1.10) directly. With external cash injection, the borrower-lender network

reduces to Fig. 2.7 after all the payments. Now the total unpaid liability is $19, and

the cash injection amount is $17.5. Thus the value of the cost function after the

optimal bailout is 17.5 + 19 × 0.45 = 26.05. By injecting $17.5, we reduce the total

unpaid liability by $35.55, and we reduce the total cost by $35.55− $17.5 = $18.05.

We see from Fig. 2.7 that although A is still in default, in the optimal bailout

strategy we choose not to inject any cash in A. The reason is that if we inject some

cash $x into A in Fig. 2.7, the total unpaid liability will decrease by $x so that the
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the iterations of the distributed algorithm for finding the optimal
allocation of a $15 cash injection into the network of Fig. 2.4.
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Fig. 2.8. Evolution of the node payments and cash injections through
the iterations of the distributed algorithm that optimizes both the
amount and the allocation of the injected cash.

unpaid liability term of the cost function will be reduced by 0.45x, i.e., the value of

the overall cost function will actually increase by x− 0.45x = 0.55x.

2.4.2 Example 2: A Core-Periphery Network

In this section, we examine the practicality of our distributed algorithm. As in

Section 1.8, we assume that the US interbank network is well modeled as a core-

periphery network that consists of a core of 15 highly interconnected banks to which

most other banks connect [6]. We test the distributed algorithm for LP (1.10) on a

simulated core-periphery network illustrated in Fig. 1.17. The core network consists

of 15 fully connected core nodes. Each core node has 70 corresponding periphery
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Fig. 2.9. Number of iterations for the core-periphery network with δ1 = δ2 = 10−7.

nodes which owe money only to this core node. For each pair of two core nodes i

and j, we set Lij as a random number uniformly distributed in [0, 10]. For a core

node i and its periphery node k, Lki is set to be uniformly distributed in [0, 1]. All

these obligation amounts are statistically independent. The asset vector is e = 0.

In addition, we assume wi = 0.3 for i = 1, 2, · · · , N , and λ = 1 in LP (1.10).

We generate 100 independent samples of a core-periphery network drawn from this

distribution. These samples thus all have the same topology but different amounts of

liabilities. We run the distributed algorithm of Section 2.3.1 with initial conditions

y(0) = z(0) = q(0) = 0. The step size is β = 0.01.

The stopping criterion for the distributed algorithm is max{‖ỹ(t+1)−ỹ(t)‖∞, ‖z̃(t+

1) − z̃(t)‖∞} < 10−7. Let Td be the value of the total cost function W + λC calcu-

lated by our distributed algorithm, and let Tl be the corresponding value obtained

by solving the linear program directly, in a centralized fashion. Under this stopping

criterion, the relative error, defined as |Td − Tl|/Tl, is less than 10−6 for each sample

in our simulations.



70

The number of iterations is shown in Fig. 2.9. The average number of iterations

is 4.98× 105. Moreover, from Fig. 2.9, we can see that for most cases, the algorithm

terminates within 106 iterations.

The time spent on each iteration consists of two parts: the computing time and

the time it takes to convey messages between the nodes. During each iteration, a node

needs to transmit information to a set of neighbors twice: in Steps 1 and 2. Note

that in Step 3, the stopping sign bi is transmitted to the central node. However, it is

not necessary for a node to wait for the response before next iteration. Therefore, we

do not count it towards the communication delay during one iteration. It takes light

13.2ms to travel from LA to NYC, which is the longest possible distance between

two financial institutions within the continental US. So the propagation delay in one

iteration could be roughly estimated as 13.2ms× 2 = 26.4ms. Hence, for most cases,

the algorithm would terminate within 26.4ms× 106 = 7.3h, and the average running

time would be below 26.4ms × 4.98 × 105 = 3.65h. These running times would be

acceptable in applications where these computations are run overnight or during a

weekend. Note that the computation time at each node is negligible compared to

these communication times, and therefore we ignore it in these estimates.

Another possible set-up is that each institution provides a client-end computer

and we colocate these computers in one room. Assuming that the longest network

cable in this room is 100 meters, the propagation delay per iteration would be around

2 × 100/(3 × 108) = 6.67 × 10−7s. For the computing time, we just analyze the

core nodes because the periphery nodes have no borrowers and only one creditor so

that the computing time for the periphery nodes is much smaller than for the core

nodes. Usually, multiplications dominate the computing time. At each iteration, a

core node calculates qj(t)Πij , Πijpi(t), and qj(t + 1)Πij for all its creditors j. Since

the core network is a fully connected network with 15 core nodes, a core node has 14

creditors so that it does less than 50 multiplications per iteration. Assuming that each

multiplication takes 500 cpu cycles and the cpu on the client-end computer is 3GHz,

then the computing time per iteration is around 50× 500/(3× 109) = 8.33 × 10−6s.
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Fig. 2.10. Number of iterations for the core-periphery network with δ1 = δ2 = 10−3.

Thus, for most cases, the algorithm terminates within (8.33× 10−6 + 6.67× 10−7)×

106 ≈ 10s. By colocating the client-end computers of all the financial institutions in

the system, we can significantly reduce the running time of our distributed algorithm

so that it can be easily run many times during a day.

In a monitoring application, our aim might be to calculate the payments ap-

proximately rather than exactly. In this case, the running time can be reduced by

relaxing the termination tolerance. We set the stopping criterion as max{‖ỹ(t +

1) − ỹ(t)‖∞, ‖z̃(t + 1) − z̃(t)‖∞} < 10−3. Under this stopping criterion, the rela-

tive error, |Td − Tl|/Tl, is around 1% for each sample in our simulations. Fig. 2.10

illustrates the number of iterations. The average number is 4260. The number of

iterations is less than 10000 for most cases. By similar analysis, the average running

time for the non-colocated scenario is 26.4ms × 4260 ≈ 2min. For most cases, the

algorithm will be terminated within 26.4ms×104 ≈ 4.4min. If we colocate the client-

end computers of all the financial institutions, the algorithm will terminate within

(8.33× 10−6 + 6.67× 10−7)× 104 ≈ 0.1s.
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The above running time analysis is for the alternative formulation of Problem I,

in which λ is a constant. In Problem I, λ is a dual variable that also needs to

converge. So the running time of the distributed algorithm for Problem I will be

larger than the time for its alternative formulation. From Fig. 2.6 and Fig. 2.8,

we observe that with the same stopping tolerance, the number of iterations of the

distributed algorithm for Problem I is around 10 times the number of iterations for

its alternative formulation. Therefore, for Problem I, to calculate the exact payment

vector, the algorithm will terminate within around 70h for the non-colocated scenario

and within 100s for the colocated scenario. To obtain the payments within 1% error,

the algorithm will terminate within around 44min and 1s for the non-colocated and

colocated scenarios.

2.5 Conclusions

In this chapter, we propose a duality-based distributed algorithm to solve Prob-

lem I and its alternative formulation. The distributed algorithm is iterative and is

based on message passing between each node and its neighbors. No centralized gath-

ering of large amounts of data is required, and each participating institution avoids

revealing its proprietary book information to other institutions. The convergence and

the practicality of the distributed algorithm are both supported by our simulations.
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3. OPTIMAL MITIGATION OF SYSTEMIC RISK IN

FINANCIAL NETWORKS UNDER THE RANDOM

CAPITAL MODEL

3.1 Introduction

In the previous chapters, we assume that the external asset vector e is a determin-

istic vector known by the regulators. However, in some circumstances, the information

of the external assets may not be fully available to the regulator. Moreover, some

applications, such as stress testing, require forecasting and planning for a wide variety

of different contingencies. Such applications call for the use of stochastic models for

the nodes’ external asset values.

In this chapter, we aim to solve a stochastic version of Problem I under the

proportional payment mechanism: how to allocate a fixed amount of cash assistance

among the nodes in a financial network in order to minimize the expectation of the

(possibly weighted) sum of unpaid liabilities in the system.

We first prove that the optimal cash allocation strategy to minimize the expected

weighted sum of unpaid liabilities could be obtained by solving a two-stage stochastic

linear program. There exist efficient methods to obtain lower and upper bounds

for this stochastic linear program, but there is no guarantee that these bounds are

tight enough for practical guidelines. Thus, in the case that the bounds are loose, an

approximate solution is needed. Even if we assume that we know the joint distribution

of the external asset vector and are able to efficiently obtain independent samples

of this vector, it is not trivial to obtain the accurate solution for this stochastic

linear program due to the non-linear relationship between the weighted sum of unpaid

liabilities and the asset vector. The basic idea of solving the stochastic linear program

is to generate a large number of samples of the asset vector and utilize a large-scale
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deterministic linear program to approximate the stochastic linear program. In this

chapter, we propose two algorithms based on Monte Carlo sampling: the Benders

decomposition algorithm and the projected stochastic gradient descent algorithm.

First being proposed in [54], the Benders decomposition decomposes the large-

scale linear program into a group of small-scale linear programs and solves them iter-

atively. In this way, the computational complexity is highly reduced. The projected

stochastic gradient descent algorithm is an extension of gradient descent algorithm

developed in [55]. Instead of dealing with a huge number of samples at the same time,

we only take one sample at each iteration. We calculate the gradient of the weighted

sum of unpaid liabilities for that sample, with respect to the cash injection vector

and move the cash injection vector along the direction of the negative gradient. As

shown in [55], if the step size is selected properly, the procedure will converge to the

optimal cash vector, which minimizes the expectation of the weighted sum of unpaid

liabilities.

This chapter is organized as follows. Section 3.2 describes the random capital

model and shows that it is equivalent to a stochastic linear program. The upper

bounds and the lower bounds for the stochastic linear program are discussed in Sec-

tion 3.3. Section 3.4 adapts the Benders decomposition to solve the linear program.

In Section 3.5, we propose the projected stochastic gradient descent algorithm to solve

the stochastic linear program. Moreover, we verify the convergence of the projected

stochastic gradient descent algorithm on a five-node network for which the optimal

solution can be calculated explicitly, and also test the performance of the projected

stochastic gradient descent algorithm on a core-periphery network with the same size

as the US banking system.

3.2 Model and Notation

As mentioned in Section 3.1, some applications require forecasting and planning

for a wide variety of different contingencies. In this case, we aim to solve a stochastic
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version of Problem I where e is modeled as a random vector, from which we are able

to efficiently obtain independent samples. The remaining parameters—p̄, Π and w—

are still assumed to be deterministic and known, and are defined as in Section 1.2.

According to Lemma 1, the clearing payment vector that minimizes the weighted sum

of unpaid liabilities is a function of e and c, which we denote as p∗(e, c). If e is a

random vector, so is p∗(e, c). We use W ∗(e, c) to denote the corresponding minimum

value of the weighted sum of unpaid liabilities. If e is a random vector, then W ∗(e, c)

is a random variable. Given a total amount of cash C, our aim is to find the optimal

cash allocation strategy c to minimize the expectation of the weighted sum of unpaid

liabilities. This can be formulated as the following two-stage stochastic LP:

min
c

Ee[W
∗(e, c)] (3.1)

subject to

1Tc ≤ C,

c ≥ 0,

where

W ∗(e, c) = min
p

wT (p̄− p) (3.2)

subject to

0 ≤ p ≤ p̄,

p ≤ ΠTp + e + c.

In this chapter, we use the notations in Chapter 1 as well as the following new

notations:

• Assume α is an index set of nodes 1, 2, . . . , N and v is a vector in R
N , then vα

is a sub-vector of v containing elements in v with indices in α. For example, if

α = {1, 2, N}, then vα = [v1, v2, vN ]T .
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• Assume α is an index set of nodes 1, 2, . . . , N and A is an N ×N matrix, then

Aα is a sub-matrix of A containing rows in A with index in α. If α contains M

indices, Aα is a M ×N matrix.

• Assume α, β are two index set of nodes 1, 2, . . . , N and A is an N ×N matrix,

then Aαβ is a sub-matrix of A containing rows in A with index in α and columns

in A with index in β. In other words, Aij would be an element in Aαβ if and

only if i ∈ α and j ∈ β. If α contains M1 indices and β contains M2 indices,

Aαβ is a M1 ×M2 matrix.

• IN is an N ×N identity matrix.

• ω is an index set containing all defaulting nodes; ω̄ is an index set containing

all non-defaulting nodes. |ω| is the number of elements in ω.

3.3 Upper Bounds and Lower Bounds

Even if the joint distribution of e is known, the distributions of p∗(e, c) and

W ∗(e, c) can rarely be computed in closed form. So for real-world problems, people

are inclined to solve a simpler version of the stochastic linear program as an estima-

tion, avoiding the computational difficulty.

One frequently used simpler version is to solve the deterministic linear program

obtained by replacing random vector e by its expected value. In [56], it is defined as

expected value problem, which is simply

EV = min
c

W ∗(E[e], c). (3.3)

Denote the optimal solution to LP (3.3) by c+, called the expected value solution.

Compared to the stochastic linear program, LP (3.3) is easy to solve. But generally,

c+ is not a good estimation of the solution of (3.1) with rare exceptions, such as when

W ∗(e, c) is linear with respect to e. In fact, EV is proved in [56] to be a lower bound

of SLP (3.1) by Jensen’s Inequality since W ∗(e, c) is convex with respect to e.
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The expected result of using the EV solution c+ is denoted:

EEV = Ee[W
∗(e, c+)]. (3.4)

It measures the performance of using c+ as an approximation of the solution to (3.1).

EEV is an upper bound to the solution of SLP (3.1).

Another lower bound is called wait-and-see solution which is defined in [56] as

follows:

WS = Ee[min
c

W ∗(e, c)]. (3.5)

Intuitively, the wait-and-see solution WS is a lower bound of (3.1) because the regu-

lator waits until the random shock occurs and then takes actions. More information

leads to a better bailout strategy. Strict proof showing that this is a lower bound is

provided in [56].

It is proved that WS ≥ EV by Jensen’s Inequality in [56]. In other words, WS

is a tighter lower bound than EV .

3.4 Benders Decomposition

Although the expected value solution is easy to obtain, it is not a good approx-

imation in general. Thus, there is an acute need for other approximate solutions,

which are both tractable and accurate. In order to solve (3.1), we take M indepen-

dent samples of the asset vector, denoted as e1, e2, . . . , eM , and use 1
M

M
∑

m=1

W ∗(em, c)

to approximate Ee[W
∗(e, c)]. By the weak law of large numbers, when M is large

enough, the sample average is a good estimate of Ee[W
∗(e, c)]. This motivates ap-

proximating Eq. (3.1) as follows:

min
c

1

M

M
∑

m=1

W ∗(em, c) (3.6)

subject to

1Tc ≤ C,

c ≥ 0.
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Similar to Theorem 1, the optimization problems (3.2) and (3.6) can be combined

into one single LP:

max
c,pm

M
∑

m=1

wTpm (3.7)

subject to

1Tc ≤ C,

c ≥ 0,

0 ≤ pm ≤ p̄, for m = 1, 2, . . . ,M,

pm ≤ ΠTpm + em + c, for m = 1, 2, . . . ,M.

Since c and pm for m = 1, 2, . . . ,M are all N -dimensional vectors, LP (3.7) contains

MN + N variables. The computational complexity of solving an LP with MN + N

variables is O((MN + N)3) [57]. To achieve a high accuracy, M needs to be a large

number. Then the computational burden is large if we want to solve LP (3.7) directly.

The memory complexity, which is O(MN2), may also be prohibitive for large M and

N . Hence, efficient algorithms to solve LP (3.7) are needed.

If the cash injection vector c is fixed, then the LP (3.7) can be split into M

smaller independent LPs—one for each sample em—each of which can be solved

independently for each pm. In this case, instead of solving an LP with MN variables,

we solve M LPs with N variables each, which significantly reduces the computational

complexity. Inspired by this idea, we apply Benders decomposition to the LP (3.7).

Benders decomposition, which is described in [54, 58, 59], makes a partition of c and

pm (m = 1, 2, . . . ,M) and allows us to find pm iteratively with fixed c in each step.

In fact, for our problem, Benders decomposition can be further simplified due to some

special properties of (3.7).
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From the proof of Lemma 1, we know that for any fixed c, the feasible region of

pm is non-empty. Thus, (3.7) is equivalent to the following problem:

max
c

V (c) (3.8)

subject to

1Tc ≤ C,

c ≥ 0.

where

V (c) = max
pm

M
∑

m=1

wTpm (3.9)

subject to

pm ≥ 0, for m = 1, 2, . . . ,M,

pm ≤ p̄, for m = 1, 2, . . . ,M, (3.10)

pm ≤ ΠTpm + em + c, for m = 1, 2, . . . ,M. (3.11)

We let µ
1, . . . ,µM be the dual variables for the M constraints (3.10), and we let

ν
1, . . . ,νM be the dual variables for the M constraints (3.11). Then V (c) can be

obtained from the following dual problem:

V (c) = min
µm,νm

M
∑

m=1

[

p̄T
µ

m + emT
ν
m + cTνm

]

(3.12)

subject to

µ
m ≥ 0, for m = 1, 2, . . . ,M,

ν
m ≥ 0, for m = 1, 2, . . . ,M,

ν
m ≥ Πν

m + w − µ
m, for m = 1, 2, . . . ,M.

Note that, since V (c) minimizes the objective function of LP (3.12) subject to the con-

straints of LP (3.12), we have that V (c) is the greatest lower bound of this objective

function, subject to these constraints. Therefore, LP (3.8) is equivalently rewritten as
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the maximization of the lower bound to the objective function of LP (3.12), subject

to the constraints of both LP (3.8) and LP (3.12):

max
c,θ

θ (3.13)

subject to

1Tc ≤ C,

c ≥ 0,

θ ≤

M
∑

m=1

[

p̄T
µ

m + emT
ν
m + cTνm

]

(3.14)

for all (µm,νm) in the feasible region of (3.12).

LP (3.13) is equivalent to (3.7), with fewer variables but an infinite number of con-

straints because constraint (3.14) must be satisfied by every pair (µm,νm) from the

feasible region of LP (3.12). The key idea is solving a relaxed version of (3.13) by

ignoring all but a few of the constraints (3.14). Assume the optimal solution of this

relaxed program is (c∗, θ∗). If the solution satisfies all the ignored constraints, the

optimal solution has been found; otherwise, we generate a new constraint by solving

(3.12) with fixed c = c∗ and add it to the relaxed problem. Here is the summary of

the Benders decomposition algorithm:

1. Initialization: set θ0 ← −∞, K ← 0, c0 ← 0, l ← 0.

2. Fix cl, solve the following M sub-programs for m = 1, 2, . . . ,M :

V m = min
µm,νm

M
∑

m=1

[

p̄T
µ

m + emT
ν
m + clTνm

]

subject to

µ
m ≥ 0, for m = 1, 2, . . . ,M,

ν
m ≥ 0, for m = 1, 2, . . . ,M,

ν
m ≥ Πν

m + w− µ
m, for m = 1, 2, . . . ,M.

Denote the solution as (µm∗,νm∗), for m = 1, 2, . . . ,M .
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3. If

M
∑

m=1

V m = θl, terminate and cl is the optimal.

4. Set l ← l+1, K ← K+1, (µm(K),νm(K))← (µm∗,νm∗), for m = 1, 2, . . . ,M .

5. Solve the following master problem:

max
c,θ

θ (3.15)

subject to

1Tc ≤ C,

c ≥ 0,

θ ≤
M
∑

m=1

[

p̄T
µ(k)m + emT

ν(k)m + cTν(k)m
]

for k = 1, 2, . . . , K.

Denote the solution as (c∗, θ∗). Set θl ← θ∗, cl ← c∗. Then go to Step 2.

In this algorithm, at each iteration, we solve M + 1 LPs with N variables instead

of one LP with MN + N variables, which saves both computational complexity and

memory cost. The above algorithm is simpler than the general form of Benders

decomposition (Section 2.3 in [58]), since LP (3.9) and (3.15) are always feasible and

bounded.

3.5 Projected Stochastic Gradient Descent Algorithm

In this section, we introduce the projected stochastic gradient descent algorithm

(PSGD) to solve (3.1). This is an online learning algorithm, which allows us to handle

one sample at a time, without building a huge linear program. The basic idea is that

for each sample em, we move the solution c along the direction of the negative gradient

of W ∗(em, c) with respect to c and then project the result onto the set defined by

the constraints of (3.1). This procedure will converge to the optimal solution if the

step size is selected properly [55]. In practice, the regulator usually fully utilizes the
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budget, so in this section, we just consider 1Tc = C to speed up the convergence and

facilitate the projection. The algorithm proceeds as follows. At iteration m,

1. Sample an asset vector em.

2. Move c along the negative gradient of W ∗(em, cm−1) according to the following

equation:

c̃m = cm−1 − γm∇cW
∗(em, cm−1). (3.16)

3. Set cm as the projection of c̃m onto the set {c : 1Tc = C, c ≥ 0}.

According to [55], step size γm should satisfy the condition that

∞
∑

m=1

(γm)2 < ∞

and

∞
∑

m=1

γm =∞. Thus, a proper choice could be γm = 1/m.

In this projected stochastic gradient descent algorithm, instead of generating a

huge number of possible scenarios and solving a large-scale linear program, we solve

one N -variable LP and one N -variable quadratic program at each iteration. This

algorithm is memory efficient because it requires no storage except the current solution

of c.

Now we discuss the details in the above algorithm: obtaining the gradient in Step

2, calculating the projection in Step 3 and the stopping criterion for the iterations.

Note that W ∗(em, cm−1) = wT p̄− U(em, cm−1), where

U(em, cm−1) = max
p

wTp (3.17)

subject to

0 ≤ p ≤ p̄,

p ≤ ΠTp + em + cm−1.

To obtain the gradient of W ∗(em, cm−1) in Step 2, we consider the dual problem

of LP (3.17):
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U(em, cm−1) = min
µ,ν

[

p̄T
µ + emT

ν + c(m−1)
ν
]

(3.18)

subject to

µ ≥ 0,

ν ≥ 0,

ν ≥ Πν + w − µ.

Assuming that (µ∗,ν∗) is a solution of (3.18), we have:

∇cW
∗(em, cm−1) = −∇cU(em, cm−1) = −ν∗.

Generally, an LP solver is needed to obtain the gradient. In this case, however,

since we only need ν, not µ, there is an easier way to find ν, which avoids wasting

time on environment setting, problem establishment and algorithm selection in the

LP solver.

First, we calculate the clearing payment vector in the financial system given the

asset vector em and the cash injection vector cm−1 by the fixed-point method in

Appendix A. Then we separate the nodes into two groups: defaulting nodes and

non-defaulting nodes. For non-defaulting nodes, they pay their liabilities in full so

injecting more cash into these nodes will not change the weighted sum of unpaid

liabilities. In other words, the derivatives with respect to cash injection into non-

defaulting nodes are all zero. For defaulting nodes, their payments will increase if

they receive more external cash injections. Thus, the derivatives with respect to cash

injection into defaulting nodes are non-zeros and could be obtained via the following

theorem.

Theorem 8 Assume that the liabilities matrix L and the weight vector w are fixed

and known. The asset vector is em, and the cash injection vector is cm−1. Assume

that the system utilizes the proportional payment mechanism with no bankruptcy costs.
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Using the model and notations defined in Section 1.2, the gradient of the weighted sum

of unpaid liabilities W ∗(em, cm−1) with respect to c is given by

∇cW
∗(em, cm−1) =





∇cω̄W
∗(em, cm−1)

∇cωW
∗(em, cm−1)



 =





0

−wT
ω (I|ω| − (ΠT )ωω)−1



 (3.19)

Proof According to proportional payment mechanism with no bankruptcy costs,

the non-defaulting nodes in index set ω pay their liabilities in full and the defaulting

nodes in index set ω̄ pay all their available funds, so we have:





pω̄

pω



 =





p̄ω̄

(ΠT )ωp + emω + cm−1
ω



 =





p̄ω̄

(ΠT )ωω̄p̄ω̄ + (ΠT )ωωpω + emω + cm−1
ω





(3.20)

From Eq. (3.20), we have

pω = (I|ω| − (ΠT )ωω)−1((ΠT )ωω̄p̄ω̄ + emω + cm−1
ω )

Thus, the weighted sum of unpaid liabilities in the financial system given the asset

vector em and the cash injection vector cm−1 can be calculated directly by follows:

W ∗(em, cm−1) = wT (p̄− p)

= wT
ω̄ (p̄ω̄ − pω̄) + wT

ω (p̄ω − pω)

= wT
ω (p̄ω̄ − (I|ω| − (ΠT )ωω)−1((ΠT )ωω̄p̄ω̄ + emω + cm−1

ω )) (3.21)

From Eq. (3.21), we have:

∇cω̄W
∗(em, cm−1) = 0,

∇cωW
∗(em, cm−1) = −wT

ω (I|ω| − (ΠT )ωω)−1.
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In Step 3, we find the projection of c̃m on the feasible region. This could be done

by solving the following quadratic program:

min
c
‖c− c̃m‖22 (3.22)

subject to

1Tc = C, (3.23)

c ≥ 0. (3.24)

But, once again, there is a simpler algorithm to solve Eq. (3.22) with a O(N)

computational complexity. c can be found explicitly as ci = max{c̃i −
κ
2
, 0} for

i = 1, 2, . . . , N , where κ is a scalar that needs to be adjusted so that 1Tc = C.

If c̃m ≥ 0 and 1T c̃m = C, then c̃m locates in the feasible region of quadratic pro-

gram (3.22) and the optimal solution is c = c̃m. If c̃m violates the constraints (3.23),

i.e., 1T c̃m 6= C, we simplify the quadratic problem by Karush-Kuhn-Tucker (KKT)

conditions.

Let a scalar κ and an N × 1 vector ι be Lagrange multipliers for constraint (3.23)

and (3.24), respectively. We define the Lagrangian as follows:

F (c, κ, ι) = ‖c− c̃m‖22 + κ(1Tc− C)− ι
T c (3.25)

Then the primal and dual optimal c and (κ, ι) will satisfy the following KKT

conditions:

∇cF (c, κ, ι) = 0, (3.26)

1Tc = C, (3.27)

c ≥ 0, (3.28)

ι ≥ 0, (3.29)

ιici = 0, for i = 1, 2, . . . , N. (3.30)

From KKT constraint (3.26), we have ci = c̃mi − κ/2 + ιi/2, for i = 1, 2, . . . , N .

• If c̃mi − κ/2 > 0, then ci > 0 since ιi ≥ 0. By KKT constraint (3.30), ιi = 0.

Thus, ci = c̃mi − κ/2.
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• If c̃mi − κ/2 < 0, ιi should be positive to guarantee that ci ≥ 0. Since ιici = 0

and ιi > 0, we conclude ci = 0.

• If c̃mi − κ/2 = 0, then ci = ιi/2. Since ιici = 0, we have ci = ιi = 0.

Thus, ci = max{c̃mi − κ/2, 0}, for i = 1, 2, . . . , N .

Then combined with KKT constraint (3.27), the problem becomes to find a non-

zero scalar κ making 1Tc = C, where ci = max{c̃mi −κ/2, 0}, for i = 1, 2, . . . , N . This

is a typical single water-level and single constrained water filling problem which can

be solved with complexity O(N) [60]. A variety of both iterative and exact algorithms

are provided in [61–65]. Here, we just list one of them to find c:

1. k ← 0, for i = 1, 2, . . . , N , c0i ← c̃mi .

2. If 1Tck = C, c← ck, stop.

3. If 1Tck < C, for i = 1, 2, . . . , N ,

ci ← cki + (C − 1Tck)/N,

stop.

4. If 1Tck > C, Z ← ‖cki ‖0, for i such that cki > 0,

cki = max{cki − (1Tck − C)/Z, 0},

go to Step 2.

For the stopping criterion for such iterative algorithm, we usually compare the

current cash injection vector c and the one in the last iteration. If they are close

enough, we terminate the iterations. However, in PSGD, since at each iteration the

asset vector e is chosen randomly, it is possible that the stopping condition is satisfied

by coincidence before the sequence of c converges. To reduce the probability of such

coincidence, we define a stopping condition window S and instead of just considering

one iteration, we check S consecutive iterations. The new stopping criterion requires
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that the differences between a cash injection vector and the subsequent one are all

small enough for S consecutive iterations. In other words, if at iteration m > S, for

s = 1, 2, . . . , S, ‖cm−s+1 − cm−s‖1 < δ, the algorithm will be terminated. Here, δ is a

small number.

3.5.1 Importance Sampling

Sometimes, the weighted sum of unpaid liabilities will significantly change when

the random asset vector e locates in a certain region, called important region. If the

probability of getting samples in the important region is too small, we may need a

large number of samples to make sure that we get enough samples in that region. In

order to solve this problem and improve the performance of the projected stochastic

gradient descent algorithm, we could apply importance sampling.

The basic idea of importance sampling is to change the probability measure of

the random variables to make the probability of getting samples in important region

larger. In this paper, our objective is to calculate the expectation of the weighted sum

of unpaid liabilities W ∗(e, c) where e is a random vector under the original measure

P1. We could calculate the expectation under a new measure P2, which emphasizes

the important region, by doing following transformation:

EP1 [W ∗(e, c)] =

∫

W ∗(e, c)f1(e)de

=

∫

W ∗(e, c)
f1(e)

f2(e)
f2(e)de

= EP2

[

W ∗(e, c)
f1(e)

f2(e)

]

where f1(e) is the pdf of e under measure P1 and f2(e) is the pdf of e under the new

measure P2. If P2 is selected properly, the regulator may need less samples to achieve

the same accuracy.

To sum up, before using the projected stochastic gradient descent algorithm, the

regulator should identify the pathological samples that could potentially cause sig-
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nificant unpaid liabilities; increase their sampling probability, and then adjust the

formula of the weighted sum of unpaid liabilities accordingly.

N1 N2 N3 N201

N202

$10$10 $10

$10

$9

$0$0

$0

… N200

$10

$0

$10

$9 - $109

uniform 

200 Links

Fig. 3.1. An example illustrating the power of importance sampling.

For example, in Fig. 3.1, there are 202 nodes. Node 1 owes $10 to node 2, node 2

owes $10 to node 3, ..., node 200 owes $10 to node 201 and node 202 owes $10 to node

200. Node 201 has $9 on hand and the asset of node 1 is uniformly distributed in

[9, 109]. All other nodes have no cash on hand. We assume w = 1 and the regulator

has $1 to be injected to the network. Without cash injection, node 201 is safe and

node 202 will default with unpaid liability $1. If the asset of node 1 is greater than

or equal to $10, node 1 to node 200 are all safe; if the asset of node 1 is less than $10,

all of them will default, causing a total unpaid liability of 200(10 − e1), where e1 is

the asset value of node 1. In other words, without cash injection, node 202 will result

in $1 unpaid liability, while nodes 1 to 200 will be safe with probability 99% and will

result in a large total unpaid liabilities with probability 1%. The regulator should

only consider to inject cash into node 1 and node 202 since node 2 to 200 could get



89

money from node 1. Assume we inject $c to node 1 and $(1 − c) to node 202, then

the expected total unpaid liability is as follows:

EP1 [W
∗(e, c)]

= EP1{200× [10− (e1 + c)]+ + [10− (e202 + 1− c)]+}

= 200×

∫ 109

9

[10− (e1 + c)]+ ×
1

109− 9
de1

+ [10− (9 + 1− c)]+

= c2 − c + 1

EP1 [W
∗(e, c)] is minimum when c = 0.5. Thus, the optimal allocation strategy is

injecting $0.5 to node 1 and $0.5 to node 202.

When we apply the projected stochastic gradient descent algorithm on this net-

work, we only have 1% of samples for e1 in [9, 10], which leads to a large amount of

unpaid liabilities. The other 99% of the samples result in nodes 1 to 200 being safe

so that the regulator inclines towards node 202 based on the algorithm. Thus, the

algorithm will either converge to injecting $1 to node 202 or require a large number

of samples to achieve the global optimum.

In order to make the projected stochastic gradient descent algorithm more efficient,

we apply importance sampling on node 1. We define a new probability measure P2,

where e1 is 1/2 in [9, 10] and 1/198 in [10, 109]. Then the expected weighted sum of

unpaid liabilities could be expressed as follows:

EP1 [W
∗(e, c)]

= EP1

[

200× [10− (e1 + c)]+
]

+ [10− (e202 + 1− c)]+

= EP2

[

200× [10− (e1 + c)]+ ×
f1(e1)

f2(e1)

]

+ [10− (e202 + 1− c)]+

= c2 − c + 1.
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We can see that under the new measure the expectation remains the same but the

speed of convergence is improved since we get more samples of e1 in the important

region [9, 10].

3.5.2 Numerical Results

In this section, we test the performance of the projected stochastic gradient descent

algorithm on two examples: a five-node network for which the optimal solution can be

calculated explicitly and a large scale core-periphery network which has a comparable

size with the US banking system.

3.5.2.1 Example 1: A Five-Node Network

First, we illustrate the convergence of PSGD to the optimal solution on a five-

node network example, for which the optimal solution of the 2-stage stochastic linear

program can be calculated directly. Also, we show that in this example, the expected

value solution defined in Eq. (3.4) is not a good approximation to the optimum.

N1 N2 N3 N4

N5

$10$10 $10

$10$8 - $12

$6 - $10

$0 $0

$0

Fig. 3.2. A five-node financial network.

Consider the borrower-lender network in Fig. 3.2, where node Ni owes $10 to

Ni+1 for i = 1, 2, 3, and node N5 owes $10 to node N4. Nodes N2, N3 and N4 have no
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cash on hand, while nodes N1 and N5 have assets are uniformly and independently

distributed in [8, 12] and [6, 10], respectively. Assume we have $2 to be injected into

the system. We are seeking the optimal cash allocation vector c to minimize the

expected weighted sum of unpaid liabilities, Ee[W
∗(e, c)]. All liabilities have the

same weight (w = 1).

First, we consider the expected value solution, which is easy to obtain. When the

asset vector is E[e], N1 has $10 on hand. It is able to pay its liability in full and so

are N2 and N3. On the other hand, N5 only has $8 on hand. The expected value

solution injects all $2 to node N5 so that all nodes can avoid default. However, there

is no reason to believe that this solution is in any way near the optimum. Intuitively,

we should inject some cash to node N1 because once N1 cannot afford its liability

(e1 < 10), both N2 and N3 will default. It leads to a more severe shock than the

default of N5.

In fact, the optimal solution can be calculated explicitly for the network in Fig. 3.2.

Since nodes N2 and N3 could get money from N1 and node N4 has zero liability, $2

should be split into N1 and N5, while other three nodes receive nothing. Assume we

inject c1 into N1 and c5 into N5, the funds available to make payment of N1 is e1 + c1

and the funds available to make payment of N5 is e5 + c5. Then the weighted sum of

unpaid liabilities in this network is:

W ∗[e, c] = 3× [10− (e1 + c1)]
+ + [10− (e5 + c5)]

+

where [x]+ = max{0, x}.

Since e1 is a random variable uniformly distributed in [8, 12] and e5 is uniform in

[6, 10], the expectation of the weighted sum of unpaid liabilities can be calculated as

follows:

Ee[W
∗(e, c)]

= Ee{3× [10− (e1 + c1)]
+ + [10− (e5 + c5)]

+}

=
3

8
(2− c1)

2 +
1

8
(4− c5)

2
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Considering that c1 + c5 = 2, we find that the minimum of Ee[W
∗(e, c)] is achieved

at c1 = c5 = 1 and the minimum value of the expectation is $1.5. We could see that

the optimum is far away from the expected value solution, where c1 = 0, c5 = 2 and

the expectation is $2.

We run PSGD on the five-node network with initial c = 0. The step size is

γ = 1/m, where m is the number of iterations. The stopping condition window S = 5

and the tolerance δ = 10−5.
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Fig. 3.3. Evolution of the cash injections through the iterations of
PSGD for finding the optimal allocation of a $2 cash injection into
the network of Fig. 3.2.

Fig. 3.3 illustrates the evolution of cash injection vector c, as a function of the

number of iterations of PSGD. The cash injection vector c converges to

[0.9958, 0.0002, 0.0001, 0, 1.0037], which is close to the theoretical optimum [1, 0, 0, 0, 1].
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3.5.2.2 Example 2: A Core-Periphery Network

A variety of prior literature, e.g. [6], suggests that the US interbank network is

well modeled as a core-periphery network that consists of a core of about 15 highly

interconnected banks to which most other banks connect. Therefore, we test PSGD

on the core-periphery network shown in Fig. 1.17. It contains 15 fully connected core

nodes with 70 periphery nodes each. Each periphery node has a single link pointing

to the corresponding core node. All the obligation amounts Li,j are independent and

uniformly distributed in [0, 10] if i and j are a pair of core nodes, and in [0, 1] if i is

a periphery node and j is a core node. We generate ten independent samples of a

core-periphery network drawn from this distribution. For each sample, the external

assets of each node is uniformly distributed in [0, 0.2], independently across all nodes.

All these samples have the same topology and the same distribution for e, but the

liabilities are fixed and different. The weight vector is w = 1 and the amount of cash

to be injected into the system is C = 300.

In PSGD, we set the initial cash injection vector to c = 0. The step size is

γ = 1/m, where m is the iteration number. The stopping condition window is S = 5

and the tolerance δ = 10−5.

The optimal solution for such a large-scale and complex network is generally in-

tractable. Thus, we compare our results with the expected value solution, the upper

bound defined in Eq. (3.4) and with the expected value EV , the lower bound defined

in Eq. (3.3). Moreover, to test the robustness of PSGD, we run the algorithm twice

with two different sequences of asset vector e. The results should be close to each

other if the performance of PSGD is stable and robust.

To sum up, we compare four results: the expected value EV in Eq. (3.3), two

PSGD solutions found with different sequences of asset vectors (testing data) and the

expected value solution defined in Eq. (3.4). We generate another 1000 independent

asset vectors under the same distribution as test data and use their average weighted
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sum of unpaid liabilities to evaluate performance each of the three cash injection

vectors.

Finally, we generate ten samples of random core-periphery networks and run

PSGD on them. The average weighted sum of unpaid liabilities of the test data

for the three cash injection vectors and the expected value EV are shown in Fig 3.4.

For all ten networks, we could see that the performance of the two cash injection vec-

tors calculated by PSGD with different random sequences of asset vectors are almost

the same, which indicates that PSGD performs stably although it involves random

samples. Furthermore, the results from PSGD are better than the results from the

expected value solution, performing close to the lower bound EV .

3.6 Conclusions

In this chapter, we consider the situation where the capital of institutions at

maturity is a random vector with known distribution. We develop a stochastic lin-

ear program to find the cash injection policy that minimizes the expectation of the

weighted sum of unpaid liabilities. We discuss some efficient methods to obtain up-

per bounds and lower bounds for this expectation. For the cases that the bounds

are loose, we have proposed two algorithms based on Monte Carlo sampling: Benders

decomposition algorithm and projected stochastic gradient descent. We verify the

convergence of the projected stochastic gradient descent algorithm by testing it on a

five-node network for which the optimal solution can be calculated directly. We also

test the performance of the projected stochastic gradient descent algorithm by com-

paring its result with the upper bound and lower bound on a core-periphery network

with comparable size to the US banking system.
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4. SUMMARY

In this thesis, we study the optimal monitoring and mitigation of systemic risk in

financial networks. For various practical applications, we consider different models,

objectives and as a result, adopt different methodologies for the design of proper

algorithms.

First, we consider a one-period, single maturity deterministic model, all loans have

the same maturity date and the same seniority. Given that the network structure is

fixed and known by the regulators, we aim to find the optimal bailout strategies

to minimize the weighted sum of unpaid liabilities. With zero bankruptcy cost, we

show that this problem is equivalent to a linear program, which can be solved by

any standard LP solver efficiently. In addition, we consider three extensions of our

model by adding to it various features that characterize real-world lending networks.

The first one is allowing the obligations in the network to have multiple seniorities;

the second one is incorporating credit default swaps into our model and the third

one is assuming the defaulting nodes do not pay at all, i.e., the bankruptcy cost is

one hundred percents. We show that with each of these extensions, the problem of

minimizing the weighted sum of unpaid liabilities is a mixed-integer linear program.

Second, we investigate how to minimize the number of defaults in the system. We

propose two heuristic algorithms: the reweighted ℓ1 minimization algorithm and the

greedy algorithm. We illustrate our algorithms using examples with synthetic data

for which the optimal solution can be calculated exactly. We show through numerical

simulations that the solutions calculated by the reweighted ℓ1 algorithm are close

to optimal, and that the performance of the greedy algorithm highly depends on the

network topology. We also compare these two algorithms using three types of random

networks for which the optimal solution is not available.



97

For the scenarios that centralized gathering all the data of the entire lending

network is impractical, we develop a duality-based distributed algorithm to find the

optimal cash allocation to minimize the weighted sum of unpaid liabilities when the

bankruptcy cost is zero. The algorithm is iterative and is based on message passing

between each node and its neighbors. During each iteration of the algorithm, each

node only needs to receive a small amount of data from its neighbors, perform simple

calculations, and transmit a small amount of data to its neighbors. Simulations verify

the convergence and the practicality of the algorithm.

Some applications, such as stress testing, require forecasting and planning for a

wide variety of different contingencies. For such applications, we further consider

a stochastic model where the external assets of financial institutions are random

variables of which the joint distribution is known and fixed. We show that the optimal

cash allocation could be calculated by a two-stage stochastic linear program. To solve

this problem we develop two algorithms based on Monte Carlo sampling: the Benders

decomposition algorithm and the projected stochastic gradient descent algorithm.
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A. COMPARISON OF THREE ALGORITHMS FOR

COMPUTING THE CLEARING PAYMENT VECTOR

A.1 Proportional Payment Mechanism

In [1], zero bankruptcy costs are assumed, and three methods of finding the clear-

ing payment vector are proposed: a fixed-point algorithm, the fictitious default algo-

rithm and an optimization method. In this section, we first introduce and analyze

these three methods and then compare their computation times under different net-

work topologies.

A.1.1 Fixed-Point Algorithm

By definition, the clearing payment vector is a fixed point of the following map:

Φ(p) = min{(ΠTp + e), p̄}.

where the minimum of the two vectors is component-wise. Under certain mild as-

sumptions specified in [1], the fixed point is unique. It can be found iteratively via

the following algorithm [1].

Fixed-point algorithm:

1. Initialization: set p0 ← p̄, k ← 0, and set the stopping tolerance δ0 to a small

positive number based on the accuracy requirement.

2. pk+1 ← Φ(pk).

3. If ‖pk+1 − pk‖∞ < δ0, stop and output the clearing payment vector pk+1; else,

set k ← k + 1 and go to Step 2.
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At each iteration, the computational complexity is dominated by ΠTp, which is

Θ(N2). The number of iterations is highly dependent on the network topology and

the amounts of liabilities.

A.1.2 Fictitious Default Algorithm

The fictitious default algorithm is proposed in Section 3.1 in [1]. The basic idea is

to first assume that all the nodes pay their liabilities in full. If, under this assumption,

every node has enough funds to pay in full, then the algorithm terminates. If some

nodes do not have enough funds to pay in full, it means that these nodes would default

even if all the other nodes pay in full. Such defaults that are identified during the

first iteration of the algorithm are called first-order defaults. In the second iteration,

we assume that only the first-order defaults occur. Every non-defaulting node k

pays in full, i.e., pk = p̄k; every defaulting node i pays all its available funds, i.e.,

pi =
N
∑

j=1

Πjipj + ei. If there is no new defaulting nodes during this second iteration,

then the algorithm is terminated. Otherwise, the new defaulting nodes are called

second-order defaults, and we proceed to the third iteration. In the third iteration we

assume that both the first-order and second-order defaults occur. We calculate the

new payment vector and again check the set of defaulting nodes. We keep iterating

until no new defaults occur. Since there are N nodes in the system, this algorithm

is guaranteed to terminate within N iterations. The specifics of the fictitious default

algorithm are as follows.

Fictitious default algorithm:

1. Initialization: p1 ← p̄, k ← 1, and D(0) ← ∅.

2. For all nodes i, compute the difference between their incoming payments and

their obligations:

v
(k)
i ←

N
∑

j=1

Πjip
(k)
j + ei − p̄i
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3. Define D(k) as the set of defaulting nodes:

D(k) =
{

i : v
(k)
i < 0

}

.

4. If D(k) = D(k−1), terminate.

5. Otherwise, set p
(k+1)
i ← p̄i for all i 6∈ D(k). For all i ∈ D(k), compute the

payments p
(k+1)
i by solving the following system of equations:

p
(k+1)
i = ei +

∑

j∈D(k)

Πjip
(k+1)
j +

∑

j 6∈D(k)

Πjip̄j, for all i ∈ D(k)

6. Set k ← k + 1 and go to Step 2.

At each iteration of the fictitious default algorithm, the computational complexity

is dominated by solving the linear equations in Step 5. The number of unknowns in

these equations and the number of equations are both equal to the number of elements

in D(k). In the worst case, the number of defaulting nodes in the system is of the same

order as N . In this case the computational complexity per iteration is O(N3) [57].

Compared to the fixed-point algorithm, the fictitious default algorithm has a larger

computational complexity per iteration, and, as shown below in Section A.1.4, larger

running times on several network topologies. However, the advantage of the fictitious

default algorithm is that it is guaranteed to terminate within N iterations. Moreover,

the fictitious default algorithm will produce the exact value of clearing payment,

unlike the fixed-point algorithm which produces an approximation.
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Table A.1.
Comparison of the running times for the computation of the clear-
ing payment vector under the proportional payment mechanism us-
ing the fixed-point algorithm, fictitious default algorithm, and linear
programming.

FP algorithm FD algorithm LP method

ave (s) stdev ave (s) stdev ave (s) stdev

fully connected 0.9128 0.1045 10.7341 0.7182 53.1725 11.8947

core-periphery 0.0869 0.0342 7.8213 1.2843 0.1964 0.0507

linear chain 0.0462 0.0170 10.2574 1.0211 0.1610 0.0449

A.1.3 Linear Programming Method

Define f(p) =

N
∑

i=1

pi = 1Tp, which is a strictly increasing function of p. By

Lemma 4 in [1], the clearing payment vector can be obtained via the following linear

program:

max
p

1Tp (A.1)

subject to

0 ≤ p ≤ p̄,

p ≤ ΠTp + e.

The computational complexity of solving an LP is O(N3) [57].

A.1.4 Comparison of Running Times on Three Different Topologies

We calculate the clearing payment vector via the above three methods on three

different network topologies and compare the running times. The first network topol-

ogy is a fully connected network with 1000 nodes. All the obligation amounts Lij and

asset amounts ei are independent random variables, uniformly distributed in [0, 1].

The second network topology is a core-periphery network shown in Fig. 1.17. It con-
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tains 15 fully connected core nodes. Each core node has 70 periphery nodes. Each

periphery node has a single link pointing to the corresponding core node. All the obli-

gation amounts Li,j are independent uniform random variables. For each pair of core

nodes i and j the obligation amount Lij is uniformly distributed in [0, 10]. For a core

node i and its periphery node k, the obligation amount Lki is uniformly distributed in

[0, 1]. The asset amounts ei are uniformly distributed in [0, 0.25]. The third network

topology is a long linear chain network with 1000 nodes. For i = 1, 2, . . . , N − 1, the

obligation amount Li(i+1) is uniformly distributed in [0, 10], and for other pairs of i

and j, Lij = 0. The asset amounts ei are uniformly distributed in [0, 1].

For each type of network, we generate 100 samples. We run the Matlab code

on a personal computer with a 2.66GHz Intel Core2 Duo Processor P8800. The

average running times and the sample standard deviations of the running times for

the three methods are shown in Table A.1. For all three types of networks, the fixed-

point algorithm is the most efficient one. Note that the computation time of linear

program method is highly variable because simpler topologies result in Π being a

sparse matrix, reducing the running time.

A.2 All-or-Nothing Payment Mechanism

A.2.1 Fixed-Point Algorithm and Fictitious Default Algorithm

We now assume the all-or-nothing payment mechanism where node i pays p̄i if it

is solvent and pays nothing if it defaults. Therefore, the clearing payment vector is a

fixed point of the map Ψ defined as follows:

Ψi(p) =















p̄i if
N
∑

j=1

Πjipj + ei ≥ p̄i

0 otherwise

We find the fixed point of Ψ(·) iteratively via the following algorithm.

Fixed-point algorithm:

1. Initialization: set p0 ← p̄, k ← 0.
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2. pk+1 ← Ψ(pk).

3. If pk+1 = pk, stop and output the clearing payment vector pk+1; else, set k ←

k + 1 and go to Step 2.

In fact, under the all-or-nothing payment mechanism, this fixed-point algorithm

can be interpreted as the following fictitious default algorithm. We initially assume

that all the nodes pay their liabilities in full, i.e., p0 = p̄. If, under this assumption,

every node has enough funds to pay in full, then the algorithm terminates. If some

nodes do not have enough funds to pay in full, it means that these nodes would default

even if all the other nodes pay in full. We define these nodes as first-order defaults.

With function Ψ(·), we identify the first-order defaults and set their payments to

zero. In the second iteration, we assume that only the first-order defaults occur.

Every non-defaulting node k pays in full, i.e., pk = p̄k; every defaulting node i pays

0, i.e., pi = 0. Again, with function Ψ(·), we identify the new defaulting nodes, which

are called second-order defaults, and set their payments to zero. If there are no such

new defaulting nodes, the algorithm terminates; otherwise, we proceed to the third

iteration. We keep iterating until no new defaults occur, i.e., pk+1 = pk.

Since there are N nodes in the system, this algorithm is guaranteed to terminate

within N iterations. At each iteration, the computational complexity is dominated

by ΠTp, which is Θ(N2). Therefore, the computational complexity of the fixed-point

algorithm (fictitious default algorithm) is O(N3).
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A.2.2 Mixed-Integer Linear Programming Method

The clearing payment vector can also be obtained by solving MILP (1.49) with

the assumption that no external cash would be injected, i.e., C = 0. With C = 0,

MILP (1.49) is simplified to the following MILP:

max
p,c,d

wTp (A.2)

subject to

pi = p̄i(1− di), for i = 1, 2, · · · , N,

p̄i −

N
∑

j=1

Πjipj − ei ≤ p̄idi, for i = 1, 2, · · · , N,

di ∈ {0, 1}, for i = 1, 2, · · · , N.

We solve MILP (A.2) via CVX [2, 3].

A.2.3 Comparison of Running Times on Three Different Topologies

We calculate the clearing payment vector under the all-or-nothing payment mech-

anism via the above two methods on three network topologies described in Sec-

tion A.1.4, and compare the running times.

Similar to Section A.1.4, we generate 100 samples and run the Matlab code on

a personal computer with a 2.66GHz Intel Core2 Duo Processor P8800. The aver-

age running times and the sample standard deviations of the running times for the

two methods are shown in Table A.2. For all the three topologies, the fixed-point

algorithm is significantly more efficient than the MILP method.
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Table A.2.
Comparison of the running times for the computation of the clearing
payment vector under the all-or-nothing payment mechanism using
the fixed-point algorithm and mixed-integer linear programming.

FP algorithm / FD algorithm MILP

ave (s) stdev ave (s) stdev

fully connected 0.0092 0.0129 1.2204 0.0909

core-periphery 0.0242 0.0175 0.5338 0.0255

linear chain 0.0279 0.0149 0.4700 0.0276
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B. CVX CODE

B.1 CVX code for MILP (1.11)

Below is the CVX code to solve MILP (1.11). The parameters that appear in the

code are defined in Table B.1.

c v x s o l v e r mosek

cvx beg in

v a r i a b l e u (K, N)

v a r i a b l e c (N) % cash i n j e c t i o n vec to r

v a r i a b l e d (K, N) binary

maximize (sum(w’ . ∗sum(u .∗sum(L , 3 ) , 1 ) ) )

s u b j e c t to

sum( c ) <= C tota l

c >= 0

0 <= u <= 1

for i = 1 :N

sum(sum(u .∗L ( : , : , i ) ) ) + e ( i ) + c ( i ) >= . . .

sum(u ( : , i ) . ∗ sum( reshape (L ( : , i , : ) , K, N) , 2 ) )

end

d <= u

for i = 1 :K−1

u( i , : ) <= d( i +1 , : )

end

cvx end
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Table B.1.
Parameters in CVX codes for MILP (1.11).

Parameters in CVX codes Notation in Section 1.4

L L

u(k, i) pki /p̄
k
i

e e

c c

w w

d(k, i) dki

C total C
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B.2 CVX code for MILP (1.35)

Below is the CVX code to solve MILP (1.35). The parameters that appear in the

code are defined in Table B.2.

c v x s o l v e r gurobi

cvx beg in

v a r i a b l e x (N)

v a r i a b l e y (Nc)

v a r i a b l e z (N)

v a r i a b l e ys (Nc∗N)

v a r i a b l e f (N)

v a r i a b l e r (N)

v a r i a b l e d (N) binary

v a r i a b l e d cds (Nc) binary

v a r i a b l e c (N)

maximize sum(sum(L , 2 ) . ∗ ( x+z ) ) + . . .

sum(sum(D, 2 ) . ∗ ys ) . . .

− sum( reshape (sum(D, 2 ) , Nc ,N) , 1 )∗d

s u b j e c t to

% con s t r a i n t s f o r cash i n j e c t i o n vec to r

sum( c ) <= C tota l

c >= 0

% con s t r a i n t s in Step 1

0 <= x <= 1

sum(L , 2) .∗ x <= L ’ ∗ x + e + c

L ’ ∗ x + e + c − sum(L , 2) .∗ x <= (1 − d) / eps

1 − d <= x

1 − x >= eps ∗ d
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% con s t r a i n t s in Step 2

f == L ’ ∗ x + e + c − sum(L , 2) .∗ x

for i = 1 : Nc

ys ( ( 0 :N−1)∗Nc+i ) <= d

y ( i ) − ys ( ( 0 :N−1)∗Nc+i ) <= 1 − d

ys ( ( 0 :N−1)∗Nc+i ) − y ( i ) <= 1 − d

end

sum( reshape (sum(D, 2 ) . ∗ ys , Nc ,N) , 2 ) <= . . .

D’ ∗ ys + f ( 1 : Nc)

D’ ∗ ys + f ( 1 : Nc) − . . .

sum( reshape (sum(D, 2 ) . ∗ ys , Nc ,N) , 2 ) . . .

<= (1 − d cds ) / eps

r ( 1 : Nc) == D’ ∗ ys + f ( 1 : Nc) − . . .

sum( reshape (sum(D, 2 ) . ∗ ys , Nc ,N) , 2 )

r (Nc+1:N) == f (Nc+1:N)

1 − d cds <= y

% con s t r a i n t s in Step 3

0 <= z <= 1 − x

sum(L , 2) .∗ z <= L ’ ∗ z + r

cvx end
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Table B.2.
Parameters in CVX codes for MILP (1.35).

Parameters in CVX codes Notation in Section 1.5

N N

Nc number of core nodes

eps ǫ

x x

y y

z z

ys(i,l) yli

f(i) fi

r(i) r(i)

L L

D(i+Nc*(l-1),j) Dl
ij

e e

c c

d d

d cds dCDS

C total C
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B.3 CVX code for MILP (1.41)

Below is the CVX code to solve MILP (1.41). The parameters that appear in the

code are defined in Table B.3.

c v x s o l v e r gurobi

cvx beg in

v a r i a b l e d (N) binary

v a r i a b l e c (N)

v a r i a b l e p (N)

maximize ( w’ ∗ p − v ’ ∗ d )

s u b j e c t to

ones (1 ,N) ∗ c <= C tota l

c >= 0

p <= Pi ’ ∗ p + e + c

p >= 0

p <= pbar

pbar − p <= diag ( pbar ) ∗ d

cvx end
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Table B.3.
Parameters in CVX codes for MILP (1.41).

Parameters in CVX codes Notation in Section 1.7

pbar p̄

Pi Π

e e

c c

w w

v v

d d

I IN

C total C
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Table B.4.
Parameters in CVX codes for MILP (1.49).

Parameters in CVX codes Notation in Section 1.8

pbar p̄

Pi Π

e e

c c

w w

d d

I IN

C total C

B.4 CVX code for MILP (1.49)

Below is the CVX code to solve MILP (1.49). The parameters that appear in the

code are defined in Table B.4.

c v x s o l v e r mosek

cvx beg in

v a r i a b l e d (N) binary % de f a u l t i n d i c a t o r

v a r i a b l e c (N) % cash i n j e c t i o n vec to r

minimize ( pbar ’ ∗ diag (w) ∗ d )

s u b j e c t to

ones (1 ,N) ∗ c <= C tota l ;

c >= 0 ;

( Pi ’− I ) ∗ diag ( pbar ) ∗ d <= Pi ’ ∗ pbar + e + c − pbar ;

cvx end
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