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ABSTRACT 

Jin, Zhenong. Ph. D., Purdue University, May 2016. Crop Modeling for Assessing and 
Mitigating the Impacts of Extreme Climatic Events on the US Agriculture System. Major 
Professor: Qianlai Zhuang. 
 
 
 The US agriculture system is the world’s largest producer of maize and soybean, 

and typically supplies more than one-third of their global trading. Nearly 90% of the US 

maize and soybean production is rainfed, thus is susceptible to climate change stressors 

such as heat waves and droughts. Process-based crop and cropping system models are 

important tools for climate change impact assessments and risk management. As data-

science is becoming a new frontier for agriculture growth, the incoming decade calls for 

operational platforms that use hyper-local growth monitoring, high-resolution real-time 

weather and satellite data assimilation and cropping system modeling to help 

stakeholders predict crop yields and make decisions at various spatial scales.  

 The fundamental question addressed by this dissertation is: How crop and 

cropping system models can be “useful” to the agriculture production, given the recent 

advent of cloud computing and earth observatory power? This dissertation consists of 

four main chapters. It starts with a study that reviews the algorithms of simulating heat 

and drought stress on maize in 16 major crop models, and evaluates algorithm 

performances by incorporating these algorithms into the Agricultural Production Systems 

sIMulator (APSIM) and running an ensemble of simulations at typical farms from the US
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Midwest. Results show that current parameterizations in most models favor the use of 

daylight temperature even though the algorithm was designed for using daily mean 

temperature. Different drought algorithms considerably differed in their patterns of water 

shortage over the growing season, but nonetheless predicted similar decreases in annual 

yield. In the next chapter of climate change assessment study, I quantify the current and 

future yield responses of US rainfed maize and soybean to climate extremes with and 

without considering the effect of elevated atmospheric CO2 concentrations, and for the 

first time characterizes spatial shifts in the relative importance of temperature, heat and 

drought stresses. Model simulations demonstrate that drought will continue to be the 

largest threat to rainfed maize and soybean production, yet shifts in the spatial pattern of 

dominant stressors are characterized by increases in the concurrent stress, indicating 

future adaptation strategies will have trade-offs between multiple objectives. Following 

this chapter, I presented a chapter that uses billion-scale simulations to identify the 

optimal combination of Genotype × Environment × Management for the purpose of 

minimizing the negative impact of climate extremes on the rainfed maize yield. Finally, I 

present a prototype of crop model and satellite imagery based within-field scale N 

sidedress prescription tool for the US rainfed maize system. As an early attempt to 

integrate advances in multiple areas for precision agriculture, this tool successfully 

captures the subfield variability of N dynamics and gives reasonable spatially explicit 

sidedress N recommendations. The prescription enhances zones with high yield potentials, 

while prevents over-fertilization at zones with low yield potentials.  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

 Global demand for agriculture crops as food, feed and bioenergy fuels will 

continue to grow in response to the increasing population, changing diet structure and 

surging need for alternative energy. For food alone, a recent study relates food 

consumption to gross domestic production (GDP) has estimated that the production from 

agriculture systems has to double by 2050 (Tilman et al., 2011). This poses a great 

challenge to the human society, given the increasing competition for land and water from 

the need to maintain other essential ecosystem services such as carbon storage and 

biodiversity (Matthews et al., 2011; Challinor et al., 2014). Concerns on food security 

have been further raised in face of the climate change (Lobell et al., 2011). Climate 

changes, especially those increasingly frequent and severe extreme climatic events (ECEs) 

such as heat waves and drought, are significant threats to the agriculture sector by 

lowering crop productivity and increasing inter-annual variations in yields (Challinor et 

al., 2014; Deryng et al., 2014; Rosenzweig et al., 2014). Climate change may also favor 

outbreaks of pests or pathogens, thus generate secondary damage to the agriculture 

system (IPCC, 2012). 

 Maize (Zea mays L.) and soybean (Glycine max Merr.) are two of the most 

important crops. Specifically, maize accounts for approximately 27% of global cereal
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planting area and 34% of cereal production (Shiferaw et al., 2011). Maize is a major 

source of food calorie and nutrition, especially for millions of people in developing 

countries (Shiferaw et al., 2011). It is also used extensively as an ingredient in animal 

feed or as the substrate to produce biofuels. Soybean represents 6% of the world arable 

land, and is an important source of proteins and oil (Hartman et al., 2011). Climatic 

threats to the production of maize and soybean vary among regions, yet in general 

excessive heat and drought are two primary stressors in temperate zones (Schlenker and 

Roberts, 2009; Lobell and Gourdji, 2012; Harrison et al., 2014; Rosenzweig et al., 2014; 

Geng et al., 2016; Lesk et al., 2016) 

 The US agriculture system is the world’s largest producer of maize and soybean, 

and typically supplies more than one-third of their global trading (USDA, 2015). Nearly 

90% of the US maize and soybean productions are rainfed (NASS, 2007), thus are 

susceptible to climate change stressors. The rising temperature and changing precipitation 

patterns, often in forms of heat waves and droughts, have started to threaten the US 

agriculture system (Melillo et al., 2014). For example, the 2012 US drought and the co-

occurring heat wave severely hit the US Midwest, and reduced the 2012 maize 

production (which was expected to increase by 20% compared to the previous year) to 13% 

lower than the 2011 value; soybean production was down by 3% in spite of a 3% increase 

in the harvested area (USDA, 2013). As extreme heat and drought events are projected to 

continue in the US with increasing frequency and intensity (Diffenbaugh and Ashfaq, 

2010; Mishra et al., 2010), it is compelling to understand the current and future impacts 

of these weather extremes on the US maize and soybean production, as well as to figure 

out potential mitigation strategies. 
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 Process-based crop and cropping system models that simulate the crop growth, 

nutrient cycling as well as water and energy balance on daily or sub-daily time steps are 

important tools for climate change impact assessments and risk management 

(Rosenzweig et al., 2014; Ewert et al., 2015). Their ability to understand complex system 

interactions among water, soil, light, plants and humans offers unique opportunities to 

evaluate trade-offs when adaptation objectives are to achieve multiple productivity and 

environmental goals (Boote et al., 2013; Matthews et al., 2013; Holzworth et al., 2014; 

Ewert et al., 2015). Early applications have shown promising results, such as supporting 

government policy (Bezlepkina et al., 2010; Mellilo et al, 2014), informing breeding 

strategies (Lobell et al., 2015; Messina et al., 2015; Hammer et al., 2016; Zheng et al., 

2016) and guiding farming practice (Honda et al., 2014; Thompson et al., 2015). 

Cropping system models are also enlightening to the understanding new physiological 

mechanisms when impacts of changes in climate factors are not unidirectional. For 

example, elevated atmospheric CO2 concentration ([CO2]) is often considered as a benefit 

to the crop growth indirectly by raising the water use efficiency (Bernacchi et al., 2007; 

Hussain et al., 2013; Ort and Long, 2014); yet may increase the canopy temperature and 

crop heat stress as a result of reduced latent heat flux associated with decreased canopy 

transpiration (Long et al., 2004). In this case, crop models with the inclusion of canopy-

scale energy balance can be helpful to quantify the net benefit (Boote et al., 2013; Twine 

et al., 2013). 

 As data-science is becoming a new frontier for agriculture growth, the incoming 

decade is almost certain to witness the surging of operational platforms that use hyper-

local growth monitoring, high-resolution real-time weather and satellite data assimilation 
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and cropping system modeling to help stakeholders predict crop yields and make 

decisions at various spatial scales. The opportunities, however, are currently impeded by: 

(i) the poor ability of crop models to quantitatively reproduce what’s actually happening 

in a field with the right scale and decent accuracy; and (ii) the vague conceptual 

framework to connect the existing advances in geoscience and information technology. 

From the point view of climate change, traditional cropping system models are far from 

satisfactory for the purpose of decision-support and risk management, because they are 

originally designed to capture the average state based on long-term climatology and often 

lack of scalability beyond the sites where they are developed and validated. Solving these 

problems will ensure high payoff beyond scientific novelty of the research per se. 

 

1.2 Research objectives 

 The fundamental question discussed by this dissertation is: How cropping system 

models can be “useful” to the agriculture production? By “useful”, it means be able to 

quantify and predict the risks of climate change, to identify the local optimal management 

strategy when trade-offs have to be balanced, and to improve the production efficiency. 

As an early attempt to address this question, I come up with four studies in this 

dissertation that cover a range of hot topics in the field of agriculture modeling. I start my 

exploration with a crop model inter-comparison study (i.e. Chapter 2) to mechanistically 

understand whether or not current generation of crop models is capable to capture the 

growth response to heat extremes and drought, by comparing existing algorithms from 16 

major crop models that simulate the direct heat and drought stress on maize 

photosynthesis and yield production. I have also documented these algorithms at equation 
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level based on my review of the documentation and/or source code of these 16 crop 

models, which can serve as a useful reference manual for the crop modeling community. 

Next in Chapter 3, I present a climate change assessment study that simulates the US 

rainfed maize and soybean growth, driven by high-resolution (12km × 12 km) Weather 

Research and Forecasting (WRF) Model downscaled future climate scenarios, to quantify 

the spatiotemporal patterns of yield losses caused by heat and drought stress and the gains 

due to elevated atmospheric CO2. Chapter 4 moves one step forward to the adaptation 

and mitigation domain, which investigates how crop modeling can help to identify the 

optimal farming strategy that minimizes the adverse impact of climate extremes within a 

nested genotype (G) × management (M) × environment (E) space. Last but not least, 

Chapter 5 develops a scalable very-high-resolution (5m × 5m) precision fertilization tool 

by integrating advances in several research areas including digital soil mapping, crop 

modeling and satellite data assimilation. 

 Underlining these studies are the recent advancements in high-performance 

computing and communication technologies, which has made it possible to process 

massive remotely-sensed or field survey data and to assimilate weather records in near 

real-time. It has scaled the conventional point-based crop modeling research up to the 

continental scale. One the other hand, compared with many existing large-scale, coarse-

resolution agriculture modeling researches that aim at supporting national or global 

policy-makers (e.g. Drewniak et al. 2013; Deryng et al., 2014; Rosenzweig et al., 2014; 

Twine et al., 2013), simulations and projections presented in this dissertation have 

preserved much spatial heterogeneity, thus are more informative to stakeholders at local 

scales.  
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1.3 APSIM description 

 The Agricultural Production Systems sIMulator (APSIM) is the primary crop 

model used throughout this dissertation. APSIM is an agricultural system modeling 

platform that can simulate a number of crops under various climatic, edaphic and 

management conditions, and hence is used worldwide to address a range of research 

questions related to cropping systems (Keating et al., 2003; Holzworth et al., 2014). In 

particular, maize is simulated by the APSIM-Maize module and soybean is simulated by 

the APSIM-Plant module. The APSIM-Maize module is inherited from the CERES-

Maize, with some modifications on the stress representation, biomass accumulation and 

phenological development (Hammer et al., 2009). The APSIM-Plant module is a generic 

template that can simulate over 30 crops including soybean, by parameterizing the 

physiological processes for each species (Holzworth et al., 2014). In recent years, APSIM 

has been successfully applied in the US to investigate the impact of changing maize 

canopy structure on yield (Hammer et al., 2009), the sensitivity of heat and drought on 

maize and soybean production (Lobell et al., 2013, 2014), and the water use efficiency of 

maize-soybean rotation system (Dietzel et al., 2016). During the course, researchers have 

started to calibrate and validate the Maize and Plant modules along with some dependent 

modules of soil temperature, moisture and nutrient cycling in APSIM for the Midwestern 

US (Archontoulis et al. 2014a; Dietzel et al., 2016), and accumulated a set of 

parameterized maize and soybean cultivars in this region (Archontoulis et al. 2014b). For 

example, based on a set of detailed site-level measurements covering most of the 

important crop and soil processes, Archontoulis et al. (2014a) calibrated and evaluated  
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the APSIM Maize, SoilWat (for soil water dynamics and solute transport), SoilTemp (for 

soil temperature), SoilN (for N cycling) and SurfaceOM (for manure) modules in Iowa. 

 The flexible and powerful framework of APSIM makes it an ideal tool for 

incorporating new physiological processes or assimilating algorithms from other models. 

First, one critical feature of APSIM is the implementation of generic crop model template 

(Wang et al., 2002). The actual simulation for a given crop is built by calling hierarchical 

subroutines from the crop process library (CPL) to capture the unifying plant 

physiologies (e.g. phenology, photosynthesis, carbon allocation, nutrient cycling and 

environmental stress). All related parameters for thresholds and shapes of physiological 

response functions are stored in a crop-specific XML file. Since CPL is separately 

compiled as a dynamic link library, it is very convenient to add new algorithms at process 

level without changes in other components of the model (Wang et al., 2002). Second, 

APSIM is highly modularized in a way that a set of common software interfaces (i.e. 

common modeling protocol) will coordinate the model computation and convey required 

variables between different modules (Holzworth et al., 2014). Thus, even if incorporating 

new physiological processes will require additional input data or variables calculated in 

other modules, developers can easily register these variables in the Component Interface 

module and recompile only a few modules. Last but not least, APSIM provides an 

immense array of management functionality within the “Management” toolbox via easy-

to-command scripting language. The scripting capability allows user to precisely define 

on-farm management activities, including, but not limited to, controls of fertilization, 

irrigation, sowing date, seeding rate and cultivar (Holzworth et al., 2014). 
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CHAPTER 2. CROP MODEL INTERCOMPARISON ON SIMULATING THE 
IMPACTS OF HEAT AND DROUGHT STRESS ON MAIZE GROWTH 

2.1 Introduction 

The long-lasting and pervasive 2012 heat wave and drought in the United States 

damaged a substantial proportion of crop commodities, especially those in the Midwest 

(Mallya et al., 2013). Such an extreme climatic event (ECEs), however, is only a 

microcosm of the past decades full of fierce weather extremes (Coumou & Rahmstorf, 

2012). These ECEs are projected to continue in the future, with increasing magnitude, 

duration and frequency (IPCC, 2012). The rising incidence of weather extremes will 

exacerbate negative impacts on the crop productivity; indeed, critical thresholds are 

already being exceeded (Hatfield et al., 2014). As many other crops, contemporary maize 

production is threatened by the changing climate that reduces maize farming efficiency 

(Bassu et al., 2014). Concerns have thus been raised about maintaining a stable increase 

rate of the US maize yield, which is vital to the global food security (Bruinsma, 2009; Ort 

and Long, 2014). Extreme heat and drought are the two dominant constraints to the 

rainfed maize cultivating system in the US (Schlenker & Roberts, 2009; Lobell et al., 

2013; Hatfield et al., 2014). 

Process-based crop models that incorporate maize modules are powerful tools for 

evaluating the potential impacts of climate change on maize yield (Bassu et al., 2014). 

Combined with hyper-local growth monitoring and assimilation of high-resolution and 
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real-time weather data, crop models can increasingly help stakeholders predict maize 

production and make decisions. However, these models remain poorly suited to manage 

and alleviate the risks from ECEs such as heat and drought. Most current generation of 

ecosystem models, including crop models, were originally optimized to simulate average 

conditions based on long-term climatology (Reichstein et al., 2013), and their algorithms 

that simulate specific stresses are not well parameterized, either due to a lack of natural 

and experimental records of maize yield responses to high temperature and severe 

drought with which to train models, or due to a slow pace of updating model 

parameterizations. While broad agreement exists in terms of the effects of heat and 

drought on maize growth and development, researchers have abstracted this knowledge 

into markedly different equations and interactions (Saseendram et al., 2008; Bassu et al., 

2014). Differences among algorithms are more prominent for heat than for drought, likely 

because fewer high-quality datasets have been available to describe heat stress effects on 

maize biomass production, grain-set, grain fill and yield. There is a clear need to 

systematically assess the environmental responses of biological processes in crop models, 

especially those processes that directly determine the simulated crop productivity.  

As a critical first step towards model improvement, crop model comparison studies 

have become popular, especially for climate change scenarios (Rosenzweig et al., 2013). 

In a review of 5 major crop models, Saseendram et al. (2008) found that these models all 

use the ratio of actual to potential transpiration or evapotranspiration to indicate water 

stress, but none of them can accurately represent the coupled processes of carbon 

assimilation, transpiration, energy balance, and stomatal behavior. Eitzinger et al. (2013) 

compared responses to heat and drought stress of seven widely used crop models, and 
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pointed out that even though a general consensus can be reached on the yield trend in 

response to increased temperatures, these models were not able to capture the direct heat 

stress impacts that account for substantial yield variations. More recently, the 

Agricultural Model Intercomparison and Improvement Project (AgMIP) has significantly 

advanced this field under protocols of coordinated evaluation, intercomparison and 

improvement of crop models (Rosenzweig et al., 2013). Asseng et al. (2013) observed 

that variations among crop models account for a greater proportion of the uncertainty in 

simulating global wheat yields under climate change than variations among future 

climate scenarios. By evaluating the performance of 23 maize models under four 

production conditions, Bassu et al. (2014) found that an ensemble of models was more 

reliable than one single model in capturing the mean yield even with very limited data for 

model calibration. 

These comprehensive assessments advance the operational use of available crop 

models and shed light on the capability and uncertainty in the tools, but their findings 

often give only vague guidance to support individual model improvement (Donatelli et al., 

2014). This tradeoff is inevitable in studies that compare the output from full models. 

Since crop models differ substantially in the way they simulate crop physiology, soil 

physical characteristics and nutrient states, not to mention the differences in input 

variables and parameter settings, model developers often find it hard to tell which part of 

their models need to be improved when simply looking at the final results (e.g. yields). 

Some might argue that modelers can trace sources of uncertainty by examining 

intermediate variables; for instance by comparing leaf area index (LAI) with observations. 

Unfortunately, though, any of these intermediate variables themselves are results of 
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complicated interactions among processes within a model. For a specific crop process 

(e.g. photosynthesis, phenology and yield formation), there usually exist a number of 

ways to construct the mathematical algorithms (Bassu et al., 2014; Martre et al., 2014). 

Thus, to quantitatively understand the uncertainty related to that particular process, 

comparison should be done in a way similar to a controlled experiment, such that any 

other processes are isolated.  

The idea of focusing on different algorithms or different implementations of the 

same algorithm for a particular process (defined as “algorithm ensemble” hereafter) when 

comparing crop models has been tested a few times and proved to be promising for 

elucidating the target issue (Saseendran et al., 2008; Alderman et al., 2013; Eitzinger et 

al., 2013; Donatelli et al., 2014; Kumudini et al., 2014). It is favorable also because 

research advances that can be easily assimilated into models are mostly those at the 

process level (Donatelli et al., 2014). However, very few studies have performed 

comparisons in a fully controlled style such that a process ensemble was quantitatively 

evaluated within a single platform (but see Donatelli et al. (2014) for a pioneering case 

study on soil temperature simulation). Insufficient modulization, poor documentation of 

most crop models and intellectual property boundaries are believed to be the three vital 

obstacles that hinder reimplementation and reuse of alternative algorithms for a specific 

process (Holzworth et al., 2015). 

 In this study, we implement the “algorithm ensemble” framework to evaluate the 

performance of difference algorithms in capturing the impact of heat and drought stress 

on maize biomass production and yield formation. We first review existing algorithms at 

the equation level from 16 major crop models that simulate the direct heat and drought 
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stress on maize photosynthesis and yield formation, and document them for crop 

modelers. Next, we describe how representative algorithms were extracted from their 

parent crop models and incorporated into a standard model so that variations among 

algorithms could be quantified in a controlled manner. We select the Agricultural 

Production Systems sIMulator (APSIM) as the standard model, because its generic and 

modularized design allows algorithms to be replaced without changing the model 

structure. Finally, the revised APSIM with algorithm ensemble is used to simulate maize 

production at typical farms in the US Corn Belt, and evaluated using the county-level 

yield statistics from the USDA National Agricultural Statistics Service (NASS). Our goal 

is to understand why a particular algorithm (if any) performed better than others in 

capturing the signal of heat and drought, and to offer clear and useful information 

regarding crop model improvement. We exclude the evaluation of algorithms of indirect 

heat and drought stresses via leaf elongation/senescence, which are often programed to be 

more susceptible to adverse growth conditions (e.g. water stress effect in CERES-Maize), 

because the complex interactions between phenology and photosynthesis will make the 

results too complicated to interpret. We focus on maize because it is the most important 

cereal commodity in the United States, but the framework presented in our study can be 

extended to other crops and any process in a crop model. 

 

2.2 Review of simulating heat and drought stress in crop models 

 Sixteen major maize models were selected for evaluation and classification with 

respect to their algorithms of describing heat and drought stress on carbon assimilation 

and yield production. Although previous literature reviews did an excellent job in 
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summarizing the physiological knowledge and conceptual models of crop responses to 

stress factors (Prasad et al., 2008; Saseendran et al., 2008; Parent and Tardieu, 2014; 

Barlow et al., 2015; Rezaei et al., 2015), quantitative evaluation and comparison at an 

algorithm level is scarce. Although our focus here is for maize, mechanisms and 

modeling approaches evaluated can be applied for other cereals.   

2.2.1 Heat Stress  

 The negative impacts of short episodes of high temperature on crop yields have 

been found with sufficient evidence (Prasad et al., 2008; Schlenker and Roberts, 2009; 

Lobell, et al., 2013). A number of mechanisms could potentially explain the robust 

relationship, including but not limited to: sensitivity of anthesis-silking period to heat 

stress (Bolanos and Edmeades et al., 1996), declines in net photosynthesis (Prasad et al., 

2008), hastening leaf senescence (Parent and Tardieu, 2012), and changes atmospheric 

water demand and soil water supply (Lobell et al., 2013, 2014). Implementations of these 

many processes are often different between crop models, resulting in complicated 

interactions and iterations. To evaluate individual stress effects and alleviate the 

interference of multiple interactions, we exclude the indirect heat stress on maize yields 

via tuning of the canopy phenology, but only focus on processes that directly affect 

biomass and yield production. Based on this premise, the formalism of yields response to 

heat stress in the reviewed models is mainly through placing constraints on 3 aspects of 

reduction functions, including: (i) photosynthesis, (ii) harvest index, (iii) grain number or 

grain filling rate (Table 1). 

 Biomass accumulation via photosynthesis is a common starting point of crop 

growth, whereas the modeling methods differ among crop models. Simulations of heat 
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stress on photosynthesis can be further divided into three subgroups. The first one 

considers limit on the whole canopy light use efficiency (LUE). Models with this type of 

algorithm are often those origins from the 1980s (e.g. APSIM, CERES, EPIC, STICS and 

SWAT) or designed for simulating large-scale crop yields responses (e.g. DayCent and 

PEGASUS). The second subgroup uses more mechanistic ways to describe leaf-level 

RUE/LUE, and then scales up to the whole canopy based on LAI. The implementations 

of HYBRID-maize and WOFOST are relatively simple, such that the leaf-level maximum 

assimilation rate is adjusted with sub-optimal daytime temperature. CSM-IXIM uses 

much more complicated calculation routines. Designed for improving model accuracy 

under stresses, CSM-IXIM separates leaf area into sunlit and shaded fractions, and 

calculates light absorption using a nonrectangular hyperbola function. Temperature 

effects on assimilation are described by multiplying a cubic function to the parameters of 

the hyperbola function, while parameters of the cubic function itself need to be calibrated 

(Lizso et al., 2005). The third group considers limit of the Rubisco activity and/or 

electron transport at leaf level (i.e. Farquhar photosynthesis model). Representing heat 

stress at leaf level is more intricate as photosynthesis models at this level are inherently 

complicated. For instance, AgroIBIS simulates gross primary production through the use 

of mechanistic photosynthesis and semi-mechanistic stomatal conductance algorithms, 

within which heat will increase the stomatal resistance and further limit photosynthesis 

(Kucharik and Brye, 2003). In MONICA, the parameter of maximum saturated Rubisco 

carboxylation rate is adjusted by a simple temperature function with optimum around 30 

to 40 °C (Sage and Kubien, 2007). For the models reviewed above, the limiting function 

is often a response curve within the suitable range of temperature for biomass 
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accumulation, and hence heat stress is actually a segment of such response curves when 

close to the upper limit (Figure 2.1). For the remaining four models (i.e. AquaCrop, 

CropSyst, GLAM and MAIZSIM), no mechanistic algorithms of direct heat stress on 

biomass accumulation are detected from publically accessible documentation (but see 

Challinor et al., 2009 for a reduction in transpiration efficiency due to high temperature). 

 Once biomass accumulation has established, one simple approach to account for 

the impact of heat stress on yields is to reduce the harvest index (i.e. the ratio of grain 

weight to total plant biomass; HI). While in reality HI reduction can be attributed to a 

failure of reproductive processes, of grain abortion or of photosynthesis-inhibited grain 

formation on a particular day, modeling efforts to date have largely focus on a short 

period around flowering (Rezaei et al., 2015). AquaCrop implemented this approach for 

the whole canopy (Raes et al., 2009), in which high temperature episodes during the 

flowering period can reduce the daily increment in HI by a fraction weighted on 

fractional flowering. Challinor et al. (2005) defined the time window of heat stress as -5 

to +12 days from the onset of anthesis and when developing the GLAM model, as field 

research results show that grain yields can be reduced by exposure to heat both before 

and after flowering (Rezaei et al., 2015). This algorithm was then added to CropSyst by 

Moriondo et al. (2011) and validated for European winter wheat and sunflower, but so far 

is not an inclusion to the standard CropSyst. Variations of this algorithm were also 

incorporated into MONICA and PEGASUS, who shared much with the one presented by 

Moriondo et al. (2011), but differed slightly in either the time window or the temperature 

thresholds for identifying the heat stress episode. 
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 As a more mechanistic alternative to the HI approach, calculating final yield 

according to grain numbers is also popular among cereal models. When high temperature 

episode occurs, a reduction function can be applied either to the grain number or to the 

grain filling rate. Theoretically, heat stress could negatively impact not only the grain 

number through reduced photosynthesis, failure of flowering or pollination, but also the 

grain filling rate and duration (Razaei et al., 2015). In the model realization, majority 

models only implemented a reduction factor on the grain filling rate (e.g. CERES-Maize, 

HYBRID-Maize, MAIZSIM and STICS), so as to avoid double accounting heat stress 

effects caused by the same signal. The shapes of temperature-dependent grain filling 

function are very similar to those used for photosynthesis processes (Appendix A, Text 

A1), where the scalar decreased from 1 at optimal temperature to zero at lower and upper 

temperature thresholds. In addition to an empirical reduction functions on grain filling 

rate, APSIM-Maize also considers the heat stress on grain number such that it is reduced 

proportionally to accumulated degree days above 38 °C (Carberry et al., 1989). STICS 

considers cold damage to the grain number, but not heat stress (Brisson et al., 2009). It 

should be noted, however, the process of carbon translocation is implemented in 

HYBRID-Maize, MAIZSIM and STICS so that when net carbon assimilation exceed the 

stressed grain filling rate, the surplus will be allocated to a carbohydrate reserve (e.g. 

stalk) for future translocation. 

2.2.2 Drought stress 

 Drought can adversely affect crop growth and yield (Saseendran et al., 2014), 

mainly through regulations of leaf expansion and senescence, photosynthesis, carbon 

allocation, yield formation, and growth of rooting system (Prasad et al., 2008). Maize 
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production in rain-fed systems is mainly constrained by water deficit, especially during 

its reproductive stages (Lobell et al., 2014). Again, similar to the review of heat stress, 

our review will exclude those indirect impacts from drought via phenology and rooting 

system. Conceptually, drought can be easily defined as water supply in soil fails to meet 

the plant demand, whereas accurately representing water stress in crop model remains a 

major challenge to model developers (Parent and Tardieu, 2014). Most crop models 

simulate water stress according to simple indices such as (i) a function of available soil 

water content (!"#), (ii) ratio of water supply to demand, (iii) ratio of actual to potential 

transpiration, and hardly (iv) a function of leaf water potential (Table 2).  

Calculating water stress as a function of SWC is conceptually simple and easy to 

implement. Some models relate soil water deficit (!"#) directly to photosynthesis by 

limiting LUE (e.g. PEGASUS and STICS) or more mechanistically the stomatal 

openness (e.g. AgroIBIS). However, these models often only consider the soil water 

supply while ignore the plant water demand, thus their estimation of water stress should 

be treated with caution. In AquaCrop, !"# will affect the increase of HI through 

complex subroutines (Text A1). Water stress before yield formation may 

counterintuitively increase HI as a result of less energy is spent for vegetation growth, 

while !"# occurred during pollination and crop transpiration can reduce the final HI 

(Raes et al., 2009). Although field studies in general support the adaptation mechanism of 

increased carbon partitioning to the rooting system in response to water shortage (Chaves 

et al., 2002), only a few models (e.g. CSM-IXIM, DayCent, MAIZSIM) have explicitly 

simulated the dynamical root vs. shoot ratio as a function of SWC. 
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 APSIM is a typical model using the idea of relating drought to the ratio of water 

supply to demand. In APSIM, soil water supply (!!) is simulated as: 

 !! = !!! !!! − !!!
!!!

!!!
+ ! ∙ !!! !!! − !!!  (2.1) 

where i is the soil layer, I is the deepest soil layer where roots are present, SW is the layer 

specific soil water content, LL is the lower limit of plant-extractable soil water, KL is the 

coefficient for root water extraction, and c is an adjusting variable for the deepest layer. 

On the other hand, plant water demand (!!) is calculated as the amount of water required 

to support the light-limited biomass production: 

 !! =
∆!
!! (2.2) 

where ∆! is the light driven daily biomass production, and !" is the transpiration 

efficiency inversely proportional to the VPD. Water stress factor is calculated as !!/!!, 

and will reduce ∆! when !! <!!. CropSyst and GLAM should also be classified into 

this group, even though these two models did not explicitly calculate!!! <!!. Instead, 

daily biomass increment in both models is a product of available water supply and 

transpiration efficiency, and hence shortage of !! will directly reduce the dry matter 

production. 

 The idea of using !"/!"!to indicate water stress is applied by the majority 

models, although a close check of algorithms may reveal their slight differences on the 

complexity and the threshold for stress (Text A1). In general, these models will simulate 

a reference evapotranspiration (!!!) with variants of the Penman-Monteith method 

(Penman, 1948; Priestley-Taylor, 1972; Allen et al., 1998), and then partitioning !!! into 

potential plant transpiration (!!!) and soil evaporation (!!!) according to the Ritchie 
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(1972) approach. AT or equivalently plant water uptake is calculated either by sum up the 

root water uptake throughout the soil profile (e.g. CERES-Maize, CSM-IXIM, DayCent, 

EPIC, HYBRID-Maize, SWAT) or by multiplying !!! to limiting factors, including soil 

water deficit (e.g. AquaCrop, MONICA. WOFOST), water logging (e.g. AquaCrop, 

MONICA, WOFOST), or soil salinity stress (e.g. AquaCrop). Once !"/!"!is calculated, 

this ratio will be often set as a linearly reducing factor to the daily increase of biomass or 

harvest index (Table 2.2). 

 Stomatal conductance, and hence plant water stress, is often simulated as a 

function of SWC, yet leaf water potential has been supported to be a more direct indicator 

of plant water status (Tuzet et al., 2003; Prasad et al., 2008). Tuzet et al. (2003) first 

implemented this idea and proposed a coupled model of stomatal conductance, 

photosynthesis, leaf energy balance, and transport of water through the soil-plant-

atmosphere continuum. The same algorithm is incorporated into MAIZSIM by Yang et al. 

(2009) such that the stomatal closure factor ! Ψ!  is calculated by: 

 
! Ψ! = 1+ !"# !!Ψ!

1+ !"# !! Ψ! −Ψ!
 (2.3) 

where Ψ! is the bulk leaf water potential, Ψ! is a reference potential (= −1.2!MPa), and s! 

is a sensitivity parameter (= 2.3). Simulation accuracy of maize transpiration improved 

with the coupled algorithm that considers the control of Ψ! on stomatal conductance 

significantly outcompete the conventional method for drying soil, but trends to be similar 

when plants were well watered or under minor water stress (Yang et al. 2009). The key 

variable Ψ! is calculated iteratively by the 2DSOIL model (Timlin et al. 2002), while the 

very complicated simulation routine is beyond the scope of this paper. 
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2.3 Materials and methods 

 In this section, we first describe a method to quickly screen the behavior of heat 

stress algorithms. Next, we describe simulations that use an algorithm ensemble for the 

historical period of 1980-2013 and future scenarios of 2006-2099. A brief introduction to 

the development and application of APSIM-Maize model and its important engineering 

features is provided in the Introduction Chapter. Screening of heat stress algorithms was 

conducted at the AmeriFlux Mead Rainfed station, Saunders, NE (41.18 o, -96.44 o), 

where hourly meteorological and fluxes variables were archived. Screening of drought 

stress algorithms was performed at Agricultural Engineering and Agronomy Research 

Farms of Iowa State University, Boone, IA (42.02o, -93.78o). The ensemble simulation 

was conducted at the Iowa farm as well as at two other sites: (i) the AmeriFlux Bondville 

station, Champaign, IL (40.01o, -88.29o); (ii) Purdue Agronomy Center for Research and 

Education, West Lafayette, IN (40.47o, -86.99o). For brevity, we mainly focus on the 

Indiana farm for the ensemble simulation, while present similar results from the other two 

farms in the Appendix A. 

2.3.1 Screening of heat and drought stress 

To understand the behavior of representative heat and drought response functions, 

we pulled out these algorithms from their parent models and reprogrammed each in R 

language. Such a “lightweight” method allowed fast screening of these algorithms, while 

avoiding the “heavy” task of running crop models, which usually requires extensive 

preparation. 

 For heat stress, we selected the temperature response curve of photosynthesis 

and/or carbon assimilation from AgroIBIS (Quadratic; Kucharik & Brye, 2003), APSIM 
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(piecewise linear; Keating et al., 2003), CERES (piecewise linear; Jones et al., 2003), 

DayCent (Generalized Poisson; Parton, 1993), EPIC (Sinusoidal; Sharpley & Williams, 

1990), MAIZSIM (Exponential; Yang et al., 2009), SWAT (Exponential; Neitsch et al., 

2011) and WOFOST (piecewise linear; Supit et al., 1994). These 8 representative 

selections cover all different shapes of temperature response curves for the 16 crop 

models reviewed in this paper (Table 2.1), and detailed descriptions for each can be 

found in Text A3. These temperature response curves were compared to the observed 

ratio of gross primary production (GPP) to absorbed photosynthetically active radiation 

(APAR) at different temperatures from the AmeriFlux Mead Rainfed station (Text A2). 

Next, we calculated the mean annual heat stress factors by integrating daily values over 

either the growing season. Daily weather inputs, including maximum and minimum air 

temperature at a spatial resolution of 1km × 1km were downloaded from the Daymet 

website (http://daymet.ornl.gov/). During our preliminary analysis, we observed that 

models such as DayCent, SWAT and WOFOST that use daily mean temperature to force 

the heat stress algorithm predicted almost no heat stress on annual basis, while the 

CERES model that uses daylight temperature (approximated by !!"#!!!"#$
!  hereafter) was 

more sensitive to excessive heat. Therefore, we also tested the effect of using daylight 

temperature to simulate heat stress. The simulation results were compared to growing 

season extreme degree days (EDD, which is cumulative daily mean of hourly temperature 

above 30 °C; Lobell et al., 2013) and killing degree days (KDD, which is the cumulative 

daily mean temperature above 29 °C; Butler et al., 2013), both of which are indicators of 

excessive heat for crops (details of our implementation are given in Text A3). 

 



 22 

For drought stress, we evaluated the three dominant algorithms that cover more 

than 80% of the crop models we reviewed (Table 2.2): functions of average soil moisture 

content (SWC), water supply to demand ratio (Ws/Wd) and actual to potential 

transpiration ratio (AT/PT). It should be noted that although Ws is close to AT because 

soil water supply largely determines the actual transpiration in many models, the 

denominators of Wd and PT are quite different, such that the former is based on the 

concept of transpiration efficiency (Hammer et al., 2010) and the latter directly reflects 

daily weather conditions (Allen et al., 1998). For simplicity, we used the APSIM SoilWat 

module (a tipping-bucket model) to simulate daily state variables and fluxes that were not 

directly observed. We calculated mean annual drought stress factors by averaging daily 

values over the growing season for each year. To reduce the uncertainty in hydrological 

modeling, we reused the APSIM simulation configuration and parameters from the well-

calibrated site in Boone, IA (Archontoulis et al., 2014). We again used meteorological 

inputs from the Daymet dataset. 

2.3.2 Ensemble simulation 

 The algorithm ensemble for each site consisted of 30 simulation runs (i.e. 10 

simulations of heat stress algorithms for different processes × 3 varieties of drought 

stress algorithms). For heat stress, we constructed ten simulations (SM) that covered (i) 

two vapor pressure deficit (VPD) calculation methods, (ii) four different representations 

of heat stress on biomass production, (iii) two heat stress modifiers on grain-filling, (iv) 

three harvest index (HI) models, and (v) one leaf-level photosynthesis model (Figure 2.1). 

Specifically, SM1 is the reference simulation that used the default APSIM algorithms of 

heat stress on photosynthesis, grain number development and grain filling. SM2 replaced 
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the default APSIM VPD algorithm, which is purely based on maximum and minimum 

daily temperature and is hence occasionally criticized for overestimating drought stresses 

during hot days (Basso and Ritchie, 2014), with the more common method that requires 

either daily dew point temperature or relative humidity as input data (Abtew & Melesse, 

2013). SM3, SM4 and SM5 replace the APSIM multi-linear temperature stress function 

on the radiation use efficiency (RUE) with its counterpart in STICS, SWAT and 

WOFOST, respectively. It should be noted that STICS uses canopy temperature, which 

can be calculated by an empirical relation model, instead of air temperature to force the 

stress function (Text A1). SM6 was a simulation using the algorithm of high temperature 

effect on grain filling from MAIZSIM. SM7, SM8 and SM9 retained the APSIM 

photosynthesis and biomass production routines, but estimated yield based on the 

simulation of HI instead of the original grain number × grain-filling rate method. SM7 

incorporated the PEGASUS HI method (also used in CropSyst and GLAM), in which 

potential HI can be reduced due to heat stress around the silking-anthesis stage (i.e. 

flowering stage). SM8 used the SWAT HI method, which first develops potential HI 

according to the accumulation of daily heat units, and then calculates the actual HI based 

on the average water deficit over the growing season. SM9 adopted the HI model from 

AquaCrop, in which the potential HI can be adjusted either upward or downward by a 

number of environmental stress factors (Raes et al., 2009). To compare the performance 

of RUE-based biomass production models with the more mechanistic model of leaf-level 

CO2 assimilation processes, we incorporated the coupled photosynthesis-stomatal 

conductance model for C4 plants according to Collatz et al. (1992) as SM10 (Text A4). 

Similar leaf-level photosynthesis models have been implemented in more recently 
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developed crop models (e.g. AgroIBIS, CSM-IXIM, MAIZSIM and MONICA). Since 

SM1 - SM10 are not fully orthogonal, results from these simulations should not all be 

compared against each other. The effect of changing the APSIM default VPD algorithm 

can be observed by comparing SM1 vs. SM2. If the focus is on different 

parameterizations of heat stress on biomass production, then compare SM1 vs. SM3, 

SM4 and SM5. Comparing SM1 and SM6 illustrates the difference between two heat 

stress functions on grain-filling. Different implementations of HI algorithms can be 

evaluated by looking at SM7, SM8 and SM9, while the difference between grain filling 

vs. the HI method can be compared by looking at the group of SM1 and SM3-5 vs. the 

group of SM7-9. The effect of replacing an RUE model with leaf-level photosynthesis 

can be seen by comparing results from SM1 and SM10. On top of each simulation with a 

particular heat stress algorithm, we further nested three varieties of drought stress 

algorithms that describe water deficit as a function of SWC, Ws/Wd or AT/PT. More 

detailed theoretical backgrounds for each of these algorithms are given in Text A1. 

Simulations of maize phenology, soil moisture, temperature and nutrient dynamics were 

still carried out by the default APSIM platform. 

 To evaluate the APSIM-Maize performance on yield prediction, we compared 

model simulations with the NASS county-level rainfed maize yield data (e.g. Tippecanoe 

County for the farm from West Lafayette, IN). We used Daymet meteorology variables, 

as mentioned above, to run APSIM. Soil parameters, such as layered soil hydraulic 

properties and soil organic matter fractions, were extracted from the SSURGO database 

(Web Soil Survey: http://websoilsurvey.sc.egov.usda.gov). A detailed description for 

each of these soil parameters is presented in Archontoulis et al. (2014). When a farm had 
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several soil types according to SSURGO, we simply selected the one that accounted for 

the largest fraction, to reduce the computational cost. As a result, we derived Flanagan 

silt loam soil for the Illinois farm, Chalmers silt clay loam soil for the Indiana farm and 

Webster clay soil for the Iowa farm. Management history is critical for models to 

reproduce the historical trend in maize yield. In rainfed fields, the required management 

information includes: (i) sowing date, seeding rates and cultivar; (ii) fertilizer type, 

amount and timing. We derived most of the information from the NASS survey report, 

with state-specific details provided in Table A1. 

2.3.3 Analysis 

 To quantitatively understand the sensitivity of model-simulated biomass and/or 

yield to heat and drought stress, we further calculated the relative contributions of each 

stress over the historical period of 1980-2013 and in two future climate scenarios. 

Simulations were conducted by the standard APSIM-Maize (i.e. SM1) for the Indiana 

farm. The APSIM framework allowed us to switch on and off a certain stress by setting 

the corresponding stress function equal to 1 (Text A1). The sensitivity of biomass 

reduction (%) to drought was calculated as: 

 
S!"#$%&' =

!!"#$%!! − !!"#$%#&'(
!!"#$%#&'(

×100% (2.4) 

where !!"#$%#&'( is the simulated biomass from SM1 when stresses that directly limit 

photosynthesis and grain development are excluded, and !!"#$%!! is the value from the 

simulation that includes drought stress. Likewise, we calculated the sensitivity of biomass 

accumulation to high temperature as: 
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S!_!"# =

!!"#$"%&'(%" − !!"#$%#&'(
!!"#$%#&'(

×100% (2.5) 

in which !!"#$"%&'(%" is the value from the simulation that only applied the temperature 

response curve to the RUE. The sensitivity of grain growth, and hence yield, to extreme 

heat was quantified as: 

 
S!_!"#$% =

!!"#$ − !!"#$%#&'(
!!"#$%#&'(

×100% (2.6) 

where !!"#$%#&'( is the potential yield that considered stresses on biomass accumulation 

but not heat stress on grain set and grain fill, and !!"#$ was the actual yield. To run 

APSIM-Maize under a projected future climate, we used daily projections from 2006 to 

2099 provided by The NASA Earth Exchange Global Daily Downscaled Projections 

(NEX-GDDP). This downscaled dataset in a spatial resolution of 0.25 degrees was 

derived from the general circulation models (GCMs) participating in the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) under two of the four representative 

concentration pathways (RCPs). The effect of elevated CO2 on maize growth was not 

simulated here, since it is beyond the scope of this study and the magnitude of maize 

yield response to CO2 is controversial (Leakey et al., 2009). To reduce the computational 

cost, we selected projections for RCP4.5 and RCP8.5 from 8 representative GCMs (Table 

A2). The simulations conducted here were enough to extend the quantification of relative 

contributions of heat and drought stress into the future. 
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2.4 Results 

2.4.1 Screening of heat stress functions 

Temperature response curves of maize carbon assimilation differ markedly among 

selected crop models (Figure 2.2a). While some models use a single optimum 

temperature in their response curve (e.g. AgroIBIS and DayCent), others specify a wider 

range of temperatures (i.e., a plateau) for optimum or near optimum growth. AgroIBIS, 

EPIC and SWAT specify 25 °C as the optimal temperature for maize, beyond which heat 

stress starts to reduce photosynthesis. APSIM, DayCent and WOFOST use approximately 

30 °C as the maximum optimal temperature. CERES and MAIZSIM, using daylight and 

hourly temperature as the forcing data, have even higher maximum optimal temperature 

of 33 °C and 32 °C, respectively. The upper limit temperature at which stress reaches its 

maximum differs substantially among models (Figure 2.2a). These differences are also 

reflected by the observed temperature responses of GPP to APAR ratio (as an 

approximation of RUE) (Figure A1). The optimal temperature range for hourly 

GPP/APAR is roughly 20 -31 °C, and the response curve is more like a piecewise linear 

function. For daylight GPP/APAR, the optimal temperature range is roughly 28-31 °C; 

this is probably why our simulations produce similar results when using daylight and 

hourly temperature to drive the algorithms. The optimal temperature for the daily mean 

GPP/APAR occurs around 25 °C (which agrees with Agro-IBIS, EPIC and SWAT), and 

the response curve is more like a quadratic function. 

 The predicted growing season average reduction in photosynthesis due to heat 

stress did not exceed 2% for most algorithms when forced by daily mean temperature, 

even in the years of 1988 and 2012, in which severe heat waves were recorded (Figure 
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2.3). Such predictions are likely unrealistic given the negative relationship between 

excess heat indicators (e.g. EDD and KDD) and maize yield. When heat stress is 

simulated using daylight temperature instead of mean daily temperature, yields simulated 

using all of the algorithms vary interannually with the heat stress factors, and become 

negatively correlated with EDD or KDD (Figure 2.3). Algorithms from APSIM, DayCent, 

EPIC, MAIZSIM and WOFOST have very high correlations (r < -0.95), followed by 

AgroIBIS (r = -0.87). The magnitude of reduction due to heat stress typically remained 

less than 5%, except for the EPIC simulation, which decreased by up to 10%. We also 

tested the effect of increasing simulation time frequency, in which the daily stress is 

calculated by averaging the every 3-hours prediction, and obtained results very close to 

simulations that use daylight temperature (not shown). 

2.4.2 Screening of drought stress function 

 During the moist year of 2010 (May-August precipitation was 878 mm), 

algorithms that calculate stress factor as a function of SWC or Ws/Wd (SWC method and 

Ws/Wd method hereafter) predicted almost no drought stress, while the algorithm based 

on AT/PT (AT/PT method) predicted substantial stress over the growing season (Figure 

2.4a). During the dry year of 2012 (May-August precipitation was 301 mm), all three 

methods indicated severe drought during the summer, although the magnitude of water 

shortage predicted by the Ws/Wd method was much greater than the other two methods 

(Figure 2.4b). The more severe drought predicted by Ws/Wd starting in July was likely 

caused by both the steady decrease in soil water supply and the persistent high 

transpiration demand (Figure A2).The AT/PT method indicated occasional water deficit 

in the early growing season, while the other two methods were unresponsive (Figure 
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2.4b). Mean annual drought stress varied substantially across years, fluctuating between 

0.7 and 1.0 for years 1980-2013 (Figure 2.4c). The stress calculated by the SWC method 

closely resembled results from the Ws/Wd method (R! = 0.9), whereas the AT/PT 

method differed (R! = 0.53 with the SWC method and R! = 0.67 with the Ws/Wd 

method), consistently predicting more severe drought stress. 

2.4.3 Comparison between algorithm ensembles 

 The ensemble simulations generally captured the inter-annual yield variability for 

the years 1980-2013 (Figure A3), with R2 varying between 0.39 and 0.67, RMSE ranging 

from 1.089 to 1.557 t/ha, and Spearman correlation ranging from 0.2 to 0.6 (Figure 2.5). 

Compared to the very limited long-term historical simulations reported in peer-reviewed 

journals, our results are significantly better in matching the county-level yield statistics 

than Lobell et al. (2014) for Johnson, Iowa, using APSIM-Maize and Drewniak et al. 

(2013) for the whole US using CLM-Crop, but are close to the simulations given in Elliot 

et al. (2013). The improvement is mainly because we explicitly customized the 

simulations with yearly management information (e.g. planting date, density and fertilizer 

amount) according to the NASS database. Interestingly, using different drought stress 

algorithms had little effect on the model predictability, except that the AT/PT method 

produced slightly worse performance (e.g. SM2 and SM10; Figure 2.5a,b). Although 

mainstream drought stress algorithms produced quite different predictions for the 

seasonal pattern of water deficit (Figure 2.4), they displayed similar capability to 

represent drought on an annual basis.  

Simulations from SM2, with the updated VPD algorithm, generally gave the worst 

model predictions (smallest !! and Spearman correlation, largest RMSE; Figure 2.5), but 
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outperformed all other simulations for the extreme drought year of 2012. Other 

simulations with the default VPD algorithm substantially underestimated yield by as 

much as 2.9t/ha in that year (Figure A3). Such systematic biases could be a result of the 

overestimation of VPD and hence crop water demand. In the current version of APSIM, 

the daily water-limited dry matter production, calculated as soil water supply × 

transpiration efficiency (TE), is inversely proportional to VPD (Text A3). The 

overestimation of VPD may lead to unrealistically high water demand and thus greatly 

overstates water deficits on exceptionally hot days (Basso and Ritchie, 2014). On the 

other hand, underestimating soil water supply when high VPD continuously depletes soil 

water could also overestimate the drought stress. Take the extreme dry year of 2012 as an 

example: weekly maximum VPD was almost 1.1 kPa higher when simulated by the 

default method than with the conventional method (Figure A6), which lowered TE and 

reduced biomass, as water supply was coincidently also exceptionally low. However, 

because the APSIM-Maize model has long been calibrated with the default VPD 

calculation route, simply changing the VPD algorithm will not guarantee an improvement 

in the overall model performance. 

Using canopy temperature (SM3) instead of daily mean temperature to calculate 

heat stress lowered model performance at farms from Indiana (Figure 2.5) and Illinois 

(Figure A4) and slightly improved model predictions for the Iowa farm (Figure A5), 

possibly because the empirical canopy temperature model we adapted from STICS is 

only valid under a limited set of conditions. The simulated mean daily canopy 

temperature was generally higher than the air temperature measured at 2 m height, but 

mostly no more than 3°C (Figure A7), whereas the difference observed in rainfed fields 
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ranged from -2 to 7.5°C (Siebert et al., 2014). Switching between heat stress algorithms 

made little difference for predicted yield variability (i.e. SM1 vs. SM4-6), confirming that 

current crop models are insensitive to heat stress. Although it is difficult to recommend 

any algorithm over the others under contemporary climate conditions, crop modelers 

should keep in mind that these algorithms may diverge substantially when being used for 

future projections.  

Simulations with the HI method consistently outperformed the others in terms of 

capturing the yield variability (!! > 0.64) and minimizing the prediction error (Figure 

2.5). SM8 and SM9 performed slightly better than SM7, which used the PEGASUS 

algorithm, possibly because PEGASUS does not include water stress like the former two 

algorithms, but only considers heat stress around the silking-anthesis period when 

calculating the actual HI (Deryng et al., 2014). Potential HI for AquaCrop can be more 

conservative (e.g. 0.5 in this study), because AquaCrop has incorporated a mechanism 

through which crops generally produce excessive flowers to help recover once 

environmental constraints on pollination are ameliorated (Raes et al., 2009; Text A1). 

The parameter of potential HI for SWAT should be set slightly higher than for the other 

two models in order to get acceptable results (e.g. potential HI=0.55 in this study), since 

the HI in SWAT is often stressed more than that in the PEGASUS model and will not be 

compensated by additional flowers as in AquaCrop.  

 Last but not least, the leaf-level photosynthesis algorithm had a similar prediction 

bias (RMSE = 1.272 t/ha) and yield variability (R2 = 0.54) as the RUE-based simulation 

(SM1 vs. SM10; Figure 2.5), despite its more complex model structure and heavier 

computational load (if solving coupled equations uses a numerical iteration method). It 
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should be noted that the Collatz model does not explicitly consider N limitation when 

calculating the gross CO2 assimilation (Collatz et al., 1992), and is thus less responsive to 

the historical increase in fertilizer applications (Figure A3). 

2.4.4 Past and projected heat and drought stress on yield 

 Yield losses at the Indiana farm due to climatic stress were attributed more to 

water deficits than sub-optimal temperatures (hot or cold; Figure 2.6), and thus the losses 

caused by excess heat were even smaller. The direct losses from higher-than-optimal 

temperature were mostly trivial and accounted for no more than 6% even in the 

notoriously hot years of 1988 and 2012, while the losses from water stress were more 

than 10% in several years and peaked at 30% in 2012. However, part of the water stress 

impact could be an indirect effect of high temperature, since warming increases water 

demand via elevating the VPD and at the same time decreases soil water storage by 

accelerating transpiration over short time periods (Lobell et al., 2013). Under projected 

future climates, the models suggest drought will continue to play a critical role in 

reducing the maize production at the Indiana farm, and the stress will intensify faster 

under the high emission scenario (Figure 2.7). Average biomass reduction due to drought 

will increase from 15% in the 2000s to 20% and 27% at the 2090s under RCP4.5 and 

RCP8.5 scenarios, respectively. The influence of high temperature on biomass 

accumulation is predicted to be small under RCP4.5, but becomes increasingly prominent 

after 2050s under RCP8.5. In a few years warmer climates increase yields, possibly 

because the positive effect of moderate warming on the rate of grain filling overcomes 

the negative effect on other processes. Extreme heat only occasionally damages simulated 

maize production in the first half of the 21st century, but reduces grain number and yield 



 33 

with greater frequency and intensity after the 2050s, especially under the RCP8.5 

scenario (Figure 2.7c). It should be noted, however, the relative importance of drought vs. 

heat is specific to the US Midwest, and may differ in more humid regions such as Europe. 

 

2.5 Discussion 

2.5.1 Lessons from review of algorithms 

Heat stress functions can be effective when based on !!"#$, daylight, or hourly 

temperature as long as they are parameterized correctly. However, it is very likely that a 

few models that base their temperature responses of RUE on !!"#$ actually have 

functions that were parameterized based on an hourly (or instantaneous) temperature 

response. For crop models that use daily !!"#$ to calculate heat stress factors, the 

optimal temperature threshold for algorithms should be smaller than algorithms using 

daylight or hourly temperature. The likely maximum optimal temperature for a !!"#$ 

function is around 25°C, which is smaller than the critical temperature threshold for 

maize growth (i.e. ~30°C) derived from large-scale statistics by Schlenker & Roberts 

(2009) and Lobell et al. (2013). Nonetheless, the literature-suggested temperature 

threshold is very close to the maximum optimal daylight or hourly temperature for RUE 

of 31-32°C. One follow-up concern is that these temperature thresholds may vary across 

space, given that the cultivars planted could be different from one place to another as a 

result of years of breeding and selection. While the spatial pattern of an optimal 

temperature threshold deserves further investigation, we also suggest that crop modelers 

consider replacing this type of hard-coded temperature threshold with uncertain 

parameters, to increase model agility (Mendoza et al., 2015). 
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The use of daylight temperature instead of instead of !!"#$ improves model 

performance by making heat stress algorithms responsive, likely because the current 

parameterizations of heat stress algorithms in most crop models that use daily mean 

temperature happen to be close to the RUE response curve to daylight temperature 

(Figure 2.2a and Figure A1). This simple modification is very easy to implement, and is 

further justified when the difference between 3-hr simulations and the use of !!"#!!!"#$
!  

is very small on either a daily or an annual basis. Shortening the simulation time step 

certainly works because it allows the algorithm to reproduce the diurnal cycle of air 

temperature and hit those time points when temperature is significantly higher than the 

threshold. To control the computational cost, crop modelers would not have to run the 

whole model with higher time frequency, but could simply run the subroutine used to 

calculate stress factors. 

 The behaviors of drought stress algorithms were close to our expectations. In 

general, predictions made by the SWC method were less severe but smoother, possibly 

because the use of a multi-layer tipping-bucket model in the APSIM. As maize roots can 

normally penetrate to 1.5-2 meters depth and withdraw water throughout the whole soil 

profile (Hochholdinger, 2009), crop models often calculate water stress by averaging 

stress factors across all of the layers. However, simulated soil moisture of deep layers in 

many crop models normally had very small fluctuations, therefore minimizing simulated 

water stress for the whole soil column. The AT/PT method, which calculates potential 

transpiration with the Priestley-Taylor equation (Priestley & Taylor, 1972), showed 

substantial daily fluctuation, and tended to overestimate drought stress when there was no 

or mild soil water shortage. Sau et al. (2004) also reported that the use of Priestley-Taylor 
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equation tends to overpredict potential ET measured under irrigated and rainfed 

conditions in southern Spain, which reduces stress factors when AT is fixed, and 

therefore underestimates LAI, biomass and grain yield. The use of the FAO56 ET method 

(Allen et al., 1998) has been shown to perform better than the Priestley-Taylor method 

(Saseendran et al. 2008), but requires more detailed ground observational data as input. 

However, even if the calculation of PT can capture daily weather fluctuations well, how 

fast crops can respond to those fluctuations remains an open question. The Ws/Wd 

method, which is based on the concept of transpiration efficiency (Text A1), predicted 

little water stress during the cool early growing season, likely because Wd is small as a 

result of: (i) low VPD at low temperature and hence high TE; (ii) low dry matter 

accumulation rates given the low temperatures and less radiation interception in the early 

season. During the drought year of 2012, the Ws/Wd method predicted substantially more 

severe drought than the AT/PT method due to both high Wd values and low Ws (Figure 

A2). On the water demand side, APSIM tends to overestimate VPD during hot summers 

(Basso et al., 2014), thus results should be interpreted with caution during severe summer 

droughts. 

2.5.2 Lessons from the ensemble simulation 

The consistent underestimation of the yield increase trend by all simulations may 

be a consequence of simulating a single cultivar for the whole study period and in all of 

the different locations (Figure 2.5a). It is well established that farmers change cultivars 

very frequently, and cultivars vary substantially in their yield potential as a result of 

differences in traits such as relative maturity (Kumudini et al. 2014), light use efficiency 

(Tollenaar and Aguilera, 1992; Singer et al., 2011) and genetically modified stress-
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tolerance (Xu et al., 2013). While such cultivar information is more difficult to obtain, 

crop modelers can inversely estimate spatiotemporal variations of cultivar-specific 

parameters against in-situ measurements. Given the very limited number of existing case 

studies (Sakamota et al., 2010; Jones et al., 2011; Archontoulis et al. 2014), this area 

deserves more research effort in the future. 

Contrary to our expectations, the seemingly simple HI method outperformed more 

mechanistic methods that account for grain numbers and grain filling. A possible 

explanation is that the HI method has been parameterized based on historical agronomic 

data, and therefore can reproduce county-level yield statistics better than mechanistic 

approaches derived from field experiments. Moreover, when simulating maize yield with 

more mechanistic algorithms, climate variability has already been largely represented in 

the biomass estimates, so that additional steps to simulate grain number and grain-filling 

based on the concept of carbon source and sink lead to a greater uncertainty than obtained 

with the HI method. On the other hand, models that explicitly simulate kernel 

development can provide estimates of grain number, sugar and oil content, all of which 

are commercially valuable information (Borrás et al., 2002). In short, more complex and 

mechanistic algorithms are not necessarily better than simpler alternatives. The pros and 

cons of simple algorithms largely depend on the model application scale and variable of 

interest. 

 Although the leaf-scale photosynthesis model showed no apparent advantages in 

terms of predicting yield, it should be considered as a research frontier for next 

generation model development (Boote et al., 2013). The conventional RUE-based crop 

models have hit a bottleneck, in that they lack leaf-level physiological processes, and 
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hence cannot disentangle interactions between photosynthesis and many well-known 

regulating factors such as light, CO2, leaf energy, leaf water and enzyme status (Lizaso et 

al., 2005). For example, elevated atmospheric CO2 is believed to mitigate water stress in 

maize by reducing stomatal conductance and improving water use efficiency (Leakey et 

al., 2006; Hussain et al., 2013), but how much this will truly benefit yield is open to 

debate (Leakey et al., 2009; Boote et al., 2013; Urban et al., 2015). In fact, a negative 

feedback exists between improved water use efficiency and canopy temperature and VPD, 

because lower transpiration will reduce latent heat flux from canopy to the atmosphere, 

causing foliage temperatures to rise, which could again increase transpiration (Lobell et 

al., 2013). Improved crop modeling at the leaf scale that couples CO2, water and energy 

is thus needed. 

2.5.3 Reflections on crop model improvements 

Overall, our analysis shows that algorithms from representative maize models do 

not adequately capture the impact of climate extremes on maize photosynthesis and yield. 

These conclusions are consistent with several other model comparison studies for cereal 

crops under various growth conditions (e.g. Asseng et al., 2013; Eitzinger et al., 2013; 

Bassu et al., 2014). Knowledge gaps and promising research frontiers for improving the 

predictability and credibility of current crop models have been discussed in a number of 

review papers (Boote et al., 2013; Parent and Tardieu, 2014; Barlow et al., 2015; Rezaei 

et al., 2015).  Based on our analyses, we highlight the following three features that have 

not been well addressed in existing crop models.   

First, crop models need better mechanisms to handle climate and weather extremes. 

Existing temperature and moisture response functions of many physiological processes 
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used by crop models to capture the climate variability are mainly summaries of observed 

historical statistics (Reichstein et al., 2013), and hence are questionable when used to fit 

novel climate conditions. For instance, the extremely high yield reduction predicted by 

the standard APSIM in the 2090s should be treated with caution, since it has not been 

validated at those novel bioclimatic scenarios. Regarding time scale, heat waves may 

happen very quickly – within a window of a few hours – and therefore is beyond the 

current simulation capacity of most crop models. CropSyst has recently incorporated a 

mechanism to discount biomass production when high temperatures last for more than 4 

hours (Alderman et al., 2013). In addition, a perspective from ecosystem modeling 

suggests defining extreme climatic events as “an episode or occurrence in which a 

statistically rare or unusual climatic period alters ecosystem structure” (Smith, 2011). In 

this sense, crop models should go beyond the current continuous reduction functions and 

incorporate mechanisms to capture heat and drought stress that occurs singly, 

coincidently or when one follows another, and whose impact may or may not be 

reversible. Existing models only have very limited implementations for events-based 

simulation. For example, in APSIM-Maize high temperatures immediately following 

emergence will kill a fraction of plants. The implementation of a response of grain 

number set to heat extremes in APSIM and DSSAT is an early attempt to account for the 

carryover effect, although its parameterization is not adequately reliable due to limited 

experimental data. Other models, including CropSyst, GLAM, MONICA and PEGAUS, 

implement a reduction in HI when there is heat stress around the flowering stage. 

Second, although the importance of considering canopy temperature in quantifying 

the heat stress impact has been emphasized quite often in recent years (Siebert et al., 
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2014; Rezaei et al., 2015), potential losses from increasing nighttime temperature also 

deserve adequate attention. Nighttime warming has been shown to negatively affect plant 

growth across the Northern Hemisphere, because it boosts nighttime plant respiration that 

consumes carbon accumulated during daylight photosynthesis (Peng et al., 2013). 

Evidence also suggests that damage from nighttime heat stress is amplified during the 

reproductive phases, and that nighttime warming was partly responsible for the lower 

productivity and reduced kernel quality observed across the US Corn-Belt in 2010 and 

2012 (Hatfield et al., 2014). With the number of hot nights projected to increase by as 

much as 30%, yield reductions will become more prevalent (Hatfield et al., 2011). 

However, none of the models we reviewed explicitly considered the direct impact of 

nighttime warming. Crop models with leaf-level photosynthesis algorithms can be easily 

adapted to account for nighttime heat (e.g. AgroIBIS, CSM-IXIM and MAIZSIM), 

although they have not been well parameterized and tested. MONICA also uses a 

mechanistic photosynthesis model, but its daily time step certainly obscured the signal of 

high nighttime temperature (Appendix A, Text A1). For models using the RUE approach, 

the nighttime temperature effect could be considered by incorporating a new limiting 

factor as a function of nighttime temperature when calculating the daily biomass 

accumulation, or by adding a reduction term elsewhere (e.g. when allocating the dry 

matter to grains).  

Finally, the best way to coordinate multiple stresses needs further investigation. For 

those RUE-based models, the minimum of heat and drought stress factors is normally 

used to limit potential biomass production (e.g. APSIM-Maize, CropSyst, CSM-CERES  
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and SWAT), while a product of both is applied in PEGASUS and STICS. In some cases, 

VPD is further used to adjust the potential RUE or TE (e.g. APSIM, CropSyst, SWAT 

and GLAM). For leaf-level photosynthesis models, the temperature effect is supposed to 

be captured by the temperature dependency of each parameter, and water stress is 

reflected in the stomatal conductance. But AgroIBIS also adjusts maximum 

photosynthetic rate by a water stress factor, and MAIZSIM limits stomatal conductance 

by a function of leaf water potential. This variety of approaches begs the question: Do 

any or all of these forms lead to double accounting of heat and drought stresses? To our 

knowledge, no studies have answered this question. When simulating yield formation, 

either via grain development or the HI method, some models purely use heat or drought 

stress alone and some models use both (Table 2.1 and Table 2.2). Given that these crop 

models are individually developed and their main purpose is to predict biomass or yield 

variability, the inconsistency in the organization of these stress factors is quite 

understandable. However, this question should be answered because: (i) current models 

may give the right result but for the “wrong reasons”, i.e., despite being based on 

unrealistic algorithms, and (ii) the lack of an answer hinders the assimilation of newly 

discovered stress mechanisms. One possible solution for mechanistic models is to 

compare intermediate model outputs (such as LAI, canopy level assimilation) to 

intermediate measurements (Boote et al., 2013), while for RUE-based models more 

efforts are needed. 

 In short, our study identifies the model formulations that best predict the impacts 

of heat and drought stress on maize biomass production and yield, and recognizes gaps to 

further reduce the prediction uncertainty. The framework presented here can be applied to 
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modeling other crop physiological processes and factors (e.g., phenology, chill and 

canopy transpiration), and used to improve yield predictions of other crops in a wide 

variety of crop models, thus is a significant advance in the crop modeling research. 
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Table 2.1 Summary of heat stress algorithm on maize photosynthesis, grain set/fillings and harvest index.  

Model Process Model type Input  Key parameters Reference 
AgroIBIS Stomatal resistance Quadratic Tleaf Topta=25 Kucharik & Brye, 2003 
APSIM RUE 

Grain number 
Grain filling 

Multilinear 
Linear 
Linear 

Tmean 
Tmax 
Tmean 

Tbaseb=8, Topt1=15, Topt2=30, Tlimc=44 
Tlim=38, Sensitivity=0.05 
Tcrtd=c(6, 10, 16, 22, 30, 56.3) 

Keating et al., 2003 
Carberry et al., 1989 

AquaCrop Harvest index Logistic Tmean Topt2=30, Tlim=35 Raes et al., 2009 
CERES-4.0 RUE Multilinear Teff Tbase=6.2, Topt1=16.5, Topt2=33, Tlim=44 Jones et al., 2003 
 Grain filling Multilinear Tmean Tbase=5.5, Topt1=16, Topt2=39, Tlim=48.5  
CropSyst Flowering Multilinear Thr Tcrt=31, Tlim=44 Stöckle et al., 2013 
DayCent GPP GPoisson Tsoil Topt=30, Tlim=45, Sleft=1, Sright=2.5 Parton, 1993 
EPIC RUE Sinusoidal Tground Tbase=8, Topt=25 Sharpley & Williams, 1990 
GLAM Flowering Multilinear Tam To be calibrated Challinor et al., 2005 
HYBRID-maize Assimilation rate Multilinear Tday-time Tbase=8, Topt1=18, Topt2=30 Yang et al., 2013 
 Grain filling Quadratic T3hr Topt=26  
CSM-IXIM Assimilation rate Complex  Thr   Lizaso et al., 2005 
MAIZSIM Carbon supply Exponential Thr Td=48.6 Yang et al., 2009 
 Grain filling Quadratic Thr Topt=26 Grant 1989 
MONICA Assimilation rate Multilinear Thr   Sage & Kubien, 2007 
 Flowering Multilinear Tday-time Tcrt=30, Tlim=40 Moriondo et al., 2011 
PEGASUS LUE Quadratic Tmean Tbase=0, Topt1=15, Topt2=40, Tlim=65 Deryng et al., 2011 
 Flowering Multilinear Teff Tcrt=32, Tlim=45 Deryng et al., 2014 
STICS RUE Quadratic Tleaf Tbase=2.5, Topt1=10, Topt2=30, Tlim=30 Brisson et al., 2009 
 Grain filling Multilinear Tleaf Tbase=5, Topt1=6, Topt2=26.5, Tlim=27.5  
SWAT RUE Exponential Tmean Tbase=8, Topt=25 Neitsch et al., 2011 
WOFOST Assimilation rate Multilinear Tday-time Tcrt=c(0, 9, 16, 18, 20, 30, 36, 42) Supit et al., 1994 

aTopt: optimum temperature above or below which stress will occur; a non-stress plateau is assume for curves with two optimum temperatures (e.g. Topt1 
and Topt2). bTbase: base temperature below which full stress is assumed. cTlim: limiting temperature threshold at which full heat stress is reached. dTcrt: 
critical temperature threshold at which heat stress starts. 
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Table 2.2 Summary of drought stress algorithm on maize photosynthesis, grain set/fillings and harvest index.  

Model Process Conceptual Function type Reference 
AgroIBIS Photosynthesis rate (Vmax) SWC exponential Kucharik & Brye, 2003 
APSIM-Maize RUE Ws/Wd linear Keating et al., 2003 

 
Grain filling Ws/Wd linear 

 AquaCrop Stomatal closure SWC convex curve Raes et al., 2009 

 
Harvest index Complex subroutines 

 
Raes et al., 2009 

CERES-Maize RUE AT/PT linear Lopez-Cedron et al, 2005 

 
Grain filling AT/PT quadratic Lopez-Cedron et al, 2008 

CropSyst Water dependent growth Transpiration efficiency 
 

Stöckle et al., 2013 

 
Harvest index Stage-dependent average water stress linear 

 DayCent GPP Available water to PET linear Parton et al., 1993 

 
Carbon allocation Soil water content empirical 

 EPIC RUE Wu/PT linear Sharpley & Williams, 1990 

 
Harvest index Wu/PT convex curve 

 GLAM Transpiration efficiency Transpiration efficiency 
 

Challinor et al., 2004 
HYBRID-maize Assimilation rate AT/PT linear Yang et al., 2013 
CSM-IXIM Carbon allocation AT/PT exponential Lizaso et al., 2011 
MAIZSIM Stomatal conductance Leaf water potential logistic Yang et al., 2009 

 
Carbon allocation SWC linear Acock et al., 1982 

MONICA Assimilation AT/PT linear Sage & Kubien, 2007 
PEGASUS LUE SWC exponential Deryng et al., 2011 
STICS RUE SWC linear Brisson et al., 2008 
SWAT RUE AT/PT linear Neitsch et al., 2011 

 
Harvest index AET/PET linear 

 WOFOST Assimilation rate AT/PT linear Supit et al., 1994 
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Figure 2.1 Framework for using ensemble simulations to compare algorithms at the 
process level. Heat stress algorithms for each process (i.e. photosynthesis, grain number 
development, grain-filling rate and harvest index increment) are listed as bricks. The 
combination of different bricks for all processes evaluated leads to a simulation (SM). 
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Figure 2.2 (a) Temperature response curves used in representative crop models. (b) 34-
year (1980-2013) averaged growing season daily maximum (red line), mean (black) and 
minimum (blue) temperature for the Indiana farm in this study. Red and black dots are 
daily maximum and mean temperatures for all years, respectively. 
  



 46 

 
Figure 2.3 Effect of the temperature forcing data of algorithms on their predictions of 
mean annual heat stress (1 for no stress and 0 for full stress) for the Indiana farm. 
Simulations using daily mean temperature are shown as blue lines, and simulations with 
daylight temperature are shown as red lines. Note that AquaCrop’s algorithm is on a 
different scale than those from the other models. Indexes of excessive heat, namely 
extreme degree days (EDD) and killing degree days (KDD) (Text A3), are given for 
reference. 
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Figure 2.4 Drought stress (1 for no stress and 0 for full stress) for the Iowa farm as 
predicted by different drought stress algorithms. Seasonal dynamics of daily stress factors 
for the moist year of 2010 (a) and the drought year of 2012 (b). (c) Inter-annual 
variability of mean growing season stress factors from 1980 to 2013. 
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Figure 2.5 Simulated annual yields by 30 simulation trials (10 heat × 3 drought stress 
algorithms) for the Indiana farm from 1980 to 2013. See Figure 2.1 for detailed algorithm 
combinations for each ensemble. Yield trend derived from USDA NASS county level 
statistics is denoted by the black dashed line. 
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Figure 2.6 Percentage yield reduction attributed to temperature and water stress on the 
Indiana farm from 1980 to 2013, as simulated using the standard APSIM-Maize model. 
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Figure 2.7 The effects of drought (a), high temperature via photosynthesis (b) and heat 
via grain development (c) on maize yield for the Indiana farm under two Representative 
Concentration Pathway (RCP) scenarios. Solid lines are mean predictions from eight 
General Circulation Models (GCMs), and shaded areas represent one standard deviation.  
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CHAPTER 3. ASSESSING THE IMPACTS OF HEAT AND DROUGHT STRESS ON 
THE US MAIZE AND SOYBEAN PRODUCTION 

3.1 Introduction 

 The negative impact of high temperature on crop production, commonly referred 

to as “heat stress”, has been identified for maize and soybean with sufficient evidence 

(Prasad et al., 2008; Schlenker and Roberts, 2009; Djanaguiraman et al., 2011; Lobell, et 

al., 2013; Rezaei et al., 2015). A number of mechanisms could potentially explain the 

observed relationship, including but not limited to: sensitivity of anthesis-silking period 

to high temperature (Bolanos and Edmeades et al., 1996), declines in net photosynthesis 

(Prasad et al., 2008; Rezaei et al., 2015), hastening leaf senescence (Parent and Tardieu, 

2012), and changes atmospheric water demand and soil water supply (Lobell et al., 2013, 

2014). Drought, often defined in an agronomic perspective as insufficient water supply 

for plant growth demand, can adversely affect crop growth and yield through limiting leaf 

expansion and senescence, photosynthesis, carbon allocation, yield formation, and 

growth of rooting system (Prasad et al., 2008; Saseendran et al., 2014). The productions 

of maize and soybean in the US rainfed system are susceptible to heat and drought stress 

(Mellilo et al., 2014), although maize in the US Midwest has become more sensitive to 

drought than soybean for the past two decades as a result of a higher increasing trend in 

the seeding rate (Lobell et al., 2014). Substantial increase in concurrent heat and drought 

has been observed in the contiguous US since 1950s (Mazdiyasni & Aghakoucha, 2015), 
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causing greater agricultural risks compared with years when these events occur singly or 

one follows another. The critical role of extreme heat for the US maize and soybean 

appears to be a result of its nonlinear effect on vapor pressure deficit (VPD), as high VPD 

not only exacerbates short-term water demand but also lowers future soil water supply 

(Lobell et al., 2013, 2014; Urban et al., 2015). Although heat and drought stress seems to 

be intertwined with each other, distinguishing whether the yield losses are due to heat or 

drought is important for developing comprehensive strategies for breading and field 

management when farmers have to cope with between both stresses (Lobell et al., 2015). 

 Elevated atmospheric carbon dioxide (CO2) further complicates the quantification 

of heat and drought stress on maize and soybean growth. By reducing the stomatal 

openness, elevated CO2 leads to decreased crop transpiration and increased soil moisture 

storage (Long et al., 2006; Bernacchi et al., 2007; Leakey et al., 2009; Bunce, 2014; 

Madhu & Hatfield, 2014), thus ameliorating the potential drought stress and benefit the 

yield (Leakey et al., 2006; Hussain et al., 2013; Lobell et al. 2015; Urban et al., 2015). 

Nonetheless, the reduction in canopy latent heat as a result of less water fluxes will 

elevate the leaf temperature and stress the photosynthetic apparatuses (Bernacchi et al., 

2005; Long et al., 2006; Twine et al., 2013). Crops grown under elevated CO2 may 

express higher thermotolerance of photosynthesis, but are more likely for C3 (e.g. 

soybean) rather than C4 (e.g. maize) species (Taub et al., 2001; Wang et al., 2007). On 

the other hand, CO2 directly stimulates the C3 photosynthesis and compensates a portion 

of the climate-induced yield losses (Long et al., 2006; Bishop et al., 2015). This so called 

CO2 fertilization effect is anticipated because major C3 crops are CO2-starving under the  
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current atmosphere (Chapin et al., 2011), and elevated CO2 can increase their radiation 

utilization and net photosynthesis by raising the intercellular CO2 substrate and inhibiting 

the competing photorespiration (Long et al., 2006; Dermody et al., 2008; Leakey et al., 

2009). For C4 crops that are CO2-saturated under current atmosphere, the effect of rising 

CO2 on yield is more controversial, such that earlier enclosure studies reported significant 

fertilization effect and more recent Free-air concentration enrichment (FACE) 

experiments concluded small responses (Long et al., 2006; Ainsworth et al., 2008). The 

stimulation of maize yield is likely to be prominent only under drought conditions 

(Leakey et al., 2006; Twine et al., 2013).  

 Process-based crop models are powerful tools for investigating the complex 

interactions among heat, drought and elevated CO2, although the quantitative 

relationships between yield and these factors remain uncertain (Lobell et al., 2013; Bassu 

et al., 2014; Rosenzweig et al., 2014). Twine et al. (2013) simulated the surface energy 

budget of maize and soybean in the US Midwest with the Agro-IBIS model, and found 

elevated CO2 from 375 to 550 ppm suppressed canopy latent heat flux but increased 

sensible heat flux for both crops, which ameliorated drought stress and stimulated 

soybean yield of ca. 10% averaged over 30 years and maize yield of ca. 10% during dry 

years. A recent study that applied the PEGASUS model with 72 climate change scenarios 

showed that elevated CO2 substantially counteracted the extreme heat stress during the 

crop reproductive phase by the 2080s (Deryng et al., 2014). By using the Agricultural 

Production Systems Simulator (ASPIM) at representative sites in the Northeastern 

Australian, Lobell et al. (2015) concluded that elevated CO2 increased sorghum (a C4 

species) transpiration efficiency (TE) and partially offset the drought exacerbated by the 
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concurrent rising VPD during the 21st century; warming relieved spring drought for 

winter wheat (a C3 species) by hastening the phenological progress, while elevated CO2 

further benefit the yield by increasing both radiation-use efficiency (RUE) and TE. 

However, existing modeling studies are too limited to draw robust conclusions on the 

crop responses to future heat and drought stresses. More efforts are thus needed to 

quantify these complex interactions at different geographic domains and with various 

spatial details. 

 In this study, we use the APSIM, driven by high-resolution (12 km) Weather 

Research and Forecasting (WRF) Model (version 3.3.1) downscaled future climate 

scenarios, to investigate the impacts of future climate extremes on the US maize and 

soybean production. Specifically, we answer the following questions: (i) How do future 

climate extremes affect the US corn and soybean yield? (ii) How do climate extremes 

shift in their relative importance and geographic distributions? (iii) How much can CO2 

fertilization compensate the yield loss caused by climate extremes? (iv) How do the high 

resolution-driven APSIM simulations differ from existing estimates driven by coarse 

resolution climate model? 

 

3.2 Materials and methods 

3.2.1 Quantify heat and drought stress 

 In APSIM, heat and drought stress can cause yield losses through limiting the 

photosynthesis and reproductive growth, while indirectly through affecting other 

physiological processes such as phenology development, canopy expansion, and nitrogen 

cycling. The feedbacks among these processes can be complex and hard to coordinate 
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(Parent & Tardieu, 2014), and often lack of empirical data to verify. Therefore in this 

study, we only focus on the direct impact of heat and drought stress on maize and 

soybean production. 

 As the start point of yield modeling, daily biomass accumulation (∆!) is the 

minimum of light (∆!!) and water (∆!!) limited photosynthesis. The light-limited 

biomass production based on the concept of radiation use efficiency (RUE) is calculated: 

 ∆!! = !×!"#×!"# !!,!!!"! , !!,!!!"! , !!,!!!"!  (3.1) 

where ! (!"!!!!) is the solar radiation intercepted by the canopy, RUE (!!!"!!)is crop-

specific and stage-dependent constants; !!,!!!"!, !!,!!!"! and !!,!!!"! are temperature, 

nitrogen and phosphors stresses on photosynthesis, respectively. The temperature stress, 

!!,!!!"!, is a trilinear function of the daily mean temperature: 

 

!!,!!!"! =

0, !"ℎ!"#$%!
1 − !!"#! − !!"#$!!"#! − !!"#

, !"!!!"# < !!"#$ < !!"#!
1, !"!!!"#! ≤ !!"#$ ≤ !!"#!

!!"# − !!"#$
!!"# − !!"#!

, !"!!!"#! < !!"#$ < !!"#

 (3.2) 

in which parameter values for the US Midwest based on literatures (Prasad et al., 2008; 

Schlenker & Roberts, 2009; Parent & Tardieu, 2014; Rezaei et al., 2015) are [!!"#, !!"#!, 

!!"!!, !!"#] = [8, 15, 29, 44] for maize and [!!"#, !!"#!, !!"#!, !!"#] = [10, 20, 30, 40] 

for soybean. Water stressed biomass production is calculated as: 

 ∆!! = ∆!!×!"#
!!
!!

, 1  (3.3) 

where !! is the potential daily soil water uptake through the multi-layer soil profile, and 

!! is the transpiration water demand calculated as the ratio of ∆!! (gC∙m-2) and !" 
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(gC∙m-2∙mm-1). TE is determined by the VPD and a crop-specific transpiration efficiency 

coefficient (!!!): 

 !" = !!!/!"# (3.4) 

in which !!! is a constant of 0.009 KPa for maize and 0.005 KPa for soybean when 

atmospheric CO2 is 350 ppm. Since the calculation of VPD is temperature dependent, a 

strong interaction between temperature and water stress exits in the model structure. 

 The yield production is then estimated based on the dry matter supply (i.e. 

biomass allocation) and demand (determined by the kernel number and kernel filling rate) 

for maize, and the harvest index (HI) for soybean. In the Maize module, heat stress 

reduces the kernel number per ear in proportion to the accumulated degree days above 

38 °C during the flowering phase (Carberry et al., 1989). High temperature also slows 

down the kernel filling rate, with optimal filling at 30 °C and complete stop at 56.3 °C. 

The kernel filling rate is further reduced by a soil water stress factor (!!",!"#$"%), such 

that: 

 !!",!"#$"% = 0.45+ 0.55×!"# !!
!!

, 1  (3.5) 

For soybean, the daily potential increase in HI is adjusted by an energy cost to synthesize 

the oilseeds but not any direct heat stress. In this study, we add a stress factor (!!"#) to 

account for the impact of heat stress during the flowering period on the HI following 

Deryng et al. (2014): 

 !!"# =
1
!"# !!"#$

!"#

!
 (3.6) 

where !"# is the thermal sensitive period from !"# 0.45!!"#, !"#$%&'()  to  
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!"# 0.7!!"#, !"#$%&'() ; !"# is growing period length defined as emergence to 

maturity; the daily heat stress scalar, !!"#$, is calculated as: 

 

!!"#$ =

1, !"!!!"" < !!"
1− !!"" − !!"!!"# − !!"

, !"!!!" ≤ !!"" < !!"#
0, !"!!!"" > !!"#

 (3.7) 

in which !!" and !!"# is 35 and 40 °C, respectively; !!"" is the daytime effective 

temperature approximated by the average of daily mean and maximum air temperature. 

 To quantify contributions of heat and drought stress to yield losses, we regroup 

these stresses and introduce three switches to control the inclusion of each group. The 

first switch regulates the inclusion of high temperature stress (!!"#$), which refers to the 

condition with higher-than-optimal temperature that reduces the RUE of both crops and 

kernel filling rate of maize. The second switch controls the inclusion of heat stress around 

the flowering phase (!!"#$), which imposes restriction on the development of maize 

kernel number and soybean HI. The third switch is for drought stress (!!"#$%!!), which 

limits the RUE of both crops and the kernel filling of maize. For a give group of stress, its 

impact is calculated by: 

 !"#$%%!!"#$%& % = !"#$!!,!"" − !"#$!!"#$!"#$% /!"#$!!"#$%#&'( (3.8) 

where !"#$!!,!"" is the simulated yield after switching off the corresponding stress, and 

!"#$!!"#$%#&'( is the simulated yield when switching off all stresses. 

3.2.2 Simulate maize and soybean responses to elevated CO2 

 The projected atmospheric CO2 by 2090 is 534 ppm under the Representative 

Concentration Pathway 4.5 (RCP4.5) scenario (Wise et al., 2009), and 845 ppm under 
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RCP8.5 (Riahi et al., 2007). Accordingly, we adjust the maize transpiration efficiency 

coefficient to 0.0106 KPa for RCP4.5 scenario and 0.!0135 KPa for RCP8.5 following 

Lobell et al. (2015), which approximately equals 10.6% increase per 100 ppm. We use 

the multi-year averaged values from soybean FACE (SoyFACE) (Bernacchi et al., 2005, 

2007) to derive soybean !!! and RUE by 2090 under RCP4.5, because the CO2 

manipulation of 550 ppm at SoyFACE is very close to the CO2 value of 534 ppm by 2090. 

In this case, !!! increases by 9.2% to 0.00546 KPa and RUE increases by 16.7% to 1.02 

!/!". For RCP8.5 scenario, we interpolate values from the mean of multiple enclosure 

experiments that have raised CO2 level closer to the projected value of 845 ppm (Table 

3.1). Because !!! and RUE are not directly measured by most of the SoyFACE and 

enclosure studies, we derive the values from two conceptually similar measures that are 

available from the literature. Specifically, we approximate the percentage change of 

stomatal conductance to water vapor (!!) for !!!, and changes in the none-stressed leaf 

photosynthesis rate (!!"#) for RUE (see discussion for justification). In this case, !!! 

increases by 36.1% to 0.0068 KPa and RUE increases by 39% to 1.22 !/!". 

3.2.3 APSIM regional simulation 

 The point-based APSIM was run for both rainfed maize and soybean at a spatial 

resolution of 10km for two contrasting time slices: (i) 1995-2004; (ii) 2085-2094 (under 

RCP4.5 and RCP8.5 scenarios, respectively). Geographic distributions of non-irrigated 

maize and soybean are derived from the 5 arc-minute resolution M3-Cropland data 

(Ramankutty et al., 2008). To reduce the computational load, we only include grid cells if 

maize or soybean covers more than 5% of the area. In total, we obtain 33254 grids for 

maize and 29019 grids for soybean. 
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 Meteorological inputs for the APSIM, including daily maximum and minimum 

temperature, precipitation and solar radiation, are generated by a 12 km regional climate 

model (WRF) which uses the original Community Climate System Model version 4 

(CCSM4) data from the fifth phase of the Coupled Model Intercomparison Project 

(CMIP5) archive as the initial and boundary conditions (Wang & Kotamarthi, 2015). We 

name the regional climate model as WRF-CCSM4 hereafter. As is noted by Wang & 

Kotamarthi (2015), driving the WRF with the bias-corrected CCSM4 did not always 

outperform the downscaling without bias-correction, especially for the precipitation over 

the US Midwest where most of the rainfed maize and soybean grow.  

 Spatially explicit information on soil, crop cultivar and management is critical for 

APSIM regional simulations. Soil parameters, such as soil texture, layered soil hydraulic 

properties and soil organic matter fractions, are extracted from the 1:250,000 U.S. 

General Soil Map (STATSGO2) database. The description for each of these required soil 

parameters is documented in Archontoulis et al. (2014a). For a given grid, it may cover 

multiple soil map units according to STATSGO2, and each map unit normally contains 

more than one component that stores layer specific soil parameters. To balance the 

computational cost and soil heterogeneity, we only consider soil map units that take more 

than 5% of the 10×10 km grid area, and the largest component within each soil map unit. 

When doing the simulation, our script will run APSIM for each of major soil map units 

and calculate the area weighted average yield for the grid. Management activities for the 

historical period of 1995-2004, includes seeding rates and fertilizer amount, are from the 

USDA National Agricultural Statistics Service (NASS) survey report at state level (Table 

A1). Crop sowing date is derived from the Crop Calendar Dataset (Sacks et al., 2010). 
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For maize, we select the Pioneer_P04612XR_106, a representative cultivar in the US 

Midwest that was parameterized by Archontoulis et al. (2014a), for the whole study area. 

For soybean, APSIM version 7.7 provided totally 54 US cultivars for major production 

states, which are parameterized by Archontoulis et al. (2014b). We assume the same 

spatial information for future scenarios of 2085-2094 as the baseline simulation, thus 

excluding the potential of agronomic improvement on crop adaptation and mitigation. 

3.2.4 Analysis 

 To validate the regional APSIM application, we aggregate the simulated annual 

maize and soybean yield into county average and compare to the NASS reported county-

level rainfed crop yield for years 1995-2004. Because of the bias that WRF-CCSM4 has, 

it is not surprising that the WRF-CCSM4 driven APSIM shows bias from historical 

survey data as well. To further check the performance of APSIM over the US Midwest, 

we compared the baseline simulation for the US core Corn Belt (i.e. Illinois, Indiana and 

Iowa) to another set of historical simulations using the Daymet reanalysis data 

(http://daymet.ornl.gov/). We use quantile regression (Koenker & Bassett, 1978) instead 

of the ordinary least square regression to quantify the sensitivity of maize and soybean 

yields to future climate extremes. Such an implementation is essential in order to identify 

the sensitivity and vulnerability of crop yield to climate change cross a large geographic 

span. For example, places with high yield losses may have higher sensitivity to excessive 

heat due to the interactions between crop water supply (approximated by precipitation) 

and demand (regulated by temperature induced VPD change). 
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3.3 Results 

3.3.1 Model evaluation 

 The simulated mean decadal maize yield for 1995-2004 ranges from 2.9 to 13.1 

t/ha, with high yield occurs at some counties from the core Corn Belt and low yield 

occurs at the edge of the Midwest (Figure 3.1). For soybean, the simulated yield ranges 

from 0.6 t/ha at the US Southeast to 4.2 t/ha at the core Corn Belt. In general, our 

simulations successfully capture the spatial pattern of NASS reported county-level 

rainfed maize and soybean yield. The maize simulation slightly underperforms the 

soybean simulation in capturing the NASS variations (R2=0.44 for maize versus R2=0.61 

for soybean), but is 30% less biased in terms of the relative root mean squared error 

(RRMSE) (RRMSE=0.19 vs. RRMSE=0.26). 

 Simulated maize and soybean yields are less satisfying in reproducing the NASS 

survey data for all location × year combinations (R2=0.26 for maize versus R2=0.3 for 

soybean), but can be substantially improved by substituting the WRF-CCSM4 climate 

data with Daymet (Figure B1) when doing the regional simulation. The improvements 

indicate that APSIM is able to reproduce both the mean yield and interannual variability 

given high quality climate forcing data, whereas using downscaled global climate model 

(GCM) outputs inflates the simulation uncertainty. Since the focus of this study is to 

assess changes in current and future crop yield, and APSIM simulations can reasonably 

reproduce the decadal surveyed data, we believe the analysis presented in the following 

sections based on the APSIM model driven by WRF-CCSM4 data is reasonable. 
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3.3.2 Projected changes in climate and yield 

 Compared with the period of 1995-2004, decadal mean maximum growing season 

temperature (Tmax) during 2085-2094 is projected to increase by 1.5-4.5 °C under 

RCP4.5 scenario and 3.5-6 °C under RCP8.5 scenarios (Figure 3.2a,b). Warming is most 

prominent at the US Midwest under both scenarios, thus strikes much of the major maize 

and soybean planting area. Projected summer precipitation (sumPrec) regime differs 

between two scenarios for the Midwest (Figure 3.2c,d), where rainfall decreases up to 

150 mm under RCP4.5 and increases roughly 50-150 mm under RCP8.5. Wet trend is 

projected for the Northeast and Southeast under both scenarios, with RCP8.5 projecting 

roughly 100 mm more precipitation amount than RCP4.5. Changes in maximum weekly 

mean VPD (VPDmax) are slightly higher under RCP8.5 than under RCP4.5. Possibly due 

to the drying trend occurred at the Midwest under RCP4.5, the core Corn Belt states 

(especially Iowa) experience the most substantial increase in VPDmax; whereas for 

RCP8.5, regions with maximum change move towards southwest. 

 In response to the spatial pattern of projected climate change, maize yield under 

RCP4.5 decreases mostly by 10-40% at the Midwest where warming and drying are 

concurrent, and increases by 0-20% for states eastern than Illinois where the magnitude 

of warming is moderate and wetting is projected (Figure 3.1 and Figure 3.3a). Maize 

yield gain is on average 10% higher under RCP8.5 than RCP4.5, and yield loss under 

RCP8.5 is less for states at the western part of the Midwest (e.g. Illinois, Iowa and 

Minnesota) (Figure 3.3b). Interestingly, although RCP4.5 projects less rainfall at some 

part of eastern Midwest (i.e. Indiana, Michigan and Ohio), these states still receive a 

slight yield gain at the late 21st century. We argue that it is because water supply is 
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excessive for these states, whereas temperature is limiting the historical maize production. 

Moreover, since the yield of US maize increases with temperature up to 29 °C, moderate 

warming under this threshold may benefit maize growth (Schlenker & Roberts, 2009). 

Region with yield losses is accompanied by increases of interannual yield variation for 

both climate scenarios (Figure 3.3c,d), indicating future agricultural challenges not only 

include the drop in absolute predictability but also the loss of yield stability. 

 Most of the soybean producing area suffers from yield losses of more than 20% 

under both RCP4.5 and RCP8.5 scenarios (Figure 3.4a,b). The spatial distribution of 

negative trends is primarily dominated by the increase of heat extremes and atmospheric 

transpiration demand (indicated by VPD), with decreased precipitation plays a secondary 

role. In general, the increase of interannual yield variability under RCP4.5 is higher for 

regions with more yield losses, but not comparable with yield changes under RCP8.5 

(Figure 3.4c,d). 

3.3.3 Effects of elevated CO2 on yield 

 For maize, elevated CO2 alleviates the yield loss under RCP4.5 and shifts some 

regions with yield loss into yield gain, but does not benefit regions that have already 

showed yield gain (Figure 3.3). This phenomenon is further verified by the violin plot 

(Figure 3.5a,b), in which the distribution of yield change under RCP4.5 shrinks at low 

quantile but is almost the same at high quantile. A possible explanation is that regions 

with yield gain when excluding the CO2 effect are not stressed by drought, and hence 

CO2-induced water conservation does not benefit the yield production. This finding is 

consistent with the empirical evidence that maize has little to gain in the absence of water 

stress (Leakey et al., 2006). The CO2 fertilization effect is more prominent under RCP8.5, 
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which reduces the proportion of high yield losses and raise the number of pixels with 

yield gain from 29% to 61% at the core Corn Belt (Figure 3.5a,b). Elevated CO2 also 

moderates the decadal yield coefficient of variations (CV) under both climate scenarios, 

and is more effective in reducing the magnitude of variability (Figure 3.3). 

 For soybean, the positive effect of elevated CO2 on yield is apparent, especially 

for the RCP8.5 scenario (Figure 3.4a,b,e,f). A noticeable feature is that rising CO2 

benefits regions that have already showed yield gain. These results are as expected, since 

elevated CO2 not only increases soybean’s canopy transpiration but also directly boosts 

the photosynthesis potential. Statistically, including CO2 effect in the simulation 

increases pixels with positive yield response from 7% to 42% under RCP4.5, and from 10% 

to 95% under RCP8.5 (Figure 3.5c,d). The distribution of yield change under RCP4.5 

diverges from the 50% quantile when CO2 is considered in the simulation, suggesting the 

effect of elevated CO2 is nonhomogeneous across different quantiles. In contrast, the 

distribution shrinks more at 0-25% quantile, indicating that elevated CO2 will benefit 

more for regions with high climatic yield gaps. However, rising CO2 seems to have little 

effect on mitigating the interannual variability of soybean yield, and even exacerbates CV 

changes under the RCP4.5 scenario (Figure 3.4). Maintaining a stable soybean production 

remains a challenge for the US Midwest at the late 21st century. 

 Overall, elevated CO2 has higher influence under RCP8.5 for both crops, which is 

consistent with the much higher CO2 level under RCP8.5 (845 ppm versus 534 ppm). The 

projected benefits of elevated CO2 on reducing the yield losses and variability are 

comparable to the results from studies that use multiple process-based crop models driven  
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by multiple GCM outputs (Deryng et al., 2014; Rosenzweig et al., 2014), and to the 

conclusions from an empirical analysis for the US maize (Urban et al., 2015). 

3.3.4 Sensitivity of yield changes to climate extremes 

 As we expect, changes in crop yields are negatively correlated with Tmax, and 

positively correlated with sumPrec, with VPDmax adjusting sensitivity to sumPrec 

(Table 3.1). Given that our analysis covers a large geographic span, we further investigate 

these relationships for different quantiles of the data. For both maize and soybean, high 

yield losses (i.e. <10% quantile) are associated with higher-than-average sensitivity to 

Tmax and high yield gains (i.e. >90% quantile) are less sensitivity to Tmax, especially for 

soybean under RCP8.5 (Figure 3.6). Yield sensitivity to water is collectively determined 

by the regression slope of sumPrec and its interaction with VPDmax. Quantiles of high 

yield losses in maize are characterized with greater slopes for sumPrec and smaller slopes 

for VPDmax, and a reverse trend in slopes is identified for soybean. Such interactions 

between sumPrec and VPDmax may indicate that drought stress on maize is mainly 

determined by water supply from the precipitation, while the transpiration demand as 

determined by VPDmax is more important for soybean drought. Including the CO2 effect 

into simulations almost uniformly lowers the yield sensitivity to drought, either through 

reducing the slopes sumPrec or increasing the slopes for VPDmax. Interestingly, elevated 

CO2 increases the soybean yield sensitivity to Tmax, in particular for yield changes at low 

quantiles. We believe this is likely a result of the additive benefit with the stimulation 

CO2 on soybean RUE, which causes greater yield response per unit change in Tmax. 
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3.3.5 Shifts in the influence of heat and drought stress 

 For maize, the regional mean climatic yield gap derived from the baseline 

simulation is ~6%, and can be almost fully attributed to drought (Figure 3.7a). At the late 

21st century, the yield gap increases substantially to 19% under RCP4.5 and 23% under 

RCP8.5. Although drought is still the dominant stress, !!"#$ and !!"#$ calculated by 

Eqn-8 collectively accounts for 20% and 30% of the climatic yield gap under RCP4.5 and 

RCP8.5, respectively. Including the CO2 fertilization effect into simulations markedly 

reduces the climatic yield gap, mainly because the alleviation of drought in response to 

higher transpiration efficiency (Figure 3.7b). One noticeable feature of the change is that 

!!"#$ and !!"#$ in combination contribute almost equally as drought to the yield gap 

under the RCP8.5 scenario, indicating agronomic adaptation and mitigation strategies 

will need to simultaneously consider heat and drought stresses. 

 For soybean, the baseline simulation gives a much higher climatic yield gap of 

~13%, among which a quarter is contributed by !!"#$ and three quarters can be 

attributed to drought (Figure 3.7c). Over the time, the projected yield gap increases 

slightly to 18% under RCP4.5 and 20% under RCP8.5, and the dominance of drought 

gives way to the heat constraints. !!"#!, !!"#$ and !!"#$%!! comprise almost one-third 

for each under RCP4.5, while !!"#$ and !!"#$ in total contribute to 60% of the yield gap 

under RCP8.5. In contrast to maize, considering the CO2 effect does not lower the 

relative importance of drought stress for soybean, but even increases the drought share 

under RCP4.5 (Figure 3.7d). We believe this is because drought, compared to high 

temperature and heat stress, not only directly offsets the benefit of higher transpiration 



 67 

efficiency for soybean but also constrains the benefit from CO2-stimulated RUE when 

high water demand is not satisfied. 

 Given that the shift of different stresses may not be uniform across the region, and 

the potential implications for breeding and variety selection, we further investigate the 

spatiotemporal dynamics in geographic distributions of climatic stressors to potential 

crop yields (Figure 3.8). The baseline simulation for maize suggests that climatic stresses 

of more than 5% mainly occur at the west of the US Midwest, and is almost purely in the 

form of drought (Figure 3.8a). In response to climate change, areas that exhibit yield gaps 

of more than 5% expand, especially in the core Corn Belt and the eastern US. A mixture 

of !!"#$ and !!"#$%!! is identified for the northern part under RCP4.5 (Figure 3.8b), 

while a mixture of !!"#$ and !!"#$%!! is observed in the eastern US under RCP8.5 

(Figure 3.8c). Simulations with the CO2 effect included project less expansion of the area 

of more than 5% yield gaps, and less influence by drought, especially under RCP8.5 

(Figure 3.8d,e). For soybean, there is a clear West-to-East transition from drought-

dominant to heat-dominant in the baseline simulation (Figure 3.8f). Climate scenarios at 

the late 21st century lead to expanded stresses in the Southeast that causes more than 5% 

yield gaps, mostly in forms of !!"#$ or a mixture of !!"#$ and !!"#$%!!. Including the 

CO2 effect increases the relative impacts of drought under RCP4.5, but has little 

influence on the spatial dominance of different stresses under RCP8.5. Future projections 

also reveal a consistent spatial pattern of the geographic distribution of different stressors, 

that is !!"#$ dominant at the Southeastern US, !!"#$ dominant at the Western part of 

study area, and !!"#$%!! dominant at the North, with mixtures of stresses lie in between. 
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3.4 Discussion 

 By using the very-high-resolution downscaled climate projections by a regional 

scale climate model and the modified APSIM, this study quantifies the yield responses of 

US rainfed maize and soybean to future climate extremes by the late 21st century, and for 

the first time characterizes dynamics in the relative importance of temperature, heat and 

drought stress in this region. We demonstrate that climatic yield gaps and interannual 

variability of maize and soybean are greater in the US core production areas than the 

remaining parts. The effect of elevated CO2 is partially offsetting the yield losses and 

interannual variability caused by climate extremes, and is more prominent in soybean 

than in maize under RCP8.5 scenario. Our results show that drought will continue to be 

the largest threats to maize and soybean production in this region, although the magnitude 

of damages depend on the current vulnerability and its dominant role may gradually give 

way to the other two stresses in response to the combination of rising CO2 and associated 

climate changes. We also reveal that shifts in the geographic distributions of the stress 

dominance are characterized by increases in the concurrent stresses, especially for the 

core Corn Belt. Collectively our findings imply the importance of considering drought 

and extreme heat simultaneously for future agronomic adaptation and mitigation 

strategies, particularly for breeding programs and seeding management. 

 Yield responses to future climate extremes are not unidirectional in this region. 

For instance, places with drastic drying and moderate warming trends may still gain yield 

for maize irrespective of the inclusion of CO2 fertilization effect. One explanation based 

on our results is the greater sensitivity to temperature and moisture change for soybean 

(Figure 3.6). But it is also likely that climate vulnerability is heterogeneous within this 
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region. A recent systems modeling analysis for a typical research farm in the US Midwest 

showed that the optimal water use efficiency for maize and soybean occurred with 430 

and 317 mm seasonal rainfall, respectively, whereas yields did not benefit from 

additional precipitation above these levels (Dietzel et al., 2016). Similar hydroclimatic 

threshold that determines the drought susceptibility was also identified for global tropical 

forests (Guan et al., 2015). The exact precipitation threshold may vary from one place to 

another, as a result of interactions with other climatic and edaphic factors. Our analysis of 

the spatial pattern of stress dominance (Figure 3.8) can be viewed as an early attempt to 

qualitatively identify spatial heterogeneities in the vulnerability of the regional cropping 

systems. Given that the disaster potentials of extreme heat and drought depends not only 

on the severity of the event per se but also on the sensitivity and vulnerability of the 

exposure system, more detailed quantitative assessments are need in the future. 

 Future climate extremes are likely to strike crop growth as concurrent heat and 

drought events, thus set higher demand for agricultural adaptations since the optimal 

breeding or management strategy may differ among stresses (Lobell et al., 2015). A 

number of crop traits can be potentially adopted to ameliorate drought stress, including 

the limited-transpiration trait that can stabilize or even lower transpiration rates of both 

maize and soybean under high VPD conditions (Sinclair et al., 2010; Messina et al., 2015; 

Shekoofa et al., 2015). Yet limiting transpiration may bring the side effect of burning 

leaves, as canopy transpiration is a major pathway for latent heat flux. For example, 

Messina et al. (2015) showed that the benefit of limited-transpiration trait was more 

prominent for drought-prone environments, while yield penalty was simulated for wet 

conditions. The trade-off between drought-tolerance and heat-tolerance for breeding 
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programs may vary with geographic locations, and deserve more research efforts. 

Simulation studies will continue to provide valuable references to find the optimal 

strategy, yet more detailed genetic variability need to be incorporated into the current 

generation of crop models (Boote et al., 2013).        

 As the first caveat, it should be noted that the climate forcing data is one major 

but inevitable source of uncertainty in our projections, as is the case for many other crop 

modeling studies (Ruane et al., 2013; Asseng et al., 2013; Deryng et al., 2014). The use 

of WRF-downscaled climate scenarios that capture more detailed spatiotemporal climate 

variability (Wang & Kotamarthi, 2015) allows us to assess the climate change impact on 

maize and soybean yields at a county level. But it also introduces uncertainty derived 

from the choice of GCM outputs that provide the boundary conditions for the WRF 

simulation. While climate model projects generally agree with the direction and 

magnitude of temperature changes, they are less concordant in terms of precipitation 

change (IPCC, 2013). Our analysis shows that heat stresses become more influential at 

the late 21st century, yet drought stress is still the dominant threat to crop yields in most 

cases. In this case, the uncertainty around the projections of precipitation is likely to be 

more critical than temperature in determining the simulated yield uncertainty. In this 

study, we used a dataset that drives WRF with CCSM4 outputs. Previous evaluations 

confirmed that CCSM4 has moderate bias versus historical precipitation data for the 

Contiguous US and smaller spread for extreme precipitations when compared to other 

CMIP5 models (Wang & Kotamarthi, 2015). While VPD (normally derived from RH) is 

also a critical meteorological variable that affects the crop yield response, its model 

projections have not been adequately evaluated. Moreover, VPD is often not delivered by 
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high-resolution downscaled climate data product, thus hinders the inclusion of these 

variables into modeling and analysis. Ideally, our APSIM simulation should include more 

WRF outputs driven by additional GCMs to understand the associated uncertainty. Thus 

we are open to share our data with researchers who would like to compare our results 

with additional modeling studies using different crop models and climate models. 

 The projected compensations of elevated CO2 on stress-induced yield losses are 

highly dependent on the parameterization of crop physiological response. Uncertainty 

may be less for maize than for soybean, because the latter not only adjusts TE but also 

RUE in response to the rising CO2. Interestingly, a 50% increase in maize TE by CO2 

under RCP8.5 only led to a 13.5% more yield, while a combination of 36.1% increase in 

RUE and 39% increase in TE benefited soybean yield by 49%. The disproportional yield 

responses may indicate that the direct increase in photosynthetic potential will benefit 

more than conserving waters, although the nitrogen fixation ability of soybean is likely to 

further feedback positively to the biomass production. Compared to the general 

agreement on maize TE (Lobell et al., 2015), the response of soybean TE and RUE to 

elevated CO2 are far less consistent among literatures (Ainsworth et al., 2002). SoyFACE 

often predicted much more conservative soybean physiological responses than enclosure 

experiments (Long et al., 2006; Ainsworth et al., 2008), possibly because enclosure 

experiments were not able to realistically reproduce the soil–plant–atmosphere 

continuum (Long et al., 2006). For both crops, however, none of the current FACE has 

manipulated CO2 level close to the scenario of RCP8.5 (> 800 ppm) at the late 21st 

century, making the parameterization more uncertain under high emission scenarios. 
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 The rising land surface ozone concentration ([O3]) further complicates the 

quantification of CO2 fertilization effect. O3 is a global threat to crops (Long et al., 2005; 

Mills et al., 2007; Tai et al., 2014), and has reduced the US rainfed maize and soybean 

yields by ~10% and 5%, respectively, based on historical observations since 1980s 

(McGrath et al., 2015). Elevated CO2 may partially offset the negative effect of high [O3] 

exposure (Long et al., 2005; Ainsworth et al., 2012), but cannot prevent O3-induced 

accelerated leaf senescence that lowers canopy light interception and reduces crop yield 

(Dermody et al., 2008). Therefore our projection of yield gain from the rising CO2 is 

prone to overestimation by excluding the O3 effect. The magnitude of O3 damage varies 

with crops and environmental conditions (Ainsworth et al., 2012). Yield sensitivity to 

elevated [O3] is generally considered to be less for the maize than soybean, given the 

intrinsically lower stomatal conductance of C4 crops (McKee et al., 2000; Mills et al., 

2007), but is likely to be higher for the US rainfed maize than soybean (McGrath et al., 

2015). The projected drought relief as a result of higher transpiration efficiency by our 

simulations maybe diminished when including the O3 effect. There is evidence showing 

that exposure to high [O3] impairs the functioning of abscisic acid (ABA) signaling (one 

critical mechanism that regulates the stomatal response to soil drying and changes in 

VPD), thus causing continued water loss despite the possibility of crop dehydration 

(Wilkinson & Davies, 2010). ABA signaling also interacts with temperature (Wilkinson 

& Davies, 2010), and partially explains the observed exacerbation of O3 damage by high 

temperatures (Tai et al., 2014; McGrath et al., 2015). Representation of these complex 

interactions in crop models is still in nascent stage. The impacts of elevated [O3] on tulip 

polar can be reasonably simulated with the Community Land Model (CLM) by directly 
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modifying the maximum rate of carboxylation and stomatal conductance in a coupled 

Farquhar/Ball-Berry model (Lombardozzi et al., 2012). This version of CLM was later 

parameterized for all plant functional types and used to assess the global carbon and 

water cycles in response to chronic ozone exposure (Lombardozzi et al., 2015). Similar 

idea can be applied to crop models that are built on the concept of RUE (e.g. APSIM), 

such that parameters of RUE and TE are dynamically reduced according to the 

cumulative O3 exposure metrics. However, the parameterization of either stomatal or 

RUE based models at crop species level is currently restricted by the progress in high-

quality experimental data, and should receive more research efforts. 

 Finally, we acknowledge that our projection may overestimate the benefit of 

higher TEc, because APSIM does not explicitly simulate the canopy energy balance 

feedback that higher TEc reduces transpiration but also causes the canopy temperature 

and VPD to rise, which in turn pushing transpiration and soil water depletion up. As a 

result of this negative canopy energy balance feedback, the reduction in canopy 

transpiration is often considerably smaller than the magnitude of reduction in stomatal 

conductance, with greater differences observed in soybean than in maize (Boote et al., 

2013). In this study, we approximate the percentage change in !! as the change in !!! 

mostly because a direct measure of !!! is unavailable in most enclosure or FACE 

experiments. The more often reported change in canopy transpiration is not equal to the 

change in !!!, since the transpiration calculated in APSIM also depends on VPD. As 

most crop models does not truly include the canopy energy balance or feedbacks that 

requires simulating evapotranspiration with hourly or even higher time frequency, even 

compensatory approaches are applausive for future model improvement (Boote et al., 
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2013), if not turning the model into a mechanistic manner that demand extensive 

computational cost on simulating instantaneous energy balances. In fact, a recent study 

on multi-model comparison of simulating canopy temperature suggested that empirical 

algorithms are competitive to mechanistic algorithms in their ability to reproduce the crop 

canopy temperature (Webber et al., 2015), although their parameters need to be localized 

when applied to a novel region. For example, STICS uses an approach that simulate 

canopy temperature according to a relationship between daily maximum temperature and 

daily evapotranspiration, while further adjusting the simulation with net daily radiation 

and canopy height (Brisson, 2008).
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Table 3.1 Literature reported changes in soybean transpiration efficiency (TE) and 
radiation use efficiency (RUE) under elevated CO2 

Study Ambient Elevated TE scaled TE RUE scaled RUE 
Acock et al. (1985) 330 800 -24% -17.9% +40% +29.8% 
Jones et al. (1985) 330 800 -18% -13.4%   
Bunce (1996) 350 700 -37% -37%   
Booker et al. (1997) 364 726   +56% +54% 
Duga et al. (1997) 359 705 -57% -57.7%   
Luo et al. (1998) 350 700   +46% +46% 
Serraj et al. (1999) 350 700 -25% -25%   
Allen et al. (2003) 350 700 -9% -9%   
Bernacchi et al. (2005) 375 550 -10%  +18%  
Bunce (2014) 380 560   +28%  
Notes: (1) according to the meta-analysis, Ainsworth et al. (2002), !!"#!on average increases by 39% across 
all [CO2] treatments, and is not significantly affected by [CO2] level. !! decreased by 36% at 600-800 ppm, 
and 51% at [CO2] > 850 ppm. These conclusions can be viewed as an upper limit.  
(2) scaled TE/RUE is values for an increase in CO2 of 350 ppm. 
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Figure 3.1 Validation of APSIM simulated baseline (1995-2004) mean maize (a, b, c) and 
soybean (d, e, f) yield against the USDA National Agricultural Statistics Service (NASS) 
reported rainfed crop yield at county level. 
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Figure 3.2 Changes in the WRF projected decadal mean maximum growing season 
temperature (Tmax), cumulative summer precipitation (sumPrec) and maximum weekly 
vapor pressure deficit (VPDmax) by the late 21st century (2085-2094) compared to the 
baseline condition of 1995-2004. 
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Figure 3.3 APSIM projected changes in decadal mean maize yields and coefficient of 
variations (CV) by 2085-2094 in comparison to the baseline of 1995-2004, with (a-d) and 
without (e- h) considering the effect of elevated CO2 on maize transpiration efficiency. 
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Figure 3.4 APSIM projected changes in decadal mean soybean yields and coefficient of 
variations (CV) by 2085-2094 in comparison to the baseline of 1995-2004, with (a-d) and 
without (e-h) considering the effect of elevated CO2 on maize transpiration efficiency. 
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Figure 3.5 Distributions of changes in the decadal mean maize (a, b) and soybean (c, d) 
yield with and without considering the effect of elevated CO2. Summary is for both the 
whole US (total) and the core Corn Belt (CCB; i.e. Illinois, Indiana and Iowa). 
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Figure 3.6 Yield response (i.e. yield change in Figure 3.5) of maize (a-f) and soybean (g-l) 
to mean maximum growing season temperature (Tmax), cumulative summer precipitation 
(sumPrec) and maximum weekly vapor pressure deficit (VPDmax) under multiple 
climate scenarios with and without considering the effect of elevated CO2. Regression 
coefficients (i.e. the slopes) are derived from quantile regression for each 5% quantile 
interval. Shaded area represent the 95% confidence interval for the slopes. Intersections 
of dashed lines and the X-axis are the corresponding quantile where yield responses equal 
zero (also shown in Figure 3.5). 
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Figure 3.7 Simulated climatic yield gaps and attributions to high temperature, heat and 
drought stresses for maize (a, b) and soybean (c, d) under multiple climate scenarios with 
and without considering the effect of elevated CO2. 
  



 83 

 
Figure 3.8 Projected shifts in the geographic distribution of relative influence of climate 
extremes (i.e. high temperature, heat and drought stresses) on maize (a-e) and soybean (f-
j) yield under multiple climate scenarios with and without considering the effect of 
elevated CO2. Only grid cells with more than 5% climatic yield gaps are shown in the 
plots. 
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CHAPTER 4. ADAPTATION POTENTIAL OF THE US RAINFED MAIZE BASED 
ON GENOTYPE, ENVIRONMENT AND MANAGEMENT ANALYSIS  

4.1 Introduction 

 Global demand for agriculture crops as food, feed and bioenergy fuels poses a 

great threat to the human society, given the increasing competition for land and water 

from the need to support other essential ecosystem services such as carbon storage and 

biodiversity (Karp & Richter, 2011; Challinor et al., 2014). The ongoing and incoming 

climate changes, especially in forms of increasingly frequent and severe climate extremes 

such as heat waves and droughts, have further exacerbated the risks on the agriculture 

system by lowering crop productivity and increasing inter-annual variations in yields 

(Deryng et al., 2014; Rosenzweig et al., 2014). Such a systematic challenge calls for 

agronomic adaptations that can overcome the current yield limits and improve the crop 

production efficiency (Matthews et al., 2013). 

 In a recent review study, Matthews et al. (2013) identified four broad areas of 

adaptation for private entities, including: (a) shifting the locally optimal crops; (b) 

breeding new traits or varieties of existing crops; (c) evolving agronomic management 

practices and (d) coping with climate uncertainty through the provision of information. 

While the introduction of some traits, for example, pest resistance (Tabashnik et al., 2013) 

and modified canopy structure (Drewry et al., 2014), has little apparent negative effects 

on other aspect of a cropping system, many of other adaptation options involve uncertain 
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trade-offs and possibly synergies that may or may not be static across space and time 

(Matthews et al., 2013; Rippke et al., 2016). Correspondingly, developing the optimal 

adaptation strategy often means to identify favorable combinations of genotype (G) and 

management (M) for a specific environmental (E) that is characterized by its soil and 

climate conditions (Hammer et al., 2014). 

 A number of G attributes have been documented as successful adaptation options 

for the rainfed maize system, although the consequences of a particular manipulation will 

differ among E types or associated with a cost for grain yield through interactions with 

other physiological processes (Matthews et al., 2013). For example, crop maturity is one 

such genetic trait that can be used for mitigating the negative effect of climate change 

(Liu et al., 2013; Hammer et al., 2014; Harrison et l., 2014). Selecting early-mature 

variety may help to avoid the heat and/or drought stress that often occur at late summer, 

whereas using longer-maturing variety may benefit from the longer growing season to 

assimilate more carbon. The root structure, in particular the root angle, is a genetic trait 

that determines the vertical and horizontal root distribution in soil profiles, and hence the 

ability of plant to extract soil water (Hammer et al., 2009). While steeper and deeper root 

systems with access to deep soil in general benefit water and nutrient uptake in some 

maize production environments (Lynch, 2013), the water uptake efficiency of a given 

root phenotype still differs following soil compactness and hydrologic conditions 

(Messina et al., 2011; Leitner et al., 2014). A limited transpiration rate (!!!"#) is a 

recently found trait based on the evidence of variations among maize hybrids in their 

response to high vapor pressure deficit (VPD) at high temperature (Yang et al., 2012; 

Shekoofa et al., 2016). The expression of !!!"# is to maintain a restricted amount of 
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transpiration once some VPD threshold is reached, thus offering an approach to conserve 

soil water and improve yield under drought-prone environment (Messina et al., 2015). 

Yet the net gains from !!!"# need to be evaluated by simultaneously considering the 

potential change in canopy energy balance, since limiting transpiration could increase 

canopy temperature as a result of reduced latent heat flux (Long et al., 2006). 

 The effect of a new G attribute on rainfed maize growth is often analyzed in 

conjunction with contrasting M scenarios, such as the sowing date (Grassini et al., 2009; 

Liu et al., 2013; Tsimba et al., 2013), levels of seeding rate (Borras et al., 2003; Hammer 

et al., 2009; Messina et al., 2015) and fertilizer application (Trachsel et al., 2013; Gerde 

et al., 2016), and row configuration (Borras et al., 2003; Testa et al., 2016). This is 

typically done using nested experiment design, with a limited number of replicates in 

space and time, to benchmark the yield of new genotypes against yield of existing 

genotypes under a few M scenarios (Messina et al., 2011; Hammer et al., 2014). Results 

from these trials are plausible in understanding the best average performance of adapted 

genotypes under simple !×! interactions, but may miss some benefits of adaptation 

since they do not search the full spectrum of potential !×!×! combinations (Hammer 

et al., 2014). 

 The demand for searching among the myriad of possible combinations has led to 

an increasing interest in the use of process-based crop models as key tools for adaptation 

research (Matthews et al., 2013). By their nature, crop models provide a framework to 

modify single or multiple genetic traits, management activities and simulated 

environments, to assess the marginal or joint effect on crop growth and yield (Boote et al., 

2013). Crop models can make greater contribution when there is a trade-off associated 
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with a target trait (Matthews et al., 2013), or when the advantageous for a particular trait 

may vary depending on the environments. More importantly, the recent advent of high 

performance computing system has made it easy to evaluate millions of !×!×! 

combinations over an entire region within a short time (Hammer et al., 2014; San Martin 

et al., 2014), and offers potential to further explore the adaptation space at billion scales. 

This type of massive simulation approach has been applied successfully to investigate the 

adaptation potential of several cereal crops (Rotter et al., 2013; Hammer et al., 2014; San 

Martin et al., 2014; Lobell et al., 2015; Messina et al., 2015), although most of existing 

studies are for cereals in Europe or Australia. For the US maize production system, which 

typically supplies nearly 40% of the global maize commodity, a comprehensive study 

that explores the favorable adaptation strategy in response to the climate change is in 

urgent need.  

 The objective of this study is to identify the optimal sowing strategy (i.e. !×!) 

over a wide range of genetic adaption options, and to project the shifts of successful 

strategies in space and time. To archive these goals, we designed a modeling experiment 

of massive scenario simulations using the APSIM platform. Climate change scenarios are 

constituted by projections generated from a 12km resolution regional climate model 

(RCM) for 4 time slices (i.e. 1995-2004, 2025-2034, 2045-2054 and 2085-2094). One 

feature that distinguishes our simulation experiment with existing studies is that we 

confine the selection of sowing date to those suitable fieldwork days (SWD), which 

aimed to consider the probability of field inaccessibility when the soil was either too cold 

or too wet. The complete combinations of !×!×! factors for the core Corn-Belt (CCB) 

states in the US Midwest (i.e. Illinois, Indiana and Iowa) result in approximately 500 
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million single year simulations. While this study only focuses on the adaptation of rainfed 

maize, the framework presented here can be extended to other US major crops such as 

wheat and soybean.  

 

4.2 Materials and methods 

4.2.1 Setting APSIM for !×!×! analysis 

 The APSIM infrastructure provides a very convenient framework to perform 

scenario simulations by supporting customized scripting of management activities and 

genotypic traits (Hammer et al., 2014; Holzworth et al., 2014), thus allowing us to 

enumerate the ensemble of yield-adaptation strategies using a plausible range of G and M 

factors over the spatiotemporally dynamic E scenarios. Attributes for G employed in the 

simulations included three levels of maturity (Liu et al., 2013) and four levels of !!!"# 

trait (Messina et al., 2015). The setting of different maturity in APSIM can be achieved 

by varying the thermal time from emergence to end of juvenile stage (i.e. the parameter 

!!_!"!#$_!"_!"#$%&); the larger this parameter is, the longer it takes a variety to reach 

the critical flowering stage (Liu et al., 2013). Our maturity adjustment was based on the 

well-calibrated cultivar, Pioneer_P04612XR_106, against the observed phenology data 

from Iowa by Archontoulios et al. (2014). Specifically, we set !!_!"!#$_!"_!"#$%& 

equals 150, 200 and 250 °C for early-, medium- and late-mature variety, respectively. In 

addition to changing the length of growing season, varying !!_!"!#$_!"_!"#$%& also 

leads to a change in the total leaf number and hence the progress of leaf area index 

(Hammer et al., 2014). Levels of !!!"# trait were implemented by setting different 

thresholds following Messina et al. (2015). The lowest threshold (and the strongest !!!"# 
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trait expression) is 1.5 kPa, which means maize canopy no longer increase transpiration 

when the atmospheric VPD rises above this threshold. The remaining three levels are 2.0, 

2.5 and 10 kPa. Since it is almost impossible for atmospheric VPD to reach 10 kPa for 

the temperate zone, this highest threshold actually means no expression of !!!"# trait. 

For the dimension of M, we also considered four different levels of seeding rates (i.e. 3, 5, 

7 and 9 plants/m2) and a series of possible planting date (see Section 2.3 for the selection 

among suitable working days). We didn’t consider the CO2 fertilization effect because it 

is still controversial for the maize in the absence of severe drought (Leakey et al., 2006). 

4.2.2 Revise model for canopy energy balance 

 While elevated [CO2] can benefit the maize growth by reducing the stomatal 

conductance and canopy transpiration thus ameliorating water deficit in drought years 

(Leakey et al., 2006), it may increase the likelihood of heat stress since decreased 

transpiration lowers the latent heat flux and leads to higher canopy temperature (Long et 

al., 2004). As many other crop models with a daily time step for transpiration, APSIM 

does not consider the canopy-scale energy balance (Lobell et al., 2015), thus is not able to 

evaluate the trade-offs caused by the responses to elevated CO2 without incorporating 

mechanisms in this aspect. In this study, we added a simple empirical model for 

simulating canopy temperature based on the difference between potential and actual crop 

transpiration (Seguin & Itier, 1983; Brisson et al., 2008). Daily mean canopy temperature 

(!!) is calculated as: 

 !" − !" = !"×!"#$!!"##$ − !" / 1.68
!" 1
0.13×ℎ!

 (4.1) 
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where !" is air temperature, !" is the potential evapotranspiration calculated by the 

Priestley-Taylor equation, AT is the actual canopy transpiration calculated based on the 

transpiration efficiency (TE) method (Lobell et al., 2013), !"#$!!"##$ range from 0 to 1 is 

the canopy faction to intercept radiation, ℎ! is the canopy height (m), 1.68 and 0.13 are 

two empirical parameters following the STICS model (Brisson et al., 2008). The 

underlining assumption is that canopy temperature is lower than ambient !" when 

canopy transpires more water than demand and higher than !" when crop is water 

stressed. Based on the observed relationship between !" and !" for rainfed maize in 

Siebert et al. (2014), !" is limited to the range of [!" − 6, !" + 6]. 

4.2.3 Suitable fieldwork days 

 The SWD is determined based upon soil temperature and soil moisture. In general, 

maize will not germinate when soil temperature is below 10 °C, thus sowing date should 

be set when soil temperature is approaching or above this threshold to avoid poor 

emergence. On the other hand, soil is generally considered not suitable for machinery 

operations if the soil moisture level deviates too much from the field capacity, although 

the optimal moisture threshold could vary by soil texture (Rotz and Harrigan, 2005). In 

this study, we limit the planting window to the Julian days of 61-180 (i.e. from March to 

late June), and define a day to be suitable for fieldwork when: (i) the 7-day moving- 

average soil temperature at 5cm is above 10 °C, and (ii) the daily mean soil moisture of 

the topsoil (0-10cm) is between LL15 and 1.05*DUL, where LL15 and DUL are the 

notation for wilting point and field capacity in APSIM. Soil temperature and moisture are 

simulated by the APSIM considering a fallow soil. 
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 Our selection criteria often result in more than 80 SWDs within the planting 

window for a specific year. To reduce the computational cost for retrieving the optimal 

sowing date, a hierarchical sampling method is applied. We first divide the planting 

window of 120 days into twelve 10-days intervals, and identify the optimal interval by 

comparing the yields from APSIM simulations of which the sowing date are the median 

SWD within each of the twelve intervals. Next, we loop the APSIM simulation through 

every other SWD within the optimal interval, and pick up the one with highest yield as 

the global optimal sowing date. It should be noted that APSIM-Maize considers frost 

damage by senescing a faction of LAI in proportion to the air temperature below 2 °C. 

4.2.4 WRF climate scenarios 

 Daily climate inputs for the APSIM, including maximum and minimum 

temperature, precipitation and solar radiation, were generated by a 12 km resolution 

Weather Research and Forecasting Model (WRF v3.3.1) that used the Community 

Climate System Model version 4 (CCSM4) outputs for the Representative Concentration 

Pathways 8.5 scenario from the fifth phase of the Coupled Model Intercomparison 

Project (CMIP5) archive as the initial and boundary conditions (Wang & Kotamarthi, 

2015). The CCSM4 data was corrected for the bias in long-term climatology following 

Bruyere et al. (2013), which corrected the mean errors but retained the climate variability. 

The WRF simulations were performed over a very large domain (7200 km × 6180 km) 

covering the North America (Wang & Kotamarthi, 2015), although only the subset of 

CCB states was used in this study. 
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4.2.5 Regional simulation and analysis 

 Geographic distribution of non-irrigated maize is derived from the 5 arc-minute 

resolution M3-Cropland data (Ramankutty et al., 2008), resulting in 5799 grids for the 

CCB states. Spatially explicit information on soil, crop cultivar and management is 

critical for APSIM regional simulations. We extract soil parameters, such as soil texture, 

layered soil hydraulic properties and soil organic matter fractions from the 1:250,000 U.S. 

General Soil Map (STATSGO2) database. The description for each of these required soil 

parameters is documented in Archontoulis et al. (2014a). To reduce the computational 

cost, we simply use attributes of the dominant soil component within in the largest soil 

map unit of each grid cell for our simulations. Management activities for the baseline 

time slice of 1995-2004, includes seeding rates and fertilizer amount, are from the USDA 

National Agricultural Statistics Service (NASS) survey report at state level. We assume 

that the same spatial information for future time slices is the same as the baseline 

conditions, thus excluding the potential of agronomic improvement on crop adaptation 

and mitigation. 

 We calculated the yield benefit from changing the planting date as the ratio (%) of 

maximum and mean attainable yield for all possible SWDs that have been tested. 

Assuming optimal planting date, the adaptation potential by changing the remaining 

!×! attributes for a given time slice is calculated as: 

 !"#$%#%&'(!!"#$%#&'( = !!"′
!!"!"#

 (4.2) 

where !!"′ is the 90% quantile mean yield for a specific future time slice among all !×! 

combinations, and !!"!"# is the 90% quantile mean yield for the reference time slice (i.e. 
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1995-2004). All metrics are initially calculated for each grid on annual basis and then 

summarized into decadal means or other metrics. 

 

4.3 Results and discussion 

4.3.1 Climate change and optimal planting date 

 The projection of future climate changes for the CCB region by our RCM are 

characterized collectively by the warming and wetting trends (Figure 4.1). KDD, an 

indicator of excessive heat by accumulating temperature above the critical threshold of 30 

°C for maize yield (Lobell et al., 2013) is growing fast over the time, indicating 

potentially higher risks of heat stress. Although the cumulative rainfall during the 

growing season on average increases by 140 mm for the 2045-2054 and 118 mm for the 

2085-2094, water availability for this region is still uncertain given the simultaneously 

increased maximum growing season VPD; high VPD level can exacerbate drought by 

stimulating the short-term canopy transpiration and depleting soil water storage in the 

longer term (Lobell et al., 2013). These novel yet adverse climate patterns thus call for 

adaptive managements to prevent failures in maize growth. 

 An intuitive expectation in management change from the warmer springtime 

climate conditions (Table 4.1) is the earlier planting date. However, our analysis shows 

that the probability for the CCB region to be suitable for fieldwork only increases slightly 

by up to 20% on March and April (Figure 4.2a), suggesting that the potential for 

advancing the planting date is limited. In fact, the bonus of less thermal constraint on 

SWD over time (Figure 4.2b) is offset by the increased springtime precipitation that leads 

to more days with muddy soil and unfavorable condition for machine operations, 
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especially for the 2085-2094 (Figure 4.2c). Admittedly, the aforementioned result about 

SWD is partially determined by the projection on precipitation regime and should be 

interpreted with uncertainty in mind, yet it challenges most existing !×!×! analyses 

(e.g. Martin et al., 2014), which simply use prescribed time intervals to select the optimal 

planting date, because their proposed optima may not be feasible. 

 The optimal planting date has advanced consistently for the early-mature maize, 

but not for the medium- and late-mature varieties (Figure 4.3a). By the late 21st century, 

early-mature variety ends on average 20 and 30 days earlier than the medium- and late-

mature group, respectively (Figure 4.3b). Differences in the number of days to reach 

maturity become smaller over time (Figure 4.3c), most likely because warming have 

fastened the phenology progress. These patterns contradict the speculation in Kucharik 

(2006) that switches to hybrids with a longer growing season could benefit yield gains. 

We believe the earlier planting for the early-mature variety can be explained as the 

successful strategy to avoid terminal heat and/or drought stress on August and early 

September (Lobell et al., 2013). In contrast, the likelihood for medium- and late-mature 

varieties to be hit by climatic stress is higher given their longer growing season, thus may 

require more radical inter-annual changes in the optimal planting date (reflected by the 

wider quantile distributions in Figure 4.3a). 

4.3.2 Adaptation potential 

 The 10-year mean yield benefits from the optimization of planting date are similar 

among four time slices, mostly distributed within the range of 6-20% (Figure C1a). On 

the other hand, the distribution of maximum annual yield benefit varies significantly over 

time (Figure C1b). The maximum yield benefits reach the highest level in 2045-2054, 



 95 

and then drop slightly back to the level of 20-40% in 2085-2094 regardless of the more 

radical inter-annual shifting in planting date at the late 21st century (Figure 4.3a). These 

features in the distribution change indicate that: (i) shifting the planting date, as an 

adaptation option, is likely most effective around 2050s, and (ii) the adaptation potential 

from changing the planting date is limited when climate stressors are too severe (Figure 

4.1). Spatially, high benefits often occur at the southern and western part of the CCB 

region, corresponding to the places where climate change is more drastic (Figure 4.4). 

The maximum yield benefit reaches the highest level (i.e. >50%) in more than one-third 

of the Iowa during 2045-2054, thus farmers in this sub-region should more caution with 

the choice of planting date. 

 It should be noted, however, achieve the full potential of changing planting date 

as projected here is likely unrealistic, because our selection of the optimal planting date is 

based on model simulations that “knowing” the meteorological condition for the whole 

growing season. Yet in reality, farmers will have to decide the timing of planting 

activities based on weather forecast that may only be reliable for next couple of days, and 

may lead to the adoption of more conservative strategy on adjusting planting date. 

According to Rotter et al. (2013), the majority of farmers choose to start planting on 

average 1 week later than would be climatically possible. To obtain the full bonus of 

changing the sowing date, weather forecast need to go beyond the window of fewer days 

and deliver robust projections about the likelihood of spring frost and summer heat and 

drought several months in advance. Some private entities (e.g. The Weather Trends 

International, Inc) have claimed to be able to give trustable one-year-ahead projections, 

but their algorithm is not documented or peer-reviewed. 
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 Even assuming that the planting date is optimized, other adaptation methods (i.e. 

change the population density and select adapted crop traits) in combined are still not 

likely to help retain the historical yield level in most of the CCB region (Figure 4.5). 

Specifically, the decadal optimal adaptation combinations are only able to retain on 

average 97%, 95% and 90% of the baseline yield level for the period 2025-2034, 2045-

2054 and 2085-2094, respectively. Applying annual optimal adaptation significantly 

increased the adaptation potential on average by 5% (Figure 4.5), especially for sub-

regions with less severe climate stressors. The contrast between the effects of decadal and 

annual optimal adaptation demonstrates that the favorable !×! strategy is instable for 

this region, and may vary from year to year depending on !. This highlights the difficulty 

in identifying broad adaptation when the production environment is highly variable 

(Hammer et al., 2016). 

4.3.3 The !×!×! landscape and adaptation recommendation 

 Figure 6 presents the yield adaptation landscapes that summarize the regional 

mean and minimum yield (which indicates the risks of crop failure) across different 

levels of seeding rates, !!!"# trait and variations among maturity. In response to the 

climate change over time, mean yield decreases towards the late 21st century. Medium- 

and late-mature varieties in general have higher mean and minimum yield than the early-

mature group, possibly because of the former two groups has longer growing seasons for 

carbon assimilation (Figure 4.3c). Preserving !!!"# has little benefit on the mean yield, 

but in contrast has apparent effects on improving the low yield for all future time slices 

(Figure 4.6). Likely because the negative feedback of elevating canopy temperature is 

marginal in our simulations, preserving low !!!"# threshold always performs better in 
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formulating grain yield. Since the highest yield always occurs with high seeding rate and 

the preserve of low !!!"# threshold, it seems the !!!"# trait could help further intensify 

the cropping system in drought-prone regions (Messina et al., 2015). Higher seeding rate 

almost consistently results in higher yield, which is understandable yet not in line with 

the results in Borras et al. (2003) and Hammer et al. (2014). Therefore we speculate that 

competition for growth resources such as water or nutrient in the CCB region is not 

significant over the time we evaluated, thus in general high seeding rate is recommended. 

 There are no consistent trends in the spatial pattern of different ! and ! attributes 

(Figure 4.7). Early- and medium-mature varieties are favorable choices for most of the 

CCB region, except the period of 2025-2034 during which sub-regions with moderate 

warming favors late-mature variety. Using the highest seeding rate of 9 plants/m2 is 

suggested in most circumstances, although the southern and western parts of the study 

area show some variations in different time slices. !!!"# with the lowest threshold (i.e. 

1.5 kPa) dominates the whole region, except the southern Illinois and Indiana during the 

period of 2085-2094 where high transpiration demand and relatively low soil water 

availability (Figure 4.1) requires higher !!!"# threshold to be more conservative on 

retain soil water. 

 

4.4 Conclusions 

 In this study, we investigated the adaptation potential of rainfed maize yield under 

climate change at the US CCB region by optimizing the !×!×! combinations. Our 

massive simulations demonstrate that changing the planting date is the most effective 

adaptation method, although the trend of earlier planting due to warmer spring climate 
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may be restricted when there is too much springtime precipitation. Assuming optimal 

planting date, our analysis shows that optimizing the remaining !×! attributes on 

decadal basis is not sufficient to maintain the baseline yield for this region, unless annual 

optimal adaptation strategy is implemented. This contrast implies the difficulty of finding 

a broad adaptation mode when the inter-annual variation in weather is high. Therefore 

greater value from adaptation would be received if it is based on relation between !×! 

and ! rather than geography (Hammer et al., 2014). Low !!!"# threshold and high 

seeding rate show consistent advantage on improving the yields, indicating the cost of 

implementing !!!"# trait and cropping intensification is not high enough to outweigh the 

benefit. It is likely because our study region is not large enough to include much 

heterogeneity, thus further research should consider expanding the spatial coverage in 

order to see some trade-offs associated with certain adaptation methods. 

 A further consideration is whether or not the full adaptation potential as suggested 

by model simulations can be achieved. In fact, the choice of favorable adaptation strategy 

depends highly on the climate projection. Knowing the weather a few months in advance 

is currently unrealistic, while existing !×!×! studies are mostly take it for granted to 

have the meteorological data for the whole growing season. Transferring the useful 

information obtained from !×!×! analysis thus requires more robust techniques for 

weather projection. As a final caveat, the factorial nature of !×!×! analysis calls for 

more efficient algorithm of searching the adaptation landscape. Although the use of high-

performance computing infrastructure offers the opportunity to explore millions or even 

billions of !×!×! combinations, the current framework of enumerating every  
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combination is computationally inefficient and only allows the search of a small amount 

of ! or ! variables with a limited number of levels. Future research could consider 

introducing the theory of global or local optimization into the !×!×! analysis.
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Table 4.1 Projected changes in temperature, precipitation and vapor pressure deficit at 10%, 50% and 90% quantiles. 

  1995-2004   2025-2034   2045-2054   2085-2094 

 
10% 50% 90%   10% 50% 90%   10% 50% 90%   10% 50% 90% 

Temperature (°C)       
 

      
 

      
 

      
      Spring mean 8.7 11.3 13.6 

 
9.1 12.8 15.4 

 
11.3 13.7 16.1 

 
13.2 15.3 17.8 

      Growing season mean 19.5 21.0 22.7 
 

21.3 22.6 24.2 
 

21.9 23.2 25.2 
 

24.0 25.5 27.3 
      Killing degree days 3 22 67 

 
35 73 182 

 
39 97 234 

 
120 247 443 

Precipitation (mm) 

                     Spring total 300 458 587 
 

336 462 614 
 

319 501 663 
 

359 576 771 
      Growing season total 443 690 889 

 
457 672 918 

 
469 830 1060 

 
520 808 1083 

Vapor pressure deficit (kPa) 

                     Maximum weekly VPD 1.39 1.57 1.83   1.53 1.73 2.22   1.61 1.86 2.30   1.70 2.06 2.71 
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Figure 4.1 Spatial pattern of mean growing season (GS) killing degree days (KDD), 
rainfall and maximum weekly-mean vapor pressure deficit (VPD) during four time slices. 
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Figure 4.2 The probability of each day to be suitable for fieldwork across the region (a). 
Distributions of thermal free days (i.e. days with soil temperature above 10 °C) (b) and 
cumulative precipitation (c) over the planting window from Julian day of 61 to 180. 
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Figure 4.3 Changes of optimal planting date (a), harvest date (b) and days to mature (c) 
over time grouped by cultivar maturity. 
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Figure 4.4 Spatial pattern of the grain yield benefit from optimizing the planting date. 
Yield benefit is measured as the percentage difference of simulated maximum and mean 
yield by running the APSIM with a series of possible suitable fieldwork days. 
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Figure 4.5 Spatial pattern of adaptation potential by applying decadal and annual optimal 
genotype and management strategy. Adaptation potential is measured as the percentage 
difference of 90% quantile mean yield of each future time slice and the baseline (i.e. 
1995-2004) 90% quantile mean yield. 
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Figure 4.6 Simulated landscapes of decadal mean and minimum maize yield (t/ha) for 
genotypes varying in maturity and !!!"# trait (threshold of 10 kPa means no expression 
of !!!"# trait), and crop management varying in seeding rates. The planting date is in the 
optimal state. 
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Figure 4.7 Spatial patterns of the optimal cultivar, seeding rate and threshold for !!!"# 
trait over time. 
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CHAPTER 5. A PROTOTYPE OF CROP MODEL AND SATELLITE IMAGERY 
BASED PRECISION FERTILIZATION 

5.1 Introduction 

Nitrogen (N) is one of the most limiting factors that can lower corn (Zea mays L.) 

yield and quality (Miao et al. 2007; Scharf 2015). Corn with deficient N will have 

dwarfed seedlings and yellowish leaves, leading to partial or complete failure of kernel 

setting (Ma and Biswas 2015). On the other hand, over-fertilizing causes high risks of 

water contamination (Keeney, 1986; McIsaac et al. 2002), and nitrous oxide (a potent 

greenhouse gas) emissions (Park et al. 2012; Scharf et al. 2015). The need to wisely 

manage N fertilizer is thus compelling for both economic and environmental 

considerations (Scharf 2015). 

In practice, the associated higher cost of under-fertilization relative to over-

fertilization drives farmers to apply higher rates, and use additional “insurance” fertilizer 

applications (Moebius-Clune et al. 2013). It is estimated that 75% of N fertilizer for the 

US Corn-Belt is applied before planting (Cassman et al. 2002), among which fall 

application is more widely practiced than spring application. The N fertilizer loss is 

highly weather dependent, and is greatest in warm and wet winters (Randall et al. 2003; 

Tremblay et al. 2012; Scarf 2015). Thus to reduce N loss before the growing season, a 

good strategy is to applying a portion of N in-season (Thompson et al. 2015). 

Furthermore, applying N based on soil heterogeneity can reduce the overall amount of N
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being applied and increase the operational profitability compared with a uniform N 

application (Mamo et al. 2003).  

The optimal management of N requires a farmer to make a series of decisions on 

the form (what), timing (when), placement (where) and rate (how much) of N fertilizer to 

be applied. While the N form and timing is often limited by accessibility and logistical 

constraints, determining where and how much N fertilizer should be applied is more 

science-oriented (Scharf 2015), and has progressed considerably in recent years 

(Setiyono et al. 2011; Shahandeh et al. 2011; Solie et al. 2012; Moebius-Clune et al. 2013; 

Thompson et al. 2015). The optimal N rate for a given field depends on crop demands, 

indigenous N supply as a net result of mineralization and immobilization, and losses of N 

fertilizer or soil-derived N via leaching, denitrification and volatilization (see Figure 5.1 

for the schematic diagram of N cycling in a corn field). Each of these aforementioned 

processes interacts among themselves, and is influenced by many factors such as: 

seasonal temperature, precipitation, soil physical and biogeochemical properties, and 

management history. Although researchers have spent considerable efforts to understand 

the complexity associated with nitrogen management, the uncertainty is still substantial 

(Scharf 2015). The problem is further complicated by spatial variations in soil N 

contribution, fertilizer losses and crop N uptake from field to field and even place to 

place within a field. Nitrogen mineralization of SOM may vary because of differences in 

organic nitrogen release rate as a function of soil temperature and moisture, or differences 

in past crop removal (Scharf 2015). N leaching loss can vary mainly because of different 

topography and soil hydrological properties (Prasad et al. 2015). The N fertilizer need by 

the crop can vary as a result of varying yield potential (Mamo et al. 2003), or differences 



 110 

in seeding rates. Because of these complexities, fast and accurate diagnostic tool of the 

optimal N rate for a given field remains a challenge (Ma and Biswas 2015; Scharf 2015). 

Crop models that incorporated with all above-mentioned N processes have been 

identified as a promising tool for synchronizing N fertilizer application with crop N 

demand (Cassman et al. 2002; Scharf 2015). The recent advent of high-performance 

computers and communication technologies has made it possible to process massive 

remotely-sensed or field survey data and weather records in near real-time to inform 

precision N management. Although many existing crop models are capable of simulating 

the soil N dynamics and estimate the corn growth in response to N availability with 

different complexity (Bassu et al. 2014), they are not designed to support pre-plant or in-

season decisions on precision N management (Thompson et al. 2015). A few specific 

tools have been developed to manage N, such as Adapt-N (Melkonian et al. 2008; 

Moebius-Clune et al, 2013) and Model-N (Setiyono et al. 2011). The Adapt-N model is 

built on the crop model from Sinclair and Muchow (1995), and N management scheme 

from Melkonian et al. (2005), but its further development to support full-field variable N 

rate recommendation is unknown. Maize-N mainly focuses on estimating the economic 

optimum nitrogen rate, and has been proved to outcompete the university N 

recommendation approaches (Setiyono et al. 2011). However, its operational use is 

complicated and cannot be easily mastered by non-expert users.  

 The objective of this study is to introduce a prototype of fully automated very-

high-resolution (5m × 5m) decision support tool for on-farm precision N management. 

This tool, named N-Prescription, uses remotely-sensed data to delineate within-field 

management zone, simulates subfield variations in soil and crop status with a crop model 
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that assimilates in-situ soil database and real-time weather information, and finally 

delivers either pre-plant or in-season variable rate N recommendations to match fertilizer 

application with crop demand. The core part of a process-based crop model for estimating 

indigenous N supply, N losses and crop N demand is built on the APSIM platform 

(Keating et al. 2003). Although the N-Prescription tool currently only support for rainfed 

Maize, it will be extended to cover major crops in the near future. In the following 

sections, we will detail the science and engineering background of N-Prescription, 

provide model sensitivity analysis and optimization, and present a case study for a typical 

US Midwest Corn field in Illinois, USA. 

 

5.2 Materials and methods 

5.2.1 Overview of workflow 

 The N-Prescription infrastructure is built on the Amazon Elastic Compute Cloud 

(EC2), and has been parallelized to support multiple client call at the same time. The 

scientific workflow is given in Figure 5.2, and major steps include: 

1) Determine pre-plant N application rate. We first calculate the total N target rate 

(!!"#$%!; kg ha-1) for a given growing season based on the expected yield goal, N 

credits and management zone variations: 

 !!"#$%! = !! + !! ∙ !" − 1.12 ∗ !!"#$%& + ! (5.1) 

where !! and !! is the offset and slope for calculating state-specific N fertilizer 

requirement per unit yield (derived from University extension bulletins), respectively; 

!" is the expected yield (t ha-1), !!"#$%& is the credits for soil organic N from previous 

legume crops or manure application (Table 5.1) and 1.12 is the unit conversion 



 112 

coefficient from lb/ac to kg/ha, ! is the adjustment term that further accounts for 

spatial variability of long-term average soil fertility among management zones and is 

described in detail below along with management zone delineation. We assume 50% 

of the !!"#$%! amount is applied before planting as either fall or spring application.  

2) Data query. This step essentially collects all data required and creates a special-format 

simulation file that will be fed into the APSIM. It starts with importing a 5m × 5m 

raster shapefile for a customized field. According to the shapefile, soil parameters 

such as layered soil hydraulic properties, soil pH, and soil organic matter (SOM) are 

queried from the Soil Survey Geographic (SSURGO) database (Soil Survey Staff, 

2015) and resampled to finer vertical layers of at depth 0-10, 10-20, 20-50, 50-100 and 

100-200 cm. When there are multiple soil components within a grid, the one takes the 

largest fraction will be selected. Detailed descriptions for soil parameters required for 

the model are presented in Archontoulis et al. (2014). Real time weather data 

including daily maximum and minimum temperature, precipitation and solar radiation 

are downloaded from the National Climate Data Center (NCDC). Field management 

information including planting date, density and cultivar relative maturity is input by 

users if available; otherwise, we assign estimated values according to satellite imagery 

and USDA National Agricultural Statistics Service report.  

3) Crop model simulation. The APSIM is run at a daily time step to provide soil and crop 

N status, such as N leaching and denitrification, N leftover in soil, and plant N uptake. 

Instead of running the model for the whole field, we first run the model for virtual 

grids, and then re-project outputs to the 5m-resolution raster shapefile according to a 

geographic reference table. A virtual grid is a unique combination of soil type, seeding 
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rates and management zone. For example, if there are 5 different soil types, 4 levels of 

seeding rates and 5 management zones for a given field, the number of virtual grids is 

100. Using virtual grids substantially reduces the computational cost. To reduce 

simulation uncertainty, the crop model will be iterated for calibration until it can 

reasonably match the user reported growth stage (e.g. leaf numbers) or satellite 

derived leaf area index (LAI) data. 

4) Calculating sidedress N application rate. The sidedress fertilizer rate (!!"#$#%$!!) is 

calculated using the equation: 

 !!"#$#%$!! = !!"#$%! + !!"## − !!"#$%& − !!"#$%&"' (5.2) 

where !!"## is the total N losses via denitrification (!!"#$%) and leaching (!!"#$!) up-to-

date, !!"#$%& is the cumulative plant N uptake when sidedress N recommendation is 

requested, and !!"#$%&"' is the remaining inorganic N up-to-date. We assume that 

sidedress N application is requested mostly when corn reaches the V6 stage. We also 

assume that the N losses after sidedress application will be compensated by net 

mineralization of soil organic matter. Nitrogen losses after R2 stage are not critical since 

most N uptake by corn plant is completed by R2 stage. 

5.2.2 Management zone delineation 

For a given field, we first identify the sub-field relative productivity zones based on 

the wide dynamic range vegetation index (WDRVI) derived from the RapidEye images. 

The RapidEye system is a constellation of five satellites that produces multispectral 

images at a spatial resolution of 5m × 5m (RapidEye AG 2012), with detailed description 

of radiometric and geometric properties of the RapidEye sensor is given in Chander et al.  
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(2013). The red (630–685 nm) and near infrared red (NIR) (760–850 nm) bands were 

used to calculate the WDRVI following Gitelson (2004): 

 !"#$% = !!!"# − !!"#
!!!"# + !!"#

 (5.3) 

where ! is the reflectance and ! is weighting coefficient set to be 0.2. To reduce the 

inconsistency of atmospheric conditions, we applied an atmospheric correction following 

standard procedures. A cloud filter that can detect the cloudiness based on likelihood 

(developed by Farmlogs) was used to exclude images with 25% cloud cover or more. The 

WDRVI was first calculated for each individual RapidEye image collected between July 

15th and Septembet 1st for years 2009-2014, and then averaged on time scale at the pixel 

level. We selected the time window from middle July to early September because 

previous studies showed that remotely sensed vegetation index during this period are 

most indicative for the final corn yield (Sibley et al. 2014; Lobell et al. 2015). Using 

multi-year average is essential to reducing the impact of climate induced yield variability, 

and otherwise the delineation is prone to inconsistency across years (Derby et al. 2007). 

The averaged WDRVI image was then fed into an unsupervised k-means algorithm 

implemented in the “scikit-learn” package for Python. The k-means algorithm divided 

total pixels (!) into k clusters, by optimizing the choice of cluster specific centroids (!) 

that can minimize the total within-cluster distance between individual pixel and the 

corresponding centroid: 

 
!!"!#$ = !! ! − !!

!!

!!!

!

!!!
 (5.4) 
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where !! !  is the !-th pixel in !-th cluster, and !! is the number of pixel classified into !-th 

cluster. The algorithm includes the following steps: 

(a) Choose k pixels as the initial centroids. The k-means++ initialization scheme is used 

to guarantee distant initial centroids, which provably improves the clustering 

performance (Arthur and Vassilvitskii 2007). 

(b) Assign each pixel to its nearest centroid. 

(c) Create new centroids by taking the mean value of all of the samples assigned to each 

previous centroid. 

The last two steps will be repeated until the difference between the old and the new 

centroids is less than a prescribed threshold (usually very small). We set k equal to 5, and 

the resulting clusters were labeled as high, high-media, media, media-low and low 

productivity zones. These productivity zones were then overlapped with the SSURGO 

map units, and each unique combination of productivity zone and soil map unit was 

treated as a separate management zone. 

5.2.3 Nitrogen simulation in APSIM 

The SoilN module simulates the dynamics of soil carbon (C) and N on a daily 

basis, with N mineralization, immobilization, nitrification, denitrification and urea 

hydrolysis explicitly described in each soil layer. The layer-specific SOM is divided into 

a fast decomposing pool (BIOM) and a less active pool (HUM). To account for the age of 

different organic residuals, part of the HUM pool is further specified as a recalcitrant 

pool (INERT), with the fraction to be higher in deeper soil layers. Organic N sequestrated 

by SOM will be gradually released through mineralization according to the decomposing 

of each soil C pools, with the rate mediated by soil temperature, moisture, and C/N ratio. 
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More fresh organic matter is stored in a separate pool (FOM), and is initialized by root 

weight and root C/N ratio. The FOM pool contains three sub-pools, namely the 

carbohydrate-like, cellulose-like and lignin-like pools, with default fractions set as 0.2, 

0.7, 0.1, respectively. APSIM also support manure application through the SurfaceOM 

module, which describes the organic N fractions in the same way as the FOM pool. When 

N fertilizer is applied, the N will enter the inorganic N pools of Urea-N, NH4-N and NO3-

N, with the fraction determined by the fertilizer type. 

 These soil N processes are primarily controlled by soil temperature, moisture, pH 

and water flow through the soil profile. Daily soil temperature for each soil layer is 

simulated by the SoilTemp module. Soil hydrology is simulated by a tipping-bucket 

water balance model, the SoilWat module. This daily time-step hydrology model includes: 

surface runoff (estimated via the USDA curve number method), soil evaporation 

(estimated via the two-stage evaporation method), plant transpiration (estimated via the 

transpiration efficiency approach), and vertical water flows and fluxes that can transport 

N in soil solute through the soil profile. Parameters for these soil modules are mainly 

derived from the SSURGO database, and a few are obtained through calibration. 

5.2.4 Sensitivity analysis 

 In APSIM, the simulation of soil N, hydrology and thermal processes are 

controlled by more than a hundred parameters and physical constants. To understand the 

response of model output to variations in parameter setting, and to reduce the dimension 

of parameter space for calibration, a global sensitivity analysis (GSA) following Pappas 

et al. (2013) was conducted: 
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1) Select output of interest. Here we primarily focus on model outputs of !!"#$, !!"#$! 

and !!"#$%& on a prescribed date of June 20th (i.e. roughly 30-40 days after corn 

planting in the US Corn-Belt), since these variables are directly used to calculate our 

in-season N recommendation. In addition, we included net N mineralization 

(!"#$%&!), which is the largest uncertain contributor to !!"#$%&"'. 

2) Select parameters and assign prior distribution. The majority of parameters for the soil 

N module is derived from field experiment, thus should not be arbitrarily calibrated 

without further experiments. Instead, we selected 19 candidate parameters (Table 5.2) 

that will be assigned in the APSIM simulation file, on the basis of extensive model 

structure investigation. Parameter ranges were mostly derived from literature if 

available; otherwise a conservative wide range was assigned so as to cover the full 

range of plausible values. Each parameter was assumed as an independent variable, 

following an uniform distribution. 

3) Qualitative GSA. This step was to obtain the subset of very influential parameters 

using the Morris Elementary Effect (EE) approach (Morris 1991). This method based 

on the randomized experiment design of many one-at-a-time simulations, allows to 

rank parameters according to the statistic measure: 

 ! = !!!! + !!!!  (5.5) 

where !!! indicates the overall influence of a parameter to model output, and !!! is 

an estimator of high order parameter interactions. To further account for soil 

variability, the qualitative GSA was applied for 5 generic soil types from the HC27 

(Harvest Choice 2010) namely sandy, sandy-silt, silt, silt-clay, and clay soils. 
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4) Quantitative GSA. The Sobol2007 method (Sobol et al. 2007), a variance-based GSA, 

was used on the parameter subset suggested in the previous step. For a given 

generalized crop model: 

 ! ! = ! !, !|Θ + ! (5.6) 

where ! !  is the model output at time t, ! is a vector of input data, 

Θ = !!,!!,⋯!!  is the parameter vector, and ! is the error term, its first-order 

sensitivity index (i.e. the main effect) of parameter !! is calculated as: 

 
!! =

!!
!!
= ! ! !|!!

! ! = ! ! !|!!
!!!

!!! + !!" +⋯+ !!"⋯!!
!!!

!
!!!

 (5.7) 

where !! = ! ! !|!! , !!" = ! ! !|!! ,!! − !! − !!, and so on. The total-order 

sensitivity index (i.e. total effect) of parameter !! is calculated as: 

 
!!" =

! ! !|Θ!!
! ! = 1− ! ! !|Θ!!

! !  (5.8) 

where Θ!! is a vector of all parameters but the !th. 

5.2.5 Model calibration 

Model calibration for a specific location requires a range of field measurement 

and is very labor costing (Archontoulis et al. 2014). Considering our goal is to develop a 

N recommendation tool that should be computationally efficient and spatially extensible, 

our calibration mainly focuses on the simulation of soil moisture and LAI. Soil moisture 

directly moderating soil N dynamics and the amount of leaching, thus is critical for the 

calculation of sidedress N rate. However, existing dataset does not support 

parameterization of soil hydrological model on field scale for most of the US Corn-Belt, 

therefore we derived parameter values from the SSURGO database. In APSIM, LAI 
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directly controls the canopy intercepted solar radiation, which further limits the biomass 

production, and the accumulated biomass will in turn be allocated to build LAI. Because 

of this feedback cycle, any under- or over-estimation in LAI (especially in early seasons 

between emergence and V5/V6 stages) will lead to unreasonable simulation of corn 

growth and N uptake. When the WDRVI data has good quality from last year to present, 

we calibrate the model-simulated LAI against WDRVI-derived values by adjusting four 

key parameters, namely, breadth (determines the width of LAI seasonal curve), skewness 

(determines the LAI change rate), area_max (determines the max potential LAI), 

largest_leaf (determines when the max potential LAI occurs); otherwise, we calibrate the 

model against a generic curve provided by the Iowa State University Extension 

(Abendroth et al. 2011). The WDRVI to LAI conversion was based on the empirical 

relationship built by Vina et al. (2011) in the form of: 

 !"# = 1
! !" ! − !" ! + !! −!"#$%  (5.9) 

where ! = 1.4392, ! = 0.3418 and !! =– 0.6684. For all processes, the shuffled 

complex evolution Metropolis algorithm (SCEM-UA), an adaptive MCMC sampler, was 

implemented to globally optimize these parameters (Jin et al. 2015). 

5.2.6 Case study 

 To test the robustness of this prototype, we applied the workflow to a 

representative US Midwestern rainfed corn field in Illinois (Holmes’ farm; Figure 5.3). 

For the 2015 growing season, the farmer applied 112 kg/ha spring fertilizer in forms of 

Urea N on Mar 24th; seeds were sown in variable seeding rates with 30 inch rows on May 

25th (Figure 5.4a); a mixture of three corn varieties with same relative maturity ratings 
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were planted. The cultivar specific parameters were adopted from a similar cultivar for 

the US Corn-Belt, the Pioneer_P04612XR_106 (see Table 4 in Archontoulis et al. 2014). 

The prescription for sidedress N was requested on June 24th, and applied by the variable 

rate fertilizer applicator during the following week. The corn was harvested on October 

18th, with final yield logged by Farmlogs’ Flow (a device with cellular connectivity 

plugged into a combine’s existing ISOBUS port, and send data to the FarmLogs platform 

while harvesting). 

 

5.3 Results and discussion 

5.3.1 Management zone delineation 

 The delineation of relative productivity zones derived from the 5-year averaged 

summer time WDRVI is shown in Figure 5.4c. High productivity zones accounted for 

24.3% of the whole field, and were found mainly at the top-left and bottom-right part of 

the field. Low productivity zones accounted for 9.6%, and distributed as a stripped 

channel stretching from the bottom-right corner to the middle of the field. Such a channel 

was also identified from the Google Earth base soil imagery (Figure 5.3). High-medium, 

medium and medium-low productivity zones accounted for 26.7%, 23.1% and 16.3%, 

respectively. The spatial variability of productivity zones was comparable to bare soil 

colors, with high productivity zones generally occurred at light colored soils and low 

productivity zones corresponding to dark soils. Such a relationship seemed opposite to 

common observations that darker soils with more SOM in general had higher fertility 

(Scharf 2015). A possible explanation is that dark-colored soils were prone to flooding as 

they had on average lower elevation than surrounding areas (Figure D1), and 
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counteracted the benefit from higher humus accumulation. It is also likely that the 

spectral properties of surface soils may not reflect the fertility of deeper soils. As is 

shown in Fleming et al. (2004), management zones retrieved from soil colors differed 

substantially to the results derived from the soil apparent electrical conductivity (ECa), 

and the latter approach was more effective in identifying the expected spatial variability 

in a case study. Interestingly, the satellite imagery derived productivity zone 

configurations are not consistent with the SSURGO soil map (Figure 5.4b), suggesting 

more efforts were required to transfer soil surveys data into directly usable information 

for subfield precision management. Figure 5.4b and 5.4c were overlaid to generate the 

final management zones, but results were not shown here due to visualization constraint. 

  Management zone delineation was so far a critical uncertain step within our 

workflow. To date, efficient and accurate procedure for creating management zones is 

still lacking, and no single method fits all situations (Derby et al. 2007). This study 

utilized the satellite imagery of crop growth to delineate the management zone, mainly 

because this approach meets our demand of efficiency and spatial extendibility. Canopy 

sensor or grid soil sampling based approach for in-season N recommendation can be 

more reliable as they are based on the field measurement, but the considerable labor cost 

negates the accuracy (Scharf 2015). In cases of low yield due to unfavorable weather 

conditions, the economic benefit from precision N management may not outcompete the 

costs for field sampling (Derby et al. 2007). ECa is more cost-effective than traditional 

fieldwork based approach, whereas its interpretation often requires the use of additional 

georeferenced data and expert experience. Topography (e.g. elevation) has long been 

identified as a yield-limiting factor (Kravchenko and Bullock 2000). With the advent of 
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high-quality topographic data, soil survey database in conjunction with terrain attributes 

such as elevation, topographic wetness index, slope percentage and modified catchment 

area can be used to generate digital maps that better represents the soil functions 

(Ashtekar and Owens 2013).  Our future research efforts will focus on integrating the 

geospatial information of soil color and topography into the management zone 

delineation. 

5.3.2 Model sensitivity analysis and calibration 

 The qualitative GSA in general identifies “cn2_bare”, “density”, “fbiom”, “finert”, 

“NO3”, “SummerCona”, “SummerU”, “sw” and “swcon” (alphabetic order) as the ten 

most sensitive parameters, although slight variations exists among different model 

outputs of interest and soil type (results not shown). For quantitative GSA, the total 

parameter sensitivity based on 20,000 model simulations for each combination of model 

output and soil type is given in Figure 5.5. The most influential parameter for !!"#$%& is 

“oc”, which accounts for nearly 50% of the total variability and is followed by “finert”, 

“fbiom” and “swcon” that each explains more than 10% of the variability. Over 75% of 

the variability in simulated !!"#$ can be attributed to the uncertainty of “swcon”, much 

more than the 25% share taken by “oc” (Figure 5.5b). “cn2_bare”, “NO3”, “oc”, “sw” 

and “swcon” are important parameters to explain the variability in !!"#$!, indicating 

water drainage and N forms are critical processes controlling leaching loss. The 

uncertainty in !"#$%&! can be mainly explained by “fbiom”, “finer” and “oc” (Figure 

5.5d). Differences between soil types are small for all variables investigated except for 

!!"#$!, which is highly dependent on soil hydraulic properties. 
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Our sensitivity analysis indicates soil water conductivity and the amount and 

composition of SOC are the most sensitive parameters to explain the variability in each of 

interested model output. Although not directly tested here, the importance of parameters 

like saturated water content (SAT in APSIM), water holding capacity (DUL in APSIM) 

and wilting point (LL15 in APSIM) to all above-mentioned processes are well established. 

The accuracy of these parameters are therefore vital to the uncertainty of the in-season N 

recommendation However, due to a lack of reliable subfield soil sampling that covers a 

large geographic span, we are not able to do spatially explicit calibration for these 

parameters at this stage. Water conductivity in theory can be calibrated against soil 

moisture measurements. Although continuous observations for different soil depth exist 

at stations affiliated with various networks (e.g. AmeriFlux, llinois Climate Network and 

ISU Soil Moisture Network), their very limited spatial distribution along with 

considerable soil heterogeneity making it unsuitable to directly compare the simulated 

soil moisture to any measurements from a neighboring station (not to mention the nearest 

station is usually miles away). A possible way to use these measurements is to do 

calibration at individual sites, and then extrapolate the optimized parameters based on 

their relationships with more readily available information such as soil texture. However, 

the numerical uncertainty introduced in the procedures of calibration may jeopardize this 

method, making it no better than those literature methods. For example, Saxton et al. 

(1986) introduced a method (Saxton method hereafter) to estimate generalized soil 

hydraulic characteristics from soil texture, and released an updated version with 

additional field measurements (Saxton and Rawls, 2006). We compared soil hydraulic 

parameters calculated by the Saxton method to values obtained from SSURGO, and 



 124 

found the two sets were close to each. Therefore in this study, we primarily use parameter 

values in SSURGO database, while filling missing values with the Saxton method. 

Determining SOC is even more challenging, because the traditional soil sampling is labor 

and cost intensive and suffers from a high spatial uncertainty (Scharf 2015). Simple, 

reliable and scalable methods to estimate the spatial heterogeneity in SOC are still 

lacking. Soil reflectance (color) has the potential to fill this gap, but results obtained 

using this method so far can be only treated as preliminary (Gomez et al. 2008; Ladoni et 

al. 2010; Nocita et al. 2012). In our study, the mismatch between subfield variation of 

soil fertility and bare soil colors partly revealed the challenges ahead, and will be 

investigated further in the future studies.  

 Calibration with the SCEM-UA method improved the 2014 LAI simulation, 

especially for the V5/V6 stage when rapid canopy growth starts in response to a high rate 

of N uptake (6. 5). The root mean square error (RMSE) decreased from 0.53 for the 

simulation with default parameters to 0.26 for the optimized set. For the 2015, using the 

optimized parameters increases the simulated average LAI on June 22nd from 0.053 to 

0.269, and hence three times more plant N uptake than simulations with default 

parameters. Our calibration showed that assimilating WDRVI data to the APSIM model 

can reduce the uncertainty in LAI simulation, which further improves the prediction of 

crop growth and N uptake. One caveat to be mentioned is that the number of WDRVI 

images used for calibration is only a little more than the number of parameters to be 

calibrated, thus lowers the credibility and efficiency of our calibration. In the future, we 

will increase the collection frequency of RapidEye imagery up to weekly so that the 

growing season (especially early stages) will be covered by more samples. 
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5.3.3 Sub-field sidedress recommendation 

 By the time when N sidedress was requested, !!!"" via denitrification and 

leaching for Holmes’ farm was considerable (Figure 5.7a), accounting for an average of 

20% of the spring N application. Subfield variations were mostly delineated by soil types 

(Figure 5.4b), reconfirming the leading role of soil property for determining N loss in this 

region. However, the highest loss mainly came from the Ashkum silty clay loam soil 

(map unit 232A) with greater SOM, suggesting higher spring mineralization might have 

led to greater N loss under specific conditions. The Variations in !!"#$%& were small, 

with the majority grids showing N uptake between 20-25 kg/ha N (Figure 5.7b), 

indicating substantial N uptake had not yet happened at this stage. The spatial patterns of 

!!"#$%& do not follow either soil types or management zones, rather were close to the 

spatially explicit seeding rates (results not show). Grids with dense corn population in 

general showed higher N uptakes. Another interesting phenomenon was higher !!"#$%& 

patches occasionally came along with lower !!"## compared to its surroundings with the 

same soil properties (e.g. !!"#$%& patches with the darkest green in the top-right and 

middle-left part of the field), indicating appropriate rooting density can improve fertilizer 

use efficiency (Garnett et al. 2009). The subfield variability of !!"#$%&"' was primarily 

characterized by indigenous soil supply potential, with !!"## and !!"#$%& played 

secondary roles (Figure 5.7c). Highest !!"#$%&"' (> 88% of the spring application amount) 

occurred in Elliot silty clay loam soil (map unit 146B2), while lowest values occurred in 

Ashkum silty clay loam soil. The recommended !!"#$#%$!! rates followed the 

management zone distribution, with secondary variability further identified by other 
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factors (Figure 5.7d). Very high rates (> 140 kg/ha) accounted for 24.2% of the total field, 

because these parts had the high yield potential. The field average sidedress rate was 

113.2 kg/ha, and is close to the difference between the !!"#$%! and flat rate of pre-plant 

application. Thus the strategy of variable fertilizing did not necessary increase the total 

fertilizer demand, but rather allocated resources from zones with high loss potentials to 

the ones with high use efficiency. A RapidEye image was acquired on July-14th, 2015, 

approximately two weeks after the sidedress, and converted to the WDRVI (Figure 5.7e). 

Patches with high WDRVI values (i.e. denser corn canopy) closely followed the 

!!"#$#%$!!, showing the field crop responded quickly to the sidedress fertilizer. The low 

WDRVI strips on the imagery border were likely due to delay in N discharge resulting 

from tractor operations. 

 It should be noted that without assigning a spatial adjustment term (!) in Eqn-1, 

the recommended N sidedress had much smaller variations (range from 95.6 to 105.6 

kg/ha). The lack of spatial variability was somewhat surprising given the heterogeneity 

that existed due to combination of soil type, elevation and plant population, but the same 

was also reported in other studies (e.g. Derby et al. 2007). This was mainly because the 

!!"## was small as it was not been long since the spring N application, and !!"#$%& was 

similar within the field before rapid growth occurred on V5/V6 stage. Adding adjustment 

term thus helped to account for the spatial variation in N denitrification, leaching and 

differential crop yield potential. After the sidedress, our model can run progressively by 

assimilating new weather data and monitor the soil and crop N state throughout the 

remaining growing season to alert when N stress occurred. 
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 The harvested yield for 2015 differed substantially within the field, with low yield 

patches amounted less than 6 tons/ha and highest yield up to 12.8 tons/ha (Figure 5.7f). 

The spatial variability in yield is comparable with variable sidedress rates (Figure 5.7d), 

with higher yield generally occurred in places where greater sidedress N was applied. The 

low yield strip stretching from the southeast to the west is also easily identified, matching 

closely to the low fertilizing zone in Figure 6d. We also analyzed the zonal mean yield 

with four different ways of delineating the field (Figure 5.8). Average yield were close 

for seeding rates between 30,000 and 36,000 per acre, and was approximately 2.6 tons/ha 

higher than the average yield from zones with 28,000 populations per acre (Figure 5.8a). 

However, further increasing the seeding rate to 38,000 or 39,000 per acre decreased the 

average yield, possibly because higher plant population competed for resources. As was 

expected, average yield increases gradually along the multi-year WDRVI derived 

productivity zones (Figure 5.8b), showing our method to delineate the productivity zone 

is robust. Yield differences are insignificant among major soil map units, while within 

map unit standard deviations are large. This further confirms the fact that the 

heterogeneity of some key soil properties is overlooked by the SSURGO database. 

Average yield in general increased with the level of sidedress rate, with the marginal 

benefit more obvious for lower levels (Figure 5.8d). Interestingly, zones with “>140” 

kg/ha sidedress N on average yielded slightly less than those with “120-140” kg/ha 

sidedress N, indicating the saturated fertilizer amount for this field is roughly achieved at 

this level if no other management strategy is applied. 
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5.4 Conclusions 

 In this study, we presented a crop model and satellite imagery based within field 

scale recommendation tool of variable rate N fertilization at subfield scales for the US 

Corn system. We used the crop model simulations to track the soil N dynamics, while the 

satellite images were used to delineate management zones, to train the model, and to 

assess the crop growth status. The tool successfully captured the subfield variability of 

crop systems. The recommended sidedress N rates enhanced zones with high yield 

potential, while prevented over-fertilization at zones with low yield potentials. Model 

sensitivity analysis and calibrations indicate that soil hydraulic properties and soil organic 

carbon content are critical to the reliability of our sidedress N prescription. Cumulative N 

uptake upon the time of sidedress can be well constrained by calibrating the LAI. The 

benefit from sidedress decreases with the increase of fertilizer amount. 

 Compared with other N recommendation tools, our framework is efficient, 

accurate and scalable and requires less upfront information from users. Although the 

framework presented here can be easily adapted to other crops or regions outside the US, 

two caveats should be noted. First, information on soil properties is the major source of 

uncertainty, but high quality data for calibration that covers a large are is unavailable at 

this time. More creative ways of using multiple sources of data need to be further 

explored. Microwave and hyperspectral remote sensing for mapping soil structure and 

organic matter has good potentials to replace the direct soil sampling, and will be 

investigated in our future research. Second, RapidEye imagery can well capture the crop 

status on clear days, but may not on cloudy days. Thus higher frequency of image 

collection and complementary data sources need to be considered to use this tool. 
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Table 5.1 N credits from legume crops and manures.  

Type Application N credit (lb/ac) 
Legume 

Alfalfa dense  100* 
Alfalfa dense  40 
Bean  25 
Clover dense  50 
Clover thin  0 
Fallow  10 
Soya  40 
Sugarbeet  50 
Vetch  50 

Manure 
Beef_solid Broadcast 3.5 

 Incorporated 5.9 
Beef_liquid Broadcast 6.7 

 Incorporated 11.8 
Dairy_solid Broadcast 2.3 

 Incorporated 4.6 
Dairy_liquid Broadcast 6.2 

 Incorporated 12.4 
Poultry_solid Broadcast 18.8 

 Incorporated 24.4 
Poultry_liquid Broadcast 23.5 

 Incorporated 31.0 
Turkey_solid Broadcast 21.6 

 Incorporated 30.2 
Turkey_liquid Broadcast 28.8 

 Incorporated 37.2 
Swine_solid Broadcast 4.9 

 Incorporated 8.5 
Swine_liquid Broadcast 14.2 
  Incorporated 20.8 
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Table 5.2 Parameter definitions and initial ranges for sensitivity analysis 
Variable Definition LB UB Units 

sw Initial soil water content; same for all layers 0.2 1 mm/mm 

SummerCona Stage II evaporation coefficient for summer 2 6 Mm/day0.5 

SummerU Stage I soil evaporation coefficient for 
summer 

3 9 mm 

WinterCona Stage II evaporation coefficient for winter 2 6 mm^0.5 

WinterU Stage I soil evaporation coefficient for winter 3 9 mm 

diffus_const Coefficient for calculating soil water 
diffusivity 

30 100 mm/day0.5 

diffus_slope Coefficient for calculating soil water 
diffusivity 

10 40  

cn2_bare Runoff curve number for bare soils 40 90  

cn_red Maximum reduction in curve number when 
residual cover = cn_cov 

10 30  

cn_cov Threshold for residual cover 5 100 % 

swcon Soil water conductivity 0.05 1  

root_cn C/N ratio for root residuals 30 50  

soil_cn C/N ratio for soil organic matters (SOM) 10 15  

oc Soil organic content 0.5 3.5 % 

fbiom Fraction of BIOM pool in SOM for top layer; 
assume decrease exponentially for deeper 
layers 

0.02 0.08  

finert Fraction of INERT in SOM for top layer; 
assume increase exponentially for deeper 
layers 

0.4 0.85  

ph Soil pH values; assume constant for all layers 6 7.5  

no3ppm Residual inorganic N in forms of NO3-N; 
assume constant for all layers 

0 3 mu g /g 

density Crop population density 6 9 plant/m2 

  



 131 

 

Figure 5.1 Schematic diagram of nitrogen (N) cycling in a field. Corn growth relies on 
the uptake inorganic N, in forms of nitrate (NO3

-) and ammonium (NH4
+), throughout the 

growing season. In organic N mainly comes from fertilizer input and indigenous N 
supply released by soil organic matter, but is susceptible to losses through several 
processes, including denitrification and volatilization to the atmosphere and leaching to 
the groundwater. Plant residues (e.g. dead roots and leaves) brings a portion of N back to 
the soil organic carbon pool. Organic and inorganic N interconvert with each other 
through mineralization and immobilization. 
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Figure 5.2 A schematic diagram for the workflow used in this study to generate the in-
season N sidedress. 
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Figure 5.3 Study area of Holmes’ farm (the focus field is highlighted by the yellow 
polygon). 
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Figure 5.4 Spatial delineation of Holmes’ farm according to (a) seeding rates in 
thousands population per acre (k/ac; 1 plants/m2 ≈ 4 k/ac), (b) soil map units from 
SSURGO database (“146A” denotes Elliot silt loam soil, “146B2” denotes Elliot silty 
clay loam soil, “149A” denotes Brenton silt loam soil, “69A” denotes Milford silty clay 
loam soil and “232A” denotes Ashkum silty clay loam soil), and (c) relative productivity 
derived from multi-year averaged WDRVI data. 
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Figure 5.5 Total effects of parameter sensitivity for cumulative (a) plant N uptake, (b) 
denitrification, (c) N loss through leaching, and (d) net N mineralization under five 
generic soil conditions. 
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Figure 5.6 Model simulated leaf area index (LAI) with default (blue) and calibrated (red) 
parameters. Black triangle represents the 90% quantile of field average LAI converted 
from the WDRVI. 
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Figure 5.7 The spatial variation of model simulated (a) N loss, (b) plant N uptake, (c) N 
leftover in soil, and (d) N sidedress rate. (e) LAI from RapidEye imagery acquired on 
July-14, 2015. (f) harvested yield for 2015. 
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Figure 5.8 Zonal statistics for average yield. Zones are delineated according to (a) 
seeding rate, (b) relative productivity, (c) SSURGO map unit, and (d) N sidedress rate. 
Error bars represent one standard deviation. 
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CHAPTER 6. CONCLUDING REMARKS AND FUTURE WORK 

6.1  Summary and conclusions 

 The increasingly severe and frequent extreme climatic events, such as heat waves 

and droughts, are impairing crops growth and threatening the food security. Although 

elevated atmospheric CO2 may partially compensate yield losses caused by adverse 

climate, and adaptation of crop breeding and management practice can increase the 

resilience of agriculture system to climate change, the high uncertainty in the climate 

projections makes planned adaptation very difficult. Understanding climatic risks to food 

security in face of the complex interactions of biophysical, social-economical and 

political factors at various scales is one part of the challenges (Ewert et al., 2015). On the 

other hand, any knowledge advances, eventually, will need to be translated to tangible 

recommendations or tools to farmers, who are required to make a series of decisions 

throughout a growing season. Such complexities call for more integrated cropping system 

models and novel approaches to use these models, while this dissertation is exactly an 

early step in this direction. 

 Chapter 2 evaluates the algorithms that determine impacts of heat and drought 

stress on maize in 16 major crop models by incorporating these algorithms into the 

APSIM, and running an ensemble of simulations at typical farms from the US Midwest. 

Results show that both daily mean temperature and daylight temperature can be used to 
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simulate heat stress as long as the corresponding algorithm is parameterized correctly; 

however, current parameterizations in most models favor the use of daylight temperature 

even though the algorithm was designed for using daily mean temperature. Different 

drought algorithms (i.e. a function of soil water content, of soil water supply to demand 

ratio and of actual to potential transpiration ratio) simulate considerably different patterns 

of water shortage over the growing season, but nonetheless predicted similar decreases in 

annual yield. The review of algorithms in 16 crop models suggests that the impacts of 

heat and drought stress on crop yield can be best described by models that: (i) incorporate 

event-based descriptions of heat and drought stress, (ii) consider the effects of nighttime 

warming, and (iii) coordinate the interactions among multiple stresses. 

 Chapter 3 quantifies the current and future yield responses of US rainfed maize 

and soybean to climate extremes, and for the first time characterizes spatial shifts in the 

relative importance of temperature, heat and drought stress. By simulating maize and 

soybean yields with APSIM driven by the 12 km WRF Model downscaled future climate 

scenarios at two time slices (1995-2005 and 2085-2094), this study concludes that: (i) 

yield losses and inter-annual variability are greater in the core production area than in the 

remaining US by the late 21st century, with the magnitude of impacts highly depending 

on the current climate sensitivity and vulnerability; (ii) elevated CO2 partially offsets the 

climatic yield gaps and reduces interannual yield variability, and effect is more prominent 

in soybean than in maize; (iii) drought will continue to be the largest threat to US rainfed 

maize and soybean production, but shifts in the geographic distributions of dominant 

stressors are characterized by increases in the concurrent stress. 
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 Chapter 5 presents a prototype of crop model and satellite imagery based within-

field scale N sidedress prescription tool for the US rainfed maize system. As an early 

attempt to integrate advances in multiple areas for precision agriculture, this tool 

successfully captures the subfield variability of N dynamics and gives reasonable 

spatially explicit sidedress N recommendations. The prescription enhances zones with 

high yield potential, while prevents over-fertilization at zones with low yield potentials. 

Compared with existing N recommendation tools, the framework shown here is efficient, 

scalable and requires less upfront information from users. Model sensitivity analysis and 

calibrations indicate that soil hydraulic properties and soil organic carbon content are 

critical to the reliability of the sidedress N prescription. Future improvements could be 

achieved by focusing on: (i) digital soil mapping that retrieves more heterogeneity in soil 

fertility and hydraulic properties, and (ii) satellite data assimilation with the utilization of 

additional missions and advanced algorithms so as to better constrain the simulation of 

crop phenology and development. 

  

6.2  Reflections and future work 

   Although results presented in this dissertation are promising and encouraging, 

some generic limitations that span across modeling studies are inevitable, such as 

inadequate model structure, the propagation of uncertainties in model parameterization 

and input data. More efforts are thus needed in the future in order to overcome these 

problems. However, what I really want to reflect in this section, as the end of my 

dissertation, is the challenge of crop model scalability. My past few years of research and 

job interview experience has repeatedly confirmed me a truth that both the academia and 
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industry face a bottleneck of model scalability and geospatial extrapolation. At site level, 

with sufficient local monitoring and measurements as training sample, it is no longer an 

unattainable task for crop modelers to come up with a localized model with ~90% 

accuracy by tuning model parameters using modern optimization techniques (e.g. 

Archontoulis et al., 2014). But scaling up this measurement-calibration-application 

framework to a large region with spatial and temporal heterogeneity remains a significant 

challenge since there is often no ground measurement can be utilized to train a model 

beyond research stations, thus lowers the credibility and universality of crop and 

cropping system models. 

 By their nature of spatial coverage and frequent revisit, satellite imagery has long 

been incorporated into crop models as a simulation steering (Bouman et al., 1992), and 

becomes the most popular substitutions of ground measurements with the recent 

development in public and commercial satellite missions (Lobell, 2013). Sequential data 

assimilation (e.g. remotely-sensed vegetation indices) to integrate models and 

observations for minimizing the simulation uncertainty is now robust in terms of the 

methodology, and the Monte Carlo-based Ensemble Kalman Filter (EnKF) is one such 

technique with many successful applications in agriculture for the research purpose (Inez 

et al., 2013). Recently, scientists have started to incorporate radiative transfer models into 

cropping system models in order to utilize additional spectral information beyond the 

commonly used vegetation indices derived merely from red and near-infrared bands 

(Machwitz et al., 2014; Hank et al., 2015). Yet the progresses so far are still not enough 

for real farming purpose. For example, current data assimilation algorithms are 

computationally heavy, thus cannot afford applications on massive scales yet need to be 
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delivered within a few days. In addition, one underlying assumption of using satellite 

data is that errors in the data are acceptable to propagate throughout the models (Inez et 

al., 2013), whereas most existing remote sensing measurements are uncertain due to a 

lack of missions that acquires data with both sufficient spatial resolutions to identify 

individual fields and within field variability, and adequate frequency of temporal 

coverage to ensure several cloud-free images during a growing season (Lobell, 2013). 

Some commercial companies, such as the Planet Lab INC., have shed light on this 

dilemma because they are sending over 100 satellites into the orbit to watch the entire 

global, every single day, with 3-5m resolutions. 

 While remote sensing is able to provide images of aboveground crops and shallow 

topsoil, it is so far weak in retrieving variables of soil properties. Although soil hydraulic 

parameters can be inversely estimated by matching model simulations with aboveground 

satellite data such as LAI and ET (Charoenhirunyinyos et al., 2011), and soil organic 

content or soil fertility can be linked to soil reflectance (Ladoni et al., 2010), these 

techniques are still premature and far away from being capable to generate estimation 

with ~90% accuracy. In this sense, digital soil mapping (DSM) that combines expert 

knowledge in soil formation and the wealth of existing soil survey database could be one 

direction with full potential. Ashtekar & Owens (2013) presented a DSM method that 

predict soil functions by selective sampling and fuzzy logic approach that utilizes 

multiple terrain attributes, with the assumption that water movement and redistribution 

across the landscape is the driving force of functional difference and topography controls 

water movement. Crop modeling and satellite data can further facilitate DSM by 

providing estimates of some variables that co-vary with specific soil property. 
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 The incorporation of new mechanisms into crop models will also help to reduce 

the spatial uncertainty in model predictions. James W. Kirchner, an eminent expert in 

earth surface processes, wrote in his recent paper (Kirchner, 2016) that, “It is often tacitly 

assumed/hoped that spatial heterogeneity problem will be solved or masked by model 

calibration”. He questioned why the underlying mechanisms (or relationship between 

variables), which are supposed to be universally true, for system models failed to fit 

across scales without re-calibrating. His argument was that many of those seemingly right 

relationships only validate under certain circumstances, thus suffer from aggregation 

biases. Alternatively one might expect to use some predictors that are spatially stable in 

its relationship with the dependent variable, and Dr. Kirchner successfully found one for 

his research purpose. Unfortunately, the crop modeling community has too little choices 

of variables that are free of spatial aggregation errors when developing yield predictions; 

vegetation indices such as LAI might count one. The recent advances in the retrieval of 

solar-induced fluorescence (SIF) signal have opened up a new approach (or a new 

generation of crop models) to estimate the crop yield and to directly monitor the impact 

of environmental stresses (Guanter et al., 2014; Guan et al., 2015), because the 

relationship between SIF and crop photosynthesis activity (i.e. electron transport rate) is 

less susceptible to aggregation errors. But the research of SIF is still in the very early 

stage. 

 While the way forward is deemed to have challenges and uncertainty, I am very 

happy that my past few years of study and research have eventually helped me figure out 

an area that is full of potential and possibility, and most importantly, is full of my passion. 

I am fully prepared for a bigger stage to continue my agriculture modeling research.



 

 

 

 

 

 

 

 

 

REFERENCES



 145 

REFERENCES 

Ainsworth EA, Leakey ADB, Ort DR, Long SP (2008) FACE-ing the facts: 
inconsistencies and interdependence among field, chamber and modeling studies of 
elevated [CO 2 ] impacts on crop yield and food supply. New Phytologist, 179, 5–9. 

Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of 
tropospheric ozone on net primary productivity and implications for climate change. 
Annual review of plant biology, 63, 637–61. 

Alderman P, Quilligan E, Asseng S, Ewert F, Reynolds M (2013) Modeling wheat 
response to high teperature. 142 pp. 

Allen RG, Pereira LS, Raes D, Smith M, W a B (1998) Crop evapotranspiration - 
Guidelines for computing crop water requirements - FAO Irrigation and drainage 
paper 56. Irrigation and Drainage, 1–15. 

Anapalli SS, Ma L, Nielsen DC, Vigil MF, Ahuja LR (2005) Simulating planting date 
effects on corn production using RZWQM and CERES-maize models. Agronomy 
Journal, 97, 58–71. 

Anderson WK (2010) Closing the gap between actual and potential yield of rainfed 
wheat. The impacts of environment, management and cultivar. Field Crops 
Research, 116, 14–22. 

Angulo C, Rötter R, Lock R, Enders A, Fronzek S, Ewert F (2013) Implication of crop 
model calibration strategies for assessing regional impacts of climate change in 
Europe. Agricultural and Forest Meteorology, 170, 32–46. 

Archontoulis S V., Miguez FE, Moore KJ (2014a) A methodology and an optimization 
tool to calibrate phenology of short-day species included in the APSIM PLANT 
model: Application to soybean. Environmental Modelling & Software, 62, 465–477. 

Archontoulis S V., Miguez FE, Moore KJ (2014b) Evaluating APSIM Maize, Soil Water, 
Soil Nitrogen, Manure, and Soil Temperature Modules in the Midwestern United 
States. Agronomy Journal, 106, 1025.



 146 

Ashtekar JM, Owens PR (2013) Remembering Knowledge: An Expert Knowledge Based 
Approach to Digital Soil Mapping. Soil Horizons, 54. 

Asseng S., Ewert F., Rosenzweig C. et al. (2013) Uncertainty in simulating wheat yields 
under climate change. Nature Climate Change, 3, 827–832. 

Barlow KM, Christy BP, O’Leary GJ, Riffkin PA, Nuttall JG (2015) Simulating the 
impact of extreme heat and frost events on wheat crop production: A review. Field 
Crops Research, 171, 109–119. 

Basso B, Ritchie J (2014) Temperature and drought effects on maize yield. Nature 
Climate Change, 4, 48823. 

Bassu S, Brisson N, Durand J-LL et al. (2014) How do various maize crop models vary 
in their responses to climate change factors? Global Change Biology, 20, 2301–20. 

Bernacchi CJ, Morgan PB, Ort DR, Long SP (2005) The growth of soybean under free air 
[CO(2)] enrichment (FACE) stimulates photosynthesis while decreasing in vivo 
Rubisco capacity. Planta, 220, 434–46. 

Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal 
conductance of soybean under open-air elevation of [CO2] are closely coupled with 
decreases in ecosystem evapotranspiration. Plant physiology, 143, 134–44. 

Bezlepkina I, Reidsma P, Sieber S, Helming K (2011) Integrated assessment of 
sustainability of agricultural systems and land use: Methods, tools and applications. 
Agricultural Systems, 104, 105–109. 

Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2015) Is there potential to adapt 
soybean (Glycine max Merr.) to future [COⁿ]? An analysis of the yield response of 
18 genotypes in free-air COⁿ enrichment. Plant, cell & environment, 38, 1765–74. 

Boote KJ, Jones JW, White JW, Asseng S, Lizaso JI (2013) Putting mechanisms into 
crop production models. Plant, Cell and Environment, 36, 1658–1672. 

Borrás L, Curá JA, Otegui ME (2002) Maize kernel composition and post-flowering 
source-sink ratio. Crop Science, 42, 781–790. 

Borrás L, Maddonni G., Otegui M. (2003) Leaf senescence in maize hybrids: plant 
population, row spacing and kernel set effects. Field Crops Research, 82, 13–26. 

BOUMAN BAM (1992) Linking physical remote sensing models with crop growth 
simulation models, applied for sugar beet. International Journal of Remote Sensing, 
13, 2565–2581. 



 147 

Bouman BAM, van Kasteren HWJ, Uenk D (1992) Standard relations to estimate ground 
cover and LAI of agricultural crops from reflectance measurements. European 
Journal of Agronomy, 1, 249–262. 

Boyer JS, Byrne P, Cassman KG et al. (2013) The U.S. drought of 2012 in perspective: A 
call to action. Global Food Security, 2, 139–143. 

Bunce JA (2014) Limitations to soybean photosynthesis at elevated carbon dioxide in 
free-air enrichment and open top chamber systems. Plant science!: an international 
journal of experimental plant biology, 226, 131–5. 

Butler EE, Huybers P (2013) Adaptation of US maize to temperature variations. Nature 
Climate Change, 3, 68–72. 

Carberry PSS, Muchow RCC, McCown RLL (1989) Testing the CERES-Maize 
simulation model in a semi-arid tropical environment. Field Crops Research, 20, 
297–315. 

Challinor AJ, Wheeler TR, Craufurd PQ, Slingo JM (2005) Simulation of the impact of 
high temperature stress on annual crop yields. Agricultural and Forest Meteorology, 
135, 180–189. 

Challinor AJ, Wheeler T, Hemming D, Upadhyaya HD (2009) Ensemble yield 
simulations: Crop and climate uncertainties, sensitivity to temperature and genotypic 
adaptation to climate change. Climate Research, 38, 117–127. 

Chapin III, FS, Matson PA and Vitousek P (2011) Principles of terrestrial ecosystem 
ecology. Springer Science & Business Media. 

Chapman SC (2008) Use of crop models to understand genotype by environment 
interactions for drought in real-world and simulated plant breeding trials. Euphytica, 
161, 195–208. 

Charoenhirunyingyos S, Honda K, Kamthonkiat D, Ines AVM (2011) Soil moisture 
estimation from inverse modeling using multiple criteria functions. Computers and 
Electronics in Agriculture, 75, 278–287. 

Collatz GJ, Ribas-Carbo M, Berry J a. (1992) Coupled photosynthesis-stomatal 
conductance model for leaves of C4 plants. Australian Journal of Plant Physiology, 
19, 519–539. 

Cooper M, Gho C, Leafgren R, Tang T, Messina C (2014) Breeding drought-tolerant 
maize hybrids for the US corn-belt: Discovery to product. Journal of Experimental 
Botany, 65, 6191–6194. 



 148 

Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nature Climate Change, 
2, 1–6. 

Degener JF, Kappas M (2015) Differences in biomass yield development of early, 
medium, and late maize varieties during the 21st century in Northern Germany. 
Environmental Sciences Europe, 27, 10. 

DERMODY O, LONG SP, McCONNAUGHAY K, DeLUCIA EH (2008) How do 
elevated CO 2 and O 3 affect the interception and utilization of radiation by a 
soybean canopy? Global Change Biology, 14, 556–564. 

Deryng D, Sacks WJJ, Barford CCC, Ramankutty N (2011) Simulating the effects of 
climate and agricultural management practices on global crop yield. Global 
Biogeochemical Cycles, 25, 1–18. 

Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield 
response to extreme heat stress under multiple climate change futures. 
Environmental Research Letters, 9, 34011–13. 

Dietzel R, Liebman M, Ewing R, Helmers M, Horton R, Jarchow M, Archontoulis S 
(2016) How efficiently do corn- and soybean-based cropping systems use water? A 
systems modeling analysis. Global change biology, 22, 666–81. 

Diffenbaugh NS, Ashfaq M (2010) Intensification of hot extremes in the United States. 
Geophysical Research Letters, 37, n/a–n/a. 

Djanaguiraman M, Prasad PV V., Boyle DL, Schapaugh WT (2011) High-Temperature 
Stress and Soybean Leaves: Leaf Anatomy and Photosynthesis. Crop Science, 51, 
2125. 

Donatelli M, Bregaglio S, Confalonieri R, De Mascellis R, Acutis M (2014) A generic 
framework for evaluating hybrid models by reuse and composition – A case study 
on soil temperature simulation. Environmental Modelling & Software, 62, 478–486. 

Drewry DT, Kumar P, Long SP (2014) Simultaneous improvement in productivity, water 
use, and albedo through crop structural modification. Global change biology, 20, 
1955–67. 

Dumont B, Leemans V, Mansouri M, Bodson B, Destain J-P, Destain M-F (2014) 
Parameter identification of the STICS crop model, using an accelerated formal 
MCMC approach. Environmental Modelling & Software, 52, 121–135. 

Eitzinger J, THALER S, SCHMID E et al. (2013) Sensitivities of crop models to extreme 
weather conditions during flowering period demonstrated for maize and winter 
wheat in Austria. The Journal of Agricultural Science, 151, 813–835. 



 149 

Elnesr MN, Alazba AA (2016) A spreadsheet model to select vegetables planting dates 
for maximum yield and water use efficiency. Computers and Electronics in 
Agriculture, 124, 55–64. 

Ewert F, Rötter RP, Bindi M et al. (2015) Crop modelling for integrated assessment of 
risk to food production from climate change. Environmental Modelling & Software, 
72, 287–303. 

Eyshi Rezaei E, Webber H, Gaiser T, Naab J, Ewert F (2015) Heat stress in cereals: 
Mechanisms and modelling. European Journal of Agronomy, 64, 98–113. 

Geng G, Wu J, Wang Q et al. (2016) Agricultural drought hazard analysis during 1980-
2008: a global perspective. International Journal of Climatology, 36, 389–399. 

Gerde JA, Tamagno S, Di Paola JC, Borrás L (2016) Genotype and Nitrogen Effects over 
Maize Kernel Hardness and Endosperm Zein Profiles. Crop Science. 

González-Dugo MP, Moran MS, Mateos L, Bryant R (2006) Canopy temperature 
variability as an indicator of crop water stress severity. Irrigation Science, 24, 233–
240. 

Grant RF (1989) Simulation of carbon assimilation and partitioning in maize. Agronomy 
Journal, 81, 563–571. 

Grassini P, Yang H, Cassman KG (2009) Limits to maize productivity in Western Corn-
Belt: A simulation analysis for fully irrigated and rainfed conditions. Agricultural 
and Forest Meteorology, 149, 1254–1265. 

Guan K, Pan M, Li H et al. (2015) Photosynthetic seasonality of global tropical forests 
constrained by hydroclimate. Nature Geoscience, 8, 284–289. 

Guan K, Berry JA, Zhang Y, Joiner J, Guanter L, Badgley G, Lobell DB (2016) 
Improving the monitoring of crop productivity using spaceborne solar-induced 
fluorescence. Global change biology, 22, 716–26. 

Guanter L, Zhang Y, Jung M et al. (2014) Global and time-resolved monitoring of crop 
photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy 
of Sciences of the United States of America, 111, E1327–33. 

Hammer GL, Dong Z, McLean G et al. (2009) Can Changes in Canopy and/or Root 
System Architecture Explain Historical Maize Yield Trends in the U.S. Corn Belt? 
Crop Science, 49, 299. 



 150 

Hammer GL, Van Oosterom E, McLean G, Chapman SC, Broad I, Harland P, Muchow 
RC (2010) Adapting APSIM to model the physiology and genetics of complex 
adaptive traits in field crops. Journal of Experimental Botany, 61, 2185–2202. 

Hank T, Bach H, Mauser W (2015) Using a Remote Sensing-Supported Hydro-
Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth 
and Yield: Application for Wheat in Central Europe. Remote Sensing, 7, 3934–3965. 

Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2014) Characterizing 
drought stress and trait influence on maize yield under current and future conditions. 
Global Change Biology, 20, 867–878. 

Hartman GL, West ED, Herman TK (2011) Crops that feed the World 2. Soybean—
worldwide production, use, and constraints caused by pathogens and pests. Food 
Security, 3, 5–17. 

Hatfield JL, Boote KJ, Kimball BA et al. (2011) Climate impacts on agriculture: 
Implications for crop production. Agronomy Journal, 103, 351–370. 

Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root 
development and architecture. Current Opinion in Plant Biology, 12, 172–177. 

Holzworth DP, Huth NI, deVoil PG et al. (2014) APSIM – Evolution towards a new 
generation of agricultural systems simulation. Environmental Modelling & Software, 
62, 327–350. 

Holzworth DP, Snow V, Janssen S et al. (2015) Agricultural production systems 
modelling and software: Current status and future prospects. Environmental 
Modelling & Software, 72, 276–286. 

Honda K, Ines AVM, Yui A, Witayangkurn A, Chinnachodteeranun R, Teeravech K 
(2014) Agriculture Information Service Built on Geospatial Data Infrastructure and 
Crop Modeling. In: Proceedings of the 2014 International Workshop on Web 
Intelligence and Smart Sensing - IWWISS ’14, pp. 1–9. ACM Press, New York, New 
York, USA. 

Hussain MZ, Vanloocke A, Siebers MH et al. (2013) Future carbon dioxide concentration 
decreases canopy evapotranspiration and soil water depletion by field-grown maize. 
Global change biology, 19, 1572–84. 

Ines AVM, Das NN, Hansen JW, Njoku EG (2013) Assimilation of remotely sensed soil 
moisture and vegetation with a crop simulation model for maize yield prediction. 
Remote Sensing of Environment, 138, 149–164. 



 151 

IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate 
Change Adaptation: Special Report of the Intergovernmental Panel on Climate 
Change, Vol. 1. 582 pp. 

Karp A, Richter GM (2011) Meeting the challenge of food and energy security. Journal 
of experimental botany, 62, 3263–71. 

Keating B. A, Carberry P. S, Hammer G. L et al. (2003) An overview of APSIM, a model 
designed for farming systems simulation. In: European Journal of Agronomy, Vol. 
18, pp. 267–288. 

Kirchner JW (2016) Aggregation in environmental systems – Part 1: Seasonal tracer 
cycles quantify young water fractions, but not mean transit times, in spatially 
heterogeneous catchments. Hydrology and Earth System Sciences, 20, 279–297. 

Koenker RW, Bassett GW (1978) Regression Quantiles. Econometrica, 46, 33–50. 

Kotsuki S, Tanaka K (2015) SACRA-a method for the estimation of global high-
resolution crop calendars from a satellite-sensed NDVI. Hydrology and Earth 
System Sciences, 19, 4441–4461. 

Kucharik CJ (2006) A multidecadal trend of earlier corn planting in the central USA. 
Agronomy Journal, 98, 1544–1550. 

Kucharik CJ (2008) Contribution of planting date trends to increased maize yields in the 
central United States. Agronomy Journal, 100, 328–336. 

Kucharik CJ, Brye KR (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate 
loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. 
Journal of Environment Quality, 32, 247–268. 

Kumudini S, Andrade FH, Boote KJ et al. (2014) Predicting maize phenology: 
Intercomparison of functions for developmental response to temperature. Agronomy 
Journal, 106, 2087–2097. 

Kurtz B, Gardner CAC, Millard MJ, Nickson T, Smith JSC (2016) Global Access to 
Maize Germplasm Provided by the US National Plant Germplasm System and by 
US Plant Breeders. Crop Science. 

Ladoni M, Bahrami H, Alavipanah S, Norouzi A (2010) Estimating soil organic carbon 
from soil reflectance: a review. Precision Agriculture, 11, 82–99. 

 



 152 

Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP 
(2006) Photosynthesis, productivity, and yield of maize are not affected by open-air 
elevation of CO2 concentration in the absence of drought. Plant physiology, 140, 
779–90. 

Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated 
CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons 
from FACE. In: Journal of Experimental Botany, Vol. 60, pp. 2859–2876. 

Lehmann N, Finger R, Klein T, Calanca P, Walter A (2013) Adapting crop management 
practices to climate change: Modeling optimal solutions at the field scale. 
Agricultural Systems, 117, 55–65. 

Leitner D, Felderer B, Vontobel P, Schnepf A (2014) Recovering root system traits using 
image analysis exemplified by two-dimensional neutron radiography images of 
lupine. Plant physiology, 164, 24–35. 

Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on 
global crop production. Nature, 529, 84–87. 

Liu Z, Hubbard KG, Lin X, Yang X (2013) Negative effects of climate warming on 
maize yield are reversed by the changing of sowing date and cultivar selection in 
Northeast China. Global Change Biology, 19, 3481–3492. 

Lizaso JI, Batchelor WD, Boote KJ, Westgate ME (2005) Development of a leaf-level 
canopy assimilation model for CERES-Maize. Agronomy Journal, 97, 722–733. 

Lobell DB (2013) The use of satellite data for crop yield gap analysis. Field Crops 
Research, 143, 56–64. 

Lobell DB, Gourdji SM (2012) The Influence of Climate Change on Global Crop 
Productivity 1. Plant Physiology, 160, 1686–1697. 

Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop 
production since 1980. Science (New, 333, 616–20. 

Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W (2013a) The 
critical role of extreme heat for maize production in the United States. Nature 
Climate Change, 3, 497–501. 

Lobell DB, Ortiz-Monasterio JI, Sibley AM, Sohu VS (2013b) Satellite detection of 
earlier wheat sowing in India and implications for yield trends. Agricultural 
Systems, 115, 137–143. 



 153 

Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, Rejesus RM, Hammer GL 
(2014) Greater sensitivity to drought accompanies maize yield increase in the U.S. 
Midwest. Science (New York, N.Y.), 344, 516–9. 

Lobell DB, Hammer GL, Chenu K, Zheng B, McLean G, Chapman SC (2015a) The 
shifting influence of drought and heat stress for crops in northeast Australia. Global 
change biology, 21, 4115–27. 

Lobell DB, Thau D, Seifert C, Engle E, Little B (2015b) A scalable satellite-based crop 
yield mapper. Remote Sensing of Environment, 164, 324–333. 

Lombardozzi D, Levis S, Bonan G, Sparks JP (2012) Predicting photosynthesis and 
transpiration responses to ozone: decoupling modeled photosynthesis and stomatal 
conductance. Biogeosciences, 9, 3113–3130. 

Lombardozzi D, Levis S, Bonan G, Hess PG, Sparks JP (2015) The Influence of Chronic 
Ozone Exposure on Global Carbon and Water Cycles. Journal of Climate, 28, 292–
305. 

Long SP, Ainsworth EA, Leakey ADB, Morgan PB (2005) Global food insecurity. 
treatment of major food crops with elevated carbon dioxide or ozone under large-
scale fully open-air conditions suggests recent models may have overestimated 
future yields. Philosophical transactions of the Royal Society of London. Series B, 
Biological sciences, 360, 2011–20. 

Long SP, Anisworth EA, Leakey ADB, N�sberger J, Ort DR (2006) Food for Thought: 
Lower-than-exepted crop yield stimulation with rising CO2 concentrations. Science, 
312, 918–921. 

Lynch JP (2013) Steep, cheap and deep: An ideotype to optimize water and N acquisition 
by maize root systems. Annals of Botany, 112, 347–357. 

Machwitz M, Giustarini L, Bossung C et al. (2014) Enhanced biomass prediction by 
assimilating satellite data into a crop growth model. Environmental Modelling & 
Software, 62, 437–453. 

Madhu M, Hatfield JL (2014) Interaction of Carbon Dioxide Enrichment and Soil 
Moisture on Photosynthesis, Transpiration, and Water Use Efficiency of Soybean. 
Agricultural Sciences, 05, 410–429. 

Manschadi AM, Christopher J, Devoil P, Hammer GL (2006) The role of root 
architectural traits in adaptation of wheat to water-limited environments. Functional 
Plant Biology, 33, 823–837. 



 154 

Martin MMS, Olesen JE, Porter JR (2014) A genotype, environment and management 
(GxExM) analysis of adaptation in winter wheat to climate change in Denmark. 
Agricultural and Forest Meteorology, 187, 1–13. 

Martre P, Wallach D, Asseng S et al. (2015) Multimodel ensembles of wheat growth: 
Many models are better than one. Global Change Biology, 21, 911–925. 

Matthews RB, Rivington M, Muhammed S, Newton AC, Hallett PD (2013) Adapting 
crops and cropping systems to future climates to ensure food security: The role of 
crop modelling. Global Food Security, 2, 24–28. 

Mazdiyasni O, AghaKouchak A (2015) Substantial increase in concurrent droughts and 
heatwaves in the United States. Proceedings of the National Academy of Sciences of 
the United States of America, 112, 11484–9. 

McGrath JM, Lobell DB (2013) Regional disparities in the CO2 fertilization effect and 
implications for crop yields. Environmental Research Letters, 8, 014054. 

McGrath JM, Betzelberger AM, Wang S, Shook E, Zhu X-G, Long SP, Ainsworth EA 
(2015) An analysis of ozone damage to historical maize and soybean yields in the 
United States. Proceedings of the National Academy of Sciences of the United States 
of America, 112, 14390–5. 

McKee IF, Mulholland BJ, Craigon J, Black CR, Long SP (2000) Elevated 
concentrations of atmospheric CO2 protect against and compensate for O3 damage 
to photosynthetic tissues of field-grown wheat. New Phytologist, 146, 427–435. 

Melillo JM, Richmond TC and Yohe GW (2014) Climate change impacts in the United 
States: the third national climate assessment. US Global change research 
program, 841. doi:10.7930/J0Z31WJ2. 

Mendoza PA, Clark MP, Barlage M, Rajagopalan B, Samaniego L, Abramowitz G, 
Gupta H (2015) Are we unnecessarily constraining the agility of complex process-
based models? Water Resources Research, 51, 716–728. 

Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield-trait performance 
landscapes: from theory to application in breeding maize for drought tolerance. 
Journal of experimental botany, 62, 855–68. 

Messina CD, Sinclair TR, Hammer GL et al. (2015) Limited-transpiration trait may 
increase maize drought tolerance in the US corn belt. Agronomy Journal, 107, 
1978–1986. 



 155 

Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A 
synthesis of AOT40-based response functions and critical levels of ozone for 
agricultural and horticultural crops. Atmospheric Environment, 41, 2630–2643. 

Mishra V, Cherkauer KA, Shukla S (2010) Assessment of Drought due to Historic 
Climate Variability and Projected Future Climate Change in the Midwestern United 
States. Journal of Hydrometeorology, 11, 46–68. 

Moriondo M., Giannakopoulos C., Bindi M. (2011) Climate change impact assessment: 
The role of climate extremes in crop yield simulation. Climatic Change, 104, 679–
701. 

Neitsch S., Arnold J., Kiniry J., Williams J. (2011) Soil & Water Assessment Tool 
Theoretical Documentation Version 2009. Texas Water Resources Institute, TR-406, 
1–647. 

Neukam D, Böttcher U, Kage H (2015) Modelling Wheat Stomatal Resistance in Hourly 
Time Steps from Micrometeorological Variables and Soil Water Status. Journal of 
Agronomy and Crop Science, n/a–n/a. 

O’Leary GJ, Christy B, Nuttall J et al. (2014) Response of wheat growth, grain yield and 
water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment 
and modelling in a semi-arid environment. Global change biology. 

Ort DR, Long SP (2014) Limits on yields in the Corn Belt. Science, 344, 484–5. 

Parent B, Tardieu F (2012) Temperature responses of developmental processes have not 
been affected by breeding in different ecological areas for 17 crop species. New 
Phytologist, 194, 760–774. 

Parent B, Tardieu FF (2014) Can current crop models be used in the phenotyping era for 
predicting the genetic variability of yield of plants subjected to drought or high 
temperature? Journal of Experimental Botany, 65, 6179–6189. 

Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land surface 
submodel: Description and testing. Global and Planetary Change, 19, 35–48. 

Peng S, Piao S, Ciais P et al. (2013) Asymmetric effects of daytime and night-time 
warming on Northern Hemisphere vegetation. Nature, 501, 88–92. 

Prasad PV V., Staggenborg SA, Ristic Z (2008) Response of Crops to Limited Water: 
Understanding and Modeling Water Stress Effects on Plant Growth Processes, Vol. 
advancesin. American Society of Agronomy, Crop Science Society of America, Soil 
Science Society of America, 301-355 pp. 



 156 

Priestley CHB, Taylor RJ (1972) On the Assessment of Surface Heat Flux and 
Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100, 81–92. 

Raes D, Steduto P, Hsiao TC, Fereres E (2009) Aquacrop-The FAO crop model to 
simulate yield response to water: II. main algorithms and software description. 
Agronomy Journal, 101, 438–447. 

Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. 
Geographic distribution of global agricultural lands in the year 2000. Global 
Biogeochemical Cycles, 22, n/a–n/a. 

Reichstein M, Bahn M, Ciais P et al. (2013) Climate extremes and the carbon cycle. 
Nature, 500, 287–295. 

Rezaei EE, Siebert S, Ewert F (2015) Intensity of heat stress in winter wheat—phenology 
compensates for the adverse effect of global warming. Environmental Research 
Letters, 10, 024012. 

Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and 
environmental development under climate stabilization. Technological Forecasting 
and Social Change, 74, 887–935. 

Rippke U, Ramirez-Villegas J, Jarvis A et al. (2016) Timescales of transformational 
climate change adaptation in sub-Saharan African agriculture. Nature Climate 
Change, advance on. 

Röotter RP, Höhn J, Trnka M, Fronzek S, Carter TR, Kahiluoto H (2013) Modelling 
shifts in agroclimate and crop cultivar response under climate change. Ecology and 
Evolution, 3, 4197–4214. 

Rosenzweig C, Jones JW, Hatfield JL et al. (2012) The Agricultural Model 
Intercomparison and Improvement Project (AgMIP): Integrated regional assessment 
projects. In: Handbook of Climate Change and Agroecosystems: Global and 
Regional Aspects and Implications, pp. 263–280. 

Rosenzweig C, Elliott J, Deryng D et al. (2014) Assessing agricultural risks of climate 
change in the 21st century in a global gridded crop model intercomparison. 
Proceedings of the National Academy of Sciences of the United States of America, 
111, 3268–73. 

Ruane AC, Cecil LD, Horton RM et al. (2013) Climate change impact uncertainties for 
maize in Panama: Farm information, climate projections, and yield sensitivities. 
Agricultural and Forest Meteorology, 170, 132–145. 



 157 

Sacks WJ, Deryng D, Foley JA, Ramankutty N (2010) Crop planting dates: an analysis of 
global patterns. Global Ecology and Biogeography, no–no. 

Sakamoto T, Wardlow BD, Gitelson AA, Verma SB, Suyker AE, Arkebauer TJ (2010) A 
Two-Step Filtering approach for detecting maize and soybean phenology with time-
series MODIS data. Remote Sensing of Environment, 114, 2146–2159. 

Saseendran S a., Ahuja LR, Ma L, Timlin D, Stockle CO, Boote KJ, Hoogenboom G 
(2008) Current Water Deficit Stress Simulations in Selected Agricultural System 
Models. Response of Crops to Limited Water: Understanding and Modeling Water 
Stress Effects on Plant Growth Processes. Advances in Agricultural Systems 
Modeling Series 1., 1–38. 

Sau F, Boote KJ, Bostick WM, Jones JW, Mínguez MI (2004) Testing and improving 
evapotranspiration and soil water balance of the DSSAT crop models. Agronomy 
Journal, 96, 1243–1257. 

Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages 
to U.S. crop yields under climate change. Proceedings of the National Academy of 
Sciences of the United States of America, 106, 15594–15598. 

Seifert C a, Lobell DB (2015) Response of double cropping suitability to climate change 
in the United States. Environmental Research Letters, 10, 024002. 

Sharpley A, Williams J (1990) EPIC-erosion/productivity impact calculator: 1. Model 
documentation. Technical Bulletin-United States Department of Agriculture, 235. 

Shekoofa A, Sinclair TR, Messina CD, Cooper M (2016) Variation among maize hybrids 
in response to high vapor pressure deficit at high temperatures. Crop Science, 56, 
392–396. 

Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past 
successes and future challenges to the role played by maize in global food security. 
Food Security, 3, 307–327. 

Siebert S, Ewert F, Rezaei EE, Kage H, Graß R (2014) Impact of heat stress on crop 
yield—on the importance of considering canopy temperature. Environmental 
Research Letters, 9, 1–8. 

Sinclair TR, Messina CD, Beatty A, Samples M (2010) Assessment across the United 
States of the Benefits of Altered Soybean Drought Traits. Agronomy Journal, 102, 
475. 



 158 

Singer JW, Meek DW, Sauer TJ, Prueger JH, Hatfield JL (2011) Variability of light 
interception and radiation use efficiency in maize and soybean. Field Crops 
Research, 121, 147–152. 

Smith MD (2011) The ecological role of climate extremes: current understanding and 
future prospects. Journal of Ecology, 99, 651–655. 

Souza EJ, Martin JM, Guttieri MJ et al. (1998) Influence of Genotype, Environment, and 
Nitrogen Management on Spring Wheat Quality. 425–432. 

STREETER JG (2003) Effects of drought on nitrogen fixation in soybean root nodules. 
Plant, Cell and Environment, 26, 1199–1204. 

Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from 
the first billion acres. Nature biotechnology, 31, 510–21. 

Tai APK, Martin MV, Heald CL (2014) Threat to future global food security from 
climate change and ozone air pollution. Nature Climate Change, 4, 817–821. 

Taub DR, Seemann JR, Coleman JS (2000) Growth in elevated CO2 protects 
photosynthesis against high-temperature damage. Plant, Cell and Environment, 23, 
649–656. 

Testa G, Reyneri A, Blandino M (2016) Maize grain yield enhancement through high 
plant density cultivation with different inter-row and intra-row spacings. European 
Journal of Agronomy, 72, 28–37. 

Tester M, Langridge P (2010) Breeding Technologies to Increase Crop Production in a 
Changing World. Science, 327, 818–822. 

Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable 
intensification of agriculture. Proceedings of the National Academy of Sciences of 
the United States of America, 108, 20260–4. 

Tollenaar M, Aguilera A (1992) Radiation Use Efficiency of an Old and a New Maize 
Hybrid. Agronomy Journal, 84, 536. 

Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2013) Maize root growth angles 
become steeper under low N conditions. Field Crops Research, 140, 18–31. 

Tsimba R, Edmeades GO, Millner JP, Kemp PD (2013) The effect of planting date on 
maize grain yields and yield components. Field Crops Research, 150, 135–144. 

 



 159 

Twine TE, Bryant JJ, T Richter K, Bernacchi CJ, McConnaughay KD, Morris SJ, Leakey 
ADB (2013) Impacts of elevated CO2 concentration on the productivity and surface 
energy budget of the soybean and maize agroecosystem in the Midwest USA. 
Global change biology, 19, 2838–52. 

Urban DW, Sheffield J, Lobell DB (2015) The impacts of future climate and carbon 
dioxide changes on the average and variability of US maize yields under two 
emission scenarios. Environmental Research Letters, 10, 045003. 

USDA 2013. Crop Production 2012 Summary. United States Department of Agriculture. 

Wang J, Kotamarthi VR (2015) High-resolution dynamically downscaled projections of 
precipitation in the mid and late 21st century over North America. Earth’s Future, 3, 
268–288. 

Wang E, Robertson MJ, Hammer GL et al. (2002) Development of a generic crop model 
template in the cropping system model APSIM. In: European Journal of Agronomy, 
Vol. 18, pp. 121–140. 

Wang J, Swati FNU, Stein ML, Kotamarthi VR (2015) Model performance in 
spatiotemporal patterns of precipitation: New methods for identifying value added 
by a regional climate model. Journal of Geophysical Research: Atmospheres, 120, 
1239–1259. 

Webber H, Martre P, Asseng S et al. (2015) Canopy temperature for simulation of heat 
stress in irrigated wheat in a semi-arid environment: A multi-model comparison. 
Field Crops Research. 

Webber H, Ewert F, Kimball BAA et al. (2016) Simulating canopy temperature for 
modelling heat stress in cereals. Environmental Modelling and Software, 77, 143–
155. 

Wise M, Calvin K, Thomson A et al. (2009) Implications of limiting CO2 concentrations 
for land use and energy. Science (New York, N.Y.), 324, 1183–6. 

Xu Z, Hennessy DA, Sardana K, Moschini GC (2013) The realized yield effect of 
genetically engineered crops: U.S. maize and soybean. Crop Science, 53, 735–745. 

Yang Z, Sinclair TR, Zhu M, Messina CD, Cooper M, Hammer GL (2012) Temperature 
effect on transpiration response of maize plants to vapour pressure deficit. 
Environmental and Experimental Botany, 78, 157–162. 

Zheng B, Chenu K, Chapman SC (2016) Velocity of temperature and flowering time in 
wheat - assisting breeders to keep pace with climate change. Global change biology, 
22, 921–33. 



 

 

 

 

 

 

 

 

 

APPENDICES



 
 

160 

Appendix A  

Text A1. Documentation of algorithms 

 In this section, we reviewed and re-documented algorithms of heat and drought 

stress on biomass production and yield formation with detailed equations for each crop 

model we have reviewed. The models we reviewed have different levels of 

documentation support. A few models (e.g. AquaCrop, HYBRID-maize, STICS and 

SWAT) provide well-organized documentation on theoretical background and detailed 

algorithms, whereas most of them only have partial documentations on specific modules 

or narrative descriptions rather than explicit mathematical equations for the algorithms. 

Therefore we also reviewed model source codes (if publically accessible) as a 

complementary. It should also be mentioned that inconsistence between documentations 

and the implementation happened occasionally. In this case, we prioritized the actual 

source code over literatures and documentations. The algorithms documented here can 

serve as a quick reference for or a gateway to the heat and drought stress algorithms 

implemented in major crop models. 

 The detailed documentation can be accessed in GitHub with the following link: 

https://github.com/Zhenong/APSIM-source/blob/master/Appendix%20A1.PDF. 
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Text A2. Temperature response of GPP/APAR 

 We used the observations (available from 06/04/2001 to 05/31/2013) at the 

AmeriFlux Mead Rainfed station (US-Ne3) , Saunders, Nebraska (41.18°, -96.44°), to 

investigate the temperature response of radiation use efficiency (RUE). This rainfed 

station is one of three fields at the University of Nebraska Agricultural Research and 

Development Center. The site has a maize-soybean rotation, with maize planted in odd 

years. The growing season typically begins in May and ends in October. Here, we used 

all data from middle May to August for years when maize is planted (i.e. 2001, 2003, 

2005, 2007, 2009, and 2011) to do the analysis 

This station archived hourly-observed temperature, absorbed photosynthetically 

active radiation (APAR) and calculated Gross Primary Production (GPP). The calculation 

of GPP is based on the observed net ecosystem exchange (NEE; negative for net carbon 

sink) and ecosystem respiration (RECO; positive for flux outside the ecosystem): 

!"" = !"#$ − !"" 

Detailed descriptions on data processing and the method to calculate RECO are given in 

Reichstein et al. (2005). The ratio of GPP/APAR is an approximation of RUE. We also 

aggregated the hourly data to get the response curve of RUE to daytime and daily mean 

temperature. We applied the “geom_smooth” function in the R ggplot2 package to fit a 

smooth line for the paired points of GPP/APAR vs. temperature. The locally weighted 

scatterplot smoothing (loess) method is used by the “geom_smooth” function to fit 

smoothing the points for dataset with n<1000; the generalized additive model (gam) is 

used for datasets with 1000 or more observations. The results of GPP/APAR were given 

in Figure A1. 
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 It should be noted that the ratio of GPP/APAR is not exactly (instead should be 

higher than) the RUE used in most crop models that use RUE to calculate the daily 

biomass production (i.e. Net Primary Production; NPP). Therefore we have to make an 

assumption that NPP at a particular location will follow the dynamics of GPP, thus the 

temperature response curve of NPP/APAR will have similar shape of GPP/APAR except 

the magnitude. In other words, we should rather focus on those temperature thresholds 

where optimal is reached. Ideally, the parameterization of a temperature response curve 

should be based on experimental data that measures RUE at a temperature continuum. 

Given that these type of experimental measurements are currently unavailable, using the 

AmeriFlux data is by far the best approximation we can do provide. 
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Text A3. Description of EDD and KDD 

Extreme degree days (EDD) is an indicator of accumulative heat above a prescribed 

temperature threshold. For each growing season, we calculate EDD following Lobell et al. 

(2013) who uses 30 °C as the threshold: 

!"" = !!!"!,! , !"#!!!!"!,! =
0 !"!!! < 30℃

(!! − 30)/24 !"!!! ≥ 30℃
!

!!!
 

where !! is the hourly temperature for hour !, and ! spans from June 1st to August 31th 

(thus the total hour N equals 2,208), !!!!"!,! is the hourly accumulative heat above 

30 °C. 

The hourly temperature !!  is interpolated based on daily minimum (!!"#) and 

maximum (!!"#) temperature using a sinusoidal function. Assuming daily minimum 

temperature occurs at !!"# and daily maximum temperature occurs at !!"#, following 

Hoogenboom & Huck (1986), we calculate !! for three stages, 

!! =

!!"# + !!"#
2 + !!"# − !!"#2 !"# ! ! + 10

10+ !!"#
!"!0 ≤ ! ≤ !!"#

!!"# + !!"#
2 + !!"# − !!"#2 !"# ! ! − !!"#

!!"# − !!"#
!"!!!"# < ! ≤ !!"#

!!"# + !!"#
2 + !!"# − !!"#2 !"# ! ! − 14

10+ !!"#
!"!! > !!"#

 

in which we assume !!"# is 6:00 am and !!"# is 14:00pm. 

Killing degree days (KDD) is the cumulative heat extremes by summing maximum 

temperatures in excess of the maximum optimal growth temperature: 

!"" = !"# !!"# − !!"# , 0
!

!!!
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where !!"# is the daily maximum temperature, !!"# is the crop-specific maximum 

optimal growth temperature, N is the number of days to accumulate the excessive heat 

and is defined as the period from June 1st to August 31th. Following Butler & Huybers 

(2013), we use 29 °C for !!"#. 

  



 
 

165 

Text A4. C4 Photosynthesis Model 

We incorporated a coupled photosynthesis-stomatal conductance model for C4 

plants into the APSIM following Collatz et al. (1992). To quantify the C4 photosynthesis 

rate, three variables to know are stomatal conductance (!!), net photosynthesis (!!), and 

the intercellular partial pressure of CO2 (!!). 

The stomatal conductance can be calculated following Ball et al. (1987): 

 !! = ! ℎ!!!!
!!

+ ! (A4.1) 

where m and b are coefficients derived from linear regression, ℎ! is the leaf surface 

relative humidity, ! and !! are atmospheric (10!!!") and leaf surface partial pressure of 

CO2.  

The leaf level instantaneous photosynthesis rate ! (!"#$!!!!!!!!) is derived from 

a quadratic equation: 

 !!! − ! ! + !!!!! +!!!!!! = 0 (A4.2) 

in which M is the flux determined by the rubisco and light limitation, !! describes the 

temperature dependency of a constant with respect to !!, ! is a parameter gives a gradual 

transition from the limitation by M to CO2 limitation. M is calculated by a similar 

quadratic equation: 

 !!! −! !! + !!! + !!!!! = 0 (A4.3) 

in which !! is the temperature dependent maximum carboxylation rate, ! is the quantum 

efficiency and !! is the incident quantum flux density. The smaller roots for both Eqn-

4.2 and Eqn-4.3 are reasonable solutions. 
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!! is then calculated as: 

 !! = ! − !! (A4.4) 

where !! is the temperature dependent daytime leaf dark respiration. 

The temperature dependency of each above mentioned parameters are given as: 

 
!! =

!!"#!!"
!!!!"
!"

1+ !!.!× !"!!! 1+ !!.!× !!!!"  

!! =
!!!!"

!!!!"
!"

1+ !!.!× !!!!!  

!! = !!!"
!!!!"
!"  

(A4.5) 

where the leaf temperature, !!, is approximated by daily mean temperature in our 

implementation. 

The last equation is for the intercellular CO2 partial pressure: 

 !! = !! −
1.6!!!
!!

 (A4.6) 

The analytical solution to these coupled equations is provided by Collatz et al. 

(1992), which combines Eqn-4.1 to Eqn-4.6 to eliminate !! and !!. 

To reduce the big-leaf assumption errors, we calculated !! for both sunlit and 

shaded leaves according to the implementation in Biome-BGC v4.2 (White et al., 2000). 

The total canopy photosynthesis is the summation of CO2 assimilation by the sunlit and 

shaded leaf fractions: 

 A!"#$%& = A!"# ∙ LAI!"# + A!"#$% ∙ LAI!"#$% (A4.7) 
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We simulate the sunlit and shaded LAI following Biome-BGC 4.2, which estimate 

the albedo and extinction coefficients for the shortwave and PAR spectra from the values 

given for the entire shortwave range according to Jones (1992). 

Finally, to calculate daily biomass accumulation, we need deduct autotrophic 

respiration, which consists of maintenance respiration (!!) and growth respiration (!!). 

 ∆biomass = A!"#$%& − !! − !! (A4.8) 

The method for calculating !! and !! can be found in Chen et al. (1999), whereas 

parameters for C4 crop are derived from Biome-BGC 4.2. Specifically, the maintenance 

respiration is calculated as 

!! = !!!"!!"(!!!!)/!" 

where ! is the current biomass (approximated by total green dry matter calculated by 

APSIM), !!" is the coefficient for maintenance respiration, and !!" is temperature 

sensitivity factor, !! is the base temperature. And the growth respiration is calculated as: 

!! = !!"!!"#$%& 

where !!" is the coefficient for growth respiration. 

Parameters used in the C4 photosynthesis model 

 

 

  

Parameter Definition Value Unit 
! Initial slope of CO2 response 0.9 !"#!!!!!!!! 

!!"# Maximum rubisco capacity 50 !"#$!!!!!!!! 
! Initial slope of photosynthetic light response 0.04 !"#!!!!!!!! 
!! Leaf dark respiration 1.05 !"#$!!!!!!!! 
! Stomatal slope 3 - 
! Stomatal intercept 0.08 - 
! Curvature parameter 0.93 - 
! Curvature parameter 0.83 - 
!!" Coefficient for maintenance respiration 0.002 g g-1 day-1 
!!" Coefficient for growth respiration 0.25 - 
!!" Respiration temperature sensitivity factor 2.0 - 
!! Base temperature for Q10 function 20 °C 
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Table A1 Annual management information reported by USDA National Agricultural 
Statistics Service. 

 N Amount1 (kg/ha)  Sowing Date2  Sowing Density (plants/m2) 
Year IL IN IA  IL IN IA  IL IN IA 
1980 165 166 150  5-May 7-May 3-May  5.4 5.2 5.1 
1981 170 164 159  10-May 1-Jun 7-May  5.5 5.3 5.2 
1982 171 170 147  4-May 7-May 10-May  5.6 5.4 5.3 
1983 174 167 158  15-May 21-May 12-May  5.5 5.2 5.5 
1984 166 174 160  15-May 17-May 16-May  5.5 5.3 5.4 
1985 177 181 162  1-May 3-May 4-May  5.6 5.3 5.4 
1986 175 176 147  30-Apr 6-May 8-May  5.6 5.4 5.4 
1987 180 152 148  1-May 3-May 1-May  5.9 5.5 5.5 
1988 183 164 156  30-Apr 3-May 4-May  5.5 5.2 5.5 
1989 179 149 143  2-May 16-May 7-May  5.5 5.4 5.4 
1990 184 156 142  6-May 7-May 3-May  5.6 5.5 5.6 
1991 178 151 134  2-May 8-May 16-May  5.9 5.6 5.7 
1992 174 160 132  6-May 9-May 7-May  5.8 5.8 5.8 
1993 168 150 128  17-May 15-May 20-May  5.8 5.8 5.9 
1994 171 165 136  3-May 9-May 28-Apr  5.8 5.7 6 
1995 172 148 134  27-May 22-May 18-May  5.9 6 6.2 
1996 186 155 148  8-May 29-May 5-May  6.1 5.9 6.2 
1997 171 164 136  29-Apr 1-May 3-May  6.2 6 6.4 
1998 174 164 142  13-May 16-May 5-May  6.4 6.1 6.4 
1999 174 172 141  7-May 7-May 6-May  6.4 6.3 6.5 
2000 180 171 147  28-Apr 4-May 29-Apr  6.5 6.3 6.6 
2001 170 157 134  28-Apr 30-Apr 4-May  6.7 6.5 6.6 
2002 180 166 137  11-May 27-May 3-May  6.6 6.3 6.7 
2003 180 172 149  27-Apr 3-May 2-May  6.8 6.5 6.8 
2004 172 168 154  21-Apr 27-Apr 28-Apr  6.9 6.6 7 
2005 164 165 158  20-Apr 30-Apr 30-Apr  7 6.3 7 
2006 169 172 158  26-Apr 6-May 27-Apr  7 6.6 7.2 
2007 174 179 158  1-May 7-May 5-May  7 6.8 7.3 
2008 179 186 159  9-May 8-May 12-May  7.2 7.1 7.3 
2009 183 193 159  21-May 22-May 27-Apr  7.4 7.1 7.4 
2010 187 199 159  20-Apr 23-Apr 22-Apr  7.4 7.1 7.5 
2011 186 193 159  11-May 22-May 5-May  7.6 7.3 7.7 
2012 185 187 158  19-Apr 24-Apr 29-Apr  7.5 7.3 7.5 
2013 184 181 158  16-May 16-May 16-May  7.7 7.6 7.5 
2014 183 175 158  5-May 9-May 8-May  7.7 7.7 7.7 
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Table A2. General circulation models (GCMs) used in this study. 
Model Institution Resolution 

BNU-ESM Beijing Normal University, China T42 

CanESM2 Canadian Center for Climate Modelling and 
Analysis  

Spectral T63 

CCSM4 US National Centre for Atmospheric Research 
 

0.9° × 1.25° 

CESM1-BGC NSF-DOE-NCAR, USA 0.9° × 1.25° 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, 
USA 

2.5° × 2° 

IPSL-CM5A-MR Institut Pierre Simon Laplace, France 1.25° X 2.5° 

MPI-ESM-MR Max Planck Institute for Meteorology, Germany pprox. 1.8° T63 

MRI-CGCM3 Meteorological Research Institute, Japan 320 × 160 TL159  
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Figure A1Temperature response of radiation use efficiency derived from AmeriFlux 
hourly observations at Mead rainfed maize, Mead, Nebraska. Here “daytime air 
temperature” refers to the mean temperature from 8:00 am to 17:00 pm. 
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Figure A2 Supplementary information for the 2012 Iowa drought at Agricultural 
Engineering and Agronomy Research Farms of Iowa State University, Boone, IA (42.02o, 
-93.78o). Daily precipitation (a), soil water supply (b), crop transpiration water demand (c) 
and the ratio of water supply to demand (d) are given for days from June 16th to August 
31st. 
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Figure A3 Time series of APSIM simulated (red lines) maize yield and NASS county 
level yield statistics (black lines) for the Indiana farm from 1980 to 2013. Each panel 
denotes one simulation as described in Figure 2.1. 



 
 

173 

 

Figure A4 Evaluation of model performance for the Illinois farm under 30 ensemble 
simulation trials (10 heat × 3 drought stress algorithms) with respect to reproducing the 
USDA county-level yield statistics from 1980 to 2013. Model predictability is measured 
collectively by (a) R2, (b) Pearson correlation coefficient (!), and (c) root mean square 
error (RMSE). See Figure 2.1 for detailed algorithm combinations for each ensemble. 
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Figure A5 Evaluation of model performance for the Iowa farm under 30 ensemble 
simulation trials (10 heat × 3 drought stress algorithms) with respect to reproducing the 
USDA county-level yield statistics from 1980 to 2013. Model predictability is measured 
collectively by (a) R2, (b) Pearson correlation coefficient (!), and (c) root mean square 
error (RMSE). See Figure 2.1 for detailed algorithm combinations for each ensemble. 
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Figure A6 Maximum mean weekly vapor pressure deficit (VPD) for the Indiana farm 
from 1980-2013 simulated by the default APSIM method and an updated method that 
uses actual vapor pressure as a meteorological input. 
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Figure A7 Simulated daily mean canopy temperature by the STICS empirical relation 
algorithm vs. daily mean air temperature. 
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Appendix B  

 

Figure B1 Comparison of simulated maize and soybean yield with USDA National 
Agricultural Statistics Service (NASS) survey report county-level yield. Simulations are 
run for Daymet reanalysis weather data and WRF downscaled CCSM4 output, 
respectively. 
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Appendix C  

 

Figure C1 Distribution of mean and maximum yield benefit from optimizing the planting 
date. 
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Appendix D  

 

Figure D1 Topography information for the study field. 
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