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NOMENCLATURE 

Symbol Description 

0a   sound speed 

hA   unsteady lift due to bending motion of the blade 

GA   unsteady lift due to vorticity wave 

uA   unsteady lift due to upstream going pressure wave 

dA   unsteady lift due to downstream going pressure wave 

Bα   unsteady moment due to torsion motion of the blade 

GB   unsteady moment due to vorticity wave 

uB   unsteady moment due to upstream going pressure wave 

dB   moment due to downstream going pressure wave 

B   number of blades in a blade row  

c    chord length 

hC   structural damping for bending 

Cα   structural damping for torsion 

TC   thrust coefficient 

QC   torque coefficient 

PC   power coefficient 

iF   inviscid lifting force 
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Symbol Description 

vF   viscous drag force 

F   total force 

h    bending deflection. 

Iα   mass moment of inertia 

hK    structural stiffness for bending 

Kα   structural stiffness for torsion 

L   unsteady lift 

m    mass 

ND   nodal diameter 

P+   strength of upstream going pressure wave 

P−   strength of downstream going pressure wave 

p   pressure 

Q    torque 

hr   rotor hub radius 

s   tangential blade spacing 

T    trust 

u   unsteady velocity 
*
au   axial induced velocity 

*
tu   tangential induced velocity 

au   axial induced velocity influence function 

tu   tangential induced velocity influence function 

*
au   axial induced velocity horseshoe influence function 

*
tu   tangential induced velocity horseshoe influence function 

0U


  steady mean velocity 
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Symbol Description 

aV   axial inflow velocity 

tV   tangential inflow velocity 

*V   total velocity  

fV   free flow incoming velocity  

z   chordwise position 

 

Greek 

α   angular deflection 

α   axial wavenumber 

wβ   helical wake pitch angle 

iβ   total flow angle  

β   total flow angle without induced velocities. 

β   tangential wavenumber 

γ   bound vortex in the flat plate cascade model 

γ   free shedding vortex in the lifting line model 

Γ   bound vortex strength in the flat plate cascade model 

Γ   bound circulation in the lifting line model 

ζ   strength of vorticity wave  

η    propeller efficiency 

ρ   density 

σ   interblade phase angle 

ϕ   potential perturbation 

Θ   unsteady moment 

ω   frequency in the flat plate cascade model 

ω   angular rotational speed in the lifting line model 
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Symbol Description 

hω    bending mode natural frequency 

αω    torsion mode natural frequency 

Ω   angular rotational speed of a blade row 

 

Superscript & subscript 

'    unsteady perturbation 

  complex perturbation amplitude 

x   axial component 

y   tangential component 

r   radial component 

θ   circumferential component 

a   potential component related to acoustic pressure wave 

v   vortical component related to vorticity wave 

0    steady mean flow 
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ABSTRACT 

Leng, Yujun. Ph.D., Purdue University, May 2016. Preliminary Design Tools in 
Turbomachinery: Non-uniformly Spaced Blade Rows, Multistage Interaction, Unsteady 
Radial Waves, and Propeller Horizontal-axis Turbine Optimization. Major Professor: 
Sanford Fleeter. 
 
 

Turbomachinery flow fields are inherently unsteady and complex which makes 

the related CFD analyses computationally intensive. Physically based preliminary design 

tools are desirable for parametric studies early in the design stage, and to provide deep 

physical insight and a good starting point for the later CFD analyses. Four 

analytical/semi-analytical models are developed in this study: 1) a generalized flat plate 

cascade model for investigating the unsteady aerodynamics of a blade row with non-

uniformly spaced blades; 2) a multistage interaction model for investigating rotor-stator 

interactions; 3) an analytical solution for quantifying the impeller wake convection and 

pressure wave propagating between a centrifugal compressor impeller and diffuser vane; 

and 4) a semi-analytical model based Lifting line theory for unified propeller and 

horizontal-axis turbine optimization. Each model has been thoroughly validated with 

existing models.   

With these models, non-uniformly spaced blade rows and vane clocking are 

investigated in detail for their potential use as a passive control technique to reduce 

forced response, flutter and aeroacoustic problems in axial compressors. Parametric
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studies with different impeller blade numbers and back sweep angles are conducted to 

investigate their effect on impeller wake and pressure wave propagation. Results show 

that the scattered pressure waves with high circumferential wave numbers may be an 

important excitation source to the impeller as their amplitude grows much faster as they 

travel inwardly than the lower order primary pressure waves. Detailed analysis of Lifting 

line theory reveals the mathematical and physical equivalence of Lifting line models for 

propellers and horizontal-axis turbines. With a new implementation, the propeller 

optimization code can be used for horizontal-axis turbine optimization without any 

modification. The newly developed unified propeller and horizontal-axis turbine 

optimization code based on lifting line theory and interior point method has been shown 

to be a very versatile tool with the capability of hub modelling, working with non-

uniform inflow and including extra user specified constraints 
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CHAPTER 1. INTRODUCTION 

Computational fluid dynamics (CFD) has developed rapidly due to the advances 

in computational power, numerical analysis and algorithms, and due to improvement in 

physical models. CFD as a flow physics simulator has been used widely to provide 

detailed flow information for engineers and designers to improve their products. However, 

there are still certain limitations of CFD that make it hard to be applied in certain areas. 

The two major limitations are: 1) heavy computational burden and 2) inaccurate physical 

models. Transonic flow, unsteady flow, fluid structure interactions, and problems with 

complex geometry and scales are generally computationally intensive. The models used 

in viscous flows, in boundary layers and for turbulence may be inaccurate. In addition, 

good meshing and a reasonable understanding of the physical problem itself are also 

essential for CFD analysis. These limiting factors become more important in the 

preliminary design phase when parametric studies and optimizations are performed 

extensively. Typically CFD is used as a high fidelity tool in the last design phase to 

provide understanding, validation, diagnostic and final improvement of the product. A 

relatively accurate preliminary design is essential to maximize the effectiveness of 

resource-intensive CFD analyses.  

Turbomachinery machines (axial and centrifugal compressors, turbines, propellers, 

etc.) play a fundamental role in providing power in modern society. However, the flow 

through turbomachinery is inherently complex and unsteady which prevents CFD from 

being used in the early design cycle. If viscosity is neglected, the Navier–Stokes 

equations solved numerically in CFD are reduced to Euler equations which can be solved 

in some analytical and semi-analytical ways. In this study, preliminary design tools based 

on the Euler equations are developed for solving unsteady aerodynamic problems in axial 

and centrifugal compressors (internal flow), and for optimizing propellers and
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horizontal-axis turbines (external flow). In particular: 1) a generalized flat plate cascade 

model is developed for investigating the unsteady aerodynamics of a blade row with non-

uniformly spaced blades; 2) a multistage interaction model is developed for investigating 

rotor-stator interactions; 3) an analytical solution is derived for quantifying the 

centrifugal compressor impeller wake convection and pressure wave propagation 

between the impeller and diffuser vanes; 4) a semi-analytical model based on lifting line 

theory is developed for unified propeller and horizontal-axis turbine optimization. These 

physically based analytical/semi-analytical models developed in this study not only 

provide a good starting point for the later CFD analysis, but also give the user deeper 

physical insights of the problem.  

A literature review and background introduction for each problem is given in this 

following parts of this chapter. The theories and numerical implementation behind the 

preliminary design tools are given in Chapter 2. The validation and case studies of the 

generalized flat plate cascade model are conducted in Chapter 3.  The validation and case 

studies of the multistage interaction model are conducted in Chapter 4. The validation 

and case studies involving non-uniformly spaced blade row in a multistage environment 

are conducted in Chapter 5.  Case studies for impeller wake convection and pressure 

wave propagation behavior in the vaneless space are conducted in Chapter 6.  The 

validation and case studies of the unified propeller and horizontal-axis turbine 

optimization code are given in Chapter 7. The conclusion and future perspective are 

given in Chapter 8. The corresponding codes in Matlab are given in the Appendices.  

 

1.1 Aeromechanic and Aeroacoustic Problem in Axial Compressors 

The flow in both axial and centrifugal compressors is inherently unsteady due to 

the relative motion between rotors and stators. In addition, it can be shown that a 

compressor can only do work through unsteady flow processes. However, the unsteady 

flow produces unsteady loading on the blade rows and causes both aeromechanic 

problems and noise. The two major types of the aeromechanic problems are forced 

response and flutter. Forced response is caused by external excitations, such as the wake 

from an upstream blade row and potential field of adjacent blade rows. When the 
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excitation frequency matches the natural frequency of the blade, resonant vibrations 

occur. Flutter is a self-excited oscillation due to the blade vibration itself. When the 

unsteady loading due to the blade vibration produces a negative damping on the blade 

motion, flutter occurs and the blade vibration amplitude gets larger and larger until non-

linear phenomenon come into play. Both forced response and flutter cause premature 

blade failure by High Cycle Fatigue (HCF).  In order to reduce size and weight, current 

trends in compressor design are higher loading per stage, smaller gaps between rotors and 

stators, and the use of integrally bladed rotors (IBR). Such modern design requirements 

lead to stronger blade row interaction, lower structural damping and thus a higher 

probability of premature blade failure. 

The most commonly used method to avoid forced response problems in the early 

design stage is the Campbell diagram. Every crossing on the diagram represents a 

resonant vibration of a certain mode at a certain rotation speed. In reality, the excitations 

could be at many different engine orders and a rotor could have many different vibration 

modes. This leads to many crossings on the diagram. Each crossing leads to a possible 

resonant vibration that should be avoided in the design. Unfortunately, this method 

cannot provide the amplitude of the vibration at the resonant frequency, which is critical 

to identify the importance of each resonant mode. To avoid the flutter problem, the 

aerodamping due to blade vibration at all possible interblade phase angles needs to be 

calculated. Any negative aerodamping indicates a possible flutter condition that should be 

avoided. The unsteady loading on the blade row also acts as dipole sources that generate 

discrete frequency noise at the excitation frequency. The scattering effect of each blade 

row causes much additional discrete frequency noise. Depending on the axial wave 

number, only the propagating pressure waves are of interest in any effort to reduce the 

noise in the far field.    

Two passive control techniques, aerodynamic mistuning and vane clocking are 

investigated to minimize the aeromechanic and aeroacoustic problem using the 

preliminary design tools developed in this study.  
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1.1.1 Aerodynamic Mistuning and Non-uniformly Spaced Blade Row 

Most computational methods and physical models for aeromechanic studies are 

based on the assumption that all the blades in a certain blade row have the same structural 

and aerodynamic properties. However, there are small blade-to-blade variations that 

result from manufacturing tolerances, operational wear and damage. The variation in 

structural properties (natural frequency, stiffness and damping) is termed structural 

mistuning. The variation in aerodynamic properties (chord length, stagger angle, blade 

spacing and etc.) is termed aerodynamic mistuning. It is well known that both structural 

mistuning and aerodynamic mistuning can greatly affect the forced response and flutter 

stability of blade rows. Intentional structural mistuning (in terms of blade-to-blade 

frequency variation) and intentional aerodynamic mistuning (in terms of the blade-to-

blade spacing variation) have been proposed and studied as passive control techniques to 

reduce the blade forced response amplitude and flutter instability. Most of 

turbomachinery mistuning research in the past concentrated on structural mistuning. Both 

Finite Element Analysis (FEA) investigation and lumped parameter method have been 

applied to structure mistuning problem [1-3]. On the other hand, a CFD analysis for 

aerodynamic mistuning is usually very computationally intensive because whole blade 

rows need to be modeled due to the breakdown of the symmetry. There are fewer studies 

addressing aerodynamic mistuning. To avoid the high computational cost of a CFD 

simulation, Sawyer and Fleeter [4] developed a detuned flat plate cascade model with 

alternating chord length and blade spacing and analyzed this aerodynamic mistuning 

effect on flutter. Ekici, Kielb and Hall [5] used a time-linearized harmonic balance 

method to study the effect of alternating stagger angle and blade spacing effect on flutter. 

However, the detuned blade row was treaded as aerodynamically tuned with symmetry 

groups involving two blades, and thus is not a general aerodynamically mistuned pattern. 

The most applicable intentional blade row aerodynamically mistuned patterns are in the 

form of sinusoidal blade-to-blade spacing and half-half blade-to-blade spacing [6-8]. 

These general aerodynamically mistuned patterns contain no symmetry groups. A 

generalized flat plate cascade model is developed in this study to investigate the unsteady 

aerodynamics of blade rows with any aerodynamically mistuned pattern.  
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1.1.2 Vane Clocking and Multistage Interactions 

Most previous unsteady aerodynamic analyses of blade rows were conducted 

assuming the blade row is isolated in an infinitely long duct. However in an actual axial 

compressor, the axial spacing between adjacent blade rows is usually only a fraction of a 

chord. The axial spacing tends to be further reduced in new designs in order to minimize 

the overall size and weight of the gas turbine engine. Due to the involvement of several 

blade rows, it is very computationally expensive to simulate multistage interactions using 

time-marching CFD methods. Hanson [9] modeled two blade rows of flat plate airfoils in 

compressible flow using a time-linearized method to incorporate several harmonics. 

Buffum [10] used Smith’s flat plate cascade model [11] and developed a similar method 

to include multiple spinning modes but neglected all the cut-off pressure waves. Hall and 

Sikowaski [12-13] developed an influence coefficient method termed the Coupled Mode 

Method that represents each airfoil row and inter-row space as a matrix. Different blade 

rows are coupled together by using unsteady pressure and vorticity waves in the flow 

field. The Coupled Mode Method’s modular structure has great flexibility and provides 

more physical insight into multi-row interactions. The multistage interaction model 

developed in this study is based on the formulation of the Coupled Mode Method.  

Vane clocking is the circumferential indexing of adjacent stators with the same 

vane numbers. Physically, vane clocking changes the relative phase between the 

excitations from the upstream stator and the downstream stator. In addition to the benefit 

of increasing compressor performance [14], the relative phase change has a large impact 

on the unsteady aerodynamic forces on the rotor. Capece and Fleeter [15] showed that 

indexing the upstream stators could change the unsteady aerodynamic forcing function to 

the rotor based on experiments in a three stage low-speed compressor. Experimental 

work by Choi [16] showed that vane clocking had a significant effect on the resonant 

vibration amplitude of the rotor blades in the Purdue 3 Stage Research Compressor. To 

understand the vane clocking effect on the unsteady loading on the rotor, Salontay and 

Key [17] used an implicit nonlinear unsteady compressible flow solver AU3D to simulate 

the resonant vibration amplitude of rotor2 at different stator1-stator2 clocking 

configurations in the Purdue 3 Stage Research Compressor. The results showed good 
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agreement with the trend of the relative response from experimental data. However, the 

long set up time and computational time required by such a coupled nonlinear unsteady 

simulation hinder it from being an effective tool used routinely in the design process. The 

linearized multistage interaction model is used to explore the potential of vane clocking 

as a passive control technique for reducing forced response, flutter and the associated 

noise problem of blade rows in a multistage environment. 

 

1.1.3 Aerodynamically Mistuned Blade Rows in Multistage Environment 

The major excitation of a rotor comes from the wake of the upstream stator. For a 

normal uniformly spaced stator row, the wake excitation is at discrete frequencies 

including the fundamental frequency and its higher harmonics. A non-uniformly spaced 

stator row is able to reduce the discrete wake excitation by spreading the excitation 

energy over a broad range of frequencies.  Non-uniformly spaced stator rows have 

already been used in real engines to reduce the forced repose problem of rotor vibration. 

PSM (Power Systems Mfg., LLC.) incorporated non-uniform spacing vanes into S0 and 

S1 stator rows to reduce the vibratory response of R0 and R1 rotor blades of the GE 

7FA+e gas turbine. However, the CFD multistage study with aerodynamically mistuned 

blade rows can be very computationally expensive. No research regarding the effect of a 

non-uniformly spaced stator row on rotor stability in a multistage environment has been 

done. To close this gap, the non-uniformly spaced blade model and multistage interaction 

model are combined to quantify the effect of aerodynamic mistuning (in terms of non-

uniform spacing) in a multistage environment.  

 

1.2 Radial Waves in Centrifugal Compressor 

Traditionally, centrifugal compressors have relatively fewer aeromechanic issues 

as compared to axial compressors. However, in recent years, effort is being directed at 

developing the next generation high power density centrifugal compressors. In these 

advanced designs, a vaned diffuser is frequently used to increase the compressor 

efficiency. The vaneless space between the impeller exit and vaned diffuser is small so as 
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to increase the diffuser’s performance and decrease weight. However, the impeller wakes 

hitting the diffuser vanes generate a series of strong pressure waves that propagate 

upstream and affect the impeller trailing edge. Both experimental [18] and computational 

simulations [19] have shown that under certain operating conditions, these pressure 

waves generated by the impeller-diffuser vane interaction are large enough to cause 

impeller failure. Bryan [20] investigated unsteady impeller-diffuser interactions in the 

Purdue Low-Speed Centrifugal Research Compressor. Gottfried and Fleeter [21] 

developed a small perturbation model to predict the unsteady aerodynamic response of 

impeller blades to the diffuser vane potential field. However, no analytical model has 

been developed to predict the impeller excitation by the pressure wave resulting from 

impeller wake-diffuser vane interactions. 

 

1.3 Horizontal-axis Turbine Optimization 

Wind turbines and propellers work in a very similar way aerodynamically, except 

that wind turbines extract kinetic energy from the flow field and generate torque while 

propellers absorb torque and accelerate the flow. In fact, Actuator Disk theory used to 

predict the maximum theoretical wind turbine power coefficient, known as Betz limit 

[22], was developed for analyzing propeller performance by Betz [23]. In the propeller 

community, there is a 3-level design process: 1) blade element momentum theory, or 

BEM; 2) the Lifting line/surface method; and 3) advanced CFD methods. However, in 

the wind turbine community, the lifting line method is missing. CFD analyses usually 

start from the results from BEM or empirical results. The BEM method does not include 

the effect of tip loss due to a finite number of blades and the aerodynamic interaction 

between blade elements. The large errors from the BEM method mean much more time 

and effort is required for the CFD analysis to find an optimized blade design at a 

specified operating condition. A preliminary wind turbine design tool is needed to fill the 

gap by providing the middle level design method. It should run fast enough for design 

optimization and parametric studies, and be accurate enough to provide a good starting 

point for high-level CFD analyses.  
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Many efforts have been made to provide such a mid-level design tool for 

optimized turbine blade design. Wald [24] summarized the classical propeller design 

method using Goldstein factors [25] to account for tip loss, and suggested that the same 

method may be used for turbine design. Okulov and Sørensen [26] modified the 

Goldstein factors method by introducing a new analytical solution to the wake vortex 

model and used it for predicting the maximum power coefficient for a turbine with a 

finite number of blades. However, the Goldstein factors method has many restrictions and 

has been superseded by the Lifting line method in propeller design [27]. Epps [28] 

developed a unified rotor Lifting line model for both propeller and horizontal-axis turbine 

blade optimization. However, his turbine blade optimization is done by “hard-wired’ flow 

perpendicularity requirement in the General Momentum Theory [29-30] which is only 

valid for a turbine operating in uniform inflow conditions.  

In this study, a unified propeller and horizontal-axis turbine design code (with 

emphasis on wind turbine blade design) is developed based on the Lifting line model. It is 

able to optimize turbine blade design for non-uniform inflow conditions. A hub model is 

included and extra constraints on the blade loading can also be specified. Through a 

detailed analysis of the Lifting line model, this study also shows that the classic propeller 

design method based on Lerbs criterion [31] can be used for turbine design directly but 

through a new implementation.    
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CHAPTER 2.  THEORIES AND MODEL DETAIL 

In this chapter, the theories, models and the numerical implementation of each 

preliminary design tool are discussed in detail. The first five sections deal with the 

aeromechanic and aeroacoustic problems in compressors. The last section deals with the 

rotor blade optimization problem. The blade structural dynamic properties are derived 

using a spring-mass model in Section 2.1, with the unsteady aerodynamic loading 

represented using the influence coefficients. The unsteady flow field in both axial and 

centrifugal compressors are solved by linearizing the Euler equations in Section 2.2. The 

uniformly spaced flat plate cascade model is explained in Section 2.3. The extension to 

the generalized uniformly spaced flat pate cascade model is given in Section 2.4. The 

detail of the multistage interaction model is discussed in Section 2.5. In Section 2.6, both 

propeller and horizontal-axis turbine optimization based the Lifting line model and with 

different optimization methods are discussed in detail.  

 

2.1 Structural Dynamics 

A two dimensional blade section analysis is used in this study to develop the 

preliminary design tools. The blade row is “unwrapped” from annular cascades into a 

linear 2D cascade at a constant radius slice. It is assumed that the 2D airfoil section in the 

flow field has two degrees of freedoms (bending and torsion). Figure 2.1 shows a 

schematic of the system and the deflected position of the airfoil. 
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Figure 2.1. Mass-spring model of a two dimensional airfoil section. 

 

For most unshrouded turbomachinery blade rows, the bending mode and torsion 

mode are uncoupled from each other. The equations of motion are: 

h hmh C h K h L+ + =           (2.1) 

C KI αα ααα α Θ++ =          (2.2) 

where in the bending mode, h is bending deflection, m is mass, hC  and hK  are the 

structural damping and stiffness for bending, and L  is the unsteady lift. In the torsion 

mode, α is angular deflection, Iα  is mass moment of inertia, Cα  and Kα  are the 

structural damping and stiffness for torsion, and Θ  is the unsteady moment.  

The unsteady lift and moment acting on an airfoil result from both external 

excitations (vorticity wave ζ , upstream going pressure wave P+ and downstream going 

pressure wave P− ) and internal excitations ( bending deflection h  and angular deflection 

α ). The unsteady lift and moment can be calculated using unsteady aerodynamic 

influence coefficients. The unsteady aerodynamic influence coefficients for the unsteady 
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lift due to the bending motion of the airfoil, due to the vorticity wave, due to the upstream 

going pressure wave and due to the downstream going pressure wave are hA , GA , uA and 

dA respectively. The unsteady aerodynamic influence coefficient for unsteady moment 

due to the torsional motion of the airfoil, due to the vorticity wave, due to the upstream 

going pressure wave and due to the downstream going pressure wave are Bα , GB , uB and 

dB  respectively. The equations of motion can be written as, 

h h h G u dmh C h K h A A APh PA ζ + −+ + = + + +        (2.3) 

G u dI C K B a B B P PBα α αα ζα αα + −+ + = + + +       (2.4) 

Assuming both the excitation and blade vibration are harmonic in time with frequency ω , 

then  i te ωζ ζ= ,  i tP P e ω+ += , i tP P e ω− −= , i th he ω= and i te ωα α= . In addition, bending 

stiffness 2
h hK mω= and torsion mode stiffness 2K Iα α αω= , where hω  and αω  are 

bending natural frequency and torsion natural frequency of the blade, respectively. Thus, 

the time linearized equations of motion become, 
2 2

h h h G u dm h i C h m h A h A A P A Pζω ω ω + −− + + − + +=     (2.5) 

2 2
a G u di C B B B P PI BI α αα αα α αω αω ω ζ + −+ + +=− +−    (2.6) 

The blade vibration amplitude can be calculated as, 

2 2

G u d

h h h

A P A P
h

A

m i C Am ω

ζ

ω ω

+ − − + + 
− − +

=        (2.7) 

2 2

G u d

i C

B B P B P

I I Bαα α α αω

ζ
α

ω ω

+ − − + + 
− +

=
−

      (2.8) 

Both the blade vibration amplitude and unsteady loading are important quantities 

of interest in the forced response analysis.  

Without external excitation, the time linearized equations of motion can be written as, 

( )2 2 Re( ) Im 0h h h hm m A h i C A hω ω ω − + − + − =       (2.9) 

( ) ( )2 2 Re Im 0I I B i C Bα α α α α αω ω α ω α − + − + − =       (2.10) 
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If the blade vibrates in a vacuum, there is only structural damping hC  and Cα . In flow, 

the blade vibration itself generates additional aerodamping. By examining the imaginary 

parts of Equations (2.9) and (2.10), the equivalent aerodamping coefficient can be written 

as, 

( )Im haero
h

A
C

ω
= −         (2.11) 

( )ImaeroC
B

α
α

ω
= −         (2.12) 

A positive aerodamping stabilizes the blade vibration and a negative aerodamping 

destabilizes the blade vibration, which is the same convention as structural damping. 

Since the aerodamping  aero
hC  and aeroCα  are proportional to the negative of ( )Im hA  and 

( )Im Bα , without structural damping a positive ( )Im hA  and ( )Im Bα  indicate a unstable 

case in the flutter analysis.  

 

2.2 Unsteady Aerodynamics 

Neglecting the flow viscosity, the flow field in axial/centrifugal compressor can 

be described by the Euler equations: 

0U U
t
ρ ρ ρ∂

+ ⋅∇ + ∇ ⋅ =
∂

 

       (2.13) 

 U pU U
t ρ

∂ ∇
+ ⋅∇ = −

∂



 

        (2.14) 

The unsteady flow is assumed to be a small perturbation to the mean flow. 

0

0

0

'
'

U U u
p p p
ρ ρ ρ

= +
= +
= +

 



          (2.15) 

where 0U


, 0p  and 0ρ are the steady mean velocity, pressure and density. u , 'p and 'ρ are 

the corresponding unsteady perturbation quantities.  

For perfect gas undergoing an isentropic process, 
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2
0

p a
ρ

∂
=

∂
          (2.16) 

where 0a is the sound speed. 

 

The linearized Euler equations are obtained by substituting Equation (2.15) into 

Equations (2.13) and (2.14). The mean flow is described by Equations (2.17) and (2.18),  

0 0 0 0 0U Uρ ρ⋅∇ + ∇ ⋅ =
 

       (2.17) 

0
0 0

0

pU U
ρ

∇
⋅∇ = −

 

        (2.18) 

And the small perturbation unsteady flow is described by Equations (2.19) and (2.20), 

( )0
02

0 0 0

' 1 0D p u
Dt a

ρ
ρ ρ

 
+ ∇ ⋅ = 

 

        (2.19) 

0
0

0

'D u pu U
Dt ρ

 
+ ⋅∇ = −∇ 

 





         (2.20) 

where 0
0

D U
Dt t

∂
≡ + ⋅∇

∂



 is the convective material derivative. 

 

2.2.1 Axial compressor 

In an axial compressor, the hub to tip radius ratio is usually large enough that the 

annular flow field can be considered as a two dimensional flow in the axial and tangential 

directions. With the flat plate cascade model of the blade row, the mean flow is uniform. 

The linearized Euler Equations (2.19) and (2.20) about a uniform mean flow in axial and 

tangential directions are: 
' ' '

0 0yx
x y

uuU U
t x y x y

ρ ρ ρ ρ
∂ ∂∂ ∂ ∂

+ + + + = ∂ ∂ ∂ ∂ ∂ 
     (2.21) 

'

0

1 0x x x
x y

u u u pU U
t x y xρ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
       (2.22) 

'

0

1 0y y y
x y

u u u pU U
t x y yρ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
      (2.23) 



14 

 

 

where xU  and yU  are uniform mean flow velocity in the axial and tangential directions. 

xu  and yu  are the corresponding unsteady perturbation velocities. 0ρ  is mean flow 

density. 'ρ and 'p  are unsteady perturbation density and pressure. Since the mean flow is 

uniform, these equations are linear with constant coefficients.  

The unsteady perturbation quantities are assumed to be harmonic in time and space: 
( )

( )

( )

'

'

'

i t x y

i t x y
x x

i t x y
y y

p pe

u u e

u u e

ω α β

ω α β

ω α β

+ +

+ +

+ +

=

=

=

         (2.24) 

where p , xu  are yu  are the complex perturbation amplitudes. α  and β  are the axial and 

tangential wave number, respectively. ω  is the frequency. 

Substituting Equation (2.24) into the Equations (2.21) to (2.23) yields: 

( ) 2 2
0 0 0 0

0

0

0 0
0

x y

x y x

x y y

U U a a p

U U u
U U u

ω α β αρ βρ

α ρ ω α β
β ρ ω α β

   + +
   

+ + =   
   + +      

   (2.25) 

This set of equations must be indeterminate to have a nontrivial solution. Thus the 

determinate of the coefficients matrix must be zero, 

( ) ( ) ( )2 2 2 2
0 0x y x yU U U U aω α β ω α β α β + + + + − + =  

    (2.26) 

The characteristic equation ( ) 0x yU Uω α β+ + =  corresponds to a vorticity wave. Its 

axial wave number is, 

y

x

U
U

ω β
α

+
= −          (2.27) 

Substituting Equation (2.27) into Equation (2.25) and solving the system of equations, 

yields: 

0p =           (2.28) 

x yu uβ
α

= −          (2.29) 

The perturbation vorticity in the flow ζ   is given by  
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( )y i t x yxu u e
x y

ω α βζ ζ + +∂ ∂
= − =

∂ ∂
       (2.30) 

y xi u i uζ α β= −         (2.31) 

The vorticity wave is convected with the mean flow with no associated pressure 

perturbation. 

The other characteristic equation ( ) ( )2 2 2 2
0 0x yU U aω α β α β + + − + =  

 corresponds to 

pressure waves. Its axial wave numbers are  

( ) ( ) ( )2 2 2 2
0 0

2 2
0

x y y x

x

U U a U a U

a U

ω β ω β β
α

+ ± + − −
=

−
    (2.32) 

where the plus sign corresponds to an upstream going pressure wave and the minus sign 

corresponds to a downstream going pressure wave.  

When ( ) ( )2 2 2 2
0 0y xU a Uω β β+ − − > , the radical is real. The unsteady pressure 

wave propagates at a constant amplitude. This behavior is referred to as superresonant or 

cut-on. When ( ) ( )2 2 2 2
0 0y xU a Uω β β+ − − < , the radical is a complex number. The 

unsteady pressure wave propagates with exponential decay. This behavior is referred to 

as subresonant or cut-off. When ( ) ( )2 2 2 2
0 0y xU a Uω β β+ − − = , the radical is zero. There 

is only one real axial wave number. This division point between cut-on and cut-off wave 

is called the acoustic resonance point. Examining the radical reveals that generally waves 

with high frequency ω , or low tangential wave number β   are more likely to be cut-on. 

Substituting Equation (2.32) into Equation (2.25) and solving the system of equations, 

yields: 

( )0 x y
y

U U
p u

ρ ω α β

α

+ +
= −         (2.33) 

x yu uα
β

=          (2.34) 

the perturbation vorticity, 

0y xi u i uζ α β= − =          (2.35) 
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The pressure wave is propagating at the speed of sound with no associated vorticity 

perturbation. 

 

2.2.2 Centrifugal Compressor 

In a centrifugal compressor, the vaneless space between the impeller and the vaned 

diffuser is usually in the shape of a thin annulus. The flow field can be considered as a 

two dimensional flow in the radial and circumferential directions. Due to the change of 

the cross-section area in the radial direction, the mean flow is non-uniform. 

2.2.2.1 Mean Flow Field 

In a 2D cylindrical coordinate system and assuming the mean flow is 

axisymmetric, i.e. 0
θ
∂

=
∂

, the mean flow continuity Equation (2.17) and momentum 

Equation (2.18) are, 

0 0 0
0 0 0 0r

r r
UU U

r r r
ρ ρ ρ∂ ∂

+ + =
∂ ∂

       (2.36) 

2
0 0 0

0
0

1r
r

U U pU
r r r

θ

ρ
∂ ∂

− = −
∂ ∂

        (2.37) 

0 0U U
r r
θ θ∂

= −
∂

         (2.38) 

Integrating Equation (2.38) yields the mean flow circumferential velocity, 

2
0

cU
rθ =           (2.39) 

where 2c is a constant. 

Equation (2.38) is valid for a compressible flow and implies that the mean flow is 

irrotational since  

0 0
0 0

1 ˆ 0r
z

U UU U r e
r r

θ
θ θ

∂ ∂ ∇× = + − = ∂ ∂ 



      (2.40) 

For a low speed centrifugal compressor, two additional assumptions can be made. 

First, the mean flow density is assumed to be nearly constant in the vaneless space, i.e. 
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0 0
r

ρ∂
=

∂
. Second, the square of the mean flow Mach number is negligible. These two 

assumption are valid for a centrifugal compressor with low impeller exit Mach number 

and small vaneless space. 

With these assumptions, Equation (2.36) becomes,  

0 0 0r rU U
r r

∂
+ =

∂
        (2.41) 

Integrating Equation (2.41) yields the mean flow radial velocity  

1
0r

cU
r

=           (2.42) 

where 1c is a constant. 

Substituting Equations (2.39) and (2.42) intro Equation (2.37) gives  
2 2

0 1 2
0 3 3

p c c
r r r

ρ
 ∂

= + ∂  
          (2.43) 

Integrating Equation (2.43) yields the mean flow pressure, 

( )2 20
0 1 2 322

p c c c
r

ρ
= − + +         (2.44) 

 where 3c is a constant. 

2.2.2.2 Unsteady Flow Field 

The linearized 2D Euler equations, Equations (2.19) and (2.20), are the governing 

equations for the unsteady flow field. As shown by Goldstein [32], when the mean flow 

is irrotational (Equation (2.40)), the pressure waves and vorticity wave, i.e. the impeller 

wake, are uncoupled. Therefore, use Goldstein’s splitting method a vu u u= +
    where au  is 

the potential part related to the acoustic pressure wave and vu  is the vortical part related 

to the vorticity wave. Substituting a vu u u= +
   into Equations (2.19) and (2.20), uncouples 

the pressure wave and the vorticity wave. For the pressure wave 0vu =
 and for the 

vorticity wave ' 0p = .  
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The pressure wave governing equations are, 

( )0
02

0 0 0

' 1 0a
D p u
Dt a

ρ
ρ ρ

 
+ ∇ ⋅ = 

 

       (2.45) 

0
0

0

'a
a

D u pu U
Dt ρ

 
+ ⋅∇ = −∇ 

 





        (2.46) 

The vorticity wave governing equations are, 

( ) ( )0
0 02

0 0 0 0

' 1 1
a v

D p u u
Dt a

ρ ρ
ρ ρ ρ

 
+ ∇ ⋅ = − ∇ ⋅ 

 

       (2.47) 

0
0 0v

v
D u u U
Dt

+ ⋅∇ =




         (2.48) 

where 'p  in Equation (2.47) is the induced pressure fluctuation caused by the vorticity 

wave which acts as a source term on the right hand side of Equation (2.47) [32-33]. Since 

the vorticity wave is convected with mean flow, its induced pressure fluctuation is also 

convected with the mean flow which is different from the acoustic pressure wave 'p  in 

Equation (2.45).  

These equations can be written in terms of the potential perturbation ϕ , 

The pressure wave governing equations become, 

( )0 0
02

0 0

1 1 0D D
Dt a Dt

ϕ ρ ϕ
ρ

 
− ∇ ⋅ ∇ = 

 
      (2.49) 

0
0' Dp

Dt
ϕρ= −          (2.50) 

The vorticity wave governing equations become, 

( ) ( )0 0
0 02

0 0 0

1 1 1
v

D D u
Dt a Dt

ϕ ρ ϕ ρ
ρ ρ

 
− ∇ ⋅ ∇ = ∇ ⋅ 

 

     (2.51) 

0
0 0v

v
D u u U
Dt

+ ⋅∇ =




         (2.52) 

To reduce the complexity of the problem and change the PDE to an ODE, the unsteady 

perturbations are assumed to be harmonic in time and in the circumferential direction, 
( )( ) ei t kq q r θω θ+=          (2.53) 
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where  q is a perturbation property, i.e. ϕ  , 'p  , rau  , auθ , rvu  , vuθ .  

In addition, under the low Mach number assumption made before, the mean flow 

velocities are 1
0r

cU
r

= and 2
0

cU
rθ =  as shown in Equations (2.42) and (2.39). Thus, the 

pressure wave equation (2.49) becomes,  
22 2

21
2 2 2 2 2 2

0 0 0

221 0c k kc i
r r ra r a r a r

θ θωωϕ ϕ ω ϕ
   ∂ ∂

+ − + + − =   ∂ ∂   
     (2.54) 

Equation (2.54) is a second order ODE which can be transferred to a Bessel 

equation by change of variable. Similar to the derivation by Roger [34], the solution is a 

combination of Hankel functions of the first and second kinds. 
1 1

2 2
0 0(1) (2)

0 0

c i c i
a aAr H r Br H r

a a

ω ω

ν ν
ω ωϕ

   
= +   

   
      (2.55) 

where A , B are constants and the order 
2 2

2 2 1
2 4

0 0

2c k ck
a a

θ
θ

ω ων = − −   

and the corresponding velocity and pressure perturbations for pressure wave are: 

 au ϕ= ∇
 , thus rau

r
ϕ∂

=
∂

 and 1
a

iku
r r

θ
θ

ϕ ϕ
θ

∂
= =

∂
    (2.56) 

0 1 2
0 0 2' D c cp i ik

Dt r r r θ
ϕ ϕρ ρ ωϕ ϕ∂ = − = − + + ∂ 

    (2.57) 

With the same assumptions, the vorticity wave momentum Equation (2.52) becomes, 

2

1

1

1
0v

v

c ik
u ci r u
r c r

θ
θ

θ
ω

 + ∂  + + =
∂  

 
 

       (2.58) 

2

1 2

1 1

1
2rv v

rv

c ik
u uc ci r u
r c r c r

θ
θω

 − ∂  + + =
∂  

 
 

     (2.59) 

Both Equations (2.58) and (2.59) are first order ODEs. Their solutions are  
2 2

1 1
ln

2 1c iki r r
c c

vu De
r

θω

θ

− −

=         (2.60) 
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2 2

1 1
ln

2 2

1

1c iki r r
c c

rv
cu e Er D
c r

θω
− −  

= − 
 

      (2.61) 

where E,D are constants 

In order to satisfy the vorticity wave continuity Equation (2.51), there is an 

induced pressure fluctuation caused by the purely convected vorticity wave [32-33]. 

Under the low Mach number and constant mean flow density assumption, Equation (2.51) 

becomes, 
2 22

21
2 2 2 2 2 2

0 0 0

221v v rv rv
v v

c k k u u ikc i u
r r ra r a r a r r r r

θ θ θ
θ

ϕ ϕ ωω ω ϕ
   ∂ ∂ ∂ + − + + − = − + +     ∂ ∂ ∂    

  (2.62) 

The homogenous solution is the same as Equation (2.55) for the pressure wave. For the 

vorticity wave, the homogenous solution should be zero. 

Substituting Equations (2.60) and (2.61) into Equation (2.62), the particular solution 

gives the potential perturbation of the induced pressure fluctuation, 
21 12

2 2
10 01

21 12
2 2

10 01

2 3
1 2 3

0 01

2 3
1 2 3

0 01

1
2

1
2

c ikc i c iir
ca ac

v

c ikc i c iir
ca ac

r J r Y e g g g d
a a

r Y r J e g g g d
a a

θ

θ

ω ωω ξ

ν ν

ω ωω ξ

ν ν

π ω ωϕ ξ ξ ξ ξ ξ
ξ

π ω ω ξ ξ ξ ξ ξ
ξ

− −−

− −−

     
= + +     

    

     
− + +     

    

∫

∫
   (2.63) 

where Jν  and Yν  are the Bessel functions of the first and second kind with order 

2 2
2 2 1

2 4
0 0

2c k ck
a a

θ
θ

ω ων = − − .  1g  , 2g and 3g are the complex constants defined by, 

1
1

22
2 2

1 1

2
2

3 2
1

2

ig E
c

c kc ig D i E
c c

c kg i k i D
c

θ

θ
θ

ω

ω

= −

 
= + − 

 
 

= + 
 

        (2.64) 
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2.3 Uniformly Spaced Flat Plate Cascade Model 

Based on the unsteady waves solutions derived in Section 2.2, a flat plate cascade 

model [11] can be constructed to quantify the response of interaction between unsteady 

waves and a blade row. Although flow turning is the main purpose of a blade row, a flat 

plate cascade provides a simple and fast analytical solution which still maintains the 

essential kinematics of the problem. Compared to the prediction of non-linear Euler 

analysis, experiments conducted in GE Aircraft Engines shows that the classic flat plate 

cascade model is able to do a comparable good perdition of the unsteady loading on 

compressor blades due to wake excitation at normal loading conditions [35].   

The vorticity wave and pressure waves are independent solutions of the linearized 

Euler equations. These waves propagate through the flow field independently without 

interacting with each other. Only at a boundary such as solid blade surface, can they 

interact and exchange energy. The analysis in this section follows the classic flat plate 

cascade model LINSUB [11]. LINSUB is a 2D linearized frequency method for 

calculating the interaction between unsteady flows and an isolated flat plate cascade in an 

inviscid compressible flow during an isentropic process. As shown in Figure 2.2, 

LINSUB models the blade row by a row of discrete bound vortices. The whole unsteady 

flow may be considered as being due to bound vortices which replace the blades and their 

associated unsteady waves. The problem is to find the bound vortex distributions which 

give the correct induced velocity distributions along the blades that cancels the excitation 

upwash velocity so that the blade surface boundary condition is satisfied. Once these 

bound vortices are determined, the unsteady lift, unsteady moment and out-going 

pressure waves and vorticity wave can be calculated.   
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Figure 2.2. Blade row modeled as a row of discrete bound vortices [11]. 

 

As shown in Figure 2.2, for a uniformly spaced blade row, at a specific chordwise 

location the bound vortex strength is constant from one blade to the next except for a shift 

in phase equal to the interblade phase angle σ . The discrete bound vortices on blades in 

the tangential direction can be expressed mathematically as  

( ) ( ) ( )
1

0
-

B
i t ij i t

j
y y e e y js eω σ ωγ γ δ

−

=

= = Γ∑      (2.65) 

where ( )zδ  is the delta function defined as zero except at z =1  where its value is 1. B  is 

the number of blades in the blade row. s  is the tangential spacing between two adjacent 

blades. j   is the blade index. 

Physically, ( )yγ  is a periodic function with period Bs  . Represent this periodic function 

by a complex Fourier series,  

( )
2 ryi

Bs
r

r
y a e

π

γ
 +∞  
 

=−∞

= ∑          (2.66)  
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The Fourier coefficient ra  can be calculated as,  

( )
2

0

1 ryBs i
Bs

ra y e dy
Bs

π

γ
 − 
 = ∫        (2.67) 

Substitute Equation (2.65) for ( )yγ  intro Equation (2.67) and note that the integral is 

non-zero only when y js=    

21

0

rjB i
ij B

r
j

a e e
Bs

π
σ

 − − 
 

=

Γ
= ∑         (2.68) 

For an excitation at ND   nodal diameter, the interblade phase angle is 

2 ND
B

πσ =          (2.69) 

Substitute Equation (2.69) into Equation (2.68) 
( )21

0

ND r jB i
B

r
j

a e
Bs

π − 
−   

 

=

Γ
= ∑        (2.70) 

Use the math identity 
1

0

1
1

BB
j

j

zz
z

−

=

−
=

−∑   with 
( )2 ND r j

i
Bz e

π − 
  
 = , to get 

r

0        if    r = ND - nB         where n is any integer
a = 0

    0       otherwise                                                               






  

To find an expression for ra  when r = ND - nB  begin with Equation (2.70) 

( )
1

2

0

B
i nj

r
j

a e
Bs s

π
−

=

Γ Γ
= =∑         (2.71) 

Thus,  

r
       if    r = ND - nB         where n is any integer

a =
    0       otherwise                                                               

s
Γ





 

Substituting ra  into Equation (2.66), the discrete bound vortices are represented as a 

series of continuous cascade waves with the same amplitude 
s
Γ  
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( )
2 ni y
s

n
y

s
e

σ π

γ
− +∞  

 

=−∞

=
Γ∑        (2.72) 

The corresponding tangential wave number and nodal diameter for the thn  cascade waves 

are 

( )22
n

ND nBn
s Bs

πσ πβ
−−

= =        (2.73) 

nND ND nB= −         (2.74) 

The derivation above shows that at a specific chord location z  , a blade row can 

be modeled as a row of discrete bound vortices of strength Γ  with a constant phase angle 

shift from one blade to its adjacent one. The row of discrete bound vortices is equivalent 

to a series of cascade waves of the same amplitude / sΓ  but different tangential wave 

number as given in Equation (2.73).  When 0n = , the cascade wave has nodal diameter 

equal to the excitation nodal diameter ND . This cascade wave is known as the 

fundamental mode. When 0n ≠ the cascade waves have nodal diameter ND nB−  and are 

known as higher order scattering modes.   

Take a blade row with 4 uniformly spaced blades as an example. Assume the 

blade row is excited by an unsteady wave with nodal diameter 2ND =  . Figure 2.3 shows 

the strength of the corresponding row of discrete bound vorticities and the equivalent 

cascade waves, among which the fundamental mode 2ND =  and its associated scattering 

modes with 1n = ±   are plotted.  
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Figure 2.3. Schematic of a blade row modeled by a row of discrete bound vortices and cascade waves. 

 

Since cascade waves of the fundamental mode and its associated scattering modes 

have the same strength, and the phase shift from blade to blade is only different by an 

integer multiple of 2π , they are commonly treated together as a single group. In the rest 

of this section, “fundamental harmonic mode” is used to refer the cascade waves of the 

fundamental mode and its associated higher order scattering modes.  

In order to obtain an accurate unsteady loading along the chord, each blade is 

discretized into a finite number of panels.  There are one vortex point and one control 

point on each panel.  A vortex point is point where the bound vortex is located, and a 

control point is a point where the excitation upwash velocity is specified. The discrete 

bound vortices at the same chordwise position over the entire blade row are equivalent to 

a series of cascade waves. The cascade waves create pressure and vorticity waves 

traveling upstream and downstream and cause induced velocity at the control points on 

the entire blade row. The induced velocity at the control point j   caused by the cascade 

waves at vortex point k  for the first blade can be expressed as jk kK Γ  , where jkK  is the 

kernel function representing the effect of the row of bound vortices at panel k on the 

control point j of the first blade.  
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Thus for a blade row which is discretized into np  panels along the chord, and the 

bound vortex on each panel of the first blade are 1 2, , npΓ Γ Γ . The total induced velocity 

at control point j  of the first blade is  

1

np
j

induced jk k
k

u K
=

= Γ∑         (2.75) 

At the control points of every blade, the total induced velocity inducedu  must cancel 

the upwash velocity upwashu  due to either an internal blade vibration and/or an external 

excitation wave in order to satisfy the blade surface boundary condition. Following 

Equation (2.75), the boundary condition at control point j  of the first blade can be 

expressed as  

1

np
j j

upwash induced jk k
k

u u K
=

= − = − Γ∑       (2.76) 

The boundary conditions at all control points of the first blade can be expressed in the 

matrix form 
1

11 12 1( ) 1
2

21 22 2( ) 2

( )1 ( )2 ( )( )

np upwash

np upwash

np
np np np np np upwash

K K K u
K K K u

K K K u

Γ     
    Γ      = −     
    Γ          





    




    (2.77) 

The governing equation of the boundary conditions on other blades can be 

reduced to the one on the first blade, Equation (2.77). Consider the boundary conditions 

on blade m . The induced velocity at control point j  of blade m caused by cascade 

waves at vortex point k  is ( 1)i m
jk kK e σ− Γ , where σ  is the interblade phase angle of the 

fundamental mode. Although the kernel function represents the summation of the effect 

of all cascade waves, the kernel function has the same interblade phase angle as the 

cascade wave of the fundamental mode. In Equation (2.73), the cascade waves interblade 

phase angles are σ 2πn−  where n  can be any integer. Thus if the induced velocity on the 

first blade is jk kK Γ , the induced velocity on blade m is ( )( 1) σ 2πni m
jk kK e −− Γ , which can be 

simplified to ( 1)i m
jk kK e σ− Γ . Similarly, for the excitation with interblade phase angle σ , if 
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the upwash velocities on the first blade is 1 2 Tnp
upwash upwash upwashu u u    , the upwash 

velocity on the thm  blade is 1 ( 1) 2 ( 1) ( 1) Ti m i m np i m
upwash upwash upwashu e u e u eσ σ σ− − −   . Thus, 

the boundary conditions for all control points on blade m  can be expressed in the matrix 

form, 
( 1) ( 1) ( 1) 1 ( 1)

111 12 1( )
( 1) ( 1) ( 1) 2 ( 1)

221 22 2( )

( 1) ( 1) ( 1)
( )1 ( )2 ( )( )

i m i m i m i m
np upwash

i m i m i m i m
np upwash

i m i m i m
npnp np np np upwa

K e K e K e u e
K e K e K e u e

K e K e K e u

σ σ σ σ

σ σ σ σ

σ σ σ

− − − −

− − − −

− − −

Γ   
   Γ    = −   
   Γ     






    



( 1)np i m
sh e σ−

 
 
 
 
 
  

    (2.78) 

This is the same as Equation (2.77) after dividing both sides by the same phase shift from 

the first blade to the thm   blade  ( 1)i me σ− . 

In a compact form, Equation (2.77) can be written as  

[ ] [ ] [ ]1 1np np np np
K U

× × ×
Γ =        (2.79) 

where [ ]np np
K

×
, [ ] 1np×

Γ  and [ ] 1np
U

×
  are  the kernel matrix , bound vortices vector and 

upwash velocity vector, respectively.  

Once the bound vortices is found, the pressure difference across the blade can be 

calculated using Kutta-Joukowski theorem, 

' ' 0 zUp p p
c

ρ
− +∆ = − = − Γ         (2.80) 

where c   is the chord length, and zU is the chordwise main flow velocity.  
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The response unsteady lift, moment, outgoing pressure waves and vorticity wave 

can all be calculated by different integration functions of the bound vortices along the 

blade. This can be summarized in the following post-processing formulation, 

[ ] [ ] [ ]5 1 5 1np np
X C

× × ×
Γ =         (2.81) 

where [ ]5 np
X

×
performs the summation of the contribution from all the bound vortices 

[ ] 1np×
Γ to give the final output unsteady aerodynamic influence coefficients [ ]5 1

C
×

. The 

five rows are for five different responses, i.e. unsteady lift, moment, vorticity wave, 

upstream going pressure wave and downstream going pressure wave. These unsteady 

aerodynamic influence coefficients are used to quantify the unsteady response of a blade 

row to internal or external excitations.  

 

2.4 Generalized Uniformly Spaced Flat Plate Cascade Model 

Considering the example in Figure 2.3, a uniformly spaced blade row with 4 

blades can be represented by a row of discrete bound vortices of strength Γ  with a 

constant phase shift from one blade to its adjacent one. The row of discrete bound 

vortices is equivalent to a series of cascade waves of the same strength / sΓ . The 

fundamental mode has the same nodal diameter as the excitation. The higher order 

scattering mode has nodal diameter 4ND n− , where n can be any integer.  

If for some reason Blade 2 is missing, the blade spacing is not a constant any 

more. The amplitudes of the bound vortices on the remaining blades are not the same due 

to the breakdown of symmetry. In order to work in the same theoretical framework of the 

uniformly spaced blade row, the missing Blade 2 is retained as an imaginary blade which 

just indicates the position but is not physically present.  Since the fluid at the position of 

the imaginary blade cannot sustain a stable unsteady pressure difference, the bound 

vortices at the imaginary Blade 2 must have zero strength.  

Thus by a finer discretization in the tangential direction, a non-uniformly spaced 

blade row can be transformed into a generalized uniformly spaced blade row with both 

real and imaginary blades. For a generalized uniformly spaced blade row with N   blades 

(real blades + imaginary blades), the bound vorticities on each blade usually have 
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different amplitudes and phases. Using discrete Fourier representation, the bound 

vorticity on the thm   blade, mΓ  can be expressed as  
2 ( 1)1

0

k mN i
m N

k
k

b e
π − −  

 

=

Γ = ∑          (2.82) 

The bound vortex on each blade is the summation of the bound vortex of N   

fundamental harmonic modes. The strength of each mode is kb and the nodal diameter 

and interblade phase angle of each mode are kND k=  and 2
k

k
N
πσ =  where

0,1,2, 1k N= −  

In the example of the generalized uniformly spaced blade row with 4 blades, the 

bound vortices on each blade can be expressed as the summation of 4 fundamental 

harmonic modes with nodal diameter equal to 0,1,2,3  
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   (2.83) 

Each fundamental harmonic mode contains both the fundamental mode and its 

associated higher order scattering modes. Figure 2.4 shows the cascade wave 

representation of the generalized uniformly spaced blade row with 4 blades, under an 

excitation with 2ND =  . Compared to the normal uniformly spaced blade row in Figure 

2.3, all possible fundamental harmonic modes are present.  
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Figure 2.4. Schematic of generalized uniformly spaced blade row with blade 2 missing modeled by a series 
of cascade waves of all possible fundamental harmonic modes. 

 

For the case of a normal uniformly spaced blade row, the bound vortices on each 

blade 1 2 3 4 2 3T Ti i ie e eσ σ σ   Γ Γ Γ Γ = Γ Γ Γ Γ    . If the excitation nodal diameter 

is 2, the interblade phase angle 2 (2)
4

πσ =  . Thus, Equation (2.83) gives 3b = Γ  and 

1 2 4 0b b b= = =  . In other words, for a normal uniformly spaced blade row, the bound 

vortices can be represented by a single fundamental harmonic mode with the nodal 

diameter equal to the excitation nodal diameter as shown in Figure 2.3. 

For the case of generalized uniformly spaced blade row with Blade 2 missing, the 

bound vortex on imaginary blade 2 0Γ = and the bound vortex on real blades  1Γ , 3Γ and 
4Γ are complex values with different amplitudes. This set of bound vorticity need to be 

represented by all 4 fundamental harmonic modes. Due to the linearity of the governing 

equations, each mode can be treated independently and summed together to give the total 

response. Thus, the blade row with blade 2 missing, can be considered as a superposition 

of 4 normal uniformly spaced blade rows, each of which is represented by the cascade 

waves of one fundamental harmonic mode. If the strength of the each fundamental 

harmonic mode is found, the total effect is the summation of the effect of all modes.  
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2.4.1 Governing Matrix 

To represent a generalized uniformly spaced blade row with N  blades (real 

blades + possible imaginary blades), all N  fundamental harmonic modes need to be 

included. N  equations are required to solve for the strengths of the N  fundamental 

harmonic modes. Each real blade and each imaginary blade provides an independent 

equation.  

On each real blade, the blade surface boundary condition needs to be satisfied, i.e. 

the total induced velocity is equal to the upwash velocity due to excitation. If the blade 

chord is discretized into np   panels, the induced velocity on a real blade m   by mode j , 

[ ] , j

1

m

np
V

×
 can be expressed as  

 [ ] [ ] ( )( ) [ ], j 1

1 1
jm j ji m

np np np np
V K e Bσ −

× × ×
=       (2.84) 

where [ ] j

np np
K

×
is the kernel matrix of mode j  for the first blade, the interblade phase 

angle for mode j  is ( )2 1
j

j
N

π
σ

−
= , and [ ] 1

j

np
B

×
is the mode strength vector of mode j  

on each panel of the first blade. 

The total induced velocity on real blade m [ ] 1

m

np
V

×
 is equal to the summation of 

the induced velocity caused by all modes, thus  

[ ] [ ] ( )( ) [ ]1

1 1
1

j
N

m j ji m

np np np np
j

V K e Bσ −

× × ×
=

= ∑       (2.85) 

If the excitation interblade blade phase angle is exσ  , the upwash velocity on real Blade

m  [ ] 1

m

np
U

×
 is, 

[ ] [ ] ( )( )1
1 1

exm i m
np np

U U e σ −

× ×
=        (2.86) 

where [ ] 1np
U

×
is the upwash velocity on each panel of the first blade. 

Finally, the blade surface boundary condition on real blade m  can be written as, 

[ ] ( )( ) [ ] [ ] ( )( )1 1
1 1

1

j ex
N

j ji m i m
np np np np

j
K e B U eσ σ− −

× × ×
=

= −∑     (2.87) 
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On an imaginary blade, both the induced velocity and upwash velocity are not 

zero. However, since there is no solid surface, both the unsteady velocity perturbations 

propagate through the imaginary blade independently. The governing equation on the 

imaginary blade comes from fact that bound vortex cannot exist in the fluid without a 

solid surface. Thus, on each imaginary blade, the strength of the bound vortex has to be 

zero. 

The contribution of mode j  to the bound vortex on imaginary blade n  is 

[ ] [ ] ( )( ) [ ]n, j 1

1 1
j ji n

np np np np
I e Bσ −

× × ×
Γ =        (2.88) 

The total bound vortex on imaginary blade n  is equal to the summation of the 

contribution of all fundamental harmonic modes. The total bound vortex on imaginary 

blade is zero, thus  

[ ] ( )( ) [ ] [ ]1

1 1
1

0j
N

ji n

np np np np
j

I e Bσ −

× × ×
=

=∑       (2.89) 

The governing equation for real blades and imaginary blades can be put together 

to form a linear system of equations, the solution of which is the strength of each 

fundamental mode. Consider the case of a generalized uniformly spaced blade row with 

Blade 2 missing. The resulting linear system of equations has the following form: 

[ ] [ ] [ ] [ ]
[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )
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[ ]
[ ]
[ ]

31 2 4

31 2 4
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np np np np np np np np

BK K K K

I e I e I e I e B

K e K e K e K e B

K e K e K e K e
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 (2.90) 

where kernel matrix of mode j , [ ] j

np np
K

×
and upwash velocity vector [ ] 1np

U
×

 are 

calculated in the same way as the normal uniformly spaced blade row discussed before. 

For a generalized uniform blade row with N  total blades (real + imaginary), if blade m  

is a real blade and blade n  is an imaginary blade, the whole matrix system of the 

governing equations has the following form.
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(2.91) 

2.5 Multistage Interactions 

Blade rows are coupled together aerodynamically by the unsteady pressure and 

vorticity waves in the flow field. Hall and Sikowaski [12-13] used spinning modes to 

represent the coupling unsteady waves and model the multistage interactions. The 

multistage interactions model developed in this study closely follows Hall and 

Sikowaski’s method and formulation [12-13].  

Before going into the model details, the physical processes of multistage 

interaction need to be understood first. Consider the forced response analysis of a rotor 

excited by the wake of an upstream stator as an example (Figure 2.5). The rotor blade 

row with 2B   blades is embedded between the upstream stator with 1B  blades and 

downstream stator with 3B  blades. In the rotor reference frame, the wake from stator1 

impinges on the rotor blade with frequency 0ω   and nodal diameter 0n  (step (1)). The 

Fourier transformation of the stator1 wake in the circumferential direction contains 

modes with an infinite number of nodal diameters. Due to the linearity of the model, each 

mode can be treated independently. The final result is the summation of the effect of all 

modes. For the stator1 wake, the primary mode has nodal diameter 0 1n B= . In the rotor 

reference frame, the primary mode has frequency 0 0nω = Ω .  

Impinging on the rotor blade row, the stator 1 wake produces an unsteady 

aerodynamic loading on the rotor. In addition, both upstream going pressure waves (step 

(2)) and downstream going pressure waves and vorticity waves (step (2’)) are generated. 

The upstream going pressure wave travels upstream and interacts with stator1 (step(3)). 

The downstream going pressure waves and vorticity waves travel downstream and 

interact with stator2 (step (3’)). The upstream going pressure wave travels upstream and 
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impings on stator1, produces an unsteady aerodynamic loading on stator1, and generates 

both upstream going pressure waves (step (3u)) and  downstream going pressure waves 

and vorticity waves (step (4)), which impinge on the rotor (step (5)). Similarly, the 

downstream going pressure wave and vorticity waves in step (3’) impinging on stator2 

produce an unsteady aerodynamic loading on stator2 and generate both downstream 

going pressure waves and vorticity waves (step (3’d)) and upstream going pressure waves 

(step(4’)), which travel upstream and impinge on rotor again(step(5’)).  

 
(a) 

 
(b) 

 
(c) 

Figure 2.5. The multistage interaction physical process of stator 1 wake impinging on the rotor with 
scattering and frequency shifting effect. a) initial excitation by stator1 wake b) secondary excitation by the 

reflection waves from stator1 c) secondary excitation by the reflection waves from stator2. 
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The whole process will repeat again with the new excitations on the rotor, which 

are the upstream going pressure wave in step(5’) and the downstream going pressure 

wave and vorticity wave in step(5) as illustrated in Figure 2.5(b) and Figure 2.5(c).  Note 

the frequency and nodal diameter changes during the process. This is due the scattering 

effect of each blade row and the frequency shifting effect in different reference frames. 

Both the scattering effect and frequency shifting effect will be discussed in detail later. 

This process is repeated many times and eventually a steady state is achieved where the 

unsteady aerodynamics around each blade row is steady (i.e. the strength of each mode is 

no longer changing.)   

The blade rows are coupled together by the unsteady waves in between. When an 

unsteady wave impinges on a blade row, it will be scattered into an infinite number of the 

unsteady waves with the same frequency but different tangential wave numbers. When an 

unsteady wave travels from one blade row to another, its frequency is shifted when 

viewed in the reference frame of the new blade row.  Both scattering and frequency 

shifting are discussed in detail in the following sections.  

 

2.5.1 Scattering 

The scattering effect is rooted in the fact that the finite number of blades is 

discretely distributed in the circumferential direction while the coupling fluid in between 

is continuous. Consider an excitation with interblade phase angle and frequency ( 0 0,σ ω  ) 

impinging on a blade row having B  blades. The initial excitation can be both external 

excitations (upstream going pressure waves and downstream going pressure waves and 

vorticity waves) and internal excitations (blade vibrations). The unsteady upwash 

velocity due to the initial excitation on each blade is ( )0 0i t m
uv e ω σ+  , where m   is the thm  

blade. In order to balance the unsteady upwash velocity caused by the excitation, bound 

vortices are generated on each blade. The set of discrete bound vortices can be 

represented by a series of cascade waves as discussed in Section 2.3. Each cascade wave 

contains upstream going pressure waves and downstream going pressure waves and 

vorticity waves. Since the boundary condition only needs to be met at the control points 
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of each blade, the outgoing waves have the same frequency 0ω  but an infinite set of 

interblade phase angles 0 2nσ π+ . The additional integer multiple of 2π  won’t change 

the phase information at each blade location since 0 0exp( 2 ) exp( )nσ π σ+ = .  In other 

words, adding 2n π  changes the phase information of continuous wave properties (e.g. 

unsteady pressure, unsteady velocity) between the blades, but doesn’t change the phase 

information of the discrete properties (e.g. unsteady loading, upwash velocity etc.)  on 

each blade . Thus the scattering on the blade row due to excitation with interblade phase 

angle and frequency ( 0 0,σ ω  ) can be expressed as 

 ( ) ( )0 0 0 0( 2 )i t m i t m n
uv e qeω σ ω σ π+ + +→   

where q  represents the three outgoing waves, n   is an integer of any value, m   is the thm  

blade. 

Nodal diameter ND  is related to interblade phase angle σ  by 

2ND
B

πσ =  where B  is blade number in the blade row        (2.92) 

Assume the initial interblade phase angle 0σ  corresponds to nodal diameter 0n . 

After scattering, the outgoing waves have interblade phase angle 0 2nσ π+  which 

corresponds to nodal diameter 0n nB+ , where n  can take any integer value. The initial 

excitation mode and its scattering modes have the same frequency 0ω  and an infinite set 

of nodal diameters 0n nB+ . They are considered a “scatter group”.  

The reverse of the process is also true. When the infinite set of modes in the same scatter 

group interact with a blade row, they can all generate a single output.   
( ) ( )0 0 0 0( 2 )i t m n i t m

uv e qeω σ π ω σ+ + +→  
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2.5.2 Frequency Shifting 

Frequency shifting, also known as the Doppler Effect, is rooted in the relative 

motion between each row. For example, one unsteady wave with frequency 0ω , axial 

wave number α  and tangential wave number β  in the first blade row can be expressed 

as 
( )0 1 1

1 1( , y , ) i t x yq x t qe ω α β+ +=                (2.93) 

As shown in Figure 2.5(a), in the reference frame of second blade row, the first blade row 

coordinate becomes 

 1 2 12x x x= + ∆  , 1 2 12y y y R t= + ∆ + Ω         (2.94) 

where Ω  is the angular rotational speed of the second blade row. Substituting Equation 

(2.94) to Equation (2.93), the unsteady wave in the second blade row can be expressed as  
( ) ( )( )0 2 12 2 12( )

2 2( , y , ) i R t x x y yq x t qe ω β α β+ Ω + +∆ + +∆=      (2.95) 

Thus, the frequency of the unsteady wave has shifted from 0ω  to 0 Rω β+ Ω  in 

the second blade row. The tangential wave number β  is related to the nodal diameter ND 

as D
R

Nβ = . Thus if the unsteady wave has nodal diameter 0n , the frequency of the 

unsteady wave  in the second blade row has shifted from 0ω  to 0 0nω + Ω . 

 

2.5.3 Spinning Mode 

Based on the cascade wave discussion in the previous section, a single cascade 

wave is referred to as a spinning mode which is characterized by a unique set of ( ), NDω . 

A detailed description of multistage interactions in terms of the spinning modes is given 

here in order to illustrate how the nodal diameter and frequency changes due to the 

scattering and frequency shifting effect in each blade row as shown in the Figure 2.5.  

The initial excitation from the stator1 wake has frequency 0ω  and nodal diameter 0n  in 

the reference frame of the second blade row (Figure 2.5(a), step1). A constant radius R   
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is assumed when the 3D annular flow field has been ‘unwrapped’ into a 2D sheet, so

y Rθ= .  The initial excitation unsteady wave can be expressed in 2 2( , )x θ  as  

 ( )0 2 0 2
2 2( , , ) i t x nq x t qe ω α θθ + +=        (2.96) 

It interacts with the second blade row and generates an infinite set of scattering 

modes with the same frequency 0ω  and but different scattered nodal diameter 0 2 2n n B+  

where 2n  can be any integer. (Figure 2.5(a), step2 and step2’). Thus, after interacting 

with the second blade row , the initial excitation spinning mode ( )0 0,nω  becomes an 

infinite set of spinning modes ( )0 0 2 2,n n Bω + . The upstream going pressure wave travels 

upstream towards the first blade row. When viewed in the reference frame of the first 

blade row, these spinning modes have the same nodal diameter 0 2 2n n B+ . But due to the 

Doppler Effect, their frequency has shifted to 0 0 2 2( )n n Bω − + Ω . (Figure 2.5(a), step3)  

12
0 0 2 2 1 12 0 2 2 1( ( ) ) ( ) ( )( )

1 1( , , )
yi n n B t x x n n B Rq x t qe

ω α θ
θ

∆ − + Ω + −∆ + + −  =      (2.97) 

When the upstream going pressure wave impinges on the first blade row, it is 

scattered to spinning mode ( )0 0 2 2 0 1 1 2 2( ) ,n n B n n B n Bω − + Ω + + . After interaction, the 

outgoing waves are upstream going pressure waves (Figure 2.5(a), step 3u) and 

downstream going pressure waves and vorticity waves (Figure 2.5(a), step 4). When 

viewed in the reference frame of the second blade row, these spinning modes has the 

same nodal diameter 0 1 1 2 2n n B n B+ + but their frequency have shifted to 0 1 1n Bω + Ω  

(Figure 2.59(a), step5). These reflected waves from the first blade row become new 

excitation on the second blade row. Similarly, for the second blade row and third blade 

row interaction, the waves go through step 2’, step 3’, step4’ and step5’ and become the 

new excitation on the second blade row due to the reflection from the third blade row. 

With the reflected new excitation, the whole process repeats again as shown in Figure 

2.5(b) and Figure 2.5(c).  
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After the steady state has been reached, the nodal diameter ND and frequency in each 

blade row are:  

 0 1 1 2 2 3 3ND n n B n B n B= + + +        (2.98) 

( )
( )

1 3 0 0 2 2

2 0 1 1 3 3

n n B

n B n B

ω ω ω

ω ω

= = − + Ω

= + + Ω
       (2.99) 

where the scattering index in each blade row 1n  , 2n  and 3n  can be any integer. 

In general, for a three blade row environment, each blade row has 1B , 2B  and 3B  

blades, the angular rotational speed of the first and third blade row is 1Ω  and the angular 

rotational speed of the second blade row is 2Ω . If the initial excitation has frequency and 

nodal diameter ( )0 0,nω , the general formula for the nodal diameter ND  in each blade 

row is the same 

0 1 1 2 2 3 3ND n n B n B n B= + + +        (2.100) 

If the initial excitation is in the first and third row, the general formula for frequency ω  

in each row is: 

( )( )
( )( )

1 3 0 2 2 1 2

2 0 0 1 1 3 3 2 1

n B

n n B n B

ω ω ω

ω ω

= = + Ω − Ω

= + + + Ω − Ω
      (2.101) 

If the initial excitation is in the second row, the general formula for frequency ω  in each 

row is: 

( )( )
( )( )

1 3 0 0 2 2 1 2

2 0 1 1 3 3 2 1

n n B

n B n B

ω ω ω

ω ω

= = + + Ω − Ω

= + + Ω − Ω
       (2.102) 

Note that for a given initial excitation 0ω , 0n and angular rotational speed 1Ω , 2Ω , 

the frequency and nodal diameter of each spinning mode in each blade row is specified 

by a set of scattering indices ( )1 2 3, ,n n n   
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2.5.4 Governing Matrix 

As derived in Section 2.2, for an isentropic process in a 2D inviscid compressible 

flow field under the small perturbation assumption, there are three unsteady waves 

upstream going pressure wave, downstream going pressure wave, and vorticity wave. In 

the multistage interaction analysis, each spinning mode contains all 3 unsteady waves. 

The objective of a multistage interaction analysis is to get the strength of all 3 unsteady 

waves for each spinning mode at every blade row after applying the initial excitation. 

With this information, the unsteady loading on each blade row and the strength of the 

outgoing pressure waves can be calculated for each spinning mode.  

During the modelling, the multistage interaction problem can be divided into two 

basic domains: blade row and the inter-blade fluid region. Each domain can be modelled 

by a matrix mathematically. These matrices are then assembled into a system with correct 

non-reflection boundary conditions and specified input excitations. By solving the system, 

all the unsteady pressure and vorticity waves can be obtained.     

The blade row domain is modeled as a transmission/reflection matrix. As shown 

in Figure 2.6, when incoming excitation waves reach a blade row they are reflected from 

and transmitted through the blade row. The airfoil row is represented by a matrix [ ]W  

which contains nine reflection/transmission coefficients that relate the incoming pressure 

and vorticity waves to the outgoing pressure and vorticity waves. These reflection and 

transmission coefficients are calculated using the two dimensional linearized 

compressible flow flat plate cascade model LINSUB discussed in Section 2.3. 

Considering the scattering effect, the incoming waves + -
R L L r

P ,P ,ζ   of mode r  are 

reflected, transmitted and scattered into the outgoing waves + -
L R R q

P ,P ,ζ    of mode q . As 

discussed before, an incoming unsteady wave of mode r  with a single nodal diameter 

can be scattered into a series of outgoing unsteady waves of mode q =  to−∞ + ∞  with 

different nodal diameters, and a series of incoming unsteady waves of mode 

r = to−∞ + ∞  with different nodal diameters can be combined into one outgoing 
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pressure wave of mode q  with a single nodal diameter. Thus, the reflection, transmission 

and scattering at an airfoil row are modeled in the following system of equations, 
+ +

L 11 12 13 R 1
- -

R 21 22 23 L 2
r

R 31 32 33 L 3qr qq r

P w w w P b
P = w w w P b

w w w
+

bζ ζ

∞

=−∞

      
      
      
            

∑     (2.103) 

The vector [ ]1 2 3b b b  are the additional outgoing waves + -
L R R q

P P ζ    of mode q  . 

This term is used to specify the initial excitation as the model input. 

 

Figure 2.6. Schematic of the transmitted and reflected unsteady wave (red) generated by the impinging 
unsteady waves (blue) and blade row interaction. 

 

In addition, the outgoing waves from a blade row travel upstream/downstream to 

excite the neighboring rows as shown in Figure 2.7. The two neighboring rows are 

coupled by the unsteady waves in-between the rows. Each inter-row region can be 

represented by a diagonal matrix of axial wave numbers α  and tangential wave number

β . The upstream going pressure wave axial wave number 1α , downstream going pressure 

wave axial wave number 2α  and downstream going vorticity wave axial wave number 

3α  are functions of excitation frequency, tangential wave number and steady flow 

properties. Thus, the axial wave number is different from mode to mode. But the axial 

wave numbers stay the same regardless of the blade row reference frame.  The exact 

expressions of these axial wave numbers are derived in Section 2.2.1. The axial and 

tangential offsets between two rows are denoted by x∆  and y∆ . The wave transmission 

in the inter-row space for a single spinning mode q   is modeled by the following 

equation systems, 
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Figure 2.7. Schematic of unsteady waves travels between two neighboring blade rows. 

 

Finally, non-reflective boundaries at the first blade row inlet and at the last blade 

row outlet are assumed. In this way, the whole system is represented by a large matrix 

which contains the reflection/transmission matrix for each row, transmission matrix for 

each inter row spacing and boundary conditions. By solving the system, all the strengths 

of the unsteady pressure and vorticity waves for each spinning mode at each blade row 

can be calculated.  The effect of spinning modes with the same frequency need to be 

added together to get the total unsteady loading on the blade row at the specific frequency. 

 

2.6 Rotor Blade Optimization Based on Lifting Line Theory 

The foundation of the Lifting line theory for propeller blade optimization has been 

well studied and documented. At normal operating conditions, the air flow through a 

wind turbine is incompressible. It is very similar to marine propellers except cavitation of 

no concern. Most of the Lifting line theory part in this study follows the extensive marine 

propeller design research work of Kerwin [27] and later the work of Epps [28]. 
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2.6.1 Flow Field and Lifting Line Theory 

A rotor (propeller or turbine) generally operates in a very complicated flow field 

due to the interaction between the rotor and the surrounding flow. This interaction 

generates a lot of vorticity and turbulence in flow. To simplify the problem, it is 

traditionally assumed that the total velocity field around the rotor is a linear superposition 

of the inflow velocity in the absence of the rotor, and the induced velocity caused by the 

rotor.  

Similar to the airplane wing, the rotor blades can be modelled using the Lifting 

line method to predict the forces on the rotor. Taking the marine propeller as an example, 

Figure 2.8 shows that a propeller blade can be represented by a lifting line with a radial 

distribution of the bound circulation Γ  and the free shedding vortex sheet γ . Note that 

most of wind turbine blades have a much higher aspect ratio than the marine propeller 

blade, and thus are better suited for the Lifting line model. Assuming the free shedding 

vortex sheets are convected at a constant radius, the strength of the free shedding vortex  

γ  and bound circulation Γ are related by,  

( ) dr
dr

γ Γ
= −          (2.105) 

 

Figure 2.8 Lifting line representation of a propeller blade [27]. 
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At a particular propeller blade section, the velocity and force diagram is shown in 

Figure 2.9. aV  and tV are the axial and tangential inflow velocities. *
au  and *

tu are the axial 

and tangential induced velocities. ω  is the angular rotation velocity. *V  and 0V are the 

total velocity and total velocity without induced velocity. iβ  and  β  are the total flow 

angle and total flow angle without induced velocities. iβ β−  is analogous to the induced 

angle in the wing Lifting Line theory. ae  and te are the propeller moving directions. The 

opposite directions of ae  and te are chosen as the positive velocity directions.  

 

Figure 2.9. Velocity and force diagram at a particular propeller blade section [28]. 

 

iF , vF  and F  are the inviscid lifting force, viscous drag force and total force, 

respectively. The inviscid lifting force iF  can be calculated using the Kutta-Joukowski 

theorem.  
*

iF Vρ= Γ          (2.106) 

The viscous drag vF  can be calculated based on the blade section chord length c  and the 

2D sectional drag coefficient DC   

( )2*1
2v DF V C cρ=         (2.107) 
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Integrating over the blade span and summing the effect of all blades, the total thrust T  

and torque Q   are   

[ ]cos sin
h

R

i i v ir
T Z F F drβ β= −∫        (2.108) 

[ ]sin cos
h

R

i i v ir
Q Z F F rdrβ β= +∫       (2.109) 

where Z  is the number of blades, hr  and R  are the hub and tip radius of the blades. 

The power required by the propeller P is  

P Qω=          (2.110) 

The useful power produced by propeller is fTV , where fV is the propeller moving 

velocity or the free stream velocity in the rotor reference frame. The efficiency of a 

propeller η   is defined as the ratio of the useful power produced by the propeller and the 

power required to drive the propeller. 

fTV
Q

η
ω

=          (2.111) 

Physically, a propeller absorbs power from an engine and accelerates the flow to 

generate thrust. A horizontal-axis turbine works in the opposite way by decelerating the 

flow and absorbing power from the flow to generate power. In the Lifting-line model, a 

horizontal-axis turbine is equivalent to a propeller with a negative bound circulation. The 

corresponding induced velocities, thrust, torque and power are also the negative of the 

propeller values. The velocity and force diagram at a particular turbine blade section is 

shown in Figure 2.10. Note that for both propeller and turbine, the induced velocities 

reduce the angle of attack and thus undermine the blade sectional performance.  
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Figure 2.10. Velocity and force diagram at a particular blade section of a turbine [28]. 

 

For both propeller (Figure 2.9) and turbine (Figure 2.10), the total velocity *V and 

the total flow angle iβ  can written as, 

( ) ( )2 2* * *
a a t tV V u r V uω= + + + +       (2.112) 

*
1

*tan a a
i

t t

V u
r V u

β
ω

−  +
=  + + 

       (2.113) 

Nondimensionalized by the free flow velocity in the rotor reference frame fV , the thrust 

coefficient TC , torque coefficient QC  and power coefficient PC  are defined as, 

( )2 21
2

T

f

TC
V Rρ π

=         (2.114) 

( )2 31
2

Q

f

QC
V Rρ π

=         (2.115) 

( )3 21
2

Q
P Q

f

CQC C
JV R

πω λ
ρ π

= = =       (2.116) 
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where J  and λ  are two important nondimensionalized quantities that  describe the 

rotation speed and the free flow velocity ratio. The advance coefficient J  commonly 

used in propeller literature is defined as  

2
f

V
J

Rn
=           (2.117) 

where n is the rotation speed in rev per second, and 
2

n ω
π

=   

The tip speed ratio λ  commonly used in wind turbine literature is defined as 

f

R
V
ωλ =           (2.118) 

 

2.6.2 Induced Velocity by Helical Vortices 

In the Lifting line model, the rotor blades are represented by lifting lines with 

bound circulation and the shed vortex wake. For straight radial lifting lines, the bound 

circulation doesn’t induce any velocity along the same lifting line. For a rotor with 

uniform blade to blade angular spacing, the induced velocity on one lifting line caused by 

the bound circulations on the other lifting lines are cancelled because of symmetry. Thus 

the total induced velocities by bound circulation Γ  is zero. The induced velocities are 

caused by the shedding vortex γ  only. The induced velocities at cr  can be expressed as  

( ) ( ) ( )* ,
h

R

a c v a c v vr
u r r u r r drγ= ∫        (2.119) 

( ) ( ) ( )* ,
h

R

t c v t c v vr
u r r u r r drγ= ∫        (2.120) 

where the influence functions ( ),a c vu r r  and ( ),t c vu r r  are defined as the axial and 

tangential induced velocities at cr  caused by a unit-strength constant-radius constant-

pitch helical vortex wake which is shed from vr . In general, ( ),a c vu r r  and ( ),t c vu r r can 

be calculated numerically with some effort using the Biot-Savart law. Fortunately, for a 

constant-radius constant-pitch helical vortex wake with pitch angle wβ  , a closed form 

highly accurate analytical approximation was developed by Wrench [36]. 
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 For c vr r<  : 

( ) ( )0 1, 2
4a c v

c

Zu r r y Zyy F
rπ

= −       (2.121) 

( )
2

0 1,
2t c v

c

Zu r r y F
rπ

=         (2.122) 

For c vr r>  : 

( )
2

0 2,
2a c v

c

Zu r r yy F
rπ

= −        (2.123) 

( ) ( )0 2, 1 2
4t c v

c

Zu r r Zy F
rπ

= +        (2.124) 

Where  

( ) ( )

0.252 2 2
0 0

1 1.5 1.52 2 2
0 0

1 9 21 1 3 2 ln 1
2 1 1 24 11 1

y yU y UF
Zy y U Z Uy y

   + +− −  ≈ + + +    + − −  + +   

  

( ) ( )

0.252 2 2
0 0

2 1.5 1.52 2 2
0 0

1 9 21 1 1 3 2 1ln 1
2 1 1 24 11 1

y y yF
Zy y U Z Uy y

   + + −  ≈ − + +    + − −  + +   

 

( )
( ) ( )

2
0 2 2

02
0

1 1
exp 1 1

1 1

Z

y y
U y y

y y

 + − = + − + 
+ − 

 

  

tan
c

v w

ry
r β

=   

0
1

tan w

y
β

=  

In the limit of an infinite number of blades which resembles the actuator disk case, the 

influence functions are reduced to  

For c vr r<  : 

( ),
4 tana c v

v w

Zu r r
rπ β

=        (2.125) 

( ), 0t c vu r r =          (2.126) 
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For c vr r>  : 

( ), 0a c vu r r =          (2.127) 

( ),
4t c v

c

Zu r r
rπ

=         (2.128) 

Note that the equations for influence functions ( ),a c vu r r  and ( ),t c vu r r  in 

Kerwin’s paper [27] contain three typos. The current equations are checked with 

Kerwin’s PVL codes [37] and Epps’s OpenProp codes [38]. 

 

2.6.3 Blade Discretization 

For numerical calculation using the Lifting Line model, each blade is discretized 

into M panels extending from blade hub hr  to the blade tip R . Each panel can be 

modelled as a horseshoe element consisting of a bound circulation of strength Γ  and two 

free shedding vortex filament of strength ±Γ . The bound circulation of the thm  panel 

(m)Γ  is placed at the control point (m)cr , the two free shedding vortex filament of 

strength (m)Γ  and (m)−Γ are shed from the vortex point (m 1)vr +  and (m)vr , 

respectively  

Since the induced velocities are caused by the free shedding vortex only, the 

induced velocities at the control point of the thn  panel can be calculated using the 

discretized version of Equations (2.119) and (2.120). 

( ) ( ) ( )* *

1
( ) ,

M

a c a
m

u r n m u n m
=

= Γ ⋅∑       (2.129)  

( ) ( ) ( )* *

1
( ) ,

M

t c t
m

u r n m u n m
=

= Γ ⋅∑       (2.130) 

where *
au  and *

tu are the horseshoe influence functions 

( ) ( ) ( )( ) ( ) ( )( )* , , 1 ,a a c v a c vu n m u r n r m u r n r m= + −     (2.131) 

( ) ( ) ( )( ) ( ) ( )( )* , , 1 ,t t c v t c vu n m u r n r m u r n r m= + −     (2.132) 



50 

 

 

As shown in Equation (2.121) to Equation (2.128) the influence functions au  and 

tu are functions of helical wake pitch angle wβ . Under a moderately loaded rotor 

assumption, the helical wake pitch is aligned with the total velocity at the blade, i.e. the 

helical wake pitch angle wβ  is equal to the total flow angle iβ . Using Epps’s wake model 

[28], each horseshoe element panel is assumed to form a single piece of helical wake with 

constant pitch and constant radius, although helical wakes from different panels may 

have different helical pitches. On the thm  panel, the helical pitch is ( ) ( )tanc ir m mβ  at 

the control point. The tangent of the helical wake pitch angle tan wβ  is equal to 

( ) ( )
( )

tanc i

v

r m m
r m

β
 at vortex point ( )vr m and equal to ( ) ( )

( )
tan

1
c i

v

r m m
r m

β
+

 at vortex point 

( )1vr m +  as shown in Figure 2.11.  

 

Figure 2.11. Discretized lifting line model of rotor (a) and the detailed wake model (b) [28]. 
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To increase computational efficiency, cosine spacing is used for placing the 

vortex and control points. The radius of the lower vortex point of the thm  panel ( )vr m  

and radius of the control point of thn  panel ( )cr n  are  

( ) ( )( )1 cos 2 1v hr m r h m δ = + − −        (2.133) 

( ) ( )( )1 cos 2 1c hr n r h n δ = + − −        (2.134) 

where 
2

hR rh −
=  and 

2M
πδ =  

 

2.6.4 Hub Model 

In addtion to the rotor blade, the rotor hub can also be modelled in the Lifting line 

framework. The hub is treated as an infinitely long cylindar. Under the same potential 

flow assumption in the Lifting line theory, the flow field around the hub can be calculated 

using the method of image vortex. To satisfy the boundary condition that the total normal 

velocity on the hub surface is zero, an image vortex with opposite strength is placed 

within the hub circle at raidus ir  on the same radial line of the real vortex. For a rotor 

with hub radius hr , the image vortex of the real vortex at radius r  is placed at  

2
h

i
rr
r

=           (2.135) 

 

Figure 2.12. Schematic of the hub image vortex [27]. 
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Thus, the induced velocity caused by the hub image vortex at control point of thn  panel 

( )cr n  are 

( ) ( ) ( )* *
_ _

1
( ) ,

M

a hub c a hub
m

u r n m u n m
=

= Γ ⋅∑      (2.136) 

( ) ( ) ( )* *
_ _

1
( ) ,

M

t hub c t hub
m

u r n m u n m
=

= Γ ⋅∑      (2.137) 

where *
_a hubu  and *

_t hubu are the corresponding hub horseshoe influence functions 

( ) ( ) ( ) ( ) ( )
2 2

*
_ , , ,

1
h h

a hub a c a c
v v

r ru n m u r n u r n
r m r m

   
= −      +   

   (2.138) 

( ) ( ) ( ) ( ) ( )
2 2

*
_ , , ,

1
h h

t hub a c a c
v v

r ru n m u r n u r n
r m r m

   
= −      +   

   (2.139) 

And tan wβ  for the hub image vortex of the two free shedding vortices at the thm  panel 

are equal to ( ) ( )
( )2

tan
/

c i

h v

r m m
r r m

β
 and ( ) ( )

( )2

tan
/ 1

c i

h v

r m m
r r m

β
+

. The total induced velocities at the 

control point of the thn  panel ( )cr n are the sum of the effect of the real vortex calculated 

in Equations (2.129), (2.130) and the effect of the hub image vortex calculated in 

Equations (2.136), (2.137). 

Besides causing additional induced velocities, the hub vortex can also cause 

additional drag due to the low pressure region created when the concentrated hub vortex 

sheds into the flow. Using the classical Rankine vortex model, it can be shown that the 

drag force hubF  is approximately  

( )2
0

0

ln 3
16

h
hub

rF Z
r

ρ
π

 
= + Γ 

 
       (2.140) 

where 0r is the hub vortex core radius and 0Γ  is the bound vorticity at the hub surface [39] 
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2.6.5 Optimum Circulation Distribution for a Propeller 

For a specific inflow condition, blade number and rotor diameter, an optimum 

propeller is the one that delivers the desired thrust while requires minimum torque from 

the engine. To design an optimum propeller is to find the optimum loading (i.e. bound 

circulation) distribution such that the thrust coefficient TC  is equal to the desired value 

while the torque coefficient QC  is minimized. 

2.6.5.1 PVL Method 

This constrained optimization problem was first solved by Betz [23] for uniform 

inflow and later extended by Lerbs [31] to allow for non-uniform inflow. Their approach 

is based on a physical variational principle that if the propeller is truly optimum, the 

incremental efficiency * fTV
Q

δ
η

δ ω
=  associated with an increment loading δΓ anywhere 

along the blade stays the same. This physical based statement about the optimum 

propeller has been validated mathematically using calculus of variations [40]. Assuming 

there is no tangential inflow velocity, by applying Munk’s theorem to the far downstream, 

the incremental trust Tδ and incremental torque Qδ  due to an incremental loading 

( )rδΓ are :  

( ) ( )*2 tT r u r rδ ρ ω δ = + Γ         (2.141) 

( ) ( ) ( )*2a aQ V r u r r rδ ρ δ = + Γ        (2.142) 

For an optimum propeller, the incremental efficiency *η is a constant  

*
*

*

2 constant
2

f ft

a a

TV Vr u
Q V u r

δ ωη
δ ω ω

+
= = ⋅ =

+
     (2.143) 

Assume the induced velocities ( ) ( )*
a au r V r  and ( )*

tu r rω , 

( ) ( )
( )

( )
( )

2 2* * 2 2*
*

2 * 2* *

2 / tan
constant

tan ( )2 /
t t f f ft a

a a a i aa a a a

r u u r V V Vrr u V
r V u r V r V rV u u V

ω ω βωη
ω ω β

+ +  +  ≈ ⋅ = ⋅ = ⋅ =   +  + +  
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Thus, ( )
( )

tan ( )constant
tan

a

i f

r V r
r V

β
β

=       (2.144) 

Equation (2.144) is the ‘Lerbs Criterion’ [31] for the optimum propeller. If the 

axial inflow velocity is uniform and equal to the free flow velocity in the propeller 

reference frame i.e. ( )a fV r V= , the ‘Lerbs Criterion’ reduces to the well-known ‘Betz 

condition’ for the optimum propeller. 

( )
( )

tan
constant

tan i

r
r

β
β

=         (2.145) 

Assuming there is no tangential inflow velocity, ( )tan aVr
r

β
ω

= . ‘Betz condition’ 

[23] can be rewritten as  

/ constant
tan
a

i

V rω
β

= . For an uniform inflow velocity aV  and fixed rotational speedω , 

tan constantirβ =         (2.146) 

The helical vortex wake has a pitch of tan wrβ . Under a moderately loaded rotor 

assumption, the helical wake pitch angle wβ  is equal to iβ . Thus the ‘Betz condition’ 

indicates that an optimum propeller forms a constant pitch helical wake. It can be shown 

that the total induced velocity caused by a constant pitch helical wake is perpendicular to 

the total velocity *V  [27].     

The vortex lattice lifting line method code PVL developed by Kerwin [27, 37] is 

based on ‘Lerbs Criterion’ to find the optimum blade loading. The constant in the Lerbs 

criterion Equation (2.144) is a function of the desired thrust coefficient. If the constant is 

known, ( )tan i rβ can calculated based on ( )tan rβ  by Equation (2.144).  

From the velocity diagram (Figure 2.9), assuming there is no tangential inflow velocity 

0tV =  

*

*tan a a
i

t

V u
r u

β
ω

+
=

+
        (2.147) 

Through some algebraic manipulation, it can be rewritten as  
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* * tantan 1
tan

i
a t i au u V ββ

β
 

− = − 
 

       (2.148) 

In the discrete form,  

( ) ( ) ( ) ( ) ( ) ( )
( )

* *

1

tan
, , tan 1 1,

tan

M
i

a t i a
m

n
u n m u n m n m V n n M

n
β

β
β=

 
 − Γ = − =    

 
∑    (2.149) 

Using Equation (2.149), the bound circulation distribution ( )rΓ can be calculated based 

on ( )tan i rβ . After knowing ( )rΓ , the thrust coefficient TC  is calculated using Equations 

(2.108) and (2.114). The calculated TC  is then compared with the desired TC . The 

constant in Lerbs criterion is updated iteratively until the calculated TC  matches the 

desired TC . The corresponding ( )rΓ  is the optimum bound circulation distribution.  

2.6.5.2 Lagrange Multiplier Method 

Besides the classical Lerbs criterion, the optimum propeller blade loading 

distribution can also be found by using the Lagrange Multiplier method. Coney [41] 

implemented the Lagrange Multiplier method and developed the code PLL which later 

became the industry standard for preliminary marine propeller design. Epps [28] 

improved the code and rewrote it in Matlab that is available to the public as an open 

source code Openprop [38]. 

The Lagrange Multiplier method is a well-known constrained optimization 

method. In order to minimize the Torque Q  under the constrain that the thrust is equal to 

the specified value sT T= , the Lagrange function H with Lagrange multiplier 1λ  is 

defined as  

( )1 sH Q T Tλ= + −          (2.150) 

Both torque Q  and thrust T  are integral functions of the bound circulation ( )rΓ . 

After discretizing the blade into M  panels, the Lagrange function H  is a function of 

1M +  variables, i.e. ( )1Γ to ( )MΓ  and 1λ . The optimized result with constraint is 

achieved when  
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( )1

0, 0 1,2,H H i M
iλ

∂ ∂
= = =

∂ ∂Γ
        (2.151) 

This is a non-linear equation system with M+1 equations and M+1 variables, 

which can be solved interactively. Both Torque Q  and thrust T are functions of the 

induced velocity *
au  and *

tu which in turn depends on ( )rΓ . In the Epps’ Lagrange 

Multiplier method implementation, based on Equations (2.129) and (2.130), it is assumed 

that  

( ) ( )
*

* ,a
a

u u m i
i

∂
=

∂Γ
         (2.152) 

( ) ( )
*

* ,t
t

u u m i
i

∂
=

∂Γ
        (2.153) 

However, this is only an approximation since both ( )* ,au m i and ( )* ,tu m i  are functions of 

tan ( )w iβ  which in turn is a function of ( )iΓ . 

2.6.5.3 Interior Point Method 

The Interior Point methods is known for solving linear and nonlinear convex 

optimization problems with constraints. It is more flexible and robust than the classical 

Lagrange multiplier method. The typical procedure of implementing the Interior Point 

method is: 1) reduce the equality and inequality constraints into standard form by 

introducing slack variables; 2) replace the inequality constraints with logarithmic barrier 

terms in the objective function; 3) incorporate the equality constraints into the objective 

function using Lagrange multipliers; 4) apply Newton’s method to compute search 

directions; and 5) Solve the system iteratively. 

Instead of writing the Interior Point algorithm from scratch, a Matlab internal 

function fmincon is used. fmincon provides a collection of four different optimization 

algorithms (including Interior-point, Trust-region-reflective, SQP and Active-set method) 

in order to solve the general constrained nonlinear optimization problem in the format of  
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( )

( )
( )

0
0

Find min such that
eq

x

eq

c x
c x

f x A x b
A x beq
lb x ub

 ≤
 =

⋅ ≤
 ⋅ =
 ≤ ≤

    

where nonlinear functions ( )c x  and ( )eqc x are used for setting nonlinear constraints, 

matrices A  and eqA  are used for setting linear constrains. And lb  and ub  are the upper 

and lower bound of the optimization variable x  . 

fmincon with the Interior Point method is used in this study for both propeller 

optimization and horizontal-axis turbine optimization which will be discussed later. The 

same as the Lagrange multiplier methods, the rotor blade is first discretized into M  

panels. However, instead of using bound circulation ( )iΓ , ( )tan i iβ  is used as the 

optimization variable. This is because tan iβ  is closely related to tan β and thus it is 

much easier to specify a reasonable initial guess, and lower and upper bound. 

For propeller optimization, the initial guess of tan iβ is set to be tan / acβ η . acη  is 

the propeller efficiency estimated using Actuator Disk theory [27] and it is equal to  

 *

2
1 1

A
ac

A a T

V
V u C

η = =
+ + +

       (2.154) 

The lower bound of tan iβ is set to tan β since the induced velocity always increases the 

angle of attack (Figure 2.9). The upper bound of tan iβ  is set to be 5 tan β which is 

equivalent to an efficiency of 0.2 estimated using actuator disk theory. Most of the 

propeller operates far above this efficiency. However, if extra features are included (e.g. 

hub model), the lower bound may need to be decreased to ensure the interior point 

method is able to converge to the optimized value.  

The objective function is QC  and the equality constraint is TC . During each 

iteration, the circulation distribution ( )iΓ  is first calculated based on the value of 

( )tan i iβ  by solving Equation (2.149). The QC  and TC  are calculated based on the 

circulation distribution ( )iΓ  using the discrete form of Equations (2.108) and (2.109). 
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2.6.6 Optimum Circulation Distribution for Horizontal-axis Turbine 

Compared to a propeller, an optimum horizontal-axis turbine is the one, which 

generates maximum torque with no requirement on the thrust. To design an optimum 

turbine is to find the optimum loading (i.e. bound circulation) distribution such that the 

magnitude of torque coefficient QC  is maximized. As discussed previously, a horizontal-

axis turbine is the same as a propeller in the Lifting line frame work except that the 

bound circulation and thus the corresponding induced velocities, thrust, torque, power, 

and thrust, torque, power coefficients are all negative using the sign convention for 

propellers. Thus to maximize the magnitude of QC  is to minimize the value of QC  since 

QC  is negative for a turbine. 

2.6.6.1 Actuator Disk Models 

The simplest model of a horizontal-axis turbine is an actuator disk. As shown in 

Figure 2.13, the actuator disk slows the flow from the far upstream axial velocity  1V  to 

the far down stream axial velocity 3V . The decrease of the kinetic energy is considered to 

be extracted by the turbine.  

 

Figure 2.13. 1D Actuator Disc model for horizontal-axis turbine [42]. 

Betz [22] showed that when the velocity at the actuator disk 2V  is equal to 1
2
3

V  

(which is equivalent to * 1
3a au V= −  in Figure 2.10), maximum power is extracted. The 
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maximum 16
27PC =  is known as the Betz Limit, and the corresponding thrust coefficient 

is 8
9TC = . The Betz limit is the maximum theoretical power coefficient that can be 

achieved. In practice, there are three major losses that lead to a lower power coefficient 

than the Betz limit. They are 1) the loss due to wake rotation 2) tip losses associated with 

a finite number of blade and 3) the loss due to viscous drag. 

The loss due to wake rotation can be modelled using a rotating actuator disk. 

Schmitz [30] considered this wake rotation and showed that when the total flow angle at 

the rotor plane is equal to 2/3 of the flow angle far upstream of the rotor plane (i.e. 

2
3iβ β=  in Figure 2.10), the output power is maximized. The maximum power 

coefficient can be calculated as  

( )

3
21

2
0

2sin
34

sinP
r rC d
R R

β
λ

β

 
     =    

   ∫       (2.155) 

Betz’s actuator disk model of the horizontal-axis turbine is an asymptotic analysis 

for a turbine with an infinite number of blades and infinite tip speed ratio. Schmitz’s 

rotating actuator disk model of the horizontal-axis turbine is an asymptotic analysis for a 

turbine with an infinite number of blades but a finite tip speed ratio.  

The Lifting line method is a much more realistic model than the actuator models. 

Both wake rotation and tip loss are automatically included in the formulation. The 

viscous drag force can be accounted for easily by using Equation (2.107). Unfortunately, 

the current wind turbine preliminary design still relies on the Blade Element Momentum 

(BEM) method that uses a rotating actuator disk model for the flow field analysis and 

blade element theory for the blade loading calculation. Blade element theory assumes 

there is no aerodynamic interaction between blade elements. Lifting Line method takes 

account of the aerodynamic interaction between blade elements automatically. In addition, 

the extra features like hub model can be incorporated into the lifting line model easily.  
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2.6.6.2 PVL Method 

As discussed in the propeller section, Lerbs criterion has been validated using the 

Calculus of Variations method to give an optimized circulation distribution ( )rΓ  that 

minimizes QC  for a specific thrust coefficient TC . By sweeping through all possible 

thrust coefficients TC  from -1 to 0 and comparing the minimized QC for each TC , the 

overall minimum QC  can be found. Thus the original PVL code for propeller design can 

be used directly without any modification for turbine design by specifying a range of 

negative TC  from -1 to 0 and searching for the overall minimum QC .  

2.6.6.3 Lagrange Multiplier Method 

Several studies [28, 43] have been conducted to find optimum turbine designs by 

simply setting the Lagrange multiplier 1λ  equal to 0 in order to get rid of the thrust 

constraint. However, the results are far from the values given by the Actuator Disk 

models because the approximation of the partial derivative in Equations (2.152) and 

(2.153) become poorer and invalid for the turbine optimization. Based on analysis of the 

General Momentum Theory that requires the induced velocity to be perpendicular to the 

total velocity, Epps [28] partially solved the turbine problem by enforcing the same 

perpendicularity requirement in the Lifting Line model regardless of the number of 

blades. As discussed by Epps, this ‘hard-wired’ implementation only works for uniform 

inflow.  

2.6.6.4 Interior Point Method  

Unlike the Lagrange Multiplier method with the approximation of partial 

derivatives, the Interior Point method can be used for the turbine optimization simply by 

specifying a no thrust constraint. The same as propeller optimization, each blade is first 

discretized into M panels.  The optimization variables are ( )tan i iβ . The initial guess of 

( )tan i iβ  is chosen to be ( )2tan
3

iβ 
 
 

based on the estimation of the General Momentum 
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theory. The upper bound of ( )tan i iβ is set to ( )tan iβ  since the induced velocity always 

increases the angle of attack (Figure 2.10). The lower bound is set to be zero. However, if 

extra features are included (e.g. hub model), the upper bound may need to be increased to 

ensure the interior point method is able to converge to the optimized value.  
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CHAPTER 3. GENERALIZED UNIFORMLY SPACED FLAT PLATE CASCADE 
MODEL RESULTS 

In this chapter, validations and case studies for the generalized uniformly spaced 

flat plate cascade model developed in Section 2.4 are presented. The pre-processing and 

post-processing procedure for using the model are given in Section 3.1. The Purdue 

transonic compressor introduced in Section 3.2 is used as the baseline geometry and flow 

condition for the validation and case studies in Section 3.3.  Three different aerodynamic 

mistuning patterns are investigated in detail to study their effect on the forced response, 

aeroacoustics and flutter of a non-uniformly spaced blade row.   

 

3.1 Pre-processing and Post-processing 

To use the generalized uniformly spaced flat plate cascade model, some pre-

processing and post-processing steps are needed. First, the non-uniformly spaced blade 

row with B  blades needs to be transformed to a generalized uniformly spaced blade row 

with N  blades by finer discretization in the tangential direction. During this process, 

N B−  imaginary blades are added. The case of the generalized uniformly spaced blade 

row with Blade 2 missing (discussed in Section 2.4) is one example that a non-uniformly 

spaced blade row with 3 blades is transformed to a generalized uniformly spaced blade 

row with 4 total blades where Blade 2 is an imaginary blade. The real blade and 

imaginary blade index need to be specified as input with the convention that the first 

blade is always a real blade.   

In addition, two inputs to the normal uniformly spaced flat plate cascade model 

LINSUB, space to chord ratio and excitation interblade phase angle need to be changed 

accordingly by using the total number of the blades N . The rest of the model inputs, 

such as stager angle, Mach number, and reduced frequency stay the same. 
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The direct solution of the generalized uniformly spaced model is the strength of 

each fundamental harmonic mode. Depending on the applications, the direct solution 

needs to be post-processed in different ways.  

For a forced response analysis, the unsteady loading distribution on each real 

blade is the quantity of interest.  Because of the linearity of the model, the contribution of 

each fundamental harmonic mode can be calculated independently. The total unsteady 

loading distribution is the summation of the contribution of all fundamental harmonic 

modes. 

For a flutter analysis, the unsteady loading and aerodamping due to blade 

vibration at all possible interblade phase angles are the quantities of interest. The 

unsteady loading and aerodamping are generally different from blade to blade due to non-

uniform spacing. As in the forced response analysis, the contribution of each fundamental 

harmonic mode is calculated independently first, and then summed together to obtain the 

total unsteady loading and aerodamping on each blade. However, the total aerodamping 

calculated in this way is referenced to the phase of vibration of the first blade. To check 

the stability of each blade, the phase of aerodamping on a certain blade needs to be 

corrected so that it refers to the phase of vibration of the specific blade. 

For an acoustic analysis, only the propagating (cut-on) pressure waves are 

considered. Each fundamental harmonic mode contains the cascade waves of the 

fundamental mode and higher scattering modes. Depending on the tangential wave 

number of the cascade waves, some of the associated pressure waves are cut-on and some 

are cut-off. The cut-on pressure waves are selected and their strength can be calculated 

based on the strength of the corresponding mode. 

 

3.2 Purdue Transonic Compressor 

The Purdue Transonic Compressor is a 1.5 stage axial compressor which 

represents the front stages of high-pressure compressor in an advanced aircraft engine. At 

the design operation condition, the rotation speed is 20000rpm, the mass flow rate is 9.57 

lbm/s and the maximum pressure ratio is 1.38. The compressor consists of an inlet guide 

vane (IGV) with 20 vanes, an integrally bladed rotor (IBR) with 18 blades, and a 
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downstream stator of 20 vanes. The compressor stage has a tip diameter of 12 inches and 

a constant hub-to-tip ratio of 2/3. The rotor blades have a Controlled Diffusion Airfoil 

(CDA) shape with a chord length of 1.8 inches to 2.0 inches from hub-to-tip. The IGV 

and stator vanes also have a CDA shape but have a constant chord length of 1.75 inches. 

Both IGV and stator vanes feature variable stagger angles and adjustable axial spacing. 

 

Figure 3.1. Purdue Transonic Compressor cross section. 

 

An ANSYS finite element analysis was performed to predict the IBR’s natural 

frequencies for different vibration modes [44]. The Campbell diagram for the rotor is 

shown in Figure 3.2. The resonant crossing indicates that at 17,000 rpm the wakes of the 

IGV excite the rotor at its 2nd bending natural frequency.  In addition, at the design speed 

of 20,000 rpm the predicted natural frequency of the first torsion mode is around 3074Hz.  
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Figure 3.2. Rotor Campbell diagram [16]. 

 

3.3 Validation and Case Studies 

The geometry and flow condition of the Purdue Transonic Compressor rotor is 

used as the baseline configuration in this study. Three different aerodynamically 

mistuned configurations were investigated using the generalized uniformly spaced flat 

plate cascade model in order to study the effect of different non-uniformly spaced 

patterns on the forced response, flutter and acoustic behavior of the rotor.  

The studies are performed at 90% span of the rotor, which corresponds to a radius 

of 5.8 inches. At this spanwise location, the stagger of the IGV is approximately 0o, while 

the stagger of the rotor is approximately 64o. The axial distance between IGV and rotor is 

0.78 inches. The transient operation condition at 17000rpm is used for the forced 

response analysis and corresponding acoustic analysis on the rotor. The design operation 

condition at 20000rpm is used for the flutter analysis on rotor with the first torsion mode. 

In order to comply with the flat plate cascade model, the geometry and flow field of in 

IGV-rotor stage was modified slightly. The modified geometry and flow field used as the 

input for the model are listed in Table 3.1. 
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Table 3.1. The modified geometry and flow conditions of Purdue transonic compressor IGV-rotor stage. 

Purdue transonic compressor 

 IGV Rotor 

Blade number 20 18 
Chord(in) 1.75 2 

Radius(in) 5.8 5.8 

Stagger angle (degree) 0.1 71.0 

Chordwise velocity (in/s) 3564 / 4192.9 10929.6 /12858 

Mach number 0.268 / 0.315 0.822 / 0.966 

Rotation speed (rad/s) 0 -1780.24 / -2094.4 

Inter-row spacing (in) 0.781 --------------------------- 

 

In Table 3.1, the first chordwise velocity and Mach number correspond to the 

lower rotational speed, 1780.24rad/s which is the 17000rpm transient operating condition 

used for the forced response analysis. The second chordwise velocity and Mach number 

correspond to the higher rotational speed, 2094.4 rad/s which is the 20000rpm design 

operating condition used for the flutter analysis.   

The three different aerodynamic mistuned configurations used in the analysis are 

the rotor blade with alternating spacing, with sinusoidal spacing and with one blade 

missing.  Unwrapping the rotor at 90% span into a 2D flat plate cascade, the rotor blade 

positions in the tangential direction are shown in Figure 3.3 for the aerodynamic tuned 

(uniform spacing) and the three aerodynamic mistuned configurations. 
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Figure 3.3. Real blades positions of different rotor blade row configurations in the generalized uniformly 
spaced cascade with 108 total blades. 

 

In order to use the generalized uniformly spaced cascade model, the rotor blade 

row is discretized into 108 total blades. With the convention that the first blade is always 

a real blade, the uniformly spaced blade row has real blades at blade index [1     7    13    

19    25    31    37    43    49    55    61    67    73    79    85    91    97   103]. The 

alternating spacing blade row has a blade spacing ratio of 1:3, and thus the real blades are 

at blade index [1     4    13    16    25    28    37    40    49    52    61    64    73    76    85    

88    97   100]. The sinusoidal spacing blade row has an average blade spacing of 6 and 2 

cycles of sinusoidal wave with amplitude of 4. Rounded to the 108 discretized total blade 

positions, the real blades of the sinusoidal spacing blade row are at blade index [1     7    

16    26    35    42    47    50    52    55    61    70    80    89    96   101   104   106]. The 

blade row with blade 18 missing has real blades at blade index [1     7    13    19    25    31    

37    43    49    55    61    67    73    79    85    91    97].  

In addition, a systematic parametric study is conducted to show the effect of the 

excitation nodal diameter, Mach number and reduced frequency on the unsteady 

aerodynamic response of the blade row with different non-uniform spacing patterns. 
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3.3.1  Validation 

Since the generalized uniformly spaced flat plate cascade model(Generalized 

LINSUB) is developed in the same theoretical frame work as the normal uniformly 

spaced flat plate cascade model LINSUB, the first validation is to compare the results 

from the two models for the baseline configuration of the Purdue transonic compressor 

rotor (Table 3.1). The unsteady loading on rotor due to both internal excitation and 

external excitation are calculated and compared. The surface p∆  distributions caused by 

the blade bending vibration and IGV wake excitation are shown in Figure 3.4 and Figure 

3.5, respectively.  

  

Figure 3.4 Comparison of the surface p∆ distributions caused by blade bending vibration  

  

Figure 3.5. Comparison of the surface p∆  distributions caused by IGV wake excitation. 
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The excellent agreement between the results by the two models shows that the 

generalized uniformly spaced flat plat cascade model (Generalized LINSUB) can be 

reduced to the normal uniformly spaced flat plate cascade models LINSUB successfully.  

The second validation is to compare the unsteady loading on the alternating spacing blade 

row calculated by Generalized LINSUB and Scott Sawyer’s Detuned Cascade model [4]. 

Scott Sawyer’s Detuned Cascade model combines two normal uniformly spaced cascade 

models in order to calculate the unsteady aerodynamic performance of a detuned cascade. 

It treats the two adjacent blades as a single symmetry group, and thus its application is 

limited to the blade row with alternating spacing only. Depending on the spacing to the 

adjacent blades, the blades in the cascade with alternating spacing can be categorized into 

two different types. The surface p∆  distribution on type A blade and type B blade caused 

by blade bending vibration are shown in Figure 3.6 and Figure 3.7, respectively. Due to 

the limitation of Scott Sawyer’s Detuned Cascade model, only ten vortex points are 

specified along the blade.  

  

Figure 3.6. Comparison of the surface p∆  distribution on type A blades caused by blade bending vibration. 
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Figure 3.7. Comparison of the surface p∆  distribution on type B blades caused by blade bending vibration. 

 

The excellent agreement of these results provides an additional validation for the 

generalized uniformly spaced flat plate cascade model developed in this study. 

 

3.3.2  Forced Response Analysis 

At 17000rpm, the wake of IGV excites the second bending mode of the rotor. The 
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number along the rotor blade is 0.82Ma = . Using the generalized uniformly spaced flat 

plate cascade model, the surface p∆  distribution on each blade is calculated for the three 

non-uniform spacing patterns and compared with the surface p∆  distribution for the 
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Figure 3.8 shows the comparison between the blade row with alternating spacing 

and the blade row with uniform spacing. The blades of an alternating spacing blade row 

can be categorized into two types. Figure 3.8 shows the blade row with alternating 

spacing has two types of surface p∆ distribution. Both of them are different from the 
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Figure 3.8. Comparison of the surface p∆ distribution on each blade of the blade row with alternating 
spacing and the blade row with uniform spacing. 

 

Figure 3.9 shows the comparison between the blade row with sinusoidal spacing 

and the blade row with uniform spacing. Since the spacing follows a sinusoidal wave 

with two cycles in the circumferential direction, the surface p∆ distribution should also 

contain two periods. As expected, there are 18 / 2 9= different types of surface p∆

distribution shown in Figure 3.9. The variation of surface p∆  distribution on the blades 

of a sinusoidal spacing blade row are larger than that of the alternating spacing blade row.   
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Figure 3.9. Comparison of the surface p∆  distribution on each blade of the blade row with sinusoidal 
spacing and the blade row with uniform spacing. 

 

Figure 3.10 shows the comparison between the blade row with one blade missing 
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symmetry of the whole blade row is broken. The unsteady loadings on the each blade are 

all different from one another. However, since there is only one blade missing, the 

unsteady loading on most of the blades are close to the value from the uniformly spaced 

blade row.   
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Figure 3.10. Comparison of the surface p∆ distribution on each blade of the blade row with one blade 
missing and blade row with uniform spacing. 
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spacing as shown in Figure 3.12. The standard deviation is higher on the blade row with 

sinusoidal spacing than the blade row with alternating spacing. From Figure 3.13, the 

average unsteady loading on the blade row with one blade missing is very close to the 

value on the uniformly spaced blade row. The corresponding standard derivation is also 

smaller than the value on the blade row with alternating spacing and the blade row with 

sinusoidal spacing. Regarding the effect of excitation nodal diameter on the unsteady 

loading on the non-uniformly spaced blade rows, the results shows the general trend that 

the higher the excitation nodal diameter, the lower the average unsteady loading and 

smaller the standard deviation. 

 

Figure 3.11. Comparison of the average and standard deviation of surface p∆   distribution for blade row 
with alternating spacing and blade row with uniform spacing at different excitation nodal diameters.  

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

A
bs

(∆
p)

Chordwise postion z/c

 Average ND=1
 Uniform spacing ND=1
 Average ND=10
 Uniform spacing ND=10
 Average ND=20
 Uniform spacing ND=20

Unsteady loading on rotor with alternating spacing



75 

 

 

 

Figure 3.12. Comparison of the average and standard deviation of surface p∆  distribution for blade row 
with sinusoidal spacing and blade row with uniform spacing at different excitation nodal diameters. 

 

Figure 3.13. Comparison of the average and standard deviation of surface p∆  distribution for blade row 
with one blade missing and blade row with uniform spacing at different excitation nodal diameters. 
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3.3.2.2  Effect of Mach Number  

The blade surface p∆  distributions due to wake excitation at three different Mach 

numbers 0.1,0.5,0.82Ma =  are shown in Figure 3.14 for the blade row with alternating 

spacing, in Figure 3.15 for the blade row with sinusoidal spacing and in Figure 3.16 for 

the blade row with one blade missing. These figures show that the average unsteady 

loading on non-uniformly spaced blade rows are generally higher than uniformly spaced 

blade row on most of the blade. The unsteady loading standard deviation on the blade 

row with sinusoidal spacing is higher than the other two types of non-uniformly spaced 

blade rows. From Figure 3.16, the average unsteady loading on the blade row with one 

blade missing is very close to the value on the uniformly spaced blade row. The 

corresponding standard derivation is also smaller than the value on the blade row with 

alternating spacing and the blade row with sinusoidal spacing. There is no clear trend on 

how the Mach number affects the unsteady loading on the non-uniformly spaced blade 

rows. However, on the blade rows with alternating spacing and sinusoidal spacing, the 

highest average unsteady loading occurs at a medium Mach number.  

 

Figure 3.14. Comparison of the average and standard deviation of surface p∆  distribution for blade row 
with alternating spacing and blade row with uniform spacing at different Mach numbers.  
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Figure 3.15. Comparison of the average and standard deviation of surface p∆  distribution for blade row 
with sinusoidal spacing and blade row with uniform spacing at different Mach numbers. 

 

Figure 3.16. Comparison of the average and standard deviation of surface p∆  distribution for blade row 
with one blade missing and blade row with uniform spacing at different Mach numbers. 
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3.3.2.3  Effect of Reduced Frequency 

The effect of reduced frequency on the surface p∆  distributions on the non-

uniformly spaced blade rows are shown in Figure 3.17, Figure 3.18 and Figure 3.19. 

Generally, the average unsteady loading on the non-uniformly spaced blade rows are 

higher than the value on uniformly spaced blade row. The average unsteady loading on 

the blade row with one blade missing is very close to the value on the uniformly spaced 

blade row. The unsteady loading standard deviations are the highest on the blade row 

with sinusoidal spacing and are the lowest on the blade row with one blade missing. 

Regarding the effect of reduced frequency on the unsteady loading on the non-uniformly 

spaced blade rows, the general trend is that the higher the reduced frequency, the lower 

the average unsteady loading and the smaller the standard deviation.    

 

Figure 3.17. Comparison of the average and standard deviation of surface p∆  distribution for blade row 
with alternating spacing and blade row with uniform spacing at different reduced frequencies. 
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Figure 3.18. Comparison of the average and standard deviation of surface p∆ distribution for blade row 
with sinusoidal spacing and blade row with uniform spacing at different reduced frequencies. 

 

Figure 3.19. Comparison of the average and standard deviation of surface p∆ distribution for blade row 
with one blade missing and blade row with uniform spacing at different reduced frequencies. 
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3.3.3  Aeroacoustics Analysis 

The aeroacoustics analysis is done at the transient operation condition of 

17000rpm, the same as the forced response analysis. The propagating pressure waves 

caused by the IGV wake and rotor interaction are calculated using the generalized 

uniformly spaced flat plate cascade model. The IGV wake excitation has nodal diameter 

20ND = . The excitation frequency in the rotor reference frame is 0 20 17000 rpmω = ×

=5667Hz.  

For a uniformly spaced blade row, the output pressure waves have the same 

frequency as the excitation frequency, and a series of nodal diameters due to the 

scattering effect of the blade row. As derived in Equation (2.74), the output pressure 

wave nodal diameter exND ND nB= − , where B is the blade number and n can be any 

integer. For a non-uniformly spaced blade row, the output pressure waves have all 

possible nodal diameters due to the breakdown of the symmetry.  By examining the axial 

wave number, the output pressure waves with ND=-8 to +83 are the propagating modes. 

The output pressure waves have the same frequency as the excitation frequency in the 

rotor reference frame. However due to the Doppler shifting effect, from Equation (2.102) 

the frequency in the stationary reference frame is 0s NDω ω= − Ω , where Ω is the rotor 

rotational speed. 

The upstream going pressure wave and downstream going pressure wave 

amplitude of the propagating modes for the different non-uniformly spaced blade rows 

and at different excitation nodal diameters are plotted with the results from the uniformly 

spaced blade row in order to analyze the acoustic behavior of the non-uniformly spaced 

blade rows under the excitation of different nodal diameters. For the baseline condition, 

the IGV wake excitation has 20ND = . The corresponding spectrum of the propagating 

upstream going pressure wave and downstream going pressure wave are shown in Figure 

3.20. The spectrum of the propagating pressure waves to a wake excitation with 10ND =  

and 1ND =  are shown in Figure 3.21 and Figure 3.22. As expected, the acoustic energy 

spreads out over more frequency components for the non-uniformly spaced blade row 

than the uniformly spaced blade row. As shown in Figure 3.3, the uniformly spaced blade 
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row has a symmetry group of 1 blade. The blade row with alternating spacing has a 

symmetry group of 2 blades. The blade row with sinusoidal spacing has symmetry group 

of 9 blades since it contains two periods. The symmetry is totally broken down for the 

blade row with one blade missing. In general, the blade with fewer symmetry groups has 

less symmetry, and thus contains more fundamental harmonic modes and has more 

frequency components.  

In addition, the blade row with one blade missing has a similar spectrum as the 

blade row with uniform spacing, except there are many very weak scattered modes. This 

is because all the remaining blades of the blade row with one blade missing are at the 

same position as the uniformly spaced blade row.  The blade row with sinusoidal spacing 

has the largest spacing variation and thus the acoustic energy spreads more uniformly 

over the spectrum. Thus the non-uniformly spaced blade row with larger spacing 

variation tends to generate a more broadband-like noise than the typical discrete tone 

noise generated by the uniformly spaced rotor row and wake interaction. Comparing 

Figure 3.20, Figure 3.21 and Figure 3.22, it also shows that in general the higher wake 

excitation nodal diameter ND, the lower the strength of the output pressure wave over the 

spectrum.  
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Figure 3.20. The propagating upstream going pressure wave and downstream going pressure wave 
spectrum due to wake of ND=20. 
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Figure 3.21. The propagating upstream going pressure wave and downstream going pressure wave 
spectrum due to wake of ND=10.  
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Figure 3.22. The propagating upstream going pressure wave and downstream going pressure wave 
spectrum due to wake of ND=1. 
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3.3.4  Flutter Analysis 

The flutter analysis is done for the first torsion mode (3074Hz) of the rotor blade 

at the operating condition. The design rotational speed is 20000rpm. The reduced 

frequency 3.0k =  and Mach number along the blade 0.966Ma = . 

The unsteady moment due to blade torsional vibration ( )Abs Bα  and ( )Im Bα  on 

each blade are calculated for the non-uniformly spaced blade rows at all possible 

interblade phase angles. As shown in Equation (2.12), the aerodamping for a torsional 

vibration mode aeroCα  is equal to ( )Im Bα

ω
− . Thus a positive ( )Im Bα  indicates a negative 

aerodamping which leads to a possible unstable condition. When calculating ( )Im Bα , the 

phase of unsteady moment on the blade other than the first blade needs to be shifted so 

that it refers to the phase of excitation on the specific blade. In this way, the aerodamping 

is calculated in the correct context in order to indicate possible flutter unstable conditions 

for each blade. 

The unsteady moment ( )Abs Bα  and ( )Im Bα  on each blade of the blade row with 

alternating spacing is shown in Figure 3.23. The blade row with alternating spacing has a 

symmetry group of 2 blades, and thus there are two different unsteady loading patterns. 

Compared with the uniformly spaced blade row, one type of the blades (Blade 

2,4,6,8,10,12,14,16,18) has lower unsteady loading and lower aerodamping at almost all 

interblade phase angles. The other type of blades (Blade 1,3,5,7,9,11,13,15,17) has higher 

unsteady loading and higher aerodamping at interblade phase angle from 0 degree to 120 

degrees, but lower unsteady loading and lower aerodamping for the other interblade 

phase angles.  
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Figure 3.23. The unsteady moment ( )Abs Bα  and ( )Im Bα  on each blade of the blade row with 
alternating spacing. 

 

The unsteady moment ( )Abs Bα  and ( )Im Bα  on each blade of the blade row with 

one blade missing is shown in Figure 3.24. The results are very similar to the values on 

blades of the uniformly spaced blade row, except the immediate adjacent blades to the 

missing blade 18, i.e. Blade 1 and Blade 17. Blade 1 has the most significant difference 

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Blade1
 Blade2
 Blade3
 Blade4
 Blade5
 Blade6
 Blade7
 Blade8
 Blade9
 Blade10
 Blade11
 Blade12
 Blade13
 Blade14
 Blade15
 Blade16
 Blade17
 Blade18
 Uniform spacing

A
bs

(B
α
)

Interblade phase angle (deg)

Unsteady loading on rotor with alternating spacing

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2  Blade1
 Blade2
 Blade3
 Blade4
 Blade5
 Blade6
 Blade7
 Blade8
 Blade9
 Blade10
 Blade11
 Blade12
 Blade13
 Blade14
 Blade15
 Blade16
 Blade17
 Blade18
 Uniform spacingIm

(B
α
)

Interblade phase angle (deg)



87 

 

 

from the value on the blade of a uniformly spaced blade row. It has higher unsteady 

loading and higher aerodamping at the interblade phase angle from 0 degree to 120 

degrees, and lower unsteady loading and lower aerodamping at the rest of interblade 

phase angles. 

 

 

Figure 3.24. The unsteady moment ( )Abs Bα  and ( )Im Bα  on each blade of the blade row with one 
blade missing. 
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The unsteady moment ( )Abs Bα  and ( )Im Bα on each blade of the blade row with 

sinusoidal spacing is shown in Figure 3.25. The blade row with sinusoidal spacing has a 

symmetry group of 9 blades, and thus there are nine different unsteady loading patterns. 

The unsteady moment and aerodamping variation from blade to blade are larger than the 

other two non-uniformly spaced blade rows.  

In general, most blades have lower unsteady loading and lower aerodamping for 

most of the interblade phases, except that Blade 4, 5, 6 and Blade 13, 14, 15 have higher 

unsteady loading and higher aerodamping at interblade phase angles from 0 degree to 120 

degree. The feature of higher unsteady loading and higher aerodamping at interblade 

phase angles from 0 degree to 120 degrees also occurs on Blade 1,3,5,7,9,11,13,15,17 of 

the blade row with alternating spacing and Blade 1 of the blade row with blade 18 

missing. Examining the positions of these blades in Figure 3.3 shows that they all have 

the common feature that the blade on their left is farther away from them than the blade 

on their right.  



89 

 

 

 

 

Figure 3.25. The unsteady moment ( )Abs Bα  and ( )Im Bα  on each blade of the blade row with 
sinusoidal spacing. 
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varying reduced frequency ( 1.0, 3.0, 15k = ) shows two more unstable cases. As shown 

in Figure 3.26, Blade1,3,5,7,9,11,13,15,17 of the blade row with alternating spacing are 

unstable at an interblade phase angle of 180 degrees when 0.966Ma =  and 1.0k = . As 

shown in Figure 3.27, when 0.1Ma =  and 3.0k = , for a blade row with sinusoidal 

spacing, Blade 7 and Blade 16 are unstable at interblade phase angles of 60, 80 and 100 

degrees, Blade 8 and Blade 17 are unstable at interblade phase angles of 140 and 160 

degrees, and Blade 9 and Blade 18 are unstable at interblade phase angles of 160 and 180 

degrees. 

 

Figure 3.26. ( )Im Bα on each blade of the blade row with alternating spacing when               

0.966Ma =  and 1.0k = . 
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Figure 3.27 ( )Im Bα on each blade of the blade row with sinusoidal spacing when                       

0.1Ma =  and 3.0k =  
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from the values on the uniformly spaced blade row at most of the interblade phase angles. 

The blade row with sinusoidal spacing has the largest standard deviation of the unsteady 

loading and aerodamping. The blade row with one blade missing has the smallest 

standard deviation of the unsteady loading and aerodamping.  

 

 

 

Figure 3.28. The average and standard deviation of ( )Abs Bα  and ( )Im Bα on the blade row with 
alternating spacing at different Mach numbers. 
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Figure 3.29. The average and standard deviation of ( )Abs Bα  and ( )Im Bα on the blade row with 
sinusoidal spacing at different Mach numbers. 
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Figure 3.30. The average and standard deviation of ( )Abs Bα  and ( )Im Bα on the blade row with one 
blade missing at different Mach numbers. 
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3.3.4.2  Effect of Reduced Frequency  

The effect of reduced frequency is shown in Figure 3.31, Figure 3.32 and Figure 

3.33 for the three non-uniformly spaced blade rows. In general, the higher the reduced 

frequency, the larger the average unsteady loading and the average of the aerodamping. 

The standard deviation of the unsteady loading and aerodamping also increase with the 

reduced frequency. Similar to the results at different Mach numbers, for the blade rows 

with alternating spacing and sinusoidal spacing, the average unsteady loading and 

average aerodamping can be significantly different from the values on the uniformly 

spaced blade row at most of the interblade phase angles. The blade row with sinusoidal 

spacing has the largest standard deviation for the unsteady loading and aerodamping. The 

blade row with one blade missing has the smallest standard deviation for the unsteady 

loading and aerodamping.  

  



96 

 

 

 

 

Figure 3.31. The average and standard deviation of ( )Abs Bα  and ( )Im Bα on the blade row with 
alternating spacing at different reduced frequency. 
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Figure 3.32. The average and standard deviation of ( )Abs Bα  and ( )Im Bα on the blade row with 
sinusoidal spacing at different reduced frequency. 
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Figure 3.33. The average and standard deviation of ( )Abs Bα  and ( )Im Bα on the blade row with one 
blade missing at different reduced frequency. 
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3.4  Summary 

In this chapter, the generalized uniformly spaced flat plate cascade model is first 

validated by the uniformly spaced flat plate cascade model LINSUB and Sawyer’s 

Detuned Cascade model. Case studies based on the geometry and flow condition of the 

Purdue Transonic Compressor rotor are then conducted to study the effect of different 

aerodynamic mistuning configurations on the forced response, flutter and acoustic 

behavior of the rotor at different excitation nodal diameters, Mach number and reduced 

frequency. The three different non-uniformly spaced patterns used in the analysis are the 

rotor blade with alternating spacing, with sinusoidal spacing and with one blade missing. 

Forced response analysis shows that the unsteady loading on the rotor due to the 

excitation of the IGV wake is different from blade-to-blade for a non-uniformly spaced 

blade row. The average unsteady loading on the three non-uniformly spaced blade rows 

are generally higher than the value on the blade row with uniform spacing over most of 

the blade chord and for most of the flow conditions. The standard deviation of the 

unsteady loading is the highest for the blade row with sinusoidal spacing, and is the 

lowest for the blade row with one blade missing. Parametric study shows that the higher 

the excitation nodal diameter and the higher the reduced frequency, the lower the average 

unsteady loading and smaller the standard deviation of the unsteady loading on the 

aerodynamically mistuned blade row. There is no clear trend on how the Mach number 

affects the unsteady loading on the aerodynamically mistuned blade row.  

Acoustic analysis shows that the acoustic energy of the propagating pressure 

waves generated on the rotor due to the excitation of the IGV wake spread out over more 

frequency components for the non-uniformly spaced blade row than the uniformly spaced 

blade row. The spectrum comparison among the blade rows with different 

aerodynamically mistuned patterns shows that the non-uniformly spaced blade row with 

larger spacing variation tends to generate a more broadband-like noise than the typical 

discrete tone noise generated by the uniformly spaced rotor row. Parametric study shows 

that in general the higher the wake excitation nodal diameter ND, the lower the strength 

of the output pressure wave over the spectrum. 
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Flutter analysis shows that blades on a non-uniformly spaced blade row 

experience different unsteady loading and aerodamping from the blades on a uniformly 

spaced blade row. Some blades with a non-uniformly spaced blade row may become 

unstable at certain interblade phase angles and under certain operating conditions when 

the corresponding uniformly spaced blade row has no flutter problem. The average 

unsteady loading and the average aerodamping of a non-uniformly spaced blade row can 

be significantly different from the values on the uniformly spaced blade row at most of 

the interblade phase angles. The blade row with sinusoidal spacing has the largest 

standard deviation of the unsteady loading and aerodamping. Parametric study shows that 

a higher reduced frequency leads a larger average and standard deviation of unsteady 

loading and aerodamping, while there is no clear trend on the effect of Mach number. 
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CHAPTER 4. MULTISTAGE INTERACTION MODEL RESULTS 

In this chapter, validations and case studies for the multistage interaction model 

developed in Section 2.5 are presented. The pre-processing and post-processing 

procedure to use the multistage interaction model are given first in Section 4.1 and 

Section 4.2. The validation is then conducted for both forced response analysis and flutter 

analysis in a multistage environment by comparing with the results from Hall & 

Silkowski’s work in Section 4.3. Based on the geometry and flow conditions of the 

Purdue 3-Stage Research Compressor introduced in Section 4.4, a series of case studies 

are done in Section 4.5 to investigate the multistage interaction effect (by varying inter-

row spacing and vane clocking positions) on the forced response, flutter and aeroacoustic 

behavior of the embedded rotor row.  

 

4.1  Pre-processing  

Besides the geometry and flow condition of each blade row, initial excitations and 

involved spinning modes need to be given as inputs to the multistage interaction model. 

Due to the scattering effect, a single mode initial excitation is scattered into an infinite set 

of spinning modes at each blade row. Involving an infinite set of spinning modes is 

certainly not feasible for a numerical study. Thus important modes need to be specified in 

the input in order to be included in the multistage analysis.  

As discussed in Section 2.5.3, a spinning mode is characterized by its unique 

frequency and nodal diameter, which are in turn determined by the group of scattering 

indices ( )1 2 3, ,n n n . The initial excitation mode is the fundamental spinning mode, which 

corresponds to scattering indices ( )0, 0, 0 . When choosing the scattering indices, the 

fundamental mode should always be included and then the modes with lower nodal 
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diameter should be chosen first, since the lower the nodal diameter, the more likely the 

mode is cut-on. In addition, the set of modes should also be chosen to ensure the 

connectivity of each mode to the fundamental mode. Usually a “symmetric” set of 

scattering indices is recommended. For example, one can start with 1, 0, 1n = −  for each 

blade row which gives 3 3 3 27× × =  different ( )1 2 3, ,n n n  spinning modes for a three 

blade rows system. Then the scattering indices is increased to 2, 1, 0, 1, 2n = − −  which 

gives 5 5 5 125× × =  different ( )1 2 3, ,n n n  spinning modes. The range of the scattering 

indices should be increased until the convergence is achieved, i.e. when including the 

additional modes does not change the strengths of current modes significantly.  

The initial excitation is specified in the vector [ ]b  in Equation (2.103) or 

specified as an incoming unsteady wave boundary condition from far upstream or far 

downstream. If the initial excitation is the upstream going pressure wave, its strength 1b  

should be specified in the blade row downstream of the excited blade row. If the initial 

excitation is the downstream going pressure wave or vorticity wave, its strength 2b , 3b

should be specified in the blade row upstream of the excited blade row. If the initial 

excitation is the upstream going pressure wave from the far downstream or downstream 

going pressure wave and vorticity wave from far upstream, their strength should be 

specified at the last blade row or the first blade row respectively as an incoming unsteady 

wave boundary condition. If the initial excitation is due to blade vibration itself, the 

strength of the all three outgoing unsteady waves due to the blade vibration should be 

calculated first and then specified in the excited blade row. 

 

4.2  Post-processing 

The direct solution of the multistage analysis model is the strength of the unsteady 

pressure and vorticity waves for each spinning mode at each blade row. Depending on the 

applications, the direct solution needs to be post-processed in different ways.  

For a forced repose analysis, an external excitation is specified to excite a certain 

vibration mode of a blade row of interest. The total unsteady loading on the blade row at 
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the initial excitation frequency is the desired result. For each spinning mode at the initial 

excitation frequency, the three incoming wave strengths on the blade row is first 

extracted from the direct solution P ,P ,ζ+ −   .  The incoming waves strength multiplying 

the unsteady aerodynamic influence coefficient [ ]u d GA A A  and [ ]u d GB B B gives 

the unsteady lift and unsteady moment respectively. The summation of the unsteady 

loading from the three incoming waves gives the total unsteady loading for the spinning 

mode ( )u d GA P A P A ζ+ −+ + , ( )u d GB P B P B ζ+ −+ + .   The summation of the unsteady 

loading from all the spinning modes having the initial excitation frequency is the desired 

total unsteady loading on the blade row at the natural frequency of the vibration mode. 

( )u d G qA P A P A ζ+ −+ +∑ , ( )u d G qB P B P B ζ+ −+ +∑ . 

With the total unsteady loading, the vibration amplitude can be calculated based 

on the structural dynamics model in Section 2.1. Take the torsional vibration as an 

example. Neglecting structural damping, and since the excitation frequency is equal to 

the natural frequency of the blade row αω ω= ,  Equation (2.8) becomes 

G u dB B P B P
Bα

ζα
+ −+ +

= −        (4.1) 

Considering multi-blade row interaction, the secondary excitation waves with the 

frequency equal to the resonant frequency ( )1 toi n=  should also be included, so the 

final blade vibration angle is  

( ), , ,1

,1

n
G i i ii u i d ii

n
ii

B B P B P

Bα

ζ
α

+ −
=

=

+ +
= −

∑
∑

     (4.2) 

For a flutter analysis, the internal excitation due to the blade vibration itself is 

specified at the blade row of interest. For axial compressor blades, the flutter frequency is 

usually very close to the natural frequency of a certain blade vibration mode. Similar to 

forced response, the total unsteady loading on the vibrating blade row from all the 

spinning modes which have the same frequency as the internal excitation frequency is the 

desired result. The total unsteady loading needs to be calculated at all possible interblade 
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phase angle of the blade row of interest. If the aerodamping derived from the total 

unsteady loading is negative, the blade row is prone to flutter.   

For an acoustic analysis, only the propagating (cut-on) pressure waves are 

considered. Since the direct solution of the multistage model is the result after the “steady 

state” has been reached, the strength of the upstream going pressure wave from the first 

blade row and the strength of the downstream going pressure wave from the last blade 

row of the cut-on spinning modes are the desired results. If the first blade row or the last 

blade row is not a stator row, the frequency of the outing pressure waves needs to be 

shifted to a stationary reference frame.  

 

4.3  Validation 

The validation of the multistage interactions model developed in this study is 

done by comparing the results of the two case studies in Hall & Silkowski’s work [12]. 

The first case study is a forced response analysis with two blade rows. The second case 

study is a flutter analysis with three blade rows. 

 

4.3.1  Validation Case 1: Forced Response Analysis with Two Blade Rows 

This case study is based on configuration A in Hall & Silkowski’s work [12]. It is a 

rotor/stator two blade row combination. The upstream rotor generates a wake and then 

interacts with the downstream stator. The stage geometry and operating conditions are 

shown in the Table 4.1.  
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Table 4.1. Blade row parameters for Configuration A. 

Validation case configuration A 
 Rotor Stator 

Blade numbers 38 50 
Chord 1.00 0.57 
Radius 4.54 4.54 

Stagger angle (degree) -60 0 

Chordwise velocity 1 0.5 

Mach number 0.6 to 0.9 0.3 to 0.45 
Rotation speed (rad/s) 0.1909 ----------------------- 

Inter-row spacing 1.5 ----------------------- 
 

Totally nine modes are considered during the rotor-stator interaction process. The 

modes are ( )1 2,n n =   ( )0, 1− , ( )0, 0 , ( )0, 1 , ( )0, 2 , ( )1, 2− − , ( )1, 1− − , ( )1, 0− , ( )1, 1− ,

( )1, 2− . The resulting unsteady lift on the stator at the first and second blade passing 

frequencies 1BPF 2BPF, and unsteady lift on rotor at the first and second vane passing 

frequencies 1VPF 2VPF at different rotor relative Mach numbers are shown in Figure 4.1 

and Figure 4.2. The current results are in a very good agreement with Hall & Silkowski’s 

results except for a small difference in the unsteady lift on the rotor at 2VPF at high 

Mach number. This is probably due to the round-off errors because the unsteady lift on 

rotor at 2VPF due to reflected pressure wave is very small (the numerical value is around 

1e-5 as shown in the Figure 4.2.  
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Figure 4.1. Comparison of the unsteady lift on stator for Configuration A. 

 

 

Figure 4.2. Comparison of the unsteady lift on rotor for Configuration A. 
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4.3.2  Validation Case 2: Flutter Analysis with Three Blade Rows 

This case study is based on configuration B in Hall & Silkowski’s work [12]. It is 

a stator/rotor/stator three blade row combination. The rotor is vibrating with a bending 

motion. It generates pressure waves and a vorticity wave which interact with the 

surrounding stators. The stage geometry and operating conditions are given in Table 4.2. 

Note that the sign difference from the rotation speed in Table 2 of Hall & Silkowski’s 

work is due to a different convention. In this work, the positive rotation direction is 

defined as the same as the positive y direction as shown in Figure 2.5. 

Table 4.2. Blade row parameters for Configuration B. 

Validation case configuration B 
 Stator1 Rotor Stator2 

Blade numbers 72 72 72 
Chord 1.00 1.00 1.00 
Radius 8.59 8.59 8.59 

Stagger angle (degree) 45 -45 45 

Chordwise velocity 1.0 1.0 1.0 

Mach number 0.7 0.7 0.7 
Rotation speed (rad/s) 0 0.1645 0 

Inter-row spacing 0.2 0.2 --------------------------- 
Excitation frequency (rad/s) ---------------------- 1.0 --------------------------- 

Excitation phase angle 
(degree) 

---------------------- -180 to 180 --------------------------- 

 
Totally nine modes are considered during the stator-rotor-stator interaction 

process. The modes are ( )1 2,n n = ( )1, 1− − , ( )1, 0− , ( )1, 1− , ( )0, 1− , ( )0, 0 , ( )0, 1 , ( )1, 1− ,

( )1, 0 , ( )1, 1 . For this flutter analysis, the real and imaginary parts of the resulting 

unsteady lifts on the rotor at all possible inter-blade phase angles are shown in Figure 4.3 

and Figure 4.4. The current results are in a very good agreement with Hall& Silkowski’s 

results except for a small difference in the imaginary part of the unsteady lift on the rotor 

around inter-blade phase angle 140 degrees. This is may be due to round-off errors too.  
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Figure 4.3. Comparison of the real part of the unsteady lift on rotor for Configuration B. 

 

Figure 4.4. Comparison of the imaginary part of the unsteady lift on rotor for Configuration B. 
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4.4  Purdue 3-Stage Research Compressor 

The Purdue 3-Stage Research Compressor is a highly loaded axial compressor 

aerodynamically representative of the aft stages of a Rolls-Royce high pressure 

compressor [44]. The compressor consists of an inlet guide vane, three integrally bladed 

rotors (IBRs) and three stator rows (Figure 4.5). The design speed is 5000rpm at which is 

the corrected mass flow rate is around 20lbm/s. The mean diffusion factors are from 

0.433 to 0.464. The design overall pressure ratio is 1.31. The hub and tip diameter are 20 

inches and 24 inches, respectively. The detailed blade row information is listed in Table 

4.3  

 

Figure 4.5. Purdue 3-Stage Research Compressor cross section. 

 

Table 4.3. Purdue 3-Stage Research Compressor detailed blade row information. 

Stage Hub 
Stagger 
(degree) 

Tip 
Stagger 
(degree) 

Hub 
Chord 
(inch) 

Tip 
Chord 
(inch) 

Number 
of blades 

Blade airfoil 
type 

IGV 8.2 9.0 2.00 2.00 44 DCA 
Rotor 1 32.6 47.8 2.46 2.81 36 DCA 
Stator 1 25.6 24.0 2.11 2.11 44 NACA 65 

series 
Rotor 2 35.4 49.8 2.60 2.96 33 DCA 
Stator 2 26.1 24.6 2.22 2.22 44 NACA 65 

series 
Rotor 3 38.2 51.8 2.75 3.13 30 DCA 
Stator 3 19.7 18.1 2.35 2.35 50 NACA 65 

series 
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An ANSSYS finite element analysis was performed to predict Rotor2’s mode 

shapes and corresponding natural frequencies [44]. The Campbell diagram for Rotor2 is 

shown in Figure 4.6. The primary excitation on Rotor2 is the wake from Stator1 and the 

potential field from both Stator1 and Stator2. The resonant condition closest to the design 

operation speed is the first torsion mode intercepting 44E line at approximately 3700rpm.  

The ANSYS analysis also shows that the first torsion mode is blade dominated and the 

natural frequency approximately stays the same over all possible nodal diameters.  

 
Figure 4.6. Rotor2 Campbell diagram [44]. 

 

The vane clocking experiments were performed on Stator1, Rotor2 and Stator2 at 

the design loading operating condition [16]. The resonant vibration amplitude of the first 

torsion mode of Rotor2 was measured by an Agilis Non-intrusive Stress Measurement 

System (NSMS) at different clocking configurations defined by the Stator1 percent vane 

passage (vp) location minus the Stator2 percentage vp position. Six clocking 

configurations were tested in this study. They are 0%, 15%, 32%, 49%, 66% and 83% of 
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vp and denoted as CL-1, CL-2, CL-3, CL-4, CL-5 and CL-6, respectively (Figure 4.7). 

During the clocking, both stator1 and IGV relative position and stator2 and stator3 

relative position were kept fixed. The NSMS data were collected during a constant 

transient through the resonance at 3700RPM at a sweep rate of 4.5 RPM/s. 

 

Figure 4.7. Schematics of vane clocking configurations [16]. 

 

4.5  Case Studies 

Based on Purdue 3-Stage Research Compressor’s geometry and operating 

condition, case studies using the multistage interaction model are conducted on the 

stator1-rotor2-stator2 of Purdue 3-Stage Research Compressor at 4 inter-row axial 

spacings and 6 vane clocking positions. The effect of axial spacing (i.e. x∆ ) and vane 

clocking (i.e. y∆ ) on the forced response and flutter of the rotor, and acoustic behavior 

due to multi blade row interactions were analyzed systematically in the following 

sections. This study explores the potential of varying inter-row axial spacing and vane 

clocking as passive techniques to reduce the aeromechanic and aeroacoustics problems in 

a multistage environment. 

The transient operating condition at 3700rpm is used for the forced response 

analysis and corresponding acoustic analysis on the rotor. The design operating condition 

at 5000rpm is used for the rotor flutter analysis. The first torsion mode is the structural 
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mode of interest. The geometry and flow field in stator1-rotor2-stator2 was modified a 

little in order to accommodate the flat plate cascade model uses in the multistage 

interaction analysis. The modified geometry and flow condition is listed in Table 4.4 

Table 4.4. The modified geometry and flow conditions of Purdue 3-Stage Research Compressor used in 
multistage interaction analysis. 

Purdue 3 stage compressor 
  Stator1 Rotor2 Stator2 
Blade numbers  44 33 44 
Chord(in) 2.11 2.96 2.22 
Radius(in) 12 12 12 
Stagger angle (degree) -24.3 49.8 -24.3 

Chordwise velocity (in/s) 3120 / 4216 4406 / 5954 3120 / 4216 

Mach number 0.2331  / 0.3150 0.3292 / 0.4449 0.2331 / 0.3150 
Rotation speed (rad/s) 0 -387.46/-523.60 0 

Inter-row spacing (in) 0.65   (0.2, 1.3, 
10) 

0.65   (0.2, 1.3, 10) --------------------------- 

Vane clocking  
(% of vane passage gap) 

0%, 15%, 32%, 
49%, 66%, 83% 

 
------------------------------- 

0 

 

The first chordwise velocity and Mach number corresponds to the lower rotational 

speed, 387.46rad/s which is the 3700rpm transient operating condition used for forced 

response analysis. The second chordwise velocity and Mach number corresponds to the 

higher rotational speed, 523.60 rad/s which is the 5000rpm design operating condition 

used for flutter analysis.   

In the following case studies, the 4 inter-row spacings used are 0.2in, 0.65in, 1.3in 

and 10in measured from the upstream blade row trailing edge to the downstream blade 

row leading edge. The inter-row spacing of 0.65in is the standard configuration used in 

Purdue 3-Stage Research Compressor. The extra-long inter-row spacing of 10in is used to 

compare the results from the multistage analysis with the one from the single blade row 

model LINSUB.  
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4.5.1  Mode Convergence Study 

To determine how many spinning modes are needed to represent the unsteady 

waves in Purdue 3-Stage Research Compressor, a convergence study was conducted to 

calculate the unsteady moment on Rotor2 due to both external excitations from Stator1 

and Stator2 and internal excitation due to the torsional vibration itself. Since Stator1 and 

Stator2 have the same geometry and similar flow fields, Stator2 can be considered as a 

repeated blade row of Stator1. Thus each spinning mode has the same properties in 

Stator1 and Stator2. A pair of scattering indexes from Stator1 and Rotor2 (n1, n2) is 

sufficient to specify a spinning mode.   

With one mode ( 1 0n = , 2 0n = ), 9 modes ( 1 1 1n = −  , 2 1 1n = −  ), 25 modes 

( 1 2 2n = −  , 2 2 2n = −  ) and 49 modes ( 1 3 3n = −  , 2 3 3n = −  ), the unsteady moment 

on Rotor2 due to a unit strength Stator1 wake, due to a unit strength pressure wave from 

Stator1 (i.e. Stator1 potential field), due to a unit strength pressure wave from Stator2 (i.e. 

Stator2 potential field)  and a unit rotor blade torsional vibration amplitude _m GC , _dmC ,

_umC  and _mC α  are calculated using the multistage interaction model at standard inter-

row spacing with no vane clocking. All the excitations have nodal diameter 44ND = −   

and frequency 17048 /rad sω = (i.e. the resonant point at the interception of the 1T and 

44E lines at 3700rpm on the rotor Campbell diagram Figure 4.6 ). Both the real part and 

imaginary part of these unsteady moment on Rotor2 are shown in Figure 4.8.  
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Figure 4.8. Convergence study of the unsteady moment on Rotor2 due to different excitations using 
different number of spinning modes. 

 

From Figure 4.8, the unsteady moment calculated using 25 modes and 49 modes 

are very close. Thus it can be concluded that 25 spinning modes ( 1 2 2n = −  , 2 2 2n = −  ) 

are enough to represent the major unsteady waves for the multistage interaction analysis 

for the Purdue 3-Stage Research Compressor’s geometry and operating conditions. The 

detailed properties of the 25 spinning modes are listed in the Table 4.5  
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Table 4.5. Detailed properties of the 25 spinning modes. 

Mode # 1n  2n  ND  1ω   (rad/s) 2ω (rad/s) 
Upstream going pressure wave 

axial wave number 
1 -2 -2 -198 -25573 51144 -0.0729 -16.8820i 
2 -2 -1 -165 -12786 51144 0.0809 -14.0661i 
3 -2 0 -132 0 51144 0.2348 -11.2026i 
4 -2 1 -99 12786 51144 0.3886 - 8.2422i 
5 -2 2 -66 25572 51144 0.5425 - 5.0160i 
6 -1 -2 -154 -25573 34096 -0.1512 -13.1138i 
7 -1 -1 -121 -12786 34096 0.0027 -10.3189i 
8 -1 0 -88 0 34096 0.1565 - 7.4684i 
9 -1 1 -55 12786 34096 0.3104 - 4.4571i 

10 -1 2 -22 25572 34096 1.5842 + 0.0000i 
11 0 -2 -110 -25573 17048 -0.2294 - 9.3184i 
12 0 -1 -77 -12786 17048 -0.0756 - 6.5569i 
13 0 0 -44 0 17048 0.0783 - 3.7342i 
14 0 1 -11 12786 17048 0.7921 + 0.0000i 
15 0 2 22 25572 17048 0.3859 - 0.4687i 
16 1 -2 -66 -25573 0 -0.3077 - 5.4389i 
17 1 -1 -33 -12786 0 -0.1539 - 2.7195i 
18 1 0 0 0 0 -0.0000 + 0.0000i 
19 1 1 33 12786 0 0.1538 - 2.7195i 
20 1 2 66 25572 0 0.3077 - 5.4390i 
21 2 -2 -22 -25573 -17048 -0.3860 - 0.4686i 
22 2 -1 11 -12786 -17048 -0.7921 + 0.0000i 
23 2 0 44 0 -17048 -0.0783 - 3.7342i 
24 2 1 77 12786 -17048 0.0756 - 6.5569i 
25 2 2 110 25572 -17048 0.2294 - 9.3184i 

 

From Table 4.5, Modes 11,12,13,14,15 have the same excitation frequency as the 

initial excitation on the Rotor 2. Thus the summation of these modes’ unsteady loading 

are used for the forced response and flutter analyses. By examining the axial wave 

number of the pressure waves, it can be seen that Modes 10, 14 and 22 are the 

propagating modes. Their strengths are calculated for the acoustic analysis.  
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4.5.2 Forced Response Analysis 

At 3700rpm the wake from Stator1 and potential fields of Stator1 and Stator2 

excite the first torsion mode of the rotor. Due to the linearity of the model, different 

excitations can be treated independently. The total unsteady loading is the sum of the 

results from each excitation. In the Rotor2 reference frame, these excitations have nodal 

diameter 44ND = −  and frequency 17048rad/ sω = . They are the primary excitation 

mode corresponding to mode 13.   

4.5.2.1  Unsteady Loading 

The unsteady moment on the rotor due to a unit strength Stator1 wake _m GC  at 4 

different inter-row spacings and 6 different vane clocking positions is shown in Figure 

4.9. The results from the multistage model are normalized by the result from the single 

isolated row model LINSUB in order to show the effect of the multistage interactions.   

 

Figure 4.9. Normalized Rotor2 unsteady moment due to Stator1 wake at different inter-row axial spacings 
and different vane clocking positions. 
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Note first that the unsteady moment on the rotor considering the multistage effect 

is higher than the one from the single row analysis. When the inter-row spacing is 1.3in, 

the ratio is close to 2 at the third and fourth vane clocking position. Even with the extra-

long inter-row spacing of 10in, the ratio is still larger than one (close to 1.1).  The 

additional unsteady moment with the extra-long inter-row spacing comes from the cut-on 

secondary excitation modes (mode 10, 14, 22) whose amplitudes do not decay as they 

propagate in the inter-row space. Especially mode 14 has the same frequency as the 

primary excitation mode 13, and thus contributes to the unsteady moment on the rotor 

directly.  

Secondly, even with a single primary excitation (Stator1 wake in this case), the 

unsteady moment on the rotor still varies with vane clocking position. The maximum 

variation (defined as (max-min)/average) at different vane clocking positions is 8.5%, 

10%, 9.4%, and 0.4% with inter-row spacing of 0.2in, 0.65in,1.3in and 10in, respectively. 

The variation of unsteady loading on the rotor due to a single excitation fundamentally 

results from the multistage interaction with the blade row scattering effect. If there is no 

multistage interaction, the vane clocking of Stator1 only changes the phase of the Stator1 

wake impinging on Rotor2. The amplitude of the wake excitation on rotor2 stays the 

same, and thus the resulting unsteady moment on rotors stays the same. In addition, blade 

row scattering also plays an important role. If only the primary excitation mode is 

retained in the multistage model (i.e. ignore the scattering effect), a single primary 

excitation will NOT cause variation of unsteady moment amplitude on Roror2 at different 

vane clocking position. This can be seen in Figure 4.10.   
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Figure 4.10. Schematic of the vane clocking effect on rotor unsteady loading with only one primary 
excitation and no scatting effect. 

 

A single primary excitation from Stator1 of strength q  travels downstream to 

Rotor2 and becomes 12 12( )i x yqe α β∆ + ∆ (Figure 4.10, step 1) The interaction with the rotor 

generates an upstream going wave of strength 12 12( )
21

i x yC qe α β∆ + ∆  and downstream going 

wave of strength 12 12( )
23

i x yC qe α β∆ + ∆ . The upstream going wave travels to Stator1 and 

becomes 21C q  (step 2). Reflected from Stator1, the strength changes to 1 21C C q  which 

again travels downstream and becomes a secondary excitation on the rotor of strength 

12 12( )
1 21

i x yC C qe α β∆ + ∆ (step 3). Similarly the downstream going wave from the rotor is 

reflected back from Stator 2 and becomes a secondary excitation on the rotor of strength 

12 12( )
3 23

i x yC C qe α β∆ + ∆ (step 2’, 3’). Thus after the “steady state” has been reached, the total 

excitation on Rotor2 after the multistage interactions is the single primary excitation and 

two additional secondary excitations 12 12 12 12 12 12( ) ( ) ( )
1 21 3 23

i x y i x y i x yqe C C qe C C qeα β α β α β∆ + ∆ ∆ + ∆ ∆ + ∆+ + . 

The vane clocking done on Stator1 changes the relative circumferential position between 

Stator1 and Rotor2, i.e. 12y∆  . This changes the phase of the total excitation on rotor2, 

but the amplitude 1 21 3 23q C C q C C q+ +  stays the same.   
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Thus the variation of the unsteady loading on rotor2 due to a single primary 

excitation is the total effect of the primary excitation mode and the additional scattered 

modes which couples the three blade rows. Due to different axial and tangential wave 

numbers of each mode, the phase of each mode’s effect on Rotor 2 are different. The 

constructive and destructive summation of all modes causes the variation with vane 

clocking positions.  

Besides the variation of the unsteady loading, the inter-row axial spacing also 

affects the average of the unsteady loading on rotor2 at different vane clocking positions. 

The average values are 1.31, 1.75, 1.82 and 1.11 with inter-row spacing of 0.2in, 

0.65in,1.3in and 10in respectively. Since different modes have different axial wave 

numbers, different inter-row axial spacing changes the inter-row coupling behavior 

differently. Note that the smaller inter-row spacing does mean a stronger inter-row 

coupling, but does not necessarily lead to a lower average or variation of the unsteady 

loading on the rotor at different vane clocking positions. This is because of the 

complicated constructive and destructive addition of unsteady waves of the spinning 

modes. At the extra-large inter-row spacing of 10in, the inter-row coupling becomes 

much weaker, and thus both the average and variation of the loading become smaller, 

although it is still different from the result from the single blade row analysis because of 

the cut-on spinning modes.  

The other two primary excitations on the rotor are the potential fields from 

Stator1 and Stator2. The unsteady moment on Rotor2 due to a unit strength pressure 

wave from Stator1 (i.e. Stator1 potential field) _dmC  and due to a unit strength pressure 

wave from Stator2 (i.e. Stator2 potential field) _umC at different inter-row spacings and 

vane clocking positions are shown in Figure 4.11 and Figure 4.12.  
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Figure 4.11. Normalized Rotor2 unsteady moment due to Stator1 potential filed at different inter-row axial 
spacings and different vane clocking positions. 

 

Figure 4.12. Normalized Rotor2 unsteady moment due to Stator2 potential filed at different inter-row axial 
spacings and different vane clocking positions. 
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significantly different from the single row analysis. The amplitude of the unsteady 

moment considering the multistage interaction is generally higher and up to more than 

twice the amplitude from the single row analysis. Secondly, the unsteady moment on the 

rotor changes with vane clocking position and the maximum variation (defined as (max-

min)/mean) is up to 25.1% and 12.3% for excitations from the stator2 potential field and 

stator1 potential fields, respectively. Thirdly, the inter-row axial spacing plays an 

additional role affecting both the average and variation of the unsteady loadings on rotors 

at different vane clocking positions. When inter-row axial spacing becomes much larger 

than the chord length, the inter-row coupling effect becomes weak and the results from 

the multistage analysis approach the results from the single blade row analysis.   

Besides the three external excitations discussed above, the vibration of the blade 

also generates unsteady loading on itself. This quantity is needed to calculate the resonant 

vibration amplitude of Rotor2 blade under external excitations. The unsteady moment 

loading on Rotor2 due to a unit rotor blade torsional vibration amplitude _mC α  at 

different inter-row axial spacings and vane clocking positions is shown in Figure 4.13. 

Both inter-row axial spacing and vane clocking position affects the unsteady moment on 

Rotor2 similarly to external excitations. 

 

Figure 4.13. Normalized Rotor2 unsteady moment due to the torsional vibration of Rotor2 blade itself at 
different inter-row axial spacings and different vane clocking positions. 
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A summary of the normalized unsteady moment on Rotor2 at different inter-row 

axial spacings and vane clocking positions under both external excitations and internal 

excitations is give in Table 4.6.  

Table 4.6. The average and variation of the normalized unsteady moment on Rotor2 at different inter-row 
axial spacings and vane clocking positions. 

 

Normalized unsteady moment (multistage/single row) on Rotor2 at different vane 
clocking positons 

Excitation Stator1 wake 
Stator1 potential 

field 
Stator2 potential 

field 
Rotor 2 blade 

torsional vibration 
Axial 

spacing 
(inch) Average 

(Max-
Min) 

/Average Average 

(Max-
Min) 

/Average Average 

(Max-
Min) 

/Average Average 

(Max-
Min) 

/Average 
0.20x∆ =  1.31 8.50% 1.56 11.50% 1.49 25.10% 0.93 35.60% 
0.65x∆ =  1.75 10.00% 2.1 12.30% 1.71 21.90% 1.13 27.60% 
1.30x∆ =  1.82 9.40% 2.27 11.80% 1.68 24.60% 1.52 20.30% 
10.0x∆ =  1.11 0.40% 1.17 0.40% 0.95 0.30% 0.95 0.10% 

 

4.5.2.2  Resonant Vibration Amplitude 

As derived earlier using a simple structural dynamic model in Section 2.1, the 

resonant torsional vibration amplitude due to a single external excitation can be 

calculated using Equation (4.2) 

( ), , ,1

,1

n
G i i ii u i d ii

n
ii

B B P B P

Bα

ζ
α

+ −
=

=

+ +
= −

∑
∑

     (4.2) 

For the case studies here with 25 spinning modes (Table 4.5), modes 11 to 15 

have the same excitation frequency as the primary excitation frequency. Thus the 

summation sign in the equation is for mode 11 to mode 15. The numerator 

( ), , ,1

n
G i i u ii id ii

B B P B Pζ + −
=

+ +∑  is the total unsteady moment due to external excitation.  

The denominator ( ,1

n
ii

Bα=∑ ) is the total unsteady moment due to blade torsional vibration. 

No matter what the external excitation is, the denominator ,1

n
ii

Bα=∑  stays the same. 
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The normalized resonant vibration amplitude(multistage/singe row) at different 

vane clocking positions and different inter-row spacings due to each external excitation 

alone are shown in Figure 4.14, Figure 4.15 and Figure 4.16. 

 

Figure 4.14. Normalized Rotor2 blade resonant vibration amplitude due to Stator1 wake at different inter-
row axial spacings and different vane clocking positions. 

 

Figure 4.15. Normalized Rotor2 blade resonant vibration amplitude due to Stator2 potential field at 
different inter-row axial spacings and different vane clocking positions. 
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Figure 4.16. Normalized Rotor2 resonant vibration amplitude due to Stator1 potential field at different 
inter-row axial spacings and different vane clocking positions. 

 

The resonant vibration amplitude calculated including multistage interaction 

effects is generally larger and up to more than twice the amplitude from the single row 

analysis. Both inter-row axial spacing and vane clocking position affect the resonant 

vibration amplitude significantly.  

In real life applications, all three external excitations occur at the same time. If the 

non-dimensional strength of the three external excitations are 1c , 2c  and 3c , due to the 

linearity of the model, the total vibration angle is the summation of the results of all 

external excitations. Thus,  

1 _u 2 _d 3 _

_

m m m G

m

c C c C c C
C α

α
+ +

= −        (4.3) 

To compare with the experimental results [16], the resonant vibration amplitude is 

normalized again with the amplitude at vane clocking position 1 (i.e. no vane clocking). 

At the normal axial spacing 0.65inx∆ =  the normalized resonant vibration angle due to 

each and all external excitations are compared with the experiment results in Figure 4.17.  

By trial and error, when the relative strength of the Stator1 wake, potential field and 
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Stator 2 potential filed ratio vo : pdn : pup=1: 0.2 : 0.4 (the ratio can be complex number), 

the results closely match the experimental results.  

 

Figure 4.17. Comparison of normalized resonant vibration amplitude at different vane clocking positions 
with the experimental results. 

 

Note that when considering the total effect of all three external excitations, the 

vane clocking changes the relative phase between the excitations from Stator1 (wake and 

downstream going pressure wave) and the excitation from Stator2, as shown in Figure 

4.18. Thus the variation of the total effect at different vane clocking positions are more 

noticeable than considering only one external excitation.  

 

Figure 4.18. Schematic of the excitations relative phase change due to vane clocking. 
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4.5.3  Flutter Analysis 

The flutter analysis of the first torsion mode of Rotor2 is done at the 5000rpm 

operating condition. Results at different inter-row axial spacings and vane clocking 

positions are compared with the single blade row analysis in order to examine the effect 

of the multistage interactions. The unsteady moments on Rotor2 due to Rotor2 blades 

torsional vibration at all possible interblade phase angles at different inter-row axial 

spacings and at different vane clocking positions are shown in Figure 4.19 and Figure 

4.20, respectively.  

 

Figure 4.19. Rotor2 unsteady moment due to the torsional vibration of Rotor2 blade at different inter-row 
axial spacings. 
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Figure 4.20. Rotor2 unsteady moment due to the torsional vibration of Rotor2 blade at different vane 
clocking positions. 

 

Firstly, the results using the multistage analysis are clearly different from the 

results from the single blade row analysis even for the interblade phase angles at which 

the primary mode is cut-off. The primary mode is cut-on when interblade phase angle is 
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provides more coupling between blades rows, the vorticity wave in a cut-off primary 

mode is always ‘cut-on’. In addition, if the inter-row spacing is small enough, the cut-off 

pressure waves can still interact with neighboring blade rows.  

Secondly, the unsteady moment on the rotor changes with inter-row axial spacing 

and vane clocking positions. In the current case study with the Purdue 3-Stage Research 

Compressor geometry and flow field, the axial spacing plays a more noticeable role in 

affecting unsteady moment on the rotor over most of the interblade phase angles than 

dose vane clocking. 

A more important parameter for flutter analysis is aerodamping since a negative 

aerodamping indicates an unstable condition where flutter will occur. As discussed in 

Section 2.1, for a torsional vibration mode the aerodamping is proportional to ( )Im Bα− . 
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Thus a positive ( )Im Bα  indicates a negative aerodamping which leads to a possible 

unstable condition. ( )Im Bα  at different inter-row axial spacings and vane clocking 

positions over all possible inter blade phase angles is shown in Figure 4.21 and Figure 

4.22. As expected, all ( )Im Bα  values are negative which indicates a stable condition. No 

first torsion mode flutter will occur on Rotor2 of the Purdue 3-Stage Research 

Compressor at the design operating condition.   

 

 

Figure 4.21. ( )Im Bα of Rotor2 first torsion mode at different inter-row axial spacings. 
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Figure 4.22. ( )Im Bα  of Rotor2 first torsion mode at different vane clocking positions. 
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changes. 

4.5.4  Aeroacoustics Analysis 

Since the stator potential field is always decaying, the acoustic analysis is done 

for the wake interaction with the rotor at different inter-row axial spacings and vane 
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and downstream going pressure waves of the propagating modes are analyzed. As shown 

in Table 4.5, the propagating modes are mode 10, 14, and 22. 
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The scattering index Graduate School Exit Questionnaire  for mode 14, mode 10 

and mode 22 are ( )0, 1 , ( )1, 2−  and ( )2, 1− respectively.  Mode 14 is the first scattering 

mode from Rotor 2 and it is the only propagating mode which a single isolated rotor row 

can produce. It has frequency ω  =2035Hz with 11ND = −  in the reference frame of the 

stator. Mode 10 and mode 22 contain the scattering modes on both the stator and rotor, 

thus they do not exist in the single rotor row analysis. In the stator reference frame, mode 

10 has frequencyω =4070Hz with ND=-22 and mode 22 has frequencyω =-2035Hz with 

ND=11. 

The upstream going pressure wave and downstream going pressure wave of mode 

14 at different inter-row axial spacing and vane clocking positions are shown in Figure 

4.23 and Figure 4.24 together with the results from the single row analysis. It can be seen 

that both the upstream going pressure wave and the downstream going pressure wave in a 

multistage environment has higher amplitude than the results from wake and single rotor 

row interaction. Since vane clocking is done on Stator1, the upstream going pressure 

wave interacts with Stator1 and has larger amplitude variation at different vane clocking 

positions than the downstream going pressure wave. In addition, the inter row axial 

spacing affects the amplitude of the pressure waves significantly.   

 

Figure 4.23. Upstream going pressure wave of mode 14 due to Stator1 wake and Rotor2 interaction at 
different inter-row axial spacings and vane clocking positions. 
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Figure 4.24. Downstream going pressure wave of mode 14 due to Stator1 wake and Rotor2 interaction at 
different inter-row axial spacings and vane clocking positions. 

 

The upstream going pressure wave and downstream going pressure wave of mode 

10 and mode 22 at different inter-row spacings and vane clocking positions are shown in 

Figure 4.25, Figure 4.26 and Figure 4.27, Fig 4.28. Since both mode 10 and mode 22 

involve scattering from stator row, they can’t be analyzed using the single blade row 

model. The pressure wave amplitudes in mode 10 and mode 22 are much smaller than the 

one in mode 14 due to additional scattering at the stator row. Similar to mode 14, both 

inter-row spacing and vane clocking can affects the pressure wave amplitude 
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Figure 4.25. Upstream going pressure wave of mode 10 due to Stator1 wake and Rotor2 interaction at 
different inter-row axial spacings and vane clocking positions. 

 

Figure 4.26. Downstream going pressure wave of mode 10 due to Stator1 wake and Rotor2 interaction at 
different inter-row axial spacings and vane clocking positions. 
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Figure 4.27. Upstream going pressure wave of mode 22 due to Stator1 wake and Rotor2 interaction at 
different inter-row axial spacings and vane clocking positions. 

 

Figure 4.28. Downstream going pressure wave of mode 22 due to Stator1 wake and Rotor2 interaction at 
different inter-row axial spacings and vane clocking positions. 
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4.6  Summary  

In this chapter, the multistage interaction model is first validated with the Hall & 

Silkowski’s work for both forced response analysis and flutter analysis. Case studies 

based the geometry and flow condition of the Purdue 3-Stage Research Compressor are 

then conducted to investigate the multistage interaction effect on the forced response, 

flutter and aeroacoustic behavior of the embedded rotor. Parametric studies with different 

inter-row axial spacings and vane clocking positions are performed to explore their 

potential to work as passive control techniques to reduce the aeromechanic and 

aeroacoustic problems of the rotor in multistage environments.      

Forced response analysis shows that the unsteady moment and resonant vibration 

amplitude of the rotor due to external excitation from the adjacent stator is significantly 

different from (generally higher and up to twice) the values from the single row analysis. 

The variation of the unsteady loading and resonant vibration amplitude at different vane 

clocking positions and different inter-row axial spacings fundamentally result from the 

multistage interaction with the blade row scattering effect. The blade rows are coupled 

together by the spinning modes which have different axial and tangential wave numbers.  

The constructive and destructive summation of all modes causes the variations. By trial 

and error, excitations with a certain relative strength ratio give the resonant vibration 

amplitudes that closely match the experimental result at different vane clocking positions.  

Flutter analysis shows that multistage interaction markedly affects the unsteady loading 

and aerodamping of the rotors at most of the interblade phase angles. The single blade 

row flutter analysis may give misleading results. Through controlling the inter-row 

spacing and vane clocking, the multistage effect can be altered in a favorable way to 

reduce unsteady loading and increase the aerodamping of the rotor.  

Acoustic analysis shows that multistage interaction amplifies the existing pressure 

waves in the single blade row analysis. In addition, propagating pressure waves which do 

not exist in a single blade row analysis are generated due to the multistage interactions. 

Both inter-row spacing and vane clocking can affect the amplitude of propagating 

pressure waves significantly. 

 



135 

 

 

CHAPTER 5. NON-UNIFORMLY SPACED BLADE ROW                                          
IN MULTISTAGE ENVIRONMENT 

In the chapter, the non-uniformly spaced cascade model and multistage 

interaction model are combined together to analyze the effect of a non-uniformly spaced 

IGV on the flutter stability of the downstream rotor. Non-uniformly spaced IGV has been 

used in real gas turbines to reduce the forced repose problem of rotor vibration. However, 

it can also affect the rotor stability in two aspects. First, due to the multistage interactions, 

the reflected waves from the IGV provide secondary excitation to the rotor. Second, 

compared with a uniformly spaced IGV, the reflected waves from a non-uniformly 

spaced IGV have a much larger set of modes as discussed in Section 2.4. These 

additional unsteady waves can substantially change the unsteady loading and 

aerodynamic damping of the downstream rotor. Based on the Purdue Transonic 

Compressor geometry and flow conditions, validation is done first to show that the 

multistage interaction model has been successfully extended to include blades row with 

non-uniform spacing. Case studies with two commonly used non-uniformly spaced IGV 

configurations (Half-half and Sinusoidal spacing) are conducted to investigate their effect 

on the unsteady loading and aerodamping of the downstream rotor.   

 

5.1  Validation and Case Studies 

The Purdue Transonic Compressor geometry and flow conditions introduced in 

Section 3.2 are used as the baseline configuration in this study. To simplify the problem, 

only the IGV and rotor row are retained in the multistage interaction analysis. The flutter 

analysis is done at the operating speed of 20000rpm for the 1st torsion mode (3074Hz) of 

the rotor blade.  
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The most commonly used non-uniformly spaced IGV/stator are in the ‘Half-half’ 

configuration [7] which features uniformly spaced vanes in a half circle and a different 

number of uniformly spaced vanes in the other half circle. Another popular non-

uniformly spaced IGV/stator features blade spacing in a sinusoidal wave [6]. Both non-

uniformly spaced IGV configurations are studied and compared with uniformly spaced 

IGV in terms of the influence on the flutter stability of the rotor. The Purdue Transonic 

Compressor IGV has 20 vanes. In order to use the generalized uniformly spaced cascade 

model, the IGV row is discretized into 120 total blades. As shown in Figure 5.1, the 

uniform spacing IGV row has real blades at blade index [1     7    13    19    25    31    37    

43    49    55    61    67    73    79    85    91    97   103 109    115]. The Half-half spacing 

IGV row has real blades at blade index [1     6    11    16    21    26    31    36    41    46    

51    56    61    69    77    85    93   101   109   117]. The sinusoidal spacing IGV row has 

real blades at blade index [1     8    16    24    33    42    51    59    67    74    80    85    89    

93    96    99   102   106   110   115].  

A mode convergence study shows that nine symmetrical modes with scattering 

index 1 1 1n = −   and 2 1 1n = −   is sufficient to model the uniformly spaced IGV and 

rotor interactions. For the rotor flutter analysis, the lowest internal excitation nodal 

diameter is -9 (corresponding interblade phase angle is 9(2 ) /18 180degπ− = − ) and 

highest internal excitation nodal diameter is 9 (corresponding interblade phase angle is 

9(2 ) /18 180degπ = ). If the excitation nodal diameter is -9, the nodal dimeters of the nine 

modes are [-47   -29   -11   -27    -9     9    -7    11    29]. If the excitation nodal diameter is 

9, the nodal dimeters of the nine modes are [-29   -11     7    -9     9    27    11    29    47]. 

Since 120 total blades are used in the generalized uniformly spaced cascade model, at 

least 120 modes are needed to model the non-uniformly spaced IGV. Thus, modes with 

nodal diameters from -60 to 59 are used in this study to model both the non-uniformly 

spaced IGV and multistage interaction effects properly.  
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Figure 5.1. Real blades positions of different IGV row configurations in the generalized uniformly spaced 
cascade with 120 total blades. 

 

5.1.1  Validation 

Both the non-uniformly spaced cascade model and the multistage interaction 

model have been validated individually in the previous sections. This study involves the 

extension of the multistage interaction model such that each blade row is allowed to have 

non-uniform spacing. Since there is no similar model existing to the author’s knowledge, 

the validation is done to check whether the new model can be reduced to the multistage 

interaction model with uniformly spaced blade rows. The IGV is modeled using the 

generalized uniformly spaced cascade model with 120 total blades. The real blade of 

uniformly spaced IGV is shown in Figure 5.1. The unsteady moment ( )Abs Bα and 

( )Im Bα  (which is proportional to the negative of aerodamping) on rotor are calculated 

using the multistage interaction model with uniformly spaced blade rows (Multistage 

uniform) and the new model of multistage interaction with generalized uniformly spaced 

blade rows (Generalized tuned). The comparison of the results is shown in Figure 5.2.  

The excellent agreement between the results of the two models shows that the multistage 

interaction model has been successfully extended to include blades row with non-uniform 

spacing.  
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Figure 5.2. Unsteady moment ( )Abs Bα  and ( )Im Bα  on rotor due to the torsional vibration of rotor 
blade. 
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Figure 5.3. The comparison shows there are noticeable differences for interblade phase 

angles from -180 to -60 degrees and from 90 to 180 degrees  

 
 

 

Figure 5.3. Unsteady moment ( )Abs Bα  and ( )Im Bα on rotor based on uniformly spaced IGV-rotor 
interaction analysis and single rotor analysis. 
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Secondly, the unsteady moment ( )Abs Bα  and ( )Im Bα on the rotor due to 

uniform spacing IGV-rotor interaction, half-half spacing IGV-rotor interaction and 

sinusoidal spacing IGV-rotor interaction are compared in Figure 5.4 and Figure 5.5. Both 

figures show that the results from non-uniformly spaced IGV-rotor interactions are 

different from the uniformly spaced IGV-rotor interactions, especially at the interblade 

phase angles from -180 to -60 degrees. The difference is due to the additional unsteady 

waves generated from upstream going pressure wave from rotor and non-uniformly 

spaced IGV interaction. When the axial spacing is reduced from the standard value 

0.78inx∆ = to a reduced spacing 0.10inx∆ = , the difference between the results from 

non-uniformly spaced IGV and uniformly spaced IGV becomes larger. This is due to fact 

that the additional unsteady waves generated on non-uniformly spaced IGV are relatively 

weak and most of them are cut-off. The reduced axial spacing enhances the effect of 

these additional cut-off modes during IGV-rotor interaction. From Figure 5.4 and Figure 

5.5, compared with the uniformly spaced IGV, both half-half spacing IGV and sinusoidal 

spacing IGV at the reduced axial spacing cause a larger unsteady moment and high 

aerodamping at most interblade phase angles of the rotor flutter analysis.  
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Figure 5.4. Unsteady moment  ( )Abs Bα  and ( )Im Bα on rotor for uniform spacing IGV-rotor 
interaction and half-half spacing IGV-rotor interaction. 
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Figure 5.5. Unsteady moment  ( )Abs Bα  and ( )Im Bα on rotor for uniform spacing IGV-rotor 
interaction and sinusoidal spacing IGV-rotor interaction. 
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single rotor analysis also shown. It shows both the effects of multistage interaction and 

non-uniformly spaced IGV cause the difference from the results of the single row 

analysis.  

 

 

Figure 5.6. Unsteady moment ( )Abs Bα  and ( )Im Bα on rotor based IGV-rotor interaction analysis of 
different IGV configurations and single rotor analysis. 
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5.2  Summary 

In this chapter, the non-uniformly spaced cascade model and multistage 

interaction model are combined together to study the non-uniform spaced IGV’s effect on 

the downstream rotor flutter stability based on the Purdue Transonic Compressor’s 

geometry and flow conditions. The validation is done by showing that the new combined 

model can be reduced to the multistage interaction model with uniformly spaced blade 

row.  Two non-uniformly spaced IGV configurations studied are the IGVs with Half-half 

spacing and with Sinusoidal spacing.  

Case studies show that the unsteady loading and aerodamping on rotor due to 

rotor blade vibration are noticeably different between the results with non-uniformly 

spaced IGV and uniformly spaced IGV. When the inter-row spacing is reduced, the 

difference becomes larger because additional unsteady waves generated by the non-

uniformly spaced IGV are relatively weak and most of them are cut-off. The reduced 

axial spacing enhances the effect of these additional cut-off modes during IGV-rotor 

interaction. Case studies show that both the effects of multistage interaction and non-

uniformly spaced IGV make the classic flutter analysis of a single rotor inaccurate at 

certain interblade phase angles.  
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CHAPTER 6. RADIAL UNSTEADY WAVE PROPAGATION                                    
IN CENTRIFUGAL COMPRESSOR  

To analyze the aeromechanic risk of the impeller due to impeller-diffuser vane 

interaction, three major physical processes as shown in Figure 6.1 have to be understood: 

(1) the impeller wake travels downstream, (2) the wake interacts with the diffuser vane 

and generates the pressure waves, (3) the pressure wave travels upstream and excites the 

impeller. This study focuses on modeling process 1 and 3, i.e. developing an analytical 

solution for the wake and pressure wave propagation in the vaneless space with a mean 

swirling flow. These wave propagation properties are also fundamental to the linearized 

modeling of the unsteady aerodynamics in radial cascades, process 2.  

 

Figure 6.1. Schematic of a centrifugal compressor [21]. 
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The analytical solution for the propagation of unsteady pressure and vorticity 

waves in the vaneless space of a low speed centrifugal compressor have been derived in 

Section 2.2.2. Purdue Low Speed Centrifugal Compressor described in Section 6.1 is 

used as the baseline geometry and flow conditions for the following case studies in 

Section 6.2. Parametric studies with different impeller blade number and different back 

sweep angle are conducted to investigate their effect on the impeller wake and pressure 

wave propagation in the vaneless space.  

 

6.1  Purdue Low Speed Centrifugal Compressor 

The geometry and flow condition of the Purdue Low-Speed Centrifugal Research 

Compressor [20] is used as the baseline configuration in this study. It operates at 

1790rpm. The impeller consists of 23 blades, and the vaned diffuser has 30 vanes. The 

impeller exit radius and diffuser vane leading edge radius are 0.366m and 0.404m, 

respectively. With a flow coefficient of 0.3, the impeller exit absolute flow angle α is 

55.5 degrees, and the relative flow angle β is -62.0 degrees. At the impeller exit, the 

absolute mean flow radial velocity 0rU  is 20.6m/s, and the absolute mean flow 

circumferential velocity 0Uθ  is 29.9m/s. This flow condition satisfies the low Mach 

number assumptions made in Section 2.2.2. A schematic of the flow field at impeller exit 

is shown in Figure 6.2. 

 

Figure 6.2. Schematic of the flow field at impeller exit [20]. 
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6.2  Case Studies 

Based on the analytical solutions derived in Section 2.2.2, the effect of impeller 

blade number (affecting the circumferential wave number kθ  ) and back sweep angle 

(affecting the relative flow angle β) on the impeller wake (vorticity wave) and pressure 

wave propagation in the vaneless space are studied. 

 

6.2.1  Vorticity Wave Propagation 

Case studies with three different circumferential wave numbers kθ  and three 

different relative flow angles β are analyzed to investigate their effect on the impeller 

wake propagation downstream. Case 1 is the baseline case with 23 blades and  β =-62.0 

degrees. In Case 2 and Case 3, the number of blades is changed to 18 and 28, respectively, 

with the relative flow angle β unchanged. In Case 4 and Case 5, the relative flow angles 

is changed to β =-52.0 degrees and β =-72.0 degrees, respectively, with the number of 

blades unchanged. Note that in case 4 and case 5, due to the reduced back sweep angle, 

the mean flow field is also changed. At the impeller exit, the absolute mean flow 

velocities at β =-52.0 degrees and β =-72.0 degrees are approximately 1.22 and 0.74 

times of the mean flow velocities in the baseline case. 

The unsteady radial or circumferential velocity at impeller exit needs to be 

specified to calculate the wake propagation downstream. Here it is assumed that the 

unsteady radial and circumferential velocities are in phase and their amplitude ratio is the 

same as the mean flow relative radial and circumferential velocity ratio, i.e. 

tanv rvu uθ β=  at the impeller exit (Figure 6.2). 

The change of the unsteady circumferential and radial velocities with radius is 

shown in Figure 6.3 and 6.4, with each normalized by their corresponding value at the 

impeller exit.  As shown in Figure 6.3, the amplitude of the unsteady circumferential 

velocity vuθ  decreases at the same rate for all cases. The radial wavelength reduces with 

increasing number of blades ( kθ∝  ) and increasing of the back sweep angle ( β∝ − ). 

These effects can also be seen from Equation (2.60). The amplitude of vuθ  is proportional 
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to 1/r. The equivalent radial wave number can be written as 2

1 1

ln
2r

c iki rk r
c c r

θω
= − − . 

Increasing kθ  and ω  by increasing the blade number, and reducing the mean flow radial 

velocity constant 1c  by increasing back sweep angle, both cause an increase of the radial 

wave number rk  and thus the decrease of the radial wavelength. Note the equivalent 

radial wavenumber rk itself is also a function of radius r.  
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(a) 

 
(b) 

Figure 6.3. Normalized unsteady circumferential velocity profile (a) at different circumferential wave 
number kθ  and (b) at different relative flow angle β . 

  

0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405

-1

0

1

N
or

m
al

iz
ed

 u
θv

Radius (m)

 real(uθv) β=-62o kθ=18

 real(uθv) β=-62o kθ=23

 real(uθv) β=-62o kθ=28

 abs(uθv) β=-62o kθ=18

 abs(uθv) β=-62o kθ=23

 abs(uθv) β=-62o kθ=28

0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405

-1

0

1

N
or

m
al

iz
ed

 u
θv

Radius (m)

 real(uθv) β=-52o kθ=23

 real(uθv) β=-62o kθ=23

 real(uθv) β=-72o kθ=23

 abs(uθv) β=-52o kθ=23

 abs(uθv) β=-62o kθ=23

 abs(uθv) β=-72o kθ=23



150 

 

 

As shown in Figure 6.4, changing the number of blades ( kθ∝  ) does not affect the 

amplitude of the unsteady radial velocity decay rate. However, increasing back sweep 

angle ( β∝ − ) causes the amplitude of the unsteady radial velocity to decay at a higher 

rate. Regarding the radial wavelength, the same trends are seen as those observed in the 

unsteady circumferential velocity:  Increasing the number of blades and increasing the 

back sweep angle reduce the wavelength in the radial direction. From Equation 2.61, the 

equivalent radial wavenumber Graduate School Exit Questionnaire is the same as that for 

the unsteady circumferential velocity. Physically, both the unsteady radial and 

circumferential velocities are from the same vorticity wave, and thus must have the same 

wave number. The amplitude of the unsteady radial velocity rvu is proportional to 

2

1

1cEr D
c r

− . The change in the decay rate with β  is due to the assumption that the 

initial unsteady velocities at the impeller exit are related by the relative flow angle β, 

tanv rvu uθ β= . Increasing the back sweep angle causes a relatively larger vuθ  and smaller 

rvu . This causes the change of constants E and D and thus the change in the amplitude 

decay rate.    
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(a) 

 
(b) 

Figure 6.4. Normalized unsteady radial velocity profile (a) at different circumferential wave number kθ  

and (b) at different relative flow angle β . 
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Note that the unsteady circumferential velocity vuθ and unsteady radial velocity 

rvu change in different ways over radius, with 1
vu

rθ ∝  and 2

1

1
rv

cu Er D
c r

∝ − . This 

causes distortion of the wake profile as the impeller wake travels downstream. With the 

inviscid flow assumption in this study, rvu r∝ as radius gets larger. This may be 

contrary to the experimental observation that the impeller wake almost always decays due 

to turbulent mixing and viscous effects. However, in a similar study of vorticity waves in 

an inviscid axial annular swirling flow, Golubev and Atassi [33] found a similar linear 

growth of the unsteady axial velocity as it travels downstream. In fact, the divergent 

behavior of the unsteady wave in swirling flow is well studied in the area of centrifugal 

instability [45]. In a two dimensional inviscid flow with only a circumferential mean 

velocity 0Uθ  , an axisymmetric disturbance, i.e. 0kθ =  , will become unstable when 

0( ) 0rU
r

θ∂
<

∂
 , which is known as Rayleigh’s criterion. In this study, 0( ) 0rU

r
θ∂

=
∂

 is on 

the edge of Rayleigh’s criterion. However, with a radial mean flow and non-

axisymmetric disturbance, the flow field in this study is more complicated. There is no 

existing stability criterion for the flow field. Note that the model in this research is a 

linearized model based on small perturbation theory in inviscid flow. In actual 

compressors, either viscous dissipation or nonlinear effects will mitigate the growth the 

vorticity amplitude in the radial direction. 

 

6.2.2  Pressure Wave Propagation 

Five case studies are conducted to investigate the effect of the circumferential 

wavenumber kθ  and the relative flow angle β  on the pressure wave propagation 

upstream from the vaned diffuser due to the impeller wake - diffuser vane interaction. At 

the design rotation speed Ω  of 1790rpm, the wakes of the impeller (23 blades) excite the 

diffuser vane (30 vanes) at frequency 686NB Hzω = Ω = . Just like the scattering effect in 

an axial compressor discussed in Section 2.5.1, the diffuser vane generates pressure 

waves at the same frequencyω , but different circumferential wavenumbers  
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k NB nNVθ = +          (6.1) 

where NB and NV are the number of blades and vanes, respectively, and the scattering 

index n  can be any integer.  

With the scattering index n equal to 0, -1 and 1, the resulting circumferential wave 

numbers kθ  are 23, -7 and 53 in Cases 1,2 and 3, respectively.  The relative flow angle β 

in case1, 2 and 3 are equal to the baseline β of -62.0 degrees. In Case 4 and 5, the relative 

flow angle β is changed to -52 degrees and -72 degrees, respectively with the baseline kθ  

of 23. Figure 6.5 shows the variation of the pressure wave amplitudes (in log scale as 

commonly used for acoustic study) as they propagate from the diffuser vane leading edge 

to the impeller trailing edge, with the pressure wave amplitudes normalized by their 

corresponding values at the diffuser vane leading edge. It can be seen that as the pressure 

waves propagate inwardly, their amplitudes increase for all cases due to space contraction 

and thus the increase of the acoustic energy density. Larger circumferential wave 

numbers lead to a higher amplitude growth rate. In addition, the change of relative flow 

angle and its corresponding change of mean flow velocity have a negligible effect on the 

change of the pressure wave amplitude growth rate.    
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(a) 

 
(b) 

Figure 6.5. Normalized unsteady pressure amplitude profile (a) at different circumferential wave number 
kθ  and (b) at different relative flow angle β . 
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Note that the circumferential wave number has a significant effect on the radial 

pressure wave growth rate. The larger the circumferential wave number, the higher the 

growth rate. This is opposite the trend for axial compressors. Smith [11] modeled the 

pressure wave in an axial compressor as the pressure wave travelling in a thin axial 

annular duct. The axial wave numbers derived in Equation (2.32) shows that the larger 

the circumferential wavenumber, the more likely the pressure wave will be cut-off and 

will decay faster in the axial direction. Thus higher order scattering modes tend to be 

neglected in acoustics and aeromechanics analyses in axial compressors. This study 

shows that the higher order scattering pressure waves may be an important excitation 

source to the impeller as their amplitude growth is much faster than the lower order 

modes as they travel inwardly.  

6.3  Summary 

In this chapter, the propagation of the impeller wake and pressure wave in the 

vaneless space is investigated through parametric studies with different impeller blade 

number (affecting the circumferential wave number kθ  ) and back sweep angle (affecting 

the relative flow angle β).   

For vorticity wave propagation, results show that the unsteady circumferential 

velocity vuθ and unsteady radial velocity rvu change in different ways over radius. This 

causes distortion of the wake profile as the impeller wake travels downstream. Increasing 

the number of blades and increasing the back sweep angle reduce the wavelength of the 

unsteady circumferential velocity vuθ and unsteady radial velocity rvu of the impeller 

wake.  

For pressure wave propagation, results show that the amplitude of the pressure 

waves always increase as they propagate inwardly, due to space contraction and thus the 

increase of the acoustic energy density. The relative flow angle and its corresponding 

mean flow velocity have a negligible effect on the pressure wave amplitude growth rate. 

On the other hand, the circumferential wave number has a significant effect on the radial 

pressure wave growth rate. Opposite to the trend in axial compressors, the larger the 

circumferential wave number, the higher the pressure wave growth rate.  
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CHAPTER 7. UNIFIED PROPELLER AND HORIZONTAL-AXIS TURBINE 
OPTIMIZATION  

The Lifting line theory and different rotor blade optimization methods have been 

discussed in Section 2.6. A unified propeller and horizontal-axis turbine preliminary 

design code based on the Lifting line model of the rotor and using the Interior point 

method for optimization is developed in this study. The code is called Optimized Rotor 

with Lifting Line model, or OptRotor. Discussion in Section 2.6 also shows that the 

classical PVL code for propeller design can be used for horizontal-axis turbine design by 

sweeping through all possible TC  (-1 to 0) to find the minimum overall QC . This new 

implementation of the PVL is called PVL for turbine, or PVLt.   

The cases studies in this chapter aim to provide a thorough validation for 

OptRotor and PVLt by comparing their results with the results from the classical PVL 

code [37] and also the OpenProp [38] code that is based a Lifting line model using the 

Lagrange multiplier method for optimization. The feature and capability of each code are 

compared in Table 7.1.  
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Table 7.1. Comparison of the feature and capability of different codes. 

 

General Momentum 
Theory (GMT) PVL OpenProp OptRotor 

Model Rotating Actuator Disk Lifting line Lifting line Lifting line 
Optimization 

Method First Derivative Test 
Calculus of 
Variations 

Lagrange 
Multiplier 

Interior 
Point 

Wake rotation 
loss model Yes Yes Yes Yes 

Tip loss model No Yes Yes Yes 
Propeller 

design Possible Yes Yes Yes 
Horizontal-
axis turbine 

design Yes 

Yes, with the new 
implementation 

PVLt Yes Yes 
Hub model No Yes Yes Yes 

Non-uniform 
inflow No Yes 

Yes for propeller 
No for turbine Yes 

Extra design 
constrains No Possible Possible Yes 

Computation 
time seconds seconds <1 minute <1 minute 

 

The OptRotor code is first used for the propeller design case studies with uniform 

inflow and also with non-uniform inflow. The results are validated with the results from 

PVL and OpenProp in Section 7.1.  

Horizontal-axis turbine optimization validation and case studies is done in Section 

7.2. PVLt and OptRotor are validated with General Momentum Theory first in case 

study1 and case study2. Case study3 with uniform inflow and hub model is then 

conducted using PVLt, OptRotor and OpenProp. Since OpenProp cannot handle turbine 

optimization with non-uniform inflow, Case study4 with non-uniform inflow and Case 

study5 with non-uniform inflow and hub image are conducted using PVLt and OptRotor. 

The results from different codes are compared for validation and also for finding out the 

advantage and limitation of each code. Finally, a more complicated and realistic case 

study6 with structural consideration is conducted to show the capability of the OptRotor 

code.  
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7.1  Validation and Case Studies for Propeller Design 

The propeller case studies are based on the example in Kerwin’s paper [27] Table 

4.3. It is a propeller with 5 blades, 5Z = . The desired thrust coefficient is 1, 1TC =  . The 

blade hub starts at 0.2hr R= . No hub model is included. The viscous drag is neglected.  

The first case study has a uniform inflow / 1a fV V =  and / 0t fV V = . The 

optimized circulation distribution Γ   using the codes PVL, OpenProp and OptRotor at 

three different advance coefficients, 0.1J =  , 0.8J = and 1.5J = are shown in Figure 

7.1. The corresponding total flow angles iβ   are shown in Figure 7.2.  At 0.1J = and 

0.8J = , the results from three codes are almost identical. At a higher advance 

coefficient 1.5J = , OpenProp favors a slightly higher loading Γ   and thus a slightly 

higher total flow angle iβ  on the outer region of the blade than PVL, while the results 

from OptRotor are in between. The overall performance parameters QC , PC and η  

predicted by PVL, OpenProp and OptRotor are very close as shown in Table 7.2. 

 

Figure 7.1. Optimized circulation distributions by different codes at different advance coefficients for 
propeller case study1. 
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Figure 7.2. Total flow angle iβ  by different codes at different advance coefficients                                   
for propeller case study1. 

 

Table 7.2. Comparison of QC , PC and η  by different codes at different advance coefficients for propeller 
case study1. 

 

0.1J =  0.8J =  1.5J =  
PVL OpenProp OptRotor PVL OpenProp OptRotor PVL OpenProp OptRotor 

QC  0.039 0.039 0.039 0.343 0.343 0.343 0.974 0.976 0.972 

PC  1.221 1.221 1.221 1.347 1.347 1.347 2.040 2.045 2.036 
η  0.819 0.819 0.819 0.742 0.742 0.742 0.490 0.489 0.491 

 

The second case study has a non-uniform inflow. Following the Kerwin’s 
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optimized circulation distribution Γ  using code PVL, OpenProp and OptRotor at three 

different advance coefficients, 0.1J =  , 0.8J = and 1.5J =  are shown in Figure 7.3. 
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parameters QC , PC and η  are listed in Table 7.3. Similar to the first case study, the results 

from code PVL, OpenProp and OptRotor are almost identical, except that OpenProp 

favors a slightly higher loading Γ   and thus a slightly higher total flow angle iβ  on the 

outer region of the blade than PVL at high advance coefficient 1.5J = .  

 

Figure 7.3. Optimized circulation distributions by different codes at different advance coefficients for 
propeller case study2. 

 

Figure 7.4. Total flow angle iβ  by different codes at different advance coefficients                                     
for propeller case study2. 
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Table 7.3. Comparison of QC , PC and η  by different codes at different advance coefficients for propeller 
case study2. 

 

0.1J =  0.8J =  1.5J =  
PVL OpenProp OptRotor PVL OpenProp OptRotor PVL OpenProp OptRotor 

QC  0.035 0.035 0.035 0.308 0.309 0.309 0.873 0.879 0.875 

PC  1.090 1.096 1.096 1.209 1.215 1.215 1.828 1.841 1.832 
η  0.783 0.778 0.778 0.705 0.702 0.702 0.466 0.463 0.465 

 

These two cases studies provide a validation for the newly developed OptRotor 

code. The close match with the other existing propeller codes PVL an OpenProp shows 

that both the Lifting line model and Interior point optimization method have been 

correctly implemented in the code.  

 

7.2  Validation and Case Studies for Horizontal-axis Turbine Design 

The first two case studies aim to validate the PVLt code with the analytical 

solution from the Betz’s Actuator Disk model and from the Schmitz’s Rotating Actuator 

Disk model (i.e. General Momentum theory). Betz’s Actuator Disk model is a limiting 

case for an infinite number of blades and infinite tip speed ratio. One-hundred blades and 

a tip speed ratio of 100 are specified in PVLt to resemble Betz’s Actuator Disc model. 

Schmitz’s Rotating Actuator Disk model is a limiting case for an infinite number of 

blades. One-hundred blades and a tip speed ratio of 6 are specified in PVLt in order to 

compare with the results from Schmitz’s Rotating Actuator Disk model. 

In both case studies, a very small hub radius 0.005hr R=  without hub model is 

used since there is no hub in both Actuator Disk models. The viscous drag is also 

neglected. By sweeping TC  from -1 to 0, the corresponding minimized PC  calculated by 

PVLt is plotted in Figure 7.5. The minimum PC (i.e. maximum magnitude of PC ) is -0.59 

occurring at 0.89TC = − for the case 100Z =  and 100λ = . This result is the same as the 

‘Betz limit’ 16 / 27PC = and the corresponding 8 / 9TC = . The minimum PC  is -0.57 

occurring at 0.88TC = −  for the case 100Z =  and 6λ = . This result is very close to the 

Schmitz’s result 0.5759PC =  calculated using Equation (2.155) and the corresponding



162 

 

 

0.8847TC = . Note that since the propeller convention is used in all the codes in this 

study, the PVLt’s results are all negative.  

 

Figure 7.5. Minimized PC  for TC  from -1 to 0 by PVLt code. 

 

In order to do a detailed comparison, the second case study ( 100Z =  ,

0.005hr R= ,no hub model, no viscous drag and uniform inflow / 1a fV V =  and 

/ 0t fV V = ) with tip speed ratio 1, 2, 10λ =   are conducted again with OpenProp and 

OptRotor. In Figure 7.6, the maximum magnitude of PC  predicted by PVLt, OpenProp 

and OptRotor are plotted against the analytical solution calculated from Equation (2.155) 

by the General Momentum Theory. It can be seen that the results from all three codes 

match the General Momentum Theory perfectly, except that at the low tip speed ratio 

1λ = , PC  predicted by PVLt is slightly lower than the value predicted by the General 

Momentum Theory. The difference is due to the poor assumption that the induced 

velocity *
tu rω  at the low tip speed ratio.  
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Figure 7.6. PC  predicted by PVLt, OpenProp and OptRotor compared with General Momentum Theory. 

 

At a commonly used tip speed ratio 6λ = , the optimized circulation distribution 

Γ  using code PVLt, OpenProp, OptRotor and General Momentum Theory (GMT) are 

shown in Figure 7.7. The corresponding the total flow angle iβ   and induced velocity *
au  

and *
tu  are shown in Figures 7.8, 7.9 and 7.10. The comparison shows that the results 

from both OpenProp and OptRotor match the results from General Momentum Theory 

perfectly. This serves as a validation for the newly developed OptRotor on horizontal-

axis turbine designs. PVLt results are different from the General Momentum Theory in 

the inner region of the blade ( 0.3r R< ). This difference is due to the poor assumption 

that the induced velocity *
tu rω  at small radius made when deriving the ‘Lerbs 

criterion’ in Equation (2.144).  
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Figure 7.7. Optimized circulation distributions Γ  given by PVLt, OpenProp, OptRotor and general 
momentum theory (GMT) for turbine case study2. 

 

Figure 7.8. Total flow angle iβ  given by PVLt, OpenProp, OptRotor and general momentum theory (GMT) 
for turbine case study2. 
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Figure 7.9. Axial induced velocity *
au  given by PVLt, OpenProp, OptRotor and general momentum theory 
(GMT) for turbine case study2. 

 

Figure 7.10. Tangential induced velocity *
tu  given by PVLt, OpenProp, OptRotor and general momentum 

theory (GMT) for turbine case study2.  
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The first two case studies considered 100 blades for validation with Actuator Disk 

models. The third case study is a more realistic case with 3 blades 3Z = , a rub 0.1hr R=  

and under uniform inflow / 1a fV V =  and / 0t fV V = . The hub is modelled using the 

vortex image method discussed before. The viscous drag is neglected. The optimized 

circulation distribution Γ  using code PVLt, OpenProp and OptRotor at three tip speed 

ratios 4λ =  , 6λ = and 10λ = are shown in Figure 7.11. The corresponding total flow 

angles iβ   are shown in Figure 7.12. Note that there is a non-zero strength bound 

circulation at the hub surface due to the hub model. The results from the three codes are 

very close to each other at 6λ =  and 10λ = .  At low tip speed ratio 4λ = , PVLt favors 

a lower loading (magnitude) and thus a higher iβ  than OpenProp at the inner region of the 

blade. The results from OptRotor are in between. The overall performance parameters 

QC , PC  predicted by PVLt, OpenProp and OptRotor are very close as shown in Table 7.4. 

This case study serves an additional validation of OptRotor and PVLt for turbine 

optimization with hub model under uniform inflow conditions.  

 

Figure 7.11. Optimized circulation distributions by different codes at different tip speed ratio for turbine 
case study3. 
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Figure 7.12. Total flow angle iβ  by different codes at different tip speed ratio for turbine case study3. 

 

Table 7.4. Comparison of QC  and PC  by different codes at different tip speed ratio for turbine case study3. 

 

4λ =  6λ =  10λ =  
PVLt OpenProp OptRotor PVLt OpenProp OptRotor PVLt OpenProp OptRotor 

QC  -0.118 -0.119 -0.119 -0.086 -0.086 -0.086 -0.055 -0.055 -0.055 

PC  -0.473 -0.477 -0.475 -0.514 -0.516 -0.514 -0.545 -0.546 -0.546 
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V r
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f

V
V = . 

Viscous drag is neglected. The optimized circulation distribution Γ  using code PVLt and 

OptRotor at three tip speed ratios 4λ =  , 6λ = and 10λ = are shown in Figure 7.13. The 

corresponding total flow angles iβ   are shown in Figure 7.14. It can be seen that 

OptRotor favors a higher loading and thus lower iβ  in the inner region of the blade. The 

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

λ=10
λ=6

β i (
de

g)

r/R

 PVLt
 OpenProp
 OptRotor

λ=4



168 

 

 

difference between the results from OptRotor and PVLt is larger as the tip speed ratio 

decreases. This is because of the assumption that the induced velocity *
tu rω used in 

PVLt Equation (2.144) is getting poorer at smaller radii and lower tip speed ratios. This 

assumption in PVLt also leads to a lower QC and PC  than the turbine optimized using 

OptRotor as seen in Table 7.5. Although there is no existing code for turbine optimization 

under a non-uniform inflow for validation, the close match of the results from codes 

PVLt and OptRoror shows the capability of both codes to optimize turbine design with 

non-uniform inflow. OptRotor gives a little better result than PVLt as suggested by its 

higher PC  value.  

 

Figure 7.13. Optimized circulation distributions by different codes at different tip speed ratio for turbine 
case study4. 
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Figure 7.14. Total flow angle iβ  by different codes at different tip speed ratio for turbine case study4. 
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both non-uniform inflow and hub model. OptRotor gives a little better load distributions 

which leads to a higher PC  value than PVLt’s result.  

 

Figure 7.15. Optimized circulation distributions by different codes at different tip speed ratio for turbine 
case study5. 

 

Figure 7.16. Total flow angle iβ  by different codes at different tip speed ratio for turbine case study5. 
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Table 7.6. Comparison of QC  and PC  by different codes at different tip speed ratio for turbine case study5. 

 

4λ =  6λ =  10λ =  
PVLt OptRotor PVLt OptRotor PVLt OptRotor 

QC  -0.102 -0.105 -0.073 -0.075 -0.046 -0.048 

PC  -0.408 -0.420 -0.438 -0.451 -0.461 -0.475 
 

The last case study is to demonstrate the additional capability of the OptRotor 

code for turbine optimization with constraints. Although there is no requirement on the 

thrust of a turbine, there are other considerations that lead to some constraints. For 

example, due to structural or manufacturing considerations, the hub region of the blade is 

usually designed in the shape of a cylindrical rod. There is no lift generated by a cylinder 

and thus the loading at the cylindrical rod region is always zero regardless of the inflow 

velocities and rotation speed. This loading constraint can be easily specified in OptRotor. 

Case study6 is the same as Case study5 ( 3Z = , 0.1hr R=  with hub model, non-uniform 

inflow ( )2
1 0.1a

f

V r
V R= − and 0t

f

V
V = ), except that from blade hub 0.1R to 0.2R the 

blade is in the shape of a cylindrical rod and thus the bound circulation is always zero. At 

tip speed ratio 6λ =  , the bound circulation distribution for case study5 and case study6 

are compared in Figure 7.17.  The results show that the loading constraints from 0.1R to 

0.2R affect the optimized circulation distribution up to 0.4R.  
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Figure 7.17. Optimized circulation distributions with constrains (case study6) and                               
without constrains (case study5). 
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more iterations are needed to converge to the optimized result. The maximum number of 

function evaluations can be increased by using Matlab internal function optimoptions.  

Since normally there is no constraint for horizontal-axis turbine optimization, another 

Matlab internal function fminsearch was considered. fminsearch is an unconstrained 

nonlinear optimization function based on Nelder-Mead simplex algorithm. Several 

turbine design case studies have been conducted with fminsearch. fmincon based on 

Interior point method works much better than fminsearch in terms of number of iterations 

and the final physically reasonable optimized solution. In addition, fmincon is more 

versatile by being able to specify more constraints if necessary.  

 

7.4  Summary 

In this chapter, detailed validation and case studies are conducted for the newly 

developed OptRotor code and the new implementation of the PVL code, PVLt. The 

OptRotor code is first validated with results from both PVL and the OpenProp code for 

propeller design with uniform inflow and also with non-uniform inflow. 

The OptRotor code and PVLt code are then validated with the analytical results 

given by General Momentum theory for horizontal-axis turbine design. For uniform 

inflow with hub model, results from the OptRotor code and PVLt code are compared 

with the results from the OpenRotor code. Good agreement on both optimized bound 

circulation and total flow angle is observed. Additional validation between OptRotor and 

PVLt are conducted for the turbine optimization with non-uniform incoming flow with 

and without hub image. OptRotor gives a better optimization because the assumption 
*
tu rω  used in PVLt gets poorer at small radius and low tip speed ratio. In addition, the 

capability of specifying extra constraints makes OptRotor a more versatile preliminary 

design tool.   
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CHAPTER 8. CONCLUSION AND FUTURE WORK 

8.1  Conclusion 

This thesis presents four analytical/ semi-analytical models for preliminary design 

in turbomachinery. They are: 1) a generalized flat plate cascade model for investigating 

the unsteady aerodynamic of a blade row with non-uniformly spaced blades; 2) a 

multistage interaction model for investigating rotor-stator interactions; 3) an analytical 

solution for quantifying the centrifugal compressor impeller wake convection and 

pressure wave propagating between the impeller and diffuser vane; and 4) a semi-

analytical model based lifting line theory for unified propeller and horizontal-axis turbine 

optimization. 

The first three models for unsteady aerodynamics in axial and centrifugal 

compressors are based on linearized Euler equations. The unsteadiness in the flow is 

assumed to a small perturbation superimposed on a steady mean flow. The time-averaged 

steady mean flow is first obtained by solving the non-linear mean flow Euler equations. 

The unsteady waves in the flow are assumed to be harmonic in time and in the 

circumferential direction. Their amplitudes are found by solving the linearized Euler 

equations. The last model for propeller and horizontal-axis turbine optimization is based 

on the Lifting line theory. The Interior point method is used for optimization. To analyze 

the aeromechanics problem, the blade section structural dynamics are modelled using a 

spring-mass model with uncoupled bending and torsion vibrations. Each model is first 

validated with existing models, and then applied in different case studies. 

The generalized flat plate cascade model is applied in several case studies based 

on the geometry and flow condition of the Purdue Transonic Compressor rotor, to study 

the effect of different aerodynamically mistuned configurations on rotor forced response, 

flutter and acoustic behavior. Forced response and flutter analyses show that loading and 
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aerodamping on the blades of non-uniformly spaced blade rows can be significantly 

different from the blades on a uniformly spaced blade row. Some blades on a non-

uniformly spaced blade row may become unstable at certain interblade phase angles and 

at certain operating conditions when the corresponding uniformly spaced blade row has 

no flutter problem. Acoustic analysis shows that the acoustic energy of the propagating 

pressure waves generated on the rotor due to the excitation of the IGV wake spread out 

over more frequency components for the non-uniformly spaced blade row than for the 

uniformly spaced blade row.  

The multistage interaction model is applied in a series of case studies based on the 

geometry and flow conditions of the Purdue 3-Stage Research Compressor to investigate 

the multistage interactions effects (by varying inter-row spacing and vane clocking 

positions) on the forced response, flutter and aeroacoustic behavior of the embedded rotor 

row. The forced response and flutter analyses show that unsteady loading and 

aerodamping considering multistage interactions are markedly different from the values 

obtained by a single row analysis. By varying inter-row spacing and vane clocking, the 

multistage effect can be altered in a favorable way to reduce unsteady loading and 

increase the aerodamping of the rotor. The acoustic analysis shows that multistage 

interaction amplifies the existing pressure wave in the single blade row analysis. 

Additional propagating pressure waves that do not exist in a single blade row analysis are 

also generated due to the multistage interactions. Both inter-row spacing and vane 

clocking can greatly affect the amplitude of the propagating pressure waves.  

The generalized flat plate cascade model and multistage interaction model are 

combined to study the effect of non-uniform spaced IGV on the downstream rotor flutter 

stability based on the Purdue Transonic Compressor’s geometry and flow conditions. 

Case studies show that both the effects of multistage interaction and non-uniformly 

spaced IGV make the classic flutter analysis of a single rotor inaccurate at certain 

interblade phase angles.  

The analytical solutions for the unsteady waves in a radial duct with mean 

swirling flow is used to study the propagation of the impeller wake and pressure wave in 

the vaneless space based on the geometry and flow conditions of the Purdue Low Speed 
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Centrifugal Compressor. For vorticity wave propagation, results show that the unsteady 

circumferential velocity and unsteady radial velocity change in different ways over radius. 

This causes distortion of the wake profile as the impeller wake travels downstream. For 

pressure wave propagation, results show that the amplitude of the pressure waves always 

increase as they propagate inwardly due to space contraction and thus the increase of the 

acoustic energy density. Mean flow velocity has a negligible effect on the pressure wave 

amplitude growth rate. Opposite to the trend in axial compressors, pressure waves with 

larger circumferential wave numbers have higher growth rates.  

Blade element momentum theory is the current standard preliminary design tool 

for wind turbines. It models a wind turbine as a rotating actuator disk and assumes there 

is no aerodynamic interaction between different blade sections. These two assumptions 

significantly limit the accuracy of the model. By performing a detailed analysis of the 

Lifting line theory based marine propeller preliminary design tool, the mathematical and 

physical equivalence of the propeller and horizontal-axis turbine under the Lifting line 

theory is found. Case studies show that propeller optimization methods can be applied to 

horizontal-axis turbine optimization directly by sweeping through all possible thrust 

coefficients and finding the overall minimum negative value for the torque coefficient 

(which gives maximum power output). By examining the assumptions made in the 

Lagrange multiplier based optimization method, a new unified propeller and horizontal-

axis turbine optimization code based on the Interior point method is developed. Case 

studies show the new code is a very versatile preliminary design tool with the capability 

of hub modelling, working with non-uniform inflow and including extra user specified 

constraints.   

 

8.2  Future Work 

The theoretical framework of the models developed in this study is very general 

and can be extended for additional features and applications. The following areas are 

those that the author recommends for future work 
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8.2.1  Unintentional Aerodynamic Mistuning 

The generalized flat plate cascade model developed in this study is used to 

explore the potential of intentionally aerodynamically mistuning a blade row as a passive 

control technique. Unintentional aerodynamic mistuning due to operational wear and 

damage is also of great interest because it can change unsteady loading on each blade 

randomly. The associated small blade-to-blade non-uniform stagger angles and chord 

length can be easily included as they are just another form of non-uniform spacing at 

different chordwise positions for the flat plate cascade model. A statistical analysis would 

be able to quantify the unintentional aerodynamic mistuning effect on the unsteady 

loading of a blade row.   

 

8.2.2  Structural Mistuning 

Structural mistuning in terms of blade-to-blade natural frequency variations can 

be easily included in the mass-spring structural dynamic model of the blade section in 

Section 2.1. The response blade vibration amplitude can be treated as the summation of 

all possible fundamental harmonic modes by discrete Fourier transform. In this way, 

aerodynamically mistuned blade rows, structurally mistuned blade rows and multistage 

interaction are all based on the same theoretical framework of using cascade waves to 

model the unsteady waves, unsteady loading and blade vibration. In this study, the 

aerodynamically mistuned blade row has been incorporated into the multiage interaction 

model. The extension to include structural mistuning can result in a complete unsteady 

aerodynamic model for aeromechanic problems in axial compressors. 

 

8.2.3  Radial Cascade Model 

The analytical unsteady radial wave solution is a fundamental characteristic of the 

unsteady flow field in a radial duct. Based on these analytical unsteady radial wave 

solutions, the framework developed for a linear flat plate cascade model [11] can be 

followed to develop a radial flat plate cascade applicable to centrifugal compressors. This 

semi-analytical radical cascade model can be very helpful in preliminary centrifugal 
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compressor design because 1) start-of-art aeromechanic analysis methods for centrifugal 

compressors are very limited, and 2) centrifugal compressor design usually varies based 

on customer specifications and applications that which prohibit systematic unsteady CFD 

simulations [19]. 

 

8.2.4  Lifting Line Theory Based Novel Horizontal-axis Turbine Design 

This study has shown the mathematical and physical equivalence between 

propellers and horizontal-axis turbines in Lifting line theory. This equivalence enables 

many existing propeller design tools and design concepts to be used for horizontal-axis 

turbine design with little additional effort. For example, ducted propellers and contra-

rotating propellers have all been designed based on Lifting line theory [46-47]. 

Corresponding shrouded wind turbines and contra-rotating wind turbines have been 

proposed and commercialized by several companies [48-49]. The Lifting line theory 

based optimization method is able to provide a strong theoretical foundation for these 

novel horizontal-axis turbine designs.  
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Appendix A Unified Propeller and Horizontal-axis Turbine Code 

This is a unified propeller and horizontal-axis turbine optimization code based on 

Lifting line theory and interior point optimization method. It includes main program, 

OptRotor.m and 4 functions: Wrench.m, evaluate.m, objective.m and constrain.m. 

 

Main Program: OptRotor.m 

% This is a unified propeller and horizontal-axis turbine optimization code 
% based on Lifting line theory and interior point optimization method. 
  
% It includes 1) main program OptRotor.m and 2) Four functions: 
% Wrench.m, evaluate.m, objective.m and constrain.m.  
% It also requires Matlab optimization function fmincon.  
  
% Most of the Lifting line theory and numerical implementation is based on: 
% [1]Kerwin J.& Hadler J.(2010)“Principles of Naval Architecture: Propulsion”  
% SNAME.  AND   [2]B.P. Epps & R.W. Kimball (2013) “Unified rotor lifting  
% line theory”, J Ship Res, 57 
% Part of the code is based on Kerwin's PVL code and Epps's OpenPropcode. 
  
% In comments Eq.(xx) refers to the Author's PhD thesis 
% Kerwin Eq.(xx) refers to equations in Kerwin J.& Hadler J. paper 
% Additional theory, model details and case studies are given in the   
% Author's PhD thesis, Yujun Leng, 2016 "Preliminary design tools in 
% turbomachinery: non-uniformly spaced blade rows, multistage interaction, 
% unsteady radial waves, and propeller horizontal-axis turbine 
% optimization", Mechanical Engineering, Purdue University, West Lafayette 
  
% Author: Yujun Leng  Email:lengyujun@gmail.com  Last updated: Apr 16, 2016 
% This is free software under the terms of the GNU General Public License 
% You are welcome to use it. I hope it will be helpful! 
  
%% INPUT------------------------------------------------------------------- 
Turbine_flag = 1;      % 0 == propeller, 1 == horizontal-axis turbine 
Mp = 20;               % number of vortex panels over the radius 
Z  = 3;                % number of blades 
L  = 6;                % tip-speed ratio 
    Js      = pi/L;    % advance coefficient 
Rhub = 0.1;            % hub radius /rotor radius 
Hub_flag = 1;          % 0 == no hub model, 1 == with hub model 
XR = [0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1.0];   % r/R 
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XVA = -0.1*XR.^2+1;    % Va/Vs 
XVT = zeros(size(XR)); % Vt/Vs 
% CTdes = 1.0;    %desired thrust coefficient,   for propeller only 
% Rhv = 0.25;     %hub vortex radius/hub radius, for marine propeller only 
  
%% Pre-processing---------------------------------------------------------- 
% ---Calculate Volumetric Mean Inflow Velocity VMIV 
XRtemp=linspace(Rhub,1,100); XVAtemp=interp1(XR,XVA,XRtemp,'pchip','extrap');  
VMIV = 2*trapz(XRtemp,XRtemp.*XVAtemp)/(1-Rhub^2); % Kerwin eq.(4.4) 
% ---Compute cosine spaced vortex & control pt. radial position 
RV = zeros(1,Mp+1); 
RC = zeros(1,Mp); 
DEL = pi/(2*Mp); 
Rdif = 0.5*(1 - Rhub);  
for m = 1:Mp+1 
    RV(m) = Rhub + Rdif*(1-cos(2*(m-1)*DEL));   % Eq. (2.133) 
end 
for n = 1:Mp 
    RC(n) = Rhub + Rdif*(1-cos((2*n-1)*DEL));   % Eq. (2.134) 
end 
DR = diff(RV); 
% ---Interpolate Va, Vt at control points RC 
VAC = pchip(XR,XVA   ,RC); 
VTC = pchip(XR,XVT   ,RC); 
TANBC = VAC./(L*RC + VTC); % tan(Beta) at RC 
  
%% Optimization-----------------------------------------------------------  
if Turbine_flag==0 
    % efficiency estimate 90% of the actuator disk efficiency, EDISK  
    EDISK = 1.8/(1+sqrt(1+CTdes/VMIV^2));  % Eq. (2.154)         
    x0 = TANBC/EDISK;       % initial guess of tan(BetaI) 
    lb = 0.1*TANBC;         % lower bound of tan(BetaI) 
    ub = 10*TANBC;          % upper bound of tan(BetaI) 
    % if Rhv is not specified, use Rhv=exp(3) to zero hub drag 
    if ~exist('Rhv','var') Rhv  = exp(3); end;   
    objectivef=objective(Mp,Z,L,VAC,VTC,VMIV,TANBC,RC,RV,DR,... 
        Rhub,Rhv,Hub_flag); 
    constrainf=constrain(Mp,Z,L,VAC,VTC,VMIV,TANBC,RC,RV,DR,... 
        Rhub,Rhv,Hub_flag,CTdes); 
elseif Turbine_flag==1 
    x0 = tan(atan(TANBC)*2/3); % initial guess from General Momentum Theory 
    lb = zeros(1,Mp);          % lower bound of tan(BetaI) 
    ub = 5*TANBC;              % upper bound of tan(BetaI) 
    Rhv=exp(3); % use this number to zero hub drag for turbine optimization 
    objectivef=objective(Mp,Z,L,VAC,VTC,VMIV,TANBC,RC,RV,DR,Rhub,... 
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        Rhv,Hub_flag); 
    constrainf=[]; 
end 
% x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) 
% optimoptions may be needed to increase maximum function evaluation times 
x = fmincon(objectivef,x0,[],[],[],[],lb,ub,constrainf); 
  
%% Post-processing--------------------------------------------------------- 
TANBIC = x; 
[UASTAR,UTSTAR,G,CT,CQ,CP,CTH,KT,KQ,EFFY] = ... 
    
evaluate(TANBIC,TANBC,Mp,Z,L,VAC,VTC,VMIV,RC,RV,DR,Rhub,Rhv,Hub_flag); 
% UASTAR,UTSTAR:induced velocities;G is nondimensionalized bound circulation 
% CT,CQ,CP: thrust, torque and power coefficient 
% CTH: hub thrust coefficient due to hub drag 
% KT,KQ: thrust,torque coefficient based on rotational speed Kerwin eq.(4.8) 
% EFFY: propeller efficiency based on VMIV, aka inflow-adapted efficiency 
 

Function 1: evaluate.m 

function [UASTAR,UTSTAR,G,CT,CQ,CP,CTH,KT,KQ,EFFY]=... 
    
evaluate(TANBIC,TANBC,Mp,Z,L,VAC,VTC,VMIV,RC,RV,DR,Rhub,Rhv,Hub_flag) 
% ---Calculate horseshoe influence functions 
UAHIF = zeros(Mp,Mp); UTHIF = zeros(Mp,Mp); 
for n = 1:Mp                 % for each control point, n  
    for m = 1:Mp             % for each vortex  panel, m   
        % Use Epps's wake model, Figure 2.11   
        % Velocity induced at RC(n) by a unit vortex shed at RV(m+1) 
        [UAW1,UTW1] = Wrench(Z,TANBIC(m)*RC(m)/RV(m+1),RC(n),RV(m+1));   
        % Velocity induced at RC(n) by a unit vortex shed at RV(m)  
        [UAW2,UTW2] = Wrench(Z,TANBIC(m)*RC(m)/RV(m)  ,RC(n),RV(m)  );   
        % Add hub image vortex effect to horseshoe influence functions  
        if Hub_flag == 1 
            RVH1=Rhub^2/RV(m+1); RVH2=Rhub^2/RV(m); % Eq. (2.135) 
            [UAWh1,UTWh1] = Wrench(Z,TANBIC(m)*RC(m)/RVH1,RC(n),RVH1 );  
            [UAWh2,UTWh2] = Wrench(Z,TANBIC(m)*RC(m)/RVH2,RC(n),RVH2 );  
            UAW1=UAW1-UAWh1; UAW2=UAW2-UAWh2;%negative strength image 
vortex  
            UTW1=UTW1-UTWh1; UTW2=UTW2-UTWh2;%negative strength image 
vortex  
        end 
        UAHIF(n,m) = UAW1 - UAW2;   % Eq. (2.131) 
        UTHIF(n,m) = UTW1 - UTW2;   % Eq. (2.132)    
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    end  
end       
% ---Solve Eq.(2.149) for bound circulation BC based on TANBIC & TANBC 
RHS = zeros(Mp,1); LHS = zeros(Mp,Mp); 
for n = 1:Mp                            % for each control point, n 
    RHS(n) = VAC(n)*((TANBIC(n)/TANBC(n))-1); 
    for m = 1:Mp                        % for each vortex  panel, m 
        LHS(n,m) = UAHIF(n,m)-UTHIF(n,m)*TANBIC(n); 
    end 
end 
BC = LHS\RHS;   % bound circulation strength 
% ---Compute induced velocities at control points 
UASTAR = (UAHIF*BC)';   % Eq. (2.129) 
UTSTAR = (UTHIF*BC)';   % Eq. (2.130)  
% ---Calculate performance coefficients  
G = BC/(2*pi);  % nondimensionalized bound circulation: Gamma/(2*pi*R*Vf) 
CTP = 4*Z*sum((L*RC + VTC + UTSTAR).*G'.*DR); %propeller thrust coefficient 
CQ = 4*Z*sum((VAC + UASTAR).*G'.*RC.*DR);     %torque coefficient 
% Compute hub drag effect(negative thrust) on thrust coefficient,  
if Hub_flag == 1 
    CTH = -0.5*(log(1/Rhv)+3)*(Z*G(1))^2;   % Eq. (2.140) 
elseif Hub_flag == 0 
    CTH = 0; 
end 
CT = CTP+CTH;   % total thrust coefficient 
Js = pi/L;      % advance coefficient 
CP = CQ*pi/Js;  % power coeff. based on torque, Kerwin eq.(4.12) 
KT=CT*Js^2*pi/8;  %thrust coeff. based on rotational speed, Kerwin eq.(4.11) 
KQ=CQ *Js^2*pi/16;%torque coeff. based on rotational speed, Kerwin eq.(4.11) 
EFFY=CT/CP*VMIV; % inflow-adapted efficiency, for propeller only 
end 
 

 

 

 

 

 

 



187 
 

 

 

Function 2: Wrench.m 

% Function Wrench calculates influence functions u_barA, u_barT based on 
% Wrench, J.W. 1957, “The calculation of propeller induction factors”.  
% Tech. Rep. 1116, David Taylor Model Basin 
function [u_barA, u_barT] = Wrench(Z,tan_betaW,rc,rv) 
  
if Z > 50 % blade number>50, use the formula for infinite number of blades     
    if rc < rv 
        u_barA = Z/(4*pi*rv*tan_betaW);    % Eq.(2.125) 
        u_barT = 0;                        % Eq.(2.126)                     
    elseif rc > rv 
        u_barA = 0;                        % Eq.(2.127)         
        u_barT = Z/(4*pi*rc);              % Eq.(2.128)  
    end 
else  
    y  = rc/(rv*tan_betaW); 
    y0 = 1/tan_betaW; 
    U  = (y0*(sqrt(1+y^2)-1)*exp(sqrt(1+y^2)-sqrt(1+y0^2))/... 
      (y*(sqrt(1+y0^2)-1)))^Z; 
    F1 = -1/(2*Z*y0)*((1+y0^2)/(1+y^2))^0.25*((U/(1-U))+1/(24*Z)*... 
      ((9*y0^2+2)/(1+y0^2)^1.5+(3*y^2-2)/(1+y^2)^1.5)*log(abs(1+U/(1-U)))); 
    F2 = 1/(2*Z*y0)*((1+y0^2)/(1+y^2))^0.25*((1/(U-1))- 1/(24*Z)*... 
      ((9*y0^2+2)/(1+y0^2)^1.5+(3*y^2-2)/(1+y^2)^1.5)*log(abs(1+1/(U-1)))); 
    if rc < rv 
        u_barA = Z/(4*pi*rc)*(y-2*Z*y*y0*F1);          % Eq.(2.121)  
        u_barT = Z^2*y0*F1/(2*pi*rc);                  % Eq.(2.122)       
    elseif rc > rv 
        u_barA = -Z^2*y*y0*F2/(2*pi*rc);               % Eq.(2.123)     
        u_barT = Z/(4*pi*rc)*(1+2*Z*y0*F2);            % Eq.(2.124)  
    end 
end 
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Function 3: objective.m 

function objectivef = ... 
    objective(Mp,Z,L,VAC,VTC,VMIV,TANBC,RC,RV,DR,Rhub,Rhv,Hub_flag) 
objectivef = @optimizeobj; 
   function obj = optimizeobj(x) 
       TANBIC = x; 
       [~,~,~,~,CQ,~,~,~,~,~] = evaluate ... 
           (TANBIC,TANBC,Mp,Z,L,VAC,VTC,VMIV,RC,RV,DR,Rhub,Rhv,Hub_flag); 
       obj = CQ; 
   end 
end 
 
 
Function 4: constrain.m 

function constrainf = ... 
    constrain(Mp,Z,L,VAC,VTC,VMIV,TANBC,RC,RV,DR,Rhub,Rhv,Hub_flag,CTdes) 
constrainf = @nonlinearconstrain; 
   function [c1, c2] = nonlinearconstrain(x) 
       TANBIC = x; 
       [~,~,~,CT,~,~,~,~,~,~] = evaluate... 
           (TANBIC,TANBC,Mp,Z,L,VAC,VTC,VMIV,RC,RV,DR,Rhub,Rhv,Hub_flag); 
       c1 = []; % the non-linear inequality 
       c2 = CT-CTdes; % the non-linear equality 
   end 
end 
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Appendix B Multistage Interaction Code 

This is a multistage interaction code for calculating the unsteady loading and 

unsteady waves in axial compressors. This code includes main program, 

Multistage_LINSUB.m and 5 functions: scattergrpC.m, upwashUm.m, coeffXm.m, 

kernelKm10.m and pressurewavem.m 

 

Main Program: Mulititage_LINSUB.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      Multistage LINSUB        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% This is a multistage interaction code for calculating the unsteady 
% loading and unsteady waves in axial compressors.   
% Since Multi-row interactions beyond 3 blades rows have minimum effect.  
% This code deals with 2 or 3 blade rows.  
% To include the counter-rotating stages case, both rotor and ‘stator’  
% rotational speed can be specified. 
  
% This code includes main program Multistage_LINSUB.m and 5 functions: 
% scattergrpC.m-calculate LINSUB coefficients for the scattering group 
% scattergrpC.m calls the following 4 functions 
% upwashUm.m----calculate input upwash velocity matrix 
% coeffXm.m-----calculate output coefficient matrix 
% kernelKm10.m--calculate kernel matrix based on 10 times convergence tests 
% pressurewavem.m-----calculate pressure wave & vorticity wave properties 
  
% The major structure of the code is based on the derivation of the paper 
% Hall,K.C & Silkowski,P.D: 
% "The influence of Neighboring Blade rows on the Unsteady Aerodynamic 
% response the unsteady Aerodynamic response of cascades" Journal of  
% Turbomachinery, Vol.119/85 (Jan 1997) 
% The transmission, reflection and scattering coefficients are calculated   
% based on a modified version of the original LINSUB code in papers: 
% Whitehead, D. S. "Classical two-dimensional methods."  
% In AGARD Aeroelasticity in Axial-Flow Turbomachines. 1 (1987). 
% Smith, S. N. "Discrete frequency sound generation in axial flow  
% turbomachines."  Reports and Memoranda 3709 (1972) 
  
% In comments Eq.(xx) refers to equation the Author's PhD thesis 
% Hall Eq.(xx) refers to equation in Hall,K.C & Silkowski,P.D's paper 
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% Smith Eq.(xx) refers to equation in Smith,S. N.'s paper 
% Additional theory, model details and case studies are given in the   
% Author's PhD thesis, Yujun Leng, 2016 "Preliminary design tools in 
% turbomachinery: non-uniformly spaced blade rows, multistage interaction, 
% unsteady radial waves, and propeller horizontal-axis turbine 
% optimization", Mechanical Engineering, Purdue University, West Lafayette 
  
% Author: Yujun Leng  Email:lengyujun@gmail.com  Last updated:Apr 16, 2016 
% This is free software under the terms of the GNU General Public License 
% You are welcome to use it. I hope it will be helpful! 
  
%% INPUT------------------------------------------------------------------- 
  
% Input for Purdue 3-stage research compressor 
np=20;                              % Number of control points 
radius=12;                          % Radius of 2-D slice 
nrows=3;                            % Number of blade rows 
stag=[-24.3 49.8 -24.3]/180*pi;     % Stagger angle  
nbl=[44 33 44];                     % Number of blades  
omega_r=[0 -387.46 0];              % Rotation rate (rad/s) 
chord=[2.11 2.96 2.22];             % Chord length 
gapx=[0.65 0.65];    % Trailing Edge-Leading Edge gap in x direction; 
gapy=[0 0];                         % TE-LE gap in y direction; 
relvel=[3120 4406 3120];            % Relative velocity along the chord 
relma=[0.2331 0.3292 0.2331];       % Relative Mach Number along the chord 
xea=15/35;                          % Elastic axis position for torsion mode 
  
excitedrow_number=2;                % Blade row receiving primary excitation 
omega_not=17048;                    % Excitation frequency (rad/s)   
n_not=-44;                          % Excitation Nodal diameters  
excite_type=4;     % 1:bending 2:torsion 3:vorticity 4:pressure wave up 5:pdn 
  
% Specify the modes involved in the multistage interaction analysis 
% mode[i,j] is the scattering index of ith mode in jth blade row 
% If the 3rd row is the repeated blade row of the 1st row, only the 
% scattering index in the first 2 rows needs to be specified in the 'mode'. 
% If the 3rd row is the repeated blade row of the 1st row, repeated_stage=1 
repeated_stage=1;  
mode=[-2 -2; -2 -1; -2 0; -2 1; -2 2;... 
      -1 -2; -1 -1; -1 0; -1 1; -1 2;... 
       0 -2;  0 -1;  0 0;  0 1;  0 2;... 
       1 -2;  1 -1;  1 0;  1 1;  1 2; 
       2 -2;  2 -1;  2 0;  2 1;  2 2]; 
  
%% Calculate transmission, reflection and scattering coefficients---------- 
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% ---Calculate steady flow properties in each blade row 
% LINSUB assumes the axial velocity and axial Ma in different blade rows  
% are the same, and thus the sound speed a is the same.  
  
U=relvel(1)*cos(stag(1))*ones(1,nrows); %axial velocity in each row 
V=zeros(1, nrows);                      %tangential velocity in each row 
V(1)=relvel(1)*sin(stag(1)); 
for jj1=2:nrows 
    V(jj1)=V(jj1-1)-(omega_r(jj1)-omega_r(jj1-1))*radius; 
end 
W=sqrt(U.^2+V.^2);                     %chord wise velocity in each row  
theta=atan(V./U);                      %calculated stagger angle  
a=relvel(1)/relma(1);                  %sound speed 
M=W./a;                                %calculated Mach number 
  
% LINSUB assumes no flow turning in each blade row.  
% Check whether the flow angle matches the input stagger angle.  
    error_W=max(abs((W-relvel)./W)); 
    error_theta=max(abs((theta-stag)./theta)); 
    error_M=max(abs((M-relma)./M)); 
    if (error_W>0.01)||(error_theta>0.01)||(error_M>0.01) 
        warning('flow angle does NOT match the given stagger angle') 
        warning('main flow properties are corrected as follow') 
        display('flow angles(deg) in each blade row') 
        display(theta/pi*180) 
        display('chordwise velcoity in each blade row') 
        display(W) 
        display('chordwise Mach number in each blade row') 
        display(a) 
    end    
  
% ---Calculate space to chord ratio sc 
s=2*pi*radius./nbl; 
sc=s./chord; 
  
% NOTE: 
% LINSUB Input M, theta,sc is the same for different modes in the same  
% blade row. Thus M, theta and sc calculated above are used as common  
% LINSUB inputs for different modes in each blade row. 
% LINSUB Input phi and lambda are different for different modes. They  
% are calculated for each mode in each blade row below.  
  
% ---Calculate interblade phase angle phi based on nodal diameter ND 
nmodes=size(mode,1); 
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if repeated_stage==1 
    %add zero scattering index for the repeated 3rd row in order to use  
    %the general 3rows formulation for omega and phi calculation 
    mode(:,3)=zeros(nmodes,1);       
end 
ND=sum(mode.*repmat(nbl,nmodes,1),2)+n_not;   %Eq. (2.100) 
ND=repmat(ND,1,nrows); 
phi=ND*2*pi./repmat(nbl,nmodes,1);            %interblade phase angle 
  
% ---Calculate reduced frequency lambda based on frequency omega 
omega=zeros(nmodes,nrows); 
if excitedrow_number==2         %Eq. (2.102) 
    omega(:,1)=omega_not+(n_not+mode(:,2)*nbl(2))*(omega_r(1)-omega_r(2)); 
    if nrows==3 
        omega(:,2)=omega_not+(mode(:,1)*nbl(1)+mode(:,3)*nbl(3))... 
            *(omega_r(2)-omega_r(1)); 
    elseif nrows==2 
        omega(:,2)=omega_not+(mode(:,1)*nbl(1))*(omega_r(2)-omega_r(1)); 
    end 
elseif (excitedrow_number==1)||(excitedrow_number==3)   %Eq. (2.101) 
    omega(:,1)=omega_not+mode(:,2)*nbl(2)*(omega_r(1)-omega_r(2)); 
    if nrows==3 
        omega(:,2)=omega_not+(n_not+mode(:,1)*nbl(1)+mode(:,3)*nbl(3))... 
            *(omega_r(2)-omega_r(1)); 
    elseif nrows==2 
        omega(:,2)=omega_not+(n_not+mode(:,1)*nbl(1))*(omega_r(2)-omega_r(1)); 
    end 
else 
    error('Wrong blade row which receive the initial excitation') 
end 
if nrows==3     
    omega(:,3)=omega(:,1); 
end 
lambda=omega./repmat(W, nmodes,1).*repmat(chord, nmodes,1);%reduced freq. 
  
% ---Calculate axial and tangential wave numbers 
alpha1=zeros(nmodes,3);          
alpha2=zeros(nmodes,3);          
alpha3=zeros(nmodes,3);         
beta=zeros(nmodes,3); 
for jj1=1:nmodes 
    [aa1,aa2,aa3, bb,~,~,~,~]=... 
        pressurewavem(lambda(jj1,1), M(1), theta(1), sc(1),0,phi(jj1,1)); 
    alpha1(jj1,1)=aa1/chord(1);%in LINSUB alpha,beta are multiplied by chord 
    alpha2(jj1,1)=aa2/chord(1); 
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    alpha3(jj1,1)=aa3/chord(1); 
    beta(jj1,1)=bb/chord(1); 
    [aa1,aa2,aa3, bb,~,~,~,~]=... 
        pressurewavem(lambda(jj1,2), M(2), theta(2), sc(2),0,phi(jj1,2)); 
    alpha1(jj1,2)=aa1/chord(2); 
    alpha2(jj1,2)=aa2/chord(2); 
    alpha3(jj1,2)=aa3/chord(2); 
    beta(jj1,2)=bb/chord(2); 
    %only first two blade rows are calculated because in the linear 
    %assumption the 3rd row has the same steady flow properties as the 1st 
    %row 
    alpha1(jj1,3)=alpha1(jj1,1); 
    alpha2(jj1,3)=alpha2(jj1,1); 
    alpha3(jj1,3)=alpha3(jj1,1); 
    beta(jj1,3)=beta(jj1,1); 
end 
  
% alpha, beta in different blade rows should be the same. 
% i.e. alpha(i,1)=alpha(i,2) beta(i,1)=beta(i,2) 
% this serves as a check for the correct input convention 
if (mean(abs(alpha1(:,1)./alpha1(:,2)))-1)>1e-3 || ... 
   (mean(abs(alpha2(:,1)./alpha2(:,2)))-1)>1e-3 || ... 
   (mean(abs(alpha3(:,1)./alpha3(:,2)))-1)>1e-3 || ... 
   (mean(abs(beta(:,1)./beta(:,2)))-1)>1e-3 
    error('the wave numbers in different blade row are different!') 
end 
  
% ---Build up the scattering table and find the scatter group 
% Since the scatter range and steady flow conditions are different in each 
% row generally, the scatter group in each row are different. 
% The mode is given by a matrix of scatter index [n1 n2 n3] for three blade 
% rows and [n1 n2] for two blade rows 
  
  
% Max possible scatter index in all blade rows, nsrange 
nsrange=size(unique(mode),1);   
% the corresponding scattering modes for a certain mode in each blade row 
nscatter=zeros(nmodes, nsrange, nrows); 
% the corresponding LINSUB coefficients [5*5] for each scattering mode 
nscatterCL=cell(nmodes,nsrange, nrows); 
  
%Build up the scattering table  
for jj1=1:nmodes 
    n1fix=find(mode(:,1)==mode(jj1,1))'; 
    n2fix=find(mode(:,2)==mode(jj1,2))'; 
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    if nrows==2 
        n1s=n2fix; 
        n2s=n1fix; 
        nscatter(jj1,1:size(n1s,2),1)=n1s; 
        nscatter(jj1,1:size(n2s,2),2)=n2s; 
    elseif nrows==3 
        n3fix=find(mode(:,3)==mode(jj1,3))'; 
        %scattering modes in 1st blade rows have n2 and n3 value fixed 
        n1s=intersect(n2fix,n3fix);          
        n2s=intersect(n1fix,n3fix); 
        n3s=intersect(n1fix,n2fix); 
        nscatter(jj1,1:size(n1s,2),1)=n1s; 
        nscatter(jj1,1:size(n2s,2),2)=n2s; 
        nscatter(jj1,1:size(n3s,2),3)=n3s; 
    else 
        error('this code only deal with 2 or 3 blade rows')    
    end 
end 
  
% For each blade row, calculate the corresponding LINSUB coefficients and 
% store them in the nscatterCL 
for jj1=1:nrows 
    nsgroup=unique(nscatter(:,:,jj1),'rows'); 
    for jj2=1:size(nsgroup,1) 
        scattermode=nsgroup(jj2,:); 
        scattermode=scattermode(scattermode~=0); %get rid of the empty mode 
        nn1=mode(scattermode,jj1)'; 
        %find the base mode(least scattering number) index number,bmodeIn 
        [~, bmodeIn]=min(abs(nn1));    
        bmodeI=scattermode(bmodeIn); 
        rm=nn1-nn1(bmodeIn); 
        rm=-rm;      %negative because in LINSUB, beta=(phi-2*pi*r)/sc; 
        [grpC] = scattergrpC(np,lambda(bmodeI,jj1), M(jj1), theta(jj1), ... 
            sc(jj1), rm, phi(bmodeI,jj1),xea); 
        %load [grpC] into nscatterCL 
        for jj3=1:size(scattermode,2) 
            for jj4=1:size(scattermode,2) 
                nscatterCL{scattermode(jj3),jj4,jj1}=grpC{jj3,jj4}; 
                 
                %if incoming and outgoing waves have the same mode, add one 
                if scattermode(jj3)==scattermode(jj4) 
                    %if the incoming wave and outgoing wave are of the same 
                    %type, i.e. vo-vo (3,3), pup-pup(4,4), pdn-pdn(5,5), 
                    %original excitation needs to be added to the output. 
                    jj5=scattermode(jj3); 
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                    LETEdx=chord(jj1)*cos(stag(jj1)); 
                    LETEdy=chord(jj1)*sin(stag(jj1)); 
                    %wake, input reference to LE, output reference to TE 
                    LETEvo=exp(1i*alpha3(jj5,jj1)*LETEdx+... 
                        1i*beta(jj5,jj1)*LETEdy); 
                    %pup, input reference to TE, output reference to LE 
                    LETEpup=exp(1i*alpha1(jj5,jj1)*(-LETEdx)+... 
                        1i*beta(jj5,jj1)*(-LETEdy)); 
                    %pdn, input reference to LE, output reference to TE 
                    LETEpdn=exp(1i*alpha2(jj5,jj1)*LETEdx+... 
                        1i*beta(jj5,jj1)*LETEdy);                    
                    nscatterCL{scattermode(jj3),jj4,jj1}(3,3)=... 
                        nscatterCL{scattermode(jj3),jj4,jj1}(3,3)+LETEvo; 
                    nscatterCL{scattermode(jj3),jj4,jj1}(4,4)=... 
                        nscatterCL{scattermode(jj3),jj4,jj1}(4,4)+LETEpup; 
                    nscatterCL{scattermode(jj3),jj4,jj1}(5,5)=... 
                        nscatterCL{scattermode(jj3),jj4,jj1}(5,5)+LETEpdn; 
                end 
            end 
        end 
    end 
end 
  
% If the 3rd row is a repeated blade row, its scattering table and  
% corresponding LINSUB coefficients should be the same as 1st blade row      
if repeated_stage==1    
    nscatter(:,:,3)=nscatter(:,:,1); 
    nscatterCL(:,:,3)=nscatterCL(:,:,1);      
end 
  
%% Build up the Left hand side of the governing matrix-------------------- 
% The whole governing matrix is shown in Hall Eq.(20) 
LHS=zeros(nmodes*nrows*6,nmodes*nrows*6); 
  
% ---Build up the transmission reflection coefficient matrix 
% load matrix AB, column by column, blade row by blade row  
for jj1=1:nrows 
    for jj2=1:nmodes    %jj2 is the input mode 
        scattermode=nscatter(jj2,:,jj1); 
        scattermode=scattermode(scattermode~=0); 
        for jj3=1:size(scattermode,2)   %jj3 is the output mode 
            CL=nscatterCL{jj2,jj3,jj1}; 
            CC=[CL(4,4) CL(4,5) CL(4,3);... 
                CL(5,4) CL(5,5) CL(5,3);... 
                CL(3,4) CL(3,5) CL(3,3)]; 
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            AB=[0 -CC(1,2) -CC(1,3) -CC(1,1) 0 0;... 
                0 -CC(2,2) -CC(2,3) -CC(2,1) 0 0;... 
                0 -CC(3,2) -CC(3,3) -CC(3,1) 0 0]; 
            % if the incoming and outgoing waves are of the same mode, 
            % add delta function 
            if jj2==scattermode(jj3) 
                d=[1 0 0 0 0 0 ;0 0 0 0 1 0;0 0 0 0 0 1]; 
                AB=AB+d; 
            end            
            leftop=[(scattermode(jj3)-1)*nrows*6+1 (jj2-1)*nrows*6+1];  
            LHS((leftop(1)+(jj1-1)*6):(leftop(1)+(jj1-1)*6+2),... 
                (leftop(2)+(jj1-1)*6):(leftop(2)+(jj1-1)*6+5))=AB; 
        end 
    end 
end 
  
% ---Build up inter-row coupling matrix and sublunary conditions 
% Calculate matrix E,I,C,D 
EI12=zeros(3,6,nmodes); EI23=zeros(3,6,nmodes); 
  
for jj1=1:nmodes 
    % non-dimensionalization for the unsteady waves in different blade rows  
    % is based on the flow conditions and blade geometry of the specific row.  
    EI12(:,:,jj1)=... 
    [-exp(1i*alpha1(jj1,1)*gapx(1)+1i*beta(jj1,1)*gapy(1))*... 
    (W(1)/W(2))^2 0 0 1 0 0; 
     0 -exp(1i*alpha2(jj1,1)*gapx(1)+1i*beta(jj1,1)*gapy(1))*... 
     (W(1)/W(2))^2 0 0 1 0; 
     0 0 -exp(1i*alpha3(jj1,1)*gapx(1)+1i*beta(jj1,1)*gapy(1))... 
     *(W(1)/W(2)*chord(2)/chord(1)) 0 0 1]; 
    if nrows==3  %three blade rows case 
        EI23(:,:,jj1)=... 
        [-exp(1i*alpha1(jj1,2)*gapx(2)+1i*beta(jj1,2)*gapy(2))... 
        *(W(2)/W(3))^2 0 0 1 0 0;... 
         0 -exp(1i*alpha2(jj1,2)*gapx(2)+1i*beta(jj1,2)*gapy(2))... 
         *(W(2)/W(3))^2 0 0 1 0; 
         0 0 -exp(1i*alpha3(jj1,2)*gapx(2)+1i*beta(jj1,2)*gapy(2))... 
         *(W(2)/W(3)*chord(3)/chord(2)) 0 0 1]; 
    end 
end 
C=[0 0 0;0 1 0;0 0 1]; D=[1 0 0;0 0 0;0 0 0]; 
  
% Load matrix E,I,C,D, along the diagonal  
for jj1=1:nmodes 
    leftop=[(jj1-1)*nrows*6+1 (jj1-1)*nrows*6+1];  
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    LHS((leftop(1)+3):(leftop(1)+3+2),(leftop(2)+3):(leftop(2)+3+5))...      
        =EI12(:,:,jj1); 
    if nrows==3  %three blade rows case 
        LHS((leftop(1)+9):(leftop(1)+9+2),(leftop(2)+9):(leftop(2)+9+5))...      
            =EI23(:,:,jj1); 
    end 
    LHS((leftop(1)+(2*nrows-1)*3):(leftop(1)+(2*nrows-1)*3+2),... 
        leftop(2):(leftop(2)+2))=C; 
    LHS((leftop(1)+(2*nrows-1)*3):(leftop(1)+(2*nrows-1)*3+2),... 
        (leftop(1)+(2*nrows-1)*3):(leftop(1)+(2*nrows-1)*3+2))=D;    
end 
  
%% Build up the Right hand side of the governing matrix-------------------- 
% The whole governing matrix is shown in Hall Eq.(20) 
RHS=zeros(nmodes*nrows*6,1); 
  
% NOTE: 
% Since LINSUB is a linearized model, if there are multiple excitations, 
% each excitation can be treated separately. The responses can be 
% added together to obtain the total response.  
% The mode family is specified in a way that the initial excitation is  
% always the [0,0] mode or [0,0,0] for 3 blade row cases. 
  
% find [0,0] or [0,0,0] mode index InitialmodeI 
[~,InitialmodeI]=min(sum(abs(mode),2)); 
rightop=(InitialmodeI-1)*nrows*6+1; 
  
% ---Specify external excitation 
if excite_type==3    %vorticity wave, i.e. wake from upstream row 
    if excitedrow_number==1 %far upstream wake excites the 1st row 
        RHS(rightop+(nrows-1)*6+5)=1; 
    else 
        RHS(rightop+((excitedrow_number-1)-1)*6+2)=1; 
    end 
elseif excite_type==4   %upstream going pressure wave from downstream row 
    if excitedrow_number==nrows 
    %upstream going pressure wave excites the last row from far downstream  
        RHS(rightop+(nrows-1)*6+3)=1; 
    else 
        RHS(rightop+((excitedrow_number+1)-1)*6+0)=1; 
    end 
elseif excite_type==5   %downstream going pressure wave from upstream row 
    if excitedrow_number==1 
    %downstream going pressure wave excites the 1st row from far upstream 
        RHS(rightop+(nrows-1)*6+4)=1; 
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    else 
        RHS(rightop+((excitedrow_number-1)-1)*6+1)=1; 
    end 
  
% ---Specify internal excitation 
else 
    %load initial excitation and its scattering mode into LHS one by one. 
    scattermode=nscatter(InitialmodeI,:,excitedrow_number); 
    scattermode=scattermode(scattermode~=0); 
    for jj1=1:size(scattermode,2) 
        rightop=(scattermode(jj1)-1)*nrows*6+1; 
        CL=nscatterCL{InitialmodeI,jj1,excitedrow_number}; 
        if excite_type==1   %bending 
            rhsb=[CL(4,1); CL(5,1); CL(3,1)]; 
        elseif excite_type==2   %torsion 
            rhsb=[CL(4,2); CL(5,2); CL(3,2)]; 
        end 
        RHS((rightop+(excitedrow_number-1)*6):... 
            (rightop+(excitedrow_number-1)*6)+2)=rhsb; 
    end 
end 
     
%% Solve the governing matrix and post-processing-------------------------- 
% The whole governing matrix is shown in Hall Eq.(20) 
  
U=LHS\RHS; 
U_nrows_nmodes=reshape(U,6,nrows,nmodes); 
  
% ---Post-processing to find the five outputs:  
% 1.total upstream going pressure wave for each mode, C_pup  
% 2.total downstream going pressure wave for each mode, C_pdn  
% 3.total downstream going vorticity wave for each mode, C_vo 
% 4.unsteady lift on each blade row for each mode, C_lift 
% 5.unsteady moment on each blade row for each mode, C_moment 
  
% upstream going pressure wave from the 1st row C_pup[nmodes,1] 
C_pup=reshape(U_nrows_nmodes(1,1,:),nmodes,1); 
% downstream going pressure wave from the last row C_pdn[nmodes,1] 
C_pdn=reshape(U_nrows_nmodes(5,nrows,:),nmodes,1); 
% downstream going vorticity wave from the last row C_vo[nmodes,1] 
C_vo=reshape(U_nrows_nmodes(6,nrows,:),nmodes,1); 
  
  
% unsteady lift on each row due to the 3 incoming excitation waves 
% of each mode, C_lift[nmodes,nrows] 
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C_lift=zeros(nmodes, nrows); 
% unsteady moment on each row due to the 3 incoming excitation waves 
% of each mode C_moment[nmodes,nrows] 
C_moment=zeros(nmodes, nrows); 
  
for jj1=1:nmodes 
     for jj2=1:nrows 
         Pu=U_nrows_nmodes(4,jj2,jj1); 
         Pd=U_nrows_nmodes(2,jj2,jj1); 
         Vo=U_nrows_nmodes(3,jj2,jj1); 
         scattermode=nscatter(jj1,:,jj2); 
         %find the non-scattering fundamental mode index, fmodeI 
         fmodeI=find(scattermode==jj1);      
         CL=nscatterCL{jj1,fmodeI,jj2}; %#ok<FNDSB> 
         C_lift(jj1,jj2)=CL(1,4)*Pu+CL(1,5)*Pd+CL(1,3)*Vo; 
         C_moment(jj1,jj2)=CL(2,4)*Pu+CL(2,5)*Pd+CL(2,3)*Vo; 
     end 
end 
  
% Add unsteady lift and moment due to the inertial internal excitation 
% As calculated before, the inertial mode index is InitialmodeI 
scattermode=nscatter(InitialmodeI,:,excitedrow_number); 
fmodeI=find(scattermode==InitialmodeI); 
CL=nscatterCL{InitialmodeI,fmodeI,excitedrow_number}; 
if excite_type==1   %bending 
    C_lift(InitialmodeI,excitedrow_number)=... 
        C_lift(InitialmodeI,excitedrow_number)+CL(1,1); 
    C_moment(InitialmodeI,excitedrow_number)=... 
        C_moment(InitialmodeI,excitedrow_number)+CL(2,1); 
elseif excite_type==2   %torsion 
    C_lift(InitialmodeI,excitedrow_number)=... 
        C_lift(InitialmodeI,excitedrow_number)+CL(1,2); 
    C_moment(InitialmodeI,excitedrow_number)=... 
        C_moment(InitialmodeI,excitedrow_number)+CL(2,2); 
end 
  
%% OUTPUT----------------------------------------------------------------- 
% All output are organized in outputC_original[nmodes * (4*nrows+4)] 
% where columns are [mode_index(1) omega(nrows) mode(nrows) C_lift(nrows)  
% C_moment(nrows) C_pup(1) C_pdn(1) C_vo(1)] 
outputC_original=[(1:nmodes)' omega mode C_lift C_moment C_pup C_pdn C_vo]; 
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Function 1: scattergrpC.m 

% Function scattergrpC calculates the transmission reflection coefficient  
% matrix for the whole scattering group using LINSUB.  
  
% It calls the following functions: 
% upwashUm.m----calculate input upwash velocity matrix 
% coeffXm.m-----calculate output coefficient matrix 
% kernelKm10.m--calculate kernel matrix based on 10 times convergence tests 
% pressurewavem.m-----calculate pressure wave & vorticity wave properties 
  
% The transmission reflection coefficients are calculated based on a  
% modified Matlab version of the LINSUB code in the paper: 
% Whitehead, D. S. "Classical two-dimensional methods."  
% In AGARD Aeroelasticity in Axial-Flow Turbomachines. 1 (1987). 
% The code follows closely the derivation in the paper: 
% Smith, S. N.  
% "Discrete frequency sound generation in axial flow turbomachines."  
% Reports and Memoranda 3709 (1972). 
  
% The modified Matlab version LINUSB is coded directly based on the 
% physical model equations that appear in the Smith's 1972 paper.  
% This makes the code much easier to be understood and modified. 
  
% The output is: 
% LINSUB coefficients matrix CL(5*5) store in cell of grpC{rm*rm}: 
% LINSUB coefficient matrix CL(i,j): 
% i: normalized output: 
% 1.lift 2.moment 3. shed vorticity wave 
% 4.upstream going Pressure wave 5. downstream going pressure wave  
% j: normalized input: 
% 1.bending 2.torsion 3.shed vorticity wave 
% 4.upstream going Pressure wave 5. downstream going pressure wave  
% The LINSUB coefficients reference points are defined as following 
% input upwash velocity: Pup-TE, Pdn-LE, Vo-LE 
% output response waves: Pup-LE, Pdn-TE, Vo-TE 
% (LE: leading edge, TE: trailing edge) 
  
% The modified matlab version LINUSB has the following changes in order to  
% correct some minor error in the original LINSUB code and in order to be 
% used in the multistage interaction model. 
% 1. correctly handle the decaying pressure waves 
% 2. ensure the correct pressure waves propagating direction for  
%    negative frequency cases which occur in multistage interaction analysis 
% 3. add elastic axis for torsion mode 
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% 4. change the input-output LINSUB coefficient reference points in the  
%    above mentioned way in order to reduce the magnitude of the LINSUB  
%    coefficient for the decaying wave. This helps to prevent the ill  
%    conditioning of the governing matrix in multistage interaction model  
% 5. convergence check of the kernel functions for pressure wave    
%    is increased to 10 times in order to correctly calculate the spinning  
%    modes with negative frequency and high scattered index. 
% 6. output shed vortex sheet is changed to output shed vorticity wave 
% 7. input wake upwash velocity is changed to input shed vorticity wave 
% 8. input pressure wave upwash velocity is changed to input pressure wave 
%    pressure 
% 9. additional capability to calculate the scattered pressure wave 
  
% Author: Yujun Leng  Email:lengyujun@gmail.com   Last updated: Apr16, 2016 
% This is free software under the terms of the GNU General Public License 
% You are welcome to use it. I hope it will be helpful! 
  
%% Function scattergrpC---------------------------------------------------- 
function [grpC] = scattergrpC(n,lambda, M, theta, sc, rm,phi,xea) 
ns=size(rm,2); 
grpC=cell(ns,ns); 
  
% ---build up the kernel matrix K 
[K]=kernelKm10(n,lambda, M, theta, sc, 0,phi); 
  
for j1=1:ns 
    r1=rm(j1); 
    % ---build up input upwash velocity matrix U 
    [U]=upwashUm(n,lambda, M, theta, sc, r1,phi,xea); 
    for j2=1:ns 
        r2=rm(j2);    
        % ---build up the output coefficient matrix X 
        [X]=coeffXm(n,lambda, M, theta, sc, r2,phi,xea); 
        % ---calculate bound vorticity B 
        B=K\U; 
        % ---calculating LINSUB coefficient CL 
        CL=X*B; 
        grpC{j1,j2}=CL; 
    end            
end 
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Function 2: upwashUm.m 

% Function upwashUm calculates the upwash velocity matrix U in the  
% modified matlab version LINUSB 
  
% Author: Yujun Leng  Email:lengyujun@gmail.com  Last updated: Apr 16, 2016 
% This is free software under the terms of the GNU General Public License 
% You are welcome to use it. I hope it will be helpful! 
  
%% Function upwashUm------------------------------------------------------ 
function [U]=upwashUm(n,lambda, M, theta, sc, r,phi, xea) 
U=zeros(n,5);  
  
% Calculate unsteady waves axial and tangential wave numbers 
[alpha1, alpha2,alpha3, beta, vp1db, vp2db, up1, up2]... 
    =pressurewavem(lambda, M, theta, sc, r, phi); 
  
%  Calculates the upwash velocity matrix U,  Smith bewtween Eq.(50-51) 
for m=0:(n-1)  
    epsilon=pi*(2*m+1)/2/n;     % Smith bewtween Eq.(45-46)  
    z=0.5*(1-cos(epsilon));     % Control point position, Smith Eq.(44) 
    U((m+1),1)=1;               % bending     
    %the elastic axis of torsion mode is at z=xea 
    U((m+1),2)=1+1i*lambda*(z-xea);   %torsion   
    %modified the shed vortex upwash velocity such that vorticity*c/W=1 
    vorticitytow=(alpha3*cos(theta)+beta*sin(theta))/1i/(alpha3^2+beta^2); 
    %vorticity input reference to leading edge 
    U((m+1),3)=-exp(-1i*lambda*z)*vorticitytow;  
    % upstream going pressure wave input reference to trailing edge 
    % unit nondimensionalized pressure assumed, Smith Eq.(10), Eq.(38) 
    U((m+1),4)=(cos(theta)*beta-sin(theta)*alpha1)...   
        /(lambda+cos(theta)*alpha1+sin(theta)*beta)... 
        *exp(1i*(alpha1*cos(theta)+beta*sin(theta))*(z-1));  
    % downstream going pressure wave input reference to leading edge 
    % unit nondimensionalized pressure assumed, Smith Eq.(10), Eq.(38)     
    U((m+1),5)=(cos(theta)*beta-sin(theta)*alpha2)...   
        /(lambda+cos(theta)*alpha2+sin(theta)*beta)... 
        *exp(1i*(alpha2*cos(theta)+beta*sin(theta))*z);  
end 
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Function 3: coeffXm.m 

% Function coeffXm calculates the output coefficient matrix X in the  
% modified matlab version LINUSB 
  
% Author: Yujun Leng  Email:lengyujun@gmail.com  Last updated: Apr 16, 2016 
% This is free software under the terms of the GNU General Public License 
% You are welcome to use it. I hope it will be helpful! 
  
%% Function coeffXm-------------------------------------------------------- 
function [X]=coeffXm(n,lambda, M, theta, sc, r,phi,xea) 
X=zeros(5,n);  
  
% Calculate unsteady waves axial and tangential wave numbers 
[alpha1, alpha2,alpha3, beta, vp1db, vp2db, up1, up2]... 
    =pressurewavem(lambda, M, theta, sc, r, phi); 
  
% Calculates the output coefficient matrix X, Smith between Eq.(62-43)  
for l=0:(n-1)  
    psi=pi*l/n;     % Smith between Eq.(45-46)  
    z0=0.5*(1-cos(psi));    % Bound vortex position, Smith Eq.(44) 
    X(1,(l+1))=-1;               %lift 
    %the elastic axis of torsion mode is at z=xea 
    X(2,(l+1))=-(z0-xea);        %moment 
    % modify the shed vortex output to be vorticity*c/W 
    % vorticity wave reference to trailing edge 
    X(3,(l+1))=-1i*lambda*exp(1i*lambda*(z0-1))/cos(theta)/sc;     
     
    % input pressure wave upwash velocity is changed to input pressure wave 
    % pressure, Smith Eq.(53) 
    % output upstream going pressure wave reference to leading edge 
    X(4,(l+1))=-1/sc*vp1db*(lambda+alpha1*cos(theta)+beta*sin(theta))... 
     *exp(-1i*(alpha1*cos(theta)+beta*sin(theta))*z0);  
    % output downstream going pressure wave reference to trailing edge 
    X(5,(l+1))=-1/sc*vp2db*(lambda+alpha2*cos(theta)+beta*sin(theta))... 
     *exp(-1i*(alpha2*cos(theta)+beta*sin(theta))*(z0-1));  
end 
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Function 4: kernelKm10.m 

% Function kernelKm10 calculates the kernel matrix K ( based on 10 times  
% convergence tests) in the  modified matlab version LINUSB 
  
% Kernel function is given in Smith Eq.(30) and Eq.(31),  
% after discretization it becomes Smith Eq.(45). 
% Each kernel function (induced upwash velocity at z by bound vorticity  
% at z0) contains infinite number of the cascade waves(vorticity wave and  
% pressure wave) with different tangential wavenumbers, ie. r=-inf to +inf 
% The summation for vorticity wave is done analytically by Smith Eq.(43). 
% The summation for pressure wave is done one by one (r=0, plus r=1, 
% plus r=-1,plus r=2, plus r=-2 ...) until 10 additional terms doesn't 
% change the kernel function value. 
% The log singularity of the kernel function when z is very close to z0 is 
% handled by a correction given in Smith Eq.(46), Eq.(47) and Eq.(48).  
% The log correction only needs to be done once since the correction  
% doesn't depend on cascade wave index r.  
% Correction for log singularity and the summation for the vorticity wave 
% are added after the pressure waves are converged 
% K(i,j) is K(z_i,z0_j) which is the induced upwash velocity at z_i by the 
% bound vorticity at z0_j. 
  
% Author: Yujun Leng  Email:lengyujun@gmail.com  Last updated: Apr 16, 2016 
% This is free software under the terms of the GNU General Public License 
% You are welcome to use it. I hope it will be helpful! 
  
%% Function kernelKm10------------------------------------------------- 
function [K]=kernelKm10(n,lambda, M, theta, sc, r,phi) 
K=zeros(n,n);                % initialize the kernel matrix 
icheck=zeros(n,n);           % icheck=10 means it has converged 
icount=0;                    % icount=n*n means all points has converged 
term=0;                      % the new cascade wave 
r=0;                         % cascade wave index 
  
% Calculate unsteady waves axial and tangential wave numbers 
[alpha1, alpha2,alpha3, beta, vp1db, vp2db, up1, up2]... 
    =pressurewavem(lambda, M, theta, sc, r, phi); 
  
% Calculate pressure cascade wave summation 
while icount<n*n  %all n*n Kernel function entries are converged 
for m=0:(n-1)  
    epsilon=pi*(2*m+1)/2/n; 
    z=0.5*(1-cos(epsilon));     % control point position, Smith Eq.(44) 
    for l=0:(n-1) 
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        psi=pi*l/n; 
        z0=0.5*(1-cos(psi));    % bound vortex position, Smith Eq.(44) 
         
        %pass the point if it is converged already 
        if abs(icheck((m+1),(l+1))-10)<1e-6   
            continue %if icheck=10, the Kernel function entry is converged 
        end 
         
        eta=z-z0; 
        %induced upwash velocity by pressure waves, Smith Eq.(29) 
        if eta>0                %downstream going pressure wave 
            term=(vp2db*beta*cos(theta)-up2*sin(theta))...  % 
             *exp(1i*(alpha2*cos(theta)+beta*sin(theta))*eta)/sc;    
            K((m+1),(l+1))=K((m+1),(l+1))+term; 
        elseif eta<0            %upstream going pressure wave 
            term=(vp1db*beta*cos(theta)-up1*sin(theta))... 
             *exp(1i*(alpha1*cos(theta)+beta*sin(theta))*eta)/sc; 
            K((m+1),(l+1))=K((m+1),(l+1))+term; 
        end 
         
        %check convergence of cascade waves 
        if (abs(term)/abs(K((m+1),(l+1))))<1e-10 
            if abs(icheck((m+1),(l+1))-9)<1e-6 
                icheck((m+1),(l+1))=10; 
                icount=icount+1; 
                 
                %correct for log singularity 
                sum=0; 
                for jr=1:n 
                    sum=sum+cos(jr*epsilon)*cos(jr*psi)/jr; 
                end 
                b2=1-M^2;  
                d0=1i;  %Smith Eq.(IV.6) 
                d1=(1-M^2/2/b2)*lambda;                   %Smith Eq.(IV.6) 
                d2=-1i*(1-1/2/b2+M^2/4/b2^2)*lambda^2;    %Smith Eq.(IV.6) 
                d3=-0.5*(1-1/b2+M^2/6/b2^2+1/3/b2^2 ... 
                 -3/8*M^4/b2^3+M^6/6/b2^3)*lambda^3;      %Smith Eq.(IV.6) 
                %Smith Eq.(IV.6) for f 
                f=-lambda/2/pi/sqrt(b2)*(d0+d1*eta+d2*eta^2+d3*eta^3); 
                K((m+1),(l+1))=K((m+1),(l+1))... 
                    -f*(2*log(2)+2*sum+log(abs(eta))); %Smith Eq.(48),(47) 
                 
                %add vorticity wave 
                if eta>0 
                    vort=sinh(lambda*sc*cos(theta))/... 



206 
 

 

 

                     (cosh(lambda*sc*cos(theta))... 
                     -cos(phi+lambda*sc*sin(theta))); 
                    K((m+1),(l+1))=K((m+1),(l+1))... 
                     +0.5*lambda*vort*exp(-1i*lambda*eta);  %Smith Eq.(43) 
                end 
            else 
                icheck((m+1),(l+1))=icheck((m+1),(l+1))+1; 
                continue 
            end 
        end 
    end 
end 
  
if r>0 
    r=-r; 
else 
    r=-r+1; 
end 
[alpha1, alpha2,alpha3, beta, vp1db, vp2db, up1, up2]... 
    =pressurewavem(lambda, M, theta, sc, r, phi); 
end 
 

Function 5: pressurewavem.m 

% Function pressurewavem calculates pressure wave and vorticity wave  
% properties in the modified matlab version LINUSB 
  
% Author: Yujun Leng  Email:lengyujun@gmail.com  Last updated: Apr 16, 2016 
% This is free software under the terms of the GNU General Public License 
% You are welcome to use it. I hope it will be helpful! 
  
%% Function pressurewavem------------------------------------------------- 
function [alpha1, alpha2,alpha3, beta, vp1db, vp2db, up1, up2]=... 
    pressurewavem(lambda, M, theta, sc, r,phi) 
  
beta=(phi-2*pi*r)/sc;  % tangential wave number, Simith Eq.(18) 
A=lambda^2+beta^2+2*lambda*sin(theta)*beta;    %Smith bewtween Eq.(24-25)  
radical=-beta^2+M^2*A; 
  
% Calculating axial wave number, Smith Eq.(11) 
if radical>0                %propagating case 
    alpha1=(M^2*(lambda+beta*sin(theta))*cos(theta)+sqrt(radical))... 
        /(1-(M*cos(theta))^2); 
    alpha2=(M^2*(lambda+beta*sin(theta))*cos(theta)-sqrt(radical))... 
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        /(1-(M*cos(theta))^2);   
    % ensure that upstream going pressure wave has larger axial wave number 
    if abs(alpha1)<abs(alpha2) 
        aaaa=alpha1;alpha1=alpha2;alpha2=aaaa; 
    end 
     
elseif radical<0            %decaying case 
    alpha1=(M^2*(lambda+beta*sin(theta))*cos(theta)-sqrt(radical))... 
        /(1-(M*cos(theta))^2); 
    alpha2=(M^2*(lambda+beta*sin(theta))*cos(theta)+sqrt(radical))... 
        /(1-(M*cos(theta))^2);    
else 
    warning('resonance happens!'); 
end 
alpha3=-lambda/cos(theta)-tan(theta)*beta;  
  
% Calculate the corresponding v', u' of a cascade wave, Smith Eq.(23),(28) 
% vp1db,vp2db : v'/beta in order to remove the singularities when beta=0 
vp1db=1/2/A*(beta*lambda*cos(theta)/sqrt(-radical)*1i-... 
    (beta+lambda*sin(theta)));  
vp2db=1/2/A*(beta*lambda*cos(theta)/sqrt(-radical)*1i+... 
    (beta+lambda*sin(theta))); 
up1=alpha1*vp1db;   % Smith Eq.(10) 
up2=alpha2*vp2db;   % Smith Eq.(10) 
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Appendix C Generalized Flat Plate Cascade Code 

This is a generalized flat plate cascade model code calculating the unsteady 

loading and unsteady waves for a blade row with general uniform/non-uniform spacing. 

This code includes main program, Aeromistuning_LINSUB.m and 4 functions: 

upwashUm.m,  coeffXm.m,  kernelKm10.m and pressurewavem.m. The four functions 

are the same as the ones used in multistage interaction code in Appendix B. 

 

Main Program: Aeromistuning_LINSUB.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      Generalized LINSUB with non uniformly spaced blade row        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% This is a generalized flat plate cascade model code calculating  
% the unsteady loading and unsteady waves for a blade row with general  
% non-uniform spacing.   
  
% This code includes main program Aeromistuning_LINSUB.m and 4 functions: 
% upwashUm.m----calculate input upwash velocity matrix 
% coeffXm.m-----calculate output coefficient matrix 
% kernelKm10.m--calculate kernel matrix based on 10 times convergence tests 
% presssurewavem.m-----calculate pressure wave & vorticity wave properties 
  
% This code is an extension of the LINSUB code for blade row with  
% non-uniform spacing. The original LINSUB model and code is based on  
% Whitehead, D. S. "Classical two-dimensional methods."  
% In AGARD Aeroelasticity in Axial-Flow Turbomachines. 1 (1987). 
% Smith, S. N. "Discrete frequency sound generation in axial flow  
% turbomachines."  Reports and Memoranda 3709 (1972) 
  
% LINSUB coefficient matrix CL(i,j), is defined as 
% i: normalized output: 
% 1.lift 2.moment 3. shed vorticity wave 
% 4.upstream going Pressure wave 5. downstream going pressure wave  
% j: normalized input: 
% 1.bending 2.torsion 3.shed vorticity wave 
% 4.upstream going Pressure wave 5. downstream going pressure wave  
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% The LINSUB coefficients reference points are defined as following 
% input upwash velocity: Pup-TE, Pdn-LE, Vo-LE 
% output response waves: Pup-LE, Pdn-TE, Vo-TE 
% (LE: leading edge, TE: trailing edge) 
  
% The original LINUSB code has been modified, improved and rewritten in  
% Matlab. It has the following changes in order to correct some minor error   
% in the original LINSUB code and in order to be used in the multistage  
% interaction model. 
% 1. correctly handle the decaying pressure waves 
% 2. ensure the correct pressure waves propagating direction for  
%    negative frequency cases which occur in multistage interaction analysis 
% 3. add elastic axis for torsion mode 
% 4. change the input-output LINSUB coefficient's reference point to in the  
%    above mentioned way 
% 5. convergence check of the kernel functions for pressure wave    
%    is increased to 10 times in order to correctly calculate the spinning  
%    modes with negative frequency and high scattered index. 
% 6. output shed vortex sheet is changed to output shed vorticity wave 
% 7. input wake upwash velocity is changed to input shed vorticity wave 
% 8. input pressure wave upwash velocity is changed to input pressure wave 
%    pressure 
% 9. additional capability to calculate the scattered pressure wave 
  
% In comments, Eq.(xx) refers to the equation the Author's PhD thesis 
% Smith Eq.(xx) refers to the equation in Smith,S. N.'s paper 
% Additional theory, model details and case studies are given in the   
% Author's PhD thesis, Yujun Leng, 2016 "Preliminary design tools in 
% turbomachinery: non-uniformly spaced blade rows, multistage interaction, 
% unsteady radial waves, and propeller horizontal-axis turbine 
% optimization", Mechanical Engineering, Purdue University, West Lafayette 
  
% Author: Yujun Leng  Email:lengyujun@gmail.com  Last updated:Apr 16, 2016 
% This is free software under the terms of the GNU General Public License 
% You are welcome to use it. I hope it will be helpful! 
  
%% INPUT------------------------------------------------------------------- 
  
% Input for case studies based on Purdue transonic compressor rotor 
NB=108;           %number of total blades (real + imaginary) 
% Sinusoidal Spacing  
ss=round(6+4*sin((0:17)/18*4*pi));   % blade-to-blade spacing with 2 cycles 
pbr=zeros(18,1);    % real blade potions 
pbr(1)=1;           % The first blade is always a real blade   
for i=1:17 
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    pbr(i+1)=1+sum(ss(1:i)); 
end 
pbi=(1:108)'; 
pbi(pbr)=[];        % imaginary blade positions 
  
  
np=20;           % Number of control points 
phi=2*pi/NB;     % The fundamental interblade phase angle in radian 
                 % NB possible interblade phase angle are phi*[0:(NB-1)] 
lambda=6.5153;   % Reduced frequency  
sc=0.16872;      % Space to chord ratio based on total blades 
theta=71/180*pi;      % Stag angle in radian 
ND=20;                  % Nodal diameter of the excitation 
phi_in=ND*2*pi/NB;      % Inter blade phase angle of the excitation 
M=0.822;          % Chordwise Mach number 
xea=0;            % Elastic axis position for torsional vibration 
  
%% Build up the governing matrix------------------------------------------ 
% The whole governing matrix is shown in Eq.(2.91) 
  
% ---Build up the Left hand side of the governing matrix for real blades 
% Eq. (2.87) 
  
% First rows containing the kernel of all possible interblade phase angle 
% Kernel matrix for each mode is of size [np*np] 
% NB blades gives NB fundamental modes 
nbr=size(pbr, 1);       % number of real blades 
nbi=size(pbi, 1);       % number of imaginary blades 
Kall=zeros(np*NB,np*NB);  
Kbase=zeros(np, np*NB);  
for i=1:NB      % go through all NB fundamental modes 
    pcol=(i-1)*np+1; 
    [K]=kernelKm10(np,lambda, M, theta, sc, 0,phi*(i-1)); 
    Kbase(1:np,pcol:(pcol+np-1))=K; 
end 
Kall(1:np,1:(np*NB))=Kbase; 
  
for i=2:nbr 
    % The induced velocity on the blades other than the first blade has a  
    % phase which is a multiple of the interblade phase angle of each  
    % fundamental mode  
    phishift=zeros(np, np*NB);  
    for j=1:NB 
        pcol=(j-1)*np+1; 
        phishift(1:np, pcol:(pcol+np-1))... 
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         =ones(np,np)*exp(1i*(pbr(i)-1)*(j-1)*phi); 
    end 
    prow=(pbr(i)-1)*np+1; 
    Kall(prow:(prow+np-1),1:np*NB)=Kbase.*phishift; 
end 
  
  
% ---Build up the Left hand side of the governing matrix for imaginary  
% blades, Eq. (2.89) 
  
for i=1:nbi 
    j=pbi(i); 
    wj=exp(2*pi*1i*(j-1)/NB); 
    prow=(j-1)*np+1; 
    for k=1:NB 
        pcol=(k-1)*np+1; 
        Kall(prow:(prow+np-1),pcol:(pcol+np-1))=wj^(k-1)*eye(np); 
    end 
end 
  
  
% ---Build up the Right hand side of the governing matrix, Eq.(2.87),(2.89)  
  
[U]=upwashUm(np,lambda, M, theta, sc, 0,phi_in,xea); 
% U(i,j), i:control points along the cord   
% j:excitation type, 1.bending 2. torsion 3.vorticity 4. pup 5. pdown 
Ubase=U; 
Uall=zeros(np*NB,5); 
for i=1:nbr 
    phishift=exp(1i*(pbr(i)-1)*phi_in)*ones(np,5); 
    prow=(pbr(i)-1)*np+1; 
    Uall(prow:(prow+np-1),1:5)=Ubase.*phishift; 
end 
  
%% Solve the governing matrix and post-processing-------------------------- 
  
% ---Solve for strength of each mode (or interpreted as bound vorticity of  
% each mode on the first blade) 
B=Kall\Uall; 
% B(1:np,j): mode1 at n control points 
% B(n+1:2n,j): mode2 at n control points 
% B(n*(NB-1)+1:NB,j): modeNB at n control points 
% j is the excitation type, 1.bending 2. torsion 3.vorticity 4. pup 5. pdown 
  
% Change matrix B to 3D matrix B3 with B3(:,:,k), k is the mode index 
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B3=zeros(np,5,NB); 
for i=1:NB      %go through NB modes 
    B3(:,:,i)=B(((i-1)*np+1):(i*np),:); 
end 
  
% B3 are mode strengths on the first blade, mode strengths on the other  
% blades are calculated by phase shift for each mode depending on its mode  
% interblade phase angle 
interblade_phaseshift=zeros(np,5,NB); 
for i=0:(NB-1)      % go through NB modes 
    interblade_phaseshift(:,:,i+1)=ones(np,5)*exp(1i*2*pi/NB*i); 
end 
  
B4=zeros(np,5,NB,NB);   % B4 [np, 5upwash, modes, NBblades] 
for i=0:(NB-1)      % go through NB blades 
   B4(:,:,:,i+1)=B3.*(interblade_phaseshift.^i); 
end 
  
% ---Post processing 
% Calculate unsteady surface pressure difference dp/(ro*w^2) for each mode  
% on each blade, dp and bound vorticity has a one to one relationship from 
% control point 2 to point np 
l=repmat((1:(np-1))',[1,5,NB,NB]); 
dp=B4(2:np,:,:,:)./(pi/2/np*sin(pi*l/np)); 
  
% Calculate unsteady aerodynamic coefficients for each mode on each blade 
CL=zeros(5,5,NB,NB); % LINSUB coefficient CL[5,5,NBmode, NBblades] 
for i=1:NB      %go through NB modes 
    %build up the output coefficient matrix X for each mode 
    phi=2*pi/NB*(i-1); 
    [X]=coeffXm(np,lambda, M, theta, sc, 0,phi,xea); 
    for j=1:NB  %go through NB blades 
        B2=B4(:,:,i,j); 
        %calculating LINSUB coefficient CL 
        CL(:,:,i,j)=X*B2; 
    end 
end 
  
%% OUTPUT----------------------------------------------------------------- 
% In a linearized analysis, each mode is independent from each other  
% They can be treated individually and then summed together to get the total  
% effect. 
  
% Total unsteady surface pressure difference, dptotal, is the summation of 
% the unsteady surface pressure difference of all modes 
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dptotal=sum(dp,3);          
dptotal_vo=reshape(dptotal(:,3,1,:), 19,108);    % dptotal due to wake 
dptotal_vo_rb=dptotal_vo(:,pbr);      % dptotal due to wake at real blades 
  
CLtotal=sum(CL,3); 
% Total unsteady lift due to wake on each blade, C_lift 
C_lift=reshape(CLtotal(1,3,1,:),108,1); 
% Total unsteady moment due to wake on each blade, C_moment 
C_moment=reshape(CLtotal(2,3,1,:),108,1); 
  
% Upstream going pressure wave due to wake for each mode, C_pup  
C_pup=reshape(CL(4,3,:,1), 108,1); 
% Downstream going pressure wave due to wake for each mode, C_pdn  
C_pdn=reshape(CL(5,3,:,1), 108,1);  
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