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ABSTRACT

De Silva, Kaushika PhD, Purdue University, May 2016. Rank Constrained Homo-
topies of Matrices and the Blackadar-Handelman Conjectures on C∗-algebras. Major
Professor: Andrew Toms.

Rank constrained homotopies of matrices:

For any n ≥ k ≥ l ∈ N, let S(n, k, l) be the set of all non-negative definite matrices

a ∈Mn(C) with l ≤ rank a ≤ k. We investigate homotopy equivalence of continuous

maps from a compact Hausdorff space X into sets of the form S(n, k, l). From [37] it is

known that for any n, if 4dimX ≤ k− l where dimX denote the covering dimension

of X, then there is exactly one homotopy class of maps from X into S(n, k, l). In

Section 3.1 we improve this bound by a factor of 8 by confirming C(X,S(n, k, l)) to

have exactly one homotopy class of maps when
⌊
dimX

2

⌋
≤ k − l . This in particular

means πr(S(n, k, l)) = 0 for every r ≤ 2(k − l) + 1.

In Section 3.2 using classical homotopy theory methods together with C∗-algebraic

ideas we confirm that for any d ∈ N, if πr(S(n, k, l)) = 0,∀r ≤ d, then there is only

one homotopy class of maps in C(X,S(n, k, l)) for any compact Hausdorff X with

dimX ≤ d.

Blackadar-Handelman conjectures on C∗-algebras:

Let DF (A) denote the set of all dimension functions on a C∗-algebra A and let

LDF (A) be the set of all s ∈ DF (A) which are lower semicontinuous. It is well known

that DF (A) is naturally identified with the state space of the Cuntz semigroup W (A).

From [6], LDF (A) bijectively corresponds to the space of all normalized quasitraces

QT (A) through a continuous affine map. [6] conjectures LDF (A) to be pointwise

dense in DF (A) and DF (A) to be a Choquet simplex.
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In Theorem 5.1.1 we provide an equivalent condition for the first of these con-

jectures for unital A. Applying this condition we confirm the first conjecture for all

unital A for which either the radius of comparison is finite or the semigroup W (A) is

almost unperforated (Theorem 5.2.5). Our results are achieved through applications

of the techniques developed in [8] and [33].

If LDF (A) is dense in DF (A) for an unital A that has only finitely many extreme

points in QT (A), through a simple application of Krein-Milman Theorem we note that

DF (A) = LDF (A) and that DF (A) is affinely homeomorphic to QT (A). Together

with results on the first conjecture this confirms the second conjecture for a new class

of C∗-algebras.

Possibility of extending these results to inductive limits remain an open question.

In general the second conjecture is true for any unital A for which (ordered)

Grothendieck group K0
∗(A) of W (A) has Riesz interpolation property [15] and every

known confirmation of the second conjecture is achieved by showing Riesz inter-

polation hold for K0
∗(A) [1, 9, 29]. We consider a stably approximate version of

interpolation that is weaker than the classical Riesz interpolation. In fact it is easily

seen that this property is even weaker than the asymptotic interpolation property

considered in [28]. In Corollary 6.4.3 we confirm DF (A) to be a Choquet simplex for

any unital A for which W (A) satisfies this weaker notion of interpolation.

While Corollary 6.4.3 has the scope of confirming the second conjecture for a

broader class of C∗-algebras, finding a ‘good’ class of C∗-algebras in which W (A)

exhibits stably approximate interpolation but does not satisfy Riesz interpolation

remains open.
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1. INTRODUCTION

This thesis presents results obtained in two deferent directions. In Chapters 2 and

3 we focus on developing homotopy properties of certain rank constrained subsets of

complex matrices. In Chapters 4, 5 and 6 we direct our attention towards answering

two conjectures on the geometry of the dimension functions on C∗-algebras that were

posted in [6].

Chapter 2 starts with basics from C∗-algebra theory. The rest of Chapter 2 recalls

some topics in vector bundle theory and introduce other background results and

terminology that we require in approaching the first topic. We present our results on

the first topic in Chapter 3.

In Chapter 4 we have included preliminaries related to the two conjectures men-

tioned above. A particular interest is given towards recalling theory of partially

ordered abelian groups and semigroups that play a central role in our approach to

answering these conjectures. Chapters 5 and 6 present the main results that we have

obtained in this direction.

In what follows in this Chapter we stimulate interest for both the topics while

summarizing the already known results. At the same time an attempt is taken to

explain the main ideas behind our proofs and their origins.

1.1 Rank constrained homotopies of complex matrices

Understanding homotopy properties of topological spaces is a fundamental ques-

tion in topology. The knowledge on the homotopy of a space has often contributed

to establishing results of significant importance in many branches of mathematics.
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For a given triple n, k, l ∈ N with n ≥ k ≥ l we focus on establishing homotopy

properties of the sets,

S(n, k, l) = {b ∈Mn(C)+ : l ≤ rank(b) ≤ k} ,

where Mn(C)+ denotes the set of non-negative definite matrices in Mn(C).

In Theorem 3.1.4, we show that for any given triple n, k, l ∈ N and a compact

Hausdorff space X with
⌊
dimX

2

⌋
≤ k − l, there is precisely one homotopy class of

functions in C(X,S(n, k, l)). Here, by dimX we mean the covering dimension of the

space X and bmc stands for the floor function.

From Theorem 3.1.4 it is immediate that πr(S(n, k, l)) = 0 for all r ≤ 2(k− l)+1,

where πr stands for the rth homotopy group (Corollary 3.1.5).

The spaces S(n, k, l) are natural objects in their own rights. However, to our

knowledge the first considerations of the homotopy properties of the spaces S(n, k, l)

originated from the relevance of the topic to the theory of C∗-algebras [31, 37–39].

Our work builds on and is highly influenced by the ideas developed in these studies.

[37, Theorem 3.4] shows that a unital simple ASH algebras with slow dimen-

sion growth is Z-stable. The basic building blocks of ASH-algebras are of the type

Mn((C(X))) where X is compact Hausdorff and the proof of [37, Theorem 3.4] de-

pends heavily on homotopy properties of the spaces S(n, k, l). One of the main

technical results of [37] ( [37, Proposition, 2.5]) shows C(X,S(n, k, l)) to have a pre-

cisely one homotopy class of maps for any n, k, l ∈ N and a compact Hausdorff space

X with
⌊
dimX

2

⌋
≤ k − l . Theorem 3.1.4 here directly improves this. However, we

should note that this improvement does not impact the main result of [37].

To further motivate this study as well as to better dissect the ideas involved in our

work, we now exhibit the connection of spaces S(n, k, l) to complex Grassmannians.

Recall that for 1 ≤ n ≤ ∞, k ∈ N with k ≤ n, Gk(Cn) stands for the complex

Grassmann variety of k-dimensional subspaces of Cn. Identifying each subspace V of

Cn, with the orthogonal projection of Cn on V leads to a natural homeomorphism

from Gk(Cn) to the space Pk(Cn) that consists of all rank k projections in Mn(C).
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Note that the inclusion Pk(Cn) ⊂ S(n, k, k) is a homotopy equivalence. Thus, with

above identification, Gk(Cn) is homotopy equivalent to S(n, k, k). In this sense, the

spaces S(n, k, l) can be viewed as generalizations of the Grassmann varieties, at least

for homotopy interests.

For instance setting k = l in Corollary 3.1.5 recover the classical result that states

Gk(Cn) is simply connected for any pair of k, n. However also note that our work does

not provide an alternate proof of this fact, rather we use stronger classical results in

our proof.

Some of the major applications of Grassmann varieties appear in the theory of vec-

tor bundles. Given f ∈ C(X,Gk(Cn) ) one may pullback the canonical k-dimensional

vector bundle γk
n over Gk(Cn) to a k-dimensional vector bundle (f ∗(γk

n)) over X.

Moreover, it is well known that Gk(C∞) acts as the classifying space of k-dimensional

complex vector bundles over paracompact spaces, thus each k-dimensional vector

bundle over a paracompact X corresponds to a bundle of the form f ∗(γkn) and iso-

morphisms classes of k-dimensional vector bundles over X bijectively correspond to

homotopy classes of maps in C(X,Gk(Cn) ).

In a somewhat similar vein to a map f ∈ C(X,Gk(Cn) ) generates a vector bundle,

a map a ∈ C(X,S(n, k, l) ) generates a bundle over X. Indeed, for each such map a

let ξa be the triple (E(a), π1, X) where,

E(a) = {(x, v) ∈ X × Cn : x ∈ X, v ∈ a(x)(Cn)}

and π1 : E(a)→ X is the restriction of the coordinate projection of X ×Cn on X to

E(a).

While each fiber of a bundle ξa is a vector subspace of Cn, in general bundles of

this form are not vector bundles as they fail to be locally trivial. In fact, a typical

bundle of the form ξa does not even have a constant fiber. Nonetheless the restrictions

of these bundles to certain subsets of X are vector bundles, and thus one may seek

to apply classical vector bundle theory to establish certain useful structure properties

of these bundles. From the [38] (c.f. [31]) such an approach to understanding the

structure of bundles ξa works best when a is in a certain special class called well
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supported positive elements. It is an immediate consequence of [38, Theorem 3.9] that

each a ∈ C(X,S(n, k, l)) is homotopic to some well supported b ∈ C(X,S(n, k, l))

(Lemma 3.1.1).

Following [37], we view a, b ∈ C(X,S(n, k, l)) as bundles over X in the above sense

and use the structure of these bundles to establish the homotopy equivalence of a, b

whenever
⌊
dimX

2

⌋
≤ k − l . Therein our method of proof of Theorem 3.1.4 involves

two main ideas. For any a ∈ C(X,S(n, k, l)) we seek to find some ã ∈ C(X,S(n, k, l))

which is homotopic to a and some trivial vector bundle η over X of dimension l such

that η is a sub-bundle of ξã. Using the notion of well supported positive elements and

stability properties of vector bundles we show that this is indeed possible. Modulo

the identification of vector bundles over X with projections in matrix algebras of

C(X) ( [34]), the proof of Theorem 3.1.4 is now complete if we establish that Gl(Cn)

acts as the classifying space of l-dimensional vector bundles over X for all compact

Hausdorff X with
⌈
dimX

2

⌉
≤ n− l and our second step is to prove this.

Indeed from the first step (after identifying vector bundles with projections) for

any given a, b ∈ C(X,S(n, k, l) ) with
⌊
dimX

2

⌋
≤ k − l there is a pair of projections

pa, pb ∈Mn(C(X)) of rank l which generate isomorphic vector bundles such that a, b

are homotopic to pa, pb respectively in C(X,S(n, k, l) ). Then, as we may assume

n > k we have
⌈
dimX

2

⌉
≤ n − l and from the conclusion of the second step pa is

homotopic to pb in C(X,S(n, k, l) ).

We note that the fact of Gl(Cn) being the classifying space of l-dimensional vector

bundles over compact Hausdorff spaces X with
⌈
dimX

2

⌉
≤ n− l may well be a already

known result. After all for the special case of X been a CW -complex this fact is

stated in [21]. However, we could not find a clear reference of the conclusion for

general compact Hausdorff spaces and hence we include a proof in this generality in

Proposition 3.1.3.

From a topological view point it would have been more natural to prove the

conclusion of Corollary 3.1.5 independently and then attempt to use that conclusion

(i.e. triviality of lower homotopy groups) to derive the conclusion of Theorem 3.1.4.
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In Section 3.2 we show that such an approach would indeed have been possible and

moreover apply it in a slightly wider scope. We chose not to take this approach in

proving Theorem 3.1.4 for to two reasons. Firstly, it would not have any effect on the

main technicalities of our augments. Secondly, taking such an approach in proving

Theorem 3.1.4 would have by passed the use of Proposition 3.1.3, which we thought

could be of independent interest.

The main Theorem of Section 3.2 show that for a fixed d ∈ N , if πr(S(n, k, l)) = 0

for all r ≤ d, then C(X,S(n, k, l)) has precisely one homotopy class of maps for every

compact Hausdorff space X with dimX ≤ d. We achieve this by applying classical

dimension theory and homotopy theory techniques [14, 27, 45] together with some

C∗-algebraic ideas.

Given a triple (n, k, l), a question of natural interest now is to find a non vanishing

homotopy group of S(n, k, l), if such exists. In the two extreme cases n = k or l = 0

space S(n, k, l) is contractible and hence all homotopy groups vanish. If k = l,

S(n, k, l) is homotopy equivalent to the complex Grassmannian Gk(Cn) and thus

there are non vanishing homotopy groups of S(n, k, l). For an arbitrary triple (n, k, l)

this question remains open.

1.2 Dimension functions on C∗-algebras and Blackadar-Handelman con-

jectures

The notion of dimension functions extends the concept of rank of a matrix to

arbitrary operator algebras and has contributed to results of significant importance

in the field. For von-Neumann algebras dimension functions were first considered

in [26], where the notion played a crucial part in classifying factors. For the C∗-case

the notion was initiated by Cuntz in [12] where he introduced dimension functions

for simple unital C∗-algebras. We write DF (A) to denote the space of all dimension

functions of a C∗-algebra A.
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One main motivations of [12] was to provide methods to incorporate the techniques

developed in [17] to study the notion of dimension functions on C∗-algebras. In

particular Cuntz looked to identify DF (A) of a C∗-algebra A with the state space

of a suitable partially ordered abelian group G and apply the theory on such state

spaces developed in [17] to analyze dimension functions. Cuntz accomplished this by

associating the semigroup W (A) (Cuntz semigroup) to a (unital simple) C∗-algebra A

and confirming that DF (A) is naturally homeomorph to the state space of K0
∗(A) ,

the Grothendieck enveloping group of W (A). Cuntz semigroup is a natural extension

of the Murray-von Neumann semigroup of projections to positive elements in M∞(A)

and is equipped with a translation invariant partial order. W (A) is now understood to

be an important isomorphism invariant for C∗-algebras and unraveling its’ structure

has become a fundamental research topic.

The ideas of [12] extends naturally to arbitrary (i.e possibly non-simple or non-

unital) C∗-algebras. Continuing from [12], Handelman [20] and later Blackdar and

Handelman [6] developed a more general and a detailed theory for dimension func-

tions on C∗-algebras. One important consequence of [6] is a representation theorem

for lower semicontinuous dimension functions (LDF(A)) via normalized quasitraces

(QT (A)).

Recall that a (normalized) quasitrace is a complex-valued function on a C∗-algebra

having all the usual properties of a (normalized) positive trace, but with linearity

assumed only on commutative C∗-subalgebras. From [19] for unital and exact A

every (normalized) quaitrace is a (normalized) trace.

Given τ ∈ QT (A) there corresponds a lower semicontinuous dimension function

dτ : M∞(A)+ → [0,∞) given by

dτ (a) = lim
n→∞

τ(a
1/n),∀a ∈M∞(A)+.

Blackadar and Handelman in [6] showed that the above assignment defines an affine

bijection from QT (A) onto LDF (A) and that the map has a continuous inverse.

We focus on two conjectures proposed in [6];
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Conjecture 1.2.1 [6] For any C∗- algebra A, LDF (A) is dense in DF (A) in the

topology of pointwise convergence.

Conjecture 1.2.2 [6] For any C∗- algebra A, the affine space DF (A) is a simplex.

From the aforementioned identification of LDF (A), Conjecture 1.2.1, if true, al-

lows to approximate arbitrary dimension functions through better behaved and more

intrinsic ones that corresponds to quasitraces. On the other hand the notion of a

simplex generalize the concept of a standard n-simplex. Compact simplexes are of

particular importance and are commonly referred to as Choquet simplexes. There is

a well developed theory on Choquet simplexes - see [15]. Note that Conjecture 1.2.2

if true, would imply that DF (A) is Choquet for a unital A. Thus positive answers to

either of the conjectures provide useful tools that could be applied to derive properties

of DF (A) which in turn could provide details on the structure of W (A).

For non stably finite C∗-algebras the conjectures hold trivially, as in this case

K0
∗(A) = 0 and DF (A) is the empty set. In the stably finite case there are various

regularity conditions on C∗-algebras that imply at least one of the conjectures to be

true. We outline these in the proceeding paragraph.

Conjecture 1.2.2 holds for unital commutative A by [6, Theorem I.2.4]. In [29,

Corollary 4.4], Conjecture 1.2.2 is confirmed for unital C∗-algebras of real rank zero

and stable rank one. The most general results on the conjectures that we are aware

of appear in [9]. Theorem B of [9] confirm both the conjectures for unital, simple,

separable, stably finite C∗- algebras which are either exact and Z-stable or are AH-

algebras of slow dimension growth. Furthermore [9, Remark 6.5] show that for exact

A Conjecture 1.2.1 holds if A is assumed to have strict comparison instead of Z-

stability. Applying the methods in [9], both the conjectures are confirmed for several

classes of continuous fields of C∗-algebras in [1].

The above confirmations of the conjectures are more or less consequences of two

structure theorems for W (A) (i.e. [29, Theorem 2.8] and [9, Theorems 6.4 and 6.6]).

Apart form their usefulness in establishing the conjectures these structure theorems



8

have other important applications - see [10] for an example. However, for the purpose

of confirming the conjectures such theorems are too strong requirements to ask for.

To our knowledge there has not been any work focusing on the conjectures alone and

we attempt to step in this direction. Note that we will be only considering conjectures

in the unital case.

In Chapter 5 we mainly focus on Conjecture 1.2.1. We investigate the possibility

of applying theory on state spaces of partially ordered semigroups developed mainly

in [8] (c.f [17]) to confirm Conjecture 1.2.1 for a wider range of unital C∗-algebra. As

it turns out this can be readily achieved. These techniques (of [8]) allow us to prove

the following theorem which give an alternate form of Conjecture 1.2.1 for unital A.

Theorem 5.1.1 Let A be a unital C∗-algebra. Then LDF (A) is dense in DF (A) if

and only if ι : (W (A), 〈1A〉)→ (LAff b(QT (A))+, 1) is a stable order embedding.

By LAff b(QT (A))+ we mean the partially ordered abelian semigroup of bounded

non negative lower semicontinuous affine maps on QT (A) and ι is given by ι(〈a〉)(τ) =

dτ (a),∀τ ∈ QT (A). Stable order embedding is a notion introduced in [8].

In a sense Theorem 5.1.1 provides a weaker form of the representation of W (A)

given in [9, Theorem 6.4].

Using the above we confirm the conjectures in the following cases.

Theorem 5.2.5 Let A be any unital C∗-algebra. The following hold.

1. If A has finite radius of comparison then LDF (A) is dense in DF (A).

2. If W (A) almost unperforated then LDF (A) is dense in DF (A).

3. If ∂e(QT (A)) is a finite set and if either of the assumptions above (in 1,2) holds

for A then DF (A) = LDF (A) and DF (A) is affiinely homeomorphic to QT (A). In

particular DF (A) is a Choquet simplex.
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To prove (1) and (2), we verify that the alternate form of Conjecture 1.2.1 provided

in Theorem 5.1.1 hold in the respective classes. In (1) this is done by applying

techniques of [8] once more while in the second case this is done by following the

ideas of [33]. Combining the conclusions of parts 1 and 2 with Lemma 5.2.4 which is

mainly a consequence of Krein-Milman Theorem, we prove (3).

On the one hand these results do not assume simplicity or exactness as in [9] and

on the other hand finite radius of comparison is a considerably weaker assumption

than any of the regularity assumptions considered in [9]. Most of the continuous fields

considered in [1] are also known to have finite radius of comparison.

In particular, the counter examples for Elliott’s classification conjecture con-

structed in [36] and Villadsen algebras of type I [41] have finite radius of comparison

but are not covered by [9]. Furthermore Villadsen algebras of type II [42] are of finite

radius comparison with a unique quasitrace, and thus satisfy both conjectures from

Theorem 5.2.5. This means that for each n ∈ N, we now know that there are unital

algebras of stable rank n which satisfy the conjectures.

For simple C∗-algebras, almost unperforation of W (A) is equivalent to strict com-

parison (i.e zero radius of comparison) and thus the second case may seem redundant

when compared to 1. However, in general (without simplicity) it is not clear how the

two properties relate to each other.

From [15, Theorem 10.17] the state space of an interpolation group is a Choquet

simplex. Thus, for any unital C∗-algebra A if the ordered group K0
∗(A) is an inter-

polation group then Conjecture 1.2.2 holds for A. In fact, each of the confirmations

of Conjecture 1.2.2 that are known to us goes through this fact. In other words,

in each of those cases the group K∗0(A) was shown to have the Riesz interpolation

property [1, 9, 29].

The existing techniques that can be applied to show that K0
∗(A) is an inter-

polation group are limited in scope. For instance, in [9] and [29] the interpolation

property of K0
∗(A) is derived yet again from the respective structure theorems for

W (A) (i.e [9, Theorem] and [29, Theorem 2.8]) and as pointed out before both these
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theorems require the C∗-algebra A to have strong regularity properties. Moreover,

the interpolation assumption on W (A) is in itself a strong regularity condition for

a C∗-algebra A. Hence, to confirm Conjecture 1.2.2 for a larger class of unital C∗-

algebras it is both natural and desirable to find out the ways in which the hypothesis

of [15, Theorem 10.17] could be relaxed.

In Chapter 6 we investigate a class of scaled partially ordered abelian groups that

satisfy a weaker notion of interpolation (Definition 6.2.3). We name such groups as

ordered groups with stably approximate interpolation. Analogues to the case of inter-

polation groups this weaker notion of interpolation has equivalent characterizations

of decomposition and refinement types (Proposition 6.2.2). In Corollary 6.3.7, which

is the main result of the chapter, we show S(G, u) to be a Choquet simplex for any

scaled ordered group G which belongs to this class of groups. Our proof is based very

much on the ideas of [15]. We simply show that the techniques used in [15] in proving

Theorem 6.1.4 for interpolation groups can be adopted to our case after some modi-

fications. The class of ordered groups we consider is strictly larger than the class of

interpolation groups. In particular these include the asymptotic interpolation groups

considered in [28] (see Example 6.2.4).

Corollary 6.3.8 provides a method of confirming Conjecture 1.2.2 to a boarder

class of C∗-algebras. There are C∗-algebras where the respective K0
∗ groups are not

interpolation groups but sill exhibit stably approximate interpolation (see proof of

6.4.4). However, our work is not complete in this regard as we do not have an example

for a class of C∗-algebras where K∗0(A) has stably approximate interpolation but does

not have asymptotic interpolation (in the sense of [28]). Apart from its relevance in

confirming the second Conjecture, the notion of stably approximate interpolation can

potentially generalize certain other results from the theory of interpolation groups.

At the end of Chapter 6 we point out some observations and possibilities for future

work, in these directions.
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2. PRELIMINARIES AND NOTATIONS

2.1 C∗-algebras.

We recall some basic definitions, results and terminology from C∗-algebra theory.

Our main references for this section are [23] and [25].

Let A be an associative algebra over C. Let ∗ : A → A be a conjugate linear

involuntary operation. We will denote the image of a ∈ A under ∗ by a∗. If ∗ is such

that (ab)∗ = b∗a∗,∀a, b ∈ A, ∗ is called an adjoint operation on A and the pair (A, ∗)

is called a ∗-algebra. A sub-∗-algebra of (A, ∗) is a subalgebra of A which is closed

under the ∗-operation.

Recall that a complex Banach algebra is an associative complex algebra A together

with Banach space norm || · || which satisfy ||ab|| ≤ ||a||||b||, ∀a, b ∈ A.

Definition 2.1.1 Let (A, ||·||) be a complex Banach algebra and (A, ∗) be a ∗-algebra.

Then (A, ∗, || · ||), or simply A when ∗ and || · || are clear, is said to be a C∗-algebra

if ||a∗a|| = ||a||2 for all a ∈ A.

A C∗-algebra A is called unital if A is unital as an algebra. If A is unital we

denote the unit by 1A or simply 1 when the context is clear.

It follows that for all a in a C∗-algebra A, ||a|| = ||a∗||.

The condition ||a∗a|| = ||a||2 is called the C∗-identity of the norm. A norm

(not necessarily complete) on a ∗-algebra A which satisfies the above with ||ab|| ≤

||a||||b|| ∀a, b ∈ A is called a C∗-norm. There is at most one complete C∗-norm on a

∗-algebra.

A non empty subset B of a C∗-algebra A is a sub-C∗-algebra of A if B together

with operations and norm inherited by A form a C∗-algebra of its own right. Thus,

B is a sub-C∗-algebra of A if and only if B is norm closed sub-∗-algebra of A.
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Examples:

i). C together with usual operations and norm.

ii). Mn(C) with usual operations and operator norm on matrices.

iii). The set of all bounded linear operators B(H), on a Hilbert space H, together

with the usual operations and operator norm.

iv). C0(X) - the algebra of complex valued continuous functions on a locally

compact Hausdorff space X that vanish at infinity, together with the sup norm || · ||∞
and point-wise conjugation as the adjoint.

In the above examples, all but (iv) are unital and (iv) is unital if and only if X is

compact. From 2.2.9 any abstract commutative C∗-algebra is of the form (iv).

Definition 2.1.2 Let A,B be C∗-algebras. φ : A → B is called a ∗-homomorphism

if φ is linear, multiplicative and satisfy φ(a∗) = φ(a)∗,∀a ∈ A. If in addition φ is

bijective then its called a ∗-isomorphism. If A and B are unital and φ is such that

φ(1A) = 1B then φ is called an unital ∗-homomorphism.

Any abstract C∗-algebra can be faithfully represented as a sub-C∗-algebra of B(H)

for some Hilbert space H.

Theorem 2.1.3 (Gelfand-Naimark) For each C∗-algebra A there is a Hilbert space

H and an isometric ∗-homomorphism φ : A→ B(H). If A is seperable (i.e. contain

a countable dense subset) then H can chosen to be separable.

Let A be a C∗-algebra and I be a two sided (algebraic) ideal of A. Then I is

automatically ∗-closed. Hence, its a sub-C∗-algebra iff its norm closed.

In this case (I norm closed), the quotient algebra A/I = {a + I : a ∈ A} can

be equipped with a complete norm given by ||a + I|| = inf{||a + x|| : x ∈ I} and a

well defined adjoint operation given by (a + I)∗ = a∗ + I. In this way A/I becomes

a C∗-algebra and the quotient mapping π : A → A/I is a ∗-homomorphism with

Ker(π) = I.

A unital extension of a C∗-algebra A is any unital C∗-algebra which contain A

as a closed ideal. For every C∗-algebra A there is a unitization Ã with Ã/A = C.
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Ã is unique (up to isomorphism) with respect to this property and is the minimal

nontrivial unitization of A. That is, for any unitzation B of A with B/A 6= 0 there is

an injective ∗-homomorphism ι : Ã→ B such that ι(a) = a,∀a ∈ A. In particular, we

may construct Ã by setting Ã to be A⊕C as a vector space and defining multiplication

and adjoint operation by (a, λ)(b, µ) = (ab + λb + µa, λµ) and (a, λ)∗ = (a∗, λ),

respectively. With these operations A ⊕ C form a ∗-algebra that contains A as an

ideal and the norm of A extends to a (necessarily) unique norm on A⊕C that makes

A⊕ C a C∗-algebra.

If φ : A→ B is a ∗-homomorphism then there is a unique unital ∗-homomorphism

φ̃ :→ Ã→ B̃ that extends φ.

2.2 Functional calculus for normal elements in a C∗-algebra.

If A is an unital Banach algebra, a ∈ A is said to be invertible if there is b ∈ A

such that ab = ba = 1. Set of all invertible elements of A is denoted by Inv(A).

Inv(A) is an open set in A.

If a ∈ A with A unital, the spectrum of a is the set {λ ∈ C : λ1A − a /∈ Inv(A)}

and is denoted by σA(a). For any untial Banach algebra A, σA(a) is a non-empty

compact subset of C for every a ∈ A.

If A is a non unital C∗-algebra A, we embed A in Ã and define spectrum of a by

viewing a as an element in Ã.

From the definition, the spectrum of an element in a Banach algebra σ(a) depends

on the ambient algebra A. However, in the C∗-case this dependence is superficial.

Theorem 2.2.1 Let B be sub-C∗-algebra of C∗-algebra A and let a ∈ B. The fol-

lowing hold;

1. If A is unital and 1A ∈ B (hence B is also unital) then σA(a) = σB(a).

2. If A is non unital or is unital with 1A /∈ B, then σA(a) = σB(a) ∪ {0}.

This independence of the spectrum of a on the ambient C∗-algebra is vital property

in C∗-algebra theory.



14

Theorem 2.2.2 Let A,B be C∗-algebra and φ : A → B be a ∗-homomorphism.

Then, σ(φ(a)) ∪ {0} ⊂ σ(a) ∪ {0},∀a ∈ A. Moreover if A,B and φ are unital then

σ(φ(a)) ⊂ σ(a),∀a ∈ A.

Proof Suppose first that A,B and φ are unital. Then, φ(Inv(A)) ⊂ Inv(A) and

hence if λ1B−φ(a) is not invertible in B then λ1A−φ(a) is not invertible in A. Thus,

σ(φ(a)) ⊂ σ(a).

In general if φ : A → B is a ∗-homomorphism consider the unique unital ∗-

homomorphism φ̃(a) : Ã→ B̃ that extends φ. Now from 2.2.1, σÃ(a) = σA(a) ∪ {0}

and σB̃(φ(a)) = σB(φ(a)) ∪ {0}. Since φ̃ is unital, using what we showed above, we

get σ(φ(a)) ∪ 0 ⊂ σ(a) ∪ {0}.

Definition 2.2.3 Let a be an element in a C∗-algebra. Then the supremum of σ(a)

is called the spectral radius of a. We will denote this by r(a).

Note that r(a) ≤ ||a|| for every a ∈ A.

Theorem 2.2.4 If a ∈ A, where A is a C∗-algebra, r(a) = limn→∞ ||an||1/n.

Theorem 2.2.3 holds for unital Banach algebras [25].

An element a in a C∗-algebra is called self adjoint if a∗ = a. Set of all self

adjoint elements is denoted by Asa. For a ∈ Asa, σ(a) ⊂ R. a is said to be normal

if a∗a = aa∗. In particular any self adjoint element or any element in a abelian

C∗-algebra is normal.

Following simple result paves the way for Gelfand representation (Theorem 2.2.9)

of abelian C∗-algebras and hence, for the functional calculus for normal elements in

arbitrary C∗-algebras. Functional calculus extends the spectral theorem for normal

matrices over C. It is one of the most important and widely used theorems in C∗-

algebra theory. We will encounter several applications of the Theorem in Chapter

3.

Theorem 2.2.5 If a ∈ A is self adjoint then r(a) = ||a||.
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Proof Suppose a = a∗. By C∗-identity of the norm we get, ||a||2 = ||a∗a|| = ||a2||.

Moreover, by induction ||a||2n = ||a2n||,∀n ∈ N. Hence, by 2.2.5,

r(a) = lim
n→∞

||an||1/n = lim
n→∞

||a2n||1/2n = lim
n→∞

(||a||2n)
1/2n = ||a||.

Remark: From Corollary 2.2.5, if a ∗-algebra admits a complete C∗-norm then that

norm is unique.

Corollary 2.2.6 Let φ : A→ B be a ∗-homomorphism. Then φ is norm decreasing.

Proof By Theorem 2.2.2, r(φ(c)) ≤ r(c),∀c ∈ A. Thus, by Theorem 2.2.5,

||φ(a)∗φ(a)|| = r(φ(a)∗φ(a)) ≤ r(a∗a) = ||a∗a||.

By C∗-identity of the norms, ||φ(a)||2 ≤ ||a||2,∀a ∈ A and φ is norm decreasing.

A character on a Banach algebra A is a non zero homomorphism (i.e. a multi-

plicative linear map) from A into C. Set of all characters on A is denoted by Ω(A).

Theorem 2.2.7 Let A be an abelian Banach algebra and let a ∈ A.

1. If A is untial, σ(a) = {γ(a) : γ ∈ Ω(A)}.

2. If A is non unital, σ(a) = {γ(a) : γ ∈ Ω(A)} ∪ {0}.

Each character γ is norm decreasing, and ||γ|| = 1 if A is unital. In particular,

for every Banach algebra A, Ω(A) ⊂ A∗ where A∗ is the Banach space dual of A.

If A is a C∗-algebra, each γ ∈ Ω(A) necessarily preserves adjoints, Thus, each γ is

a ∗-homomorphism into C. If γ ∈ Ω(A) then γ : Ã→ C given by γ(a+λ1) = γ(a)+λ

is a character on Ω(Ã) and is the unique character on Ã which extends γ.

From 2.2.7 and 2.2.5, Ω(A) is non empty for any C∗-algebra A. This is not true

for non unital Banach algebras.

Theorem 2.2.8 Let A be a non zero abelian C∗-algebra. Then Ω(A) is a non empty

locally compact Hausdorff space of A∗ in weak∗-topology. Ω(A) is compact if A is

unital.
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Let A be a Banach algebra with Ω(A) 6= ∅. For each a ∈ A, let â : Ω(A) → C

denote the evaluation function given by â(γ) = γ(a),∀γ ∈ Ω(A). It is easily seen that

â is well defined and moreover is a function in C0(Ω(A)). This â is called the Gelfand

transform of a. The map taking a to its Gelfand transform is a homomorphism

but in general its neither injective nor surjective. In the C∗-case this map is always

defined and is moreover an ∗-isomorphism. We call this the Gelfand representation

of a abelian C∗-algebra.

Theorem 2.2.9 (Gelfand) Every abelian C∗-algebra is isometrically isomorphic to

the C∗-algebra C0(X) for some locally compact Hausdorff space X.

Proof Set X = Ω(A). By 2.2.8 X is non empty locally compact Hausdorff space

and ψ : A→ C0(X) given by a 7→ â gives a ∗-homomorphism from A to C0(X).

By C∗-identity and 2.2.5, ||a||2 = ||a∗a|| = r(a∗a). On the other hand, from 2.2.7,

r(a∗a) = supγ∈Ω(A) ||γ(a∗a)|| = || ˆ(a∗a)||∞. Thus, ||a||2 = ||â||2∞ and the mapping

a 7→ â is an isometry.

Then ψ(A) ⊂ C0(X) is a || · ||∞-closed sub-∗-algebra that separates points of

X and does not vanish identically at any point of X. Hence, by Stone-Weierstrass

Theorem ψ(A) is whole of C0(X). Thus a 7→ â is indeed a isometric ∗-isomorphism.

Note from the above that A is unital if and only if Ω(A) is compact and in this

case A is isomorphic to C(X).

We recall the (continuous) functional calculus for normal elements in a C∗-algebra.

For a1, a2, ..ak in a C∗-algebra A, C∗(a1, a2, ..., ak) denotes the sub-C∗-algebra of A

generated by a1, a,2 , ..., ak.

Theorem 2.2.10 Let A be a unial C∗-algebra and let a ∈ A be a normal element.

Then there exists an unique (unital isometric) ∗-isomorphism ϕ : C(σ(a))→ C∗(a, 1)

with ϕ(ι) = a where ι : σ(a)→ C is given by ι(z) = z,∀z ∈ σ(a).
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Proof B = C∗(a, 1) is an unital abelian C∗-algebra. Let ψ : B → Ω(B) be the

Gelfand representation of B. â : Ω(B) → σ(a) is a homeomorphism and hence,

f 7→ f ◦ â is a ∗-isomorphism from C(σ(a)) to C(Ω). Clearly ϕ : C(σ(a)) → B

defined by, f 7→ ψ−1(f ◦ â) is a ∗-isomorphism. Since ψ(a)(γ) = γ(a) and ι ◦ â(γ) =

ι(â(γ)) = ι(γ(a)) = γ(a) for all γ ∈ Ω(A), we have ϕ(ι) = a. Obviously ϕ is unital.

From Stone-Weierstrass Theorem C(σ(a)) is the C∗-algebra generated by ι and 1.

Hence, ϕ is the unique ∗-isomorphism from C(σ(a)) to C∗(a, 1) with ϕ(ι) = a.

Remarks:

1. ϕ provided in Theorem 2.2.10 is called the functional calculus at a. For any

f ∈ σ(a) it is customary to write f(a) to denote ϕ(f). This notation agrees with the

definition of f(a) when a is a polynomial and f(a) ∈ C∗(a) iff f ∈ C0(σ(a)).

2. If a is a normal element in a non unital C∗-algebra A, we view a as an element

in Ã and define the functional calculus for a. Then, for f ∈ C(σ(a)), f(a) is in general

an element in Ã and f(a) ∈ A if and only if f(0) = 0.

3. Let A,B be untial C∗-algebras and φ : A→ B be an unital ∗-homomorphism.

Then form 2.2.2, σ(φ(a)) ⊂ σ(a). Thus for all f ∈ C(σ(a)), f(φ(a)) is well defined.

Moreover, we have f(φ(a)) = φ(f(a)). In particular, if γ : A→ C is a character then

γ(f(a)) = f(γ(a)).

An element a in a C∗-algebra A is said to be positive if a is self adjoint and

σ(a) ⊂ [0,∞). Set of all positive elements of A is denoted by A+. From Theorem

2.2.10, a ∈ A+ if and only if a = b∗b for some b ∈ A. In particular from 2.2.10, for

each a ∈ A+ there is a unique element c ∈ A+ such that c2 = a. Indeed, we simply

set c = f(a) where f ∈ C(σ(a)) is the function given by f(t) = t1/2. Such c is called

the square root of A and is unique for given a. The subset A+ form a cone in A.

Theorem 2.2.11 Let A be an untial C∗-algebras and a ∈ A a normal element. Then,

for every f ∈ C(σ(a)), σ(f(a)) = f(σ(a)) and for all g ∈ C(f(a)), g(f(a)) = (g◦f)(a)
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Proof Let B = C∗(a, 1). Then f(a) ∈ B and σ(f(a)) = {γ(f(a)) : γ ∈ Ω(B)} =

{f(γ(a)) : γ ∈ Ω(B)} = f(σ(a)). Note that the second equality holds by remark 2

above.

To show the second part, set C = C∗(f(a), 1). Then C ⊂ B is an unital sub-

C∗-algebra and each γ ∈ Ω(B) restricts to character γC on C. By applying remark

2 above again, for each g ∈ σ(f(a)), γ((g ◦ f)(a)) = (g ◦ f)(γ(a)) = g(f(γ(a))) =

g(γ(f(a)) = g(γC(f(a)) = γC(g(f(a))) = γ(g(f(a))). As this holds for all γ ∈ Ω(B),

(g ◦ f) = g(f(a)).

In some sense the following Lemma [23, Lemma 2.2.3] provide a uniform continuity

result for the functional calculus. We find this to be useful.

Lemma 2.2.12 [23, Lemma 2.2.3] Let K ⊂ R be compact and non empty. Suppose

f : K → C is a continuous function. Let A be an unital C∗-algebra and FK be the set

of all a ∈ Asa with σ(a) ⊂ K. Then the function from FK to A induced by f via the

functional calculus (i.e. given by a 7→ f(a)) is continuous.

For ε ≥ 0, let fε : [0,∞)→ [0,∞) be defined by,

fε(t) = max{ε, t},∀t ∈ [0,∞).

If A is any C∗-algebra and a ∈ A+ we will use (a − ε)+ to denote the positive

element fε(a) given by the functional calculus of a. Note that ||a − (a − ε)+|| < ε

and approximating a by (a− ε)+ is a useful technical tool in C∗-algebra theory that

applies in many instances. We will encounter various applications of the technique.

Proposition 2.2.13 [33, Proposition 2.2] Let A be a C∗-algebra and a, b ∈ A. Let

ε > 0 and suppose that ||b− a|| < ε. Then there exists c ∈ A such that,

(a− ε)+ = c∗bc.

A pair of positive elements a, b ∈ A are said to be Murray-von Neumann equivalent

if there is some v ∈ A such that a = v∗v and b = vv∗.
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Lemma 2.2.14 ( [13, Lemma 3.3] c.f. [22]) Suppose a, b ∈ A+ are Murray-von

Neumann equivalent. Then for any continuous function f : [0,∞) → [0,∞) with

f(0) = 0, f(a) and f(b) are Murray-von Neumann equivalent.

2.3 Matrix algebras

Let A be a C∗-algebra. For n ∈ N let Mn(A) denote the set of all n× n matrices

over A. Equip Mn(A) with usual C-algebra structure and define [aij]
∗ = [bij] where

bij = (aji)
∗,∀1 ≤ i, j ≤ n for each matrix [aij] ∈ Mn(A). One can define a C∗-norm

on Mn(A) as follows.

Recall from the Gelfand-Naimrak Theorem (Theorem 2.1.3) there is a Hilbert

space H and an isometric ∗-homomorphism ϕ : A→ B(H). Choose any such ϕ and

define ϕn : Mn(A)→ B(Hn), where Hn is the n-fold direct sum of H with it self, by

setting

ϕn([aij])((ξi)1×n) = [ϕn(ai1)(ξ1) + ϕn(ai2)(ξ2) + ...+ ϕn(ain)(ξn)]1×n,

for all v ∈ Hn. Define a norm on Mn(A) by ||a|| = ||ϕn(a)||, ∀a ∈Mn(A). It is easily

verified that this norm is indeed a C∗-norm on the ∗-algebra A and is complete.

Combining all these we get a C∗-algebraic structure on Mn(A). Since there is at most

one choice for a norm that makes a given ∗-algebra a C∗-algebra, the norm on Mn(A)

defined above is independent from the choice of the isometric representation ϕ.

Given a1, a2, ..., an in a C∗-algebra A, we write diag(a1, a2, ..., an) to represent the

diagonal matrix which has a1, a2, ..., an in the main diagonal.

Mn(A) is unital iff A is unital and diag(1, 1, .., 1)n×n is the unit in this case.

If A,B are C∗-algebras and φ : A → B is a ∗-homomorphism then there is a

natural ∗-homomorphism φn : Mn(A)→Mn(B) given by φn([aij]) = [φ(aij]). We will

simply write φ in place of φn when the context is clear.
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For any C∗-algebra A and n,m ∈ N then one has the natural identification

(Mm(A))n ∼= Mmn(A) and one can view Mn(A) to be a sub-C∗-algebra of Mn+m(A)

via the upper left hand corner embedding. That is, we identify a ∈Mn(A) with a 0n×m

0m×n 0m×m


which is an element in Mm+n(A). We write a⊕ 0m×m to represent this matrix. More

generally for a ∈Mn(A) and b ∈Mm(A), we write a⊕ b to denote the matrix a 0n×m

0m×n b

 .

Using the above identifications let M∞(A) =
⋃
n∈N

Mn(A). M∞(A) is a ∗-algebra and

the canonical norm it inherits is clearly a C∗-norm, but it is not a complete norm.

2.4 Equivalence of projections in C∗-algebras and Murray-von Neumann

semigroup of projections

An element p in a ∗-algebra A is called a projection if p = p2 = p∗. We will write

P(A) to denote the set of all projections in A. If A is C∗-algebra a projection is always

positive and is of norm 1 if its non zero. In fact for every p ∈ P(A), σ(p) ⊂ {0, 1}. If

φ : A→ B is a ∗-homomorphism and p ∈ P(A) then φ(p) ∈ P(B).

There are three important equivalence relations on the set P(A). In this section we

aim to define these relations, recall how they compare with each other and then intro-

duce the Murray-von Neumann semigroup of projections for C∗-algebras. In chapter

3 we look to reduce the question of homotopy equivalence of maps in C(X,S(n, k, l))

to a question about homotopy equivalence of projections in Mn(C(X)). Our main

purpose in this and the next two sections is to build the background for that.

u ∈ Inv(A) is called a unitary if u∗ = u−1. The set of all unitaries of an unital

C∗-algebra A is denoted by U(A). A path in a C∗-algebra A is continuous map

f : [0, 1]→ A.
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Definition 2.4.1 Let A be a C∗-algebra and p, q ∈ P(A).

1. p is Murray von Neumann equivalent to q (p ∼ q), if p = v∗v and q = vv∗ for

some v ∈ A.

2. p is unitary equivalent to q (p ∼u q), if p = u∗qu for some u ∈ U(Ã).

3. p is homotopy equivalent to q (p ∼h q), if p = f(0) and q = f(1) for a

projection valued path f .

Remarks:

1. All three relations defined above are equivalence relations.

2. If A is an untial C∗-algebra and p, q ∈ P(A) with p ∼u q then there is a unitary

u ∈ A such that p = u∗qu.

Proposition 2.4.2 explain how the three relations compare with each other.

Proposition 2.4.2 [23, Proposition 2.2.7] Let p, q be projections in a C∗-algebra A.

1. If p ∼ q then p ∼u q.

2. If p ∼u q then p ∼h q.

The following gives useful criteria to determine the equivalence of projections.

Proposition 2.4.3 [23, Proposition 2.2.4] If p, q ∈ A are projections in a C∗-algebra

A and ||p− q|| < 1 then p ∼h q.

In the simplest case of A = C all three relations are equivalent to saying that ranks

of the projections p, q are the same. However neither of the reverse implications hold

in general.

Examples: [23]

1. An isometry in an unital C∗-algebra is an element s such that s∗s = 1. An

isometry is invertible iff it is an unitary element. There are C∗-algebras which contain

non unitary isometries. If s is such an isometry in some unital A one has 1 = s∗s ∼

ss∗, but 1 and ss∗ are not unitary equivalent. In particular, if s is the unilateral shift

in B(l2(N )) given by s(x1, x2, x3, ....) = (0, x1, x2, x3, ....) then ss∗ ∼ 1 but ss∗ �u 1.
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2. C∗-algebra C(T3), contain a pair of projections p, q with p ∼u q but p �h q.

The verification of this fact utilize K-theoretic arguments and can be found in [23].

While the above examples do show the three relations to be distinct in P(A),

when the relations are extended to include projections in all matrix algebras over A

the relations are equivalent to each other.

Proposition 2.4.4 [23, Proposition 2.2.8] Let p, q be projections in a C∗-algebra A.

1. If p ∼ q then (p⊕ 0) ∼u (q ⊕ 0) in M2(A).

2. If p ∼u q then (p⊕ 0) ∼h (q ⊕ 0) in M2(A).

Let P∞(A) = P(M∞(A)) =
⋃
n∈N
P(Mn(A)).

Definition 2.4.5 Let A be a C∗-algebra. Let p, q ∈ P∞(A).

1. p is Murray-von Neumann equivalent to q if there is m ∈ N such that there are

p′ ,q′ in Mm(A) that represent p,q respectively with p′ ∼ q′ in Mm(A).

2. p is unitary equivalent to q if there is m ∈ N such that there are p′ ,q′ in

Mm(A) that represent p,q respectively with p′ ∼u q′ in Mm(A).

3. p is homotopy equivalent to q if there is m ∈ N such that there are p′ ,q′ in

Mm(A) that represent p,q respectively with p′ ∼h q′ in Mm(A).

From Proposition 2.4.4 it is immediate that the there equivalence relations above

are equivalent. We write ∼0 to denote either of these identical relations. The equiv-

alence class of a projection p ∈ P∞(A) with respect the relation ∼0 is denoted by

[p]0.

Murray-von Neumann semigroup of a C∗-algebra.

For a C∗-algebra A, let D(A) = {[p]0 : p ∈ P∞(A)}. For [p]0,[q]0 in D(A) let

[p]0 + [q]0 = [p ⊕ q]0. The equivalence class [p ⊕ q]0 does not depend on the choice

of the representations of the equivalence classes in left hand side. Thus + is a well

defined operation and is associative. The Murray-von Neumann semigroup of A is
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the pair (D(A),+). For simplicity we will write D(A) to denote the semgroup as well.

D(A) is abelian and [0]0 acts as an identity in D(A).

If A = Mn(C(X)) for some compact Hausdorff space X and n ∈ N, equivalence

classes of projections in P∞(A) naturally correspond to isomorphism classes of vector

bundles over the space X. This correspondence is essentially a consequence of a

classical Theorem of Swan [34]. In the next two sections we recall the theory of

vector bundles and then proceed to give a brief outline of the above correspondence.

Our ultimate goal is to use this identification to avail vector bundle techniques (in

particular stability properties and homotopy classification) in constructing certain

rank constrained homotopies in the positive cone of Mn(C(X)) in Chapter 3.

2.5 Complex Vector Bundles.

Most of the results of this and the proceeding section are well known. Our main

references for vector bundle theory is Husemoller [21]. The identification of vector

bundles with projections in P∞(C(X)) is essentially contained in the work of Swan

[34]. For the sake of completeness, we include proofs in cases where we did not find

clear references in the literature.

Unless stated otherwise throughout the chapterX will denote a compact Hausdorff

space. The base field of all vector spaces we consider is the field of complex numbers

C.

Definition 2.5.1 [21] A bundle is a triple (E, π,B) where B,E are topological

spaces and π : E → B is a continuous map. Space B is called the base space of

the bundle and E is called the total space.

We will use Greek letters such as ξ, ζ, γ, .. to denote bundles.

Examples:

1. Let ξ = (B × F, π,B) where B,F are topological spaces and π : B × F :→ B

be the projection on the first coordinate. ξ is a bundle over B and is called a product

bundle.
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2. Let a : B → Mn(C) be continuous. Let E = {(x, v) : v ∈ a(x)(Cn)} ⊂ B × Cn

and π : E → B be the restriction of the coordinate projection of B × Cn onto B to

the set E. Then ξa = (E, π,B) is a bundle over B.

A bundle (F, q, B′) is a subbundle of a bundle (E, p,B) if F ⊂ E, B′ ⊂ B and

q = p|F .

Definition 2.5.2 Let ξ = (E, p,B) and ζ = (F, q, B′) be bundles. A morphism of

bundles from ξ to ζ is a pair of continuous maps (u, f) with u : E → F , f : B → B′

and uq = pf . If both f, u are homeomorphisms then the pair (u, f) is said to be an

isomorphism of bundles and the two bundles are said to be isomorphic.

If p in (E, p,B) is a surjection, then the map u of a bundle morphism (u, f) is

uniquely determined by the map f . If ξ and ζ are bundles over a space B a bundle

morphism (u, f) is called a B-morphism if f = 1B.

For a bundle (E, p,B) and b ∈ B, fiber over b mean the set p−1(b) and we will

denote this set by Eb.

Few bundle constructions:

1. The Whitney sum ξ1⊕ξ2 of the two bundles ξ1 = (E1, p1, B) and ξ2 = (E2, p2, B)

is the triple (E, q, B), where E = {(x, x′) ∈ E1 ×E2 : p1(x) = p2(x′)} ⊂ E1 ×E2 and

q : E → B is the map given by q(x, x′) = p1(x) = p2(x′). The Whitney sum is also

called the fiber product. Note that Eb = (E1)b × (E2)b ⊂ E1 × E2 for all b ∈ B.

2. If ξ = (E, p,B) and B′ ⊂ B, the restriction of ξ to B′ (denoted ξ|′B) is the

bundle (E ′, q, B′) where E ′ = {x ∈ E : p(x) ∈ B′} and q = p|′E.

3. Let ξ = (E, p,B) be a bundle and f : B′ → B continuou. The pullback bundle

f ∗(ξ) of ξ under f is the triple (E ′, q, B′) where E ′ = {(b′, x) : f(b′) = p(x)} and

q : E ′ → B′ is the map given by q(b′, x) = b′.
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A space F is called the fiber of the bundle (E, p,B) if for every b ∈ B the fiber Eb

is homeomorphic to F . A bundle (E, p,B) is said to be trivial with fiber F provided

(E, p,B) is B-isomorphic to the product bundle (B × F, p,B).

A complex vector bundle is a bundle in which each fiber is homeomorphic to Cn

for some n ∈ N and is locally trivial. We recall the precise definition.

Definition 2.5.3 Let B be a topological space. A complex vector bundle over B is

a bundle (E, π,B) such that for every b ∈ B;

1. The fiber Eb admits a finite dimensional complex vector space structure.

2. There is an open neighborhood U ⊂ B of b, n ∈ N and a homeomorphism

h : π−1(U) → U × Cn such that h restricts to a vector space isomorphism on Ex for

each x ∈ U and h ◦ π = π1, where π1 is the canonical coordinate projection of U ×Cn

on U .

Condition (2) of Definition 2.5.3 is called the local triviality condition.

Given ξ = (E, π,B), if there is some k ∈ N such that for each b ∈ B the vector

space dimension of Eb is k then ξ is said to be a vector bundle of dimension k. This

is the case if X is connected.

A sub-bundle η of vector bundle ξ is a vector bundle of its own right when each

fiber of the sub-bundle is given the vector space structure it inherits by being a

subspace of the corresponding fiber of ξ.

Definition 2.5.4 A morphism from a vector bundle ξ = (E, p,B) to a vector bundle

η = (E ′, q, B′) is pair (u, f) which is a morphism of underlying bundles where in

addition u|Eb : Eb → Ef(b) is a C-linear map for all b ∈ B. Isomorphisms, B-

morphisms and B-isomorphisms of vector bundles are similarly defined. We write

ξ ∼= η if the bundles ξ and η are isomorphic and ξ ∼=B η if they are B-isomorphic.

We will use Vect(X) to denote the set of all vector bundles over a space X,

and Vectk(X) to denote the set of all ξ ∈ Vectk(X) of dimension k. A bundle

γ ∈ Vectk(X) is called a trivial bundle if its X-isomorphic to the product bundle θk.
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Examples :

1. Example 1 following 2.5.1 is a vector bundle if F = Cn for some n. We will

denote this product bundle by θn.

2. Example 2 following 2.5.1 is a vector bundle if a : B → Mn(C) is projection

valued.

3. Let Gk(Cn) be the Grassman variety of k-dimensional subspaces of Cn for

n, k ∈ N . That is, Gk(Cn) is the set of all k-dimensional subspaces of Cn with the

quotient topology given by the map from the set {(v1, v2, ..., vk) ∈ Cn : 〈vi, vj〉 = δij}

onto Gk(Cn) that maps each tuple (v1, v2, ..., vk) to the k-dimensional vector subspace

of Cn spanned by the tuple. Gk(Cn) is a compact Hausdorff space and the canonical

k-dimensional vector bundle over Gk(Cn) , denoted by γk
n, is the sub-bundle of the

product bundle (Gk(Cn) × Cn , π,Gk(Cn) ) where the total space E(γk
n) of γk

n is

the subspace of Gk(Cn) × Cn which consists of all the pairs (V, v) ∈ Gk(Cn) × Cn

where v ∈ V . For a fixed k ∈ N , let Gk(C∞) =
⋃
k≤n

Gk(Cn) and equip this set with

the inductive topology coming from the natural inclusions Gk(Cn) ↪→ Gk(Cn+1).

Similarly there are natural inclusions E(γk
n) ↪→ E(γk

n+1). Set E∞ =
⋃
k≤n

E(γk
n) to

be the associated inductive space. Then γk = (E∞, p, Gk(C∞) ) is a vector bundle

over Gk(C∞) .

Remark: For any pair n, k ∈ N, Gk(Cn) is naturally homeomorphic to the set of all

p ∈ P(Mn) of rank k. If p ∈ P(Mn(C(X))) is of rank k then ξp ∼=X p∗(γk
n) where in

the second bundle p is viewed as a map fromX toGk(Cn) using the first identification.

Vector bundle constructions

1. If ξ ∈ Vect(X) and Y ⊂ X then ξ|Y ∈ Vect(X) where ξ|Y is the restriction of

ξ to Y as a bundle.

2. If ξ1 = (E1, p1, X) ∈ Vectl(X), ξ2 = (E2, p2, X) ∈ Vectl(X) then ξ1 ⊕ ξ2 ∈

Vectk+l(X). Indeed, each fiber of ξ1 ⊕ ξ2 is of the form (E1)b × (E2)b and hence



27

admits a natural vector space structure. The local triviality for ξ1 ⊕ ξ2 follows from

the local triviality of ξ1 and ξ2.

3. If ξ = (E, p,X) ∈ Vectk(X) and f : Y → X is continuous, then f ∗(ξ) ∈

Vectk(Y ). For each y ∈ Y fiber of f ∗(ξ) over y is the set {(y, v) : y ∈ Y, v ∈ p−1(f(y))},

and thus has a vector space structure which is naturally isomorphic to that of Ef(y).

Local triviality of ξ makes f ∗(ξ) locally trivial.

Let ξ, γ ∈ Vect(X) . If there is some η ∈ Vect(X) with ξ = γ ⊕ η then γ is said

to be a direct summand of ξ. Every sub-bundle of ξ is a direct summand of ξ .

Let us now recall the following stability property of vector bundles. This will be

one of the main ingredients of the proof of our main Theorem of Chapter 3.

Theorem 2.5.5 [16,21] Let X be a finite dimensional compact Hausdorff space. Let

ξ, γ ∈ Vect(X) and θn denote the product bundle of dimension n over X. Let k be

the dimension of ξ and write m = bdimX
2
c. The following hold,

1. ξ ∼= η ⊕ θk−m for some η ∈ Vectm(X).

2. If k ≥
⌈
dimX

2

⌉
and ξ ⊕ δ ∼= γ ⊕ δ, where δ ∈ Vect(X) is trivial, then ξ ∼= γ.

A proof of the conclusions of the Theorem for finite CW -complexes is provided

in [21, Chap. 9, Theorems 1.2 and 1.5]. By applying dimension theory techniques

the statement for compact Hausdorff spaces can be reduced to the CW case and thus

the theorem holds in this generality [16, Theorem 2.5].

Next we recall the homotopy classification of vector bundles. For any ξ ∈ Vect(X)

we will write 〈ξ〉 to denote the X-isomorphism class of ξ. By 〈Vect(X) 〉 we denote

the set of all X-isomorphism classes of Vect(X) and by 〈Vectk(X) 〉 we denote the

set of all isomorphism classes of Vectk(X) .

For continuous maps f, g : X → Y , we write f ∼h g to mean they are are

homotopic and write [X, Y ] to denote the set of all homotopy classes of continuous

maps from X to Y .
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Theorem 2.5.6 [21, Corollary 5.6 and Theorem 6.2] Let X be any compact Haus-

dorff space. Fix k ∈ N.

1. If ξ ∈ Vectk(X) there is a continuous map f : X → Gk(C∞) with ξ ∼=X f ∗(γk).

2. For two continuous maps f, g : X → Gk(C∞) , f ∗(γk) ∼=X g∗(γk) iff f ∼h g.

From the Theorem there is bijective map from 〈Vectk(X) 〉 to [X,Gk(C∞) ] for

every compact Hausdorff space X and k ∈ N. In fact [21] proves the Theorem for

all paracompact spaces. Owing to Theorem 2.5.6, space Gk(C∞) is also called the

classifying space (of vector bundles of rank k) for the class of all paracompact spaces.

For the class of CW -complexes wiith dim X ≤ d for a fixed d we have the following

stronger version of Theorem 2.5.6.

Theorem 2.5.7 [21, Chapter 8, Theorem 7.2] [21, Chap. 8, Theorem 7.2] Let X be

a CW-complex and n, k be non-negative integers. Then, the function that assigns to

each homotopy class [f ] : X → Gk(Cn) the isomorphism class of the k-dimensional

vector bundle f ∗(γnk ) over X is a bijection, if n ≥ k +
⌈
dimX

2

⌉
.

To prove Theorem 3.1.4 we need a similar result to hold for compact Hausdorff

spaces. In Proposition 3.1.3, based on the proof of [16, Theorem 2.5] we apply di-

mension theory results [14, 27] and few C∗-algebraic techniques to prove that 2.5.7

indeed extends to include compact Hausdorff spaces.

2.6 Vector bundles and projections

If p ∈ Mn(C(X))+ is a projection, then the bundle ξp defined in the preceding

section is a vector bundle over X. In fact this assignment p 7→ ξp induce a natural

bijection from D(C(X)) to 〈Vect(X) 〉. This correspondence is well known and is in

by and large a consequence of the following classical Theorem by Swan [34] (c.f. [35]).

Theorem 2.6.1 [34, Corollary 5] Let X be a compact Hausdorff space and ξ ∈

Vect(X) . Then ξ is direct summand of a trivial bundle.
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Corollary 2.6.2 (c.f. [34]) Given ξ ∈ Vect(X), there is some m ∈ N and a projection

p = pξ ∈Mm(C(X)) such that ξp ∼= ξ.

Proof Suppose ξ is a vector bundle over X, with total space E and the fiber at

x ∈ X being Ex. From 2.6.1, there is some n ∈ N and a bundle ξ⊥ over X such that

ξ⊕ ξ⊥ ∼= θn, where θn is the n dimensional product bundle. Thus, for each x ∈ X, we

may assume that Ex ⊕ Fx = Cn, where F is the total space of ξ⊥. Let pξ(x) denote

the orthogonal projection of Cn on the fiber Ex ⊂ Cn. Then, by the local triviality

of ξ the map x 7→ pξ(x) is continuous and clearly ξp ∼=X ξ.

In chapter 3 we always work inside Mn(C(X)) for a fixed n. Thus, when asso-

ciating vector bundles to projections we want to ensure that, for fixed k there is n

such that for any compact Hausdorff space X with dimX small enough and for each

ξ ∈ Vectk(X) , there is a projection p inside Mn(C(X)) with ξp ∼= ξ. While Corollary

2.6.2 does not guarantee this directly, combining 2.6.2 with stability properties for

vector bundles (Theorem 2.5.5) addresses the issue.

We write Pk(Mn(C(X))) to denote the set of all p ∈ P(Mn(C(X))) of constant

rank k.

Theorem 2.6.3 (Theorem 2.5.5 and [34]) Let X be a compact Hausdorff space of

dimension d < ∞. Suppose m ≥ k +
⌊
d
2

⌋
. Then there is a natural bijection between

the set of all Murray - von Neumann classes of projections in Pk(Mm(C(X))) and the

set of all isomorphism classes of vector bundles in Vectk(X), induced by p 7→ ξp ∀p ∈

Pk(Mn(C(X)).

Proof It is easy to see that the induced map is well defined and injective. We

verify that the assignment [p]0 7→ 〈ξp〉 is a surjection. For this, it suffices from the

proof of the preceding Corollary to show that for any ξ ∈ Vectk(X) there is some

γ ∈ Vectb d
2
c(X) such that ξ ⊕ γ ∼= θn.

By [34, Corollary 5] there is a bundle δ, say of dimension t, so that ξ ⊕ δ ∼= θk+t.

Suppose t >
⌊
d
2

⌋
, then by part 1 of Theorem 2.5.5, δ = γ ⊕ θt−b

d
2c for some γ ∈
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Vectb d2c(X). If dimension of ξ⊕γ is k1, then k1 = k+
⌊
d
2

⌋
≥
⌈
d
2

⌉
. Hence, by part 2 of

2.5.5, ξ ⊕ γ ∼= θk+b d2c. For fixed n, k ∈ N, if ξ ∈ Vectk(X) and n ≥ k +
⌊
d
2

⌋
then the

above observation allows us to choose the projection pξ corresponding to ξ, so that it

is an element in Mn(C(X)).

Definition 2.6.4 (Trivial Projections) ( [37] c.f. [31,38]) A projection p ∈Mn(C(X))

is called a trivial projection, if the corresponding vector bundle ξp is a trivial vector

bundle over X.

Note that if p, q ∈ P(M∞(C(X))) with p trivial then q is trivial iff q ∼ p.

2.7 Bundles associated to positive elements in Mn(C(X)) and well sup-

ported positive elements.

Throughout the thesis the identification Mn(C(X)) ∼= C(X,Mn(C)) is used freely.

Given a function f on X and Z ⊂ X, f |Z denotes the restriction of f to Z.

Positive elements in Mn(C(X)) (in the C∗-sense) are simply the continuous func-

tions a : X →Mn(C) where the image a(x) at each x is a non-negative definite matrix.

For a ∈Mn(C(X)), we denote the rank function of a by ra and define ra(x) to be the

rank of the matrix a(x) for each x ∈ X. ra : X → N is a lower semicontinuous map.

For a ∈Mn(C(X))+, the projection that maps each x to orthogonal projection of

Cn on a(x)(Cn) is called the support projection of a.

Let us write pa to denote this map. Note that pa, in general is not continuous.

However, if E is any subset of X on which ra is constant, then pa|E is continuous on

E. Thus for any such E, the bundle ξa|E is a vector bundle over E. Indeed it is the

vector bundle ξ(pa|E).

Thus, if rank values of a are n1, n2, n3, ...nk and we set Ei = {x ∈ X : ra(x) = ni},

then ξa|Ei is a vector bundle over Ei for every i. In this manner we can partition X

into a finite collection of subsets, such that the restriction of ξa to each subset is a

vector bundle of constant dimension. A typical subset Ei formed here can be highly
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irregular. On the other hand, classical structure theorems in vector bundle theory

assumes the base space to have regularity properties such as compactness. Therefore,

this partition of X in general does not allow us to apply techniques of classical vector

bundle theory to analyze the structure of ξpi = ξa|Ei . We can overcome this issue if a

is such that the projection pa|Ei (i.e. the support projection of a on Ei) continuously

extends to a projection pi defined on the closure Ei ⊂ X of Ei, for each i. Moreover, if

we also have the extended projections pi and pj to be comparable on Ei∩Ej, for any

two distinct i, j with Ei ∩ Ej 6= ∅, then we can attempt to suitably extend the local

structure of ξa (i.e. structure properties of various ξpis ) to derive global structure

properties of ξa. The notion of well supported positive elements considered in [38]

(c.f. [31]) represents positive elements of this special type.

Definition 2.7.1 ( [39] c.f. [31]) Let X be a compact Hausdorff space and let a ∈

Mn(C(X))+. Suppose that n1 < n2 < · · · < nk and Ei, 1 ≤ i ≤ k are as in the

preceding paragraph. We say that a is well supported if for each 1 ≤ i ≤ k there

is a projection pi ∈ Mn(C(Ei)) such that limr→∞ a(x)1/r = pi(x),∀x ∈ Ei, and

pi(x) ≤ pj(x) whenever x ∈ Ei ∩ Ej, and i ≤ j.

It is not hard to construct a ∈ Mn(C(X))+ for which pi’s do not even extend to

Ei’s, where pi, Ei are as in 2.7.1. However, the following Theorem [38] shows that

arbitrary positive elements are approximated by well supported positive elements

up to any given tolerance. As an immediate consequence of Theorem 2.7.2 we get

any a ∈ C(X,S(n, k, l)) to be homotopic to a well supported positive element in

C(X,S(n, k, l)), where S(n, k, l) = {a ∈Mn(C) : l ≤ rank a ≤ k} (see 3.1.1). This is

crucial to the proof of our main theorem of Chapter 3.

Theorem 2.7.2 [38, Theorem 3.9] Let X be a compact Hausdorff space and let

a ∈Mn(C(X))+. Then, for every δ > 0, there exists a well supported element b ∈

Mn(C(X))+ such that b ≤ a and ||a− b|| < δ, with the range of rb equal to the range

of ra.
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Remark: Theorem stated above is only a part of [38, Theorem3.9]. There, in the

hypothesis X is assumed to be a finite simplicial complex. However, the simplicial

structure of X is required only for the second part of the Theorem which guarantees

that each Ei corresponding to b (as defined in 2.7.1) can assumed to be a sub-complex

of X. For the Theorem as stated here, X being compact and Hausdorff suffices.

2.8 Extending projections and positive elements subject to constrains

In order to derive global structure of a bundle ξa using its local structure, where

a ∈Mn(C(X))+ , we need techniques to extend projection (positive) valued functions

defined on closed subsets of X to functions on X of the same type. Moreover, we

require these extensions to preserve certain constrains that are already true in the

respective subsets. In this section we recall such techniques developed in the litera-

ture. In some instances proofs are given to ensure that the results are stated in the

context we require. However, all the results in this section appear in (or are direct

consequences of) previous work, mainly of [31,37,38].

Theorem 2.8.1 [31, Proposition 4.2 (1)] Let X be a compact Hausdorff space of

dimension d < ∞, and let Y ⊂ X be closed. Let p, q ∈ Mn(C(X)) be projections

with the property that rank q(x) +
⌊
d
2

⌋
≤ rank p(x), ∀x ∈ X. Let s0 ∈ Mn(C(Y )) be

such that s∗0s0 = q|Y and s0s
∗
0 ≤ p|Y . It follows that there is s ∈Mn(C(X)) such that

s∗s = q, ss∗ ≤ p, and s0 = s|Y .

In [39] the following is proven as a Corollary to 2.8.1

Corollary 2.8.2 [39, Corollary 2.7] Let X be a compact Hausdorff space of dimen-

sion d <∞, and let E1, ..., Ek be a cover of X by closed sets. Let q ∈Mn(C(X)) and

for each i ∈ 1, ..., k let pi ∈Mn(C(Ei)) be a projection of constant rank ni. Assume

that n1 < n2 < · · · < nk and pi(x) ≤ pj(x) whenever x ∈ Ei ∩ Ej and i ≤ j. Finally,

suppose that ni − rank q ≥
⌊
d
2

⌋
for every i. Then the following hold:
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If Y ⊂ X is closed, q|Y is trivial and ∀y ∈ Y,

q(y) ≤
∧

{i|y∈Ei}

pi(y),

then q|Y can be extended to a projection q̃ on X which is also trivial and satisfies,

q̃(x)≤
∧

{i|x∈Ei}

pi(x),∀x ∈ X.

Corollary 2.8.3 Let X be a compact Hausdorff space of dimension d < ∞, and let

Y ⊂ X be closed. Then any trivial projection r ∈ Mn(C(Y )) extends to a trivial

projection on X, provided that rank r ≤ n−
⌊
d
2

⌋
.

Proof Suppose that the rank of r is k and take q to be any constant projection in Mn

of rank k. Then q defines a trivial projection in Mn(C(X)) and since r is also trivial

on Y, from (2.6.3) there exists s0 ∈ Mn(C(Y )) such that s0
∗s0 = q|Y and r = s0s0

∗.

Let p be the unit of Mn(C(X)). Then, as s0s0
∗ ≤ p|Y and rank q ≤ rank p−

⌊
d
2

⌋
, by

Theorem 2.8.1 s0 extends to s ∈ Mn(C(X)) such that, s∗s = q. Thus, r̃ = ss∗ is a

trivial projection on X with r̃|Y = s0s0
∗ = r.

Remark: In the hypothesis of 2.8.2, its assumed that q is defined on X. However,

2.8.3 implies that the conclusion of 2.8.2 is valid even when q is defined only on Y .

In chapter 3, we will use this observation without further mention.

We need one more extension result, Proposition 2.8.7. Before we present this,

we introduce some terminology and point out few properties concerning the rank

functions that we find to be useful.

From Section 2.2 recall that for any ε ≥ 0 and a ∈Mn(C(X))+, (a− ε)+ denotes

the element fε(a) ∈Mn(C(X))+ given by the functional calculus of a where,

fε(t) = max{ε, t}, ∀t ∈ [0, 1].
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Recall that by support projection of d ∈Mn(C(X)) we mean the function (not nec-

essarily continuous) which maps x to the orthogonal projection of Cn onto d(x)(Cn).

We denote the support projection of fε(a) by χ(ε,1](a). This is same as the spectral

projection of a that corresponds to the set (ε, ||a||] from general C∗-algebra theory.

Give a ∈Mn(C(X))+, let Γa : X → [0, ||a||]n be the map given by

Γa(x) = (λ1(x), λ2(x)........, λn(x)),

where λ1(x), λ2(x), ....., λn(x) are the eigenvalues of a(x) in non decreasing order. The

following is a straightforward consequence of the continuity of Γa on X.

Lemma 2.8.4 Let a ∈ Mn(C(X))+ and η ≥ 0. The map x 7→ rank[χ(η,||a||](a(x))]

where χ(η,||a||] denotes the characteristic map on (η, ||a||], is lower semi-continuous.

Proof It is clear that Γa is continuous on X for any a ∈ Mn(C(X))+. Let x ∈ X

and suppose rank[χ(η,||a||](a(x))] = m. Then, there are exactly m (with possible

repetitions) eigenvalues of a(x), which are grater than η. Moreover, as λi(x) are in

increasing order, λn−m+1(x), λn−m+2(x), ....λn(x) are exactly the eigenvalues of a(x)

which are greater than η. Set ε = λn−m+1(x)− η > 0 and by continuity of Γa choose

a neighborhood Ux of x such that

||Γa(x)− Γa(y)|| < ε,∀y ∈ X.

For all 1 ≤ i ≤ n,

|λi(x)− λi(y)| < ε

Therefore by the choice of ε for each y ∈ Ux and for all i,

n−m+ 1 ≤ i ≤ n =⇒ λi(y) > η.

Thus, for each y ∈ Ux,

rank[χ(η,||a||](a(y))] ≥ m = rank[χ(η,||a||](a(x))].



35

Lemma (2.8.5) is a weaker version of [37, Lemma 2.1]. We include a proof for two

reasons. Firstly the proof in this weaker version is technically much simpler. The

other reason is that [37, Lemma 2.1] quotes the result only for compact metric spaces,

but essentially the same techniques works for any compact Hausdorff space.

Lemma 2.8.5 [37, Lemma 2.1] Let X be a compact Hausdorff space and suppose

that a ∈ Mn(C(X))+. Let l ∈ N be such that rank a(x) ≥ l, ∀x ∈ X. Then, there is

some η > 0 such that for each x ∈ X, the spectral projection χ(η,∞)(a(x)) has rank at

least l.

Proof For each x ∈ X, let ηx = 1
2
min{λ ∈ spec a(x):λ > 0}. Note that since l > 0,

ηx exists for each x ∈ X. Then,

rank a(x) = rank[χ(ηx,∞)(a(x))],∀x ∈ X.

By Lemma 2.8.4, for each x ∈ X, the map y 7→ rank[χ(ηx,∞)(a(y))] is lower semi-

continuous. So, for each x ∈ X, there exists an open neighborhood Ux of x such

that,

rank[χ(ηx,∞)(a(y))] ≥ rank[χ(ηx,∞)(a(x))], ∀y ∈ Ux.

By compactness of X, choose some finite set of points {x1, x2, ...xL} such that

X =
⋃

1≤i≤L

Uxi .

By setting η = min1≤i≤L(ηxi) > 0, for every y ∈ Uxi we get,

rank[χ(η,∞)(a(y))] ≥ rank[χ(ηxi ,∞)(a(y))]

≥ rank[χ(ηxi ,∞)(a(x))]

= rank a(x)

≥ l.

Since X =
⋃

1≤i≤L
Uxi , this completes the proof.
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Lemma 2.8.6 is again a weaker version of result in [37]. We provide the proof for

same reasons we had for 2.8.5.

Lemma 2.8.6 [37, Lemma 2.7] Let n, k, l ∈ N with n ≥ k ≥ l and let X be a

compact Hausdorff space. Suppose Y ⊂ X is closed and a ∈ C(Y, S(n, k, l))). Then

there is a open set U in X containing Y and ã ∈ C(U, S(n, k, l)) such that ã|Y = a .

Proof By Tietze extension theorem there exists an open set W in X containing Y

and a1 ∈Mn(C(X))+ such that a1|Y = a.

Since the rank function is lower semi-continuous and rank a1(y) ≥ l for all y ∈ Y ,

by using the compactness of Y choose an open set V with Y ⊂ V ⊂ W such that

rank a1(z) ≥ l, ∀z ∈ V. (2.1)

Moreover, using the compactness of X and shrinking V if necessarily, we may assume

that above inequality holds for all z in V . Then by the previous Lemma there is η > 0

such that

rank [χ(η,∞)(a1(z))] ≥ l, ∀z ∈ V . (2.2)

By continuity of a1 for each n ∈ N choose an open set Un ⊂ V with Y ⊂ Un ⊂ V

such that,

∀z ∈ Un,∃y ∈ Y with ||a1(z)− a(y)|| ≤ η

2n
.

By suitably shrinking Un let us assume Un+1 ⊂ Un. Thus, using the normality of

X we can define a continuous function f : U1 → [0, 1] such that f(y) = 0,∀y ∈ Y and

η > f(x) ≥ η

2n
, ∀x ∈ U1. (2.3)

Define ã ∈Mn(C(U1)) by

ã = (a1(x)− f(x))+

. Then because of 2.3 and Lemma 2.8.5,

rank ã(x) ≥ l,∀x ∈ U1.
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To get the upper rank bound note that if x ∈ Un \Un+1 then there is some y ∈ Y

such that

||a1(x)− a(y)|| < η

2n

.

Thus, by 2.3 and Proposition 2.2.13

rank ã(x) = rank (a1(x)− f(x))+

≤ rank (a1(x)− η

2n
)+

≤ rank a(y)

≤ k

Recall that a, b ∈ Mn(C(X))+ are said to be Murray-von Neumann equivalent if

there is some v ∈Mn(C(X)) such that a = v∗v and b = vv∗.

Proposition 2.8.7 Let X be a compact Hausdorff space and Y ⊂ X be closed.

Suppose a, b ∈ C(X,S(n, k, l)) are Murray-von Neumann equivalent. Then there

is an open set U in X with Y ⊂ U and Murray-von Neumann equivalent ã, b̃ ∈

C(U, S(n, k, l))+, extending a and b respectively. If in addition a = p, b = q are pro-

jections then we may choose the extensions to be Murray-von Neumann equivalent

projections.

Proof To prove the first part, suppose a = v∗v and b = vv∗ for some v ∈Mn(C(X)).

Use Tietze extension Theorem to extend v to some v1 ∈Mn(C(W ) where W is as in

the proof of 2.8.6. Set a1 = v1
∗v1 and b1 = v1v1

∗ and choose V such that 2.1 holds

for both a1 and b1. Choose η > 0 such that 2.2 holds for χη(a1) as well as for χη(b1).

Now construct ã, b̃ and U as in the proof of 2.8.6. Since a1 ∼ b1, from Lemma 2.2.14

it follows that ã ∼ b̃.
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To prove the second part, use the first part to extend p, q to ã, b̃ ∈ C(U, S(n, k, l))

with ã ∼ b̃. Now since σ(p), σ(q) ⊂ {0, 1} use the continuity of Γa and Γ with

compactness of Y to choose an open set U1 of X such that Y ⊂ U1 ⊂ U1 ⊂ U and,

σã|U1
) ⊂ [0,

1

3
] ∪ [

2

3
,
4

3
]

σ(b̃|U1
) ⊂ [0,

1

3
] ∪ [

2

3
,
4

3
].

Let f : [0, 4
3
] → [0, 1] be any continuous function which is zero on [0, 1

3
], one on

[2
3
, 4

3
]. Then f(ã|U1

), f(b̃|U1
) are projections and are Murray-von Neumann equivalent

by 2.2.14. Setting U = U1, p̃ = f(ã|U1) and q̃ = f(b̃|U1) completes the proof.
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3. HOMOTOPY EQUIVALENCE OF MAPS IN

C(X,S(n, k, l))

Recall that for any n, k, l ∈ N with n ≥ k ≥ l we write S(n, k, l) to denote the set

{a ∈Mn(C)+ : l ≤ rank a ≤ k}.

3.1 Homotopy equivalence of maps in C(X,S(n, k, l)) when
⌊
dimX

2

⌋
≤ k − l

The goal of this is to prove Theorem 3.1.4. The proof of 3.1.4 is achieved through

two main steps; Lemma 3.1.2 and Proposition 3.1.3. Lemma 3.1.2 is our main techni-

cal result and reduces proving 3.1.4 to extending Theorem 2.5.7 [21, Chapter 8, The-

morem 7.2] to all compact Hausdorff spaces. As mentioned in chapter 2, this extension

may be known. However there is no clear reference of the fact and in Proposition

3.1.3 we provide a proof that follows a pattern similar to the proof of [16, Theorem

2.5]. We essentially use the identification of a compact Hausdorff space as an inverse

limit of compact metric spaces and the identification of a compact metric spaces as an

inverse limit of CW -complexes to show that conclusion of Proposition 3.1.3 follows

form 2.5.7. This reduction arguments we provide use some C∗-algebraic techniques

we recalled in Chapter 2.

Theorem 3.1.4 follows immediately by combining Lemma 3.1.2 with Proposition

3.1.3.

We need the following direct consequence of Theorem 2.7.2 .

Lemma 3.1.1 Let X be a compact Hausdorff space and a ∈Mn(C(X))+. Then there

exists a continuous path t 7→ at in Mn(C(X))+ which connects a0 = a to a1 which is

well supported in the sense of Definition 2.7.1 and has the same rank values as that

of a. The path is such that rank at(x) = rank a(x),∀t ∈ [0, 1),∀x ∈ X.



40

Proof Applying Theorem 2.7.2, choose a well supported positive element b ≤ a such

that b has the same rank values as that of a and set at = (1 − t)a + tb. We only

have to verify that rank at(x) = rank a(x) for every t ∈ (0, 1) and x ∈ X. But this is

immediate.

Since b ≤ a, if 0 < t < 1,

(1− t)a ≤ at ≤ (1− t)a+ ta = a.

Therefore, rank at(x) = rank a(x), ∀t ∈ (0, 1),∀x ∈ X.

Lemma 3.1.2 Let X be a compact Hausdorff space with dim X < ∞. Suppose

n, k, l ∈ N are such that k ≤ n and k − l ≥
⌊
dimX

2

⌋
. Let a ∈ C(X,S(n, k, l)). Then

there is a continuous path h : [0, 1] → C(X,S(n, k, l)) such that h(0) = a and h(1)

is a trivial projection of rank l.

Proof Let X,n, k, l and a be as given in the hypothesis. By Lemma 3.1.1 we can

clearly assume that a is well supported.

Let the rank values of a be n1 < n2 < ..... < nL and let E1, E2 . . . , EL and

p1, p2, . . . , pL be as in Definition 2.7.1. For convenience we will write Fi = Ei and

d = dimX.

We first consider the case nL ≤
⌊
d
2

⌋
. Then, choose p ∈ Mn(C(X)) to be any

trivial projection of rank l and let

h(t) = (1− t)a+ tp.

Now for each t ∈ [0, 1], x ∈ X,

rank [h(t)(x)] ≤ rank a(x) + rank p

≤ nL + l

≤
⌊
d

2

⌋
+ l

≤ k,

and clearly rank [h(t)(x)] ≥ l. Thus, we get the required path.
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Now let us assume nL >
⌊
d
2

⌋
.

Fix r such that nr >
⌊
d
2

⌋
and nr−1 ≤

⌊
d
2

⌋
, where we allow the possibility r = 1

and set n0 = 0, F0 = ∅.

In what proceeds, we construct a trivial projection R ∈Mn(C(X)) of rank l such

that,

rank (R + a)(x) ≤ k,∀x ∈ X.

Once we have such R, we define h : [0, 1]→Mn(C(X)) by,

h(t) = (1− t)a+ tR, ∀t ∈ [0, 1].

It is almost immediate that this path remains in side C(S(n, k, l)).

We focus on constructing R. To this end, we follow an inductive argument to

define a trivial projection qL ∈Mn(C(
⋃

r≤j≤L
Fj)) such that,

rank qL = nL −
⌊
d

2

⌋
and

rank (a+ qL)(x) ≤ nL,∀x ∈
⋃

r≤j≤L

Fj.

Since Fr is compact Hausdorff with dimFr ≤ d and pr ∈Mn(C(Fr)) is a projection

of rank nr >
⌊
d
2

⌋
, use Theorem 2.5.5 (1) and Swans’ correspondence (2.6.3) to find a

trivial projection qr ∈Mn(C(Fr)) such that,

rank qr = nr −
⌊
d

2

⌋
and qr ≤ pr.

By well supportedness of a, each pi ∈ Mn(C(Fi)) is of constant rank ni and

whenever r ≤ i ≤ j with Fi ∩ Fj 6= ∅,

pi(x) ≤ pj(x), ∀x ∈ Fi ∩ Fj. (3.1)

Also for all j ≥ r,

rank pj − rank qr ≥ nr − rank q1

≥
⌊
d

2

⌋
.
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Hence, we apply Corollary 2.8.2 with X =
⋃

r≤j≤L
Fj, Y = F1, q = qr (by the remark

following Corollary 2.8.3, q in 2.8.2 need not be defined on X) to extend qr to a trivial

projection in Mn(C(
⋃

r≤j≤L
Fj))) - which we again call qr - such that whenever r ≤ j,

qr(x) ≤ pj(x),∀x ∈ Fj.

Then, for each r ≤ j ≤ L,

rank (qr + a)(x) ≤ nj, ∀x ∈ Fj.

If r = L then we are done (defining qL).

Thus, let us assume r < L.

Suppose that for some t with t ≤ t < L we have defined a trivial projection

qt ∈Mn(C(
⋃

r≤j≤L
Fj)) such that the following hold,

rank qt = nt −
⌊
d

2

⌋
, (3.2)

qt(x) ≤ pj(x),∀x ∈ Fj,∀t ≤ j ≤ L, (3.3)

rank (qt + pj) ≤ nt,∀r ≤ j ≤ t. (3.4)

Then whenever t+1 ≤ j ≤ L, (pj−qt) �Ft+1∈Mn(C(Fi+1)) is a projection of constant

rank (nj − nt) +
⌊
d
2

⌋
.

Thus, since dimFt+1 ≤ d, by applying Theorems 2.5.5 and 2.6.3 we choose a

trivial projection qt,t+1 ∈Mn(C(Ft+1)) such that,

rank qt,t+1 = nt+1 − nt

and qt,t+1 ≤ pt+1 − qt.

By applying Corollary 2.8.2 with X =
⋃

t+1≤j≤L
Fj, Y = Ft+1 and q = qt,t+1 we

extend qt,t+1 to a trivial projection in Mn(C(
⋃

t+1≤j≤L
Fj)) (which we again name qt,t+1)

such that whenever j ≥ t+ 1,

qt,t+1(x) ≤ pj(x)− qt(x),∀x ∈ Fj. (3.5)
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Set qt+1 = qt + qt,t+1.

Since qt, qt,t+1 are orthogonal trivial projections, qt+1 is a trivial projection in

Mn(C(
⋃

t+1≤j≤L
Fj)).

Moreover, by equation (3.2),

rank qt+1 = (nt −
⌊
d

2

⌋
) + (nt+1 − nt)

= nt+1 −
⌊
d

2

⌋
and by (3.3) and (3.5) whenever j ≥ t+ 1, ∀x ∈ Fj,

qt+1(x) = [qt(x) + qt,t+1(x)]

≤ pj(x).

Finally, by (3.4) for each r ≤ j ≤ t+ 1,

rank (qt+1 + pj) ≤ rank qt,t+1 + rank (qt + pj)

≤ (nt+1 − nt) + nt

= nt+1.

By proceeding in this manner construct a trivial projection qL ∈Mn(C(
⋃

r≤j≤L
Fj))

of rank nL −
⌊
d
2

⌋
such that,

rank (qL + pj)(x) ≤ nL,∀x ∈ Fj, ∀r ≤ j ≤ L

and

qL(x) ≤ pL(x), ∀x ∈ FL.

Choose R1 ∈ Mn(C(X)) to be any trivial projection (of rank nL −
⌊
d
2

⌋
) which

extends qL. Note that such R1 exists by Corollary 2.8.3.

By the choice of r, whenever j < r, ∀x ∈ Fj,

rank (R1 + a)(x) ≤ (nL −
⌊
d

2

⌋
) +

⌊
d

2

⌋
≤ nL.
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Thus, since R1 �Fj= qL �Fj whenever j ≥ r we conclude,

rank (R1 + a)(x) ≤ nL,∀x ∈ X.

If nL = k, then

rank R1 = k −
⌊
d

2

⌋
≥ l,

and we choose R to be any trivial sub-projection of rank l .

Hence we are left with the case k > nL.

In this case,

rank (1n −R1) = n− (nL −
⌊
d

2

⌋
)

≥ (k − nL) +

⌊
d

2

⌋
,

and we apply Theorem 2.5.5 (1) and Theorem 2.6.3 for one last time to choose a

trivial projection R2 ∈Mn(C(X)) of rank k − nL with R2 ≤ (1n −R1).

Now R1 +R2 is a trivial projection of rank k −
⌊
d
2

⌋
and

rank (R1 +R2 + a)(x) ≤ k,∀x ∈ X.

To complete the proof we choose R to be a trivial sub-projection of R1 + R2 of

rank l.

Combining 2.5.7 with Lemma 3.1.2 directly proves Theorem 3.1.4 for all CW -

complexes. We now prove Proposition 3.1.3.

Recall that if A,B are C∗-algebras and φ : A → B is a ∗-homomorphism, then

for any n ∈ N we have an induced ∗-homomorphism from Mn(A) to Mn(B) given by

[aij] 7→ [φ(aij)].

Proposition 3.1.3 Let X be a compact Hausdorff space with dim X <∞ and sup-

pose n, k ∈ N with n− k ≥
⌈
dimX

2

⌉
. Then the isomorphism classes of k-dimensional

locally trivial complex vector bundles over X are in bijective correspondence with the

homotopy classes of maps p : X → Pk(Cn).
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Proof Let [X,Pk(Cn)] stand for the homotopy classes of maps in Pk(Mn(C(X))) and

let 〈Vectk(X)〉 denote the set of all isomorphic classes of locally trivial k-dimensional

vector bundles over X. Throughout the proof we will use the natural identification

of Gk(Cn) with Pk(Cn) and the identification p∗(γk
n) ∼= ξp , where p∗(γk

n) is the pull

back of the canonical k-dimensional bundle γk
n over Gk(Cn) to X by viewing p as a

map from X to Gk(Cn) and ξp is the vector bundle corresponding to p considered in

Chapter 2.

Define ψ : [X,Pk(Cn)]→ 〈Vectk(X)〉 by ψ([p]) = 〈ξp〉, where p ∈ Pk(Mn(C(X))).

From results in chapter 2 and the above identifications, it is clear that the map ψ is

a well defined surjection.

To complete the proof, we have to show that if the vector bundles associated

with two projections in Pk(Mn(C(X))) are isomorphic then the two projections are

homotopic in Pk(Mn(C(X))).

Let us first assume that X is a compact metric space.

Then by [27, Chapter 27, Theorem 8], X is homeomorphic to an inverse limit of

finite simplicial complexes Xα, with dimXα ≤ dimX for each α.

Let ψα : X → Xα be the corresponding maps. We have the induced homomor-

phisms,

ψTα : C(Xα)→ C(X)

given by ψTα (f) = f ◦ ψα.

Moreover, by the inverse limit structure of X,⋃
α

ψTα (C(Xα)) = C(X), (3.6)

i.e.
⋃
α

ψTα (C(Xα)) is a || · ||∞ dense ∗-subalgebra of C(X). Note that if α < β then

ψTα (C(Xα)) ⊂ ψTβ (C(Xβ)), (3.7)

and hence
⋃
α

ψTα (C(Xα)) is indeed a ∗-subalgebra.

Suppose p, q ∈ Pk(Mn(C(X))) are such that ξp ∼= ξq. By Theorem 2.6.3, there is

some v ∈Mn(C(X)) such that p = v∗v, q = vv∗.
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Fix 0 < ε < 1/3.

By (3.6), there is some α and ṽα ∈Mn(C(Xα))) with ||ṽα|| ≤ 1 such that,

||ψTα (ṽα)− v|| < ε/2.

Write Yα = ψα(X) and vα = ṽα �Yα , aα = v∗αvα, bα = vαv
∗
α.

Then aα ∈Mn(C(Yα))+ with

||aα − p|Yα || ≤ ε. (3.8)

It follows,

σ(aα) ⊂ [0, ε) ∪ (1− ε, 1].

Similarly ||bα − q|Yα || ≤ ε and

σ(bα) ⊂ [0, ε) ∪ (1− ε, 1].

Let f : [0, 1] → [0, 1] be the continuous function which vanishes on [0, ε], is equal

to 1 on [1 − ε, 1] and is linear on (ε, 1 − ε). Then f(aα), f(bα) are projections in

Mn(C(Yα)) with

||aα − f(aα)|| < ε, ||bα − f(bα)|| < ε. (3.9)

Moreover, f(aα) and f(bα) are Murray-von Neumann equivalent projections by

Lemma 2.2.14. Thus, since Yα is a closed in Xα, by applying Proposition 2.8.7

choose some open neighborhood U of Yα so that f(aα), f(bα) extends to pα, qα ∈

Pk(Mn(C(U))) respectively, with pα ∼ qα.

Since Xα is a finite simplicial complex, after a finite simplicial refinement of Xα

via barycentric subdivisions, choose a sub complex Z of Xα with Y ⊂ Z ⊂ U . For

convenience let us denote the restrictions of pα, qα to Z by pα, qα.

Since pα and qα generate isomorphic vector bundles over Z, each of rank k, form

Theorem 2.5.7 and the identification of Gk(Cn) with Pk(Mn((C)), there is a continu-

ous path,

t 7→ hα(t) ∈ Pk(Mn(C(Z))),
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such that hα(0) = pα, hα(1) = qα.

This gives a path t 7→ h(t) ∈ Pk(Mn(C(X))), given by h(t)(x) = hα(t)(ψα(x)).

Note that for all x ∈ X,

||p(x)− h(0)(x)|| = ||p(x)− pα(ψα(x))||

= ||p(x)− f(aα)(ψα(x))||

≤ ||p(x)− aα(ψα(x))||+ ||aα(ψα(x))− f(aα)(ψα(x))||

≤ 2ε (by 3.8 and 3.9)

Thus, ||p− h(0)|| < 1 and similarly ||q − h(1)|| < 1.

Therefore, from 2.4.3 [23, Proposition 2.2.4]

p ∼h h(0) ∼h h(1) ∼h q.

This completes the proof for compact metric spaces.

Now suppose X is an arbitrary compact Hausdorff space. Then X is an inverse

limit of compact metric spaces Xλ, with dimXλ ≤ dimX for each λ. From the first

step the conclusion of the Proposition holds for each Xλ. Thus the conclusion for X

follows from essentially the same argument we presented in proving the first step.

Theorem 3.1.4 Let X be a compact Hausdorff space X with
⌊
dimX

2

⌋
≤ k−l. There is

only one homotopy class of continuous maps f : X → S(n, k, l), i.e. C(X,S(n, k, l))

is path connected.

Proof Observe that the case n = k is straightforward. For any a ∈ C(X,S(n, k, l))

we have the linear path t 7→ (1− t)a+ 1n connecting a to 1n.

So we assume n > k.

Let a, b ∈ C(X,S(n, k, l)). Since
⌊
dimX

2

⌋
≤ k − l , by applying Lemma 3.1.2

choose trivial projections p, q of rank l such that there are paths inside C(X,S(n, k, l))

connecting a to p and b to q. Since n > k and k − l ≥
⌊
dimX

2

⌋
, n − l ≥ ddimX

2
e and

we may apply the preceding Proposition. In particular since ξp ∼= θl ∼= ξq, there is a
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path inside C(X,S(n, k, l)) connecting p and q by Proposition 3.1.3. Thus, there is a

path connecting a and b in C(X,S(n, k, l)).

Corollary 3.1.5 For every r ≤ 2(k − l) + 1, πr(S(n, k, l)) = 0.

Proof Follows directly from Theorem 3.1.4 as dimSr = r.

3.2 Homotopy equivalence of maps in C(X,S(n, k, l)) and homotopy groups

of S(n, k, l)

In Theorem 3.2.4 we prove that for a fixed integer d if πr(S(n, k, l)) = 0 for all

r ≤ d, then C(X,S(n, k, l)) is path connected for every compact Hausdorff space X

with dimX ≤ d.

The proof of Theorem 3.2.4 involves two main steps. In Lemma 3.2.1 we apply

classical homotopy theory results (see [45]) to prove the conclusion of 3.2.4 when

X is a finite simplicial complex. Then in Lemma 3.2.3 we use a dimension theory

argument which is similar in flavor to the proof of Proposition 3.1.3 to reduce the

proof of Theorem 3.2.4 to proving it in the case of if X being a finite simplicial

complex.

We recall some terminology from homotopy theory. Our main reference here

is [45].

A topological space X is said to be compactly generated if a subspace A of X is

closed in X if and only if A ∩ K is closed in K for all compact subspaces K of X.

In particular S(n, k, l) is compactly generated since its a metric space. Lemma 3.2.1

follows by a simple application of fact in Theorem [45].

Lemma 3.2.1 Suppose X is a finite simplicial complex of covering dimX ≤ d. If

πr(S(n, k, l)) = 0 for each r ≤ d then C(X,S(n, k, l)) is path connected.

Proof We will use induction on the number of simplexes in the complex K.

If K consists of a single simplex then result is true since K is contractible.
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Suppose that result is true for every simplicial complex which contains r number

of simplexes.

To complete the inductive step, let K = L ∪ {s} where L is a sub complex of K

containing r number of simplexes and s is a n-simplex for some n ≤ d.

Since is {K,L} is a NDR pair and S(n, k, l) is compactly generated, following

sequence is exact in the category of sets with base points by [45, Diagram 6.3].

[C(L, S(n, k, l))]
i∗←− [C(K,S(n, k, l))]

p∗←− [C((K/L), S(n, k, l))] (3.10)

where K/L is the quotient space and [C(Z, S(n, k, l))] mean the set of all homotopy

classes of maps in C(Z, S(n, k, l)). The maps i∗ and p∗ are the maps induced by the

inclusion i : L → K and the quotient map p : K → K/L. As the respective base

points of the three sets [C(L, S(n, k, l))], [C(K,S(n, k, l))] and C(K/L, S(n, k, l))] we

may choose [f ], [f ◦ p], [f ◦ p ◦ ι] with f being any constant map z 7→ a, for a fixed

a ∈ S(n, k, l).

By the induction hypothesis [C(L, S(n, k, l))] consists of a single point. Since

(K/L) ∼= Sn and πn(S(n, k, l)) = 0 by assumption, [C((K/L), S(n, k, l))] is also a

singleton. Thus by exactness at the middle of (3.10), [C(K,S(n, k, l))] contains only

one point, i.e. C(K,S(n, k, l)) is path connected.

Lemma 3.2.2 Let X = lim←−Xα, for a inverse system of compact Hausdorff spaces

(Xα, ψαβ). Let ψα : X → Xα be the natural maps and ε > 0. Fixed a ∈ C(X,S(n, k, l)),

there is some index α and c ∈ C(Xα, (Mn(C))+) such that ψTα (c) ∈ C(X,S(n, k, l))

and there is a path in C(X,S(n, k, l)) connecting a to ψTα (c).

Proof Let a ∈Mn(C(X))+ and note that w.l.o.g we may assume ||a|| = 1.

Use Lemma 2.8.5 to pick 0 < η < 1 such that,

rank [χ(2η,1](a(x))] ≥ l,∀x ∈ X. (3.11)
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Set ε = η
3
. Since a is positive and ||a|| ≤ 1, there is some c ∈ Mn(C(X))+ such

that c2 = a and ||c|| ≤ 1. By the inductive limit structure of X choose some index α

and d ∈Mn(C(Xα)) such that,

||c− ψTα (d)|| < ε. (3.12)

On the other hand since c∗ = c,

||c− ψTα (d∗))|| = ||(c∗ − ψTα (d∗))||

= ||(c− ψTα (d))∗||

= ||c− ψTα (d)||

< ε (3.13)

Put b = d∗d then b ∈Mn(C(Xα))+ and moreover,

||a− ψTα (b))|| = ||c2 − ψTα (d∗d)||

= ||c2 − ψTα (d∗)ψTα (d)||

≤ ||c2 − c · ψTα (d)||+ ||c · ψTα (d)− ψTα (d∗)ψTα (d)||

≤ ||c|| · ||c− ψTα (d)||+ ||c− ψTα (d∗)|| · ||ψTα (d)||

< 3ε

= η (3.14)

The last inequality follows from (3.12), (3.13) and bounds ||c|| ≤ 1, ||ψTα (d)|| ≤ 2.

Let us write aα = ψTα (b).

From Proposition 2.2.13 and (3.14) there is some d ∈Mn(C(X)) with,

(aα − η)+ = d∗ad.

Therefore, for every x ∈ X,

rank (aα − η)+(x) ≤ rank (a(x))

≤ k. (3.15)



51

From (3.14) and the functional calculus of aα,

||(aα − η)+ − a|| ≤ ||(aα − η)+ − aα||+ ||aα − a||

< η + η

= 2η.

Therefore, by Proposition 2.2.13 it follows that,

rank [(a− 2η)+(x)] ≤ rank [(aα − η)+(x)], ∀x ∈ X.

Now, from (3.11) and since rank (aα − η)+(x) = rank χ(2η,1](a(x)),

rank (aα − η)+(x) ≥ l,∀x ∈ X. (3.16)

Put c = ψTα ((b− η)+).

Then,

c = (b− η)+ ◦ ψα = ((b ◦ ψα)− η)+ = (aα − η)+.

Thus by (3.15) and (3.16), c ∈ C(X,S(n, k, l)).

Now consider h : [0, 1]→ C(X,S(n, k, l)) given by,

h(t) = [((1− t)a+ taα)− η]+.

Note that h is continuous by Lemma 2.2.12 [23].

We have h(0) = (a− η)+ and h(1) = c and,

||a− h(t)|| = ||a− ((1− t)a+ taα)|| = t||a− aα|| < η,∀t ∈ [0, 1].

Thus, by an argument similar to the one used to show c ∈ C(X,S(n, k, l)),

h(t) ∈ C(X,S(n, k, l)), ∀t ∈ [0, 1].

Proof of the Lemma is now complete since a is homotopic to (a − η)+ as maps

in C(X,S(n, k, l)). Indeed observe that the linear path t 7→ (1 − t)a + t(a − η)+ is

contained in C(X,S(n, k, l)).
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Lemma 3.2.3 Suppose for each finite simplicial complex Z with dimZ ≤ d, the

function space C(Z, S(n, k, l)) is path connected. Then, for every compact Hausdorff

space X of covering dimension d, space C(X,S(n, k, l)) is path connected.

Proof Like in the proof of 3.1.3, we first prove the result for the case of X being a

compact metric space. In this case X = lim←−Xα, where (Xα, ψαβ) is a inverse system

finite simplicial complexes with dimXα ≤ d. Let ψα : X → Xα be the natural maps.

Suppose a, b ∈ C(X,S(n, k, l)). We need to construct a path in C(X,S(n, k, l))

connecting a and b. From Lemma 3.2.2 we may assume that a = ψTα (c), b = ψTβ (d),

for some α = β and c, d ∈Mn(C(Xα))+.

Put Y = ψα(X) ⊂ Xα. Then, Y is closed and for each y = ψα(x) ∈ Y,

rank (c(y)) = rank (c(ψα(x))) = rank (a(x))

Hence,

l ≤ rank (c(y)) ≤ k, ∀y ∈ Y.

Similarly,

l ≤ rank (d(y)) ≤ k,∀y ∈ Y.

Therefore, there is some open neighborhood U of Y inXα and c̃, d̃ ∈ C(U, S(n, k, l))

such that c̃, d̃ are extensions of c, d respectively by Lemma 2.8.6.

After a refinement of the simplicial structure of Xα, choose a finite sub complex

Z of Xα such that, Y ⊂ Z ⊂ U and view c̃, d̃ to be maps in C(Z, S(n, k, l)). Now,

as Z is a finite simplicial complex with dimZ ≤ d, by the hypothesis there is a path

g̃ : [0, 1]→ C(Z, S(n, k, l)) such that g̃(0) = c̃ and g̃(1) = d̃.

Define a path g : [0, 1]→ C(X,Mn) by,

g(t)(x) = g̃(t)(ψα(x)).

Clearly that g(0) = ψTα (c) = a , g(1) = ψTα (d) = b and g(t) ∈ C(X,S(n, k, l)).

This proves the result in the case of X being a compact metric space with dimX ≤

d. If X is an arbitrary compact Hausdorff space, write X = lim←−Xα where Xα is

compact metric with dimXα ≤ d. From what we have just seen C(Xα, S(n, k, l)) is
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path connected for each α. Thus, following a similar argument to that in the metric

case gives the result for X.

Combining Lemma 3.2.1 and Lemma 3.2.3 we get;

Theorem 3.2.4 Let X be compact Hausdorff with dimX ≤ d. If πr(S(n, k, l)) = 0

for each r ≤ d then, C(X,S(n, k, l)) is path connected.
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4. FURTHER PRELIMINARIES AND

BLACKADAR-HANDELMAN CONJECTURES

All groups we consider are abelian and all semigroups are abelian monoids. Unless

stated otherwise an order relation is assumed to be a partial order.

4.1 Partially ordered abelian semigroups and their state spaces

Our main reference for this section is [8].

Definition 4.1.1 A partially ordered semigroup is a pair (M,≤) where M is an

abelian semigroup and ≤ is a partial order on M with a ≤ b =⇒ a + c ≤ b + c,

∀a, b, c ∈M . We also assume that 0 ≤ a for all a ∈M .

Remark: The term partially ordered semigroup is used even without assuming

0 ≤ a,∀a ∈ M . In such instances the term positively ordered semigroup is used

for ones which in addition satisfy 0 ≤ a,∀a ∈ M . We do not distinguish the two

cases.

All order relations we consider will be partial orders and for convenience we write

ordered semigroup to mean a partially ordered semigroup in the sense of 4.1.1.

An element u in (M,≤) is called an order unit if for each x ∈ M there is some

n ∈ N with x ≤ nu. A triple (M,≤, u) where (M,≤) and u are as above is called a

scaled ordered semigroup. If the order and the order unit are clear we may write M

to denote (M,≤, u).

Given (M,≤, u) to (N,≤, v), a morphism of scaled ordered semigroups is a map

φ : M → N which is additive and order preserving with φ(0) = 0 and φ(u) = v.
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A state on (M,≤, u) is a morphism from (M,≤, u) to (R+,≤, 1) where R+ is

the additive semigroup of non negative real numbers and ≤ is as usual. The set

of all states of (M,≤, u) will be denoted by S(M,≤, u), or by S(M) if the choice

of order unit and order are clear. S(M) is a convex subset of the space of all real

valued functions on M . The natural topology of S(M) is the topology of point-wise

convergence and it is compact in this topology.

A morphism φ : (M,≤, u) → (N,≤, v) as above induce a continuous affine map

φ] : S(N)→ S(M) via composition.

As our eventual plan is to study the state space of the Cuntz semigroup (4.2.1) of

a C∗-algebra, maps on the level of state spaces are of interest to us. In [8] Blackadar

and Rødram introduce the following class of morphisms of scaled ordered semigroups

and study the maps on the level of state spaces induced by morphisms in this class.

Definition 4.1.2 [8, Definition 2.2] Let φ : (M,≤, u)→ (N,≤, v) be a morphism of

scaled ordered semigroups. φ is called a stable order embedding if for any x, y ∈ M ,

there is n ∈ N and z ∈M with nx+ z+ u ≤ ny+ z if and only if there is m ∈ N and

w ∈ N with mφ(x) + v + w ≤ mφ(y) + w.

We recall some useful results from [8].

Lemma 4.1.3 [8, Lemma 2.8] Let (M,≤, u) be a scaled ordered semigroup. Then

for any given x, y ∈ M , s(x) < s(y) for all s ∈ S(M) if and only if there is some

n ∈ N and z ∈M such that nx+ z + u ≤ ny + z.

Lemma 4.1.4 [8, Lemma 2.9] Let (M,≤, u) be a scaled ordered semigroup and K be

a nonempty compact convex subset S(M). Suppose that for any a, b ∈M if s(a) < s(b)

for all s ∈ K then s(a) < s(b) for all s ∈ S(M). Then K = S(M).

Theorem 4.1.5 [8, Theorem 2.6] Let φ : (M,≤, u) → (N,≤, v) be a morphism of

scaled ordered semigroups. Then φ is a stable order embedding iff

S(M) = {g ◦ φ : g ∈ S(N)} .
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Remark: In [8] the above results are shown to hold in grater generality. Namely,

when M,N are pre-ordered. As we will only be considering partially ordered semi-

groups, we limit to the above versions.

4.2 The Cuntz semigroup of a C∗-algebra and its order relation

Let A be a C∗-algebra and Mn(A) denote the n× n matrices over A. Recall that

M∞(A) =
⋃
n∈N

Mn(A) subject to the identifications coming from the natural inclusions

ιn : Mn(A)→Mn+1(A) given by,

ϕn(a) =

a 0

0 0

 .

Let M∞(A)+ =
⋃
n∈N

Mn(A)+ . For every a, b ∈ M∞(A)+, a is said to be Cuntz

subequivalent to b - written a 4 b, if there is a sequence vn ∈M∞(A) such that

lim
n
||v∗nbvn − a|| = 0.

If a 4 b and b 4 a then a and b are said to be Cuntz equivalent (a ∼ b).

The relation ∼ is an equivalence relation and 〈a〉 denotes the equivalence class of

a ∈M∞(A)+.

The set of equivalence classes

W (A) = {〈a〉 : a ∈M∞(A)+}

together with the operation

〈a〉+ 〈b〉 = 〈a⊕ b〉

is an abelian semigroup and the relation ≤ on W (A) defined by

〈a〉 ≤ 〈b〉 ⇐⇒ a 4 b,

is a partial order. Moreover the pair (W (A),≤) is a ordered semigroup in the sense

of Definition 4.1.1.
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Definition 4.2.1 If A is a C∗-algebra the pair (W (A),≤) is called the Cuntz semi-

group of A.

In the case of an unital C∗-algebra A, the equivalence class 〈1A〉 is an order unit

for W (A). In general the equivalence class of any full positive element of A (i.e. any

positive element which generates A as an ideal) is an order unit for A. Henceforth,

we mainly consider unital C∗-algebras and unless stated otherwise we will take the

order unit of W (A) to be the one generated by 1A.

The Cuntz semigroup construction is functorial. Let φ : A → B be an unital

∗-homomorphism between unital C∗-algebras A and B. Let W (φ) : W (A) → W (B)

be given by

W (φ)(〈a〉) = 〈φ(a)〉,∀a ∈M∞(A)+,

where we abuse the notation slightly and denote the lift of φ to matrix algebras over

A by φ as well. Then W (φ) is a well defined morphism of scaled ordered semigroups

and this construction is functional.

We find the following Proposition [33, Proposition 2.7] regarding the order of

W (A) to be extremely useful.

Recall that for any C∗-algebra B, a ∈ B+ and ε > 0, (a− ε)+ denotes the element

of C∗(a) which corresponds (via the functional calculus of a) to the function

fε(t) = max{t− ε, 0}, t ∈ σ(a),

where σ(a) is the spectrum of a.

Proposition 4.2.1 [33, Proposition 2.7] Let A be a C∗-algebra and a, b ∈M∞(A)+.

The following are equivalent;

1. 〈a〉 ≤ 〈b〉.

2. For every ε > 0, 〈(a− ε)+〉 ≤ 〈b〉.
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4.3 Partially ordered abelian groups and the group K0
∗(A)

In this section we recall the definition of the group K0
∗(A) introduced by Cuntz

in [12]. K0
∗(A) is the Grothendieck enveloping group of W (A) and inherits a natural

order from the order of W (A) that makes K0
∗(A) a partially ordered abelian group.

In the next section we proceed to outline the well known identification of dimension

functions of a C∗-algebra A with the state space of K0
∗(A) - (see (Lemma 4.4.2) which

provides a convenient technical framework to study dimension functions. It should be

noted that the main motivation for introducing K0
∗(A) in [12] was to materialize this

identification. The identification is natural and some times in the literature dimension

functions on A are defined as states of K0
∗(A) .

Definition 4.3.1 [15] Let G be an abelian group and 0 be denote the identity element

in G. Let 0 ∈ G+ ⊂ G be such that a + b ∈ G+,∀a, b ∈ G+ and G+ ∩ (−G+) = {0}.

The pair (G,G+) is called a partially ordered abelian group and its said to be a

directed if G = G+ −G+

The subset G+ above is called the positive cone of G. For any pair a, b ∈ G we

write a ≤ b iff b− a ∈ G+. This defines a partial order on G.

Conversely if G is a group and≤ is partial order on G which is translation invariant

(i.e. for all a, b, c ∈ G, a ≤ b =⇒ a + c ≤ b + c), then G+ = {g : g ∈ G, 0 ≤ g}

satisfies the conditions given in Definition 4.3.1 and a ≤ b ⇐⇒ b− a ∈ G+. Hence,

specifying a subset G+ as in Definition 4.3.1 is equivalent to specifying a translation

invariant partial order on G.

An element u ∈ G+ is called an order unit for (G,G+) if it is the case that for all

a ∈ G there exists n ∈ N such that −nu ≤ a ≤ nu.

If u is as above, for all g ∈ G one has g = nu − (nu − g) where n ∈ N is such

that g ≤ nu. In particular, any partially ordered group which has an order unit is

directed.

We will often write ordered group to mean a partially ordered abelian group in

the sense of 4.3.1 and write G in place of the pair (G,G+) when the set G+ is clear.
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A state s on (G,G+, u) where (G,G+) is an ordered group and u is an order unit,

is an additive map s : G→ R satisfying s(G+) ⊂ [0,∞) and s(u) = 1. Set of all states

on (G,G+, u) is denoted by S(G,G+, u) or simply by S(G, u) when G+ is clear. As

in the semigroup case S(G,G+, u) is a compact convex subset of the space of all real

valued maps on G where the topology on S(G,G+, u) is the topology of point-wise

convergence. For detailed discussion on partially ordered abeilan groups and their

states see [15].

Following the notation of [12] let us write K∗0(A) to denote the Grothendieck group

of W (A) and set

K∗0(A)++ = {γ(y)− γ(x) : x, y ∈ W (A) and x ≤ y}

where γ : W (A)→ K0
∗(A) denotes the natural map given by Grothendieck construc-

tion. Its not hard to observe the following ( [6] c.f [12]).

The pair (K∗0(A), K∗0(A)++) form a partially ordered abeilan group and γ(〈1A〉) is

a order unit for (K∗0(A), K∗0(A)++). Note also that (K∗0(A), K∗0(A)++) is directed; i.e.

K∗0(A) = K∗0(A)++ −K∗0(A)++ .

It should be noted that there is another natural ordering on K0
∗(A) . Namely

one could give K0
∗(A) an ordered group structure by setting the positive cone to be

{γ(x) : x ∈ W (A)}. Its customary to associate the notation K0
∗(A) + to denote this

positive cone. Note that this construction does not contain any details of the order

on W (A) and work for the Grothendieck enveloping group of any abelian semigroup.

There is no natural order unit for the ordered group (K0
∗(A) , K0

∗(A) +) - in fact

its not true that (K0
∗(A) K0

∗(A) +) has an order unit in general. Thus, the ordered

groups structure on K0
∗(A) given by given by taking K0

∗(A) ++ as the cone of positive

elements seems more useful. Most importantly with this choice the resulting order

structure on K0
∗(A) contain (some) details of the order on W (A) and hence facilitates

the said identification (Lemma 4.4.2) of the dimension functions of A with states on

(K0
∗(A) , K0

∗(A) ++).
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4.4 Dimension functions, lower semicontinuous dimension functions and

quasitraces on a C∗-algebra

Definition 4.4.1 (c.f. [6, 21]) A dimension function on an unital C∗-algebra A is a

function d : M∞(A)+ → [0,∞) which satisfies the following conditions;

1. d(1) = 1.

2. d(a+ b) = d(a) + d(b) for all a, b ∈M∞(A)+ with a ⊥ b.

3. d(a) ≤ d(b) for all a, b ∈M∞(A)+ with a 4 b.

The set of all dimension functions on A is denoted by DF (A) and it is given

topology of point-wise convergence.

Remarks:

1. By replacing (1) above with the condition sup{d(a) : a ∈ A+} = 1, one can

extend the definition of dimension functions to include non unital algebras.

2. In [6] the range of a dimension function is taken to be the set M∞(A), not just

the positive cone M∞(A)+. It is easily seen that the two definitions are equivalent.

A dimension function in the sense of 4.4.1 extends to all of M∞(A) by setting d(a) =

d(a∗a). .

3. The notion of a dimension function in [12] is the one give in Definition 4.4.1 with

the additional assumption d(a) = 0 iff a = 0. For simple C∗-algebras this additional

condition follows from the conditions 1-3 of the definition here. Note that [12] mainly

concerns simple C∗-algebras.

Lemma 4.4.2 ( [6] c.f. [12]) For an unital C∗-algebra A, DF (A) is in bijective cor-

respondence with S(K∗0(A), K∗0(A)++ , γ(〈1A〉)) and thus with S = S(W (A),≤, 〈1A〉).

Proof We outline the identifications involved.

Any s ∈ S(W (A)) uniquely determines a state s′ on K∗0(A) given by s′(γ(x) −

γ(y)) = s(x) − s(y). Conversely if s′ ∈ S(K∗0(A)) then s(x) = s′(γ(x)) is a state on

W (A).
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On the other hand if f ∈ DF (A) then sf (〈a〉) = f(a) is a state on W (A) and if

s ∈ S(W (A)) then fs defined on M∞(A)+ by fs(a) = s(〈a〉) is in DF (A).

The above correspondences are homeomorphisms with respect to the point-wise

topologies on each set. Due to the identifications given in 4.4.2, it is customary to

call either of these three spaces as dimension functions. From here on we will use this

identification freely.

A dimension function s is said to be lower semicontinuous if for each a ∈M∞(A)+

s(〈a〉) ≤ lim inf
n

sn(〈an〉)

whenever (an) is a sequence in M∞(A)+ converging to a in norm. In other words,

this means that when s is identified as a dimension function in the original sense (i.e.

4.4.1) s is lower semicontinuous in the norm topology of M∞(A)+. The set of all

lower semicontinuous dimension functions of A is denoted by LDF (A).

Lemma 4.4.3 For an unital C∗ -algebra A and s ∈ S(W (A), 〈1A〉), s is lower semi-

continuous if and only if s(〈a〉) = supε>0 s(〈(a− ε)+〉)

Proof Note that for any positive ε, (a− ε)+ ≤ a and therefore

sup
ε>0

s((a− ε)+) ≤ s(a),∀s ∈ S.

To show the reverse implication let s ∈ LDF (A). For any decreasing sequence of

positive numbers (εn) converging to 0, ((a− εn)+)n∈N converges to a in norm. Since

s is lower semicontinuous,

s(〈a〉) ≤ lim inf
n

sn(〈(a− εn)+〉 ≤ sup
ε>0

s((a− ε)+) ≤ s(a).

To prove the forward implication suppose s(〈a〉) = supε>0 s(〈(a− ε)+〉).

Let (an)n∈N be any sequence in M∞(A)+ converging to a in norm. Let ε > 0.

Then choose k ∈ N such that

||a− an|| < ε,∀n ≥ k.
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Now by Proposition 2.2.13 for all n ≥ k, (a− ε)+ 4 an and thus,

s(〈(a− ε)+〉) ≤ lim inf
n

s(〈an〉)

Hence, since ε is arbitrary,

s(〈a〉) = sup
ε>0

s(〈(a− ε)+〉) ≤ lim inf
n

s(〈an〉)

and s is lower semicontinuous.

Given a dimension function s ∈ DF (A) define s : M∞(A)+ → [0,∞) by

s(a) = sup
ε>0

s((a− ε)+),∀a ∈M∞(A)+.

Proposition 4.4.4 [33, Proposition 4.1] Let A be a C∗-algebra and let s ∈ DF (A).

Then s defined above is a well defined lower semicontinuous dimension function and

s(〈a〉) ≤ s(〈a〉) for all a ∈M∞(A)+.

We recall the Definition of a quasitrace as given in [6].

Definition 4.4.5 [6, Definition II.1.] A quasitrace on a C∗-algebra is a map τ :

A→ C such that,

1. τ(x∗x) = τ(xx∗).

2. τ is linear on commutative ∗-subalgebras of A.

3. If x = a+ ib with a, b self adjoint then, τ(x) = τ(a) + iτ(b).

4. For each n ∈ N, τ extends to a map on Mn(A) that satisfies (1)-(3) in Mn(A).

A quasitrace τ is said to be normalized if ||τ || = sup{τ(a) : a ∈ A+, ||a|| ≤ 1} = 1.

In the case that A is unital this is equivalent to τ(1) = 1. The set of all normalized

quasitraces of A is denoted by QT (A). In topology of point-wise convergence QT (A)

is a compact subset of all complex valued functions on A, provided A is unital. More-

over from [6], QT (A) is a simplex for unital A.
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Remarks:

1. In [6] a quaistrace (2-quasitrace as termed there) is required to satisfy condition

(4) only for n = 2. However, from [6, Proposition II.4.1] a quasitrace in that sense

extends to Mn(A), ∀n ∈ N.

2. The extension of a quasitrace τ to Mn(A) = Mn(C)⊗A is uniquely determined

for each n and is moreover is equal Tr⊗ τ where Tr is the canonical non normalized

trace on respective Mn(C).

3. A state τ on a C∗-algebra is a linear functional on A with τ(A+) ⊂ [0,∞)

and ||τ || = 1. For an unital C∗-algebra this is equivalent to saying τ is linear and

τ(1A) = 1. τ is a tracial state if its a state with τ(ab) = τ(ba),∀a, b ∈ A. Note that a

tracial state is a linear quasitrace. Converse is true for unital and exact C∗-algebras

from [19].

One important fact about lower semicontinuous dimension functions is that they

are represented by quasitraces in a natural and a bijective way [6]. This makes the

lower semicontinuous dimension functions much more tractable compared to arbitrary

dimension functions. Conversely this representation can be used to prove properties

of QT (A) [6, Section II.2].

Given τ ∈ QT (A) define dτ : W (A)→ [0,∞) by

dτ (〈a〉) = lim
n→∞

(a
1/n),

where we slightly abuse the notation and use τ to denote Tr ⊗ τ as well. The map

dτ is well defined and moreover we have the following from [6].

Theorem 4.4.6 [6, Theorems II.2.2 and II.3.1] Let A be a C∗-algebra. The map

dτ is a lower semicontinuous dimension function on A for each τ ∈ QT (A). The

assignment τ 7→ dτ gives an affine bijection from QT (A) onto LDF (A) which has a

continuous inverse with respect to the pointwise topologies on both ends.

For unital A, QT (A) is a simplex [6, Theorem II.4.4]. Given a simplex K, the set of

all lower semicontinuous affine maps from K into R that are non negative valued and
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bounded is denoted by LAff b(K)+. With pointwise addition and pointwise ordering

LAff b(K)+ form an ordered semigroup.

For 〈a〉 ∈ W (A) define ι(〈a〉) : QT (A)→ [0,∞) by

ι(〈a〉)(τ) = dτ (〈a〉), ∀τ ∈ QT (A).

Clearly ι(〈a〉) is well defined with and ι(〈a〉) ∈ LAff b(QT (A))+ for all 〈a〉 ∈ W (A).

Note that ι defines a morphism from (W (A),≤, 〈1A〉) to (LAff b(QT (A))+,≤, 1) where

1 is the constant function 1 on QT (A) which is an order unit for LAff b(QT (A))+.

4.5 The Blackadar-Handelman conjectures

Before we recall the Conjectures few Definitions are in order.

A partially ordered vector space is a real vector space E together with a partial

order ≤ which makes the additive group E a partially ordered group and is such that

x ≤ y =⇒ αx ≤ αy, ∀x, y and ∀α ∈ R+.

Definition 4.5.1 [15, Chapter 10] A convex cone in a real vector space E is any

convex subset of E that is also a cone in the abelian group E. In other words a

convex cone in E is a subset C of E such that 0 ∈ C and α1x1 + α2x2 ∈ C for

any x1, x2 ∈ C, α1, α2 ∈ R+. A convex cone C is called a strict convex cone if

x,−x ∈ C =⇒ x = 0,∀x ∈ E.

If E is a partially ordered vector space, {x ∈ E : x ≥ 0} is a strict convex cone

and is called the positive cone of E. Conversely if C ⊂ E is a strict convex cone in

E then (E,≤C) where x ≤C y ⇐⇒ y − x ∈ C, is a partially ordered vector space

with positive cone C.

A strict convex cone C is called a lattice cone if C is such that (C,≤C) is a lattice.

If C ⊂ E is a non-zero convex cone then a base for C is any convex subset K

of C such that for every non-zero x ∈ C there is a unique pair (b, α) ∈ K × R+

with x = αb. By convention the empty set is considered a base for the zero cone.

From [15, Lemma 10.1] if C has a base, then C is a strict cone.
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Definition 4.5.2 [15, Chapter 10] A simplex in a real vector space E is a convex

subset K of E that is affinely isomorphic to a base for a lattice cone in some real

vector space

Conjecture 4.5.3 [6] For any C∗- algebra A, the set of lower semicontinuous di-

mension functions LDF (A) is dense in DF (A) in the topology of point-wise conver-

gence.

Conjecture 4.5.4 [6] The affine space DF (A) is a simplex for any C∗- algebra A.

Remarks:

1. We defined dimension functions for an unital C∗-algebra A. But as remarked

after Definition 4.4.1, dimension functions are defined for non - unital A. Thus, the

conjecture make sense in general. However, we will only be interested in the unital

case. In fact all the known confirmations (see 4.5.5) of the conjectures assumes A to

be unital.

2. A Choquet simplex is by definition a compact simplex in a locally convex

Hausdorff space. Thus for unital A, if DF (A) is a simplex then DF (A) is a Choquet

simplex. For a detailed discussion on simplexes - in particular Choquet simplexes,

read [15].

Theorem given bellow lists the instances that we found in our literature survey

where either of the conjectures had already been proven.

Theorem 4.5.5 Let A be an unital C∗-algebra. The following hold.

1. [6, Theorem I.2.4.] Conjecture 4.5.3 holds if A is commutative.

2. [29, Corollary 4.4] Conjecture 4.5.4 holds if A is has real rank zero and stable

rank 1.

3. [9, Theorem B] If A is simple finite and is either exact and Z-stable or AH of

slow dimension growth then both the conjectures hold for A.

4. [1, Theorem 4.1] Let X be a finite dimensional, compact metric space, and let

A be separable and unital. Conjecture 4.5.4 holds in the following cases:
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(i) dim X ≤ 1 and A is a continuous field such that for all x ∈ X, Ax has stable

rank one with trivial K1 and is either of real rank zero or else simple and Z-stable.

(ii) X is an arc-like space and A = C(X,B) where B is simple, and either has

real rank zero and finite radius of comparison, or else is Z-stable.

(iii) dim X ≤ 2 with vanishing second Čech cohomology group Ȟ2(X,Z) = 0, and

A = C(X,B) with B an infinite simple AF -algebra.

(iv) A = C(X,B), where B is a non-type I, unital simple, ASH-algebra with slow

dimension growth.

5. [1, Theorem 4.5] Let X be a finite dimensional, compact metric space, and let

A = C(X,B) where B is an unital, separable,infinite dimensional and exact with

stable rank one such that T (B) is a Bauer simplex. Then Conjecture 4.5.3 holds for

A in the following cases;

(i) dim X ≤ 1 and B is simple, K1(B) = 0 and B has strict comparison.

(ii) X is arc-like, B is simple, has real rank zero and strict comparison.

(iii) dim X ≤ 2 and Ȟ2(X,Z) = 0, with B an AF -algebra.

(iv) B is a non-type I, simple, unital ASH algebra with slow dimension growth.

.
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5. NEW CONFIRMATIONS OF CONJECTURE 4.5.3 FOR

UNITAL C∗-ALGEBRAS

All C∗-algebras are assumed to be unital and stably finite. Note that for unital A

stably finiteness implies DF (A) 6= ∅. The converse hold for simple (unital) A.

5.1 An alternate criterion for density of LDF (A) in DF (A) for unital A

Recall from last chapter that for a C∗-algebra A, ι : W (A) → LAffb(QT (A))+

denotes the function given by ι(a)(τ) = dτ (a),∀τ ∈ QT (A).

Theorem 5.1.1 Let A be an unital stably finite C∗-algebra. Then LDF (A) is dense

in DF (A) if and only if ι : (W (A),≤, 〈1A〉) → (LAff b(QT (A))+,≤, 1) is a stable

order embedding, where LAff b(QT (A))+ defined in the previous section and 1 denote

the constant function 1.

Proof Suppose ι is a stable order embedding.

Let K denote the pointwise closure of LDF (A) in DF (A). Then K is a compact

convex subset of DF (A). Suppose x, y ∈ W (A) are such that d(x) < d(y) for all

d ∈ K. The function defined on K given by d 7→ d(y) − d(x) for every d ∈ K is

strictly positive and continuous on K in pointwise topology. Since K is compact the

function attains a minimum δ > 0 on K.

Choose some n ∈ N large enough so that nδ ≥ 1.

Then,

nd(x) + 1 ≤ nd(y),∀d ∈ K.

In particular,

ndτ (x) + 1 ≤ ndτ (y),∀τ ∈ QT (A).
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Therefore,

nι(x) + 1 ≤ nι(y).

Hence, as ι is a stable order embedding, there is some m ∈ N and z ∈ W (A) such

that,

mnx+ z + 〈1A〉 ≤ mny + z.

Thus,

s(x) < s(y), ∀s ∈ DF (A).

Therefore, by Lemma 4.1.4 K = DF (A), i.e. LDF (A) is dense in DF (A).

Now suppose LDF (A) is dense in DF (A).

In general ι is an order preserving homomorphism. To verify it is a stable order

embedding let x, y ∈ W (A) and suppose that there is some n ∈ N such that,

nι(x) + 1 ≤ nι(y).

Then for all τ ∈ QT (A),

dτ (nx+ 〈1A〉) ≤ dτ (ny).

Therefore, since LDF (A) is dense in DF (A),

s(nx+ 〈1A〉) ≤ s(ny),∀s ∈ DF (A)

Thus, s(nx) < s(ny), ∀s ∈ DF (A) and hence, by Lemma 4.1.3, there is some

m ∈ N and z ∈ W (A) such that,

mnx+ 〈1A〉+ z ≤ mny + z.

Therefore, ι is a stable order embedding.

In the next section we apply Theorem 5.1.1 to provide new verifications of Con-

jecture 4.5.3.



71

5.2 New confirmations of Conjecture 1.2.2

We confirm Conjecture 4.5.3 for any unital C∗-algebra A which either has finite

radius of comparison or has an almost unperforated W (A).

Definition 5.2.1 [40, Definition 6.1] Let A be a C∗-algebra. A has finite radius of

comparison if there is some real number r > 0 such that the following hold for all

a, b ∈M∞(A)+;

(dτ (〈a〉) + r ≤ dτ (〈b〉),∀τ ∈ QT (A)) =⇒ a 4 b. (5.1)

If A is of finite radius of comparison, the radius of comparison of A (rc(A)) is the

infimum of all r as in (5.1). If not the radius of comparison is infinite and we write

rc(A) =∞. Note that rc(A) = 0 iff A has strict comparison.

Definition 5.2.2 An ordered semigroup (M,≤) is said to be almost unperforated if

kx ≤ k′y =⇒ x ≤ y for all x, y ∈M and each k, k′ ∈ N with k > k′

To confirm the conjecture in the latter case we need the following Proposition

( [33] c.f. [5, Theorem 6.8.51]).

Proposition 5.2.3 [33, Proposition 3.2] Let (M,≤) be almost unperforated and

u, x ∈M . If u is an order unit and s(x) < s(u) for all s ∈ S(M,≤, u) then x < u.

Lemma 5.2.4 is mainly a consequence of Krein-Milman Theorem and show that if

QT (A) has only finitely many extremal points then Conjecture 4.5.3 implies Conjec-

ture 4.5.4.

Lemma 5.2.4 Suppose A is an unital C∗-algebra with ∂e(QT (A)) finite and non

empty. Then LDF (A) is compact and moreover the map g : QT (A) → LDF (A)

given by τ 7→ dτ is an affine homeomorphism. If its also the case that LDF (A) is

dense in DF (A) then DF (A) = LDF (A) and DF (A) is affinely homeomorphic to

QT (A).
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Proof From Theorem 4.4.6 [6], g : QT (A) → LDF (A) is an affine bijection and

g−1 is continuous. Since QT (A) is compact and convex, by Krein–Milman Theorem

QT (A) is the closure of the convex hull of ∂e(QT (A)). As ∂e(QT (A)) is assumed to

be finite, its convex hull co(∂e(QT (A))) is compact and therefore we have;

QT (A) = co(∂e(QT (A))) = co(∂e(QT (A))).

Thus,

LDF (A) = g(QT (A)) = g(co(∂e(QT (A))))

and since g is an affine bijection,

g(∂e(QT (A))) = ∂e(LDF (A)).

Therefore,

LDF (A) = g(co(∂e(QT (A)))) = co(∂e(LDF (A))).

In particular, since ∂e(LDF (A)) = g(co(∂e(QT (A)))) is a non empty finite set,

LDF (A) is compact and g is a homeomorphism.

Now if LDF (A) is dense in DF (A), then DF (A) = LDF (A). As we had just

noted, LDF (A) is compact and so it is equal to its own closure. Thus DF (A) =

LDF (A) and is affinely homeomorphic to QT (A) from the preceding paragraph.

Theorem 5.2.5 Let A be any unital C∗-algebra. The following hold.

1. If A has finite radius of comparison then LDF (A) is dense in DF (A).

2. If W (A) almost unperforated then LDF (A) is dense in DF (A).

3. If ∂e(QT (A)) is a finite set and if either of the assumptions above (in 1,2) hold

for A then DF (A) = LDF (A) and DF (A) is affiinely homeomorphic to QT (A). In

particular DF (A) is a Choquet simplex.

Proof Proof of 1:

Let rc(A) = r <∞.

By Theorem 5.1.1 we only have to show that ι is a stable order embedding.
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Let x, y ∈ W (A) and suppose that there is some n ∈ N with,

nι(x) + 1 ≤ nι(y).

Then for all τ ∈ QT (A),

dτ (nx+ 〈1A〉) ≤ dτ (ny).

Choose some m ∈ N large enough so that m > r + 1.

Then for all τ ∈ QT (A),

dτ (mnx+ 〈1A〉) + r = dτ (mnx) + 1 + r

< dτ (mnx) +m

= mdτ (nx+ 〈1A〉)

≤ mdτ (ny)

Therefore, since rc(A) = r,

mnx+ 〈1A〉 ≤ mny.

Proof of 2:

Again we only have to show that ι is a stable order embedding.

So let a, b ∈M∞(A)+ and suppose that there is some n ∈ N such that,

nι(〈a〉) + 1 ≤ nι(〈b〉)

In particular, for all τ ∈ QT (A),

2ndτ (〈a〉) + 1 < 2ndτ (〈b〉) (5.2)

Fix ε > 0 and let s ∈ DF (A) be arbitrary.

Then s ∈ LDF (A), where s is as in Proposition 4.4.4.

Thus, by equation (5.2)

2ns(〈a〉) + 1 < 2ns(〈b〉). (5.3)
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Note that by definition of s we have,

s(〈(a− ε)+〉) ≤ s(〈a〉).

Combining this with (5.3) we have,

s(2n〈(a− ε)+〉+ 2〈1A〉) = 2ns(〈(a− ε)+〉) + 2

≤ 2ns(〈a〉) + 1 + 1

< 2ns(〈b〉) + 1

≤ 2ns(〈b〉) + 1

= s(2n〈b〉+ 〈1A〉)

Since 2n〈b〉+ 〈1A〉 is an order unit for W (A) and s is arbitrary, we apply Propo-

sition 5.2.3 to conclude

2n〈(a− ε)+〉+ 2〈1A〉 ≤ 2n〈b〉+ 〈1A〉.

Note that ε is arbitrary and in particular does not depend on n.

Thus by [33, Proposition 2.4] it follows that,

2n〈a〉+ 2〈1A〉 ≤ 2n〈b〉+ 〈1A〉.

In particular for z = 〈1A〉 ∈ W (A),

2n〈a〉+ 〈1A〉+ z ≤ 2n〈b〉+ z

and we conclude that ι : W (A)→ LAffb(QT (A))+ is a stable order embedding.

Proof of 3: First part follows directly from Lemma 5.2.4 and parts 1 and 2 above.

To see that DF (A) is a Choquet simplex recall QT (A) is Choquet.

Examples:

1. C∗-algebras considered in [9, Theorem B] have finite radius of comparison. In

particular, C∗-algebras in [9, Theorem B] have rc(A) = 0.
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2. Most of the continuous fields considered in [1] are also known to have finite

radius of comparison.

3. Counter examples for Elliott’s classification conjecture constructed in [36] and

Villadsen algebras of type I [41] satisfy Conjecture 4.5.3 by Theorem 5.2.5. Note that

these algebras are unital ASH-algebras of flat dimension growth. Thus from [38] have

finite radius of comparison.

4. Villadsen algebras of type II [42] are of finite radius comparison (for the same

reasons provided in 3) and have unique quasitrace. Therefore these satisfy both the

conjectures from Theorem 5.2.5. This means that for each n ∈ N, we now know that

there are unital algebras of stable rank n which satisfy the conjectures.

Remark: For simple C∗-algebras, almost unperforation of W (A) is equivalent to

strict comparison (i.e zero radius of comparison) and thus (2) of Theorem 5.2.5 may

seem some what redundant when compared to (1). However, in general (without

simplicity) it is not clear how the two properties relate to each other.

5.3 Possibility of extending Theorem 5.2.5 to inductive limits

It is natural to attempt to extend the conclusions of parts 1 and 2 of Theorem

5.2.5 to unital inductive limits. More specifically,

Question 5.3.1 If (An, φn) is an unital inductive system with LDF (An) dense in

DF (An) for each n, is LDF (A) dense in DF (A) for A = limnAn ?

Or more feasibly,

Question 5.3.2 If (An, φn) is an unital inductive system with either rc(An) < ∞

for all n or W (A) almost unperofated for all n, is LDF (A) dense in DF (A) for

A = limnAn ?

A positive answer to either of these questions would confirm Conjecture 4.5.3

for a much wider class of unital C∗-algebras including ones with infinite radius of
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comparison. In Proposition 5.3.4, using a classical functional analytic type argument,

we prove a result that could be considered an intermediate step in this direction.

However, extending Proposition 5.3.4 to a complete answer to the above question

remains open. It should be noted that crux of a the matter of providing a positive

answer to Questions 5.3.1 or 5.3.2 lies in overcoming the complications that arise

form the non-continuity (with respect to inductive limits) of the Cuntz semigroup

construction (i.e. W (A) � limnW (An)). Proposition 5.3.4 does not address this

issue.

Suppose B,C are two unital C∗-algebras with non empty quasitrace spaces (for

example say B, C are stably finite). Let φ : B → C be an unital ∗-homomorphism and

let φ] : QT (C)→ QT (B) be the induced continuous affine map given by φ](τ) = τ ◦φ.

Lemma 5.3.3 Let A = limn(An, φn) where (An, φn) is an inductive system of unital

C∗-algebras and unital ∗-homomorphisms. For every m, k ∈ N, let φm,m+k : Am →

Am+k be the composition φm+k−1 ◦ φn+k−2 ◦ .... ◦ φm and let φm,∞ : Am → A be the

induced ∗-homomorphism. Then for any m ∈ N⋂
k∈N

φ]m,m+k(QT (Am+k)) = φ]m,∞(QT (A)).

Proof If there is an increasing sequence of integers {mk} with QT (Amk) = ∅, ∀k ∈ N

then QT (A) = ∅. Thus the conclusion of the Lemma is a triviality.

Let us assume that QT (An) 6= ∅ for every n ∈ N.

The reverse inclusion is clear. Indeed, if ρ = φ]m,∞(τ) for some τ ∈ QT (A) then

for each k ∈ N, ρ = φ]m,m+k(φm+k,∞(τ)). Hence ρ ∈ φ]m,m+k(QT (A)), for every

k ∈ N.

To show the forward inclusion, fix ρ ∈
⋂
k∈N

φ]m,m+k(QT (Am+k)).

Set Ym = {ρ} and for each i 6= m set,

Yi = {φi,m(ρ)},∀i < m (5.4)

Yi = {τ ∈ QT (Ai) : τ ◦ φm,i = ρ},∀i > m. (5.5)
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Let Y be the set,

Y =
∞∏
i=1

Yi ⊂
∞∏
i=1

QT (Ai).

Now for each i ∈ N, let pi : Y → QT (Ai) be the restriction of the natural

projection map from
∏∞

i=1 QT (Ai) onto QT (Ai). From 5.4 and 5.5 we have pi =

φ]i,j ◦pj for all i ≤ j. Therefore, since QT (A) is the inverse limit of (QT (Ai), φ
]
i,j) [6,

Theorem II.4.8.], for every i ∈ N there is a continuous map p : Y → QT (A) such that

pi = φ]i,∞ ◦ p by the universal property of inverse limits.

In particular, there is some (τn)n∈N ∈ Y such that pm((τn)n∈N) = φ]m,∞(p((τn)n∈N)).

But by definition of Y , pm((τn)n∈N) = τm = ρ. Therefore for ρ∞ = p((τn)n∈N) ∈

QT (A) we have ρ = φ]m,∞(ρ∞) and hence, ρ ∈ φ]m,∞(QT (A)).

For an unital ∗-homomorphism φ : B → C, recall that W (φ) : W (B) → W (C)

induced by φ is a morphism of scaled ordered semigroups.

Proposition 5.3.4 Let (An, φn) be an inductive system of unital C∗-algebras and

unital ∗-homomorphisms. Let A = limn→∞An and suppose LDF (An) is dense in

DF (An) for every n ∈ N. Write S =
⋃
n∈N

W (φn,∞)(W (An)) where φn,∞ : An → A∞

are the natural maps. Then for any s ∈ DF (A), for every finite subset F of S and

each ε > 0 there is some d ∈ LDF (A) such that for every x ∈ F , |s(x)− d(x)| < ε.

Proof For notational convenience let us denote W (φn),W (φn,∞) by ψn, ψn,∞ re-

spectively. Clearly S is a subsemigroup of W (A) containing the order unit 〈1A〉 and

(S, 〈1A〉) is a scaled ordered semigroup.

Let s ∈ DF (A) and fix ε > 0. Let F be a finite subset of S. Say F = {x1, x2, ..., xt}

for some t ∈ N and pick some i0 ∈ N so that for every 1 ≤ j ≤ t there is xi0,j ∈ W (Ai0)

with xj = ψi0,∞(xi0,j). For simplicity let us drop a finite number of Ans and renumber

to take i0 = 1

For all n ≥ 1 and 1 ≤ j ≤ t, let xn+1,j = ψn(xn,j) ∈ W (An+1). For each n ∈ N, let

sn = s ◦ ψn,∞ ∈ DF (An). Then by density of LDF (An) in DF (An) for each n ∈ N

there is τn ∈ QT (An) such that,
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|dτn(xn,j)− sn(xn,j)| <
ε

2
,∀1 ≤ j ≤ t. (5.6)

Now set ρ1 = τ1 and ρn = φ]1,n(τn) for all n > 1 where φ1,n = φn−1 ◦ φn−2 ◦ .. ◦ φ1.

Then (ρn)n∈N is a sequence in QT (A1) and using weak∗ compactness of QT (A1), by

passing onto a subsequence if required, we assume that ρn → ρ (weak*) for some

ρ ∈ QT (A). But note that ρ ∈ φ]1,n(QT (An)) for all n > 1. Hence by 5.3.3, there is

some τ ∈ QT (A) such that ρ = φ]1,∞(τ).

On the other hand since ρn → ρ in weak∗-topology ρ is contained in the norm

closure of the convex hull of {ρn : n ∈ N}. Thus, choose a finite set of indexes

i1, i2, ..., ik ∈ N and 0 < t1, t2, ..tk ≤ 1 with
∑k

p=1 tp = 1 such that,

||ρ−
k∑
p=1

tpρip|| <
ε

2
. (5.7)

For notational convenience take σ =
∑k

i=1 tjρij . Then ∀1 ≤ j ≤ t,

|s1(x1,j)− dσ(x1,j)| = |
k∑
p=1

tpsip(xip,j)−
k∑
p=1

tpdτip (xip,j)|

≤
k∑
p=1

tp|sip(xip,j)− dτip (xip,j)|

≤
k∑
p=1

tp
ε

2
(by 5.6)

≤ ε

2

For every 1 ≤ j ≤ t fix some large enough r ∈ N and choose positive contractions

a1,j ∈Mr(A1)+ such that x1,j = 〈a1,j〉. Write an+1,j = φn(a1,j), ∀n ∈ N and 1 ≤ j ≤ t.
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Note that each an,j is a positive contraction in Mr(An) with xn,j = 〈an,j〉. Then

∀1 ≤ j ≤ t,

|dσ(x1,j)− dρ(x1,j)| = | lim
n→∞

σ((a1,j)
1/n)− lim

n→∞
ρ((a1,j)

1/n)|

≤ lim sup
n
|σ((a1,j)

1/n)− ρ((a1,j)
1/n)|

≤ lim sup
n
||σ − ρ||||(a1,j)

1/n)||

≤ ε

2
,

where the last inequality follows from 5.7 and the fact that a1,j is contractive.

Now from 5.8 and 5.8 ∀1 ≤ j ≤ t,

|s(xj)− dτ (xj)| = |s(ψ1,∞(x1,j))− dτ (ψ1,∞(x1,j))|

= |s1(x1,j)− dρ(x1,j)|

≤ |s1(x1,j)− dσ(x1,j)| − |dσ(x1,j)− dρ(x1,j)|

≤ ε

2
+
ε

2

= ε
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6. STABLY APPROXIMATE INTERPOLATION AND

CONJECTURE 4.5.4

Interpolation groups is one class of ordered groups for which a good structure the-

ory exists. Our interest of interpolation groups is motivated by their relevance to

Conjecture 4.5.4.

From [15, Theorem 10.17] the state space of an interpolation group is a Cho-

quet simplex. Thus, for any unital C∗-algebra A if the ordered group K0
∗(A) is an

interpolation group then Conjecture 4.5.4 holds for A.

In this chapter we introduce a class of scaled ordered groups that satisfy a stably

approximate version of interpolation (Definition 6.2.1) and show S(G, u) to be a

Choquet simplex for a ordered group G with order unit u that satisfy this weaker

notion of interpolation. Our proof is based very much on the ideas of [15]. We simply

show that the techniques used in [15] in proving Theorem 6.1.4 for interpolation

groups can be adopted to our case after some modifications.

In the final section of the chapter we investigate the possibility of applying Corol-

lary 6.3.8 to confirm Conjecture 4.5.4.

6.1 Interpolation groups

Recall the following definition. Note that we use the terminology and conventions

form Chapter 4.

Definition 6.1.1 Let (G,G+) be a partially ordered abelian group (Definition 4.3.1)

and let u ∈ G+ be an order unit. (G,G+) is said to have,
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1. Riesz interpolation property if for all a1, a2, b1, b2 ∈ G with ai ≤ bj for all i, j

there is c ∈ G such that,

ai ≤ c ≤ bj, ∀1 ≤ i, j ≤ 2.

2. Riesz decomposition property if for each a, b1, b2 ∈ G+ with a ≤ b1 + b2 there is

a1, a2 ∈ G+ such that,

a1 + a2 = a and a1 ≤ b1, a2 ≤ b2.

3. Riesz refinement property if for each a1, a2, b1, b2 ∈ G+ with a1 + a2 = b1 + b2

there are c11, c12, c21, c22 ∈ G+ such that,

ai = ci1 + ci2 and bj = b1j + b2j

for each 1 ≤ i, j ≤ 2

All three properties provided above are equivalent. A proof of this fact is provided

in [15, Proposition 2.1].

Proposition 6.1.2 For any (G,G+) the three properties in Definition 6.1.1 are equiv-

alent.

Remark: Property (3) of Definition 6.1.1 was first considered by Riesz in [32] for

an ordered semigroup with cancellation which is equivalent to a positive cone of an

ordered group. Birkhoff introduced the other two properties and proved the equiv-

alence of the three properties in [4]. Note that the first property is defined for any

partially ordered set.

Definition 6.1.3 A partially ordered abelian group (G,G+) which satisfies the Riesz

interpolation (equivalently Riesz decomposition or refinement) property is called an

interpolation group.

Our interest on interpolation groups is mainly due to the following theorem.
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Theorem 6.1.4 [18, Theorem I.2.5](also see [15, Theorem 10.17]) If (G,G+) is

an interpolation group with order unit u then its state space S(G, , u) is a (Choquet)

simplex.

All the previous verifications of Conjecture 4.5.4 that we listed in Theorem 4.5.5

utilize this. In other words, in all those cases the group K∗0(A) is shown to have the

Riesz interpolation property.

6.2 Stably approximate interpolation, decomposition and refinement

Definition 6.2.1 Let (G,G+) be a partially ordered abelian group with u ∈ G+ an

order unit. We say that (G,G+, u) has;

1. Stably approximate interpolation property if for every a1, a2, b1, b2 ∈ G with

ai ≤ bj for all i, j and any ε > 0 there are n, k ∈ N and c ∈ G with,

k

n
< ε and nai ≤ c ≤ nbj + ku, ∀1 ≤ i, j ≤ 2.

2. Stably approximate decomposition property if for every a, b1, b2 ∈ G+ with

a ≤ b1 + b2 and for any ε > 0 there are k, n ∈ N with k
n
< ε and a1, a2 ∈ G+ such

that,

a1 + a2 = na+ ku

a1 ≤ nb1 + ku

a2 ≤ nb2 + ku

3. Stably approximate refinement property if for every a1, a2, b1, b2 ∈ G+ with

a1 + a2 = b1 + b2 and for any ε > 0 there are k, n ∈ N with k
n
< ε and cij ∈ G+, 1 ≤

i, j ≤ 2 such that

ci1 + ci2 = nai + ku

c1j + c2j = nbj + ku,

for 1 ≤ i, j ≤ 2.
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Following the proof of [15, Proposition 2.1] we prove;

Proposition 6.2.2 Let (G,G+) be a partially ordered abelian group with u ∈ G+ an

order unit. The three properties listed in Definition 6.2.1 are equivalent.

Proof Proof of (1) =⇒ (2);

Let a, b1, b2 ∈ G+ with a ≤ b1 + b2 and fix ε > 0. So 0 ≤ a, 0 ≤ b1 and a− b2 ≤ b1.

Since b2 ≥ 0, we have a− b2 ≤ a.

Thus, by (1) of Definition 6.2.1, there are n, k ∈ N with k
n
< ε and c1 ∈ G with,

0 ≤ c1

n(a− b2) ≤ c1

c1 ≤ na+ ku

c1 ≤ nb1 + ku.

Set c2 = na+ ku− c1. Then, c1 + c2 = na+ ku with k
n
< ε and

c2 ≤ na+ ku− (na− nb2)

= nb2 + ku.

Proof of (2) =⇒ (1):

Suppose a1, a2, b1, b2 ∈ G with ai ≤ bj for all i, j.

Let ε > 0.

Set x = b2 − a1, y1 = b1 − a1, and y2 = b2 − a2. Then, x, y1, y2 ∈ G+ and

x ≤ (b2 − a1) + (b1 − a2) = (b1 − a1) + (b2 − a2) = y1 + y2

Therefore, by (2) there are n, k ∈ N with k
n
< ε and z1, z2 ∈ G+ such that,

z1 + z2 = nx+ ku (6.1)

z1 ≤ ny1 + ku (6.2)

z2 ≤ ny2 + ku (6.3)

Set c = z1 + na1. So na1 ≤ c.
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From 6.2,

c ≤ ny1 + ku+ na1 = nb1 + ku.

From 6.1,

c ≤ nx+ ku+ na1 = nb2 + ku.

Note that from 6.3,

na2 ≤ nb2 + ku− z2.

Now using 6.1 again,

na2 ≤ nb2 + ku− (nx+ ku− z1)

= na1 + z1

Hence, nai ≤ c ≤ nbj + ku for all i, j.

Proof of (2) =⇒ (3):

Suppose a1, a2, b1, b2 ∈ G+ are such that a1 + a2 = b1 + b2.

Fix ε > 0.

Now, a1 ≤ b1 + b2 and by (2) find n, k ∈ N with k
n
< ε and c11, c12 ∈ G+ so that,

c11 + c12 = na1 + ku

c11 ≤ nb1 + ku

c12 ≤ nb2 + ku

For 1 ≤ j ≤ 2, set

c2j = nbj + ku− c1j

Then, c1j + c2j = nbj + ku for 1 ≤ j ≤ 2 and,

c21 + c22 = (nb1 + ku− c11) + (nb2 + ku− c12)

= nb1 + nb2 + 2ku− (na1 + ku)

= na2 + ku.

Proof of (3) =⇒ (2):
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Suppose a, b1, b2 ∈ G+ are such that a ≤ b1 + b2.

Fix ε > 0.

Write x1 = a and x2 = (b1 + b2)− a. Then x1 + x2 = b1 + b2 and by (3) there are

n, k ∈ N with k
n
< ε and cij ∈ G+ for 1 ≤ i, j ≤ j such that

ci1 + ci2 = nxi + ku,∀1 ≤ i ≤ 2

c1j + c2j = nbj + ku,∀1 ≤ j ≤ 2

Then c11, c12 ∈ G+ satisfy c11 + c12 = na+ ku, c1j ≤ nbj + ku and (G,G+).

Definition 6.2.3 We say that a scaled partially ordered abelian group (G,G+, u)

exhibit stably approximate interpolation if either (hence all) of the three properties

defined in Definition 6.2.1 holds for (G,G+, u).

Example 6.2.4 In [28] a scaled pre-ordered group (G, u) is called an asymptotic

interpolation group if for every ai, bj ∈ G with ai ≤ bj for all i, j and for all ε > 0,

there is some c, d ∈ G with ||d||u < ε and

ai ≤ c ≤ bj + d, ∀1 ≤ i, j ≤ 2. (6.4)

Here || · ||u denotes the order unit norm, i.e. for any x ∈ G,

||x||u = inf

{
k

n
: k, n ∈ N and − ku ≤ nx ≤ ku

}
.

It is easy to note that such groups satisfy Definition 6.2.1 (1). Indeed, if c, d ∈ G are

as in 6.4, then since ||d||u < ε, there are n, k ∈ N with nd ≤ ku and k
n
< ε. For such

k, n;

nai ≤ nc ≤ nbj + nd ≤ nbj + ku, ∀1 ≤ i, j ≤ 2.

Thus all groups with asymptotic interpolation are contained in the class of groups

we consider and from [28] (c.f. [43]) this in particular include ordered groups that fail

to be interpolation groups.
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Example 6.2.5 [15, Chapter 2] Let G = Z2 as a group and set G+ = {(a, b) ∈ G :

2a ≥ b ≥ 0}. Then (G,G+) is a partially ordered abelian group and u = (1, 1) ∈ G+

is an order unit. Note that (G,G+) is not an interpolation group. For instance if we

set x1 = (0, 0), x2 = (0, 1), y1 = (1, 1) and y2 = (1, 2) then yj − xi ∈ G+ for all i, j

but there is no element c ∈ G with xi ≤ c ≤ yj for all i, j. But (G,G+, u) has stably

approximate interpolation property. To see this let xi = (ai, bi), yj = (cj, dj) ∈ G

where 1 ≤ i, j ≤ 2 be such that xi ≤ yj. Then 2(cj − ai) ≥ (dj − bi) ≥ 0 for all i, j.

Therefore, for large enough n we may choose x, y ∈ Z with

2nai − nbi ≤ 2x− y ≤ 2ncj − ndj,∀i, j,

and

nbi ≤ y ≤ ndj,∀i, j.

For such x, y we have

n(ai, bi) ≤ (x, y) ≤ n(cj, dj),∀i, j.

In Proposition 6.2.6 using a simple inductive argument we show that stably ap-

proximate refinement property extends to any 2× l type decompositions. In fact this

extends for any k × l decomposition. However, we will only need to apply it in 2× l

type decompositions and we prove it only for this form.

Proposition 6.2.6 Suppose (G,G+, u) exhibits stably approximate interpolation. Sup-

pose l ∈ N, l ≥ 2 and x+ y = z1 + z2 + ....+ zl for some x, y, z1, z2, ..., zl ∈ G+. Then

there are n, kx, ky, ki ∈ N and xi, yi ∈ G+, for 1 ≤ i ≤ l such that kα
n
< ε for each

index α ∈ {x, y, 1, 2, ..., l} and

x1 + x2 + ...+ xl = nx+ kxu

y1 + y2 + ...+ yl = ny + kyu

xi + yi = nzi + kiu

where the last equality holds for all 1 ≤ i ≤ l.
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Proof Case l = 2 is the definition of stably approximate refinement property.

Assume that the statement holds for some l ∈ N with l ≥ 2. Suppose x, y ∈ G+

and x + y = z1 + z2 + ... + zl+1, where zi ∈ G+. By assumption there are ñ, k̃α ∈

N , α = x, y, 1, 2, ..., l with k̃α
ñ
< ε

2
and x̃1, ỹ1, x̃2, ỹ2, ...., x̃l−1, ỹl−1, Xl, Yl ∈ G+ such

that,

l−1∑
i=1

x̃i +Xl = ñx+ k̃xu (6.5)

l−1∑
i=1

ỹi + Yl = ñy + k̃yu (6.6)

x̃i + ỹi = ñzi + k̃iu,∀1 ≤ i ≤ l − 1 (6.7)

Xl + Yl = ñ(zl + zl+1) + k̃lu (6.8)

From 6.8, Xl + Yl = ñzl + (ñzl+1 + k̃lu) and hence by stably approximate refinement

property, there are N,K ∈ N with K
N
< ε

2
and x̃l, ỹl, x̃l+1, ỹl+1 ∈ G+ such that,

x̃l + x̃l+1 = NXl +Ku (6.9)

ỹl + ỹl+1 = NYl +Ku (6.10)

x̃l + ỹl = Nñzl +Ku (6.11)

x̃l+1 + ỹl+1 = N(ñzl+1 + k̃lu) +Ku (6.12)

Now let n = Nñ.

For α = x, y set kα = Nk̃α +K, and for i = 1, 2, ..., l − 1, set ki = Nk̃i.

Let kl = K and kl+1 = N ˜kl+1 +K.

Clearly kα
n
< ε,∀α = x, y, 1, 2, .., l, l + 1.

For all 1 ≤ i ≤ l − 1 let,

xi = Nx̃i and yi = Nỹi

For i = l, l + 1 set

xi = x̃i and yi = ỹi.
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Then, from 6.5 and 6.9,

l+1∑
i=1

xi =
l−1∑
i=1

Nx̃i + (x̃l + x̃l+1)

=
l−1∑
i=1

Nx̃i + (NXl +Ku)

= N(ñx+ k̃xu) +Ku

= nx+ kxu

By a similar argument,
l+1∑
i=1

yi = ny + kyu

From 6.7, for all 1 ≤ i ≤ l − 1,

xi + yi = Nx̃i +Nỹi = N(ñzi + k̃iu) = nzi + kiu

From 6.11,

xl + yl = Nx̃l +Nỹl = ñzl +Ku = nzl + klu.

From 6.12

xl+1 + yl+1 = x̃l+1 + ỹl+1 = N(ñzl+1 + k̃lu) +Ku = nzl+1 + kl+1u.

6.3 Positive homomorphisms on groups with stably approximate inter-

polation

In this section we show that Theorem 6.1.4 generalizes to scaled partially ordered

groups which exhibit stably approximate interpolation. To present the proof of this

fact we require few more definitions and results concerning ordered groups. For the

sake of completeness and the convenience of the reader we recall these here.

Recall that a partially ordered set X is said to be lattice ordered if every finite

subset S of X has a supremum and an infimum in X.
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Definition 6.3.1 A partially ordered abelian group (G,G+) is called a lattice ordered

group if G is lattice ordered as a partially ordered set.

Proposition 6.3.2 [15, Proposition 1.5] For a partially ordered abelian group (G,G+)

the following are equivalent.

1. G is lattice ordered.

2. (G,G+) is directed and every pair of elements in the partially ordered set G+

has an infimum in G+.

3. (G,G+) is directed and every pair of elements in the partially ordered set G+

has a supremum in G+.

A partially ordered abelian group G is said to be Dedekind complete if every non

empty subset of G which is bounded above in G has a supremum in G.

Remarks:

1. (G,G+) is Dedekind complete iff every non empty subset of G which is bounded

below has an infimum in G.

2. Dedekind complete ordered group (G,G+) is lattice ordered iff (G,G+) is di-

rected.

Definition 6.3.3 A positive homomorphism on a partially ordered abelian group

(G,G+) is an additive map f : G → R such that f(G+) ⊂ R+. We will use

Hom+(G,G+) (or simply Hom+(G) when G+ is clear) to denote the set of all positive

homomorphisms on the ordered group (G,G+).

Remark: For a non zero (G,G+, u), f : G → R is a positive homomorphism iff

f = αs for some s ∈ S(G,G+, u) and α ∈ R+.

Given an ordered group (G,G+) let,

∆Hom+(G) = {f − g : f, g ∈ Hom+(G)} .
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With pointwise operations ∆Hom+(G) is a group as well as a real vector space.

Moreover, the pair (∆Hom+(G),Hom+(G)) form a directed ordered group as well as

a partially ordered real vector space

Recall that a simplex is a convex subset K in a real vector space E where K is

affinely homeomorphic to a base for a lattice cone in some real vector space. Choquet

simplex is simply a compact simplex.

From the remark following Definition 6.3.3 it is not hard to see that S(G, u) form

a base for the cone Hom+(G) for any ordered group G with order unit u. Thus,

crux of the work of [15] in proving Theorem 6.1.4 lies in establishing the fact that

Hom+(G) is a lattice cone for a scaled interpolation group G. In fact [15] confirms

a stronger result. Namely, [15, Corollary 2.28] show that (∆Hom+(G),Hom+(G)) is

Dedekind complete for any directed interpolation group G. Note that whenever an

ordered group G has an order unit then G is directed. Hence, [15, Corollary 2.28] in

particular applies to any scaled ordered group G (with interpolation). Thus, for such

G, (∆Hom+(G),Hom+(G)) is a directed Dedekind complete group and hence one get

Hom+(G) to be lattice cone.

In what proceeds we will make suitable modifications to techniques used in [15] to

prove that the conclusion of Theorem 6.1.4 holds for (∆Hom+(G),Hom+(G)) when

G is a scaled ordered group that exhibits stably approximate interpolation. In The-

orem 6.3.7 we confirm a weaker version of [15, Corollary 2.28] for groups with stably

approximate interpolation and it is easily seen that this still imply S(G, u) to be a

Choquet simplex (Corollary 6.3.8).

Definition 6.3.4 Given an ordered group (G,G+), a map d : G+ → R is called a

subadditive map if d(0) = 0 and for all a, b ∈ G+, d(a+ b) ≤ d(a) + d(b).

For a subadditive map d on (G,G+) and ε > 0 let,

Dε(x) =

{∑l
i=1 d(xi)

n
: n, k, l ∈ N with

k

n
< ε and ∀1 ≤ i ≤ l, xi ∈ G+,

l∑
i=1

xi = nx+ ku

}

for each x ∈ G+.
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Following simple observation on the sets Dε(x) proves crucial in overcoming the

technical difficulties in extending the arguments of [15] to groups with stably approx-

imate interpolation.

Lemma 6.3.5 Let d : G+ → R be subadditive and let Dε(x) be defined as above.

For a fixed x ∈ G+ if there is some ε0 > 0 such that Dε0(x) is bounded above, then

limε→0Dε(x) exists finitely. Furthermore this limit is equal to infε>0 supDε(x) and is

not less than d(x).

Proof Clearly for each x ∈ G+ and for all ε > 0, we have d(x) ∈ Dε(x). Thus, for

each x, d(x) ≤ supε>0D(x).

If 0 < ε < ε0, then Dε(x) ⊂ Dε0(x) and hence for all ε < ε0,

supDε(x) ≤ supDε0(x) <∞.

Hence we clearly have, d(x) ≤ infε>0 supDε(x) = limε→0Dε(x) <∞.

Lemma 6.3.6 Let (G,G+, u) be a scaled partially ordered abelian group which ex-

hibits stably approximate interpolation. Let d : G+ → R be subadditive with d(ma) =

md(a) for each a ∈ G+, m ∈ N. Furthermore assume that there is Mu ≥ 0 such that

d(x) ≤ d(nx+ ku) + kMu

n

for all x ∈ G+ and k, n ∈ N. Suppose for all x ∈ G+ there is some δx > 0 such that

the set Dδx(x) is bounded above. Then the function f : G+ → R defined by

f(x) = lim
ε→0

supDε(x) = inf
ε>0

supDε(x)

is an additive homomorphism and f uniquely extends to a group homomorphism on

G.

Proof Since u is an order unit, (G,G+) is directed. Thus, any additive map h :

G+ → [0,∞) extends to a group homomorphism on G. Hence, the final conclusion is

immediate once we show f to be additive.
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From Lemma 6.3.5 the function f is well defined and f(x) ≥ d(x), ∀x ∈ G+.

We show that f is additive.

Fix x, y ∈ G+ and η > 0.

By definition of f choose ε0 > 0 with ε0Mu < η such that the following hold for

each z ∈ {x, y, x+ y} and all ε ≤ ε0;

f(z) ≤ supDε(z) ≤ f(z) +
η

6
. (6.13)

Choose nx, kx, ny, ky ∈ N with kx
nx
, ky
ny
< ε0

2
and x1, x2, ..., xs, y1, y2, ..., yt ∈ G+ such

that;

x1 + x2 + ....+ xs = nxx+ kxu (6.14)

y1 + y2 + ....+ ys = nyy + kyu (6.15)

and

supD ε0
2

(x)− η

6
≤ d(x1) + d(x2) + ...+ d(xs)

nx
(6.16)

supD ε0
2

(y)− η

6
≤ d(y1) + d(y2) + ...+ d(yt)

ny
. (6.17)

Set n = nxny and k = nykx + nxky.

Then, k
n
< ε0 and from 6.14 and 6.15,

s∑
i=1

nyxi +
t∑

j=1

nxyj = n(x+ y) + ku.

Therefore,

supDε0(x+ y) ≥
∑s

i=1 d(nyxi) +
∑t

j=1 d(nxyj)

n

=

∑s
i=1 nyd(xi)

n
+

∑t
j=1 nxd(yj)

n

=

∑s
i=1 d(xi)

nx
+

∑t
j=1 d(yj).

ny
.

Hence, from 6.16 and 6.17,

supDε0(x+ y) ≥ supD ε0
2

(x) + supD ε0
2

(y)− η

3
.
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From 6.13 with z = x, y we get,

supDε0(x+ y) ≥ f(x) + f(y)− 2η

3
.

Using 6.13 again (now with z = x+ y),

f(x+ y) +
η

6
≥ supDε0(x+ y) ≥ f(x) + f(y)− 2η

3
.

Thus as η > 0 is arbitrary we have

f(x+ y) ≥ f(x) + f(y).

Now to show the reverse inequality choose n0, k0 ∈ N with k0
n0

< ε0
2

and some

z1, z2, ..., zl such that

n0(x+ y) + k0u = z1 + z2 + ...+ zl (6.18)

and

supD ε0
2

(x+ y)− η

6
≤ d(z1) + d(z2) + ...+ d(zl)

n0

. (6.19)

Apply Theorem 6.2.6 to equation 6.18 with x = n0x and y = n0y + k0u to

choose n, kx,ky, ki ∈ N, xi, yi ∈ G+, for 1 ≤ i ≤ l such that kα
n
< ε0 for each index

α ∈ {x, y, 1, 2, ..., l} and

x1 + x2 + ...+ xl = nn0x+ kxu (6.20)

y1 + y2 + ...+ yl = nn0y + (nk0 + ky)u (6.21)

xi + yi = nzi + kiu. (6.22)

By using the above three equations and that u is an order unit,
∑l

i=1 ki = kx+ky.

From 6.22 and assumptions on d,

l∑
i=1

d(zi) ≤
l∑

i=1

d(nzi + kiu) + kiMu

n

=
l∑

i=1

d(xi + yi)

n
+
Mu

n

l∑
i=1

ki

≤
∑l

i=1 d(xi)

n
+

∑l
j=1 d(yj).

n
+
Mu(kx + ky)

n

≤
∑l

i=1 d(xi)

n
+

∑l
j=1 d(yj)

n
+Muε0
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Thus from 6.19,

supD ε0
2

(x+ y)− η

6
≤

∑l
i=1 d(xi)

nn0

+

∑l
j=1 d(yj)

nn0

+
Muε0
n0

(6.23)

Since kx
nn0

< ε0
2

, from 6.20 it follows that,∑l
i=1 d(xi)

nn0

≤ supDε0(x).

Similarly as nk0+ky
n

< ε0, by 6.21,∑l
i=1 d(yi)

nn0

≤ supDε0(y).

Combining the last two inequalities with 6.23,

supD ε0
2

(x+ y)− η

6
≤ supDε0(x) + supDε0(y) +

Muε0
n0

.

Therefore by definition of f ,

f(x+ y)− η

6
≤ supDε0(x) + supDε0(y) +

Muε0
n0

.

By applying 6.13 with z = x, y,

f(x+ y)− η

6
≤ f(x) + f(y) +

η

3
+
Muε0
n0

.

Recall that by the choice of ε0, Muε0 <
η
3
. Thus,

f(x+ y) ≤ f(x) + f(y) + η.

Since η > 0 is arbitrary this completes the proof.

Theorem 6.3.7 Let (G,G+) be a directed partially ordered abelian group with order

unit u. Suppose that (G,G+, u) exhibits stably approximate interpolation. Let S ⊂

∆Hom+(G) be non-empty and bounded above in (∆Hom+(G), Hom+(G)) with the set

{f(u) : f ∈ S} bounded below. Then S has a supremum in (∆Hom+(G), Hom+(G)).
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Proof Let H = ∆Hom+(G) and H+ = Hom+(G). Let us use ≤+ to denote the

partial order induced by H+. That is for all f, g ∈ H,

f ≤+ g ⇐⇒ g − f ∈ H+.

Take S = {fi : i ∈ I} ⊂ H and suppose that g ∈ H is an upper bound for S. Let

Mu > 0 be such that |fi(u)| ≤Mu for all i ∈ I.

Define d : G+ → [0,∞) by,

d(x) = sup
i∈I

fi(x),∀x ∈ G+.

Since fi(x) ≤ g(x),∀i ∈ I and for all x ∈ G+, d is well defined and d(0) = 0.

Since each fi is additive, d is subadditive with d(mx) = mx, ∀x ∈ G+ and ∀m ∈ N.

Furthermore for any x ∈ G+ and k, n ∈ N and for a fixed io ∈ I we have,

fi0(x) =
fi0(nx+ ku)

n
− kfi0(u)

n

≤ fi0(nx+ ku)

n
+
kMu

n

≤ supi∈I fi(nx+ ku)

n
+
kMu

n

=
d(nx+ ku) + kMu

n

Thus,

d(x) = sup
i0∈I

fi0(x) ≤ d(nx+ ku) + kMu

n

For any ε > 0 and x ∈ G+, let Dε(x) be as before.

For any decomposition
∑l

i=1 xi = nx+ ku with k
n
< ε and x1, x2, ..., xl ∈ G+,

d(x1) + d(x2) + ...+ d(xl)

n
≤ g(x1) + g(x2) + ...+ g(xl)

n

=
g(x1 + x2 + ...+ xl)

n

=
g(nx+ ku)

n

= g(x) +
kg(u)

n

≤ g(x) + ε|g(u)|. (6.24)
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Hence, for every x ∈ G+ and ε > 0, Dε(x) is bounded above by g(x) + ε|g(u)|.

Thus, from Lemma 6.3.6 the function f : G+ → [0,∞) defined by,

f(x) = lim
ε→0

supDε(x) = inf
ε>0

supDε(x), ∀x ∈ G+

is a well defined additive homomorphism on G+ and f extends uniquely to a group

homomorphism on G. We now verify that f is in H and is in fact the supremum of

the set S in H.

Fix i0 ∈ I,ε > 0 and x ∈ G+.

Suppose
∑l

i=1 xi = nx+ ku with k
n
< ε and x1, x2, .., .xl ∈ G+.

Then,

d(x1) + d(x2) + ...+ d(xl)

n
≥ fi0(x1) + fi0(x2) + ...+ fi0(xl)

n

=
fi0(nx+ ku)

n

= fi0(x) +
kfi0(u)

n

≥ fi0(x)− ε|fi0(u)|.

Thus, for each i0 ∈ I, x ∈ G+ and for any ε > 0,

supDε(x) ≥ fi0(x)− ε|fi0(u)|.

Hence, for each i0 ∈ I, x ∈ G+,

f(x) = lim
ε→0

supDε(x) ≥ fi0(x).

Then, for each i0 ∈ I, f − fi0 ∈ H+,as f and fi are group homomorphisms. In

particular, fixed i0 we have f = [(f − fi0) + fi0 ] ∈ H and fi ≤+ f, ∀i ∈ I.

Now suppose h ∈ H is any upper bound for S.

Then as we have shown in 6.24,

supDε(x) ≤ h(x) + ε|h(u)|,∀ε > 0,∀x ∈ G+.

Thus,

f(x) = lim
ε→0

supDε(x) ≤ h(x),∀x ∈ G+.

Hence, f ≤+ h and f is the supremum of S in H.
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Corollary 6.3.8 Let (G,G+, u) be a scaled partially ordered group that exhibits stably

approximate interpolation. Then S(G, u) is a Choquet simplex.

Proof We need to show that (∆Hom+(G),Hom+(G)) is lattice ordered. Suppose

S = {fi : 1 ≤ i ≤ k} is a finite set in ∆Hom+(G). Choose hi, gi ∈ Hom+(G) such

that fi = hi − gi for all 1 ≤ i ≤ k. Then, S is bounded above by h1 + h2 + ... + hk.

Clearly {fi(u) : 1 ≤ i ≤ k} is bounded. Thus, S has a supremum by Theorem 6.3.7.

6.4 Applying results of 6.3 to answer Conjecture 4.5.4

Note that one could define the notion of stably approximate interpolation for

ordered semigroups as well.

Definition 6.4.1 Let (W,≤, u) be a scaled partially ordered abelian semigroup. We

say that (W,≤, u) has stably approximate interpolation property if for any given

a1, a2, b1, b2 ∈ W with ai ≤ bj for all i, j and for all ε > 0 there are k, n ∈ N and

c, d ∈ W such that k
n
< ε and

ai + d ≤ c ≤ bj + d+ ku,∀1 ≤ i, j ≤ 2.

Remarks:

1. If W is a group then Definition 6.4.1 agrees with Definition 6.2.1 (1).

2. One could define the analogues of Definition 6.2.1 (2) and (3) for ordered

abelian semigroups W . However, unless W has cancellation (in which case W is the

positive cone of a partially ordered group) there properties are not equivalent in W .

Given an ordered semigroup (W,≤), let G(W ) denote the Grothendieck group of

W and let γ : W → G(W ) be the natural additive map. So, G(W ) = {γ(b)− γ(a) :

a, b ∈ W}. Let us set G(W )++ = {γ(b) − γ(a) : a, b ∈ W,a ≤ b}. It is easily seen

that (G(W ), G(W )++) form a partially ordered abelian group and if u is an order

unit for W then γ(u) is an order unit for G(W ). Note that the construction of the

group K0
∗(A) for a C∗-algebra is just a special case of this with W = W (A).
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Lemma 6.4.2 [29, c.f Lemma 4.2] Let (W,≤, u) be a scaled partially ordered abelian

semigroup that has stably approximate interpolation property. Then the scaled ordered

group (G(W ), G(W )++, γ(u)) has stably approximate interpolation property.

Proof Let gi, hj ∈ G(W ) be such that gi ≤ hj,∀i, j. Fix ε > 0.

Note that one may select ai, bj, z ∈ W where 1 ≤ i, j ≤ 2 such that,

gi = γ(ai)− γ(z) and hj = γ(bj)− γ(z),∀i, j (6.25)

Indeed gi = γ(xi) − γ(vi) and hj = γ(yj) − γ(wj) for some xi, yj, vi, wj ∈ W ,

1 ≤ i, j ≤ 2. We simply set z = v1 + v2 + w1 + w2, a1 = x1 + v2 + w1 + w2,

a2 = x2 + v1 + w1 + w2, b1 = y1 + v1 + v2 + w2 and b2 = y2 + v1 + v2 + w1.

Then, for all 1 ≤ i, j ≤ there are sij, tji ∈ W such that

sij ≤ tij,∀1 ≤ i, j ≤ 2 (6.26)

and

γ(bj)− γ(ai) = γ(tij)− γ(sij),∀1 ≤ i, j ≤ 2.

From the final equation, for appropriately chosen w ∈ W ,

bj + sij + w = ai + tij + w,∀1 ≤ i, j ≤ 2 (6.27)

Now form 6.26 and 6.27, for all 1 ≤ i, j ≤ 2,

bj + tij + w ≥ ai + tij + w

Hence, for t = w + t11 + t12 + t21 + t22,

bj + t ≥ ai + t, ∀1 ≤ i, j ≤ 2 (6.28)

By 6.28 and stably approximate interpolation property of W , there is n, k ∈ N

with k
n
< ε and c, d ∈ W such that,

nai + d ≤ c ≤ nbi + d+ ku, ∀1 ≤ i, j ≤ 2.
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Hence,

nγ(ai) ≤ γ(c) ≤ nγ(bj) + kγ(u), ∀1 ≤ i, j ≤ 2.

Thus by 6.25, for C = γ(c)− nz,

ngi ≤ C ≤ nhj + kγ(u),∀1 ≤ i, j ≤ 2.

From Lemma 6.4.2 and Corollary 6.3.8 we get;

Corollary 6.4.3 Let A be any untial C∗-algebra. If (W (A), 〈1A〉) has stably approx-

imate interpolation property then DF (A) is a Choquet simplex.

Note that (see [3, Lemma 2.20] for example) since A is stably finite for any two

projections p, q ∈M∞(A) one has p ∼ q in the Cuntz sense if and only if p ∼ q in the

Murray-von Neumann sense. For any A, saying p 4 q in Murray-von Neumann sense

is equivalent to saying p 4 q in the Cuntz sense. In proving the following Corollary

we will use these observations to identify the ordered semigroup V (A) as an (ordered)

subsemigroup of W (A).

Corollary 6.4.4 Let A be a unital stably finite C∗-algebra with real rank zero. If

rc(A) <∞ then DF (A) is a Choquet simplex.

Proof From Corollary 6.4.3 we only have to show that W (A) has stably approximate

interpolation.

Since A is of real rank zero, for every a ∈ M∞(A)+ and ε > 0 there is some

b ∈M∞(A)+ with |σ(b)| <∞ and

||a− b|| < ε.

Thus, it follows that

〈a〉 = sup
n∈N
〈pn〉
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for a sequence of projections pn ∈M∞(A) with,

〈(a− 1

2n
)+〉 ≤ 〈pn〉 ≤ 〈(a−

1

2n+1
)+〉 ≤ 〈pn+1〉, ∀n ∈ N.

.

Suppose that ai, bj ∈M∞(A)+ are such that,

〈ai〉 ≤ 〈bj〉, ∀1 ≤ i, j ≤ 2. (6.29)

Choose sequences of pn
(i), qn

(j) ∈ P(M∞(A)) such that for each 1 ≤ i, j ≤ 2,

〈ai〉 = sup
n∈N
〈pn(i)〉 and 〈bj〉 = sup

n∈N
〈qn(j)〉, (6.30)

with

〈(ai −
1

2n
)〉 ≤ 〈pn(i)〉 ≤ 〈(ai −

1

2n+1
)〉 ≤ 〈pn+1

(i)〉,∀n ∈ N (6.31)

and

〈(bj −
1

2n
)〉 ≤ 〈qn(j)〉 ≤ 〈(bj −

1

2n+1
)〉 ≤ 〈qn+1

(j)〉,∀n ∈ N (6.32)

Now since 〈ai〉 ≤ 〈bj〉 for all i, j, give any n ∈ N from 6.30 and 6.32 we may select

mn ∈ N such that,

〈pn(i)〉 ≤ 〈qmn (j)〉 , ∀1 ≤ i, j ≤ 2. (6.33)

Furthermore we may choose (mn)n∈N such that mn < mn+1.

Since A is stably finite, from the paragraph that proceeded the Corollary we may

assume the analogue of 6.33 for the respective Murray-von Neumann classes to hold

in V (A).

Note that, since A is of real rank zero, W (A) has the Riesz refinement property

by [2, Propostion 1.2 and Theorem 7.2] (or see [46]). Hence, from [28, Proposition

2.2] for any fixed ε > 0, there is r1,ε, c1,ε ∈ P(A∞) with ||[r1,ε]||u < ε
2
,

[p1
(i)] ≤ [c1,ε] ≤ [qm1

(j)] + [r1,ε] ,∀1 ≤ i, j ≤ 2.
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Using the same reasoning ( [28, Propostion 2.2] and [46]) with an inductive argu-

ment we may proceed to construct sequences (r,ε)n∈N and (cn,ε)n∈N such that

[pn
(i)] ≤ [cn,ε] ≤ [qmn

(j)] + [rn,ε] ,∀1 ≤ i, j ≤ 2 (6.34)

with ||rn,ε||〈1A〉 < ε
2n

and [cn−1,ε] ≤ [cn,ε] for every n ≥ 2.

From hereon we will write || · || to denote || · ||〈1A〉
Let rε =

∑∞
i=1

ri,ε
2i
∈ A ⊗ K where K denotes the compact operators on some

separable Hilbert space.

Then, in Cu(A) = W (A⊗K),

〈rn,ε〉 ≤ 〈rε〉 ,∀n ∈ N . (6.35)

By identifying the ordered semigroup V (A) as a (ordered) subsemigroup in W (A)

again, we note that (〈cn,ε〉)n∈N is an increasing sequence in W (A) ⊂ Cu(A). There-

fore, since Cu(A) is closed under suprema of upward directed sets, there is some

〈cε〉 ∈ Cu(A) such that

〈cε〉 = sup
n∈N
〈cn,ε〉. (6.36)

Now from 6.33, 6.35, 6.36 and using the identifications V (A) ⊂ W (A) ⊂ Cu(A)

once more,

〈pn(i)〉 ≤ 〈cε〉 ≤ 〈qmn (j)〉+ 〈rε〉 , ∀1 ≤ i, j ≤ 2,∀n ∈ N

Hence, from 6.30,

〈ai〉 ≤ 〈cε〉 ≤ 〈bj〉+ 〈rε〉 ,∀1 ≤ i, j ≤ 2.

Note that for every τ ∈ QT (A),

dτ (〈rε〉) ≤
∞∑
i=1

dτ (〈ri,ε〉) ≤
∞∑
i=1

||[ri,ε]|| ≤ ε. (6.37)

Hence, since radius of comparison of A is assumed to be of finite, if k ∈ N and

k > rc(A) + ε then 〈rε〉 ≤ k〈1A〉. From [7], rc(A) < ∞ also implies W (A) to be

hereditary. Combining these we conclude that 〈rε〉 and 〈cε〉 are elements in W (A).
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Furthermore from Theorem 5.2.5 (1), LDF (A) is dense in DF (A) and therefore by

6.37,

||〈rε〉|| = sup
s∈DF (A))

s(〈rε〉) ≤ ε.

Therefore, we may choose some k, n ∈ N with k
n
< ε such that;

n〈ai〉 ≤ n〈cε〉 ≤ n〈bj〉+ n〈rε〉 ≤ n〈bj〉+ k〈1A〉 ,∀1 ≤ i, j ≤ 2.

As 〈cε〉 ∈ W (A) this completes the proof.

Question 6.4.5 Are there unital C∗-algebras A for which W (A) fail to satisfy the

asymptotic interpolation property in the sense of [28] but exhibit stably approximate

interpolation?

Question 6.4.6 Do the properties of state spaces S(G, u) shown to hold in [28] for an

asymptotic interpolation group G still hold if G is assumed to have stably approximate

interpolation ?

Question 6.4.7 What kind of closure properties hold for the class of ordered groups

with stably approximate interpolation?
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