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and the team lead by prof. Michèle Lavagna at Politecnico di Milano deserve special

recognition. I have truly enjoyed their collaboration, and I greatly value the sharing

of their expertise.

I also must thank all of the past and current members of my research group, that

have offered their support (in a technical sense as well) and friendship. It has been

an honor and an inspiration to be part of this sparkling group. I wish everyone to

achieve the success you deserve.

Finally, I own thanks to the generosity of the following institutions that have

provided financial assistance throughout my years at Purdue University: the Purdue

College of Engineering, the School of Aeronautics and Astronautics, the NASA God-



iv

dard Space Flight Center with grants NNX13AM17G and NNX13AH02G, and the

NASA Johnson Space Center with grant NNX13AK60.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The Orbit-Attitude Bounded Librations Problem . . . . . . 2
1.1.2 The Orbit-Attitude Solar Sailing Problem . . . . . . . . . . 4

1.2 Summary of Previous Contributions . . . . . . . . . . . . . . . . . . 5
1.2.1 Attitude Dynamics and Periodic Solutions in the Circular Re-

stricted Three-Body Problem . . . . . . . . . . . . . . . . . 5
1.2.2 Solar Sailing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 SYSTEM MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Relevant Notation Convention . . . . . . . . . . . . . . . . . . . . . 17
2.2 Orbital Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The Circular Restricted Three-Body Problem . . . . . . . . 18
2.2.2 Libration Points . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Periodic Orbits in the CR3BP . . . . . . . . . . . . . . . . . 23
2.2.4 Gravity on a Rigid Body Exerted by a Particle . . . . . . . . 25
2.2.5 Solar Radiation Pressure . . . . . . . . . . . . . . . . . . . . 27

2.3 Attitude Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Rotational Kinematics . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Kinematics Differential Equations . . . . . . . . . . . . . . . 35
2.3.3 Dynamics Differential Equations . . . . . . . . . . . . . . . . 36
2.3.4 Gravity Torque on a Rigid Body Exerted by a Particle . . . 37

2.4 Coupled Orbit-Attitude Dynamics . . . . . . . . . . . . . . . . . . . 38
2.4.1 Simplified Coupled Model . . . . . . . . . . . . . . . . . . . 39
2.4.2 Fully Coupled Model: Incorporating Solar Radiation Pressure 42

2.5 Planetary System Constants . . . . . . . . . . . . . . . . . . . . . . 44

3 NUMERICAL TARGETING SCHEMES . . . . . . . . . . . . . . . . . . 47
3.1 Linear Variational Equations . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Jacobian in the CR3BP . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Jacobian in the Orbit-Attitude SCM . . . . . . . . . . . . . 49



vi

Page

3.1.3 Jacobian in the Orbit-Attitude FCM . . . . . . . . . . . . . 52
3.1.4 The State Transition Matrix . . . . . . . . . . . . . . . . . . 54
3.1.5 Observing Frame Transformation for the STM in the SCM . 55

3.2 Multi-Variable Newton Method . . . . . . . . . . . . . . . . . . . . 58
3.2.1 General Multiple Shooting Formulation . . . . . . . . . . . . 59
3.2.2 Problem Specific Constraints . . . . . . . . . . . . . . . . . . 63

3.3 Continuation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Single-Parameter Continuation . . . . . . . . . . . . . . . . 69
3.3.2 Pseudo-Arclength Continuation . . . . . . . . . . . . . . . . 70

4 BOUNDED LIBRATIONS: IDENTIFICATION OF ORBIT-ATTITUDE
PERIODIC SOLUTIONS VIA FLOQUET THEORY . . . . . . . . . . . 71
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Definition of an Elementary Orbit-Attitude Periodic Motions on a Pla-

nar Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Linear Modes for the Reference Solution . . . . . . . . . . . 75

4.3 Stability of the Attitude Modes for the Elementary Motions and Bi-
furcations to Non-Trivial Solutions . . . . . . . . . . . . . . . . . . 76

4.4 Orbit-Attitude Families of Periodic Solutions Emanating from the Bi-
furcations of an Elementary Motion . . . . . . . . . . . . . . . . . . 82

4.5 Analysis of Orbit-Attitude Families of Periodic Solutions on L1 Lya-
punov Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.1 Quaternion Representation and Physical Motion . . . . . . . 87
4.5.2 Coupled Orbit-Attitude Nature of the Continuation Process 92
4.5.3 Stability for the Attitude Modes for Non-Trivial Solutions . 95

4.6 Initial Conditions for Representative Orbit-Attitude Families of Peri-
odic Solutions on L1 Lyapunov Orbits . . . . . . . . . . . . . . . . . 98

5 BOUNDED LIBRATIONS: IDENTIFICATION OF ORBIT-ATTITUDE
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like satellites (identified by the inertia ratio, k) along different Earth-
Moon L2 Lyapunov orbits (identified by the orbital period, P ). The color
scale represents the number of propagations possibly associated to ordered
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for a distant retrograde orbit with period P ≈ 13.42 days and rod-like
spacecraft with inertia ratio k = 0.8. . . . . . . . . . . . . . . . . . . . 126

5.14 Family of orbit-attitude periodic solutions identified via Poincaré mapping
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ABSTRACT

Guzzetti, Davide PhD, Purdue University, May 2016. Coupled Orbit-Attitude Mis-
sion Design in the Circular Restricted Three-Body Problem. Major Professor:
Kathleen C. Howell.

Trajectory design increasingly leverages multi-body dynamical structures that are

based on an understanding of various types of orbits in the Circular Restricted Three-

Body Problem (CR3BP). Given the more complex dynamical environment, mission

applications may also benefit from deeper insight into the attitude motion. In this

investigation, the attitude dynamics are coupled with the trajectories in the CR3BP.

In a highly sensitive dynamical model, such as the orbit-attitude CR3BP, periodic so-

lutions allow delineation of the fundamental dynamical structures. Periodic solutions

are also a subset of motions that are bounded over an infinite time-span (assuming no

perturbing factors), without the necessity to integrate over an infinite time interval.

Euler equations of motion and quaternion kinematics describe the rotational behav-

ior of the spacecraft, whereas the translation of the center of mass is modeled in the

CR3BP equations. A multiple shooting and continuation procedure are employed to

target orbit-attitude periodic solutions in this model. Application of Floquet theory,

Poincaré mapping, and grid search to identify initial guesses for the targeting algo-

rithm is described. In the Earth-Moon system, representative scenarios are explored

for axisymmetric vehicles with various inertia characteristics, assuming that the vehi-

cles move along Lyapunov, halo as well as distant retrograde orbits. A rich structure

of possible periodic behaviors appears to pervade the solution space in the coupled

problem. The stability analysis of the attitude dynamics for the selected families

is included. Among the computed solutions, marginally stable and slowly diverging

rotational behaviors exist and may offer interesting mission applications. Addition-

ally, the solar radiation pressure is included and a fully coupled orbit-attitude model
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is developed. With specific application to solar sails, various guidance algorithms

are explored to direct the spacecraft along a desired path, when the mutual interac-

tion between orbit and attitude dynamics is considered. Each strategy implements a

different form of control input, ranging from instantaneous reorientation of the sail

pointing direction to the application of control torques, and it is demonstrated within

a simple station keeping scenario.
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1. INTRODUCTION

Worldwide, space agencies are increasingly exploiting multi-body dynamical struc-

tures for their most advanced missions, with several trajectory proposals fundamen-

tally based on an understanding of the Circular Restricted Three-Body Problem

(CR3BP). These missions comprise astronomical observatories [1–3], deep-space hu-

man habitats or staging infrastructures [4], solar sails, as well as repositioned natural

bodies [5, 6]. Improving the pointing accuracy of telescopes, safely docking to space

stations, maneuvering a solar sail, or reconstructing the orientation history of cap-

tured asteroids are possible challenges in developing the capability to control and

predict the attitude motion in more complex dynamical environments. The space-

craft attitude history may also constrain the thrusting direction, thus, limiting the

options for maneuvers [7].

When the attitude dynamics is coupled to a multi-body orbital regime, the space-

craft may also manifest complex rotational behaviors. Within the set of chaotic

responses that is typical in a multi-body system, buried fundamental dynamical struc-

tures are also apparent, ones that may aid in mission design when the attitude dy-

namics is incorporated. Periodic or quasi-periodic structures may potentially support

ACS (Attitude Control System) operational modes for continuous data acquisition or

communications, with coarse pointing requirements. A subset of the center subspace

might be employed for safe-mode or long-term configurations. For example, an as-

teroid or a space station placed in a marginally stable subspace associated with the

attitude modes is more likely to avoid tumbling in the long-term. Manifold structures

may guide large attitude slews. Natural orbit-attitude dynamics may be leveraged to

improve a solar sail guidance strategy. There is, therefore, justified interest to better

understand the attitude dynamics when it is coupled to the CR3BP regime.



2

1.1 Problem Definition

From a general perspective, this investigation aims at a better understanding of

the orbit-attitude mechanisms within the CR3BP for future applications to mission

design. Specifically, the coupled dynamical behavior for a spacecraft travelling along

a known CR3BP periodic orbit is the main focus. Fully nonlinear periodic orbits

within the CR3BP are employed as a viable approximation for the actual spacecraft

trajectory, and, possibly, describe a mission scenario more accurately than artificially

fixing the vehicle at a specific spatial location or adopting linear models. The orbit-

attitude dynamics within the CR3BP are first explored along two strands that may,

eventually, yield promising mission applications:

1. The prediction of bounded attitude oscillatory motions (or librations) as a func-

tion of the reference orbit, initial attitude configuration, and spacecraft topol-

ogy.

2. The utilization of an orbit-attitude coupling device, such as a solar sails, to

maintain the vicinity of a reference orbit.

For example, applications such as deep-space stations or redirected asteroids would

benefit from naturally bounded rotational motions, especially on a long-term mission

horizon. Additionally, a bounded attitude libration may also facilitate the control

of astronomical observatories and similar types of vehicle. Finally, more efficient

station keeping strategies and novel mission scenarios may become available if the

propellant budget is significantly reduced by implementing solar sail powered orbital

maneuvering.

1.1.1 The Orbit-Attitude Bounded Librations Problem

There are a series of questions that naturally arise in the attempt to predict

bounded attitude librations along a reference orbit, for example: which combinations

of reference orbit and spacecraft geometry yield a bounded rotational motion? Or,
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given a spacecraft geometry and a reference trajectory, which initial orientation and

rotational rates yield a nondiverging solution, if any? Are there sets of particular

solutions that may aid the construction of bounded solutions? If so, how are such

solutions identified and computed? Finally, to what degree of fidelity are those solu-

tions valid? These, and other questions generally lead to the characterization of the

solution space, which is, however, nontrivial, as no closed form solution is available

for the orbit-attitude problem within the CR3BP (and neither there exist for the

orbital problem alone). Reliance on numerical techniques is, therefore, a necessity.

To address the questions posed by the “bounded librations problem”, which describes

one of the two general goals for this investigation, the following objectives are, first,

identified:

• Develop techniques to identify, in representative scenarios, bounded attitude

solutions along reference periodic orbits in the form of orbit-attitude periodic

motions.

• Develop algorithms to compute orbit-attitude periodic solutions.

• Preliminarily characterize the stability of the orbit-attitude periodic solutions

and their linkage to bounded responses.

Periodic solutions are a subset of bounded motions, that delineate fundamental dy-

namical structures for the problem. It seems, therefore, reasonable to begin the

investigation of bounded motions from periodic orbit-attitude solutions. Other forms

of bounded response may also exist in vicinity of a periodic motion. As is generally

true for trajectories in the CR3BP, such coupled orbit-attitude solutions are expected

to transition to higher-fidelity models with various degrees of success. Nonetheless,

the challenges in recognizing ordered and predictable behaviors in higher-fidelity mod-

els is also largely acknowledged. Orbit-attitude periodic solutions from a simplified

coupled model may be the stepping stone to identify, and leverage, potential natural

behavior in the actual – more dynamically complex – operational environment.
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1.1.2 The Orbit-Attitude Solar Sailing Problem

A coupled orbit-attitude approach to mission design may offer the possibility to

employ orbit-attitude coupling devices to guide a spacecraft along a desired path.

That possibility is the second main topic explored in this discussion. Currently, flat

solar sails are likely the most practical means to supply orbit-attitude maneuvering

capability: the attitude of a sail relative to the incoming photon flux determines the

magnitude and the direction of the force experienced by the sail itself, and, therefore,

may ultimately influence the orbital motion. These devices potentially enable nearly-

zero-cost station keeping strategies, as many of the actuators for attitude control

do not use propellant or only necessitate a significantly small fraction of the overall

DV budget. Then, is it possible to demonstrate their utilization in a coupled orbit-

attitude dynamical model? Are orbit-attitude steering laws efficacious? Can natural

orbit-attitude dynamics aid the practical implementation for a guidance strategy?

What control inputs are available within a coupled orbit-attitude design, and how

the guidance approach changes? To start the development for a framework able to

address those general questions, the following specific objectives are recognized:

• Develop algorithms to construct solar sail pointing sequences able to maintain

the vehicle in vicinity of the reference orbit.

• Assess the effectiveness for the proposed guidance strategies on a short-term

time window.

• Preliminarily explore benefits and limitations for each strategy.

Developing effective techniques to control orbit-attitude coupling devices is a key

factor to incorporate a coupled orbit-attitude model into the design process, and

potentially enable alternative, more efficient, missions.
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1.2 Summary of Previous Contributions

1.2.1 Attitude Dynamics and Periodic Solutions in the Circular Restricted

Three-Body Problem

Within the CR3BP, the earliest investigations from Kane, Marsh and Robinson

consider the attitude stability of different satellite configurations, assuming that the

spacecraft is artificially maintained precisely at the equilibrium points [8, 9]. Suc-

cessive studies introduce Euler parameters, i.e., quaternions, and Poincaré maps to

explore the dynamics of a single body, one that remains fixed at the Lagrangian

points [10,11]. The effects of the gravity torque along libration point orbits are exam-

ined by Wong, Patil and Misra for a single rigid vehicle in the Sun-Earth system [12].

Wong, Patil and Misra select Lyapunov and halo orbits for their investigation, and

assume reference trajectories that are expressed in linear form; consequently, the re-

sults are acknowledged to apply to relatively small orbits close to the equilibrium

points. Incorporating another simplification of the CR3BP, i.e., the Hill problem,

Sanjurjo-Rivo et al. numerically reproduce the coupled orbit-attitude dynamics of

a large dumbell satellite on halo and vertical orbits in the Earth-Moon system [13].

The application of Hill equations is limited to the vicinity of the smallest body in the

system, when such a primary has practically negligible mass compared to the other

attractor. Assuming that the spacecraft is in fast rotation, the attitude dynamics

can be decoupled from the orbital dynamics by averaging the equations of motion

over the “fast” angle [13]. Under this condition, it is demonstrated that incorporat-

ing sufficiently elongated structures may impact the stability of halo and L2 vertical

orbits in the Hill problem [14]. Later, Guzzetti et al. numerically investigate the

coupled orbit and attitude equations of motion using the Lyapunov family as refer-

ence orbits and without simplifications of the CR3BP nonlinear dynamics, but the

rotation of the vehicle is limited to the orbital plane [15, 16]. Guzzetti et al. also

incorporate solar radiation pressure and simple flexible bodies in the investigation.

The full three-dimensional coupled motion is explored by Knutson and Howell for
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a spacecraft comprised of multiple bodies in nonlinear Lyapunov and halo reference

orbits [17,18]. Both Knutson and Guzzetti dedicate significant effort to identify con-

ditions that determine bounded attitude solutions relative to the rotating frame in

the CR3BP along nonlinear reference trajectories. Attitude maps are proven useful to

recognize the orbital characteristics and the body inertia properties that enable the

spacecraft to maintain its initial orientation with respect the rotating frame [19, 20].

Additionally, Meng, Hao and Chen analyze the case of a dual-spin satellite in halo

orbits and, employing a semi-analytical expansion of the gravity torque, identify the

main frequency components of the subsequent motion [21].

Along with stability diagrams at the equilibrium points, mapping techniques and

frequency analysis, periodic solutions may contribute to the understanding of the

attitude dynamics when it is coupled to the CR3BP. In this investigation, solutions

are sought that are simultaneously periodic in both the orbital and attitude states,

when viewed in the rotating frame in the CR3BP. From the orbital dynamics per-

spective only, periodic orbits are one of the most successful approaches to the cir-

cular restricted three-body problem, which lacks a closed form analytical solution.

Poincaré first indicated periodic solutions as the primary means of understanding the

CR3BP [22]. However, at the time, the search of periodic orbits was significantly lim-

ited by the numerical capabilities, to the extent that a prominent investigator, such as

Forest Moulton believed that certain periodic solutions are “practically impossible”

to compute [23]. With the advent of artificial calculators, such concern is gone, as

numerical procedures grant easy access to several types of periodic solutions [24,25].

To date, many periodic orbits or their neighbouring dynamical structures have been

successfully exploited for space mission applications in both the Sun-Earth [26] and

Earth-Moon [7] system. Catalogs of periodic and quasi-periodic orbits have been

compiled to better understand the dynamical behaviour [27] and to guide mission

design within the context of a given three-body system [28–30]. Most recently, the

possibility to identify and compute an attitude periodic motion that is coupled to an

existing CR3BP periodic orbit, has also been demonstrated [31,32]. Within a multi-
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body regime, coupled orbit-attitude periodic structures enlarge the current design

space, and add options that may support certain mission applications. Following the

introduction of coupled orbit-attitude periodic solutions within the CR3BP, Bucci

explores the application of a coupled periodic motion to a large space structure that

is located in a distant retrograde orbit, and offers an analysis of the perturbations

induced by the solar radiation pressure and spacecraft flexibility to the reference

CR3BP orbit-attitude periodic solution [33].

Periodic solutions are typically generated by numerically correcting an initial guess

to meet specific boundary conditions, which include the continuity between the final

and initial states. Physical symmetries or integrals of the motion may also be lever-

aged to enforce periodicity. Even with the current computational capabilities, the

convergence of algorithms for periodic orbits depends significantly on the accuracy of

the initial guess and the implementation of the targeting scheme. In this investigation,

viable methods to obtain precise initial guesses and effectively solve for periodicity

are explored in the coupling of orbit and attitude. Several numerical schemes are

available to solve boundary values problems. Because of its simplicity and adapt-

ability, single shooting is frequently applied to orbital mechanics in the CR3BP [34].

The Two-Point Boundary Value Problem (TPBVP) is converted to an Initial Value

Problem (IVP), where the selected initial states are iteratively updated, on the basis

of a Newton approach, until the constraints at the final time are satisfied within a

given tolerance, i.e., differential corrections. If the single shooting is employed in

combination with specific symmetry features of the motion, then it is obviously lim-

ited to solutions that share those symmetries [34]. A direct extension of the single

shooting scheme is to target multiple states along the path, rather than only the final

states. This method, also known as multiple shooting, is introduced by Keller to

solve general TPBVP’s [35] and is now largely applied to the computation of periodic

orbits [36–38]. A common implementation of multiple shooting, denoted as parallel

shooting, requires all the design variables to be simultaneously corrected to target the

complete set of constraints along the path at each iteration. An alternative multiple
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shooting algorithm is the, so called, two level corrector, that was originally developed

in astrodynamics to compute quasi-periodic motions [39] and introduced a nested level

of iterations to converge on a subset of the constraint vector by adjusting a subset of

the free variables. This method is currently also applied to periodic and non-periodic

trajectories to impose various path constrains to the baseline trajectory [40]. Finally,

specific parameters of the periodic solution may be varied to form other periodic so-

lutions that belong to the same dynamical family. This continuation process can be

based on the direct modification of the natural parameters or using the direction tan-

gent to the null space of the monodromy matrix associated to the reference periodic

solution. The latter algorithm is denoted pseudo-arclength continuation and, in some

applications, benefits from a more general and robust formulation than the natural

parameter continuation [41].

1.2.2 Solar Sailing

Solar sails are originally envisioned as an alternative propulsion mechanism for

transfers within the solar system. In this context, the minimum-time optimal problem

is usually examined for transfers from the Earth to other interplanetary destinations.

The path control may be implemented as a continuous-time law [42,43], which requires

constant maneuvering of the sail pointing direction throughout the trajectory. Within

the CR3BP, Waters and McInnes utilize a continuous control scheme in combination

with the natural manifolds to transfer a spacecraft to a parking orbit in vicinity of

the L1 Lagrangian point [44]. The complexity of a continuous-time steering law can

be reduced by dividing the trajectory into a finite number of arcs and assuming a

fixed attitude relative to the Sun-sail line along each segment. Following this idea,

Otten and McInnes discretize the true minimum-time solution into segments with

fixed orientation; the solution is, then, no longer optimal, but it is significantly easier

to implement [45]. Rather than discretizing the continuous solution, the optimal dis-

crete problem may be solved as a sequence of control arcs, that fix the sail pointing
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direction relative to the Sun-sail line. Mengali and Quarta adopted this approach and

further restrict the control set to a finite number of possible sail orientations during

the transfer [46]. When a spacecraft is assumed to maintain a fixed orientation along

each control arc, with respect to a relative or inertial reference, the guidance strategy

is also referred as Turn and Hold (TnH) strategy. Besides transfers, it is well under-

stood that solar sails enable a variety of displaced non-Keplerian orbits, that would

not otherwise be accessible with solely chemical propulsion [47–49]. For these types

of orbit, conic sail geometries are proposed as a possible means to achieve coarse

passive orbit stabilization via a prescribed attitude configuration [50]; the investiga-

tion of such a mechanism naturally incorporates a coupled orbit-attitude model [51].

Alternatively, non-Keplerian displaced orbits may be maintained via classical forms

of active control for the solar sail pointing direction [52].

Novel operational orbits are also possible in the CR3BP when the solar radiation

pressure is incorporated and the sail is properly oriented. Solutions are developed

for both autonomous, e.g., Sun-Earth, and non-autonomous, e.g., Earth-Moon, sys-

tems [53–55]. In an autonomous system, the source of radiation is fixed relative to

the rotating frame, within the assumptions for the CR3BP, thus, the equations of

motion are not explicitly a function of time. The orbits enabled by solar sailing may

display unusual regimes of motion: see, for instance, trajectories proposed by Simo

and C.R. McInnes [56], or by Wawrzyniak and Howell [57, 58]. Solar sail orbits also

arise from a modification for the original dynamical structure within the CR3BP. For

example, the Richardson approximation for CR3BP halo orbits may be adjusted to

incorporate the solar radiation pressure; then, a set of halo orbits, equivalent to the

natural CR3BP, may be computed [59–61]. Obviously, the greater the force exerted

by the solar sail, the more a family of modified solutions deviates from the classical

form within the CR3BP [61]. A solar sail may also be employed to maintain the

vicinity of a reference orbit by controlling the attitude configuration, and, therefore,

without the direct utilization of chemical propulsion. Several well-known approaches,

such as, linearized optimal control [62, 63], Hamiltonian structure-preserving stabi-
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lization [64] or look-ahead strategies [65, 66] are generally applicable to the station

keeping problem for a solar sail. Similar to transfer design, these control design ap-

proaches for station keeping may be used in combination with either an infinite (e.g.,

continuous-time scheme) or finite (e.g., Turn and Hold) set of control variables. Re-

gardless of the nature for the control law, the control input is typically determined

by the orientation of the solar sail, which is defined in terms of some angles or as a

pointing vector. However, the attitude dynamics are not directly incorporated into

the design process; the solar sail rotation history is afterwards reconstructed on the

bases of the pointing sequence produced by the controller.

Along with steering techniques and trajectory design, several important applica-

tions for solar sails have been proposed. Geostorm is, for example, a mission concept

that is largely discussed throughout the scientific community [67]. MacDonald [68]

and Johnson [69] both supply a critical analysis for the most significant mission con-

cepts that have been considered for solar sails. However, despite the clear interest

in adopting solar sails, to date, only two missions have flown and implemented this

technology. The Japanese test mission IKAROS is the first demonstration of flight

operations in deep space for solar sails [70]. A similar objective is also accomplished

by NanoSail-D, that is a cubesat satellite [71]. One possible follow-up missions is

currently Sunjammer.1 Sunjammer is a technology mission demonstrator being de-

veloped by LGarde Inc, that targets the vicinity of the sub-L1 Lagrangian point within

the Sun-Earth system. Trajectory design studies and higher fidelity sail models are

on-going investigations [72]. One among the technical difficulties preventing a wider

implementation of photon propulsion is certainly the challenge to store and deploy

sails large enough to supply the desired level of acceleration. A sail is most likely

constituted of a thin deformable surface; after deployment, achieving and maintain-

ing an adequate level of stiffness for the sail structure is non-trivial. In the IKAROS

mission, the entire sail is spinned at about 2 rpm to leverage the centrifugal force and

artificially produce stiffness. This method is simple and effective, however, it poses

1As January 2016, this mission is currently cancelled.
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another difficulty that is well described by Wie [73, 74]: because of high moments

of inertia (due to the large dimension for the reflective sail area) and a possible fast

spin rate, conventional attitude actuators may be inadequate to supply the control

authority necessary to steer the sail. As an alternative, the solar radiation pressure

may be leveraged to generate the desired control moments. In IKAROS, a belt of

Liquid Crystal devices is embedded in the sail and a net control moment is possible

by varying the local reflectivity of the surface. Another strategy, explored within the

design for Sunjammer, consists of small reflective vanes located at the tips of the sail;

the vanes are actively oriented to provide a three-axis attitude control. Turning rates

are problematic as well. Because a sail is highly deformable, an upper limit on the

reorientation angular velocities may also exist. High turn rates may, in fact, distort

the geometry of the sails and yield potential damages. Thus, as many of the advan-

tages provided by solar sailing may be, to a certain degree, limited by the capability

to reorient the solar sail, an investigation for its coupled orbit-attitude dynamics is

justified. A collection of articles that more exhaustively review the current advances

and challenges in solar sailing is published by MacDonald [75].

1.3 Present Work

In this investigation, the CR3BP is expanded to incorporate coupled orbit-attitude

dynamics, both natural and artificial. First a general coupled orbit-attitude dynami-

cal model for a rigid, monolithic, spacecraft is formulated. Simplifying assumptions on

the coupling effects are introduced to allow the establishment for an initial framework

of solutions. Yet, the model is sufficiently complex to reveal some of the challenges

associated with an actual vehicle and mission application.

Within the process of designing an attitude profile for a space mission, a great

effort is typically devoted to limit, or control, the spacecraft natural librations. Space-

craft tumbling is, in most scenarios, not desirable, or even critically endangering the

mission success. Natural bounded attitude librations are not necessarily trivial to
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identify within an intrinsically chaotic dynamics, such as that corresponding to the

coupled orbit-attitude CR3BP. In this discussion, bounded librations are constructed

in the form of orbit-attitude periodic solutions. Motions that exhibit natural periodic

behavior, as observed from a rotating frame, in both the orbit and attitude compo-

nents are a novel contribution to the exploration of the CR3BP. Numerical procedures

to precisely compute an orbit-attitude periodic solution along a known periodic refer-

ence trajectory are discussed. The success for the numerical methods adopted, largely

depends on the accuracy for the initial guess. Then, several approaches are proposed

for obtaining a proper initial guess for an orbit-attitude periodic response, starting

from well-known dynamical systems techniques, such as Floquet theory or Poincaré

mapping. Non-trivial orbit-attitude periodic behaviors are successfully identified and

accurately computed for librations along Lyapunov, halo, and distant retrograde or-

bits. Evidence that orbit-attitude behaviors also exist for a large variety of spacecraft

mass distributions and initial configurations is manifest from the available solutions.

Natural periodic motions not only supply a reference for possible bounded librations

but may also allow other fundamental dynamical structures, e.g., manifolds or quasi-

periodic torii, to emerge, ones that may eventually yield a new dynamical approach

to attitude operations.

Alternative forms of trajectory control to direct the spacecraft along a desired

orbital path may also develop from a mutual interaction between the orbit and at-

titude dynamics, such as in the case of solar sailing. Accordingly, the orbit-attitude

framework is applied to a simple solar sail application. As a contribution of this work,

various types of control input are explored to maneuver the sailcraft. Classical steer-

ing strategies, such as a Turn and Hold approach, are discussed within the context of

a coupled orbit-attitude regime, and other types of guidance, that necessarily depend

on the inclusion of the vehicle rotational dynamics, are introduced. Each guidance

strategy is applied to a simplified station keeping scenario, that serves as a stepping

stone for more complex applications.
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The organization of this study is as follows:

• Chapter 2. System Models - In this chapter, the equations of motion are derived

for the CR3BP, a general attitude problem, and for the coupled orbit-attitude

dynamics within the CR3BP. Equilibrium and periodic solutions within the

CR3BP are discussed. Orbit-attitude coupling effects induced by higher order

gravitation components and solar radiation pressure are presented.

• Chapter 3. Numerical Targeting Schemes - Linear variational equations and

the associated state transition matrix are formulated for the orbit-attitude dy-

namics. These equations are employed within the numerical solution for a two-

boundary value problem, that may reflect the existence of periodicity conditions

(e.g., bounded librations problem) or the targeting of a desired final state along a

reference orbit (e.g., solar sailing problem). Ultimately, the two-boundary prob-

lem is transformed into an initial value problem, that is solved via differential

correction. A multiple shooting formulation that implements Newton-Raphson

updates is the principal numerical scheme for the computation of both orbit-

attitude periodic solutions and solar sail trajectories. Additionally, two methods

for the numerical continuation of a solution are presented, and applied for the

creation of families for similar orbit-attitude behaviors.

• Chapter 4. Bounded Librations: Identification of Orbit-Attitude Periodic So-

lutions by Floquet Theory - Following the definition of a numerical strategy to

precisely compute orbit-attitude periodic solutions, the application of Floquet

theory for the identification of a viable initial guess is discussed. An elementary

orbit-attitude periodic motion for an axysimmetric spacecraft is employed as

an initial reference. The stability for this elementary motion is explored for

various reference periodic orbits, including Lyapunov and distant retrograde

orbits. Modification of the vehicle inertia properties is also considered. A vari-
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ation of the stability structure may indicate the existence of a distinct periodic

solution nearby the reference. In fact, various non-elementary orbit-attitude

periodic solutions are revealed. The analysis of representative non-elementary

orbit-attitude periodic motions is included.

• Chapter 5. Bounded Librations: Identification of Orbit-Attitude Periodic Solu-

tions by Poincaré mapping - In this chapter the possibility to recognize an orbit-

attitude periodic solution via an ordered structure that emerges on a Poincaré

map is explored. An algorithm to automatically detect the existence of ordered

patterns onto a Poincaré mapping, and facilitate the analysis of several surface

of sections is investigated. The automatic identification algorithm is based on

statistics that relates to the distribution of returns to the surface of section.

A large campaign of Poincaré map simulations, that is enabled by the auto-

matic identification algorithm, encompasses several reference periodic orbits

and spacecraft mass distributions. The analysis of representative orbit-attitude

periodic motions, that are revealed by the Poincaré maps, is included.

• Chapter 6. Bounded Librations: Identification of Orbit-Attitude Periodic So-

lutions by Grid Search - Previous research has demonstrated that regions of

orbit-attitude bounded motion, in terms of selected system parameters, may

emerge on a grid search map. A grid search map is basically a visual summary

of several simulations, that are generated for different configurations of the se-

lected parameters. A possible link between an area of bounded motion on a

grid search map and the existence of an orbit-attitude periodic solution within

that region, is demonstrated. Upon the understanding of that connection, a

representative family of orbit-attitude periodic behaviors is revealed along L1

halo orbits.
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• Chapter 7. Solar Sailing: Maneuvering Strategies - It is reasonable to regard

a solar sail as an orbit-attitude coupling device, that enables a change in the

vehicle attitude configuration to guide the orbital path. Considering such a ca-

pability, different guidance strategies are formulated. Each guidance law is de-

veloped within a coupled orbit-attitude regime, and leverages a distinct control

input, one that first influences the spacecraft orientation. Thus, an instanta-

neous solar sail pointing realignment, an external control torque, and a relative

angular momentum vector, may be supplied by internal rotors, are explored as

control inputs.

• Chapter 8. Solar Sailing: Application to a Simple Station Keeping Scenario in

the Sun-Earth System - The guidance strategies discussed in the previous chap-

ter, are implemented in a simple station keeping scenario for an ideal, flat solar

sail. Given selected orbits within the modified L1 halo family for the Sun-Earth

system, each strategy is applied to correct an initial error in position and ve-

locity, and target a desired final state along the nominal orbit. This elementary

test offers some of the challenges associated with controlling the solar sail point-

ing direction to steer the vehicle orbital path within a coupled orbit-attitude

model, and can easily be extended to reflect more complex operational scenarios.

• Chapter 9: Concluding Remarks - A summary for the main results of this in-

vestigation and recommendations for future work are included here.
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2. SYSTEM MODELS

2.1 Relevant Notation Convention

The following list supplies basic guidelines on relevant notation convention that

is adopted throughout this document:

• Vector quantities are denoted in bold, e.g. v. The modulus corresponding to

the vector v, is ||v|| = v. The vector basis for v may be specified as v
â
, which

explicitly indicates that v is written in the â-frame.

• An unit vector is denoted by the hat notation, •̂. For example, v̂ indicates a

vector with unitary module, v = 1.

• To describe the rotation of a final â′-frame relatively to an initial â-frame, the

corresponding direction cosine matrix is written as A
â′·â

. Other vector quantities

that describe characteristics of the â′-frame with respect to the â-frame, are

written as ava
′
.

• A partial derivative of a vector v with respect to a vector quantity x,
∂v

∂x
, is

written as v/x. The same notation applies to scalar quantities.

• the time derivative
dv

dt
is expressed with the Newton’s notation, v̇.

2.2 Orbital Dynamics

This work explores orbit-attitude dynamics for a spacecraft that is moving in a

non-keplerian regime. Specifically, the underlying model for the vehicle orbital dy-

namics is the Circular Restricted Three Body Problem (CR3BP). Coupling forces

may be particular relevant in this regime that, in certain locations, such as the vicin-

ity of certain equilibrium points, is characterized by highly nonlinear and sensitive
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dynamics. It follows that, the identification of solutions that are relevant to mission

design is challenging for this problem.

2.2.1 The Circular Restricted Three-Body Problem

Consider three masses that interact gravitationally. The two more massive bodies

P1, and P2, define the primary attractors, and are also simply referred as primaries;

the third body P3 may represent a particle of interest, such as a spacecraft or a

natural object within the same celestial system. The motion of three particles under

mutual gravitational influence may be directly described by Newton’s second law.

For certain practical scenarios, the motion of the particle of interest P3 is, however,

the only dynamics relevant. In such a case, it may be advantageous to introduce a

series of simplifying assumptions that preserve some fundamental underlying multi-

body dynamics, and increase the tractability of the general three-body problem. This

simplification of the model is practical and useful in several applications. Thus, the

following assumptions are considered:

• The primaries P1 and P2 are spheres with uniform mass density.

• The particle of interest P3 possesses negligible mass compared to the bodies P1

and P2, and does not affect their motion.

• The primaries P1 and P2 travel along circular orbits around their common center

of mass.

• The body P1 is more massive than the body P2.

The resulting model is commonly known as the Circular Restricted Three-Body Prob-

lem (CR3BP), and largely presented in orbital mechanics literature [76–78]. As the

bodies P1 and P2 follow a known circular trajectory, it is possible to define a synodic

frame that is fixed relative to the primaries. This synodic frame originates at the

baricenter for the P1-P2 system and rotates with constant angular velocity Ω relative
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to an inertial reference. The angular velocity Ω equals the mean motion of the system

P1-P2. The geometry of the CR3BP is conveniently rendered within a synodic rotat-

ing frame, or simply, rotating frame. When expressed in terms of this rotating frame,

the dynamical equations for the CR3BP possess, in fact, an analytical integral of the

motion. Let (x̂, ŷ, ẑ) be the unit vectors that define the rotating frame, such that

ẑ is normal to primaries orbital plane, and let (X̂, Ŷ , Ẑ) be the vector basis for the

inertial reference frame, as depicted in Figure 2.1. The inertial and rotating frame

are aligned at t = 0. Conventionally, the primaries lie on the x-axis for the synodic

frame. Finally, the system is normalized with the following quantities appearing as

unit: the total system mass m, the distance between the two attractor centers, the

angular frequency Ω of the circular motion for the P1-P2 system, and the universal

constant of gravity G. Length, velocity and time are converted as follows

[Length] `′ = L`

[Velocity] v′ =
L

T
v

[Time] t′ =
T

2π
t ,

where the primed quantities are dimensional, and the unprimed variables are normal-

ized; L is the dimensional distance between P1 and P2, and T is the orbital period of

P1 and P2. Such quantities are tabled for different systems in [79]. Consequent to the

normalization process, only one parameter describes the dynamics for the CR3BP,

which is

µ =
m2

m1 +m2

, (2.1)

defined as the ratio between the P2 mass and the total mass for the system m1 +m2.

The mass parameter, µ, also defines the position in non-dimensional units for the

primaries within the rotating frame: recalling m1 > m2, the primary P1 is located in

(−µ, 0, 0) and the body P2 is at (1− µ, 0, 0).

Expressing the Newton’s second law of motion in the rotating frame via a nondi-

mensional framework, and introducing a potential function, U , for the gravitational
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Figure 2.1. Geometry of the R3BP.

pull exerted by both P1 and P2, the relative acceleration for the particle P3 is produced

by

ρ̈+ 2n× ρ̇+ n× (n× ρ) + ṅ× ρ =
∂U

∂ρ
(2.2)

where ρ = xx̂ + yŷ + zẑ is the position vector for the particle of interest written

in the rotating frame, and n = Ωẑ = 1ẑ is the nondimensional angular velocity of

the rotating frame relative to the inertial frame. Following the assumptions for the

CR3BP, the nondimensional equations of motion generally presented by Eq. (2.2),

reduce to 

ẍ = 2ẏ + U∗/x

ÿ = −2ẋ+ U∗/y

z̈ = U∗/z ,

(2.3)
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where U∗(x, y, z) =
1

2
(x2+y2)+

1− µ
d

+
µ

r
is a modified expression for the gravitational

potential function, or also known as pseudo-potential. The distances from P1 and P2

are respectively denoted by

d =
√

(x+ µ)2 + y2 + z2 , r =
√

(x− 1 + µ)2 + y2 + z2 .

The system in Eq. (2.3) is autonomous (i.e., time does not explicitly appear within

the dynamical equations), and there exist a known analytical integral, named Jacobi

constant, that is JC = 2U∗ − (ẋ2 + ẏ2 + ż2). By its definition, increasing the Jacobi

constant reflects a decrease for the energy of P3 within the rotating frame.

2.2.2 Libration Points

In certain locations within the configuration space defined by the rotating frame,

the gravitational force and the apparent centrifugal force mutually balance, yielding

zero relative acceleration on the particle of interest, P3. A particle, such as a space-

craft, that is at rest at those locations will ideally preserve its state of equilibrium.

The position of such equilibrium points, indicated by the vector ρeq, may be iden-

tified as the zero for the gradient of the pseudo-potential function, ∇U∗(ρeq) = 0.

Referencing Figure 2.2, the equilibrium points are usually divided into two groups:

• three equilibrium solutions lie on the x-axis of the rotating frame, and are named

collinear points. Specifically, the point between the two attractors is labelled

L1; the point beyond the smaller primary, along the positive x direction, is L2;

the equilibrium preceding P1 along the x-axis, is denoted L3.

• two equilibrium solutions display an unit distance (in non-dimensional units)

from both the primary bodies. As each of these two points forms an equilateral

triangle with P1 and P2, they are known as the equilateral points L4 (positive

y coordinate) and L5 (negative y coordinate).
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Figure 2.2. Geometry of the equilibrium points.

To determine the location for the L4, and L5 equilibria, consider that the function

U∗(d, r) has the same critical points as the function U∗(x, y, z), when y 6= 0, and

z = 0 [79]. Employing the pseudo-potential function U∗(d, r) yields
U∗/d = −(1− µ)d+

(1− µ)

d2
= 0

U∗/r = −µr +
µ

r2
= 0 .

(2.4)

The unique solution for Eq. (2.4) is d = r = 1, which produces an equilateral

equilibrium configuration for P1, P2, and P3, as in Figure 2.2. The collinear equilibria

are, instead, rendered by the critical points for

U∗(x, 0, 0) = −1

2
x2 − 1− µ

|x+ µ|
− µ

|x+ µ− 1|
. (2.5)

The computation for dU∗(x, 0, 0)/dx = 0 yields a quintic equation after simplification.

Selecting the equilibrium points Li , i = 1, 2, such quintic expression is the polynomial

γ5i ∓ (3− µ)γ4i + (3− 2µ)γ3i − µγ2i ± 2µγi − µ = 0 , (2.6)

where γi is the positive distance of the equilibrium point Li from the nearest primary

(i.e., the body P2 for i = 1, 2). In Eq. (2.6) the upper signs are used for γ1, the lower
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sings for γ2. The roots for Eq. (2.6) are not available in closed form, but numerical

schemes, such as the Newton’s method, may be employed. The substitution of γi to

the x coordinate improves the robustness of a numerical approach to the solution of

Eq. (2.6). A good initial guess may be also obtained with a series expansion [78],

such as

γ1 = rh(1−
1

3
rh −

1

9
r2h + . . .) , (2.7)

and

γ2 = rh(1 +
1

3
rh −

1

9
r2h + . . .) , (2.8)

with rh = (µ/3)1/3. The equilibrium points, both equilateral and collinear, are also

called Lagrangian points (as a tribute to the contribution of Lagrange to the identi-

fication of L4 and L5), or librations points (in correlation to the possible existence of

nearby periodic behaviors).

2.2.3 Periodic Orbits in the CR3BP

Periodic orbits are another relevant set of solutions for Eq. (2.3) within the

CR3BP. A periodic orbit is such that any arbitrary state, along the trajectory, as

defined relatively to a given reference, recurs at intervals. The minimum time span

between the recurrence of a selected state is named minimal period of the orbit, or

simply period. If the dynamical flow associated to a given set of equations of motion,

e.g., Eq. (2.3), is φ(x, t), then, any state x0 that belongs to the periodic orbit, Γ,

satisfies

x0 = φ(x0, P ) for x0 ∈ Γ , (2.9)

where t = P is, in fact, the period of the orbit. The relationship in Eq. (2.9) is also

satisfied for any multiple integer of the period, P . The existence of periodic behav-

iors also depends on the definition of the system state description. Recall that, the

equations of motion for the CR3BP are typically written within the rotating frame,

as in Eq. (2.3). Accordingly, periodic motions are naturally observed in position and
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velocity as defined within the rotating frame. A trajectory periodic within the rotat-

ing frame, does not necessarily retain its periodicity when transitioned to a different

set of coordinates, such as an inertial frame. Obviously, the concept of periodicity

can be applied to any dynamical system, consistently with the definition for its state

variables.

There exist an infinite number of periodic orbits that permeates the solution space

for the CR3BP. Periodic orbits may be organized into families. Members of the same

family share the continuous variation of certain parameters and generally display sim-

ilar motion patterns. Families of periodic orbits within the Earth-Moon system that

have been utilized or proposed for mission applications include, for example, L1/L2

Lyapunov orbits (Figure 2.3), L1/L2 halo orbits (Figure 2.4), Distant Retrograde Or-

bits (DRO) (Figure 2.5). Considering the Earth-Moon system, more details on the

currently well-established periodic solutions within the CR3BP, their classification

and characterization are available in [80]. A periodic trajectory may be obtained by

targeting symmetry conditions at the final state, which is located half-way along the

orbit, or, directly solving for the continuity between the initial and final state after

one period. Several numerical schemes for the precise computation of periodic orbit

are discussed in [81].
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2.2.4 Gravity on a Rigid Body Exerted by a Particle

Within the assumptions for the CR3BP, the model for the body of interest, P3, is

equivalent to a mass-point. When orbit-attitude dynamics are considered, the finite

extension for P3 is necessarily introduced. In general, the resultant gravity force on a

particle, and on an extended body are naturally different. Let a rigid body with mass

m experience the gravitational pull of a particle Pi with mass mi, as illustrated in
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Figure 2.6. Gravity force exerted by a particle on a rigid body schematics.

Figure 2.6. The precise expression for the gravity force that is applied on m because

of mi is

F i = −Gmi

∫
m

p(p · p)−3/2dm , (2.10)

where p denotes the position vector of an infinitesimal mass, dm, relative to the

selected primary, Pi, and G is the universal gravitational constant. When more

attracting particles exist within the system, as for the CR3BP, the total force on the

rigid body is simply the summation of each individual contribution, that is computed

using Eq. (2.10). A useful form for Eq. (2.10) can be obtained by replacing the

vector p with the vector Ri, defined as Ri = RiR̂i, which describes the position of

the body center of mass, B, relative to the primary Pi, and yields

F i = −Gmim

R2
i

[
R̂i +

∞∑
j=2

f (j)

]
. (2.11)

In Eq. (2.11), the resultant force is separated in two contributions: first, the force

directed along the radial direction, R̂i, and equivalent to a mass-point located at

the body center of mass; second, a collection of terms, f (j), that are proportional to

ascending powers (|p −Ri|/Ri)
j, and reflect the body finite mass distribution [82].
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When the summation for the terms f (j) is zero, the gravity force configuration acting

on the body is identical to a point-mass model. A mass distribution that displays such

a property, is named centrobaric. For a body that is small compared to the distance

from the primary, such that (|p − Ri|/Ri) << 1, every component of the series

proportional to a power for (|p−Ri|/Ri)
j higher than the second order is, typically,

neglected. The remaining second order term is a function of the body inertia tensor

about the center of mass, I, as

f (2) =
1

mR2
i

{
3

2

[
Tr(I)− 5R̂i · I · R̂i

]
R̂i + 3I · R̂i

}
; (2.12)

recall that, m is the mass of the body, and R̂i is a unit vector that aligns along the

line from Pi to B. Accordingly, an expression for the gravity force, approximated for

a small body that is distant from the primary, is supplied by

F i ≈ −
Gmim

R2
i

[
R̂i + f (2)

]
. (2.13)

The vector f (2) is not generally parallel to the direction R̂i, consequently, the resul-

tant gravity force does not align with the line from the primary to the body center of

mass. Previous studies report that, perturbations other than the second order grav-

ity expansion f (2), e.g., the solar radiation pressure, appear more relevant for small

bodies (characteristic length less than 100 m) in vicinity of the libration points [15].

Therefore, to possibly facilitate the identification of fundamental orbit-attitude dy-

namical structures for a small spacecraft, the components of the gravitational force

that corresponds to f (2) (or any higher order term) are not included in the orbital

model, as they are negligible compared to other types of orbital perturbation.

2.2.5 Solar Radiation Pressure

In determining the path evolution for a spacecraft that travels at a significant

distance from any gravitational attractor, for example stationing near a libration point

or rendering other types of motion within the CR3BP, the Solar Radiation Pressure

(SRP) may be an important addition to the point-mass gravitational force model.
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The solar radiation pressure is an expression for the exchange of linear momentum

between incoming photons from the Sun and a material surface that is immersed into

such a flux. This interaction generates a net force on the surface that may disturb the

nominal trajectory, or may also be exploited as an alternative propulsion mechanism,

e.g., solar sail applications. Assuming an opaque surface, three types of phenomena

may occur after the collision of the photons flux with the surface: specular reflection,

diffuse reflection and absorption. Each type of interaction produces an infinitesimal

force on the infinitesimal local impact area, dA,

dF a = Pca cosα ˆ̀
1 dA α ∈ [−π/2, π/2] (2.14)

dF d = Pcd

(
2

3
cosαû+ cosα ˆ̀

1

)
dA α ∈ [−π/2, π/2] (2.15)

dF s = 2Pcs cos2 αû dA α ∈ [−π/2, π/2] (2.16)

where the subscripts a, d, s, denote the absorbed, diffusively reflected and specularly

reflected radiation, respectively; P is the time-average radiation pressure at a given

distance from the Sun, d�, which is derived from a reference value at one Astronomical

Unit (AU) P0 = 1358W/m2 as

P =
P0

(d�[AU ])2
, (2.17)

with d� expressed in astronomical units; α is the angle between the incident photons

direction ˆ̀
1 and the local surface normal û, defined by

cosα = ˆ̀
1 · û ; (2.18)

the coefficients ca, cd, cs represent the percentage of the incoming flux that is absorbed,

diffusively reflected and specularly reflected, respectively. These percentages are not

necessarily constant throughout the surface, but they satisfy the following relationship

at any point

cs + cd + ca = 1 . (2.19)



29

Integrating over the total surface area, A, the sum of the infinitesimal actions in Eq.

(2.14)-(2.16) and substituting Eq. (2.19), yields the total force produced by the solar

radiation pressure

F SRP = P

∫
A

[
(1− cs)ˆ̀

1 + 2

(
cs(ˆ̀

1 · û) +
1

3
cd

)
û

]
(ˆ̀

1 · û) dA . (2.20)

The integration of Eq. (2.20) is elementary for a flat surface (illustrated in Figure

2.7) with constant coefficients, and it is further simplified by including solely specular

reflection, resulting in

F SRP = PAcs(ˆ̀
1 · û)2û , (2.21)

The expression in Eq. (2.21) may also describe the force produced by an ideal solar

sail, i.e., flat and perfectly reflective.

Photons flux

Figure 2.7. Solar radiation pressure on a flat surface schematics.

2.3 Attitude Dynamics

In this investigation, the prediction, and possibly the control, for a space vehicle

orientation in the three-dimensional space is incorporated within the CR3BP frame-

work. The discipline that typically concerns a spacecraft rotational motion is referred

as attitude dynamics. Attitude dynamics proceeds from the definition for a kinemati-

cal description that represents the vehicle orientation relative to some reference frame,

to the formulation of equations of motion that render the body orientation evolution

in time. Basic concepts, that are employed to construct the orbit-attitude dynamical

framework, are discussed in the following sections.
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2.3.1 Rotational Kinematics

There exist several representations to render a rigid body orientation relative to a

given observer, but, at minimum, three variables are required within any description

[82]. Some parameter combinations within a minimum set may, however, produce the

identical, actual, spacecraft orientation. A vehicle attitude configuration that does

not uniquely correspond to a set of the selected kinematical variables is referred as a

singularity. Adding additional parameters may aid in removing certain singularities.

Note that, any non-minimal set is accompanied by additional constraint equations,

that are appropriate to restore the correct number of independent variables. Three

attitude descriptors are principally employed in this work as detailed below.

Direction Cosine Matrix

The matrix formalism offers a simple means of relating one coordinate frame to

another. Consider the transformation from some initial frame, identified by the tern of

unit vectors (â1, â2, â3), to some final frame, defined by the unit vectors (â′1, â
′
2, â

′
3).

The initial and final frame may be simply referred as â-frame and â′-frame. Then,

the rotation from the â-frame to the â′-frame may be written as
â′1

â′2

â′3

 = A
â′·â


â1

â2

â3

 , (2.22)

where

A
â′·â

=


A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (2.23)
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is the Direction Cosine Matrix (DCM). The elements that comprise the DCM may

be employed as a nine-parameter set to deduce the orientation of the â′-frame with

respect to the â-frame, in fact,

â′1 = A11â1 + A12â2 + A13â3

â′2 = A21â1 + A22â2 + A23â3

â′3 = A31â1 + A32â2 + A33â3 .

(2.24)

The direction cosine matrix, A
â′·â

, is equivalent to a rotation matrix that changes the

vector basis for a given vector, v, from the â-frame to the â′-frame, simply

v
â′

= A
â′·â
v
â

, (2.25)

where, in fact, v
â

is some vector written in the initial set of coordinates and v
â′

denotes

the same vector, but expressed in the final reference frame. As a rotation matrix,

direction cosine elements must satisfy the following constraint equations

A
â′·â

T A
â′·â

= I . (2.26)

Direction cosine matrices are particularly useful to transform vector, or tensor, quan-

tities among different reference frames, ones that may be introduced in this investi-

gation.

Quaternion

The quaternion, also known as Euler parameters, is a set of 4 scalar variables that

is commonly employed in numerical simulations for attitude motion. The quaternion

formalism is, in fact, free of trigonometric functions, and a limited number of op-

erations are involved in the representation of successive rotations. Additionally, it

is always possible to avoid any singularity during the transformation process from a

given direction cosine matrix to the corresponding quaternion set. The quaternion

four-dimensional vector, aqa
′

=
[
q1 q2 q3 q4

]T
, that describes the orientation of
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some final frame, denoted with a′, relative to some initial frame, denoted with a, is

defined as

aqa
′
=

λ̂ sin(θ/2)

cos(θ/2)

 , (2.27)

where λ̂ is the Euler axis of rotation, such that,

λ̂ = A
â′·â
λ̂ ,

and θ is the Euler angle, such that,

cos(θ) =
1

2

(
Tr
(
A
â′·â

)
− 1
)

.

The Euler axis and angle render the transformation from â to â′ as a simple rotation

about an axis λ̂ by an angle θ. The quaternion group includes one more variable than

the minimum-set and, consequently, one constraint equation is necessary, which is

aqa
′ ·a qa′ = 1 . (2.28)

A direction cosine matrix from the â-frame to the â′-frame is expressed in terms of a

quaternion vector as

A
â′·â

=


q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

 . (2.29)

Vice-versa, the quaternion vector that represents the rotation from the â-frame to

the â′-frame is constructed from the corresponding direction cosine matrix using one

of the following sets of equations

q1 =
1

4q4
(A23 − A32)

q2 =
1

4q4
(A31 − A13)

q3 =
1

4q4
(A12 − A21)

q4 =
1

2
(1 + A11 + A22 + A33)

1
2



q1 =
1

2
(1 + A11 − A22 − A33)

1
2

q2 =
1

4q1
(A12 + A21)

q3 =
1

4q1
(A13 + A31)

q4 =
1

4q1
(A23 − A32)

(2.30)
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

q2 =
1

2
(1− A11 + A22 − A33)

1
2

q1 =
1

4q2
(A12 + A21)

q3 =
1

4q2
(A23 + A32)

q4 =
1

4q2
(A31 − A13)



q3 =
1

2
(1− A11 − A22 + A33)

1
2

q1 =
1

4q3
(A13 + A31)

q2 =
1

4q3
(A23 + A32)

q4 =
1

4q3
(A12 − A21)

(2.31)

As a common good practice, the set of equations for the inverse transformation is

chosen such that, the maximum quaternion vector component appears at the de-

nominator in Eq. (2.30)-(2.31), or, at least, any division by zero is avoided. The

quaternion parameters are employed in this investigation within the numerical prop-

agation of the spacecraft attitude dynamics.

Euler Angles

Elements of the direction cosine matrix or quaternion vector do not typically

offer an immediate interpretation for the corresponding physical orientation of the

vehicle. Alternative to those representations, Euler angles are usually employed to

assist in the visualization of the physical configuration. Several Euler angles space

and body sequences are presented in [82]; among such, the 3-2-1 body, 3-2-3 body,

3-1-3 body sequences are employed in this analysis to relate a generic initial â-frame

and a final â′-frame. For the selected Euler angles sequences, the direction cosine

matrix is obtained from

A
â′·â

321 =


c1c2 s1c2 −s2

−c3s1 + s3c1s2 c3c1 + s3s1s2 s3c2

s3s1 + c3c1s2 −s3c1 + c3s1s2 c3c2

 , (2.32)

A
â′·â

323 =


−s3s1 + c3c1c2 s3c1 + c3s1c2 −c3s2
−c3s1 − s3c1c2 c3c1 − s3s1c2 s3s2

c1s2 s1s2 c2

 , (2.33)
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A
â′·â

313 =


c3s1 − s3s1c2 c3s1 + s3c1c2 s3s2

−s3c1 − c3s1c2 −s3s1 + c3c1c2 c3s2

s1s2 −c1s2 c2

 , (2.34)

where ci denotes the cosine function for the i-th angle within the sequence, and,

similarly, si is a short form for the sine function calculated on the i-th angle within the

sequence. Euler angles are used in this investigation to supply a visualization for the

attitude configuration evolution that enables a more straightforward interpretation

for the spacecraft physical motion.

Spacecraft orientation relative to inertial and rotating frame

A spacecraft attitude can be deduced by predicting the orientation of a body

fixed frame (b̂1, b̂2, b̂3), also referred as b̂-frame, with respect to a given observer.

Several frames may provide a reference to describe a spacecraft orientation, and may

be determined within a specific mission application. In this work, an inertial frame

corresponding to the unit vectors (X̂, Ŷ , Ẑ), and the CR3BP rotating frame, which

is constructed upon the unitary tern (x̂, ŷ, ẑ), are the principal references adopted.

The inertial and rotating frame are also labelled î-frame and r̂-frame, respectively.

At the initial time, the î-frame and r̂-frame are aligned. The quaternion vector iqb

renders the orientation of the b̂-frame in the î-frame, and the corresponding DCM is

A
b̂·̂i

=


q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

 , (2.35)

where qi are the components of iqb. Known a vehicle attitude configuration with

respect to the inertial frame as DCM, A
b̂·̂i

, it is also possible to express the DCM that

describes the spacecraft orientation in the CR3BP rotating frame, i.e.,

A
b̂·r̂

= A
b̂·̂i
A
î·r̂

,
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where

A
î·r̂

=


cos(t) − sin(t) 0

sin(t) cos(t) 0

0 0 1

 (2.36)

is the rotation matrix from the r̂-frame to the î-frame. The quaternion vector that

renders the spacecraft attitude in the rotating frame, rqb, may be computed from the

DCM, A
b̂·r̂

, using Eq. (2.30)-(2.31). Alternatively, the rule for successive rotations may

be applied directly within the quaternion formalism, which yields the relationship

iq b =


cos(t/2) − sin(t/2) 0 0

sin(t/2) cos(t/2) 0 0

0 0 cos(t/2) sin(t/2)

0 0 − sin(t/2) cos(t/2)


rq b . (2.37)

In the following discussion, the quaternion representation iqb is employed within the

formulation and propagation of the equations of motion, whereas rqb may facilitate

the identification and visualization of orbit-attitude periodic solutions, consistently

with the reference observer that is typically adopted within the classical CR3BP.

2.3.2 Kinematics Differential Equations

Consider two frames, e.g., (â1, â2, â3) and (â′1, â
′
2, â

′
3), that are moving relative

to each other. In particular, the angular velocity for the final â′-frame, relative to the

initial â-frame is known, and equal to

aωa
′

â′
= aωa

′

1 â
′
1 + aωa

′

2 â
′
2 + aωa

′

3 â
′
3 .
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The relative motion between the two set of unit vectors, naturally, causes a time

variation of the kinematics variables. For the quaternion vector aqa
′
, the time rate of

change in its elements can be expressed as a function of the angular velocity aωa
′

â′
, as

2q̇1 = aωa
′

3 q2 − aωa
′

2 q3 + aωa
′

1 q4

2q̇2 = − aωa
′

3 q1 + aωa
′

1 q3 + aωa
′

2 q4

2q̇3 = aωa
′

2 q1 − aωa
′

1 q2 + aωa
′

3 q4

2q̇4 = − aωa
′

1 q1 − aωa
′

2 q2 − aωa
′

3 q3 .

(2.38)

Details for the derivation of Eq. (2.38) are presented in [82]. The set of equations in

Eq. (2.38) may be numerically propagated to predict the orientation time profile for

the â′-frame with respect to the â-frame in terms of quaternion parameters.

2.3.3 Dynamics Differential Equations

The basic differential equations to capture the rotational dynamics for a rigid

body are straightforwardly derived from the application of the Newton’s second law

in its angular momentum form. Introduce a set of unit vectors (b̂1, b̂2, b̂3) that is fixed

in the body center of mass, and aligned with the principal inertia axes, also called

b̂-frame. Let iωb
b̂

= ω1b̂1 + ω2b̂2 + ω3b̂3 be the angular velocity relative to an inertial

frame and written in body axes. Then, the angular momentum law that predicts

the rotational dynamics about the body center of mass simplifies to the following

equations [83], 
I1ω̇1 = −(I3 − I2)ω2ω3 +M1

I2ω̇2 = −(I1 − I3)ω1ω3 +M2

I3ω̇3 = −(I2 − I1)ω1ω2 +M3 ,

(2.39)

where Ii denotes the principal inertial moment corresponding to the body axis b̂i, and

MB = M1b̂1 + M2b̂2 + M3b̂3 is the resultant external moment applied to the body

center of mass, B, as written in the b̂-frame. An analytical solution for Eqs. (2.39)

may exist for a particular system configuration, such as in a torque-free scenario

[82]; otherwise, when a generic time-varying moment is applied, Eqs. (2.39) are



37

numerically solved, for example, using a variable-step and variable-order predictor-

corrector integration scheme.

2.3.4 Gravity Torque on a Rigid Body Exerted by a Particle

Variation of the gravitational field in the three-dimensional space, often referred

as gravity gradient, yields a variation of the local gravity force through a finite mass

distribution, that may produce a net torque about the body center of mass. For a

rigid body, the net gravity gradient moment about its center of mass, due to the

gravitational attraction of the primary Pi, is expressed as

MB
i = −Ri × F i , (2.40)

where Ri is the position vector from the attracting body Pi to the spacecraft center of

mass, B, illustrated in Figure 2.6, and F i is the gravity force for Pi, which is defined

in Eq. (2.11). Similarly to the simplification for the gravity force, a series expansion

may be introduced for the gravity gradient moment, i.e.,

MB
i =

3Gmi

R3
i

R̂i × I · R̂i +
Gmim

Ri

∞∑
j=3

m(j) , (2.41)

one that is particularly useful for a body that is small compared to its distance

from the primary, Ri. In fact, the terms of the summation, m(j), are proportional to

increasing powers of (|p−Ri|/Ri)
j larger than the second order, and may be negligible

when (|p−Ri|/Ri) << 1. After some algebra [82], the typical approximation of the

gravity gradient torque for a small spacecraft about the body center of mass, B,

appears as

MB
i ≈

3Gm

R3
i

[
(I3 − I2)c2c3b̂1 + (I1 − I3)c1c3b̂2 + (I2 − I1)c1c2b̂3

]
, (2.42)

where Ij , b̂j ·I ·b̂j are the principal inertia moments in body axes, and cj , R̂i ·b̂j are

the projections of the radial vector from the primary Pi to the body center of mass, B,

in the body frame. When more attracting particles exist within the system, as for the
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CR3BP, the total moment on the rigid body center of mass is simply the summation of

each individual contribution, that is computed using Eq. (2.42). In this investigation,

the gravity gradient torque exerted by any primary is the only environment action

included within the attitude dynamics model, unless otherwise specified. External

control moments may be applied in addition to the gravity gradient.

2.4 Coupled Orbit-Attitude Dynamics

In the work presented in this document, translational and rotational dynamics for

a rigid space vehicle within the CR3BP, illustrated in Figure 2.8, are encapsulated in

a set of differential equations similar to
ẋorb = fx(xorb,

i qb,iωb, t)

iq̇b = f q(xorb,
i qb,iωb, t)

iω̇b = fω(xorb,
i qb,iωb, t) .

(2.43)

The orbital state vector, xorb =
[
x y z vx vy vz

]T
, comprises the spacecraft

center of mass position and velocity relative to the rotating frame, consistently with

the classical definition within the CR3BP. The vehicle orientation is represented by

the quaternion vector iqb =
[
q1 q2 q3 q4

]T
, that supplies the alignment within an

inertial frame, denoted by i, for a set of body axes, denoted by b, that are fixed in

the spacecraft principal directions of inertia. The time rate of change for the vehicle

attitude configuration is reflected in the body angular velocity with respect to the in-

ertial frame, as written in the b̂-frame iωb
b̂

=i ωb =
[
ω1 ω2 ω3

]T
. The orbit-attitude

dynamical system as formulated in Eq. (2.43) is generally non-autonomous. Most

important, as evident in Eq. (2.43), a variation of the orbital state variables induces

a variation for the attitude state variables, and vice-versa. Two specific frameworks

for the generic coupled orbit-attitude dynamics in Eq. (2.43) are developed in the

following sections, one to capture underlying dynamical structures in the form of

orbit-attitude periodic motions, and another for application to solar sailing.
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Figure 2.8. Frame representations in coupled orbit-attitude CR3BP.
The blue vectors indicate the inertial î-frame, the black vector indicate
the CR3BP rotating r̂-frame, the red vectors indicate the body b̂-
frame.

2.4.1 Simplified Coupled Model

To first explore the orbit-attitude dynamics within the CR3BP, a simplified version

for a general coupled framework is employed. In particular, the influence of the orbital

motion on the attitude dynamics is solely included, but not the inverse interaction. In

this model, the time evolution of the orbital state variables is no longer a function of

the attitude state variables, as expressed by the following system of vectorial equations
ẋorb = fx(xorb)

iq̇b = f q(
iqb,iωb)

iω̇b = fω(xorb,
i qb,iωb, t) .

(2.44)

The vectorial differential system in Eq. (2.44) is referred as Simplified Coupled Model

(SCM). The equations of motion for the SCM are numerically integrated to predict

the orbit-attitude history of a space vehicle.



40

To reproduce the orbital dynamics of the spacecraft within the SCM, the gravity

force is modelled neglecting the finite extension of the vehicle. Accordingly, the orbital

behaviour of the vehicle is equivalent to the response of a point-mass located at the

body center of mass. Perturbations that are equally significant when compared to the

actual mass distribution, such as the solar radiation pressure, are also neglected in the

SCM. The resulting orbital dynamics is the familiar Circular Restricted Three-Body

Problem (CR3BP), which is presented in Eq (2.3):

fx(xorb) = fCR3BP =



vx

vy

vz

x+ 2vy −
(1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3

y − 2vx −
(1− µ)y

d3
− µy

r3
− (1− µ)z

d3
− µz

r3


, (2.45)

where x, y, z are the position coordinates expressed in terms of the rotating frame; vx,

vy, vz are the velocity components of the spacecraft observed from the rotating frame

and expressed in terms of rotating components. The distances from P1 and P2 are

respectively denoted by d =
√

(x+ µ)2 + y2 + z2, and r =
√

(x− 1 + µ)2 + y2 + z2.

Recall that, particular solutions of Eq. (2.45) include equilibrium points, periodic

orbits and quasi-periodic trajectories [78].

The orientation of the spacecraft is represented through a body reference frame

(b̂1, b̂2, b̂3), with an origin fixed in the spacecraft center of mass, and aligned with

spacecraft principal axes of inertia. The instantaneous orientation of the body frame

(which is the orientation of the rigid vehicle) relative to the inertial frame is defined

using the quaternion vector iq b = [q1 q2 q3 q4]
T ; one of the components of iq b, e.g., q4,

is implicitly defined by the constraint Eq. (2.28) with a sign ambiguity. Practically,

the sign ambiguity is solved by assigning initial conditions for [q1 q2 q3]
T as well as

q4. Then, q4 is solved via numerical integration of the equations of motion. The
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4-dimensional quaternion vector is related to the body angular velocity iωb via the

kinematics relationship,

fq(iqb,iωb) =
1

2


ω3q2 − ω2q3 + ω1q4

−ω3q1 + ω1q3 + ω2q4

ω2q1 − ω1q2 + ω3q4

−ω1q1 − ω2q2 − ω3q3

 . (2.46)

Euler equations of motion in Eq. (2.39) reflect the rotational dynamics of the vehi-

cle, incorporating the net gravity torque that is exerted by P1 and P2, and no other

external moments. A second-order approximation is developed to express the gravita-

tional moment as in Eq. (2.42). The resulting dynamical equations for the spacecraft

attitude are written as follows:

fω(xorb,
i qb,iωb, t) =



I3 − I2
I1

(
3µ1

d3
g2g3 +

3µ2

r3
h2h3 − ω2ω3

)
I1 − I3
I2

(
3µ1

d3
g1g3 +

3µ2

r3
h1h3 − ω1ω3

)
I2 − I1
I3

(
3µ1

d3
g1g2 +

3µ2

r3
h1h2 − ω1ω2

)


, (2.47)

where iω b = [ω1 ω2 ω3]
T is the angular velocity vector of the body relative to the

inertial frame and expressed using (b̂1, b̂2, b̂3) as the vectorial basis; I1, I2 and I3

denote the principal central moments of inertia in the corresponding directions; µ1

and µ2 are the planetary constants of P1 and P2, which satisfy µ1 = 1−µ and µ2 = µ

in nondimensional units; hi represent the projections of the spacecraft position unit

vector relative to P1 into the body frame, while gi are the projections of the spacecraft

position unit vector relative to P2 into the body frame. Upon the introduction of

direction cosine matrices, the projections gi and hi, which determine the gravitational

moment in Eq. (2.47), are expressed as functions of the instantaneous position and

orientation of the spacecraft, i.e.,
g1

g2

g3

 = A
b̂·̂i
A
î·r̂

d

d
= A

b̂·̂i
A
î·r̂

1

d


x+ µ

y

z

 (2.48)
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and 
h1

h2

h3

 = A
b̂·̂i
A
î·r̂

r

r
= A

b̂·̂i
A
î·r̂

1

r


x+ µ− 1

y

z

 . (2.49)

Equations (2.45), (2.46) and (2.47) form the entire set of coupled equations of

motion that is necessary to describe the orbit-attitude dynamics of a small rigid body

within the context of the CR3BP. Given Eqs. (2.47) and (2.46), the attitude response

is influenced by the orbital states, but no attitude terms are present in Eq. (2.45), so

that, the classic structure of the CR3BP is preserved. Accordingly, this model may not

be applicable to a spacecraft whose characteristic dimension is large compared to the

distance from P1 and P2. External actions, other than gravity, may also introduce a

dependency of the orbital path on the body orientation. However, the current model

is easily modified to incorporate large spacecraft and external perturbations, and

supplies a practical basis for the identification of fundamental, natural orbit-attitude

behaviors that originate from the gravitational field.

2.4.2 Fully Coupled Model: Incorporating Solar Radiation Pressure

At interplanetary locations, such as the vicinity of the libration points, the So-

lar Radiation Pressure (SRP) may be one of the dominant environment factors to

introduce a dynamical coupling between the spacecraft translational and rotational

motion. Some technologies under development, e.g., solar sail architectures, aim to

leverage such a coupling to control a vehicle trajectory. It is, therefore, significant to

expand the SCM framework to incorporate SRP, and rewrite the equations of motion

in the form 
ẋorb = fx(xorb,

i qb, t)

iq̇b = f q(
iqb,iωb)

iω̇b = fω(xorb,
i qb,iωb, t) ;

(2.50)

note that, the spacecraft orientation is, hereby, an explicit input for the vectorial

function fx , in contrast with the SCM. The differential system in Eq. (2.50) is
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referred as Fully Coupled Model (FCM), since there exist a specific reciprocal influence

between the orbit and attitude dynamics. In the present FCM, the net force on the

vehicle center of mass that is produced by the SRP is solely applied. Any moment

on the spacecraft that may originate from an interaction with the solar radiation, is

neglected. Accordingly, the attitude dynamical equations stay identical to those in

Eq. (2.44) for the SCM. The orbital vectorial equations are, however, updated as

follow

fx(xorb,
i qb, t) = fFCM = fCR3BP(xorb) + ass(xorb,

i qb, t) , (2.51)

where ass is the resultant, nondimensional, acceleration due to SRP that is applied

to the body center of mass, and written in CR3BP rotating frame coordinates. The

acceleration, ass, may be derived from the SRP force model in Eq. (2.21) for a flat,

perfectly specular surface, which is a classical abstraction for a solar sail architecture.

The final expression for the acceleration ass may vary accordingly to the planetary

system considered.

Sun-Planet system

Within a CR3BP model for a Sun-Planet combination, the acceleration ass, in

Eq. (2.51), that is generated by the SRP on a flat and perfectly reflective surface,

reduces to

ass = a
r̂
ss =


ass,x

ass,y

ass,z

 = β

(
1− µ
d2�

)
(ˆ̀

1 · û
r̂
)2û

r̂
, (2.52)

where β denotes the lightness parameter of the vehicle as defined in [84] (this quantity

is originally introduced to describe the performances of an ideal solar sail); µ repre-

sents the CR3BP mass parameter for the corresponding Sun-Planet system; d� is the

nondimensional distance from the Sun, ˆ̀
1 is the incoming direction of the radiation

and û is the surface normal, both as written in the r̂-frame. The surface normal
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may be more easily defined within the body fixed b̂-frame and, then, transformed to

a different vector basis using DCMs, straightforwardly,

û
r̂

= A
r̂·̂i
A
î·b̂
û
b̂

. (2.53)

For example, assume the sail normal to coincide with the b̂1 body principal axis, i.e.,

û
b̂

= [1 0 0]T . The DCM from the î-frame to the r̂-frame, A
r̂·̂i

, defined in Eq. (2.36),

is only a function of the nondimensional time, t, and the DCM from the b̂-frame to

the î-frame, A
î·b̂

, can be written in terms of the quaternion vector iqb, similarly to Eq.

(2.35). Accordingly, the final expression for the vector û
r̂

= n in the CR3BP rotating

frame, is

n =


n1

n2

n3

 =


cos(t)(q21 − q22 − q23 + q24) + 2 sin(t)(q1q2 + q3q4)

− sin(t)(q21 − q22 − q23 + q24) + 2 cos(t)(q1q2 + q3q4)

2(q1q3 − q2q4)

 , (2.54)

and acceleration due to SRP results

a
r̂
ss = β

(
1− µ
d4

)
((x− µ)n1 + yn2 + zn3)

2


n1

n2

n3

 = β

(
1− µ
d4

)
(d · n)2n , (2.55)

where is noted d� = d, with d being the CR3BP distance from P1, i.e., the Sun.

The system of equations Eq. (2.50), that includes the definition for the acceleration

a
r̂
ss in Eq. (2.55), is employed in later chapters of this document as a model for the

orbit-attitude dynamics of a solar sail travelling within the Sun-Earth system.

2.5 Planetary System Constants

To characterize a planetary system within the CR3BP, three quantities are fun-

damentally necessary: the mass parameter, µ, the distance between the primaries, L,

and the system synodic period, 2πT . Such quantities are summarized in Table 2.1

for the Earth-Moon and Sun-Earth systems, which represent the two environments

considered within this investigation.
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Table 2.1. Planetary system constants within the CR3BP.

Earth-Moon System

L [km] 384400

T [days] 4.3421

µ 1.215e-2

Sun-Earth System

L [km] 1.4960e+08

T [days] 58.1244

µ 3.003e-6
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3. NUMERICAL TARGETING SCHEMES

The equations of motion for a rigid body immersed into a two-bodies gravitational

field, and possibly including solar radiation pressure, do not possess a solution space

that can be described in an analytical, closed-form. The trajectory and orientation

evolution is, instead, numerically propagated. When a specific behavior, or a de-

sired set of final conditions, is sought, numerical tools are required to manipulate the

solution. In this investigation, a multiple shooting scheme, in combination with a

multi-variable Newton-Raphson solver, is employed to construct orbit-attitude peri-

odic solutions, and solar sail trajectories within a coupled orbit-attitude regime.

3.1 Linear Variational Equations

The numerical methods employed to generate an orbit-attitude periodic motion

or a solar sail trajectory are based on the capability to predict motions nearby a

reference solution. Such understanding is essential to estimate a series of incremental

adjustments to the reference, that may converge on the desired translational and/or

rotational history. Consider a generic system of nonlinear ordinary differential equa-

tions, written in vector form

ẋ = f(x, t) , (3.1)

and a reference solution x∗(x∗0, t) that is generated by numerically propagating an

initial state vector, x∗0, from the initial time t0 to the final time t. To examine

behaviors nearby the reference solution, perturb the initial conditions by a small

amount δx0, such as

x0 = x∗0 + δx0 .
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A linear estimate for the time evolution of the variation relative to the reference

motion, i.e., δx(t) = x(x∗0 + δx0, t)−x∗(x∗0, t), may be obtained as a solution for the

following linear system of differential equations

δẋ ≈ df

dx

∣∣∣∣
x∗(x∗0,t)

δx = J(t)δx , (3.2)

where J(t) =
df

dx
is the Jacobian matrix of the original nonlinear vectorial system

in Eq. (3.1). The Jacobian matrix for the SCM and FCM equations of motion is

fundamental for the implementation of the numerical correction algorithms adopted

in this investigation.

3.1.1 Jacobian in the CR3BP

The Jacobian matrix for the differential equations in the classical CR3BP in Eq.

(2.3), is produced by

J = fx/xorb , (3.3)

where

fx/xorb =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗/xx U∗/xy U∗/xz 0 2 0

U∗/yx U∗/yy U∗/yz −2 0 0

U∗/zx U∗/zy U∗/zz 0 0 0


. (3.4)

Recall U∗ is the pseudo-potential function.
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3.1.2 Jacobian in the Orbit-Attitude SCM

The Jacobian matrix for the SCM differential equations in Eq. (2.44), is produced

by

J =


fx/xorb fx/q fx/ω

f q/xorb f q/q f q/ω

fω/xorb fω/q fω/ω

 (3.5)

where fx/q = 0, fx/ω = 0, and f q/xorb = 0 are null. By definition of the SCM, the

matrix fx/xorb coincides with the Jacobian for the classical CR3BP, and the remaining

partial derivatives are

f q/q =
1

2


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 , (3.6)

f q/ω =
1

2


q4 −q3 q2

q3 q4 −q1
−q2 q1 q4

−q1 −q2 −q3

 , (3.7)

fω/ω =


0

I2 − I3
I1

ω3
I2 − I3
I1

ω2

I3 − I1
I2

ω3 0
I3 − I1
I2

ω1

I1 − I2
I3

ω2
I1 − I2
I3

ω1 0

 , (3.8)

fω/xorb =


m1x m1y m1z 0 0 0

m2x m2y m2z 0 0 0

m3x m3y m3z 0 0 0

 , (3.9)

and

fω/q =


m1q1 m1q2 m1q3 m1q4

m2q1 m2q2 m2q3 m2q4

m3q1 m3q2 m3q3 m3q4

 . (3.10)
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The matrix elements in Eq. (3.9) and Eq. (3.10) are computed accordingly to the

following expressions:

m1x =
3µ1

d3
I3 − I2
I1

(
−3(x+ µ)

d2
g2g3 + g3g2/x + g2g3/x

)
+

3µ2

r3
I3 − I2
I1

(
−3(x+ µ− 1)

r2
h2h3 + h3h2/x + h2h3/x

)
(3.11)

m1y =
3µ1

d3
I3 − I2
I1

(
−3y

d2
g2g3 + g3g2/y + g2g3/y

)
+

3µ2

r3
I3 − I2
I1

(
−3y

r2
h2h3 + h3h2/y + h2h3/y

)
(3.12)

m1y =
3µ1

d3
I3 − I2
I1

(
−3z

d2
g2g3 + g3g2/z + g2g3/z

)
+

3µ2

r3
I3 − I2
I1

(
−3z

r2
h2h3 + h3h2/z + h2h3/z

)
(3.13)

m2x =
3µ1

d3
I1 − I3
I2

(
−3(x+ µ)

d2
g1g3 + g3g1/x + g1g3/x

)
+

3µ2

r3
I1 − I3
I2

(
−3(x+ µ− 1)

r2
h1h3 + h3h1/x + h1h3/x

)
(3.14)

m2y =
3µ1

d3
I1 − I3
I2

(
−3y

d2
g1g3 + g3g1/y + g1g3/y

)
+

3µ2

r3
I1 − I3
I2

(
−3y

r2
h1h3 + h3h1/y + h1h3/y

)
(3.15)

m2z =
3µ1

d3
I1 − I3
I2

(
−3z

d2
g1g3 + g3g1/z + g1g3/z

)
+

3µ2

r3
I1 − I3
I2

(
−3z

r2
h1h3 + h3h1/z + h1h3/z

)
(3.16)

m3x =
3µ1

d3
I2 − I1
I3

(
−3(x+ µ)

d2
g1g2 + g2g1/x + g1g2/x

)
+

3µ2

r3
I2 − I1
I3

(
−3(x+ µ− 1)

r2
h1h2 + h2h1/x + h1h2/x

)
(3.17)
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m3y =
3µ1

d3
I2 − I1
I3

(
−3y

d2
g1g2 + g2g1/y + g1g2/y

)
+

3µ2

r3
I2 − I1
I3

(
−3y

r2
h1h2 + h2h1/y + h1h2/y

)
(3.18)

m3z =
3µ1

d3
I2 − I1
I3

(
−3z

d2
g1g2 + g2g1/z + g1g2/z

)
+

3µ2

r3
I2 − I1
I3

(
−3z

r2
h1h2 + h2h1/z + h1h2/z

)
, (3.19)

and

m1qi =
3µ1

d3
I3 − I2
I1

(
g2g3/qi + g3g2/qi

)
+

3µ2

r3
I3 − I2
I1

(
h2h3/qi + h3h2/qi

)
(3.20)

m2qi =
3µ1

d3
I1 − I3
I2

(
g1g3/qi + g3g1/qi

)
+

3µ2

r3
I1 − I3
I2

(
h1h3/qi + h3h1/qi

)
(3.21)

m3qi =
3µ1

d3
I2 − I1
I3

(
g1g2/qi + g2g1/qi

)
+

3µ2

r3
I2 − I1
I3

(
h1h2/qi + h2h1/qi

)
(3.22)

In the definition of the Jacobian for the SCM there appear the derivatives for the

terms gi and hi, specifically in Eq. (3.11)-(3.22). Recall, hi represent the projections

of the position vector relative to P1 into the body frame, while gi are the projections

of the position vector relative to P2 into the body frame. Their partial derivatives

relative to the rotating frame coordinates are
g1/x

g2/x

g3/x

 = A
b̂·r̂

1

d3


d2 − (x+ µ)2

−y(x+ µ)

−z(x+ µ)



h1/x

h2/x

h3/x

 = A
b̂·r̂

1

r3


r2 − (x+ µ− 1)2

−y(x+ µ− 1)

−z(x+ µ− 1)

 , (3.23)


g1/y

g2/y

g3/y

 = A
b̂·r̂

1

d3


−y(x+ µ)

d2 − y2

−zy



h1/y

h2/y

h3/y

 = A
b̂·r̂

1

r3


−y(x+ µ− 1)

r2 − y2

−zy

 , (3.24)


g1/z

g2/z

g3/z

 = A
b̂·r̂

1

d3


−z(x+ µ)

−zy

d2 − z2



h1/z

h2/z

h3/z

 = A
b̂·r̂

1

r3


−z(x+ µ− 1)

−zy

r2 − z2

 . (3.25)
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The partial derivatives relative to quaternion vector elements are
g1/qi

g2/qi

g3/qi

 =

∂A
b̂·̂i

∂qi
A
î·r̂

d

d


h1/qi

h2/qi

h3/qi

 =

∂A
b̂·̂i

∂qi
A
î·r̂

r

r
, (3.26)

with

∂A
b̂·̂i

∂q1
= 2


q1 q2 q3

q2 −q1 q4

q3 −q4 −q1


∂A
b̂·̂i

∂q2
= 2


−q2 q1 −q4
q1 q2 q3

q4 q3 −q2

 , (3.27)

and

∂A
b̂·̂i

∂q3
= 2


−q3 q4 q1

−q4 −q3 q2

q1 q2 q3


∂A
b̂·̂i

∂q2
= 2


q4 q3 −q2
−q3 q4 q1

q2 −q1 q4

 . (3.28)

It is possible to analytically compute the Jacobian matrix in Eq. (3.5) using the

expression provided in this section in combination with the knowledge of the orbit

and attitude state variables at a specified time instant along the reference solution. If

the reference solution is time-varying, the Jacobian matrix for the SCM also possesses

time-varying coefficients.

3.1.3 Jacobian in the Orbit-Attitude FCM

The Jacobian matrix for the FCM under SRP is substantially equal to Eq. (3.5),

including a modification of the partial for the orbital differential equations, repre-

sented by the vector function fx. In particular, variations for the acceleration, that

are exerted by the SRP, are also accommodated within the Jacobian matrix, as

fx/xorb =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗/xx + ass,x/x U∗/xy + ass,x/y U∗/xz + ass,x/z 0 2 0

U∗/yx + ass,y/x U∗/yy + ass,y/y U∗/yz + ass,y/z −2 0 0

U∗/zx + ass,z/x U∗/zy + ass,z/y U∗/zz + ass,z/z 0 0 0


, (3.29)
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and

fx/q =
[
ass/q1 ass/q2 ass/q3 ass/q4

]
. (3.30)

The SRP acceleration is not explicitly a function of the angular velocity vector, there-

fore f /ω = 0. Assuming the spacecraft to travel within the Sun-Earth system, and

the surface normal, n
r̂

= n, to be aligned with the b̂1 body axis, then, the derivatives

for the SRP acceleration relative to the orbit state variables, can be written as

ass/x = β(1− µ)

{
−4

x+ µ

d6
(d · n)2 +

2

d4
(d · n)n1

}
n

ass/y = β(1− µ)

{
−4

y

d6
(d · n)2 +

2

d4
(d · n)n2

}
n

ass/z = β(1− µ)

{
−4

z

d6
(d · n)2 +

2

d4
(d · n)n3

}
n .

(3.31)

Similarly, the derivatives for the SRP acceleration relative to quaternion vector ele-

ments, are

ass/qi = β

(
1− µ
d4

){
2(d · n)(d · n/qi)n+ (d · n)2n/qi

}
, (3.32)

with

n/q1 = 2A
r̂·̂i


q1

q2

q3

 n/q2 = 2A
r̂·̂i


−q2
q1

−q4

 n/q3 = 2A
r̂·̂i


−q3
q4

q1

 n/q1 = 2A
r̂·̂i


q4

q3

−q1

 .

(3.33)

In general, corresponding to a system of nonlinear ordinary differential equations, it

is also possible to numerically compute the Jacobian matrix. The effort in deriving an

analytical expression of the Jacobian matrix, is justified by a reduction in computation

cost for a numerical algorithm that utilizes such a matrix. The evaluation of analytical

formulas, typically, demands fewer operations, than the estimation for the differential

equations partials via finite differences, especially when a large set of equations and

variables, such as for the targeting of a specific orbit-attitude behavior, is involved.
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3.1.4 The State Transition Matrix

The Jacobian, J(t), is an essential component to define the linear mapping between

a variation of the initial state δx0, and the consequent variation of the final state δx(t)

, both relative to a reference solution. The mapping δx(t) = Φ(t, 0)δx0 is described

by the State Transition Matrix (STM), Φ(t, 0), which is solution to the following set

of differential equations 
d

dt
Φ(t, 0) = J(t)Φ(t, 0)

Φ(0, 0) = I .
(3.34)

The differential system in Eq. (3.34) is propagated simultaneously to the equations

of motion to produce the STM. Corresponding to the set of orbit-attitude equations

of motion (SCM or FCM), the system that describes the translational and rotational

behaviour of the spacecraft consists of 13 equations of motion, but only 12 equations

are actually independent. The components of the quaternion vector are, in fact,

related by Eq. (2.28), which implies that one of the kinematic relationships in Eq.

(2.38) is unnecessary for the complete description of the system evolution. One of

the quaternion vector components can be considered a function of the remaining

components of the vector. Rather than substituting Eq. (2.28) into the equations of

motion, it is more practical to maintain the whole set of equations and reduce only

the Jacobian (and the STM, consequently) to a 12 by 12 matrix, which corresponds

exclusively to the independent variables. Assume that q4 is a function of q1, q2, q3,

such that

q24(q1, q2, q3) = 1− q21 − q22 − q23 ;

the infinitesimal variation of q4 is a function of the independent variations of the

remaining quaternion elements, i.e.,

q4δq4 = −q1δq1 − q2δq2 − q3δq3 . (3.35)

The previous relationship between the infinitesimal variations yields

∂q4
∂qi

= − qi
q4

for i = 1, 2, 3 (3.36)
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which is eventually exploited to compute the partials of the Jacobian matrix relative

to q1, q2, q3

df

dqi
(q1, q2, q3, q4(q1, q2, q3)) =

∂f

∂qi
+
∂f

∂q4

∂q4
∂qi

for i = 1, 2, 3. (3.37)

Since q4 is not regarded as an independent variable, no partials of the equations of

motion with respect to q4 are necessary to construct the Jacobian matrix. The dif-

ferential equation for q̇4 is then also excluded during the calculation of the Jacobian

matrix. Incorporating one less variable and one less equation, the Jacobian is a 12

by 12 matrix. Including the trivial equations, there are 13+144 total differential

equations to simulate the system response and access the linear differential relation-

ship between the initial and final states, which is generally sufficient to identify and

precisely compute specific solutions.

3.1.5 Observing Frame Transformation for the STM in the SCM

Orbit-attitude behaviors that are periodic in the CR3BP rotating frame are one of

the main topic of this work. The state along a solution that is periodic, as observed in

the rotating frame, does not necessarily preserve periodicity when described in terms

of an inertial observer. This statement holds true for both the orbital and attitude

variables. In the presence of resonances, the state variables may be periodic in both

the rotating and inertial frames, but this type of motion is not generally the case.

The monodromy matrix, i.e., the STM over one period, must reflect the correct choice

of the observing frame, to supply accurate information about the periodic motion.

Relative to the rotating frame, the spacecraft attitude is described by the quaternion

vector rq b = [q̃1 q̃2 q̃3 q̃4]
T ; by the rule of successive rotations for the quaternion
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representation, rq b can be transformed into the vector iq b employed in Eq. (2.43),

which describes the orientation of the body frame respect to the inertial frame

iq b =


cos(t/2) − sin(t/2) 0 0

sin(t/2) cos(t/2) 0 0

0 0 cos(t/2) sin(t/2)

0 0 − sin(t/2) cos(t/2)


rq b , (3.38)

where the quaternion representing the rotation from the inertial to the rotating frame

is, in fact, iq r = [0 0 sin(t/2) cos(t/2)]T . To seek periodic solutions relative to the

rotating frame, a conversion of the STM to reflect the correct observer seems more

practical than the direct substitution of Eq. (3.54) into the equations of motion

and then a re-evaluation of the Jacobian. The STM in Eq. (3.34) linearly relates

the variation of the initial states to the variation of the final states relative to the

reference solution
δxorb(tf )

δiq bR(tf )

δiωb(tf )

 = Φ(tf, 0)


δxorb(0)

δiq bR(0)

δiωb(0)

 =


Φxx 0 0

Φqx Φqq Φqw

Φwx Φwq Φww



δxorb(0)

δiq bR(0)

δiωb(0)

 , (3.39)

where δiq bR(t) denotes the independent variations at time t in the quaternion vector

that describes the orientation of the body relative to the inertial frame. Using Eq.

(3.38), the variation relative to the inertial frame can be related to the variation in

the rotating frame as

δ iq bR =


δq1

δq2

δq3

 =


cos(t/2) − sin(t/2) 0 0

sin(t/2) cos(t/2) 0 0

0 0 cos(t/2) sin(t/2)



δq̃1

δq̃2

δq̃3

δq̃4

 = T (t)δrq b .

(3.40)

Recall that the quaternion vector is comprised of four components, which are sub-

jected to the constraint Eq. (2.28). Thus, only three components can actually describe

independent variations. Assume Eq. (3.35) is employed to define δq̃4 as function of
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the independent variations δq̃1, δq̃2, δq̃3, such that δrq bR(t) = [δq̃1 δq̃2 δq̃3]
T . Accord-

ingly, it is convenient to rewrite Eq. (3.35) in a vector form to reduce the variation

of the quaternion rq b to its independent components

δrq b =


δq̃1

δq̃2

δq̃3

δq̃4

 =


1 0 0

0 1 0

0 0 1

−q̃1/q̃4 −q̃2/q̃4 −q̃1/q3



δq̃1

δq̃2

δq̃3

 = V (q̃1, q̃2, q̃3)δ
rq bR . (3.41)

Equations (3.40) and (3.41) combine to yield a linear time-varying relationship be-

tween the variations expressed in terms of the rotating and inertial frame, i.e.

δ iq bR = T (t)V (q̃1, q̃2, q̃3)δ
rq bR = TRδ

rq bR , (3.42)

where TR is equal to the identity matrix at the initial time, since the rotational frame

is assumed to be initially aligned with the inertial frame. The variation of iq b at

the final time tf is computed from the variation at the initial time using Eq. (3.39);

alternatively, δiq b(tf ) can also be calculated from Eq. (3.42), if the variation at final

time is known relative to the rotating frame rather than the inertial frame. Equating

the results from Eq. (3.42) and Eq. (3.39) at the final time tf produces

δiq bR(tf ) = TR(tf )δ
rq bR(tf ) = Φqx(tf , 0)δxorb(0) + Φqq(tf , 0)δiq bR(0) + Φqω(tf , 0)δω(0)

(3.43)

which can be re-arranged to explicitly express the variation of the spacecraft orienta-

tion relative to the reference solution at the final time

δrq bR(tf ) = TR(tf )
−1Φqx(tf , 0)δxorb(0)+TR(tf )

−1Φqq(tf , 0)δrq bR(0)+TR(tf )
−1Φqω(tf , 0)δω(0) ,

(3.44)

where δiq bR(0) = δrq bR(0). Leveraging Eq. (3.44), the STM can be transformed to

reflect variations of the spacecraft attitude relative to the rotating frame
δxorb(tf )

δrq bR(tf )

δiωb(tf )

 = Φ̃(tf , 0)


δxorb(0)

δrq bR(0)

δiωb(0)

 =


Φxx 0 0

T−1R Φqx T−1R Φqq T−1R Φqw

Φwx Φwq Φww



δxorb(0)

δrq bR(0)

δiωb(0)

 .

(3.45)
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The STM Φ̃ in Eq. (3.45) is the appropriate form to identify and correct solutions

that are periodic in the orbital and attitude states relative to the rotating frame. The

CR3BP r̂-frame rotates at constant rate relative to the î-frame, thus, the angular ve-

locity of the spacecraft observed in the rotating frame differs by a constant offset from

the angular velocity relative to the inertial observer. Because the offset is constant

and it is not an explicit function of time, if a solution is periodic in the rotating frame,

the angular velocity is periodic in both the rotating and inertial frames. Therefore,

there is no necessity to further modify the STM in Eq. (3.45).

3.2 Multi-Variable Newton Method

In this investigation, the problem of computing specific orbit-attitude solutions is

formulated as an extension of a simple root-finding problem. Given a vector of n free

variables, ξ, a desired solution is identified as the set ξ∗ that satisfies an appropriate

vector condition of m constraint equations

F (ξ∗) =
[
F1(ξ

∗), . . . , Fm(ξ∗)
]T

= 0 . (3.46)

The free variables in ξ may include both orbital and attitude states along the path,

as well as time variables. The multi-variable Newton-Raphson iterative scheme is a

viable numerical approach to calculate the zeros for the vector constraint function in

Eq. (3.46). First, the constraint function F is expanded about an initial guess ξ0 in

a Taylor series to the first order

F (ξ) ∼= F (ξ0) +DF (ξ0)(ξ − ξ0) , (3.47)

where DF is the Jacobian of the constraint function with respect to the design vari-

ables ξ (which is different from the Jacobian for a set of ordinary differential equations,

as in Eq (3.1)). The linear expansion of F in Eq. (3.47) is set equal to zero and itera-

tively solved for ξ. Given the current free variable vector ξk, the algorithm computes

an update of the free variables for the next iteration ξk+1 that generally should yield



59

|F (ξk+1)| < |F (ξk)|. If the above inequality is consistently true, an iteration ξk+1

should emerge, such that F (ξk+1) = F (ξ∗) = 0, within a certain numerical tolerance.

If n = m, DF is square and invertible for a well-formulated problem. Then, it is

possible to compute an update for the free variables as

ξk+1 = ξk +DF (ξk)
−1F (ξk) . (3.48)

If there are more free variables than constraints equations, i.e., n > m, then the

minimum norm solution is used to produce the update equation for the free variables

ξk+1 = ξk + (DF T (ξk)DF (ξk))
−1DF T (ξk)F (ξk) . (3.49)

Accordingly, Eq. (3.48) or Eq. (3.49) is recursively applied to update the free variables

until the metric |F (ξk+1)| is below the desired tolerance.

3.2.1 General Multiple Shooting Formulation

The multi-variable Newton-Raphson method is utilized as a framework to assemble

a multiple shooting algorithm. A solution to the set of Eq. (2.43) that describes

the coupled orbit-attitude dynamics, is a trajectory in the state space. Within this

section, the trajectory does not simply denote a curve in the configuration space (i.e.,

position states), but refers to a curve in the higher-dimensional space that includes

the evolution of all the system states (both translational and rotational). Then,

in a multiple shooting algorithm, this trajectory is discretized in N control points,

termed “patch points”, that sub-divide the curve in N − 1 arcs, as appears in Figure

3.1(a). In the orbit-attitude coupled problem, each patch point is a 12-dimensional

state [xorb,j ;i qbj ;iωbj] that includes position, velocity, orientation and rotation rate

information for the spacecraft. The first and the last patch point corresponds to the

initial and final conditions, respectively. The set of all patch point states along the

trajectory, augmented by the time of flight T for a single arc, and constant along each

arc, constitutes the free variables vector

ξ =
[
xorb,1;

iqb1;
iωb1; . . . ; xorb,N ; iqbN ; iωbN | T

]
, (3.50)
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Target

(a) Initial guess.

Initial Guess

Target

(b) Solution at generic k-th iteration.

Initial Guess

(c) Converged continous solution.

Figure 3.1. Multiple shooting schematic.

which has dimension n = 12N +1, given N 12-dimesional patch points corresponding

to (N − 1) arcs. As T is assumed constant along each arc, the total time of flight for

the solution is (N−1)T . The free variables in Eq. (3.50) are to be adjusted to satisfy

the given set of constraints. A common implementation of multiple shooting, denoted
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parallel shooting, requires all the free variables in Eq. (3.50) to be simultaneously

corrected to target the complete set of constraints along the path at each iteration.

The constraint vectorial function is then formulated as the next step. First,

note that integrating the motion originating from each patch point, for the corre-

sponding time of flight, does not necessarily yield a continuous path. The generic

patch point [xorb,j ;i qbj ;iωbj] evolves on the time interval T to the final conditions

[(xorb,j)
t ; (iqbj)

t ; (iωbj)
t], consistent with the dynamical Eq. (2.43). On the arc j, the

terminal states [(xorb,j)
t ; (iqbj)

t ; (iωbj)
t] are typically different from the initial states

[xorb,j+1 ;i qbj+1 ;iωbj+1] on the following arc j + 1, as depicted in Figure 3.1(b). The

trajectory may be, therefore, discontinuous at the patch points, unless a match exists:

such that

[(xorb,j)
t ; (iqbj)

t ; (iωbj)
t] = [xorb,j+1 ;i qbj+1 ;iωbj+1]

is explicitly enforced, as in Figure 3.1(c). Second, a number madd of additional con-

straints, represented in the vector function F add, may be incorporated to render

problem specific desired conditions, including periodicity or target states. The above

considerations lead to one possible vectorial constraint function

F =



(xorb,1)
t − xorb,2

(iqb1)
t −i qb2

(iωb1)
t −i ωb2
...

(xorb,N−1)
t − xorb,N

(iqbN−1)
t −i qbN

(iωbN−1)
t −i ωbN

F add



Continuity

for internal states

Problem specific

constraints

; (3.51)
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the result is a total of m = 12(N − 1) +madd constraints equations, which may yield

the desired orbit-attitude solution when satisfied.

In the Newton-Raphson scheme, the updates of the free variable vector are based

on a linear prediction of the subsequent variations of the constraint function. As

evident in the updates in Eqs. (3.48) and (3.49), the information on linear variations

are encapsulated in the Jacobian of the constraint vector function. For the free

variables and the constraints defined in Eqs. (3.50) and (3.51), respectively, the

Jacobian can be written in the generic form

DF =
∂F

∂ξ
=



A1 −I B1

. . . . . .
...

Aj −I Bj

. . . . . .
...

AN−1 −I BN−1

C1 . . . Cj . . . CN D


,

(3.52)

which is a m × n block-sparse matrix. The notation I indicates the identity matrix.

The 12 × 12 blocks Aj on the diagonal denote the variations of the terminal states

along each arc due to variations of the corresponding initial patch point states, such

that

Aj =



∂(xorb,j)
t

∂xorb,j

∂(xorb,j)
t

∂iqbj

∂(xorb,j)
t

∂iωbj
∂(iqbj)

t

∂xorb,j

∂(iqbj)
t

∂iqbj

∂(iqbj)
t

∂iωbj
∂(iωbj)

t

∂xorb,j

∂(iωbj)
t

∂iqbj

∂(iωbj)
t

∂iωbj


= Φ(jT, (j − 1)T ) for j = 1...N − 1

where Φ(jT, (j − 1)T ) is the 12× 12 STM from the initial time (j − 1)T to the final

time jT , as defined in Eq. (3.34). The 12×1 elements Bj in the last column represent
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the variations of the patch point states due to variation of the time of flight T along

each arc, which can be expressed as a function of the time derivatives of the states

and the STM as

Bj =

[
∂(xorb,j)

t

∂T
;
∂(iqbj)

t

∂T
;
∂(iωbj)

t

∂T

]

= j


(ẋorb,j)

t

(iq̇bj)
t

(iω̇bj)
t

− (j − 1)Φ((j + 1)T, jT )


ẋorb,j

iq̇bj
iω̇bj

 .

In the last row of the DF matrix in Eq. (3.52), the madd×12 blocks Cj, and the madd×

1 block D relate the variation of problem specific constraints to the corresponding

variation of patch point state variables and time of flight, T , respectively.

3.2.2 Problem Specific Constraints

A multiple-shooting algorithm may assist the solution of several types of dynamical

problems. Each type of application displays different problem specific constraints, in

addition to the solution for internal continuity at the patch points. Constraints that

describe periodicity of the orbit-attitude response, as well as the acquisition of a final

desired state, are most relevant in this investigation.

Periodicity

Imposing a periodicity condition to govern the solution is simply adding a con-

tinuity relationship between the final and initial patch point. In this investigation,

periodicity is defined for an observer fixed in the CR3BP rotating frame, and applied

within the context of the SCM. Such conditions are reflected in the constraint formu-

lation. The orbital states in the vector xorb are already available in the rotating frame,

whereas the orientation of the vehicle is expressed relative to the inertial frame. While



64

enforcing periodicity, it is, therefore, necessary to transform the quaternion descrip-

tion iqb relative to the inertial frame to the vector rqb, which describes the spacecraft

attitude as observed in the rotating frame. The angular velocity iωb does not require

a frame transformation: given the current assumptions, the r̂-frame rotates at a con-

stant rate relative to the inertial frame, thus, the angular velocity of the spacecraft

observed in the rotating frame differs by a constant offset from the angular velocity

relative to the inertial observer. Because the offset is constant and it is not an explicit

function of time, if a solution is periodic in the rotating frame, the angular velocity

is periodic in both the rotating and inertial frames. Thus, the periodicity constraint

for the angular velocity is effectively expressed in either frame. In addition, the con-

tinuity between 5 of the initial and final translational states naturally extends to the

remaining orbital component. Implicit continuity of the remaining orbital component

is due to the existence of an integral of motion associated with the orbital dynamics

within the SCM, i.e., the Jacobi constant. This constant is well known in the CR3BP

and it is preserved in the adopted orbit-attitude SCM. A phasing constraint on any

of the patch point states may also be introduced. For the periodicity of 5 arbitrary

orbital states, 5 equations are introduced, 1 equation serves to phase an arbitrary

state via an arbitrary patch point (e.g., y1 = 0) and the 6 final equations enforce the

periodicity of the attitude variables. The problem specific constraint vector that ren-
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ders periodicity in the rotating frame for both the orbit and attitude state variables

within the SCM, is

F add =



xN − x1
zN − z1
vxN − vx1
vyN − vy1
vzN − vz1

y1

rqbN −r qb1
iωbN −i ωb1



Orbit states

periodicity

Phasing

Attitude states

periodicity

, (3.53)

which becomes part of the overall constraint vector in Eq. (3.51), along with 12(N−1)

equations that are required for continuity at the patch points; the only non-zero

matrices, Cj, in Eq. (3.52), are explicitly written in the form

C1 =



−1

−I4×4
1

−∂
rqb1
∂iqb1

−I3×3


, CN =



1

I4×4
0

∂rqbN
∂iqbN

I3×3


.

The variations of the periodicity and phasing constraints due to alterations of the

time of flight along the arc, are included in the last 6× 1 vector element

D =

[
06×1;

∂rqbN
∂T

; 03×1

]
,

which completes the construction of the m× n Jacobian matrix in Eq. (3.52).
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Frame Transformation

In the constraint vector F add, from Eq. (3.53), the description of the attitude

motion relative to the CR3BP rotating frame, i.e., rqb, appears. Such a variable

differs from the orientation relative to an inertial observer adopted as the reference

in the equations of motion in Eq. (2.43). However, internal continuity of the solution

is independent from the observing frame: a solution continuous relative to an inertial

frame is simply continuous relative to any other ordinary frame as well. The same

is not true for periodicity, which depends on the observer. Thus, in Eq. (3.51), the

continuity constraints can be written by employing the same state variables, iqb, that

appear in the equations of motion in Eq. (2.43), but periodicity requires the use of

rqb, as it is defined – in this problem – relative to the CR3BP rotating frame. The

two attitude kinematical representations iqb and rqb, as expressed in terms of the

quaternion formalism, are related by the rule of successive rotations, i.e.

iq b = 
cos(t/2) − sin(t/2) 0 0

sin(t/2) cos(t/2) 0 0

0 0 cos(t/2) sin(t/2)

0 0 − sin(t/2) cos(t/2)


rq b . (3.54)

The frame transformation is obviously reflected in the Jacobian matrix as well, specif-

ically in the C1, CN and D blocks of Eq. (3.52). Assuming q1, q2, q3 as independent

variables, combining the rule for successive rotations in Eq. (3.54) with the constraint

Eq. (2.28), yields the following partials

∂rqb

∂iqb
(t) = TR(t) =


cos(t/2) sin(t/2) 0

− sin(t/2) cos(t/2) 0

sin(t/2)
q1
q4

sin(t/2)
q2
q4

cos(t/2) + sin(t/2)
q3
q4


, (3.55)
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with
∂rqbN
∂iqbN

= TR((N − 1)T ) ,
∂rqb1
∂iqb1

= I

as evaluated at the final time for Eq. (3.52). Recall that, q1, q2, q3, q4 are the elements

of iqb. The matrix TR(t) is also defined in Eq. (3.42). To conclude, the variation in

orientation relative to the rotating frame at the final patch point, as a consequence

of the variation in the arc time length, is

∂rqbN
∂T

= (N − 1)
1

2


− sin(t/2) cos(t/2) 0 0

− cos(t/2) − sin(t/2) 0 0

0 0 − sin(t/2) − cos(t/2)



q1

q2

q3

q4


, (3.56)

where q1, q2, q3, q4 are again the components of iqb.

Note on Axisymmetric Bodies

Axisymmetric bodies are extensively employed in this investigation. For an ax-

isymmetric spacecraft subject solely to the gravity gradient, the body angular velocity

about the axis of symmetry remains constant throughout the motion. Thus, including

this state component at each patch point is superfluous, and introduces a redundant

free variable. This redundant variable may produce an ill-conditioned formulation

and convergence issues for the Newton-Raphson algorithm. A possible solution for

the more specific application involving axisymmetric bodies, is the exclusion of the

angular velocity component about the axis of symmetry from the patch point state

vector, along with the introduction of a global spin rate (one that is constant through-

out). Assuming b̂3 as the axis of symmetry, the free variable vector is modified to

ξ =
[
xorb,1;

iqb1;
iωb1; . . . ; xorb,N ; iqbN ; iωbN |T ; ω3

]
(3.57)
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where ω3 is the global spin rate and the angular velocity iωbj only includes the two

variable components

iωbj =
[
ω1; ω2

]
j

.

Identical considerations also apply to the continuity constraints, such that, only the

following relationship,

(iωbj)
t −i ωbj+1 =

ω1

ω2


j

t

−

ω1

ω2


j+1

= 0

is necessary to enforce continuity on the angular velocity vector between the terminal

state on the j-th arc and the following segment. For an axisymmetric vehicle, the set

of free variables is reduced to n = 11N + 2 and the set of elements in the constraint

vector to m = 11N . The modification of the free variable vector is also reflected in the

Jacobian matrix, which is then augmented by the column vector
dF

dω3

to accommodate

any variations in the constraint vector due to variations in the global spin rate about

the axis of symmetry.

Final Target

Imposing a final target condition to govern the solution is simply adding constraint

equations at the last patch-point. These constraint equations may be a nonlinear

function of the final state variables; in it’s simplest form, the constraint relationship

is the difference between the actual final state variables and a desired set of state

variables, that describes the arrival conditions. For example, consider targeting a

desired final position and velocity, contained in the vector xd, that may reflect the

insertion into a nominal orbit. Accordingly, the targeting problem may be formulated

by augmenting the constraint vector in Eq. (3.51) with

F add =
[
xN − xd

]
, (3.58)

which straightforwardly imposes the match between the final patch-point and the

desired final configuration. Referring to a constraint vector that incorporates Eq.



69

(3.58), the matrix blocks Cj and D, that comprise the Jacobian in Eq. (3.52), are

null, except for CN = I. More complex form for the targeting conditions at the final

time are also possible, some that may include attitude state variables or a set of

Keplerian parameters.

3.3 Continuation Schemes

In this investigation, the multiple shooting approach is employed to generate spe-

cific point solutions, ones that are possibly periodic in both the orbit and attitude

states, or ones that satisfy a set of requirements at the final time. To offer a deeper

insight into the solution space in certain dynamical regions, or supply a larger pool

of design options, it is convenient to expand the solution range to nearby motions

that continuously evolve from the initial point design. Such a group of solutions is

also termed a family. There exist many techniques to produce a family of solutions;

among the different algorithms, single-parameter continuation and pseudo-arclength

continuation schemes are well-established in astrodynamics within the CR3BP.

3.3.1 Single-Parameter Continuation

A single-parameter continuation scheme leverages small adjustments for a selected

parameter that is associated with the current solution, in combination with applica-

tion of a differential correction algorithm. Specifically, a solution is converged to

match a certain value for the selected parameter. Next, the parameter is varied

by a small amount and the correction process is re-applied to target its updated

value, and generate a slightly different response. The previously converged solution

serves as an initial guess for the differential correction process at the current step.

This straightforward sequence of parameter update and differential correction is it-

erated to produce a family of topologically related solutions. Energy, time-of-flight,

state variables are practical quantities that may perform as continuation parameter.

The step size and the selected parameter may vary during the continuation process.
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Single-parameter continuation schemes are typically easy to implement and useful in

a variety of applications.

3.3.2 Pseudo-Arclength Continuation

After a converged solution is available, solutions in the same family can be gen-

erated using a pseudo-arclength continuation procedure [41]. Essentially, the design

variables are modified in the direction tangent to their exact nonlinear variation along

the family. The tangential direction is computed as the null space of the Jacobian

matrix DF for the last converged solution ξ∗,

κ = N (DF (ξ∗)) . (3.59)

Next, an equation is appended to the constraint vector to impose a step of size ds in

the tangent direction

G =

 F

(ξ − ξ∗)Tκ− ds

 , (3.60)

such that the derivation of the augmented constraint vector yields a square augmented

Jacobian matrix

DG =

DF
κT

 .

Finally, a unique solution for the next member of the family is generated via the

simple iterative update equation

ξi+1 = ξi +DG(ξi)
−1G(ξi).

Distinct from the single-parameter continuation, implementation of the pseudo-arclength

continuation scheme does not depend upon previous knowledge of the family evolu-

tion from one member to the next; additionally, the pseudo-arclength approach is

reasonably robust and generally prevents the continuation process from jumping to a

different family of solutions.
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4. BOUNDED LIBRATIONS: IDENTIFICATION OF

ORBIT-ATTITUDE PERIODIC SOLUTIONS VIA

FLOQUET THEORY

4.1 Overview

Orbit-attitude periodic solutions are a viable way to construct bounded attitude

librations for a spacecraft travelling along a periodic orbit in the CR3BP. An orbit-

attitude periodic response is attained when both the rotational and translational

states periodically repeat as observed from the rotating frame. The desired degree

of precision on the state variables periodicity is usually achieved through a Newton-

Raphson method, which may be implemented as a targeting algorithm. When a

Newton-Raphson method is applied to a highly nonlinear dynamics, such as the

orbit-attitude coupled model within the CR3BP, a good initial guess for the peri-

odic solution is crucial for the success of the correcting scheme. In this investigation,

three approaches are suggested to retrieve orbit-attitude solutions that lay nearby a

periodic motion:

• Floquet theory;

• Poinceré mapping;

• grid search;

The above mentioned approaches should be regarded as general guidelines, since the

success of each method cannot be guaranteed a priori. Also, they are not exclusive to

one another, as two or more techniques may, in fact, be combined to obtain a viable

initial guess. The first approach is based on Floquet theory. The Floquet theory is

able to predict, in terms of a linear approximation, the stability of a periodic solution;
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then, moving across a family of periodic solutions, a change of the stability structure

may indicate the existence of a new nearby periodic motion. The point where distinct

dynamical behaviours share a common stability structure is denoted as a bifurcation.

Generally, the linear stability structure is defined by the eigenvalues λi of the mon-

odromy matrix. Linear stable modes for the reference periodic solution are associated

with eigenvalues for the monodromy matrix λi, real or complex, that possess a modu-

lus value lower than 1; linear unstable modes correspond to |λi| > 1, while marginally

linear stable modes to |λi| = 1. In the linear approximation, a periodic reference

solution is stable (or marginally stable) if the inequality |λi| ≤ 1 holds true for all the

eigenvalues, whereas, it is unstable if any of the eigenvalues possess a modulus greater

than one, i.e. |λi| > 1 for at least one eigenvalue. When the stability structure of

the periodic reference solution changes, one pair of eigenvalues passes through the

threshold |λi| = 1. If the threshold |λi| = 1 is visualized as a unitary circle on the

complex plane, and if the crossing occurs on the real axis at λi = 1, the change of

stability is labelled a tangent bifurcation and may indicate the existence of a new

periodic solution in the vicinity of the reference with a similar period. When the sta-

bility change along the family occurs on the real axis at λi = −1, the dynamics may

bifurcate to a new periodic solution with twice the period of the reference, denoted

a period-doubling bifurcation. Other type of bifurcations, such as a Krein collision,

are possible, but tangent and period-doubling are the only bifurcations considered in

this investigation.

The utilization of Floquet theory requires a priori knowledge of a reference family

of periodic solutions; the stability analysis developed by Floquet is, in fact, based

on the assumption of periodic motion. However, solutions simultaneously periodic in

the orbital and attitude responses, as viewed in the rotating frame, are not currently

available in the CR3BP. Then, to start the procedure, one possible approach is the

assumption of an elementary or intuitive scenario as an initial periodic reference; ul-

timately, the procedure can be reiterated as more complex solutions are produced.

The approach based on Floquet theory is particularly useful to construct a network
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of periodic solutions that aid the understanding of the dynamical structure in the

orbit-attitude coupled problem.

4.2 Definition of an Elementary Orbit-Attitude Periodic Motions on a

Planar Orbit

When reference orbit-attitude periodic solutions are not available to initiate the

procedure, elementary periodic motions may serve as a reference. Solutions that are

expected a priori to be periodic in the rotating frame can be constructed. As ref-

erence orbital paths, several families of periodic orbits are already accessible in the

CR3BP [30, 80]. In the SCP, such reference orbital states stay periodic regardless of

the attitude behavior of the vehicle. Planar reference trajectories are first considered.

Next, the spacecraft configuration and the initial conditions are selected to generate

a simple rotational response that periodically repeats at each revolution along the

reference periodic orbit.

An axisymmetric mass distribution facilitates the identification of a periodic at-

titude solution along the reference trajectories and it is a common configuration for

space vehicles. There is, therefore, significant interest in commencing the search for

orbit-attitude periodic behaviors from axisymmetric spacecraft. The vehicle is as-

sumed to be axisymmetric about the b̂3 axis, such that It = I1 = I2 is the transversal

moment of inertia and Ia = I3 is the axial moment of inertia. Accordingly, the

spacecraft topology is uniquely described by the inertia ratio

k =


Ia − It
Ia

for Ia ≥ It

It − Ia
It

for It > Ia

(4.1)

which varies in the interval [0, 0.5] for a disk-like mass distribution with Ia ≥ It, and

within [0.5, 1] for a rod-like mass distribution with It > Ia. If the spacecraft is axisym-

metric and I1 = I2, the angular velocity about the axis of symmetry b̂3 is constant

at all time, since ω̇3 = 0 from Eq. (2.47). Then, assume that the orbit is planar and
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b̂3 is initially orthogonal to the orbiting plane z = 0, such that q1(0) = q2(0) = 0;

also consider ω1(0) = ω2(0) = 0. Substituting q1 = q2 = 0 and ω1 = ω2 = 0 into

Eq. (2.47) at the initial time yields the result that ω̇1 and ω̇2 are also equal to zero

at any time, if the reference orbit is planar, i.e. z = 0. Under these conditions, the

angular velocity vector is constant throughout the motion and spinning the space-

craft about b̂3 at a rate Ω equal to the rate of the rotating frame produces a periodic

solution. In fact, since the angular velocity vector is equal to Iωb = [0 0 Ω]T , and

remains constant, the spin axis remains perpendicular to the orbiting plane and the

vehicle maintains a rotation rate equal to the rate of the rotating frame relative to the

inertial frame. Accordingly, for an observer fixed in the rotating frame the spacecraft

never changes its initial orientation, regardless of the x, y location, which is trivially

a periodic solution as the vehicle moves along the reference periodic path.

For example, consider examining an elementary periodic orbit-attitude reference

solution in the Earth-Moon system for a disk-like vehicle. The solution is constructed

assuming L1 Lyapunov orbits as reference for the orbital motion. Members of this

family, as viewed in the rotating frame, are displayed in Figure 4.1(a). The reference

attitude motion is constructed consistently with b̂3, the axis of symmetry, orthogonal

to the orbital plane and Iωb = [0 0 Ω]T . In Figure 4.1(b) a series spacecraft orienta-

tions at representative instants of time along a L1 Lyapunov reference trajectory are

portrayed, both as observed in the rotating frame. Evident in the figure, the initial

orientation of the vehicle is maintained throughout the orbit for a rotating frame

observer. That is regardless of the specific L1 Lyapunov orbit being selected. In ad-

dition, other types of planar trajectory, including L2 Lyapunov orbit and DRO, may

be selected as reference path. The spacecraft is displayed with a disk-like geometry,

but the same solution holds even if the vehicle were rod-like shaped; the only assump-

tion, is the body being axisymmetric with the axis of symmetry perpendicular to the

orbital plane. The combination of one of the Lyapunov orbits in Figure 4.1(a) and

the attitude behavior described by Figure 4.1(b) yields an elementary orbit-attidue

periodic solution.
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Figure 4.1. Orbital and attitude reference periodic motion.

4.2.1 Linear Modes for the Reference Solution

The orbit-attitude reference solution is comprised of a well-known periodic trajec-

tory, and periodic, possibly “elementary”, attitude response along that path. Con-

sistent with Floquet theory, the solutions nearby a periodic reference are linearly

approximated by the modes of the STM over one period, i.e., the monodromy ma-

trix. Let Φ̃(P, 0) be the 12x12 monodromy matrix that has been transformed to fully

reflect a rotating frame observer, as detailed in Eq. (3.45). Associated to Φ̃(P, 0),

there are 6 modes that incorporate both orbital and attitude states. The eigenvalues

corresponding to these orbit-attitude coupled modes are equal to those of the iso-

lated periodic orbit in the CR3BP. The remaining 6 modes include solely attitude

state variables. The existence of purely rotational modes for the reference periodic

solution is directly linked to the current model formulation, where variations of the
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attitude response do not involve alteration of the spacecraft trajectory1. For brevity,

these purely rotational modes are simply denoted as attitude modes and the corre-

sponding eigenvalues as attitude eigenvalues. However, the attitude eigenvalues for

the coupled problem are different from the eigenvalues associated to an isolated atti-

tude motion. This decomposition in coupled and attitude modes is possible because

the monodromy matrix is a lower triangular block matrix, as discussed in [31].

4.3 Stability of the Attitude Modes for the Elementary Motions and Bi-

furcations to Non-Trivial Solutions

To begin with, the orbit-attitude reference solution is comprised of a well-known

periodic trajectory, and an elementary periodic attitude regime along that trajectory.

From orbit to orbit in the same family, the qualitative elementary rotational motion

remains unaltered, but its intrinsic stability characteristic and nearby dynamics may

be changing significantly. Varying the reference orbit across the members of a given

family, possible bifurcations of the elementary attitude response to various complex

periodic solutions may become evident. Recall that, one possible type of bifurcation

is identified as a local mutation of the linear stability properties of the reference

solution, which is tied to the eigenvalues of the monodromy matrix. Specifically, in

the SCP, the monodromy matrix is block triangular and it is possible to univocally

identify the attitude eigenvalues as the eigenvalues for the lower diagonal block of the

STM in Eq. (3.45),

Φ̃att =

Φ̃qq Φ̃qω

Φ̃ωq Φ̃ωω

 .

Then, monitoring the real component of the eigenvalues for Φ̃att allows to capture

points of possible bifurcation of the rotational regime. Consider a configuration iden-

tical to Figure 4.1, which includes an axisymmetric spacecraft orbiting L1 Lyapunov

trajectories in the Earth-Moon system. For a disk-like vehicle with inertia ratio

1The contrary, however, is not true. The attitude response changes if the orbital path is modified.
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k = 0.4, Figure 4.2 displays a representative evolution of the real component in the

non-trivial eigenvalues of Φ̃att, as the reference orbit, which is represented by the

corresponding orbital period on the x-axis, shifts across the L1 Lyapunov family.

A single curve above 1 or below -1 indicates an eigenvalue with modulus certainly

greater than 1, such that the reference attitude solution is unstable. When all the

curves lie within the range [-1 1], the rotational motion may be marginally stable in

terms of linear approximation (a more definitive assessment for the linear stability is

achieved evaluating the modulus of the eigenvalues, not merely the real part)2. Two

curves simultaneously crossing the line at 1, as depicted in Figure 4.2, may signal a

tangent bifurcation, while a crossing through the line at -1, also indicated in Figure

4.2, may point to a period-doubling bifurcation. Two curves merging within the in-

terval [-1,1] may reflect complex conjugate pairs of eigenvalues that collide along the

unitary circle, i.e., a Krein collision.

The stability evolution depicted by Figure 4.2 is obtained by variation of the

reference orbit across the given family while maintaining fixed the inertia ratio of the

vehicle. The analysis is potentially replicable for any value of inertia ratio and for both

disk- and rod-like geometries. However, to simplify the visualization of the stability

information corresponding to the elementary periodic solution, a stability index, s,

is defined. This quantity is set equal to s = 1
2

(
λmax + 1

λmax

)
, where λmax = max |λi|

denotes the magnitude of the dominant eigenvalue. A stability index with absolute

magnitude equal to one identifies marginally stable behaviour, which corresponds to a

family of quasi-periodic motion in the vicinity of the reference solution. Conversely, a

stability index greater than one reflects unstable behavior in vicinity of the reference:

a larger stability index is associated with a faster departure from the reference. The

stability index enables a compact representation for the stability structure mutations

due to variations of the reference orbit as well as the inertia ratio. Considering again

2This claim also assumes that the reference orbit is either stable or artificially fixed. Since the
attitude response is naturally coupled to the orbital regime, if the reference orbit is unstable, such
as L1 Lyapunov orbits, the instability propagates to the attitude variables, regardless the eigenvalues
from the matrix Φ̃att.
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Figure 4.2. Dynamical bifurcation diagram of the reference solution
for an axysimmetric disk-like spacecraft with inertia ratio k = 0.4
along the L1 Lyapunov family in the Earth-Moon system.

a disk-like vehicle in L1 Lyapunov orbits, Figure 4.3(a) represents the stability index

as a function of the inertia ratio k, on the horizontal axis, and the reference orbit,

denoted by its period on the vertical axis. Referring to that diagram, regions that

corresponds to a stability index s = 1 (within a 10−5 tolerance) are shaded in white; in

those regions, the linear analysis of the nominal motion predicts marginally stability.

The colors indicate the approximate magnitude value of the stability index: blue is

for values slightly above 1 and red is for values larger or equal to some maximum cap.

To facilitate visualization, the color scale range does not span from 1 to the maxi-

mum stability index associated to the nominal motion; the color scale range is instead

capped to an arbitrary value: stability index equal or greater to the capping value

are plotted in red. From the figure, the challenge to identify specific orbit-attitude

solutions in the CR3BP dynamical regime is evident. The high sensitivity of the

stability to system parameters is apparent. A first set of candidate bifurcations for

possible periodic solutions exist across the Lyapunov family as well as the inertia ratio

range when the stability structure switches from marginally stable (i.e., s = 1, white



79

regions in Figures 4.3(a)) to unstable (i.e., s > 1, colored regions in Figure 4.3(a)).

Note that this form of representation only captures a global change of the nominal

motion stability. The stability change of a single mode that does not affect the overall

stability of the reference does not emerge in this type of chart. Nonetheless, also each

single mode stability switch may indicate a bifurcation, regardless the global stability

of the reference has changed or not. To monitor single mode components, a diagram

such as in Figure 4.2 is more effective.

The elementary reference motion is studied for disk-like and rod-like configura-

tions. Stability charts are generated for L1 Lyapunov orbits, L2 Lyapunov orbits and

distant retrograde orbits as reference trajectory and appear in Figure 4.3, 4.4 and 4.5,

respectively. Recall that the nominal solution is an axisymmetric spacecraft orbiting

a planar reference orbit while the axis of symmetry remains orthogonal to the orbital

plane; then, based on Figures 4.3-4.5, the following considerations about the stability

of the nominal motion can be made:

• disk-like geometries displays a large variability of the stability structure, that

corresponds to many possible bifurcations to non-trivial solutions - both for k

or orbit variation;

• rod-like geometries are generally unstable and no bifurcations are evident in the

stability index representation.

• In L1/L2 Lyapunov orbits, stable configurations of the nominal motion are more

frequent on smaller orbits, while the instability of the reference solution becomes

more predominant as the orbit grows and passes closer to the primaries.

• In L1/L2 Lyapunov orbits, larger orbit as well as inertia ratio yields faster

divergence for rod-like vehicles, which is rendered by an higher stability index.

• In DRO, the nominal motion for disk-like vehicles is generally stable for small

value of k, regardless the orbit size. However, for k approximately greater than

0.3, larger DRO are more suitable for a stable nominal motion.
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• In DRO, the inertia ratio seems the driving factor for the nominal motion sta-

bility properties, given a rod-like vehicle. A larger inertia ratio corresponds to

a faster diverging condition. No surprisingly, an inertia ratio tending to zero

(i.e., equal inertias in all principal directions) corresponds to a slower diverging

condition.

(a) Disk-like geometry. (b) Rod-like geometry.

Figure 4.3. Axisymetric spacecraft on L1 Lyapunov orbits: stability
index as function of the reference orbit (indicated by its orbital period)
and the vehicle inertia ratio k. Regions where the stability index
equals one (within a 10−5 tolerance) are shaded in white. Color scale
is different in each subfigure.
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(a) Disk-like geometry. (b) Rod-like geometry.

Figure 4.4. Axisymetric spacecraft on L2 Lyapunov orbits: stability
index as function of the reference orbit (indicated by its orbital period)
and the vehicle inertia ratio k. Regions where the stability index
equals one (within a 10−5 tolerance) are shaded in white. Color scale
is different in each subfigure.

(a) Disk-like geometry. (b) Rod-like geometry.

Figure 4.5. Axisymetric spacecraft on DRO orbits: stability index as
function of the reference orbit (indicated by its orbital period) and the
vehicle inertia ratio k. Regions where the stability index equals one
(within a 10−5 tolerance) are shaded in white. Color scale is different
in each subfigure.
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4.4 Orbit-Attitude Families of Periodic Solutions Emanating from the

Bifurcations of an Elementary Motion

The stability index representation, the one portrayed in Figures 4.3-4.5, is com-

pact, and allows for a quick, overall assessment of the possible periodic motions

nearby a reference. The presence of several variations of the global stability structure

for certain reference configurations can be interpreted as an higher degree of prob-

ability to find bifurcations to novel periodic motions. Global stability refers to the

overall classification of the reference solution as marginally stable or unstable, ignor-

ing the particular classification of each single eigenvalue. However, bifurcations may

exist when any eigenvalue goes through the stability boundary, regardless of whether

the global stability of the reference is affected. It is, then, possible that some bifur-

cating solutions do not appear in the stability index chart. The stability index chart

are constructed by variation of the inertia ratio and reference orbit for the nominal

solution. For a detailed analysis of the possible bifurcations, fix one of those two

parameters, and observe the evolution of the eigenvalues as the remaining parameter

is varied. For example, take a disk-like spacecraft on L1 Lyapunov orbits and fix

k = 0.4 while varying the reference trajectory: that corresponds to examining the

eigenvalues profile for the vertical band boxed in Figure 4.6(a). Similarly to Figure

4.2, the eigenvalues evolution is displayed in term of the real component in Figure

4.6(b). The trivial unitary pair of eigenvalue, which is associated to the periodicity

of the reference motion, is omitted. The remaining 4 eigenvalues can be grouped into

2 reciprocal pairs. Referring to Figure 4.6(b), intervals that correspond to stability

index s > 1 (unstable reference) are shaded in blue; intervals that correspond to s = 1

remain in white (marginally stable reference). There is an obvious correspondence

between the sequence of blue-white intervals in Figure 4.6(b), which mark some of

the bifurcations in the eigenvalues evolution, and the sequence of unstable-marginally

stable intervals for the reference motion indicated by a red box in Figure 4.6(a). Re-

call that, in Figure 4.6(a), marginally stable interval are shaded in white, whereas
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unstable intervals are colored by the value of the corresponding stability index. Pos-

sible bifurcations are associated to the crossing to the stability boundary for a pair

of eigenvalues. The crossing is granted when the stability index for the reference

solution shift from s = 1 to s > 1, or vice-versa. Additional crossings of the unitary

circle, and the corresponding opportunity to bifurcate, are also possible within the

blue regions in Figure 4.6(b), for example, the collision located near a period P ≈ 19

days. A reference solution with 1 or 2 pairs of unstable eigenvalues is, in both cases,

globally unstable; nonetheless, the variation of the number of unstable pairs requires

the passage through the stability boundary and, there, it may exist a nearby novel

periodic motion. It is worth noticing, that numerical challenges may occur in the

classification of the eigenvalues pair. In fact, the numerical errors occurring in the

eigenvalues computation may have caused the pair to surpass the tolerance that de-

fines the stability frontier. If it is not possible to increase numerical accuracy, refining

the discretization of reference orbits may help to identify whether the eigenvalue evo-

lution nearby that interval is consistent with a dynamical feature or computational

errors.

Consider a candidate bifurcation of the nominal motion: at that point, there

is at least a pair of reciprocal attitude eigenvalues for Φ̃(P, 0) that is going through

the stability frontier |λi| = 1; at the crossing, a linear approximation of the initial

conditions for a periodic attitude motion different from the reference is given byI q̇b(0)

Iω̇b(0)


guess

=

I q̇b(0)

Iω̇b(0)


reference

+ εV (4.2)

where ε is an appropriate scaling factor and V is a linear composition of the real and

imaginary part for the eigenvectors associated to the stability crossing eigenvalues. At

the stability boundary crossing, an initial guess for a novel periodic motion is obtained

from Eq. (4.2). The guess is, subsequently, corrected for periodicity and continued

to a family. If the correction and continuation algorithms are successful, then it is

clear that the stability structure mutation is also associated to a bifurcation of the

dynamical behavior. Select, for instance, the crossing near period P = 14.60 days in
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(a) Zoomed view about k = 0.4 of the stabil-

ity index chart in Figure 4.3(a).

(b) Dynamical bifurcation diagram: evolution

of the real component of the eigenvalues along

the family of nominal motions for k = 0.4.

Figure 4.6. Comparison of the eigenvalues structure evolution and the
stability index representation for axisymmetric spacecraft in nominal
motion.

Figure 4.2. At that point, a pair of the attitude eigenvalues is converging to λ = 1,

which indicates a change of stability for that mode. Such condition may indicate, but

does not guarantee, a nearby non-trivial periodic motion. To assess the existence of

a different periodic behavior, Eq. (4.2) is employed to guess the initial conditions for

such motion. Recall that, in the current SCP model, the orbit is not affected by the

rotational dynamics of the rigid body. Therefore, the attitude reference solution may

initially bifurcate without altering the reference orbit. Equation (4.2) only predict

initial conditions for the attitude set of variables, whereas the initial conditions for

the orbit are not modified. Nonetheless, alteration of the reference orbit may be

required to continue the family of novel attitude solutions. Figure 4.7 displays the

result of the correction and continuation process of the initial guess for the stability

boundary crossing located near period P = 14.60 in Figure 4.2. Figure 4.7 depicts

the attitude motion relative to the rotating frame in terms of quaternions rqb. Closed

curves indicate that the motion is periodic as observed from the rotating reference

frame. The curves emanate from a fixed point, red in Figure 4.7, which indicates a
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constant attitude relative to the rotating frame; that is the original reference attitude

configuration. Thus, the new family of solutions originates from the fixed point

and demonstrates that the selected crossing in Figure 4.2 is an actual dynamical

bifurcation.
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Figure 4.7. Projection of the family of non-trivial orbit-attitude so-
lution (in dark red) in the quaternion subspace. The quaternion sub-
space describes the orientation history of the vehicle relative to the
rotating frame. The family emanates from an elementary reference
solution (in light red).

Continuing the example for a disk-like satellite with inertia characteristics such

that k = 0.4, one that is moving along L1 Lyapunov trajectories in the Earth-Moon

system, Figure 4.8 portrays the preliminary analysis of the attitude eigenvalue struc-

tures of the reference coupled motion as the reference orbit is varied along the family.
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Some of the identified changes in the stability of the attitude modes are marked in

Figure 4.8 by indicating the period of the corresponding Lyapunov reference path. At

the known bifurcation point, an initial guess for a novel periodic motion is obtained

from Eq. (4.2). The guess is, subsequently, corrected for periodicity and continued

to construct a family as described in the previous section. Some representative novel

families of attitude periodic solutions are represented in Figure 4.8 as they appear in

the quaternion rqb subspace. For example, the bifurcating orbit at period P = 15.15

days yields a family as seen in Figure 4.8(b), that is displayed in the quaternion rqb

subspace, similarly to Figure 4.7(c).
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Figure 4.8. Dynamical bifurcation diagram along the family of refer-
ence elementary motions for k = 0.4 and L1 Lyapunov orbits in the
Earth-Moon system.

4.5 Analysis of Orbit-Attitude Families of Periodic Solutions on L1 Lya-

punov Orbits

In this section, a representative analysis of orbit-attitude families of periodic so-

lutions is considered for a disk-like spacecraft with inertia ratio k = 0.4 that orbits
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L1 Lyapunov orbits in the Earth-Moon system. The selected configuration serves

as a reference to introduce some general characteristics for orbit-attitude solutions.

A similar analysis may be extended to any solution that is generated within the

orbit-attitude coupled model.

4.5.1 Quaternion Representation and Physical Motion

Different kinematics variables may be adopted to describe the orientation of a rigid

body. In this investigation, the attitude dynamics are numerically propagated using

the quaternion representation. Additionally, in the numerical integration of the equa-

tions of motion, the vehicle attitude is defined relative to the inertial frame, which is

described by the quaternion vector Iqb. However, orbit-attitude periodic solutions are

sought for an observer fixed in the CR3BP rotating frame. That description requires

transforming the orientation kinematic variable from Iqb to rqb. A response that is

periodic in the rotating frame corresponds to a periodic profile in rqb, but does not

necessarily appears periodical in Iqb. As summarized in Figure 4.8, different bifurca-

tions of the nominal attitude motion exist along the L1 family of Lyapunov orbits in

the Earth-Moon system. From those bifurcations emanate different sets of attitude

periodic solutions that combine with particular reference periodic trajectories and

form families of orbit-attitude periodic solutions. A sample for the computed families

projects in the quaternion rqb subspace as in Figure 4.9. For clarity, only the compo-

nents q1 and q2 are represented, which are most representative of the rotational profile

for these particular solutions. The curves are, nonetheless, three-dimensional in gen-

eral (or four-dimensional, if the dependent quaternion component, q4, is included), as

variations in the remaining measure number, q3, also exist. In Figure 4.9, each family

is denoted by the period of the Lyapunov orbit associated to the bifurcation of the

attitude dynamics for the nominal motion. Such period corresponds to the orbital

period of the smallest computed member of the family (described by a blue curve in

Figure 4.9). The smallest member is the first converged solution corresponding to
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the initial guess from Eq.(4.2). As the family of orbit-attitude periodic solutions is

continued, the period of the reference path may vary significantly and part from the

period at the bifurcation. For certain families, such as Figure 4.9(e), the curves rep-

resenting each attitude solution may rotate as the family grows. That is an artefact

of the continuation process and corresponds to a shift of the initial point along the

baseline trajectory. Incorporating phasing constrains into the continuation process

may be employed to cancel the rotation of the curves along the family.

The quaternion vector representation is especially convenient to handle numerical

computations, but its physical interpretation is not immediate. Recognizing the q1,

q2, and q3 as the components of the Euler axis, may aid to the understanding of the

motion. The q1-q2 diagram in Figure 4.9 is, in fact, the trace of the Euler axis on the

x-y plane. For the type of solutions in Figure 4.9, the trace in the q1-q2 plane seems

to directly relate to the pointing of the axis of symmetry. In Figure 4.10, the gray

sphere represents all the possible pointing directions in the CR3BP rotating frame;

each red curve correspond to the trace of the axis of symmetry for a particular solu-

tion in the family, as viewed by a rotating observer; then, a point along the red curve

is an instantaneous pointing direction of the spacecraft axis of symmetry for a given

solution. The resemblance of Figure 4.10(a) to Figure 4.9(c), and Figure 4.10(b) to

4.9(e), is obvious. The same correspondence holds for all the families in Figure 4.9.

The observation of the axis of symmetry trace suggests that, the selected atti-

tude solutions are a combination of nutation librations and precession relative to the

x-axis of the rotating frame; both the nutation and precession are synchronized with

the orbital period. Consider a body-two 3-2-3 Euler angle sequence, that describes

the orientation of the body relative to the rotating frame. For the current configura-

tion, the angles of the 3-2-3 sequence identifies precession-nutation-spin, respectively.

First consider the family in Figure 4.9(c), that is represented by the nutation and pre-

cession profiles in Figure 4.11. The orientation history consistently originates from a

0◦ precession and a small nutation angle in the direction opposite to the orbital mo-

tion. Essentially, the b̂3 axis initially lies in a plane perpendicular to the y-axis of the
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(f) PB ≈ 19.15 days.

Figure 4.9. Sample families of orbit-attitude periodic solutions em-
anating from an elementary nominal solution for an axisymmetric
disk-like vehicle (k = 0.4) orbiting a L1 Lyapunov orbit in the Earth-
Moon system. The attitude component of the solutions is represented
into the q1-q2 subspace.

rotating frame, inclined toward x > 0. During the first half revolution along the L1

Lyapunov orbit, the axis of symmetry precesses 90◦, pointing opposite to the initial

direction at the next crossing of the x-axis. During the remaining orbital path, the
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(a) PB = 14.60 days. (b) PB = 15.60 days.

Figure 4.10. Evolution of the pointing direction of the spacecraft de-
scribed by the trace of the symmetry axis in the rotating frame. Each
curve corresponds to a different non-trivial orbit-attitude periodic so-
lution.

nutation profile symmetrically replicates the first half revolution, while the precession

anti-symmetrically follows the previous evolution. After a complete L1 Lyapunov or-

bit, the vehicle returns to its initial orientation relative to the rotating frame in the

CR3BP. Note that the original reference solution is described by a constantly null

nutation that is marked in Figure 4.11(a). When the nutation is zero, precession is

not defined; however, for convenience, a constant precession of 0◦ is marked in Figure

4.11(b) to describe a constant orientation of the spacecraft in the rotating frame.

Referring to Figure 4.8, all the bifurcating periodic motions corresponds to differ-

ent periodic profiles for nutation of the body symmetry axis, that would be nominally

orthogonal to the orbital plane. The nutation librations are the most significant com-

ponent of the motion for those solutions. Large values of the precession angle, which

appears in Figure 4.11(b), do not necessarily indicate large variations of the space-

craft orientation, especially if they are associated to small nutation angles. Precession

principally describes the angular location of the plane containing the axis of symme-

try relative to a reference direction. The families in Figure 4.9 correspond to the

nutation profiles in Figure 4.12. Observing the currently available range of families,

the maximum angular separation between the spacecraft axis of symmetry and the
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Figure 4.11. Orientation history for the family of non-trivial orbit-
attitude periodic solution (in blue) compared to the elementary ref-
erence motion (in red).

orbit normal is ≈ 50 deg. In general, all the available families of solutions have a

finite amplitude oscillation, as opposite to an infinitesimal amplitude that is associ-

ated the initial guess. Further explorations are, however, warranted to investigate the

difficulties encountered in the continuation process to larger values for the nutation

angle, that may be associated with more numerically complex dynamics.
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Figure 4.12. Nutation history for sample families of orbit-attitude
periodic solutions emanating from an elementary nominal solution for
an axisymmetric disk-like vehicle (k = 0.4) orbiting a L1 Lyapunov
orbit in the Earth-Moon system.

4.5.2 Coupled Orbit-Attitude Nature of the Continuation Process

In a model that incorporates the gravity gradient torque, the attitude evolution

is affected by the spacecraft location relative to the gravitational attractors. In such

scenario, rotational periodic motions are only possible if the position configuration of

the spacecraft relative to the primary bodies is also periodic, and the period is com-
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mensurate to the period of the attitude profile. The integer ratio between the period

of the attitude motion and the period of the orbit yields an orbit-attitude periodic

solution. The definition of the orbit-attitude elementary reference solution aids to

the identification of orbits hosting complex periodic attitude behaviors. Those orbits

corresponds to bifurcation of the attitude component of the elementary solution. As-

sociated to a bifurcation orbit there exist a non-trivial periodic rotational response,

along with the elementary motion. The non-trivial bifurcating solution has period

equal, as well as multiple, of the reference orbit. For example, referring to Figure

4.8, the bifurcations at period PB ≈ 11.78 days and PB ≈ 11.83 days correspond to a

period-doubling of the attitude solution: the spacecraft completes two orbits before

the repetition of the rotational response.

As evident in Figure 4.8, there are several bifurcation points for the reference at-

titude motion along the reference family of periodic orbits. As the attitude motion is

continued from the bifurcation, the reference orbit also need adjustment. Generally,

the continuation process varies the period of the attitude motion. Accordingly, the

orbit has to be corrected to match the period of the attitude response. Different

solutions possess different periods, hence, they can not possibly share the same ref-

erence periodic orbit, which would be characterized by a unique orbital period. The

adoption of an orbit-attitude corrections algorithm is, therefore, warranted to seek

rotational periodic behaviors for vehicles on periodic orbits, even if the orbital path is

known a priori and does not depend on the spacecraft orientation. A periodic attitude

motion and a periodic orbital path that possess commensurate periods naturally yield

an orbit-attitude periodic solution. Figure 4.13 depicts the variation of the reference

orbit as the attitude solutions are continued from the bifurcation at PB ≈ 14.60,

which corresponds to the light red orbit in the figure. Figure 4.14 displays the range

of adjustments to the reference periodic orbit that are necessary to continue some of

the families of orbit-attitude solutions at the bifurcations marked in Figure 4.8.
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Figure 4.13. Adjustment of the initial L1 Lyapunov periodic orbit at
PB ≈ 14.60 days (in light red) to continue the family of non-trivial
orbit-attitude solutions.

Figure 4.14. Ranges of L1 Lyapunov orbits in the Earth-Moon system
associated with the families of orbit-attitude periodic solution for an
axisymmetric disk-like spacecraft (k = 0.4).
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4.5.3 Stability for the Attitude Modes for Non-Trivial Solutions

Similarly to the analysis of the elementary reference motion, the exploration of

the stability properties for the non-trivial set of orbit-attitude periodic solutions aids

to the understanding of dynamics in vicinity of the nominal motion. Such analysis

produces a valuable estimation for the effects of small perturbations on the nominal

solution. In this section, only the stability of the attitude components of the motion

is discussed. The stability properties of the orbital motion are well-known within the

CR3BP. Consequences of the reference path stability on the attitude dynamics are

not considered in the present discussion. Adopt the transformed STM, Φ̃(T, 0), over

one period, to fully reflect a CR3BP rotating frame observer. Then, the stability

index is computed, one that is associated to the 6 attitude eigenvalues.

Consider the representative orbit-attitude families of periodic solutions for a disk-

like spacecraft (k = 0.4) on L1 Lyapunov orbits in the Earth-Moon system, that

correspond to the bifurcations in Figure 4.8. For the computed range, this set of

families is associated to a stability index no greater than 40 (refer to Table 4.1-4.6 in

the next section). Given a small perturbation to the reference, a small stability index

is indicative of potentially slow diverging behavior from the nominal motion. Quite

interesting, the family of orbit-attitude solutions that bifurcates at P = 14.60 days

(see Figure 4.8) is marginally stable in the attitude response, i.e. s = 1, through-

out the members currently computed. A simple way to display the consequences of

different stability characteristics is to observe the motion over a long term numerical

propagation. Select a solution from the orbit-attitude periodic family that bifurcates

at P = 14.60 days (see Figure 4.9(c)) and a solution from the family bifurcating at

P = 15.60 days (see Figure 4.9(e)). The former is associated with a stability index

value s = 1 for the attitude modes, whereas the latter corresponds to stability index

value slightly larger than 1. For both solutions, artificially fix the nominal orbit and

integrate the attitude response for 500 periods. Observe the nutation history in Fig-

ure 4.15. As is evident, the nutation angle for a slowly diverging reference remains
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bounded for a considerable amount of time (about 250 revolutions), but eventually

diverges under the perturbations introduced by the numerical errors. Conversely, the

marginally stable reference solutions seems immune to such small perturbations and

remains bounded on the entire time window of observations.

Both responses are consistent with the attitude eigenvalues structures in Figure

4.16. The family bifurcating at P = 15.60 days possesses an eigenvalue that is outside

of the stability boundary, as visible in Figure 4.16(b). An unstable mode associated

with an eigenvalue greater than one, eventually drives the amplitude of the nutation

libration to diverge; however, a considerable time window may be required to observe

the response diverging, in particular, when the eigenvalue magnitude is small (which

is reflected in a large time constant for the diverging mode). The eigenvalues evolu-

tion in Figure 4.16(a) corresponds to the family bifurcating at P = 14.60 days. That

description is consistent with a marginally stable reference, as all the non-trivial eigen-

values are within the stability boundary. In Figure 4.15, the corresponding nutation

angle remains bounded for the whole propagation. Slowly diverging or marginally

stable rotational motion may be an useful attitude configuration for various space

infrastructures, such as manned habitats in proximity of the Moon.

This example is simple and straightforward, but, further investigation is warranted

to fully characterize the stability of both solutions. An underlying assumption of this

analysis is that the reference orbit is either stable or artificially fixed. Since the at-

titude response is naturally coupled to the orbital regime, if the reference orbit is

unstable, such as L1 Lyapunov orbits, the instability propagates to the attitude vari-

ables, regardless the attitude eigenvalues. Thus, given the coupling of the attitude

and orbit motion, mutual influence on the stability properties should also be consid-

ered. Nonetheless, it is reasonable to assume station keeping of the reference orbit,

so that, the stability analysis of the attitude motion alone is a good initial estimate

for the stability of the rotational behavior in the coupled dynamics.
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Figure 4.15. Comparison of a slow diverging (in light blue) and a
marginally stable (in orange) nutation response for an orbit-attitude
periodic solution on L1 Lyapunov orbits in the Earth-Moon system
for an axisymmetric disk-like spacecraft (k = 0.4).
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Figure 4.16. Comparison of the eiganvalues structure (represented as
real component) for a slow diverging (left) and a marginally stable
(right) nutation response for an orbit-attitude periodic solution on
L1 Lyapunov orbits in the Earth-Moon system for an axisymmetric
disk-like spacecraft (k = 0.4).
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4.6 Initial Conditions for Representative Orbit-Attitude Families of Pe-

riodic Solutions on L1 Lyapunov Orbits

In this section, the initial conditions, and other useful information, for the rep-

resentative solutions depicted in Figures 4.9 and 4.12 are collected in Tables from

4.1 to 4.6. Consistently to Figures 4.9 and 4.12, each set of solutions is identified

by the bifurcating period of the elementary nominal motion. In the tables, the L1

Lyapunov orbit is identified by the coordinate of the x-crossing on the left of the L1

Lagrangian point in the Earth-Moon system; that uniquely identifies the Lyapunov

orbit and, hence, the orbital component of the motion. The initial orientation is

given as the components of the quaternion vector iqb(0) =r qb(0), which assumes the

rotating frame to be aligned to the inertia frame at t = 0. The body angular velocity

relative to the inertial frame completes the set of initial conditions that is necessary

to fully reproduce the coupled orbit-attitude periodic solutions, once the period of the

motion is known. Note that, the period of the coupled response may be multiple of

the period of the reference orbit. In addition, the direct numerical integration of the

initial conditions supplied in Tables from 4.1 to 4.6 for one full period may not yield

an exact periodic motion; truncation errors to fit the values into tables and intrin-

sic finite numerical precision of the propagation are the cause. The application of a

correction scheme to target periodicity to an higher degree of precision is warranted,

even if the initial conditions for such motion are given.
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Table 4.1. Initial conditions for a non-trivial orbit-attitude family of
solutions bifurcating at PB ≈ 11.78 days. The solutions assume an
axisymmetric spacecraft with inertia ratio k = 0.4 in the Earth-Moon
system.

x q1 q2 q3 ω1 ω2 ω3 P s

[ndim] [ndim] [ndim] [ndim] [ndim] [ndim] [days] [ndim] [ndim]

0.827 0.000 0.011 0.000 -0.043 0.000 1.000 23.570 1.000e+00

0.827 0.001 0.098 0.009 -0.391 0.007 0.977 23.615 1.000e+00

0.825 0.001 0.176 0.008 -0.710 0.012 0.919 23.735 1.002e+00

0.823 0.002 0.229 0.007 -0.920 0.014 0.852 23.889 1.065e+00

0.821 0.002 0.273 0.007 -1.075 0.015 0.779 24.081 1.172e+00

Table 4.2. Initial conditions for a non-trivial orbit-attitude family of
solutions bifurcating at PB ≈ 11.83 days. The solutions assume an
axisymmetric spacecraft with inertia ratio k = 0.4 in the Earth-Moon
system.

x q1 q2 q3 ω1 ω2 ω3 P s

[ndim] [ndim] [ndim] [ndim] [ndim] [ndim] [days] [ndim] [ndim]

0.827 0.007 -0.000 0.001 0.000 0.046 1.000 23.607 1.000e+00

0.826 -0.097 0.044 0.406 0.001 0.658 0.985 23.623 1.001e+00

0.826 -0.188 0.084 0.397 0.001 1.171 0.947 23.653 1.000e+00

0.825 -0.280 0.123 0.383 0.001 1.602 0.885 23.689 1.008e+00

0.824 -0.373 0.161 0.362 0.000 1.980 0.798 23.742 1.071e+00
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Table 4.3. Initial conditions for a non-trivial orbit-attitude family of
solutions bifurcating at PB ≈ 14.60 days. The solutions assume an
axisymmetric spacecraft with inertia ratio k = 0.4 in the Earth-Moon
system.

x q1 q2 q3 ω1 ω2 ω3 P s

[ndim] [ndim] [ndim] [ndim] [ndim] [ndim] [days] [ndim] [ndim]

0.799 -0.004 0.000 0.993 -0.050 0.000 1.000 14.661 1.000e+00

0.798 0.000 0.013 -0.001 -0.162 0.000 0.997 14.690 1.000e+00

0.798 0.000 0.023 -0.002 -0.292 -0.001 0.990 14.765 1.000e+00

0.797 0.000 0.033 -0.003 -0.435 -0.003 0.977 14.911 1.000e+00

0.794 -0.001 0.044 -0.009 -0.668 -0.016 0.940 15.389 1.000e+00

Table 4.4. Initial conditions for a non-trivial orbit-attitude family of
solutions bifurcating at PB ≈ 15.15 days. The solutions assume an
axisymmetric spacecraft with inertia ratio k = 0.4 in the Earth-Moon
system.

x q1 q2 q3 ω1 ω2 ω3 P s

[ndim] [ndim] [ndim] [ndim] [ndim] [ndim] [days] [ndim] [ndim]

0.795 0.006 0.000 0.000 0.000 0.049 1.000 15.152 1.000e+00

0.795 0.025 0.000 -0.001 0.000 0.198 0.997 15.182 1.000e+00

0.795 0.040 0.000 -0.002 -0.001 0.318 0.992 15.233 1.000e+00

0.794 0.055 0.000 -0.003 -0.003 0.443 0.985 15.316 1.000e+00

0.794 0.069 0.001 -0.004 -0.007 0.559 0.976 15.427 1.000e+00
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Table 4.5. Initial conditions for a non-trivial orbit-attitude family of
solutions bifurcating at PB ≈ 15.60 days. The solutions assume an
axisymmetric spacecraft with inertia ratio k = 0.4 in the Earth-Moon
system.

x q1 q2 q3 ω1 ω2 ω3 P s

[ndim] [ndim] [ndim] [ndim] [ndim] [ndim] [days] [ndim] [ndim]

0.792 -0.003 0.000 -0.001 0.000 0.049 1.000 31.296 1.000e+00

0.792 -0.014 -0.007 -0.450 0.003 -0.235 0.999 31.392 1.000e+00

0.791 -0.026 -0.015 -0.470 0.019 -0.486 0.995 31.728 1.000e+00

0.788 -0.036 -0.027 -0.519 0.084 -0.825 0.987 32.614 2.455e+00

0.781 -0.029 -0.041 -0.531 0.463 -1.149 0.973 34.513 2.867e+01

Table 4.6. Initial conditions for a non-trivial orbit-attitude family of
solutions bifurcating at PB ≈ 19.15 days. The solutions assume an
axisymmetric spacecraft with inertia ratio k = 0.4 in the Earth-Moon
system.

x q1 q2 q3 ω1 ω2 ω3 P s

[ndim] [ndim] [ndim] [ndim] [ndim] [ndim] [days] [ndim] [ndim]

0.767 0.000 -0.008 -0.001 -0.031 0.000 1.000 38.085 1.663e+00

0.764 0.002 -0.076 -0.025 -0.270 -0.014 1.000 38.782 9.019e+00

0.761 0.004 -0.108 -0.038 -0.367 -0.028 0.997 39.488 1.588e+01

0.758 0.006 -0.132 -0.046 -0.431 -0.041 0.993 40.176 2.335e+01

0.753 0.010 -0.166 -0.055 -0.510 -0.058 0.981 41.375 3.706e+01
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5. BOUNDED LIBRATIONS: IDENTIFICATION OF

ORBIT-ATTITUDE PERIODIC SOLUTIONS BY

POINCARÉ MAPPING

5.1 Overview

Accurate initial guesses for orbit-attitude periodic solutions may also be identified

through Poincaré mapping. Poincaré maps are an useful tool to capture dynamical

structures of a n dimensional system ẋ = f(x), such as periodic solutions, via a

discrete and lower dimensional representation of the dynamical flow.

The Poincaré mapping approach to the identification of periodic motion can be

summarized in the following steps:

1. Define a n−1 dimensional surface of section that is transversal to the dynamical

flow;

2. Define a grid of initial conditions on the surface of section;

3. Propagate the initial conditions for several returns to the surface of section;

4. Record and display the returns to the surface of section;

5. Identify ordered features that correspond to periodic solutions.

The surface of section can be defined by any combination of the system states as well

as by the time variable. The requirement of transversality implies that the initial

conditions on the surface of section generate a flow that again intersects the surface,

as schematically represented in Figure 5.1. Accordingly, the trajectories are followed

from one intersection with the surface to the next, which generate the Poincaré map,

i.e., a mapping of the surface of section to itself.
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Figure 5.1. Schematics of the Poincaré map.

Intersections of a trajectory with the surface of section can be represented in terms

of the state variables at the crossing. When two variables are selected, each return

to the map is represented by a dot in a planar space. A two-dimensional portrait

may be not a complete description of the system state, but may be sufficient to

capture dynamical structures of interest. In particular, considering a two-dimensional

representation, the returns associated to bounded and quasi-periodic solutions align

along a closed curve on the map. Closed curves are generally not isolated, but they

aggregate in islands, as displayed in Figure 5.2. An island renders the bounded

motions within the neighborhood of a marginally stable periodic solution, that exists

at the center of the island. On the contrary, chaotic trajectories intersect the surface

of section in an seemingly random fashion, and consequently, the crossings tend to

fill the entire space on the map. The regions of the map that do not display any

recognizable pattern are also referred as chaotic sea. Structures related to other type
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of behaviors, such as manifold trajectories, may also be recognized on a map. On a

properly defined surface of section, ordered patterns aid, in fact, the identification of

initial conditions that correspond to periodic solutions.

var 1

va
r 

2

an island

Figure 5.2. Poincaré map where ordered patterns of returns are visible.

Poincaré maps are particularly convenient to characterize the dynamical struc-

ture, and possibly identify desired solutions, for a fixed configuration of the system

parameters and a specific set of initial conditions. System parameters may include

the spacecraft characteristics or known integrals of motion, e.g., the total mechanical

energy. The set of initial conditions contains the definition of the surface of section.

In some applications, such as the preliminary stages of a mission design, however, it

may be necessary to explore the impact of system parameters or analyse different set

of initial conditions. Capturing the evolution of the dynamical structure for a large

number of possible configurations via Poincaré mapping requires generating several

maps. Accordingly, the inspection of each resulting portrait may easily become te-

dious and turn into a cumbersome process. An algorithm to automatically identify
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island structures that are present on the map is, therefore, warranted to facilitate the

exploration of a large set of simulations for different initial settings.

5.2 Automatic Statistical Identification of Ordered Patterns

An algorithm for the automatic detection of island, and possibly other, patterns

on a Poincaré map is proposed. The algorithm is constructed upon some empirical

observations for the returns spatial frequency distribution on the surface of section,

and the definition of statistical indexes that may signal the existence of an island.

Island regions and chaotic regions on the map possess different crossing variables

frequency distribution on the surface of section. Define a surface of section and select

two generic variables to represent the intersections of a generic trajectory with the

surface of section on a two-dimensional space. Propagate the trajectory for several

returns to the map and display the crossings on the two-dimensional space. Each vari-

able that defines the two-dimensional space, appears in a range that is discretized into

intervals. Then, the occurrence of returns in each interval is measured to construct a

frequency distribution. If the trajectory is chaotic, the returns to the surface of sec-

tion seem to disperse stochastically on the two-dimensional portrait, as displayed in

Figure 5.3(a). The corresponding frequency distribution is apparent in Figure 5.3(b)

for the first variable, and in Figure 5.3(c) for the second variable. If the trajectory

is bounded, the returns align along a closed curve in the two-dimensional description

of the map, as displayed in Figure 5.4(a). The corresponding frequency distribution

is evident in Figure 5.4(b) for the first variable, and in Figure 5.4(c) for the second

variable. To quantify the difference between the distributions in Figures 5.3 and 5.4

two testing strategies are next proposed.

The first testing strategy is built by comparing the observed frequency distribution

with an equivalent Gaussian profile. This comparison may provide an heuristic deter-

mination for the level of disorder in the occurrence of the returns. If the intersections

of the trajectory with the surface of section were a perfectly random phenomena, the
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Figure 5.3. Spatial frequency distribution for the returns to the sur-
face of section for a chaotic pattern.
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Figure 5.4. Spatial frequency distribution for the returns to the sur-
face of section for an island pattern.

occurrence of points on the two-dimensional space describing the map may be de-

scribed by a Gaussian distribution for each variable that defines the observed space.

Accordingly, the definition of the testing criteria assumes that, the more an observed

frequency distribution for a given variable differs from an equivalent Gaussian bell,

the more likely a trajectory corresponds to a dynamical structure on the map. For
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such comparison, an equivalent Gaussian curve is generated, one that possesses the

same mean and standard deviation as the corresponding observed distribution. The

Chi-Square Goodness of Fit Test (CSGFT) is employed to quantify the resemblance

of two frequency distributions. The CSGFT statistic is the variable Chi-Square, χ2,

calculated as

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
, (5.1)

where Oi is the observed frequency count in the interval ith and Ei is the expected

frequency count in the interval ith. The total number of intervals is denoted by n. In

this analysis, the expected count of occurrences in each interval is calculated assuming

an equivalent Gaussian distribution. In general, if the value for χ2 obtained from Eq.

(5.1) is greater than a given threshold, the hypothesis that the observed distribution

is similar to the expected random distribution (also known as the null hypothesis)

is rejected. The critical value for χ2 is estimated assuming a chi-square distribution

with significance level, α, and (k − c) degrees of freedom, where k is the number of

non-empty intervals and c is the number of parameters that describe the expected

distribution, plus one. The significance level, α, describes the probability of being

wrong in assuming the existence of a relationship between the observed and expected

distributions. Consider a seemingly random series of returns, such the one depicted in

Figure 5.3(a). For the series marked in that figure, apply the CSGFT to each of the

two variables describing the map. The observed distribution for the first variable, in

Figure 5.3(b), and the observed distribution for the second variable, in Figure 5.3(c),

correspond to a value χ2 = 40.34 and χ2 = 111.39, respectively. Also apply the

CSGFT to a series of returns that outlines an island structure on the map, such as

in Figure 5.4(a). In result, the observed distributions, which are again compared to

a Gaussian-like outcome, produce χ2 = 505.06 for the first variable (Figure 5.4(b))

and χ2 = 174.52 for the second variable (Figure 5.4(c)). All the distributions in

Figure 5.3 and 5.3 have been discretized in k = 16 non-empty intervals. As the

expected distribution is Gaussian and is described by two degrees of freedom (e.g.,

mean and standard deviation), c = 3. Then the critical value for the CSGFT is



109

χ2
crit(k − c, α) = 85.52, for a significance level α → 0 (precisely α = 10−12). In

this example, the CSGFT metrics appears to better capture ordered behavior on

the first variable, where χ2 > χ2
crit for the sample series of returns on the island

and χ2 < χ2
crit for the sample series of returns in the chaotic sea. The CSGFT

metrics highly depends on the definition of the map variables, the number of returns

and the number of intervals in the frequency distribution. It is also possible that,

returns patterns seemingly chaotic do not form a precisely Gaussian distribution and

surpass the critical threshold, when tested with the CSGFT method. Returning to

the example, the CSGFT statistic is, in fact, less effective with respect to the second

variable, where χ2 > χ2
crit for both the sample series, those corresponding to an island

and to the chaotic see. It is generally observed, however, that the CSGFT provide the

highest χ2 values on close curves, ones that form an island structure. To facilitate

the clear identification of islands, the critical threshold may be increased by a margin

factor. In our analysis, a value for χ2 that is significantly larger than the critical

threshold describes a frequency distribution notably different from a Gaussian bell,

and may indicate the formation of an island on the map.

The second test is based on the detection of occurrences picks at the side of

the frequency distribution. An example of this type of distribution is displayed in

Figure 5.3(b) and Figure 5.3(c). The frequency distribution associated to certain

island structures appears to flatten around the average, and rapidly increase at the

edges of its finite support. The identification of such picks is, again, constructed by

comparison with the Gaussian distribution. The underlying idea is to measure the

excess of occurrences in intervals at the sides of the distribution support, relative to

the random probability of events in such intervals. A distance of 1 sigma from the

average is arbitrarily selected to define the sides of the distribution support. Then, the

number of occurrences in the intervals above 1 sigma, Oσ, is divided by the expected

count in the same intervals, Eσ, if the distribution were Gaussian, such that

Aσ =
Oσ

Eσ
. (5.2)
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Large values for Aσ describes events accumulating at the side of the distribution

support, and may indicate the presence of a closed curve on the map. The contrary

is not true. Small values for Aσ do not necessarily exclude the existence of an island.

For certain configurations, in fact, the picks may occur below 1 sigma and, therefore,

stand undetected by the current definition of the Aσ metrics. Also, similarly to the

CSGFT statistic, the Aσ parameter does not supply a criteria for a precisely accurate

detection of islands, but only enables a measurement for the degree of possibility

that the observed series of returns lies along a defined structure on the map. A

greater ratio Aσ may indicate the presence of a large number of events on the side of

the distribution support, and simply reinforce the likelihood of corresponding to an

island type of behavior.

The metrics χ2 and Aσ are incorporated into an algorithm for the automatic

detection of island, and possibly other, structures on a Poincaré map. The scope of

the algorithm is to provide an estimate for the likelihood of island structures that

may exist on a given Poincaré map. The precise identification of each single structure

or the accurate count of islands on the map is beyond the purpose of such algorithm.

The algorithm for the automatic detection of island curves is outlined by the following

steps:

1. From the grid of initial conditions that define the Poincaré map, propagate a

single trajectory;

2. For each variable that describes the surface of section, generate the frequency

distribution of the crossings;

3. Compute the metrics χ2 and Aσ for each of the frequency distributions from

the previous step;

4. Define a threshold for each metrics. Above the chosen threshold, a single metrics

predicts the existence of an island. Define this event as a successful test;

5. Define a minimum number of successful tests;
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6. If the actual number of successful tests is greater than the minimum defined at

the previous steps, flag the trajectory;

7. Move to the next propagation and repeat.

The outcome of this procedure is a number of flags that marks any trajectory possibly

associated to different island structures on the Poincaré map. Such algorithm is com-

bined with the generation of several Poincaré maps for different system configurations.

Following the recognition of maps with a desired number of flags, selected configu-

rations can be inspected manually, or via strategies that enable a more definitive

analysis of the dynamical patterns. The algorithm is a practical and straightforward

implementation of a strategy for the preliminary automatic examination of a large

number of maps, however it does not guarantee to successfully flag each trajectory

that is genuinely associated to an island. The accuracy for the proposed procedure

may be easily improved by incorporating additional testing metrics for the definition

of a frequency distribution that corresponds to an ordered pattern, such as an island

structure.

The general framework for the automatic inspection of Poincaré maps via statisti-

cal metrics is applied to the identification of attitude periodic solutions along periodic

orbits in the CR3BP. Such framework facilitates the analysis of several Poincaré maps

corresponding to different spacecraft topologies and reference orbits. Configurations

that more likely enable marginally stable dynamical behaviors, consistent with the

map definition, are automatically detected.

5.3 Poincaré Mapping Campaign for Orbit-Attitude Periodic Planar Mo-

tions

Considering both rod-like and disk-like geometries for a wide range of possible

mass distributions, that travel along planar periodic orbits in the CR3BP, several

Poincaré maps are generated and analysed to identify periodic attitude behaviors.

For simplicity, the rotational dynamics are also planar.
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For a given combination of spacecraft mass distribution and reference orbit, a

Poincaré map is produced as follows. Consider an axisymmetric vehicle moving along

a planar periodic orbit in the Earth-Moon system. L1 Lyapunov, L2 Lyapunov and

DRO orbits are employed as nominal trajectory. Assume the spacecraft initiates its

motion from the x-axis: on the crossing closest to Earth for L1 Lyapunov and DRO

type of motions, on crossing farthest from the Moon for L2 Lyapunov orbits. At the

initial time, two orientations of the vehicle are considered: for a rod-like spacecraft,

the axis of symmetry b̂3 is aligned with the x-axis of the CR3BP rotating frame, if the

vehicle is rod-like; for a disk-like spacecraft, the axis of symmetry b̂3 is instead aligned

with the y-axis of the CR3BP rotating frame. An initial angular velocity component

for the vehicle is introduced in the z-axis direction. The angular velocity remains

orthogonal to the orbital plane throughout the motion; accordingly, the axis of sym-

metry of the vehicle moves in the xy-plane. The xz-plane constitutes the surface of

section transverse to the dynamical flow in configuration space. Without altering the

spacecraft geometry or the reference periodic orbit, assume that the initial angular

velocity magnitude is varied within the range [−4, 4] nondimensional units with a

step size of 0.1 nondimensional units, which forms a grid of initial conditions. Then,

for each value assigned to the angular velocity, the initial conditions are propagated

for 500 revolutions of the periodic orbit, which is artificially maintained. The atti-

tude states are recorded at every crossing of the xz-plane in the positive y direction.

Monitor the orientation of the vehicle relative to the CR3BP frame via the quater-

nion vector rqb, as well as its body angular velocity iωb. Create a two-dimensional

visualization of the map using one component of rqb, say q2, and the angular velocity

component orthogonal to the orbital plane, i.e., ω2, for each set of initial conditions

and each return to the surface of section. Since the nominal motion is planar in

both its translational and rotational components, a two-dimensional portrait ideally

contains all the necessary information to represent the attitude state on the map.

Utilizing this general definition of Poincaré section, maps are generated for a large

number of inertia characteristics and reference orbit combinations.
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The inspection of an extensive sample of system configurations is enabled via an

automatic detection of island patterns, as is introduced in the previous section. For

the simulation campaign, the spacecraft inertia ratio, k, is varied within the inter-

val [0.5 1] for rod-like geometries, and [0 0.5] for disk-like vehicles, with a step size

equals to 0.01. Consistently, a total of 100 configurations are employed to describe

the possible mass distribution for the spacecraft. The set of periodic orbits examined

includes 140 L1 Lyapunov trajectories within the period range of [11.68 29.95] days,

90 L2 Lyapunov orbits within the period range of [14.64 36.2] days, and 150 members

in the DRO family within the period range of [5.87 27.37] days. The selected periodic

orbits are not necessarily equispaced within the period range. The total size of the

sample of periodic motions is 380 reference trajectories. Combining such sample of

orbits with the total number of selected inertia ratios, the simulation campaign pro-

duces 38000 surface of sections, that require examination. Leveraging the automatic

statistical algorithm for the identification of island structures, each map is analysed.

The inspection employs the frequency distribution for the variables q2 and ω2, which

describe the surface of section as a two-dimensional plane. The distributions are

calculated over the first 250 returns on the map. Reducing the number of returns

facilitate the identification of structures that may be perturbed by the accumulation

of numerical errors, or that may be associated to slowly diverging periodic behaviors.

Recall that, ordered patterns in each returns series are detected by statistical indexes,

χ2 and Aσ precisely. Presently, if the CSGFT metrics are greater than 1.5 times the

critical value, χ2
crit (calculated for a significance level α = 10−12), the CSGFT test as-

sociates the distribution to a structure within the map. Similarly, when the statistics

denoted by Aσ is larger than 3, the distribution is related to a pattern that would be

visible on the surface of section. The thresholds are determined by the analysis of the

statistical metrics for a small sample of representative maps. Describing the Poincaré

map with two variables and incorporating two statistics, 4 tests are applied to each

propagation to determine the existence of ordered structures, such as an island of

bounded motion. When two over four tests are successful, regardless of the type of
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metrics, then, the propagation is flagged to indicate the possible existence of an or-

dered pattern. The procedure to flag a sequence of crossings may be elaborated to

weight differently each test, accordingly to the metrics used or the variable examined.

The minimum number of successful tests to flag may also be increased to reflect an

higher level of certainty. As a result, the number of propagations that are likely to

correspond with island structures is calculated for each map.

The outcome for the automatic statistical inspection of several Poincaré maps,

which include L1, L2 Lyapunov, and DRO as reference orbit and an axisymmetric

vehicle as reference geometry, is summarized visually in Figures 5.5-5.10. In those

figures, the horizontal axis describes the reference mass distribution via the inertia

ratio, k; the vertical axis reflects the period of the reference orbit. For each com-

bination of mass distribution and reference orbit a Poincaré map is generated and

automatically analysed. Consequently, different Poincaré maps correspond to differ-

ent locations on the diagram, that are colored by the number of solutions potentially

reflecting island structures. Yellow denotes a large number of propagations that may

correspond to islands or other ordered structures, whereas dark green denotes none

or few propagations that satisfy the algorithm criteria for preliminary pattern detec-

tion. To initially assess the degree of accuracy offered by the algorithm predictions,

representative Poincaré maps complement the color-coded diagram in each figure. On

the single Poincaré map, the series of returns that the algorithm flags as probable

dynamical structure, are marked in red. Ideally, there should exist an effective cor-

respondence between the color on the diagram (i.e., the prediction) and the actual

topology of the map. For example, such correspondence is well defined in Figures 5.5

- 5.7: maps that corresponds to yellow regions in the diagram, actually display an

highly ordered topology (e.g., upper-left inset in Figure 5.7); maps that correspond

to the darkest green areas in the diagram, are entirely chaotic (e.g., upper-right in-

set in Figure 5.6); intermediate shades on the color scale describe maps with fewer

islands emerging from chaotic series of returns, to the extend that even significantly

isolated structures may be identified (e.g., lower-center inset in Figure 5.7). Limited
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prediction accuracy, however, may also occur, especially in presence of fast diverging

behaviors. For example, a rod-like spacecraft along Lyapunov periodic orbit for the

given set of initial conditions tend to degenerate in a fast rotating motion for a large

variety of system parameter configurations. In this scenario, the statistical analysis

is less precise. For example, certain maps associated to the scatter regions in Fig-

ures 5.8 and 5.9, such as the upper-right inset in Figure 5.8 may contain seemingly

chaotic patterns that are, nonetheless, identified as ordered motions by the statistical

analysis of the crossings. Dynamics that are, in fact, associated to a rapidly acceler-

ating profile for the vehicle rotations, generate distributions of returns different from

a Guassian bell (i.e., the reference distribution implemented in the algorithm), but

yet that do not correspond to any significant structure on the surface of section. Al-

ternative definition of the Poincaré map, one that is most suitable to fast accelerating

solutions, may aid to improve the accuracy of the identification process. Additionally,

there may also exist slow diverging periodic solutions that initially form patters on

the map, and later degenerate into chaos. As in the upper-left inset in Figure 5.10,

such type of behaviors may be included in those captured by the automatic proce-

dure. Finally, note that the identification algorithm only provides an approximate

prediction of the structures existing on the surface of section, but, does not guarantee

the recognition of all actual patterns (e.g., upper-left inset of Figure 5.6). Figures 5.5

- 5.10 provide a concise representation of the informations for over 30000 Poincaré

maps and preliminarily substantiate the efficacy of an automatic scheme for islands

detection.

The simulation campaign demonstrates a viable procedure for the quick identi-

fication of candidate periodic solutions through the recognition of map patterns for

several configurations of the system, including a variation of the mass distribution

and reference orbit.
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Figure 5.5. Automatic statistical summary of several Poincaré maps
for different disk-like satellites (identified by the inertia ratio, k) along
different Earth-Moon L1 Lyapunov orbits (identified by the orbital
period, P ). The color scale represents the number of propagations
possibly associated to ordered structures on a single Poincaré map.
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Figure 5.6. Automatic statistical summary of several Poincaré maps
for different disk-like satellites (identified by the inertia ratio, k) along
different Earth-Moon L2 Lyapunov orbits (identified by the orbital
period, P ). The color scale represents the number of propagations
possibly associated to ordered structures on a single Poincaré map.
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Figure 5.7. Automatic statistical summary of several Poincaré maps
for different disk-like satellites (identified by the inertia ratio, k) along
different Earth-Moon distant retrograde orbits (identified by the or-
bital period, P ). The color scale represents the number of propaga-
tions possibly associated to ordered structures on a single Poincaré
map.
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Figure 5.8. Automatic statistical summary of several Poincaré maps
for different rod-like satellites (identified by the inertia ratio, k) along
different Earth-Moon L1 Lyapunov orbits (identified by the orbital
period, P ). The color scale represents the number of propagations
possibly associated to ordered structures on a single Poincaré map.
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Figure 5.9. Automatic statistical summary of several Poincaré maps
for different rod-like satellites (identified by the inertia ratio, k) along
different Earth-Moon L2 Lyapunov orbits (identified by the orbital
period, P ). The color scale represents the number of propagations
possibly associated to ordered structures on a single Poincaré map.
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Figure 5.10. Automatic statistical summary of several Poincaré maps
for different rod-like satellites (identified by the inertia ratio, k) along
different Earth-Moon distant retrograde orbits (identified by the or-
bital period, P ). The color scale represents the number of propaga-
tions possibly associated to ordered structures on a single Poincaré
map.
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5.4 Representative Orbit-Attitude Families of Periodic Planar Solutions

To conclude the identification process of orbit-attitude periodic solutions, the com-

bination of an approximate attitude periodic motion identified by visible structures

on a Poincaré map, and a reference periodic trajectory produces a guess for an orbit-

attitude periodic solution that is corrected via a multiple shooting algorithm.

Select three representative scenarios: a rod-like vehicle moving on L1 Lyapunov

orbit, a disk-like spacecraft travelling along L2 Lyapunov orbit, and a rod-like body

in distant retrograde orbit motion. Considering these selected configurations, Fig-

ures 5.8, 5.6, 5.10 display regions in term of inertia ratio, k, and orbital period, P ,

that are potentially associated to the existence of ordered structures on the surface

of section, for the current definition of the Poincaré map. Thus, select a combination

of inertia ratio and orbital period that corresponds to the detection of some distin-

guishable patterns by the automatic statistical identification algorithm, and compute

the corresponding Poincaré map. For example, select the combination k = 0.8 and

P = 11.91 days for a rod-like spacecraft and L1 Lyaponov orbit, matching with the

Poincaré map depicted in the lower-central inset of Figure 5.8. A magnified view of

the chosen island structure is portrayed in Figure 5.11(a), for clarity. As indicated by

the red arrow in Figure 5.11(a), a guess for the initial angular velocity, one that yields

an approximately periodic attitude response along the associated periodic orbit, is

taken from the center of an island. For the current framework, the initial orientation

for the spacecraft is implicitly determined by the definition of the Poincaré map, as

discussed in the previous section. Finally, the predicted initial conditions are cor-

rected into an precisely periodic motion via a targeting algorithm. Consistently to

the adopted definition for the Poincaré map, the rotational motion is planar and it

is described by the out-of-plane component of the body angular velocity relative to

the inertial frame, that is displayed in Figure 5.11(b) as time evolution for one orbit

revolution. The angular velocity profile, after the correction, is, in fact, periodic over

one period of the L1 Lyaponov orbit.
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Representative periodic solutions are also computed for the remaining disk/L2

Lyapunov and rod/DRO scenarios. The combination k = 0.05 and P = 16.65 days

is selected for a disk-like spacecraft and L2 Lyaponov orbit, which corresponds to

the Poincaré map depicted in the lower-left inset of Figure 5.6. Several patterns

are evident and successfully detected on the surface of section for this configuration,

among them, the two-islands chain that is portrayed in Figure 5.12(a) is chosen for

further examination. The two centers of the chain reflect a period-double solution:

the rotation of the spacecraft is periodic over two revolution of the reference orbit.

This map is also representative of a fairly large L2 orbit, one that is outside of any

approximately linear regime. The red arrow in Figure 5.12(a) marks, again, the guess

for the initial angular velocity, that is next corrected to produce a periodic motion.

Figure 5.12(b) displays the converged solution as angular velocity time history. It

is immediate to observe that, the initial angular velocity repeats precisely after 2

periods of the reference orbit, as expected. Similarly, the pair k = 0.8 and P = 13.42

days is selected for a rod-like body and a distant retrograde orbit. The corresponding

Poincaré map is visible in the upper-right inset of Figure 5.10, whereas a zoomed

view for the island of interest (one that is detected by the automatic identification

algorithm) is presented in Figure 5.13(a). In Figure 5.13(a), the red arrow points to

an angular velocity, ω2 ≈ −3.75, that is used as initial guess to compute the periodic

attitude solution (see Figure 5.13(b) for the final angular velocity time profile along

the orbit).

The selected orbit-attitude periodic solutions do not exist isolated but they are

part of a larger dimensional dynamical structure, i.e., a family. Families of periodic

solutions are in general not directly apparent on a surface of section, but they can

be constructed via numerical continuation of a single solution that, in fact, emerges

on the map. Nearby to each of the identified orbit-attitude periodic solution there

exist a similar periodic motion. Using a continuation process, e.g., natural parameter

or pseudo-arc length, it is possible to sequentially step the motion through nearby

periodic solutions. Accordingly, a continuous group of attitude periodic responses is
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obtained, such as in Figure 5.14(b) for a rod-like spacecraft and L1 Lyapunov orbit, in

Figure 5.15(b) for a disk-like spacecraft and L2 Lyapunov orbit, and in Figure 5.16(b)

for a rod-like spacecraft and distant retrograde orbit. In those figures, the blue curve

marks the first member of the family, which is computed leveraging the initial guess

from the map, whereas the purple curve denotes the last member currently available

within the family. Note that, the purple member is not representative for the dy-

namical termination of the family; it may be possible to expand the families beyond

the displayed range. In the current implementation of the continuation process, the

periodic orbit is also adjusted at each step. Each profile of angular velocity in Figures

5.14(b), 5.15(b), and 5.16(b), matches a distinct orbit, which is represented within

Figures 5.14(a), 5.15(a), and 5.16(a), respectively. The identified orbit-attitude pe-

riodic solutions exist for a relevant portion of the corresponding orbit family, and

potentially indicate a valuable and flexible set of design options for incorporating

periodic attitude behaviors into mission design for CR3BP orbits.

As revealed by a few representative examples, periodic solutions for the orbit-

attitude dynamics are conveniently identified using Poincaré map for different config-

urations of the systems, that reflect various reference periodic orbits and spacecraft

mass distributions. Poincaré mapping is a framework that can be easily extended to

a variety of scenarios relevant for the orbit-attitude dynamics, others than the initial

demonstrations presented.
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Figure 5.11. Representative attitude periodic response identified via
Poincaré mapping for a L1 Lyapunov orbit with period P ≈ 11.91
days and rod-like spacecraft with inertia ratio k = 0.8.
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Figure 5.12. Representative attitude periodic response identified via
Poincaré mapping for a L2 Lyapunov orbit with period P ≈ 16.65
days and disk-like spacecraft with inertia ratio k = 0.05.
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Figure 5.13. Representative attitude periodic response identified via
Poincaré mapping for a distant retrograde orbit with period P ≈ 13.42
days and rod-like spacecraft with inertia ratio k = 0.8.
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Figure 5.14. Family of orbit-attitude periodic solutions identified via
Poincaré mapping for a rod-like spacecraft with inertia ratio k = 0.8,
travelling along L1 Lyapunov orbit.



127

0.9 1 1.1 1.2 1.3
−0.2

−0.1

0

0.1

0.2

x [ndim]

y 
[n

di
m

]

(a) Orbital components of the motion.

0 10 20 30
2

2.2

2.4

2.6

2.8

3

t [days]

ω
2 [n

di
m

]

(b) Attitude components of the motion, in

terms of the body angular velocity relative

to an inertial frame.

Figure 5.15. Family of orbit-attitude periodic solutions identified via
Poincaré mapping for a disk-like spacecraft with inertia ratio k = 0.05,
travelling along L2 Lyapunov orbit.
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Figure 5.16. Family of orbit-attitude periodic solutions identified via
Poincaré mapping for a rod-like spacecraft with inertia ratio k = 0.8,
travelling along distant retrograde orbit.
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5.4.1 An Example of an Elementary Orbit-Attitude Stable Solutions on

a Distant Retrograde Orbit

Distant retrograde orbits have been recently proposed for important mission ap-

plications in the Earth-Moon system, such as crewed orbiting infrastructures and

redirected natural bodies. One of the presented representative solutions corresponds

to a marginally stable rotational motion for a rod-like spacecraft that travels along

a distant retrograde orbit. Adding a marginally stable periodic attitude profile to a

marginally stable DRO of the same period generates a fully marginally stable orbit-

attitude coupled solution. Such solution is particularly valuable to obtain a configu-

ration that is likely to remain naturally bounded relative to the reference path, not

only for the orbital motion but also for its orientation evolution. It is, therefore,

beneficial to further examine the family of solution portrayed in Figure 5.16.

The linear stability of distant retrograde orbits in the Earth-Moon CR3BP is well-

know. Excluding nonlinear and resonance effects, a DRO trajectory is marginally

stable for any orbital period lower than approximatively 27 days [85]. Accordingly,

all the orbits displayed in Figure 5.16(a) are marginally stable. To investigate the

stability properties for the selected attitude periodic motion, one that is associated

to such orbits, the eigenvalues corresponding to the attitude modes are plotted in

Figure 5.17, as they evolve throughout the available portion of the family. The atti-

tude motion along a fixed reference orbit is marginally stable when the corresponding

eigenvalues reside on the unitary circle. According to Figure 5.17(a), such criteria is

satisfied for the most part of the family, which indicates a large majority of marginally

stable attitude solutions for a fixed reference orbit.

The corrected solutions in Figure 5.16 are essentially a periodic pitch motion of

the axis of symmetry of the vehicle relative to the CR3BP x-axis. A schematic of

this behavior appears in Figure 5.18(a). Referring to location (A) in the figure, the

symmetry axis is initially aligned with the x-axis; then, the spacecraft completes a

180 degree rotation about the vector normal to the orbital plane during the first
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Figure 5.17. Stability structure for a selected orbit-attitude family of
solutions for a rod-like spacecraft with inertia ratio k = 0.8, travelling
along distant retrograde orbit.

quarter of orbit (location (B) in Figure 5.18(a)). After a half orbit, i.e., location (C),

the body has rotated 360 degrees, such that the axis of symmetry is again aligned

with the x-axis. This type of behavior repeats over another half orbit and the ori-

entation history of the vehicle is periodic, as visible in Figure 5.18(a). The angular

velocity is also repeated at the return to the initial configuration. Relative to the

radial direction toward the Moon, the minimum and maximum axis of inertia of the

vehicle alternates in a periodic fashion. That also corresponds to a monotonically

decreasing precession angle, as plotted in Figure 5.18(b). Quite interestingly, for the

given DRO and inertia ratio, this behavior reflects a marginally stable configuration

in the CR3BP, as evidenced by the existence of an island of quasi-periodic motion

surrounding this solution on the Poincaré map. Figure 5.19 portrays the continu-

ation of the initial angular velocity throughout a portion of the DRO family. The

complete set of initial conditions for representative members of the family are given

in Table 5.1. In the table, the distant retrograde orbit is identified by the coordinate

of the x-crossing on the left of the Moon; that uniquely identifies the DRO trajectory
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(b) Precession angle profile.

Figure 5.18. Marginally stable orbit-attitude family of solutions for a
rod-like spacecraft with inertia ratio k = 0.8, travelling along distant
retrograde orbit.

and, hence, the orbital components of the motion. The initial orientation is given as

the components of the quaternion vector iqb(0) =r qb(0), which assume the rotating

frame to be aligned to the inertia frame at t = 0. The body angular velocity relative

to the inertial frame completes the set of initial conditions that is necessary to fully

reproduce the coupled orbit-attitude periodic solutions, knowing the period of the

motion. Note that, because of truncation errors, a correction algorithm may be nec-

essary to reproduced precisely periodic solutions given the initial states in Table 5.1.

The attitude periodic solution is first identified along a DRO close to a 2:1 resonance

with the Moon period, however, as Figure 5.19 reveals, such type of rotational motion

is possible for a considerably large range along the DRO family, also including orbital

periods that are not commensurate to the Moon revolution time. The attitude profile
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remains qualitatively unchanged as the orbit size and period increase. The marginally

stability properties are retained along most of the family as well.
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Figure 5.19. Initial angular velocity for different DROs. Red dot
marks DRO with period P = 13.22 days.

The behavior that emerges from Figure 5.18(a) is simple and may be interpreted

as an elementary torque-free motion. To further examine the origin of such dynam-

ics and isolate any distinct driving factor, the attitude moments model is simplified

at different levels. First, some reference solutions are generated in the current force

model via initial angular velocity values, ω2, that correspond to Figure 5.19. The re-

sulting number of spacecraft rotations along one revolution of the orbit is plotted as

reference black dashed lines in Figure 5.20. Figure 5.20(a) reflects the motion along a

small DRO, Figure 5.20(b) along a large DRO. Next, the same initial conditions are

propagated in a torque-free environment (blue curve in Figure 5.20). As the original

initial values for the angular velocity are generally not commensurate to the DROs

orbital period, the torque-free solutions are not exactly periodic. Corresponding to

the dynamics denoted by the blue lines in Figure 5.20, the vehicle, in fact, does not

complete an integer number of rotations in one revolution of the orbit. Finally, the
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gravity gradient torques exerted by the Earth and by the Moon are re-introduced,

separately. As displayed in Figure 5.20(a), the action of the Moon alone seems suffi-

cient to replicate a nearly periodic behavior along a small DRO. Along a large DRO,

however, the moment due to the gravity gradient from the Moon appears negligible,

and a nearly periodic solution is obtained by incorporating the Earth action only

(see Figure 5.20(b)). In conclusion, although the resulting dynamics are linked to

an intuitive application of a torque-free solution, relevant modifications of the ini-

tial angular velocity for each DRO trajectory are necessary to establish periodicity

when the free motion is coupled to the CR3BP gravitational field. Such modifications

may be required to compensate significant fluctuations of the angular velocity along

the DRO, ones that are consequent to the gravity gradient exerted by the primaries;

the rotation rate, ω2, is, in fact, constant in an equivalent torque-free environment,

and, therefore, different from the profile that is observed for a gravity gradient driven

motion. Adjustments necessary to transition the torque-free motion to the CR3BP

may be identified using Poincaré mapping and a differential correction algorithm.

Eventually, within the CR3BP gravitational field, the relevance of the Earth or Moon

contribution to this orbit-attitude family of periodic solutions is related to the size of

the DRO.

Considering marginally stable distant retrograde orbits, Poincaré maps are es-

pecially useful to identify rotational profiles that are also characterized –within the

adopted dynamical model– by nearby bounded motions. The presented orbit-attitude

marginally stable solutions appear a simple rotating motion; nonetheless, the initial

conditions to identify such precisely periodic solutions in an orbit-attitude CR3BP

are not necessarily trivial. Poincaré maps, that aid the identification of this elemen-

tary marginally stable response, may also be applied to seek more complex attitude

dynamics. In this investigation, the stability of orbit-attitude reference solutions is

explored in the CR3BP framework; further stability analysis in higher fidelity models

is warranted for practical mission implementations.
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Figure 5.20. Comparison of different force models for elementary
orbit-attitude periodic solutions along DRO orbits.
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Table 5.1. Initial conditions for an orbit-attitude family of solutions
along distant retrograde orbits. The solutions assume an axisymmet-
ric rod-like spacecraft with inertia ratio k = 0.8 in the Earth-Moon
system.

x q1 q2 q3 ω1 ω2 ω3 P s

[ndim] [ndim] [ndim] [ndim] [ndim] [ndim] [days] [ndim] [ndim]

0.814 0.500 0.500 0.500 0.000 -3.768 0.000 13.201 1.000e+00

0.808 -0.503 0.497 0.497 0.000 -3.571 0.000 13.749 1.000e+00

0.801 -0.529 0.469 0.469 0.000 -3.387 0.000 14.313 1.000e+00

0.795 -0.550 0.444 0.444 0.001 -3.227 0.000 14.849 1.000e+00

0.789 -0.566 0.423 0.424 0.003 -3.097 0.000 15.324 1.000e+00

0.784 -0.579 0.407 0.407 0.005 -2.990 0.000 15.742 1.000e+00

0.779 -0.589 0.392 0.393 0.007 -2.897 0.000 16.134 1.000e+00

0.773 -0.599 0.376 0.378 0.009 -2.808 0.000 16.534 1.000e+00

0.768 -0.610 0.358 0.360 0.010 -2.715 0.000 16.982 1.000e+00

0.760 -0.624 0.333 0.336 0.012 -2.611 0.000 17.524 1.000e+00

0.750 -0.642 0.297 0.301 0.013 -2.491 0.000 18.217 1.000e+00

0.736 -0.663 0.247 0.250 0.012 -2.358 0.000 19.098 1.005e+00

0.718 -0.684 0.177 0.180 0.009 -2.221 0.000 20.182 1.004e+00

0.693 -0.701 0.090 0.091 0.003 -2.096 0.000 21.446 1.000e+00

0.658 -0.707 -0.013 -0.015 -0.007 -2.006 0.000 22.831 1.000e+00
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6. BOUNDED LIBRATIONS: IDENTIFICATION OF

ORBIT-ATTITUDE PERIODIC SOLUTIONS BY GRID

SEARCH

6.1 Overview

For certain applications, the systematic variation of some mission parameters

within a specified range may also prove useful to the identification of orbit-attitude

periodic solutions. In the context of this work, a systematic exploration of the param-

eter space is referred as a grid search. During the implementation of a grid search, the

motion is integrated for each combination of the selected parameters; next, quantities

representative of the solution boundedness (e.g. a maximum values for selected Euler

angles) are recorded for each propagation. In general, the initial attitude conditions

are fixed and remain constant throughout the campaign of simulations. Eventually,

the quantities selected to describe the dynamical behavior are plotted against the grid

of configuration combinations; in the resulting map, regions in term of the selected

parameters, emerge in connection to bounded responses on the sample integration

time. This approach is mostly beneficial for the identification of periodic solutions as

function of some mission variables for a given initial attitude configuration.

To demonstrate the application of grid search maps for the exploration of bounded

dynamics, a representative scenario is constructed using L1 and L2 orbits. These fam-

ilies display a quasi-linear orbital response in the proximity of the equilibrium point;

however, far from the equilibrium or libration point, the trajectories evolve under

the effects of the fully nonlinear dynamics. Considering these orbits, that are well-

understood in terms of orbital dynamics, a grid search approach is implemented as

a way to deliver a global portrait of the rotational motions, without limiting the dy-

namical region of interest or considering specific point solutions. Bounded responses
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are sought via a grid of configurations that describes variation of the reference orbit

and the spacecraft geometry.

Initially, the reference orbit and the spacecraft model are defined. The orbit is

selected among the members of the L1 or L2 family, some of which are displayed in

Figure 6.1. The L1 family spans an amplitude Ay (maximum displacement in the

y direction over the single orbit) from 12694 km to 332644 km, while the L2 family

extends from 11889 km to 181648 km in the Ay direction. Alternatively, the L1 family

covers a range in orbital period from 11.77 days to 31.72 days; the L2 family of orbits

ranges from 14.69 days to 26.49 days. The spacecraft model is represented by three
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Figure 6.1. Lyapunov families about the equilibrium point L1 and L2.

inertia moments in the principal body directions, written as

k1 =
I3 − I2
I1

(6.1)

k2 =
I1 − I3
I2

(6.2)

k3 =
I2 − I1
I3

, (6.3)

where I1, I2, I3 are the moments of inertia in the body b̂1, b̂2, and b̂3 directions,

respectively. By definition, any inertia ratio ki cannot be greater than 1 or smaller
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than -1. The inertia ratios, ki, control the rotational dynamics regardless of the body

shape, and the outcome is independent of the actual physical geometry of the space-

craft. However, to facilitate visualizing the physical implications of ki, the spacecraft

is assumed, without limiting the results, to be a rectangular plate lying in the orbital

plane of the primaries. The plate possesses a uniform distribution of mass and the

b̂-frame is attached to the center of mass of the structure. The sides of the rectangle

are aligned with the coordinates axes of the b̂-frame. Thus, the b̂-frame also represents

the principal inertia axes. Given this configuration, k3 = 1 represents a rod aligned

along b̂1 (the b̂2 dimension disappears), k3 = −1 represents a rod aligned along b̂2

(the b̂1 dimension disappears) and k3 = 0 denotes a square plate. Varying the value

of k3 from 0 to 1, or −1, continuously stretches the initial square to a rectangle and

eventually to a rod.

Next, the initial conditions and the grid search map are specified. The spacecraft

is located on the line through P1 and P2 (x-axis of rotating frame) at the initial time.

For both L1 and L2 Lyapunov orbits, the vehicle starts on the left side of the equilib-

rium point, while the b̂-frame is aligned with the CR3BP rotating frame. At t = 0, the

body also appears to possess no initial angular velocity when observed in the rotating

frame. Such initial conditions yield planar dynamics, as the displacements and the

rotations of the vehicle will only occur in the orbital plane of the attracting bodies.

In such a case, assuming the b̂-frame to be aligned with the body principal directions,

only the inertia ratio k3 defined in eq. (6.3) (rather than the entire inertia tensor)

is required to describe the rigid body distribution of mass. Maintaining fixed the

initial conditions, different simulations are completed by varying the reference orbit

along the members of the family and by testing different spacecraft topologies via the

variation of k3 within the range [−1, 1]. In a set of infinite many combinations, this

specific set of initial conditions is preferred because the principal axis of minimum

inertia (for k3 > 0) is initially aligned with Earth-Moon line, which would represent

a stable configuration if the spacecraft were to be artificially maintained along the

same line. An increment of the initial pitch angle (defined as the angle between the



138

b̂1 and the x positive direction of the rotating frame), currently φ(t=0) = 0 deg,

would more likely trigger a diverging response. Similarly, as the spacecraft moves

along the orbit, the vehicles crosses the lunar neighborhood, which appears as a more

sensitive dynamical environment. Maintaining fixed the initial states, a large num-

ber of simulations are completed by varying the body shape (k3) and the reference

Lyapunov orbit. Since each Lyapunov orbit is uniquely represented by its amplitude

in the y direction of the rotating frame (Ay), the results are represented in terms of

a Ay versus k3 map. In this context, a grid search map essentially is a visual display

of regions where the orientation remains aligned with respect to the CR3BP rotating

frame and, in contrast, regions where the orientation is changing relative to such a

frame. Specifically, in planar dynamics, the pitch angle φ is the only angle neces-

sary to describe the spacecraft attitude. Thus, the attitude maps reflect the time

history for φ over one or more revolutions. On the map, the maximum pitch angle

in the orientation history is reported by colors coding; a cut-off might be applied for

a maximum value over an arbitrary threshold. For brevity, the grid search approach

is first presented on this simple representative scenario, nonetheless, other, possibly

more complex, configurations may also be explored via systematic analysis of the

system parameters. For example, the application of a grid search approach to a more

complex scenario is demonstrated later in this chapter, aiding the identification of

orbit-attitude periodic solutions for a spacecraft travelling along three-dimensional

halo orbits and involving the mapping of rotations about three different axes.

6.2 Regions of Bounded Motion in Grid Search Maps for L1 Lyapunov

Orbits

Among the two Lyapunov families considered, the first map to be produced ex-

plores the planar Lyapunov orbits about L1. Figure 6.2 represents the global response

in φ, over one revolution, for each Lyapunov reference orbit.
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Considering the map in Figure 6.2, areas in terms of orbit amplitude, Ay, and

inertia ratio, k3 are colored differently. Darker coloured regions correspond to condi-

tions of motion where the body frame stays closely aligned with the rotating frame of

the CR3BP, over one revolution. The darkest color corresponds to a rotation relative

to the initial conditions of 0 deg (φ = 0 deg for all the simulation time). However,

a vehicle with fixed orientation relative to the r̂-frame is rotating about 13 deg/day

in the Earth-Moon system relative to an inertial observer, such as the î-frame. For

instance, over a Lyapunov orbit with period of 11 days, a spacecraft which main-

tains a fixed orientation in the r̂-frame, actually undergoes a rotation of 143 deg per

revolution as observed from the î-frame. Therefore, dark areas predict a bounded re-

sponse in the attitude as observed relative to the CR3BP rotating frame. Conversely,

lighter areas are regions where the spacecraft orientation, in terms of pitch angle, is

changing significantly relative to the CR3BP rotating frame. The lightest color on

the map highlights angles greater than 90 deg relative to the initial orientation over

one revolution. The color-code, therefore, is employed to rapidly identify regions, in

terms of the grid search parameters, that result into bounded behaviors, accordingly

to the map definition.

From the map in Figure 6.2, three clear regions of bounded responses over one

orbit period appear; the expression “stable” is employed for a bounded response in

the pitch angle φ as measured relative to the r̂-frame. Thus, a first “stable” zone is

the vertical band centered around k3 = 0. For k3 = 0 the spacecraft is a perfect square

and the gravitational torque (at the second order approximation) is zero, supporting

the “stability” of this region. A second region of bounded motions is the dark band

near Ay = 0 km and k3 > 0 (the bottom-right part of the plot); this region corre-

sponds to the dynamical region investigated by Wong, Patil and Misra in [12], who

examine quasi-linear orbits as a reference path. On a quasi-linear Lyapunov orbit,

the oscillations of the pitch angle have limited amplitude as long as the minor inertia

axis is initially aligned with the line through the primaries; in the given kinematic

framework, that orientation corresponds to a positive k3 value. Figure 6.3 shows a
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Figure 6.2. Maximum response in φ (precession relative to the x-axis
of the rotating frame) across the L1 Lyapunov family (Earth-Moon
System) over one revolution for different inertia ratios.

sample of quasi-linear Lyapunov orbits and the correspondent pitch angle solution.

For the sake of completeness, a resonant condition in k3 does exist in this motion

regime [12]. Nonetheless, the amplitude of the oscillations grows quite slowly, such

that the increment is not noticeable over one-period in a map and this particular re-

gion appears as “stable”. As first observed by Knutson in [17], a completely opposite

behavior arises when nonlinearities in the orbital motion are incorporated, i.e., when

the orbital amplitude increases. This behavior corresponds to the lightest area on

the right side of the map, that denotes an attitude history diverging from the initial

orientation. As discussed by Guzzetti et al. [15, 16], the transition between the two

regimes can be triggered as function of the orbit size as well as the body topology,

but no specific characterization of the transition was previously provided. Moreover,



141

it was postulated in [15,16] that it was not possible to naturally maintain the initial

alignment of the body frame relative to the rotating frame over large Lyapunov orbits

for elongated structures. The map confirms the existence of such a transition and

also better characterizes the phenomena. A clear picture of the dynamics was not

necessarily apparent when only considering specific test cases, as accomplished in the

previous investigations.

3 3.2 3.4 3.6 3.8 4

x 10
5

−2

−1

0

1

2

x 10
4

x [km]

y
 [
k
m

]

 

 

Ay = 12690 km

Ay = 15010 km

Ay = 17270 km

Ay = 19480 km

Moon

(a) Set of small L1 planar Lyapunov orbits

(Earth-Moon system).

0 0.2 0.4 0.6 0.8 1

−20

0

20

40

60

φ
 [
d
e
g
]

rev [ndim]

 

 

Ay = 12690 km 

Ay = 15010 km 

Ay = 17270 km

Ay = 19480 km

(b) Precession angle response.

Figure 6.3. Orbital and attitude response in the quasi-linear region
(k3 = 0.6) over one revolution. Courtesy of Knutson [20].

New information also emerges from the map in Figure 6.2. First, the shift from

one regime to the other appears smooth. The smoothness of the transition suggests

that small uncertainties in the investigated parameters do not lead to a drastic and

sudden change in the attitude behavior. Second, quite unexpectedly, a third dark

slightly diagonal band of small librations emerges from the map for a narrow set

of Lyapunov orbits (near amplitudes Ay ≈ 1.1 × 106 km). Even in certain large

reference orbits, spacecraft with specified inertia ratios, which lie on the dark line,

remain relatively stable in orientation with respect to the CR3BP rotating frame. As

visible on the map (light areas), the pitch response for elongated bodies (|k3| > 0.3)

along large Lyapunov orbits is generally unstable; however, the dark regions offer

bounded solutions in a truly-nonlinear orbital dynamics model for a fairly wide range
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of k3 values. Moreover, negative as well as positive values of k3 are included; this

observation implies that the spacecraft could be stretched in both the coordinate

directions relative to the b̂-frame and small rotations might still exist. Beyond the

horizontal dark band, the spacecraft always rotates more than 90 deg from the initial

condition, if it possesses a geometry sufficiently extended in the b̂2 direction, which is

the direction initially orthogonal to the line through P1-P2. Different space structures,

such as deep space gateway facilities or astronomical observatories [86], are proposed

for flight in the vicinity of the Lagrangian points. The mass distribution of such

architectures is unlikely axisymmetrical in the orbiting plan, yielding an inertia ratio

k3 certainly not zero. Such space structures or long-term facilities or habitats would

be likely similar to those already flying near Earth, such as the International Space

Station (k3 ≈ 0.2, [87]) or the Hubble Space Telescope (k3 ≈ 0.6∗).

The orbits involved in the horizontal “stable” zone aboutAy ≈ 1.1×106 km (visible

in the map in Figure 6.2) are depicted in Figure 6.4(a): they span an amplitude range

Ay from 101108 km to 114621 km, one that corresponds to an interval from 17.57 days

to 19.04 days in terms of orbital period. It is worth noting that this span of orbital

periods is located in the neighbourhood of the 2/3 resonant ratio of the lunar period;

a p/q resonant ratio implies that the spacecraft accomplishes q revolutions along the

reference orbit (in the r̂-frame) in the same time interval that the Moon requires to

complete p orbits about the Earth (in the î-frame). In such a resonance, the Earth,

the Moon and the spacecraft return to the same inertial configuration after p lunar

periods. Also, across this region an inversion of the direction of pitch rotation occurs

after the close approach to the Moon at 0.5 revolutions. Consider the example from

Figure 6.4(b) (which corresponds to k3 = 0.6); a vehicle transiting along the smaller

orbit in this amplitude region eventually rotates counter-clockwise (as observed in

the rotating frame) after departing the x-axis at the crossing closest to the Moon.

Conversely, the ultimate direction of rotation is clockwise, when the spacecraft is

moving in the larger orbit in Figure 6.4(b). Between these opposite behaviours, the

1http://www.pha.jhu.edu/groups/hst10x, last visited May 2014
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pitch dynamics seem to transition smoothly from one limit to the other, generating

the set of bounded responses that characterize this zone. Also, the nature of the

“stable” response in this region is highly nonlinear and significantly differs from what

it is observed in the quasi-linear zone (as seen in Figure 6.3).

1 2 3 4 5

x 10
5

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

5

x [km]

y
 [
k
m

]

 

 

Ay=101108km

Ay=105619km

Ay=110118km

Ay=114621km

Moon

(a) Set of large L1 planar Lyapunov or-

bits (Earth-Moon System).

0 0.2 0.4 0.6 0.8 1

−80

−60

−40

−20

0

20

40

60

80

rev [ndim]

φ
 [

d
e

g
]

 

 
Ay=101108km

Ay=105619km

Ay=110118km

Ay=114621km

(b) Precession angle response.

Figure 6.4. Orbital and attitude response in the dark horizontal band
region (k3 = 0.6) over one revolution. Courtesy of Knutson [20].

6.3 Additional Grid Search Maps for L1 Lyapunov and L2 Lyapunov Or-

bits

Thus far, regions of bounded motions emerge on the grid search map for the

natural attitude dynamics across the L1 family after one revolution along each orbit.

Regions of bounded motion may, however, also exist for different observation windows

or reference orbits.

For example, while the focus is maintained on the L1 planar Lyapunov family, the

observation time is increased to 2 revolutions. No correction to the orbit or attitude

is applied over the 2 revs. As a result, the attitude map in Figure 6.5 emerges.

Compared to the previous plot in Figure 6.2, an overall reduction of the dark “stable”
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areas is perceived; specifically, the central horizontal band is disappearing and the

bottom-right region is squeezed by an inflating unstable light zone. The vanishing of

the horizontal band is more pronounced on the left side of the map, which corresponds

to k3 < 0; such that this region is now nearby completely (besides a minimal trace of

the horizontal band) dominated by unbounded responses. Additionally, the transition

to unbounded librations along the edge of the central vertical band becomes sharper.

Given the current framework for the analysis, a structure mainly elongated in the b̂2

direction necessarily undergoes a natural rotation greater than 90 deg over a longer

period. Conversely, spacecraft whose major extension is identified by b̂1 (i.e., k3 >

0) still preserve some bounded solutions. However, it is noted that the bottom-

right region, related to the pitch responses addressed by Wong, Patil and Misra [12],

significantly reduces in size and alters in outline. The linear behaviour in Wong

et al. [12] predicts an oscillatory response with limited amplitude, unless k3 equals a

critical value that triggers a resonance between the orbital frequency and the attitude

librations. In a fully nonlinear regime, these predicted solutions hold true up to a

certain amplitude of the quasi-linear orbits, as visible in Figure 6.2. Increasing the

integration time reduces the maximum orbit amplitude that guarantees a rotation

less that 90 deg over the observation interval. In addition, the region in the vicinity

of the linear resonant k3 value (i.e., k3 ' 0.36 in the Earth-Moon system) appears

more unstable than observed over the time window of one revolution, as deducible

from the light bulge that penetrates in the bottom-right dark area of Figure 6.5, such

that the latter zone almost splits in two regions.

Not only the integration time but the orbital reference corresponding to the

map can also be changed. Thus, the same procedure and the same structure of the

initial conditions yields similar depictions for the L2 family. In this case, the family

spans an amplitude range in Ay from 11889 km to 181648 km, which corresponds

to a set of orbital periods from 14.69 days to 26.49 days. The resulting attitude

map appears in Figure 6.6 for one revolution. Under the set of initial conditions

investigated, there is no clear evidence of a central “stable” horizontal band in the
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Figure 6.5. Maximum response in φ (precession relative to the x-axis
of the rotating frame) across the L1 Lyapunov family (Earth-Moon
System) over two revolutions for different inertia ratios.

L2 family; a more predictable portrait comes to light. This map is characterized only

by the central vertical band associated with a value k3 = 0 and the bottom-right

region, corresponding to the quasi-linear behavior; however, the latter area covers a

larger extension than its counterpart in the L1 map. Both the attractors P1 and P2

are located on the same side relative to the orbit, thus, the dynamical behavior more

closely resembles a single attractor regime. Additionally, extending the integration to

2 revolutions, new features emerge, as displayed in Figure 6.7. Over the longer period,

the bottom-right area associated with the quasi-linear motion contracts, but a small

double-spike-like region remains for larger Ay amplitudes. The overall double-spike-

like region extends approximately from Ay = 26800 km to Ay = 43800 km, which

locates this zone in the neighbourhood of the first bifurcation of the L2 Lyapunov

family (at Ay ' 34140 km). A similar outcome is also observed in the L1 Lyapunov
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family; a double-spike-like region can be located within Ay = 28900 km and Ay =

18900 km on the map of Figure 6.5.

Figure 6.6. Maximum response in φ (precession relative to the x-axis
of the rotating frame) across the L2 Lyapunov family (Earth-Moon
System) over one revolution for different inertia ratios.

Grid search algorithms are a straightforward approach that may be employed to

investigate bounded solutions for a wide panorama of applications, including motions

altered by perturbations to the reference orbit [19] or to the initial orientation of the

vehicle [20], as well as spinning satellite dynamics [19].

6.4 A Relationship between a Region of Bounded Motion and Orbit-

Attitude Periodic Solutions for L1 Lyapunov Orbits

To deepen the insight into the dynamical behavior associated to regions of bounded

response, that may emerge on a grid search map, further explorations are conducted.
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Figure 6.7. Maximum response in φ (precession relative to the x-axis
of the rotating frame) across the L2 Lyapunov family (Earth-Moon
System) over two revolutions for different inertia ratios.

Accordingly, the analysis is initiated considering L1 Lyapunov orbits, and a grid

search map that is consistent with Figure 6.2. Observing that figure, the horizontal

dark band on the map, one that reflects small librations relative to the rotating frame

over one revolution of the nominal path, is investigated.

Regions of bounded motions in a grid search map, reflect a transition of the

attitude dynamics that is may be linked to a transition of the orbital regime. The

eigenvalue analysis along the family describes some of the mutations for the orbital

dynamics nearby a reference orbit, ones that may correspond to the appearance of

“stable” regions on the grid search map. Considering the L1 Lyapunov family, for each

member of this family of periodic orbits, it is possible to compute the monodromy

matrix and the associated eigenvalues. Given the symplecticity of the monodromy

matrix, the eigenvalues occur in reciprocal pairs: one real pair is associated with the
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existence of planar manifolds, one unitary pair is associated with the periodic nature

of the orbit and the existence of a family, and one pair corresponds to the out-of-

plane dynamics. For planar Lyapunov orbits, the latter pair determines the changes

of the eigenstructure throughout the family. Such mutations are usually investigated

because they correspond to orbital bifurcations, but the attitude behaviour may also

relate to the eigenstructure. As apparent in Figure 6.8, the orbits forming the “stable”

horizontal band in the attitude map displayed in Figure 6.2 corresponds to the vicinity

of the second of the Lyapunov family bifurcations. Specifically, the system mutates

from hyperbolic to non-hyperbolic as the considered pair of eigenvalues shifts from the

real axis to the unitary circle in the Argand-Gauss diagram. It is noted that, also, the

quasi-linear “stable” region (terminating roughly at Ay ≈ 27890 km) encompasses one

earlier bifurcation along the family (i.e., the first one at Ay ≈ 21640 km). Generally

speaking, bifurcations indicate zones where the system is subject to a change of the

dynamical regime, thus, it is reasonable that this transition may be reflected in both

the orbital and attitude motions. Additional investigations are, however, necessary

to completely understand this mechanism.
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Figure 6.8. Out-of-plane eigenvalues of the L1 planar Lyapunov family.
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Selecting solutions within the horizontal “stable” band in Figure 6.2 for exami-

nation, the pitch angle time profile may be compared with known families of orbit-

attitude periodic solution. Among the available orbit-attitude periodic motions, some

of the curves within the family in Figure 6.9, most resemble the dynamics rendered

by the horizontal “stable” region. The family in Figure 6.9 is generated for a satellite

with inertia ratio k3 = 0.8 that travels along L1 Lyapunov orbit. Additionally, the

pitch angle is zero at the crossings of the x-axis of the CR3BP rotating frame, which

is consistent with the initial condition for the grid search map. Observing the pitch

angle time response in Figure 6.9(a), a resemblance of the red curves to the solutions

in Figure 6.4(b) is noted. Although Figure 6.4 and Figure 6.9(a) actually display the

pitch dynamics for a different mass distribution, k3 = 0.6 and k3 = 0.8, respectively,

the existing similarities indicate a possible link between a subset of orbit-attitude

periodic solutions and the materialization of “stable” regions on a grid search map.

A correspondence is also revealed in the angular velocity at the crossing of the x-axis

of the rotating frame in the positive y direction. By definition, such angular velocity

is initially equal to one for motions associated with the grid search map; interestingly,

moving across the periodic members of orbit-attitude family computed for k3 = 0.8,

some solutions also display an angular velocity proximate to one at the positive x-axis

crossing. As depicted in Figure 6.9(b), a unitary angular velocity at the crossing is

encountered along a L1 Lyapunov orbit with period P ≈ 18 days. A L1 Lyapunov

orbit with period P ≈ 18 days possesses an amplitude Ay ≈ 1.1 × 106 km, which

matches the location for the horizontal “stable” region in Figure 6.2. Orbit-attitude

periodic solutions nearby a period P ≈ 18 days mostly resemble the pitch profile

that is associated with the horizontal “stable” region (red curves in Figure 6.9(a)).

Additionally, these solutions are consistent with the definition of the grid search and

consistently position within the horizontal dark band on the map.

There is strong indication that the dynamics within one of the “stable” region on

the L1 Lyapunov grid search map is, in fact, representative of the dynamical neigh-

borhood for a set of orbit-attitude periodic solutions throughout a range of spacecraft
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Figure 6.9. Family of orbit-attitude periodic solutions for a spacecraft
with k3 = 0.8 along L1 Lyapunov orbit.

mass distributions. To verify such hypothesis, a set of solutions is computed and over-

laid on the grid search map. First, take an initial periodic solution, e.g., for k3 = 0.8,

that locates within the “stable” region of interest, and thet is consistent with the

grid search definition. Then, step onto a nearby motion by a small modification of

the mass distribution, and re-converge the solution to be precisely periodic via, for

instance, differential correction. By reiterating this process, which is a simple im-

plementation of a continuation algorithm, a family of orbit-attitude solutions across

different spacecraft mass configurations, represented by k3, is obtained. The time

evolution for the pitch angle for representative members of this family is portrayed

in Figure 6.10(a). During the continuation process the reference orbit, as well as the

angular velocity at the positive crossing of the x-axis, are free to vary; the orienta-

tion of the vehicle at the crossing is however constrained to be consistent with the

grid search map. Figure 6.10(b) displays that, the angular velocity at the crossing

of the x-axis of the CR3BP rotating frame (in positive y direction) only necessitates

minimal adjustments during the continuation of the solution and closely align with
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the definition of the grid search. The family of orbit-attitude behviors obtained for

different values of k3 can, therefore, be overlaid to the grid search map by plotting

the orbit amplitude, Ay, for representative members, as in Figure 6.11. The family

of orbit-attitude periodic responses that is initiated at k3 = 0.8 (indicated by the

arrow in Figure 6.11) and continued for different inertia ratios, well aligns with the

horizontal “stable” band that emerges in the map at Ay ≈ 1.1 × 106 km, for the

interval of solutions computed. Thus, the horizontal region of bounded response at

Ay ≈ 1.1×106 km appears to be a reflection of a set of orbit-attitude periodic motions

throughout different spacecraft mass configurations.
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Figure 6.10. Continuation for different values for k3.

The grid search approach is initially applied to the identification of system pa-

rameters that produce bounded solutions for some fixed initial conditions. Exploring

the orbit-attitude dynamics along L1 Lyapunov orbit, bounded responses emerge on

the grid search map for non-intuitive regions in terms of orbit amplitude and inertia

ratio. The further analysis for one of those regions, reveals that, the appearance of
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Figure 6.11. Comparison of the horizontal “stable” region with a
family of orbit-attitude periodic solutions.

bounded motions on the grid search map may be directly related to the existence

nearby of an orbit-attitude family of periodic solutions.

6.5 Application to Three-Dimensional Reference L1 Halo Orbits

A grid search approach may also be employed in more complex scenarios, e.g.,

the dynamics along a three-dimensional reference orbit, to identify a set of bounded

solutions that is possibly linked to orbit-attitude periodic behaviors.

Suppose to seek a precise initial guess for an orbit-attitude periodic solution us-

ing L1 northern halo orbits in the Earth-Moon system as reference. Accordingly to

the analysis presented by Wong et al. [12], bounded, oscillatory solutions are easily

identified by selecting small linear halo orbits as reference path. Later results from

Knutson [18], display, however, that the motion may be, in general, less oscillatory
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and less predictable when larger halo trajectory and nonlinear dynamics are consid-

ered. Within a highly sensitive nonlinear regime, the capability to identify bounded,

possibly periodic solutions, is valuable. A grid search strategy is implemented to re-

cover such solutions. Take a spacecraft that is initially located at the intersection of a

halo orbit with the xz-plane as defined in the CR3BP rotating frame. Only consider

the intersection where the velocity relative to the CR3BP rotating frame is directed

toward the positive y-axis. The initial orientation of the vehicle is such that the body

axes are aligned with the axes of the rotating frame, and there exist a null angular

velocity relative to an observer fixed in the CR3BP rotating frame. Next, the motion

is propagated for one period of the reference orbit, considering different combinations

of halo orbit and spacecraft mass distribution. Three parameters generally define the

vehicle inertia properties, i.e. k1, k2, and k3 defined in equations (6.1)-(6.3); however,

in this discussion, only the inertia ratio k1 is varied, with a range [−1, 1]. A body fixed

3-2-1 (θ, ϕ, ψ) Euler angle sequence is utilized to describe the spacecraft orientation

relative to the CR3BP rotating frame. In particular, the maximum values of these

three angles are recorded for each integration and plotted on separate grid search

maps, as in Figure 6.12. The resulting representation is functional to the identifica-

tion of a pair of northern halo orbit, denoted by the orbit amplitude in the z direction,

Az, and inertia ratio, k1, that enables the vehicle to maintain the alignment of the

body axes with the CR3BP rotating frame over one revolution of the reference path.

Recall that, the Euler angles are zero at the initial time, which is consistent with the

body and rotating axes aligned in the same directions. Observing Figure 6.12, darker

areas indicate regions where the specific Euler angle is small (black denoting a zero

degree angle), whereas lightest colored areas reflect an angle that exceed an upper

threshold of 180 deg. Darker regions that systematically emerge on all of the Euler

angle maps, correlate to a configuration in terms of reference orbit and inertia ratio

where, for the pre-determined set of initial conditions, the body frame stays closely

aligned with the CR3BP rotating frame, for one revolution of the reference trajectory.

Maps, similar to those displayed in Figure 6.12, are also presented by Knutson [20].
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One of the areas where the spacecraft attitude changes negligibly with respect

to the CR3BP rotating observer is marked by an arrow on the map for each angle

in Figures 6.12(a)-6.12(c). As discussed in the previous section, a zone of bounded

oscillations may reflect the existence of a nearby orbit-attitude periodic solution. In

fact, selecting an initial guess within the darker region, as indicated by the arrow in

Figures 6.12(a)-6.12(c), an orbit-attitude family of periodic behaviors is identified.

The starting periodic solution is computed for a reference northern halo orbit with

amplitude Az ≈ 70550 km and a spacecraft with inertia ratio k1 = 0.428: a pair that

lies within the bounded oscillatory zone. The map in Figure 6.12 applies, in general,

to an asymmetric vehicle, but, for simplicity, the orbit-attitude solution is first con-

structed for a disk-like spacecraft. Then, by stepping onto nearby periodic responses

via a continuation process, a family of periodic orbit-attitude solutions along three-

dimensional halo orbits is also produced, as displayed in Figure 6.13. Each attitude

periodic motion in Figure 6.13 corresponds to a different reference path, which is

portrayed in Figure 6.14. Observing Figure 6.14, the family of orbit-attitude periodic

solutions exist over a large range of halo orbits. Assuming that the spacecraft is

initially located along the halo orbit at the crossing of the xz-plane in the positive y

direction of the CR3BP frame, initial conditions that produce an approximately peri-

odic motion are given in Table 6.1. Truncation errors for the values in this table, may

be adjusted with a differential corrector to target a precisely periodic orbit-attitude

solution. In Table 6.1, the reference orbit is identified by the orbital period and the

x coordinate of the intersection to the xz-plane in the CR3BP rotating frame.

It is generally challenging to identify ordered and predictable behavior in com-

plex dynamical scenarios, such as the coupled orbit-attitude motion along three-

dimensional halo orbits. In this context, a grid search map for bounded motions is an

effective strategy to identify an initial guess for fundamental coupled periodic solu-

tions, that are, later, precisely computed via differential correction and a continuation

process.
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(a) θ angle. (b) ϕ angle.

(c) ψ angle.

Figure 6.12. Maximum spacecraft orientation change relative to the
CR3BP rotating frame in terms of a body fixed 3-2-1 Euler angles (θ,
ϕ, ψ), across the L1 northern halo family (Earth-Moon System) over
one revolution for different inertia ratios.
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Figure 6.13. Family of orbit-attitude periodic solutions along L1
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Table 6.1. Initial conditions for an orbit-attitude family of solutions
along northern halo orbits. The solutions assume an axisymmetric
disk-like spacecraft with inertia ratio k1 = 0.428 in the Earth-Moon
system.

x q1 q2 q3 ω1 ω2 ω3 P s

[ndim] [ndim] [ndim] [ndim] [ndim] [ndim] [days] [ndim] [ndim]

0.859 0.000 -0.021 -0.010 -0.018 0.000 0.983 10.501 4.879e+00

0.858 0.001 -0.033 -0.020 -0.006 0.000 0.983 10.537 4.753e+00

0.858 0.001 -0.044 -0.030 0.005 0.000 0.982 10.570 4.639e+00

0.857 0.002 -0.053 -0.040 0.014 0.001 0.981 10.599 4.538e+00

0.857 0.003 -0.062 -0.040 0.023 0.002 0.980 10.627 4.439e+00

0.856 0.001 -0.084 -0.009 0.044 0.001 0.978 10.698 4.196e+00

0.855 0.001 -0.109 -0.009 0.069 0.001 0.976 10.783 3.913e+00

0.853 0.001 -0.134 -0.009 0.094 0.002 0.973 10.871 3.627e+00

0.852 0.001 -0.159 -0.009 0.118 0.002 0.970 10.964 3.345e+00

0.850 0.002 -0.184 -0.009 0.143 0.003 0.967 11.060 3.070e+00

0.849 0.002 -0.209 -0.009 0.167 0.003 0.963 11.161 2.809e+00

0.847 0.002 -0.234 -0.009 0.191 0.004 0.960 11.269 2.572e+00

0.846 0.003 -0.259 -0.009 0.214 0.004 0.957 11.386 2.372e+00

0.844 0.276 -0.066 0.928 0.234 0.005 0.955 11.528 2.236e+00

0.840 0.302 -0.065 0.926 0.247 0.005 0.957 11.725 2.207e+00

0.836 0.328 -0.062 0.923 0.244 0.004 0.968 11.963 2.179e+00

0.831 0.354 -0.063 0.918 0.236 0.001 0.986 12.095 1.661e+00

0.827 0.377 -0.072 0.909 0.240 -0.003 1.004 12.084 1.428e+00

0.824 0.400 -0.085 0.898 0.261 -0.008 1.019 12.004 1.689e+00
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7. SOLAR SAILING: MANEUVERING STRATEGIES

7.1 Overview

The development of a coupled orbit-attitude dynamics framework for mission de-

sign in the CR3BP may also incorporate artificial devices that necessarily link the

spacecraft orbital and attitude motions. Through the application of such means, the

attitude configuration may be potentially employed in a control scheme to direct the

orbital motion of the spacecraft. The ability to steer the orbital motion may be, then,

leveraged to maintain the vehicle nearby a given reference orbit. Presently, solar sails

are likely the most promising, as well as the most advanced, among the orbit-attitude

coupling devices.

Many studies have already demonstrated that, a sailcraft trajectory may be ef-

fectively controlled by reorienting a sail structure. However, few investigations have

directly incorporated the attitude dynamics of the solar sail into the initial mission

design process. The attitude history is usually imposed afterwards, as it results from

the solution for the trajectory design problem. This approach has some limitations,

in general: fast turning rates may result, ones that exceed feasible limit; the control

authority required from the attitude control devices may be impractical to implement;

the sail orientation that is computed by the path control algorithm may clash with

some payload pointing constraints, or other similar mission requirements. Currently,

some of the principal challenges for the implementation of a solar sail mission reside,

in fact, in constraints on the sail attitude dynamics [88]. Thus, including an orbit-

attitude model into the early stages of the design process may aid to mitigate such

difficulties. Once the attitude dynamics are also considered, incorporating certain

pointing or turn rate constraints into the trajectory design process may become more

effective.
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Different control strategies that utilize the vehicle orientation as an instrument

to guide the orbital path are developed, while, envisioning their particular applica-

tion to solar sailing. A well-known approach to this problem, denoted as Turn and

Hold (TnH), assumes that, the spacecraft attitude is artificially fixed along different

segments of the path. The orbit is, then, controlled by introducing a finite series of

vehicle re-orientations at the locations where the various trajectory arcs connect. In a

TnH approach, the pointing direction of the spacecraft may be hold constant relative

to an arbitrary reference, including the solar rays direction or an inertial observer.

The attitude dynamics, however, is not directly considered during the construction

of the controlled trajectory. As the orientation of the spacecraft is artificially fixed

within a TnH design, active control of the body rotations is necessary to follow the

nominal orbital path, when the natural attitude dynamics are incorporated. Instan-

taneous re-orientations of the vehicle, that emerge in a TnH solution, also require

additional transformation into feasible attitude maneuvers. A possible modification

of the TnH strategy, is the inclusion of a spacecraft attitude dynamics model along

the trajectory, while maintaining the capability to instantaneously change the vehicle

orientation at certain locations. A control strategy that seeks a direct solution for

the coupled orbit-attitude dynamics is a further option. To this end, the attitude

dynamics are fully incorporated into the model and the orientation of the spacecraft

necessary to execute a certain orbital path is obtained by the application of external

control moments, which become the design variables. Then, if a solution exists, it is

continuous in both the orbital and attitude state variables, and instantaneous body

rotations are no longer necessary. Similarly, an additional step to derive the control

moments from the spacecraft orientation history is not required, as the moments are

already available for this type of coupled orbit-attitude control scheme. The orbit-

attitude design approach may be supplementarily elaborated with the inclusion of

a dynamical model for the devices that generate the control torque. Accordingly,

the actuator inputs may be employed as design variables to converge the trajectory,

instead a the generic expression for the control torque. Note that, adding complexity
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to the dynamics may negatively impact on the capacity to numerically compute a

solution.

In conclusion, starting from a TnH approach, further modifications are proposed

to incorporate the coupled orbit-attitude dynamics into the design of trajectories that

are guided via the spacecraft orientation, with specific application to solar sailing.

7.2 STM with Input Function

When a control action is incorporated, e.g., one that is employed to guide a solar

sail towards a desired destination, the differential equations describing the dynamics

for the controlled system, may be generally formulated as

ẋ = f(x, t) + g(x,y, t) , (7.1)

where the first term reflects the natural evolution of the motion (equivalent to the

original model, without including the control input) as a function of the state variables

and time only, f(x, t); the second term, is the contribution of the control action,

represented by a vector y, which may also be a function of the state variables and

time, g(x,y, t). The control vector may be, in general, evolve with time, consistently

with a set of ordinary differential equations,

ẏ = h(x,y, t) . (7.2)

The linear variational equations, for both the state and control variables, can be

written as

δẋ =
∂f

∂x

∣∣∣∣
x0(t)

δx+
∂g

∂x

∣∣∣∣
x0(t), y0(t)

δx+
∂g

∂y

∣∣∣∣
x0(t), y0(t)

δy (7.3)

δẏ =
∂h

∂x

∣∣∣∣
x0(t), y0(t)

δx+
∂h

∂y

∣∣∣∣
x0(t), y0(t)

δy , (7.4)

or equivalently, in matrix formδẋ
δẏ

 =

Axx(t) Bxy(t)

Ayx(t) Byy(t)

δx
δy

 , (7.5)
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via the definition of

Axx(t) = Afx + Ayx =
∂f

∂x

∣∣∣∣
x0(t)

+
∂g

∂x

∣∣∣∣
x0(t), y0(t)

, (7.6)

and

Bxy(t) =
∂g

∂y

∣∣∣∣
x0(t), y0(t)

. (7.7)

The sub-matrices Ayx, and Byy similarly represent the partials of h(x,y, t) relative to

the state and control variables, respectively. The partials appearing in Eq.s (7.3) and

(7.4), are typically not constant, as they are evaluated along a time varying reference

solution, x0(t) and y0(t). Corresponding to the system of linear variational equations

(7.3) and (7.4), there exist a state transition matrix,

Φ =

Φxx Ψxy

Φyx Ψyy

 ,

one that is solution of the following differential equations

d

dt

Φxx Ψxy

Φyx Ψyy

 =

Axx(t) Bxy(t)

Ayx(t) Byy(t)

Φxx Ψxy

Φyx Ψyy

 , (7.8)

given Φ(t = 0) = I at the initial time. For a system with nx state variables and ny

control variables, the blocks Axx, and Φxx are nx × nx matrices; the blocks Bxy, and

Φxy are nx × ny matrices; the blocks Ayx, and Φyx are ny × nx; the blocks Ayy, and

Φyy are ny × ny matrices.

The state transition matrix for a system that includes a control action is prepara-

tory, in this discussion, to the development of strategies to direct the path of a solar

sail, or a similar device.

7.3 Turn and Hold Guidance

A Turn and Hold (TnH) strategy is typically based on the formulation of the

control input as a function of the solar sail pointing direction, g = g(x, û, t). The

pointing direction, û(t), is expressed relative to an arbitrarily selected reference frame
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(e.g., the sun-light direction or some inertial axis), and may be coinciding with the

solar sail normal, for a perfectly flat surface. The Turn and Hold model is often

applied to the classical CR3BP, without directly incorporating the attitude motion,

by replacing the generic vectorial function that describes the natural dynamics in Eq.

(7.1), f(x, t), with the set of ordinary differential equations in Eq. (2.45). If the

representation of the CR3BP in Eq. (2.45) is selected, the input function g(x, û, t)

represents the acceleration of the solar sail in nondimensional units, and expressed

in the rotating frame. The solution of the control problem, to target some specific

intermediate or final state, is the vehicle pointing direction, û(t), which is normally

a function of time. For a TnH algorithm, the pointing history, û(t), is assumed as a

discrete series of constant orientations, ûj, that guide the sail along the desired path.

Specifically, divide the controlled path in N − 1 sub-arcs. Each arc is identified by its

initial state xj at time tj, and it’s propagated for a fixed time T = tj+1− tj to a final

state, (xj)
t. Assume that, along every jth-arc, the alignment of the sail is constant

relative to a reference direction (inertial or relative). A trajectory leading a sail to a

desired final state, xd, is computed as the zero of a constraint function,

F =



(xj)
t − xj+1

xN − xd

ûj · ûj − 1

cos(αmax)− ˆ̀
1,j · ûj + η2α,j



Internal continuity, j = 1,..,N-1

Final Target

Normalization, j=1,..,N-1

Maximum incidence angle, j=1,..,N-1

, (7.9)

where, the first set of vectorial constraints describes the continuity between the final

state along the jth-arc and the initial conditions on the next; the second set of

constraints, enforces the final target states. When the pointing of the solar sail is

represented by an unit vector, an additional set of constraint equations is necessary

to guarantee the unitary norm of ûj along each arc, as reflected in the third set of

equations in Eq. (7.9). Finally, in some applications, it may be required to maintain
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the orientation of the sail within a maximum incident angle, αmax, relative to the

Sun-light direction. When a maximum angle is not specified, it is good practice to

select αmax = 90 deg, so that the reflective area of the sail is always facing the Sun.

The fourth set of equations in Eq. (7.9) is adopted to include the maximum incidence

inequality constraint, where ûj is, in fact, the solar sail normal, ˆ̀
1,j denotes the

direction of the Sun-light, and ηα,j is a slack variable. Note that, in the formulation

in Eq. (7.9), a maximum incident angle is only imposed at the beginning of each

arc, thus, does not apply throughout the entire solution. The solution to Eq. (7.9) is

obtained iteratively by updating the vector of the free variables,

ξ =



x2

...

xN

û1

...

ûN−1

ηα,1
...

ηα,N−1



, (7.10)

via a Newton-Raphson method. The implementation of such algorithm requires the

construction of the Jacobian matrix for the constraint vectorial function in Eq. (7.9),

relative to the free variables in Eq. (7.10), which can be written as

DF =
∂F

∂ξ
=


DFxx,n(N−1)×n(N−1) DFxu,n(N−1)×m(N−1) 0n(N−1)×N−1

0N−1×n(N−1) DFuu,N−1×m(N−1) 0N−1×N−1

0N−1×n(N−1) DFηu,N−1×m(N−1) DFηη,N−1×N−1

 ,

(7.11)
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where the dimensions of each sub-matrix are given as a function of the number of

state variables, n, the number of control inputs, m, and the number of arcs, N − 1.

The specific expression for the blocks appearing in Eq. (7.11) is

DFxx =



−I

Φxx(t2, t3) −I
. . .

Φxx(tN−1, tN) −I

I


(7.12)

DFxu =


Ψxu(t1, t2)

. . .

Ψxu(tN−1, tN)

0n×m(N−1)

 (7.13)

DFuu =


2ûT1

. . .

2ûTN−1

 (7.14)

DFηu =


−ˆ̀T

1,1

. . .

−ˆ̀T
1,N−1

 (7.15)

DFηη =


2ηα,1

. . .

2ηα,N−1

 , (7.16)

with I being the identity matrix with proper dimension, and utilizing the definition

of the STM block components as in Eq. (7.8) (recall, y = û for this application).

A solution presenting a solar sail pointing that is constant relative to a certain

reference, is computationally convenient, and may be practical for a large number

of application. However, the motion within the TnH model is independent of the

attitude dynamics. The orientation history is afterwards reconstructed by imposing

the control sequence of pointing directions onto the attitude dynamics. A time varying
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control action for the spacecraft rotations is generally necessary to follow a trajectory

that adopts a TnH guidance.

7.3.1 Turn and Hold Guidance with Constant Pointing relative to the

Sun-light Direction in a Sun-Planet System

The pointing direction for the solar sail may be expressed relative to different

reference frames. Details for the TnH formulation are supplied assuming that the

spacecraft orientation is described by a sail normal unit vector, which is expressed in

a frame fixed relatively to the Sun-light direction.

û
ˆ̀

= u1 ˆ̀
1 + u2 ˆ̀

2 + u3 ˆ̀
3 , (7.17)

where the unit vectors for the Sun-light frame are defined relative to the Sun-Planet

CR3BP rotating frame, (x̂,ŷ,ẑ), as

ˆ̀
1 =

d

d
, ˆ̀

2 =
ẑ × ˆ̀

1

|ẑ × ˆ̀
1|

, ˆ̀
3 = ˆ̀

1 × ˆ̀
2 , (7.18)

with ˆ̀
1 denoting the solar radiation direction and d is vector position of the spacecraft

relative to the Sun. The measure numbers, u1, u2 and u3, in Eq. (7.17) essentially

designate the control variables for each arc of the trajectory. Express the Sun-light

direction as function of the instantaneous coordinates of the vehicle in the rotating

frame,

ˆ̀
1 = ˆ̀

1(x, y, z) =
(x+ µ)

d
x̂+

y

d
ŷ +

z

d
ẑ , (7.19)

and define the input function as the nondimensional acceleration induced by the solar

radiation pressure for a flat ideal sail (generally described in Eq. (2.21)),

g(x, û, t) = a
r̂
ss = β

(
1− µ
d2

)
u21


n1

n2

n3

 , (7.20)
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with

n1 = u1
x+ µ

d
− u2

y√
(x+ µ)2 + y2

− u3
z(x+ µ)

d
√

(x+ µ)2 + y2
(7.21)

n2 = u1
y

d
+ u2

x+ µ√
(x+ µ)2 + y2

− u3
zy

d
√

(x+ µ)2 + y2
(7.22)

n3 = u1
z

d
+ u3

√
(x+ µ)2 + y2

d
. (7.23)
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The derivatives of the control function with respect to the position state variables are

gx/x = βu21(1− µ)

[
−2(x+ µ)

d4
n1 +

1

d2
(
u1f1/x(x+ µ, y, z)

−u2f2/x(y, x+ µ)− u3f4/x(x+ µ, y, z)
)]

gx/y = βu21(1− µ)

[
−2y

d4
n1 +

1

d2
(
u1f1/y(x+ µ, y, z)

−u2f2/y(y, x+ µ)− u3f4/y(x+ µ, y, z)
)]

gx/z = βu21(1− µ)

[
−2z

d4
n1 +

1

d2
(
u1f1/z(x+ µ, y, z)

−u2f2/z(y, x+ µ)− u3f4/z(x+ µ, y, z)
)]

gy/x = βu21(1− µ)

[
−2(x+ µ)

d4
n2 +

1

d2
(
u1f1/x(y, x+ µ, z)

−u2f2/x(x+ µ, y)− u3f4/x(y, x+ µ, z)
)]

gy/y = βu21(1− µ)

[
−2y

d4
n2 +

1

d2
(
u1f1/y(y, x+ µ, z)

−u2f2/y(x+ µ, y)− u3f4/y(y, x+ µ, z)
)]

gy/z = βu21(1− µ)

[
−2z

d4
n2 +

1

d2
(
u1f1/z(y, x+ µ, z)

−u2f2/y(x+ µ, z)− u3f4/z(y, x+ µ, z)
)]

gz/x = βu21(1− µ)

[
−2(x+ µ)

d4
n3 +

1

d2
(
u1f1/x(z, x+ µ, y)

−u3f3/x(x+ µ, y, z)
)]

gz/y = βu21(1− µ)

[
−2y

d4
n3 +

1

d2
(
u1f1/y(z, x+ µ, y)

−u3f3/y(x+ µ, y, z)
)]

gz/z = βu21(1− µ)

[
−2z

d4
n3 +

1

d2
(
u1f1/z(z, x+ µ, y)

−u3f3/z(x+ µ, y, z)
)]

,
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with

f1(a, b, c) =
a√

a2 + b2 + c2

f1/a =
1√

a2 + b2 + c2
− a2

(a2 + b2 + c2)
3
2

f1/b = − ab

(a2 + b2 + c2)
3
2

f1/c = − ac

(a2 + b2 + c2)
3
2

f2(a, b, c) =
a√

a2 + b2

f2/a =
1√

a2 + b2
− a2

(a2 + b2)
3
2

f2/b = − ab

(a2 + b2)
3
2

f2/c = 0

f3(a, b, c) =

√
a2 + b2√

a2 + b2 + c2

f3/a =
a(a2 + b2)−

1
2

√
a2 + b2 + c2

− a
√
a2 + b2

(a2 + b2 + c2)
3
2

f3/b =
b(a2 + b2)−

1
2

√
a2 + b2 + c2

− b
√
a2 + b2

(a2 + b2 + c2)
3
2

f3/c = − c
√
a2 + b2

(a2 + b2 + c2)
3
2

f4(a, b, c) =
ac√

a2 + b2 + c2
√
a2 + b2

f3/a =
c√

a2 + b2 + c2
√
a2 + b2

− ca2

(a2 + b2 + c2)
3
2

√
a2 + b2

− ca2

(a2 + b2)
3
2

√
a2 + b2 + c2

f3/b = − cab

(a2 + b2 + c2)
3
2

√
a2 + b2

− cab

(a2 + b2)
3
2

√
a2 + b2 + c2

f3/c =
a√

a2 + b2 + c2
√
a2 + b2

− ac2

(a2 + b2 + c2)
3
2

√
a2 + b2

.
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The derivatives of the control function relative to the control variables are written as

gx/u1 = β
1− µ
d2

[
2u1n1 + u21

x+ µ

d

]
gx/u2 = β

1− µ
d2

[
−u21

y√
x2 + y2

]

gx/u3 = β
1− µ
d2

[
−u21

z(x+ µ)

d
√
x2 + y2

]
gy/u1 = β

1− µ
d2

[
2u1n2 + u21

y

d

]
gy/u2 = β

1− µ
d2

[
+u21

x+ µ√
x2 + y2

]

gy/u3 = β
1− µ
d2

[
−u21

zy

d
√
x2 + y2

]
gz/u1 = β

1− µ
d2

[
2u1n3 + u21

z

d

]
gz/u2 = 0

gz/u3 = β
1− µ
d2

[
+u21

√
x2 + y2

d

]

The partials of the control function are preliminary to the construction of the Bxy

block for the STM, accordingly to Eq. (7.8), that is generally employed within the

Jacobian matrix in Eq. (7.11). The definition for the Axx sub-matrix is known from

the classical CR3BP. The blocks Ayx and Byy are null, because of the assumption for

a constant pointing direction along each arc (i.e., ˙̂u = 0 ).

7.4 Incorporating the Attitude Dynamics into the Turn and Hold Guid-

ance

Within a classical Turn and Hold (TnH) strategy, some assumptions are posed

on the pointing direction of the sailcraft. Specifically, a direction representative of

the sail orientation is fixed in a given observing frame. Introducing the attitude

dynamics into a TnH approach to control the path for a solar sail, is equivalent to
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link the vehicle pointing to the attitude states that describe the actual, instantaneous

orientation of the vehicle. For example, the pointing direction can be written as a

function of the quaternion vector, i.e., û = û(q(t), t). Consequently, the control input

variable, y, in Eq. (7.1) may be expressed in term of the rotational state variables

for the spacecraft, as

y =

 iqb
iωb

 , (7.24)

and it is in general a time-varying function, y = y(t). The variation for the control

variable over time is governed by a set of ordinary differential equations that fully

reflects the spacecraft attitude dynamics. In fact,

ẏ = h(x,y, t) =

f q(y)

fω(y)


y(t = t0) = y0 =

 iqb0
iωb0


(7.25)

where f q and fω define the attitude equations of motion from Eq. (2.46) and Eq.

(2.47), respectively, and y0 denotes the spacecraft orientation and angular velocity at

the initial time. The differential equations describing the control variables dynamics,

Eq. (7.25), are integrated along with the evolution of the orbital state variables, that

is expressed in Eq. (7.1). Specifically, the natural component of the motion, f(x, t),

evolves accordingly to the orbital model only, for example the CR3BP, such that

f(x, t) = fCR3BP(x) ,

where fCR3BP(x) is defined in Eq. (2.45); the control input is the solar sail accelera-

tion expressed consistently with the description of the natural dynamics.

A multiple shooting algorithm may be implemented to determine the vehicle ori-

entation time history that direct the sailcraft along a desired path. Discretize the

trajectory in N − 1 sub-arcs. Every jth arc is generated by propagating, for a fixed

time Tj = tj+1− tj, a given initial orbital state vector xj = x(tj), and a starting value

for the control variable vector, yj = y(tj) (which corresponds to an initial orientation
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and angular velocity for the solar sail). The vectors xj and yj are iteratively updated,

until a continuous trajectory, x(t), and some desired final or intermediate conditions

are both obtained, within a selected tolerance. Note that, the orientation history as-

sociated to yj, is not necessarily continuous along the final trajectory. Discontinuities

in the control variable y(t) profile locate at time tj, and fundamentally correspond

to an instantaneous reorientation of the solar sail. For practical implementation, it

may be more convenient to express the initial orientation of the spacecraft via an

unit vector, ûj, that defines the pointing direction of the solar sail. For each segment

of the path, then, the initial control input is expressed as a function of the pointing

direction ûj, as

yj =

iqb(ûj)
0

 ,

where, for simplicity, the initial angular velocity is null, i.e., iωb0 = 0. The starting

angular velocity may be modified or included into the correction process, without

altering the general framework for the solution. The multiple shooting problem is

formulated to update the pointing direction ûj, instead of directly modifying the

vector yj, as defined in Eq. (7.24). Upon the substitution of the vector ûj to the

vector yj as the free variable, the targeting problem may be expressed as in Eq.s

(7.9), (7.10), and (7.11), which reflect a typical formulation for the TnH strategy.

As the attitude dynamics is now introduced, it is, however, necessary to evaluate

the dependence of the pointing direction on the control input variable y, during the

construction of the Jacobian in Eq. (7.11). Specifically, the original sub-matrix DFxu

becomes

DFxu =



Ψxy(t1, t2)
dy1

dû1
. . .

Ψxy(tN−1, tN)
dyN−1
dûN−1

0n×m(N−1)


. (7.26)
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7.4.1 Reconstructing the Body Orientation from the Solar Sail Normal

During the implementation of a TnH correction algorithm that includes attitude

dynamics, it may be computationally more efficient to update an initial pointing

direction instead of the quaternion vector that defines the body orientation. To

propagate the attitude motion and quantify the dependence of the targeted variables

on the pointing direction is, however, necessary to define the body orientation for any

given pointing direction, i.e., express iqb(û).

The knowledge of a single direction is not sufficient to uniquely determine the

body orientation. In fact, any rotation of the body around the known direction, is a

attitude configuration. Therefore, the definition of the function iqb(û) requires some

assumptions. Suppose û is written relatively to the Sun-light frame, precisely

û = û
ˆ̀

= u1 ˆ̀
1 + u2 ˆ̀

2 + u3 ˆ̀
3 .

The Sun-light frame, (ˆ̀
1, ˆ̀2, ˆ̀3), is defined in Eq. (7.18). Given the pointing direction,

û
ˆ̀
, a possible option to re-construct the body frame is by

b̂1
ˆ̀

= û
ˆ̀

b̂2
ˆ̀

=

v
ˆ̀
× û

ˆ̀

||v
ˆ̀
× û

ˆ̀
||

b̂3
ˆ̀

= b̂1
ˆ̀
× b̂2

ˆ̀

, (7.27)

where v
ˆ̀

is an arbitrary vector such that v
ˆ̀
× û

ˆ̀
6= 0. The vector v

ˆ̀
substantially

determines the rotation of the body frame about the direction û
ˆ̀
. The body unit

vectors relative to the Sun-light frame, in Eq. (7.27), are related to the body unit

vectors expressed in the body frame, via a concatenation of successive rotations,

written as [
b̂1
b̂

b̂2
b̂

b̂3
b̂

]
= A

b̂·r̂
A
r̂·ˆ̀

[
b̂1
ˆ̀
b̂2
ˆ̀
b̂3
ˆ̀

]
(7.28)

where

A
r̂·ˆ̀

=

[
ˆ̀
1
r̂

ˆ̀
2
r̂

ˆ̀
3
r̂

]



174

is the rotation matrix between the Sun-light and the CR3BP rotating frame, and the

matrix A
b̂·r̂

describes the orientation of the body relative to the rotating frame, which

is unknown in this equation. The body unit vectors expressed in the body frame are

simply the identity matrix, thus, Eq. (7.28) simplifies to

I = A
b̂·r̂
A
r̂·ˆ̀
B
ˆ̀
, (7.29)

and it is solved for

A
b̂·r̂

= B
ˆ̀

−1 A
r̂·ˆ̀
T . (7.30)

The knowledge of the rotation matrix A
b̂·r̂

supplies the orientation of the spacecraft

relative to rotating frame. Alternatively, the vehicle attitude may also be described

relatively to an inertial frame, by A
b̂·̂i

= A
b̂·r̂
A
r̂·̂i

. Both the rotation matrices, A
b̂·r̂

and A
b̂·̂i

,

may be transformed to a corresponding quaternion representation using Eq.s (2.30),

and (2.31).

7.4.2 Implicit Formulation of the Sail-On Constraint

To facilitate the convergence of the correction process to a series of sail orientations

that guide the spacecraft along a desired path, the normal vector to the non-reflective

surface of the sail always points within a 90 deg cone angle measured from the Sun-

light direction, at the beginning of each control arc. This condition is also denoted as

sail-on configuration. A sail-on constraint may be explicitly formulated by imposing

a maximum incidence angle, as in Eq. (7.9).

Alternatively, a sail-on configuration at the jth control point, i.e., the starting

point of the jth trajectory segment, may be obtained by implicitly defining one of

the components for the pointing vector, during the correction process. First, define

a unitary pointing vector in the Sun-light reference frame,

û
ˆ̀

= u1 ˆ̀
1 + u2 ˆ̀

2 + u3 ˆ̀
3 , (7.31)
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and assume that the sail is facing the Sun for u1 > 0. The component u1 is, in fact,

the component of the pointing vector along the solar ray direction, ˆ̀
1. Next, assemble

the free variables vector as

ξ =



x2

...

xN

uR1
...

uRN−1

γ1
...

γN−1



, (7.32)

where γi is a slack variable, and the vector uR only includes the two components of

the unit vector û
ˆ̀

that are orthogonal to the Sun-light direction, i.e.,

uR =

u2
u3

 .

Accordingly to the alternative definition of the free variables vector, the constraint

vector is written as

F =



(xj)
t − xj+1

xN − xd

√
uRj · uRj − 1 + γ2



Internal continuity, j = 1,..,N-1

Final Target

Norm less than one, j=1,..,N-1

. (7.33)

The relevant modification of the constraint vector is the equation
√
uRj · uRj −1+γ2j =

0, that, via a slack variable, γ2j , reflects the inequality ||uRj || < 1. Eventually, the

unitary norm for the pointing vector, as well as the sail-on configuration are implicitly

defined by calculating the remaining component for the vector û
ˆ̀

as

u1 =
√

1− u22 − u23 > 0 (7.34)
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An implicit computation of the component for the pointing direction that aligns with

the solar rays, u1, may be beneficial in certain applications to improve, or even enable,

the convergence of the correction algorithm to a feasible solution.

7.5 Moment Hold Guidance

The TnH strategy supplies a solution to the sailing of a spacecraft that, even

when the attitude dynamics are incorporated, necessitates, in general, instantaneous

reorientation of the solar sail. Continuity of the attitude history throughout the

controlled path may be a more successful piloting option for certain applications, as

it may eliminate the utilization of fast solar sail pointing maneuvers. Additionally, a

preliminary outline is immediately available for both the orbital path as well as the

attitude profile. Without the derivation of the attitude history from the resulting

TnH sequence, the number of steps in the design process is also reduced. When

the attitude dynamics are included, it is possible to formulate a control problem to

achieve continuity in both the translational and rotational state variables.

Considering to the control problem generally posed as in Eq. (7.1), first, introduce

an orbit-attitude description of the natural dynamics for a solar sail, for example

f(x, t) = fFCM(x, t), where fFCM(x, t) is defined in Eq. (2.44). The state variables,

x, are comprised of the orbital states, the quaternion vector (which describes the

body orientation), and the body angular velocity, i.e.,

x =


xorb

iqb

iωb

 .

An external control moment may be applied to govern the rotation of the sail and,

consequently, guide the spacecraft along a desired path. A moment action may replace
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instantaneous adjustments of the solar sail pointing as an instrument to control the

orbital motion. Accordingly, the control input vectorial function is written as

g = g(M) =


06×1

04×1

M 3×1

 ,

where M represents an external moment vector in body axes. In the same manner of

the TnH strategy, the trajectory is divided in N − 1 sub-arcs and a multiple shooting

algorithm is implemented to achieve a feasible solution of the control problem. Con-

tinuity of the state variables, however, includes continuity of the attitude states at

the conjunction of adjacent arcs as well, and corresponds to the following constraint

vector,

F =



(xorb,j)
t − xorb,j+1

(iqbj)
t −i qbj+1

(iωbj)
t −i ωbj+1

xorb,N − xorb,d


Internal continuity, j = 1,..,N-1

Final Target

, (7.35)

which also contains a desired final target condition for the orbital state variables.

To solve for F = 0, the state variables, both orbital and rotational, that identify

every jth segment of the trajectory are updated, along with a control moment vector,

M j, also different for each control segment. The control moment, M j, is, however,

assumed constant along the corresponding arc. Consequently, this implementation



178

of the control strategy is labelled Moment Hold guidance (MH). The free variables

vector is

X =



xorb,2

iqb2
iωb2

...

xorb,N−1

iqbN−1
iωbN−1

M 1

...

MN−1



, (7.36)

noting that, iqbj only represents three independent components for the four dimen-

sional quaternion vector. Resulting from the definition for the constraint function in

Eq. (7.35), and the free variables vector in Eq. (7.36), the Jacobian matrix is

DF =
∂F

∂X
=
[
DFxx,n(N−1)×n(N−1) DFxM,n(N−1)×m(N−1)

]
, (7.37)

where

DFxM =


ΨxM(t1, t2)

. . .

ΨxM(tN−1, tN)

0n×m(N−1)

 . (7.38)

For the computation of the Bxy block for the STM, accordingly to Eq. (7.8), the

partials of the control function, g, are needed. Relative to the control variables, M ,

the partials for the control function are

dg

dM
=


06×3

04×3

I

 , (7.39)

where I is a 3 × 3 identity matrix. The partials with respect to the state variables

are null, i.e.,
dg

dx
= 0. The definition for the Axx sub-matrix is known from the
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FCM incorporating solar pressure. The blocks Ayx and Byy are null, because of the

assumption for constant moment along each arc (i.e., Ṁ = 0).

7.6 Angular Moment Hold Guidance

The application of reaction wheels to attitude control is well-established, therefore,

it is worth to examine the possibility of their implementation within a coupled orbit-

attitude control strategy. Note that, reaction wheels, may not always be a practical

design solution for any solar sail configuration, especially when a significantly large

structure, or a fast sail spin rate, is involved [73,74].

When reaction wheels are added, they bring a contribution to the dynamics that

may be expressed as an additional external moment. Assume the followings: 1) the

reaction wheels maintain a constant spin relatively to the carrying vehicle; 2) the

inertia of the rotors is included in the total inertia for the carrier; 3) the spinning

direction of the reaction wheels is fixed. Thus, the moment exerted by the presence

of the spinning components is

M = −iωb × hr ,

where iωb is the body angular velocity relative to the inertial frame, written as iωb =

ω1b̂1 + ω2b̂2 + ω3b̂3, and hr is the total relative angular momentum for the reaction

wheels, which is expressed in body axes as hr = hr
b̂

= h1b̂1 + h2b̂2 + h3b̂3 . The

resulting control function is

g = g(x,hr) =


06×1

04×1

−ω × hr

 .

Similar to the MH model, the control path is divided into different sub-arcs; the

current strategy assumes the utilization of reaction wheels spinned at a constant rate

during each segment. Consistently, the strategy is named Angular momentum Hold

(AH). The wheel spin rates can vary from one arc to the other. The command input
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is, then, a sequence of control spin rates, rather than a sequence of moments or sail

orientation configurations. The constraint function is identical to Eq. (7.35), while

the free variables vector is simply modified to replace the control moment vectors,

M j, with relative angular momentum vectors, hr,j, yielding

X =



xorb,2

iqb2
iωb2

...

xorb,N−1

iqbN−1
iωbN−1

hr,1
...

hr,N−1



, (7.40)

For the computation of the Bxy block for the STM, accordingly to Eq. (7.8), the

partials for the control function, g, are necessary. Relative to the control variables,

hr, the partials for the control function are

dg

dhr
=



06×3

04×3

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


, (7.41)

whereas, the partial with respect to the state variables are written as

dg

dx
=



06×10 06×3

04×10 04×3

0 −h3 h2

03×10 h3 0 −h1
−h2 h1 0


(7.42)
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The definition for the Axx sub-matrix is known from the FCM incorporating solar

pressure. The blocks Ayx and Byy are null, because of the assumption for constant

angular momentum along each arc (i.e., ḣr = 0).
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8. SOLAR SAILING: APPLICATION TO A SIMPLE

STATION KEEPING SCENARIO IN THE SUN-EARTH

SYSTEM

Some spacecraft configurations, such as solar sails, offer the possibility to direct the

orbital path by controlling the orientation of the vehicle. In this context, the attitude

dynamics may be incorporated into the guidance law at different stages of the de-

sign process and levels of information. The Turn and Hold (TH) model is a classical

approach to the determination of solar sails trajectories. The TH strategy is also

predominantly focused on the orbital motion, which, next, defines the attitude pro-

file. Guidance algorithms alternative to the TH approach, ones that simultaneously

consider orbit and attitude dynamics, are tested on a simple, representative scenario.

A solar sail may, for example, be employed to maintain the vicinity of a reference

orbit, potentially reducing the consumption of propellant for station keeping. As a

simplification for a station keeping operation, the guidance strategy attempts to mit-

igate an initial perturbation to the nominal orbit within one revolution, and target a

final state along the reference.

Successfully counteracting the initial errors in position and velocity for a basic or-

bit correction maneuvering, is preliminary to studies for more realistic applications,

and may aid the early identification of benefits and flaws for a new guidance scheme.

For example, long-term strategies tend to target final conditions many revolutions

downstream the orbit and, generally, offer more robust predictions. Even if long-

term strategies are not currently examined, concatenation and a moving horizon are

simple ways to effectively extend a short-term strategy to a longer time window. In

a similar manner, an open-loop controller may be converted to a closed-loop guidance.
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8.1 Reference Orbit and Targeting Conditions

An orbit, periodic relatively to the CR3BP rotating frame, is selected as a ref-

erence trajectory for a simple station keeping operation, to test the implementation

of different guidance strategies for solar sailing. A reference path is identified in the

Sun-Earth system, one that is periodic when a flat, perfectly reflective solar sail is

included, and maintained orthogonal to the incoming flux of photons.

A halo orbit type of behavior is chosen within the Sun-Earth systems. A fam-

ily of trajectories that resembles the halo dynamics within the unperturbed CR3BP,

exists in the Sun-Earth system, also when an ideal flat solar sail is added. That

motion is referred as modified halos. Despite the inclusion of the Solar Radiation

Pressure (SRP), the perturbed CR3BP dynamical model for the Sun-Earth system is

autonomous, under the current assumptions, which allows the existence for solutions

that are linked to dynamical structures for the original problem. The Sun-Earth sys-

tem is a representative environment for several current solar sail mission proposals,

and halo orbits are, also, often adopted as an initial baseline for the terminal desti-

nation. It seems, therefore, reasonable to select this type of reference motion.

Modified halo orbits are a three-dimensional type of periodic trajectories (as ob-

served in the rotating frame) that originate from the classical CR3BP, and are then

modified to preserve periodicity under the solar radiation perturbation. Richardson

develops a third-order approximation for a small halo orbit in the vicinity of the

equilibrium collinear points [89]. As discussed by McInnes [61], the coefficients of the

Richardson’s approximation for halo orbits can be modified to include the solar sail

force generated by a flat and perfectly reflective surface within the Sun-Earth sys-

tem. The modified coefficients for the Richardson’s formula are constructed upon the

further assumption that the sail is constantly orthogonal to the Sun-light direction

throughout its motion. The approximation available in McInnes’ work [61] is success-

fully employed as an initial guess to generate a family of precisely periodic modified

halo orbits near the L1 equilibrium point, one that is depicted in Figure 8.1. Note
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that, the location for the equilibrium points is also artificially translated as a conse-

quence for the solar radiation pressure [59]. Details on the construction of this family

are also accessible in [61]. The modified trajectories in Figure 8.1 correspond to a sail

with lightness parameter β = 0.035. Such a value is comparable to the performance

for the solar sail concept recently proposed in the Sunjammer mission [72]. Families

of modified halo orbits within the Sun-Earth system can be easily constructed for a

wide range of sail lightness factors, including values corresponding to currently feasi-

ble design solutions, and members of different size can be selected as a reference to

preliminary demonstrate the guidance schemes.
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Figure 8.1. Family of modified halo orbits near the L1 libration point
in the Sun-Earth system for β = 0.035.

In general, navigation and injection errors, or other unmodelled perturbations,

cause the trajectory for a solar sail to diverge from the reference path, and their
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consequences may be further amplified by unstable manifolds in vicinity of the nom-

inal trajectory. This phenomenon is quite common in dynamics associated with the

CR3BP and it is also evident in a simple scenario. Consider a large and a small

member of the L1 modified halo family, which are displayed in Figure 8.2. The larger

orbit has amplitude Az = 1.8×107 km and period P = 269.41 days; the smaller orbit

has amplitude Az = 7.9× 105 km and period P = 268.90 days. Identify the crossing

of the orbit with the x−z plane with positive y velocity relative to the rotating frame.

For the trajectories in Figure 8.2, such a crossing corresponds to a positive z position

component. At the selected crossing, introduce errors in the position and velocity
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Figure 8.2. Selected modified L1 halo orbits in the Sun-Earth system for β = 0.035.

vectors. These errors may be representative of injection errors or orbit determination

uncertainties. An error of 5 × 10−4 nondimensional units (i.e., approximately 75000

km) is independently applied to each position component; an error of 1×10−4 nondi-

mensional units (i.e., approximately 3 m/s) is individually applied to each velocity

component. Such error levels are arbitrarily selected, and do not constitute a refer-

ence for the navigation of solar sails within the Sun-Earth system. They are, however,

chosen conservatively, as better accuracy is most likely expected for an actual solar

sail mission implementation. Consequent to the perturbation of the initial position

and velocity vector, the motion departs from the nominal path as portrayed in Figure
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8.3, for both large and small modified L1 halo orbits. Observing Figure 8.3, a guid-

ance algorithm is necessary to direct the spacecraft toward a final state sufficiently

near the reference path. For this discussion, each guidance strategy is tested on its

capability to target a final position and velocity equal to the unperturbed state at

the crossing, within a given tolerance. The final time may be fixed or variable, but

in general comparable to one revolution along the original orbit.

Modified halo orbits in vicinity of the Sun-Earth L1 equilibrium point are selected

as a representative environment to preliminary explore different guidance strategies

for solar sails, ones that incorporates attitude dynamics. In fact, as demonstrated on

a small and a large modified halo orbit, when position and velocity errors are added

to the initial state, the motion quickly diverges from the nominal path, and supplies

a simple test bed for a control scheme possibly useful in station keeping.
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Figure 8.3. Trajectory departure due to position and velocity errors
on the initial conditions.

8.2 Results for the Turn and Hold Guidance

To compensate an initial error in the position and velocity vector, a TnH guidance

may be implemented to maintain the sailcraft in vicinity of its nominal path. The

TnH scheme supplies a steering law based on the assumption that the sail pointing

is fixed relative to a reference direction along the control arc, and an instantaneous

reorientation of the vehicle is possible at the beginning of that arc.
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8.2.1 Pointing Direction Fixed Relative to the Sun-Light Direction

The TnH guidance may be implemented fixing the orientation for a solar sail

relatively to the Sun-light direction along each control segment. That is a common

practice for TnH applications.

The objective for the TnH scheme, within a simple scenario, is to correct the paths

in Figure 8.3, that correspond to perturbed trajectories departing from a small and

a large modified L1 halo within the Sun-Earth system. As described in the previous

section, the TnH algorithm is formulated as a multiple shooting problem, which is

solved via Newton-Raphson updates. The TnH approach is sufficiently robust, in

general, to construct a viable solution starting from a poor initial guess, and using

a small number of control segments. For example, the solutions in Figure 8.4, that

reflects different size for the nominal orbit, are converged using 5 patch points or,

equivalently, 4 control segments. Figure 8.4 demonstrates the efficacy of a TnH

guidance applied to a simplification for a station keeping problem.

Corresponding to Figure 8.4, the control input for the TnH guidance is a sequence

of orientation configurations that are defined with respect to the direction for the

solar radiation. The pointing for the spacecraft may be described by the unit vector

normal to the sail surface, û, as written in Eq. (7.17) relatively to the Sun-light frame.

Nominally, the unit vector û is aligned with the incoming direction of the photons flux,

ˆ̀
1; equivalently, the measure numbers for the unit vector û, written in the Sun-light

frame, are u1 = 1, u2 = 0, and u3 = 0 along the reference path. When a perturbation

is added to the initial position and velocity, the TnH guidance computes adjustments

to u1, u2, and u3 to correct the trajectory, substantially reorienting the solar sail. For

the selected reference orbits and error level, the control input sequence is displayed in

Figure 8.5. A quick estimate for the cone angle between the sail normal and the Sun-

light unit vector, ˆ̀
1, is α = arccos(u1). Accordingly, a normal component u1 ≈ 0.9985

(such as for the first control segment in Figure 8.5(b)) corresponds to shifting the

vehicle pointing of about 3.1 deg from the nominal direction. Small adjustments
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Figure 8.4. Trajectory for a TnH guidance applied to modified L1

halo orbits in the Sun-Earth system for β = 0.035.

of the pointing direction relative to the Sun-light direction seem to be frequently

observed during the implementation of TnH strategies [84]. A precise reconstruction

of the entire spacecraft orientation also involves the components u2 and u3, as well as

a definition for the initial spin angle of the body about the û direction. Although the

measure numbers u1, u2, and u3 are constant along a control arc, as obvious in Figure

8.5, an inertial observer experiences a continuous rotation of the sail; such rotation

is necessary to maintain a constant attitude relative to the Sun radiation direction

(which is not inertially fixed). Consistently with the revolution of the Earth about

the Sun, the solar sail rotation is equal 1 deg/day, in a very first approximation. This

turn rate is not generally problematic, but a continuous time-varying control moment

is required to follow the desired attitude configuration along each segment. On a 50
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days control segment, such that may be employed along a modified L1 halo orbit, a

50 deg rotation for the sailcraft relative to an inertial reference is, in fact, necessary.

Additional reorientation maneuvers correspond to the discontinuities within the ui

profile. A variation of ui reflects, in fact, a new attitude configuration. In Figure

8.5 each re-alignment for the sail, matching the gaps evident in the ui history, is

within a 5 deg cone from the previous pointing direction. Even for a maximum turn

rate, that is limited by a solar sail structural characteristics (e.g., a turn rate of 0.02

deg/s is reported in [88]), a rotation of 5 deg seems obtainable within a short time

interval. If such time interval is sufficiently short when compared to the length of the

following control arc, then, the reorientation process may be reasonably represented

by a point discontinuity within the overall orientation history. In conclusion, a TnH

guidance that is associated with a control input similar to Figure 8.5, depends on the

precise determination of the Sun-light direction, fast (as compared to the time scale

for the selected dynamics) attitude maneuvers at the origin of the control segments,

and maintenance of a solar sail alignment fixed in a reference frame.
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Figure 8.5. Control input sequence for a TnH guidance, with solar
sail orientation fixed relatively to the Sun-light direction along each
control segment.
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The TnH strategy, implemented for a constant solar radiation incidence angle

along each control arc, successfully counteracts the initial perturbation within the

selected scenario.

8.2.2 Pointing Direction Fixed Relative to the Inertial Frame

The TnH guidance may also be implemented by fixing the solar sail orientation

relatively to an inertial observer. This control scheme may be more practical for a

larger range of mission applications.

Similar to the previous application, the objective for the TnH scheme, is to correct

the paths in Figure 8.3, that correspond to a perturbed trajectory departing from a

small and a large modified L1 halo within the Sun-Earth system. The multiple shoot-

ing problem, is adjusted to accommodate a fixed pointing direction in the inertial

frame. Solutions to the control problem still exist, with two examples of converged

trajectory in Figure 8.6, but require, in general, a larger number of control segments.

As a TnH guidance formulated in the Sun-light frame is numerically more robust,

it may be employed to generate an initial guess for a TnH scheme written in the

inertial frame. The control input is a sequence of attitude configurations that are
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Figure 8.6. Trajectory for a TnH guidance formulated in a inertial
frame and applied to modified L1 halo orbits in the Sun-Earth system
for β = 0.035.
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fixed in the inertial frame. Corresponding to the controlled trajectories in Figure 8.6,

the components of the quaternion vector that are plotted in Figure 8.7 describe the

inertial orientation of the spacecraft. As evident in this figure, the quaternion vector,

which is represented by its components, remains unchanged along each control arc.

That reflects an inertially fixed orientation for the vehicle. On the contrary, the gray

curve is the initial guess for the control input generated with a TnH algorithm that

is formulated in the Sun-light frame. Naturally, the TnH scheme written for the Sun-

light frame does not produce a sequence of constant attitude configurations relative

to an inertial reference. Equivalently, the spacecraft orientation may be displayed rel-

ative to the solar radiation direction by defining the sail normal unit vector, û, and

its components in the Sun-light frame, as in Figure 8.8. Referring to the figure, the

blue curves are the inertial pointing solution and the gray curves are again the initial

guess. The blue curve for u1 reveals that, to maintain a fixed inertial orientation, the

sail normal forms an angle α = arccos(u1) with the indecent flux direction that may

increase up to approximately 16 deg during a control arc, for the selected simulation.

A longer arc corresponds to a larger drift for the pointing direction in the Sun-light

reference, with a limiting incidence angle, α, equal to 90 deg, when the sail reflective

surface becomes parallel to the solar rays, and hence, ineffective to direct the path.

Additionally, at the connection of adjacent control arcs, correction manuevures that

require a vehicle to realign its pointing direction are noted in the control profile in

Figure 8.8, with a maximum reorientation of 20 deg.

The TnH strategy, implemented as a sequence of inertially fixed attitude configu-

rations, successfully counteracts the initial perturbation within the selected scenario.

An orientation fixed in an inertial frame is generally less complex to implement, and

its acquisition may be facilitated by spinning the solar sail or introducing some inter-

nal rotating parts, that are commonly used for attitude control. It may, however, be

a less efficient exploitation of the solar sail thrusting capabilities, as the angle relative

to the direction of the incoming radiation flux varies along the control arc, and does

not necessarily reflects an optimal configuration. Also, larger and more numerous
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Figure 8.7. Control input sequence for an inertial TnH guidance, as
experience by an inertial observer.
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Figure 8.8. Control input sequence for an inertial TnH guidance, as
experience by an observer fixed in the Sun-light frame.

reorientation maneuvers seem to be required along the path to target a desired final

state, which may increase the complexity of the attitude control mission profile.

8.3 Results for the Turn and Hold Guidance with Attitude Dynamics

The series of attitude configurations that constitute a TnH control law are ar-

tificial. When the natural attitude dynamics are incorporated, the TnH guidance
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information cannot be directly leveraged to direct the sail motion, and therefore, the

control scheme needs further elaborations.

If the TnH corrections are applied within the coupled orbit-attitude model, the

sail most likely will depart, rather than approach, the reference orbit [20]. In Figure

8.9, a display for a representative outcome is presented. The back curve denotes the

reference trajectory, the red curves are the arcs propagated from the control points

within the coupled orbit-attitude dynamics. The sailcraft is modelled as an axisym-

metric disk with inertia ratio k = 0.4. The motion in Figure 8.9 demonstrates that,

allowing the natural orbit-attitude dynamics dominates the response, and jeopardize

the decoupled TnH guidance.
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Figure 8.9. TnH corrections applied within the natural coupled orbit-
attitude model nearby a modified, large L1 halo orbit in the Sun-Earth
system.

Two different approaches are, next, discussed to embrace the coupled orbit-attitude

dynamics within the context of a TnH guidance.
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8.3.1 Conversion for the TnH Guidance

The decoupled TnH guidance supplies a pointing history for the sail that steers

the vehicle along a desired path. A control torque may be computed to impose the

pointing direction within the coupled orbit-attitude model and, consequently, enable

the spacecraft to follow a path set by the decouple TnH solution.

Information on the spacecraft orientation at any instant of time along a control

segment, in the form of sail normal direction, û, may be converted to torque com-

mands to obtain an equivalent response within the orbit-attitude dynamics. Outline

of the conversion process follows:

1. Determine the body orientation in terms of the selected kinematics variables

from the given sail normal direction. For example, transform the pointing vec-

tor û(t) to the quaternion vector iqb(t) as described in Section 7.4.1.

2. Numerically estimate the time derivatives for the kinematics variables. Use, for

example, a finite difference formula, such as

iq̇b(ti) =
iqb(ti+1)−i qb(ti)

ti+1 − ti
.

3. Derive the body angular velocity from the derivative of the kinematic variables.

If employing a quaternion representation,

iωb(t) = 2E(iqb) iq̇b(t) ,

where

E(iqb) =


q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3

 .
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4. Numerically estimate the time derivative for the body angular velocity. Use,

for example, a finite difference formula, such as

iω̇b(ti) =
iωb(ti+1)−i ωb(ti)

ti+1 − ti
.

5. Compute the control moment vector,

M = I iω̇b +i ωb × I iωb −Me ,

where Me denotes the remaining known environment torques, and I is the

principal inertia tensor. It is evident from the equation that, the resulting

control action is a function of the desired spacecraft attitude dynamics, as well

as the vehicle mass distribution and the external moments.

This process is potentially applicable to transition any decoupled TnH solution to

a coupled orbit-attitude model. Considering, for example, the TnH driven path in

Figure 8.4(c), convert the history for the pointing direction to a torque that would en-

able an equivalent response. The magnitude for the resulting torque, consistent with

the selected TnH orbit and a disk-like spacecraft with inertia ratio k = 0.4, is plot-

ted in Figure 8.10. Upon the application of the control moment correspondent with

Figure 8.10 within the coupled orbit-attitude dynamics, the trajectory in Figure 8.11

is created, and appears to follow the original decoupled TnH baseline. Figure 8.11

compares directly to Figure 8.9, the latter representing the decoupled TnH guidance

applied within the natural coupled dynamics (i.e., without adding a control moment).

A realignment for the pointing direction is still included at the origin of each control

arc, as reflected in the discontinues for moment curve in Figure 8.10. A gap that is

encountered along the moment profile, indicates an instantaneous reorientation for

the sailcraft. The attitude dynamics for such rotational maneuvers is not accurately

modelled. These maneuvers are assumed fast relative to the time length of the sub-

sequent control arc, so to be reasonably represented by point discontinuities.
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Figure 8.10. Magnitude for the torque vector producing an equivalent
decoupled TnH guidance for a modified, large L1 halo orbit in the
Sun-Earth system.
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Figure 8.11. Trajectory equivalent to a decoupled TnH solution when
incorporating a control torque in a coupled orbit-attitude dynamics
nearby a modified, large L1 halo orbit in the Sun-Earth system.

The application of a properly defined control torque, appears to effectively repro-

duce the trajectory engineered within the sole orbital dynamics model. The efficacy of

a decoupled TnH control law transitioned to a coupled orbit-attitude model depends

on the approximations introduced during the conversion process (e.g., the accuracy

for the finite difference scheme), the knowledge for environmental disturbances, and

the confidence in estimating the spacecraft characteristics. For simplicity, the tran-

sition from the decouple TnH guidance to a coupled orbit-attitude control scheme
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is presented via an open-loop solution for the control torque, however, a closed-loop

control scheme may also be easily implemented.

8.3.2 TnH Guidance within a Coupled Orbit-Attitude Model

A strategy, alternative to the augmentation of a decoupled TnH guidance with a

control torque, is the direct inclusion of the coupled orbit-attitude dynamics within

the design process. This approach is described in Section 7.4.

Consider a solar sail that possesses a relevant angular momentum component

along the direction normal to the reflective surface. Such angular momentum align-

ing with the sail normal, may be representative for a spinned solar sail or for internal

fast-rotating parts. In this context, the natural attitude dynamics may be a dominant

factor during the path control. Rather than adjusting afterwards the natural atti-

tude dynamics with the addition of a time-varying control torque throughout each

trajectory arc, design a sequence of orientations that already balances the natural

rotational behavior, while steering the spacecraft along the desired path. Following

an instantaneous and artificial modification of the pointing direction, the spacecraft

rotates accordingly to the natural flow and does not, in general, maintain a fixed

direction relative to any selected reference (as it does for the decoupled TnH guid-

ance). Figure 8.12 presents the converged trajectories for a disk-like sail with inertia

ratio k = 0.5 that is initially displaced, in terms of both potion and velocity, from the

nominal orbit, and selecting two representative modified L1 halo orbits as a reference.

A sail angular momentum component equal to 10 nondimensional units along the sail

normal direction is assumed. Initial guess may be provided by the solution for the

decoupled TnH algorithm. Figure 8.13 portrays the attitude history as described

by the quaternion vector relative to the inertial frame. That profile comprises both

reorientation events, and subsequent natural evolution of the attitude configuration.
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(a) Small orbit.
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(b) Large orbit.

Figure 8.12. Trajectory for a coupled orbit-attitude TnH guidance
applied to modified L1 halo orbits in the Sun-Earth system for β =
0.035.
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Figure 8.13. Inertial spacecraft orientation via the quaternion vector
for a coupled orbit-attitude TnH guidance applied to modified L1 halo
orbits in the Sun-Earth system for β = 0.035.

Ideally (i.e., neglecting any perturbation to the selected dynamical model and un-

certainties in the state variables), the trajectories in Figure 8.12 do not require any

additional control action following a sail realignment. This example, that is generally

presenting the case for a spinned solar sail, demonstrates the possibility to directly

leverage the natural attitude dynamics information within the series of orientation

configurations that guide the spacecraft along a desired path. This approach may be

a good compromise between the numerical robustness of a decoupled TnH guidance



200

and a simplification of the attitude control scheme, one that is possible via a more

accurate coupled dynamics description at the early stages of the design process.

A sailing strategy, that is constructed expanding the idea of sail pointing reconfig-

urations to enable natural orbit-attitude dynamics along each control segment (idea

original to the decoupled TnH guidance), is demonstrated feasible for the selected

simple station keeping application.

8.4 Results for the Moment Hold Guidance

Within a coupled orbit-attitude model for the spacecraft dynamics, a guidance

strategy may be constructed to directly employ attitude inputs, such as a constant

control torque, and smoothly maneuver the solar sail. Point adjustments for the sail

orientation may be eliminated with a proper torque profile. When torques that are

constant along each control segment are employed, the guidance is named Moment

Hold (MH).

As the dynamical model acquires more complexity and the number of state vari-

ables increases, the correction process becomes more sensitive, numerically. As a

consequence, the identification for a desired solution critically depends on a more ac-

curate initial guess. In particular, an initial estimate for the control input is needed,

i.e., an estimate for the the control moment. A decoupled TnH solution is generally

available and may be converted to an equivalent control torque profile, as in Figure

8.10. Information contained in a plot similar to Figure 8.10 may serve as a basis for

the initial MH input. A time varying evolution for the control moment may, in fact,

be converted to a sequence of constant torques by averaging on the control intervals,

and, next used as an initial guess for the MH control input. A torque profile derived

from the decoupled TnH guidance generally supplies a good initial guess for the MH

strategy. Next, a first trajectory to counteract the initial errors and guide the space-

craft nearby the nominal orbit, is constructed for a centrobaric body. The gravity

gradient moment is null when applied on a centrobaric moment. This type of the
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mass distribution may be not representative for a solar sail or a similar structure,

however, it is a convenient initial baseline configuration. Even supplied with a guess

from the decoupled TnH algorithm, the correction process may still be numerically

too sensitive to converge for any arbitrary spacecraft inertia distribution. Note that,

the resulting control moment to steer the sailcraft along the desired path is not null

for a centrobaric vehicle, only the gravity gradient torque is. Once a solution is avail-

able for a centrobadic body, the correction process may be reiterated through small

adjustments for the spacecraft mass distribution, until the desired inertial configura-

tion is achieved. As an example, Figure 8.14 portraits the trajectory obtained via the

application of constant control torques, which direct the solar sail to a final state on

the reference modified L1 halo orbit (in black). The corrected paths in Figure 8.14

are displayed for both a centrobaric body (light blue) and a disk-like spacecraft with

inertia ratio k = 0.5 (dark blue). The corresponding control sequence is presented

in Figure 8.15. The control moment vector, represented by its magnitude, remains

constant along each arc of the trajectory, which may enable a simplification for the

design of the attitude control system in certain applications. Within this specific

example, the magnitude of the control torque is significantly small, and may be chal-

lenging to reproduce due to a limited precision for the actuating devices. A similar

consideration also applies to the control moment resulting from a decoupled TnH

approach (see Figure 8.10).

The update equation for the MH algorithm may be modified to facilitate the

convergence for the correction process and avoid overshooting. Overshooting is par-

ticularly problematic when it affects the quaternion variables. An update that is too

large may yield a quaternion component greater than one, hence, in violation of the

unitary norm constraint. Then, the update equation revised as

ξj+i = ξj + (1− θj)∆ξj ,

where ∆ξj is the update to the free-variables vector ξj at the jth iteration, and θj

is a penalty factor that may vary at each iteration. For a penalty factor θj = 0, the

update equation resembles the original formulation. Any penalty value larger than 0
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Figure 8.14. Trajectory for a MH guidance applied to modified L1

halo orbits in the Sun-Earth system for β = 0.035.
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Figure 8.15. Control input for a MH guidance applied to modified L1

halo orbits in the Sun-Earth system for β = 0.035.

describes a smaller step in the update direction defined by ∆ξ. In the limiting case,

for a penalty factor θj = 1, there is no adjustment to the current free-variables vector.

For the selected examples, the penalty factor is initially set to θj = 0.75. When the

current iterate is sufficiently near to a viable solution, e.g., ||F || < 10−4, the penalty

factor may be cancelled (θj = 0), to reduce the convergence time. As demonstrated

by successfully correcting the orbital path for a motion nearby modified L1 halo orbits

in the Sun-Earth system, a penalized update equation combined with a continuation

process for the spacecraft inertia characteristics, effectively aids the construction of a

MH guidance for an arbitrary vehicle configuration and reference orbit.
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A solar sail is guided along a desired path, returning to a nominal orbit, via the

application of control torques that are constant along each trajectory arc. That rep-

resents a preliminary demonstration for the possibility of simultaneously developing

orbit and attitude control schemes. The numerical challenges associated with natural

orbit-attitude dynamics may be worth examination, if they enable a simplification for

the control system and lessen the control effort, for example by limiting the necessity

of instantaneous reorientation maneuvers. Various instruments, e.g., reaction wheels,

are available to produce a control torque along a trajectory arc. Limitations for the

MH guidance may connect to the capability of such devices to generate a continuous

and constant action along the path.

8.5 Results for the Angular Momentum Hold

Engineering the angular momentum vector is a well-established method to pas-

sively, or actively, control a vehicle rotational behavior. A coupled orbit-attitude

dynamics may allow to extend the utilization of the angular momentum to steer

the orbital path along a desired trajectory, as well. The angular momentum vector

may be adjusted by spinning the entire vehicle or some internal components. In this

discussion, as described in Section 7.6, the global angular momentum is controlled

internally, via rotating parts (as reaction wheels) that modify a component for an-

gular momentum vector relatively to the body frame, hr. Specifically, the relative

momentum vector, hr, is hold constant along each control arc, hence, this strategy is

denoted as Angular momentum Hold (AH).

Similarly to the MH guidance, the correction process for the AH algorithm re-

quires an accurate initial guess. In particular, an initial estimate for the control input

is needed, i.e., an estimate for the relative angular momentum, hr. To construct a

viable guess, the decoupled TnH solution for the control problem, that is generally

available, is first reconverged as a MH solution for a centrobaric spacecraft. Next,

to produce a motion equivalent to the MH guidance, but employing solely reaction
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wheels that create a relative angular momentum vector, hr, the following differential

equation is integrated simultaneously to the orbit-attitude dynamics along the MH

trajectory

ḣr = −M −i ωb × hr ,

where M is the moment originally applied within the MH solution and all vectors are

expressed in body axes. A sample time evolution for the relative angular momentum

is plotted in Figure 8.16, assuming the MH solution in Figure 8.15 for a large modified

L1 halo orbit within the Sun-Earth system, including both a centrobaric and disk-like

vehicle. The time varying history for the relative angular momentum vector, as in

Figure 8.16, may be converted to a sequence of constant values by averaging on the

control intervals, and employed as an initial guess for the AH control input. Relative

angular momentum vectors derived from the MH guidance generally supplies a good

initial guess for the AH strategy.
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Figure 8.16. Relative angular momentum vector producing an equiva-
lent MH guidance for a modified, large L1 halo orbit in the Sun-Earth
system.
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An initial guess is typically not precisely continuous, nor does accurately meet

the final conditions on the path. Then, iterative adjustments for the state variables

at the patch points and for the relative angular momentum vector along each con-

trol arc follow. The correction process may be implemented as a multiple shooting

algorithm. Similarly to the MH scheme, inclusion of a penalty factor into the update

equation and continuation from a centrobaric solution may aid the construction for

the desired motion. A time varying formulation may be considered, as well. Despite

the improvements granted by those modifications, the AH algorithm still experiences

critical, numerical challenges. The remaining principal cause of failure appears to be

an overshoot for the quaternion variables, q1, q2, and q3, that are updated during the

correction process. Consider to represent the evolution for the selected independent

quaternion components q1, q2, and q3 along the trajectory as the radial distance from

the origin,
√
q21 + q22 + q23, plotted versus the elapsed time from the initial epoch, as

depicted in Figure 8.17. The radial distance from the origin,
√
q21 + q22 + q23, is never

larger than 1, consistently with the unitary norm constraint equation that defines

the complete quaternion vector. The unitary norm constraint is represented as an

horizontal boundary in Figure 8.17. Observing that figure, the curve for the radius√
q21 + q22 + q23 may become tangent to the unitary boundary at some time instant

along the trajectory. If a patch point is located nearby the tangency condition, there

exist the possibility that, updating the quaternion variables q1, q2, and q3 via a lin-

ear prediction, such as that employed within the Newton-Raphson method, violates

the unitary norm constraint, and triggers the failure of correction process. Simply

ignoring updates that trespass the unitary limit is not necessarily effective, as it in-

troduces a discontinuity in the linear variations for the constraint vector relative to

variations for the free-variables. Discontinuous variations are generally challenging

within a correction process. Modifying the orientation of the vehicle at the initial

epoch may enable to avoid tangency conditions along the trajectory. Recall that, for

a given pointing direction, the sail orientation is undefined for rotations about the

pointing axis and, for instance, arbitrarily determined by the vector v in Eq. (7.27).
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Figure 8.17. Evolution for quaternion vector components along the trajectory.

In certain applications, it is possible to select the vector v (i.e., the initial spin angle

about the pointing direction) to elude the encounter of tangency conditions along

the trajectory. Small updates, continuation procedures, and selective choice of the

initial orientation effectively facilitate the convergence for the AH algorithm. Mod-

ification to the current AH implementation is, however, warranted to incorporate a

more conclusive treatment for the tangency condition. A different representation for

the spacecraft attitude during the correction process, one that is not bounded to a

unitary constraint, may be considered.

As an example, the orbit-attitude motion nearby a modified, large L1 halo orbit

is considered. A converged solution for a disk-like solar sail with inertia ratio k = 0.5

is depicted in Figure 8.18. The application of a constant angular momentum vector

along each arc guides the solar sail toward the precise final injection into the nomi-

nal orbit. The corresponding control history is displayed in Figure 8.19. A constant

relative angular momentum is a simple control input, commonly implemented via

reaction wheels. Internal rotors may, however, not represent a viable option for large,

fast spinning solar sails. Regardless of the instrument that enables the control action,

the AH guidance preliminary demonstrates the possibility to elaborate the coupled
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orbit-attitude design approach to include different forms for the control input, that

were not possible within the decoupled TnH strategy.

In conclusion, the sailcraft is directed along the desired path implementing an

AH guidance. The natural orbit-attitude dynamics are leveraged to further simplify

the control input, along with assuming a specific class of actuators. As currently im-

plemented, this strategy does not appear sufficiently robust, numerically, to extend

its application within a large span of possible scenarios. An enhanced algorithm is

warranted to strengthen the convergence performances for the AH guidance.
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Figure 8.18. Trajectory for a AH guidance applied to modified, large
L1 halo orbits in the Sun-Earth system for β = 0.035.



208

0 50 100 150 200 250
−1

0

1x 10
−3

h r1
 [N

m
s]

0 50 100 150 200 250
−1

0

1x 10
−3

h r2
 [N

m
s]

0 50 100 150 200 250
−1

0

1x 10
−3

h r3
 [N

m
s]

t [days]

Figure 8.19. Control input for a AH guidance applied to modified,
large L1 halo orbits in the Sun-Earth system for β = 0.035.



209

9. CONCLUDING REMARKS

A framework is developed to explore the rotational behavior for a rigid spacecraft

when it is coupled to the dynamical regime that is associated with a CR3BP pe-

riodic orbit. Two models are considered to reproduce the orbit-attitude dynamics

of a vehicle: a Simplified Coupled Model (SCM), that solely includes gravity, and

partially reflects the interaction between the orbit and attitude motions; a Fully

Coupled Model (FCM), that incorporates gravity, and the Solar Radiation Pressure

(SRP), and renders a fully coupled orbit-attitude dynamics. Relevant information

in a highly sensitive regime as the CR3BP, are more easily obtained employing a

straightforward description of the motion, such as the SCM or FCM, and may serve

as a basis to justify further investigation. This document, first supplies a reference

for the construction of a dynamical model useful to reproduce the orbit and attitude

dynamics for a rigid spacecraft within a CR3BP system. The CR3BP model assists

the propagation of the motion for the vehicle center of mass, and may be elabo-

rated to include additional force models, such as SRP. Euler equations of motion and

quaternion kinematics representation are used to predict the attitude evolution for

the spacecraft. Practical applications may require an understanding of the response

nearby a nominal solution. An analytical expression for the variational equations,

which describe the motion nearby a reference, is also derived. The variational equa-

tions in analytical form facilitate the construction of the State Transition Matrix

(STM), another mathematical tool that is largely beneficial in targeting or correction

schemes. A transformation of the STM from inertial to rotating frame is discussed,

as the reference observer may vary, accordingly to the specific problem. Within the

coupled orbit-attitude framework, both the natural and controlled dynamics are ex-

plored. First, the SCM enables the delineation of some important natural dynamical

structures, that are associated with the gravitational field. Within the SCM, periodic
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solutions are dynamical patterns that supply a valuable insight into a complex dy-

namical regime, and are a practical reference motion for space mission applications,

as periodic solutions are a well-defined subset of bounded behaviors. Similarly to the

concept of gravity gradient stabilization, that is applicable along a Keplerian orbit,

periodic librations may be a means to passively establish a bounded attitude oscil-

lation along a CR3BP orbit. Second, an analysis of the controlled dynamics for an

ideal solar sail explores the application of orbit-attitude targeting schemes within the

CR3BP. Strategies that implement different forms of attitude control, so to adjust

the sailcraft pointing, and steer the orbital path, are developed and applied to a test

station keeping scenario. This scenario requires the guidance law to correct an initial

perturbation and target a final state that re-inserts the spacecraft into the nominal

orbit. A simple mantainance operation is valuable to identify fundamental benefits

and challenges that are associated with each guidance strategy, and preliminary to the

application of a coupled orbit-attitude control scheme in a more complex and sensitive

problem. Better understanding for the available natural dynamical structures, as well

as for viable maneuvering techniques, may foster a coupled orbit-attitude approach

in mission design.

9.1 Analysis of Bounded Solutions: Orbit-Attitude Periodic Solutions

A general approach to the construction of orbit-attitude periodic solutions that

are associated with a known CR3BP reference orbit, is presented. A numerical al-

gorithm for the precise computation of an orbit-attitude periodic solution, as well as

the corresponding family, is detailed, and may be easily replicated in future applica-

tions. Although an efficient correction scheme may be available, the identification of

an accurate initial guess is a principal challenge. When the behavior within an highly

sensitive dynamical regime is influenced by several parameters, including the config-

uration at an initial epoch, the reference orbit, and the spacecraft mass distribution,

the exploration of the solution space to determine dynamical structures possibly use-
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ful for a certain mission application, is non-trivial. To support the identification of

a good initial guess, three different strategies are discussed, ones that involve well-

established dynamical systems theory tools, i.e., Floquet theory and Poincaré map,

as well as more recent instruments, specifically, grid search maps applied to attitude

dynamics. This work supplies a reference for the application of Floquet theory to the

coupled orbit-attitude problem, and encompasses some of the related challenges. For

example, an elementary scenario that lies within the assumptions for Floquet theory,

and serves as a stepping stone to the identification of more complex and interesting

orbit-attitude periodic motions, is presented. Analysis of the linear stability for an

orbit-attitude nominal periodic motion also contains an useful contribution to the

definition of attitude modes that describe nearby rotational behaviors, and to the

compact visualization of stability information across a large range of selected param-

eters. Poincaré maps are an additional tool to reveal important dynamical structures,

such as periodic solutions. To assist the inspection of many surface of sections, ones

that may reflect a variety of system configurations, a straightforward algorithm for

the automatic detection of ordered patterns on the map is discussed. Such technique

may be transferable from the orbit-attitude dynamics within the CR3BP to other

applications. More recently, another type of map is employed to visualize result-

ing information for a grid search, and individuate conditions that produce bounded

attitude librations. In this investigation, a linkage between periodic behaviors and

regions on the grid search map that are associated with bounded attitude librations,

is observed. Such understanding is successfully exploited to recognize orbit-attitude

periodic solutions in a complex scenario, such as a three-dimensional motion along

an halo orbit, where the direct application of Floquet theory or Poincaré mapping

may be more cumbersome, especially, while lacking of any precedent insight into this

regime of motion. Several families of orbit-attitude solutions are computed using

Floquet theory, Poincaré mapping and grid search maps, in combination with a tar-

geting algorithm. Initial conditions for selected sample solutions are available in this

document. In general, the solution space emerges as permeated with orbit-attitude
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periodic solutions, which may offer an extended set of novel design options for space

mission applications. Orbit-attitude periodic solutions are illustrated along different

reference orbits, and exist for different stability properties (including stable or slowly

diverging behaviors), as well as geometrical complexity (including three-dimensional

orbits and three-dimensional rotations). The capability to identify, construct and

understand periodic attitude behaviors along periodic orbits in the CR3BP is pivotal

to design novel attitude modes, maneuver profiles or long-term stable configurations

that leverage the natural dynamics in a multi-body system.

9.2 Investigation of Orbit-Attitude Coupling Devices: Solar Sail Orbital

Maneuvering

Considering solar sail operations, orbit-attitude dynamics are incorporated into

a multiple shooting algorithm that can be employed for shaping the orbital path.

The main contribution is a modification of a classical Turn and Hold (TH) model

to include the spacecraft attitude dynamics. The rotational and translational mo-

tion for the vehicle are simultaneously propagated. During the propagation, different

means for adjusting the sail attitude configuration and steering the spacecraft along a

desired path are explored, including the application of instantaneous reorientations,

inertially fixed pointing directions, constant torques, or constant relative angular

momentums. The simplicity for some among those forms of control is particularly

interesting, and may foster more practical implementations for solar sail missions.

The classic decoupled TH strategy supplies a command input solely as a sequence of

sail pointing configurations, which may require fast reorientation maneuvers at cer-

tain control points along the trajectory. Additionally, the sail pointing configurations

obtained within a decoupled TH guidance are artificial, and are not reproducible

when the natural rotational dynamics is incorporated, unless some type of attitude

control is designed and also included. First, a coupled TH guidance strategy is in-

vestigated, demonstrating the possibility to predict instantaneous sail reorientations,
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that naturally evolve into an attitude profile that yields the desired trajectory. Next,

a Moment Hold (MH) and an Angular momentum Hold (AH) guidance strategies

are developed; the command input is, accordingly, a sequence of control torques or

relative angular momentum vectors, rather than a sequence of spacecraft orientation

configurations. Each strategies is applied to a straightforward scenario, which re-

quires to mitigate some initial errors relative to a nominal trajectory. Employing a

coupled orbit-attitude correction scheme presents some numerically challenges, that

are also discussed in this investigation. The ability to succeed in a simplification of

a mission operation is preliminary to the utilization of each guidance approach in a

more complex problem, and supplies an immediate and clear understanding of the

main challenges that are associated with a certain control strategies.

9.3 Recommendation for Future Work

As more ambitious interplanetary missions appear on the roadmap for advancing

the human presence in space, and new technologies for space exploration emerge, the

understanding of spaceflight mechanics is also required to progress, and enable more

efficient design solutions. Within the context of coupled orbit-attitude dynamics

in a multi-body regime, the following research areas are, perhaps, an interesting

continuation of this work:

• Following to the precise creation of an orbit-attitude periodic solution, the ex-

ploration of dynamical structures that are associated with the periodic motion,

such as manifolds surfaces or quasi-periodic behaviors, is generally an important

piece within the characterization of the solution space for a complex dynamical

system, and it is potentially useful in the actual functioning for a spacecraft at-

titude system. Among the possible applications, manifold surfaces may supply

a natural reference for reorientation maneuvers, and the existence of a set of

quasi-periodic structures may assist in enabling long-term stable configurations.
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• The transition of the orbit-attitude solutions for the simple coupling model pre-

sented in this document to higher fidelity models is warranted. An improved

representation of the dynamical environment at an interplanetary destination

may first incorporate the force and torque exerted by the Solar Radiation Pres-

sure (SRP). Ephemeris position of the attracting bodies is also relevant for a

more accurate determination of the gravity action. For certain mission scenar-

ios, the irregular mass distribution for the primary bodies may also be significant

in more precisely predicting the spacecraft orbit-attitude dynamics. Stability

for the type of orbit-attitude solutions, that are presented in this work, should

also be examined within an higher fidelity environment.

• Some numerical difficulties are encountered during the construction of orbit-

attitude solutions for solar sailing within the current framework. Reproducing

the orbit-attitude dynamics for fast spinning vehicles is one specific challenge.

The direct integration for the orbit-attitude motion associated with a fast spin-

ning spacecraft is cumbersome, because of the difference in the characteristic

time-scale for the orbital and attitude response. Orbit frequencies may, in fact,

be measured in months, or days, whereas, the spinning frequency is close to

seconds, or fractions of a second. Techniques to average the spinning motion,

and the introduction of intermediate frames to represent the spacecraft orien-

tation, may be useful to alleviative the computational demand for simulating

orbit-attitude dynamics of fast spinning bodies. The capability to reproduce a

coupled fast spinning motion is particularly important in solar sail applications.

A solar sail may, for example, be spinned at a high rate, as a dynamical means

to grant stiffness to the sail structure. Modifications to a targeting algorithm to

prevent a tangency condition within the quaternions variables, is a second con-

tinuation work of interest. Overshooting the quaternion components appears to

be the currently remaining cause for the failure of the convergence process in

the computation of orbit-attitude solutions for solar sails. Including additional
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constraint conditions to specifically avoid a tangency condition, or exploring an

alternative set of kinematics variable may be options to be investigated. Re-

ducing numerical difficulties may further consolidate a coupled orbit-attitude

approach to the study and design of solar sail flight mechanics.

• Within this investigation, a guidance strategy that incorporates coupled orbit-

attitude dynamics is demonstrated for a straightforward station keeping sce-

nario. The station-keeping scenario examined includes an ideal solar sail, and

constraints on the final position and velocity only. Following a simple appli-

cation, it is natural to explore the implementation of a coupled orbit-attitude

control scheme into a more elaborated, and higher fidelity, framework. Such

framework may comprise 1) a more realistic model for the solar sail and the

dynamical environment, 2) a long-term station keeping simulation, 3) a closed-

loop control law, 4) a larger set of reference orbits and initial errors. Along

with improving the station keeping framework, the addition of constraints for

the spacecraft rotational motion should be considered. A coupled orbit-attitude

approach to the construction of the guidance law fosters, in fact, the possibil-

ity to design the orbital path in combination with constraints on the attitude

configuration, which may be relevant in several mission applications, such as

solar sails, but also astronomical observatories, and some architectures with a

limitation on the thrusting direction.
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