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ABSTRACT

Choi, Meena PhD, Purdue University, May 2016. A Flexible and Versatile Frame-
work For Statistical Design and Analysis of Quantitative Mass Spectrometry-Based
Proteomic Experiments. Major Professor: Olga Vitek.

Quantitative mass spectrometry (MS)-based proteomics is an indispensable tech-

nology for biological and clinical research. As the proteomics field grows, MS-based

proteomic workflows are becoming more complex and diverse. The accuracy and the

throughput of the MS measurements and of the signal processing tools dramatically

increased. However, many existing statistical tools and workflows have not followed

the technological development. Therefore, there is a need for flexible statistical tools,

which reflect diverse and complex workflows, are computationally efficient for large

datasets, and maximize the reproducibility of the results.

We propose a family of linear mixed effects models, and a split-plot view of the ex-

perimental design, that represent measurements from quantitative mass spectrometry-

based proteomics. The whole plot part of the design reflects the structure of the

biological variation of the experiment, such as case-control design, paired design, or

time-course design. The subplot part of the design reflects the structure of the tech-

nological variation, such as fragmentation patterns, labeling strategy, and presence of

multiple peptides per protein. We propose an estimation procedure that separately

estimates the parameters of the subplot and the whole plot parts of the design, to

maximize the flexibility of the model, increase the speed of the analysis, and facilitate

the interpretation.

The proposed modeling framework was validated using 10 controlled mixtures and

10 experimental datasets from targeted Selected Reaction Monitoring (SRM), Data-

Dependent Acquisition (DDA or shotgun), and Data-Independent Acquisition (DIA
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or SWATH-MS), where signals were extracted with mutiple signal processing tools.

We implemented the proposed method in the software package MSstats, which checks

the correctness of the user input, recognizes arbitrary complex experimental design,

visualizes the data and performs statistical modeling and inference. It is interoperable

with other existing computational tools such as Skyline.



1

1. PROBLEM STATEMENT AND CONTRIBUTIONS

1.1 Statement of the problem

1.1.1 Statement of the biotechnological problem

Mass spectrometry(MS)-based proteomics is an indispensable tool for molecular

and cellular biology and systems biology. It deals with large-scale characterization of

protein composition and abundance of complex biological mixtures. In recent years

MS proteomics workflows have become more complex and diverse, in terms of (1)

experimental design, which now often includes complex comparisons of experimental

conditions or times, (2) experimental technology, which now offers alternative modes

of spectral acquisition such as targeted Selected Reaction Monitoring (SRM) [1], Data-

Dependent Acquisition (DDA or shotgun) [2, 3], and Data-Independent Acquisition

(DIA or SWATH-MS) [4], and (3) goals of protein quantification, which determines

relative quantification of changes in protein abundance between groups, and absolute

quantification, which determines the concentration of proteins on an absolute scale

that is important for a wide range of questions in systems biology and clinical research.

In the last few years, technical measurements from MS technology have become more

accurate, and better spectral processing tools have been developed. As a result, the

nature of the data has changed dramatically. The experiments have larger number of

biological replicates, more spectral features, and higher signal to noise ratios in the

quantified features. Many of the existing statistical tools have not kept up with these

recent developments. Therefore, the MS proteomics community needs a flexible and

versatile statistical analysis tool to reflect the diverse types of mass spectrometry-

based experiments, which has a good performance.
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1.1.2 Statement of the statistical and computational problem

The different types of MS experiments now have different characteristics. As the

proteomics field grows, the experiments become larger in scale, quantifying more

biological replicates, more proteins, and more features per protein. Different exper-

imental workflows have different patterns of biological and technical variation, and

different patterns of missing values. There is currently no integrated statistical ap-

proach that is applicable across these diverse types of MS experiments, and for which

the computation is scalable to large datasets. Even when new statistical methods

are developed, the experimentalists with little statistical background often struggle

to use these methods in practice.

Therefore, my goal is to develop a statistical tool that can (1) perform an appro-

priate analysis based on experimental design for each protein, including borderline

cases where the data structure for individual proteins deviates from the overall struc-

ture of the experiment, (2) perform model-based inference efficiently and on a large

scale, (3) enable the inter-operability of the method implementation with other pop-

ular signal processing and data analysis tools, (4) thoroughly evaluate the method

and the implementation in a variety of the datasets, and (5) facilitate the use of the

method by experimentalists who have little statistical knowledge.

1.2 Statement of contributions

1.2.1 Statistical methods

The main insight of the proposed method is the representation of quantitative

mass spectrometry-based proteomic experiments as an instance of split plot design.

The whole plot part of the design reflects the structure of the biological variation

of the experiment, such as case-control design, paired design, or time-course design.

The subplot part of the design reflects the structure of the technological variation,
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such as fragmentation patterns, labeling strategy, and presence of multiple peptides

per protein. I proposed to analyze the whole plot part and subplot part separately,

as it maximizes the flexibility of the model, increases the speed of the analysis, and

facilitates the interpretation.

For the subplot part of the design:

• To impute censored missing values with likelihood estimation by accelerated

failure time model.

• To use robust estimation with Tukey’s median polish to extricate existence of

outliers and missing measurements.

• For experiments with a labeling strategy, I extended linear models to separately

take into account (1) the deviation of the reference intensity in the run and (2)

the deviation of the endogenous intensity in a run from the reference.

The summary from subplot analysis is used as the input for the whole plot part

of the model. For the whole plot part of the design:

• I proposed a modeling framework that is applicable to experiments with ar-

bitrary complex designs, such as group comparisons of groups, time course or

paired-design.

• Extend the models to borderline cases, such as proteins with a single replicate

in a condition with or without technical replicates

The modeling framework is now applicable to targeted SRM, DDA or shotgun,

and DIA or SWATH-MS.

1.2.2 Open-source software and implementation

I integrated and extended the software packages, MSstats [5], implemented by

[6,7], and SRMstats, implemented by [8]. My specific contributions are :
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• I expressed arbitrary experimental designs in an internal representation, which

allows us to carry out model-based inference. The experimental design is recog-

nized automatically based on the structure of the input data. The appropriate

model for the experimental design is then used for inference.

• I developed efficient data structures to ensure scalability.

• I implemented tools for visualizing the data and the model-based conclusions.

Data visualization for checking quality of data, diagnostics for evaluating the

quality of model fit, and visualization of test results are more flexible, in par-

ticular, the display of pre-specified proteins, and customization of components

of plots using ggplot2 functionalities.

• Infrastructure for checking the correctness of input. MSstats takes as input data

in a tabular format, produced by any spectral processing tool across different

types of MS experiments such as SuperHirn, MaxQuant, Progenesis, Multi-

Quant, OpenMS, OpenSWATH, Spectronaut. Before starting statistical anal-

ysis, MSstats can recognize faulty annotation in the required input format,

incomplete data structure, or duplicated information.

• Progress reports generated to help troubleshoot potential problems with func-

tionalities of MSstats and also to keep records about statistical analysis. It

includes information on the R session, options selected by the user, checks of

successful completion of intermediate analysis steps, and possible reasons for

the errors if the analysis produces an error.

• Interoperability with other existing computational tools

– MSstats is integrated as an external tool in Skyline, a widely used compu-

tational framework for processing signals in mass spectra (more than 5000

registered users). MSstats is now available as an external tool in Skylime.

It supports automatic installation and point-and click execution with a

graphical user interface (GUI) for easy use. [9]
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– MSstats provides the functionality to convert the output from MaxQuant,

another popular spectra processing tool for MS proteomics, into the re-

quired input format for MSstats.

– MSstats satisfies the interoperability requirements from Bioconductor and

takes as input data in the MSnSet format, which is the general format for

proteomics on Bioconductor. MSstats has been available on Bioconductor

since October 2013.

MSstats has 8962 lines of R code. I have tested it with datasets with up to 3,097

proteins, 162,492 features, 24 MS runs, which is average size of DIA data. There

are more than 3,000 downloads for MSstats R package from Bioconductor, each with

unique IPs since October 2013, placing the package in the top 20% most downloaded

Bioconductor packages. MSstats is the most downloaded external tool in the mass

spectrometry signals processing software, Skyline, with 5,900 downloads since Febru-

ary 2013.

1.2.3 Evaluation and case studies

I evaluated the methods and the implementation using ten controlled experimental

datasets as listed in Section 4.1.1. These published or unpublished datasets were

tested across maximum four spectral processing tools. I also evaluated the methods

and the implementation using a variety of biological or clinical case studies as listed

in Section 4.1.2.

1.2.4 Interdisciplinary education

I developed educational materials that introduce the basic statistical methodology

used in MSstats, as well as the use of package itself. The target audience is experi-
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mentalists who have little familiarity with statistical methods. I have participated in

12 short courses in USA, Europe and Asia.

1.3 Related manuscripts

This dissertation proposes the statistical framework for relative protein quantifi-

cation in mass spectrometry-based proteomics and implementation in the following

chapters 3, 4, 5, 6.

Chapter 3 proposes a statistical framework with split-plot design approach for

protein significance analysis in mass spectrometry based proteomics experiments and

chapter 4 shows the evaluation of the proposed method using a variety of datasets,

based on a manuscript in preparation.

Chapter 5 proposes the implementation by R package for statistical analysis of

quantitative mass spectrometry-based, based on [5] and [9].

Chapter 6 shows the application of the proposed statistical framework and down-

stream analysis for biomarker study, based on [10], [11], [12], [13].
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2. INTRODUCTION

2.1 Mass spectrometry-based proteomics

2.1.1 Quantitative proteomics

Proteomics based on high-resolution mass spectrometry(MS) has matured as a

powerful tool for the analysis of protein abundance, modifications and interaction from

the quantification of thousands of proteins in biological and clinical investigation [14].

As the MS-based proteomics field grows, diverse quantification strategies for large

scale have been extensively developed during the present decade [15]. For relative

quantification of proteins, generally there are two categories of measurements; spec-

tral counting vs measurements of peak intensities [16]. Spectral counting approach

relatively quantifies protein abundance by counting the number of peptide-spectrum

matches for each protein from MS/MS search result. It can be robust measurement

of protein abundance because an increase in protein abundance results in a increase

in the number of its digested peptides [17] and have been used for discovery studies

in label-free experiments. Quantification by peak intensity measures the peak area

or peak heights in chromatography as intensity of detected peptide/fragment ions.

As amount of peptides increase, the measured peak intensities also increase. It can

be used for label-free, labeling and targeted approach described in next section. In

addition, the absolute quantification of abundance of proteins is possible with anchor

point peptides or proteins that are introduced at known concentrations [18, 19]. In

this dissertation, I focus on relative quantification by chromatography-based peak

intensities.
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2.1.2 Acquisition of mass spectra and characteristics

For chromatography-based quantification of proteomics experiments, there are

several acquisition methods of mass spectra.

Data-dependent acquisition (DDA)

In DDA, the proteins in biological samples are digested into the peptide mixture by

enzyme. The peptides are separated and analyzed in lipid chromatography coupled

with mass spectrometry(LC-MS) and are detected with the peak signal by elution

time from a liquid chromatography column and the ratio of mass to charge(m/z).

Then the detected peptide ions are fragmented, identified by sequence of peptide

fragment ions and quantified by peak intensity. The peak intensity is related to the

peptide abundance, and it can be used for relative quantification. [20] It is commonly

called ’bottom-up’ workflow and is used for identifying large number of proteins in

small number of complex samples in discovery-based research. The disadvantage is

lack of reproducibility for precursor selection between samples and experiments. Also,

the measured peak intensities are noisy and many missing values at low abundance.

Selected reaction monitoring (SRM)

SRM is a targeted proteomics experiment. Unlike DDA, it targets the prede-

fined peptides and focuses on detecting and quantifying these peptides. The proteins

in samples are digested and loaded in LC-MS as DDA. Then the different instru-

ment, triple quadruple mass spectrometer, is used to monitor the precursor/fragment

ion signals of target peptides based on priori information such as m/z of precursor

ion, retention time, optimized collision energy and unique fragment ions of the tar-

geted peptides [3]. The peak intensities of precursor/fragment ion combinations of
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a peptide, called transitions, are measured for relative quantification. This method

increases sensitivity and specificity and has high reproducibility [21].

Data-independent acquisition (DIA)

DIA is the novel approach to take strength of DDA and SRM and overcome their

limitations [22]. Within cycle LC time range, peptide ions are detected by searching

as DDA, and they are fragmented and all of them are quantified in predefined m/z

window as SRM. This procedure is repeated until covering the full m/z range [4,23].

Therefore It can consistently and accurately quantify the large number of features

per proteins and large number of proteins.

Label free or label-based workflow

There are several different types of labeling protocols by chemical tagging ap-

proach, such as iTRAQ labeling experiment [24,25] that each condition is separately

labeled with different isobaric tag, or by metabolic tagging, such as stable isotope

labeling by amino acids in cell culture (SILAC) [26,27] that cells or mice in different

conditions are grown in the medium with different isotope state. We only focus on

label-free experiments or label-based workflow with isotope labeled reference peptides.

The label-based workflow with isotope labeled reference peptides spikes in the labeled

synthetic peptide with the same sequence of the targeted peptides as reference. It

allows to adjust technical MS run variation with reference peptides and improve the

precision of quantification [28].

2.1.3 Signal processing tools

There are plenty of commercial or free software packages to process and analyze

diverse types of MS proteomics experiments as above, in terns of peptide identification
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and quantification. Each software can analyze the dataset from different acquisition

methods and has different features of workflow.

Skyline [29] is one of most popular spectral processing tools, which can analyze

SRM and Parallel Reaction Monitoring(PRM), DIA and targeted DDA quantitative

methods. The prominent feature of this tool is to distinguish between peaks missing

at random and peaks missing at low abundance, and report, respectively, ‘NA’ and

0.

MaxQuant [30] is another most popular spectral processing tool for proteomics

experiments, which can analyze several labeling techniques as well as label-free quan-

tification. It also supports the search engine, Andromeda [31]. It provides several

intensities, such as original intensities and summarized intensities by MaxLFQ [32],

iBAQ [33, 34]. It reports the intensities of any missing peaks as ‘NA’. Perseus is the

companion software of MaxQuant for downstream statistical analysis, especially for

shotgun proteomics data analyses, including basic statistical analysis with visualiza-

tion of data and statistical results.

Progenesis QI for proteomics for proteins (Nonlinear Dynamics/Waters) supports

DDA and DIA for identification and relative quantification of proteins. It reports the

intensity of any missing values as 0.

SuperHirn [35] is open source software tool for label-free quantification of DDA

experiments.

Proteome Discoverer(Thermo scientificTM) supports to identify proteins and pep-

tides by several search algorithms (SEQUEST [36,37], Mascot [38], etc.) and quantify

proteins for different isobaric mass tagging strategies.

openMS [39] offers the analyses for DDA, SILAC, iTRAQ, SRM and SWATH with

their own identification and searching algorithm and provides quantified intensities.
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OpenSWATH [40] is a free proteomics software to analyze DIA data including

quality control by mProphet [41] and pyprophet [42]. It reports the intensity of any

missing values as 0.

Spectronaut (Biognosys AG) is developed for the analysis of DIA and SWATH

datasets including automatic quality control and interference correction.

ISOQuant [43] and DIA-Umpire [44] are also for analyses of DIA datasets.

Beyond the list of software packages, many other softwares have been developed

for identifying and quantifying signals with different aspects. It is important that all

signal processing tools across any type of acquisition methods produce a data matrix

for quantified intensities , which can be used for downstream statistical analysis like

protein significance analysis or classification.

2.2 Related work : MSstats

Our group has previously proposed linear mixed models for protein-level inference

for each type of acquisition strategy [6, 8], and I implemented them and expanded

statistical model as a flexible family of linear mixed models for protein-level inference

(Figure 2.1, Figure 2.2) in open-source R-based software MSstats [5]. The family has

the advantage of being applicable to a broad variety of experimental situations [7]

such as different types of experimental design, with or without technical replicates,

single feature or single subject in experiment.

The basic linear mixed model in MSstats was developed in 2009 [6]. At the time

these were mostly label-free shotgun experiments with a small number of biological

replicates, and a few noisy features per protein. Traditional methods had a hard

time to find changes. Our group proposed to (1) condition the experiments on the

selected biological replicates (i.e., use fixed effects), and (2) assume that the between-

feature variation equals the between-subject variation. This allowed us to increase

the statistical power, and detect subtle but consistent changes. The price was in
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increasing false positives, but this was acceptable in screening experiments with a

small sample size and a large noise.

Since then the nature of the data changed dramatically. The experiments now

have larger sample size, more features, and much less noise. The assumptions (1) and

(2) are now not appropriate. Especially, the statistical model, which can distinguish

between-feature variation and between-subject variation, is needed. The assumptions

(1) and (2) are eliminated by treating subjects as random (i.e., using random effects).

In this way, the model separates the between-subject and the between-feature vari-

ation, and the tests are based on biological variation only. There are two problems

with that. First, if the experiment has a small number of biological replicates, it lacks

power and will not find any changes. Second, random effects are more difficult to fit

in complex designs, and may have problems of convergence. For the first problem

there is nothing to do, except repeatedly explaining to the users the issues of biolog-

ical replication and power. In order to solve the second problem, the new statistical

method is needed, which can reflect recent nature of proteomics data.

2.3 Related work : other statistical methods

There are many approaches for protein-level inference from intensity-based spec-

tral data. We classify them loosely in two groups below.

Two-step approaches Some researchers advocate a simple two-step approach,

where the intensities (or log-intensities) of all the features are first summarized in

each run, and then subjected to statistical modeling. For example, Skyline takes the

sum of all the intensities in a run on the original scale, while filtering out any run

that have any missing values. Although this strategy avoids biases due to missing

intensities, it also leads to loss of some potentially valuable information. Perseus

uses summed feature intensities on the original scale after a complex feature-level

normalization from MaxQuant [32]. Progenesis also outputs summarized features as
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part of the analysis. The downstream statistical inference proceeds on the summarized

(and possibly log-transformed) data using simple methods such as t-test, ANOVA

[45], or permutation tests [32], or methods originally developed for gene expression

microarrays, e.g. Linear Models for Microarray Data (LIMMA) [46, 47], Significance

Analysis of Microarrays (SAM) [48,49], and Rank Product [50,51]. Other alternatives

are ad hoc methods for summarized data, such as ROTS [52]. Although common,

these two-step approaches are not motivated by methodological considerations. As

the result, there is a great diversity of detailed decisions made by various methods

and tools, all of which affect the final conclusions, but for which the methodological

properties are unknown.

Linear models Other researchers advocate linear mixed effects models, which

perform statistical inference directly from the quantified features, e.g. [45, 53]. The

frequentist version of the linear model for DDA workflow is proposed in [54,55]. The

linear models have been extended to express the limited ability of mass spectrometers

to detect low-abundant analytes, by explicitly modeling the underlying censoring

mechanisms [56,57], or by combining linear models with the presence/absence analysis

of the analytes [58,59]. Linear models can also account for outliers by downweighting

poor quality peaks [60]. Moreover, Bayesian specifications of linear models enable a

probabilistic treatment of missing values [61, 62], and a filtering strategy for outlier

detection [63]. Although these approaches are extremely valuable and innovative,

their complexity limits their practical adoption in general circumstances. They may

not be easily extended to arbitrary complex experimental designs, or may not scale

to an arbitrary large number of features, proteins and samples.

Even though empirical comparisons of performance of various methods increas-

ingly appear, e.g. comparisons of peptide-level versus summarization-based methods

for DDA analysis [64], comparison of peptide-level quantification by peptide selec-

tion [65], or comparison of testing methods [66] or of imputation methods [67], there

is currently little conceptual understanding of differences and similarities of the prop-

erties shared by various approaches.
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My research contributes a framework, which builds upon our previous linear mixed

effects modeling, and unifies many of the approaches above. I show that this unified

modeling allows us to take advantage of the best aspects of the previously proposed

methods, and maximize the accuracy of detecting differentially abundant proteins and

of estimation of fold changes across all signal processing tools and many published

datasets. The implementation of this framework in MSstats enables the analysis of

experiments with arbitrary complex designs, and shortens the analysis time.
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Figure 1: Linear mixed e↵ects model for label-free LC-MS experiments.

1

Figure 2.1.: Previously proposed linear mixed effect model for label-free experiments [5, 6].
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Figure 2.2.: Previously proposed linear mixed effect model for SRM experiments with stable

isotope labeled reference peptides [5, 8].
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3. METHOD

3.1 Notation and goals of statistical analysis
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Figure 3.1.: The general data structure of a quantitative proteomic experiment. A label-free

experiment with a group comparison design with technical replicates. The whole plot aspect of the

experimental design is shown in pink. The subplot is shown in yellow. µ denotes the overall mean

signal in the experiment. y denotes the log intensity of the observed feature in each cell. Empty

cells indicate missing values.

Figure 3.1 outlines measurements from one protein in a typical group comparison

experiment, where data are acquired with a label-free workflow such as DDA or DIA.

The experiment in the figure has i = 1, . . . , I Conditions. The conditions can be pre-

defined groups, e.g. healthy and disease. Alternatively, the conditions can represent

complex combinations of treatments, where a condition is a unique combination of

all the levels of the treatments.

Each condition consists of j = 1, . . . , J Subjects, i.e. distinct biological replicates

(e.g., patients, mice, etc). The subjects are the main experimental units, and in group

comparison designs the subjects are nested within the conditions. Furthermore, each

subject sample is profiled in k = 1, . . . , K mass spectrometry Runs. When a subject

is represented by multiple runs, the runs are technical replicates. The experiment in
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Figure 3.1 has I × J × K runs. In practice the number of biological and technical

replicates can vary across conditions and subjects.

In each run the protein is represented by l = 1, . . . , L spectral features. The

features are peptide ions in DDA experiments, combinations of peptide ions and

transitions in SRM experiments, and combinations of peptide ions and fragments

in DIA experiments. For the purposes of this dissertation we do not distinguish

transitions or fragments generated by a same or different peptide. For example, a

protein with 2 peptide ions and 3 transitions per peptide has 6 features.

Each feature in each run is quantified by its Intensity, defined as peak area, peak

hight at apex, or any other measure of the strength of the signal reported by a signal

processing tool. Throughout the dissertation we denote that yijkl the peak intensities

that are log2 transformed (and use 0 after the log2 transformation if an intensity is

quantified as 0 on the original scale) and normalized, to account for the technological

artifacts between the runs. In practice some peak intensities can be misidentified or

mis-quantified. Some peaks can be missing at random. Some peaks can be missing

according to a censoring mechanism, due to the inability of mass spectrometers to

detect signals from low-abundant analytes. The quantification of missing peaks can

differ between signal processing tools (e.g., as 0, ‘NA’, or the noise in the area where

the peak is expected). We show below that the proposed approach can work with all

these choices.

Although Figure 3.1 outlines an experiment with a group comparison design and

a label-free workflow, other experiments (e.g., experiments with time course or paired

designs, experiments with stable isotope labeled synthetic reference peptides, ex-

periments with reference peptides from a metabolically labeled reference sample, or

experiments with unbalanced numbers of replicates or missing values) can all be

represented with a similar layout. For example, Figure 3.5 shows the layout of an ex-

periment with heavy-labeled reference peptides. Although our discussion focuses on

group comparisons, it is easily extended to other experiments with complex designs.
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The quantitative proteomic experiments typically have three goals. The first goal

is to compare pairs of conditions (or combinations of conditions), to detect proteins

that change in abundance more systematically than as expected by random chance.

The second goal is to estimate the magnitude of fold changes associated with these

comparisons. The third goal is to summarize all the measurements that pertain to a

protein, and obtain a single value of relative protein quantification per run, per sub-

ject, or per condition. The latter can be used as input to machine learning methods,

e.g. unsupervised clustering or supervised classification. The goal of statistical mod-

eling and inference is to accurately represent all the systematic and random variation

in the data, and provide the best model-based quantities that address these goals.

3.2 Overview of split-plot design

The main contribution is to recognize that quantitative mass spectrometry exper-

iments incorporate a restriction on randomization. In other words, the order of the

quantified protein features is not randomized, and all the features of a protein are

acquired simultaneously within a run. In statistical language, the layout in Figure 3.1

is an instance of a split-plot design [68], and the features are sub-samples of the run.

This aspect of the design is highlighted in Figure 3.1 in yellow, and is called subplot.

The order of conditions, subjects and runs is randomized, and their variation reflect

the underlying biological and technical variation. This aspect of the design is high-

lighted as in Figure 3.1 in pink, and is called whole plot. In early days of quantitative

proteomics the subplot variation was comparable to the whole plot variation, however

in modern experiments the subplot variation is comparatively small.

The model for the experiment in Figure 3.1 is shown in Figure 3.2, and its exten-

sion to experiments with labeled reference peptides is in Figure 3.6. Although the

full model is similar to the models in our previous work, the split-plot view of the

experimental design changes the parameter estimation procedure. It is easy to show

( [68] and Figure 3.3) that in the special case of a balanced split-plot experiment
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Whole plot Subplot

yijkl = µ + Conditioni + Subject(Condition)j(i) + Runijk + Featurel + Run × Featureijkl

Whole-plot Whole-plot Subplot
biological variation technical variation error

where
∑I

i=1 Conditioni = 0,
∑L

j=1 Featurel = 0

Subject(Condition)j(i)
iid∼ N (0, σ2

Subject)

Runijk = ψijk
iid∼ N (0, σ2

ψ)

Run × Featureijkl = εijkl
iid∼ N (0, σ2

ε )

Figure 3.2.: Linear mixed effects model and assumptions for the experiments in Figure 3.1. The

model has three variance components, that reflect the biological and the technological variation.

with no missing values and equal technical variance of all features, the goals of group

comparison, fold change estimation, and summarization of protein abundance, the

optimal procedure of statistical inference only relies on average log-feature intensities

in each run. In other words, the goals can be achieved using a modified two-step

statistical inference procedure, where summarization of log-intensities in the run is

an intermediate step.

Supplementary 2 LINEAR MIXED EFFECTS MODEL FOR SPLIT PLOT DESIGN

2 Linear mixed effects model for split plot design

Whole plot Subplot

yijkl = Conditioni + Subject(Condition)j(i) + ψijk + Featurel + Run× Featureijkl

Whole-plot Whole-plot Subplot error
biological variance technical variance

Run is mass spectrometry runs. It is the combination of Condition, Subject, and Technical
repeated mass spectrometry measurement.

The analysis of variance for split-plot design is summarized in Supplementary Figure 1.
The expected mean squares for this split-plot design are with random subjects and condition and
feature fixed, are shown in. σε is subplot error. σψ is whole plot error.

Model term Sum of Squares Degrees of freedom E(MS): Condition, Feature : F, Subject : R

Condition JKL
∑

(ȳi... − ȳ....)2 I − 1 σ2
ε + Lσ2

ψ + KLσ2
Subject +

JKL
∑
Condition2

i
I−1

Subject(Condition) KL
∑∑

(ȳij.. − ȳi...)
2 I(J − 1) σ2

ε + Lσ2
ψ + KLσ2

Subject

Wholeplot error (Run) L
∑∑∑

(ȳijk. − ȳij..)
2 IJ(K − 1) σ2

ε + Lσ2
ψ

Feature IJK
∑

(ȳ...l − ȳ....)2 L− 1 σ2
ε +

IJK
∑
Featurel

2

L−1

Subplot error (R×F)
∑∑∑∑

(yijkl − ȳijk. − ȳ...l + ȳ....)2 (IJ − 1)(K − 1)(L− 1) σ2
ε

Total SSTotal IJKL− 1

Supplementary Figure 1: Analysis of variance table for split-plot for group comparison design

8

Figure 3.3.: Analysis of variance table for split-plot of group comparison design with label free

experiment is summarized in Figure 3.2. The expected mean squares for this split-plot design are

with random subjects and condition and feature fixed, are shown in. σε is subplot error. σψ is whole

plot error.
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We use the analogy of the balanced design to propose a two-step estimation and

inference procedure applicable to general quantitative proteomic experiments (Fig-

ure 3.4). The general formulation in terms of linear mixed effects models links this

approach to linear mixed effects models previously proposed by our group and by

other groups. The estimation procedure links this approach to the ad hoc two-step

approaches described in the related work above. This methodological connection

allows us to combine the best aspects of these approaches.

Step 1 :  Run-level subplot summarization

Step 2 : Model-based inference by whole plot
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ŷijk = µ + Conditioni + Subject(Condition)j(i) + ψijk,where
∑

i

Conditioni = 0, Subject(Condition)j(i)
iid∼ N (0, σ2

Subject), ψijk
iid∼ N (0, σ2

ψ)

yijkl = µ + Runijk + Featurel + εijkl , where

medianijk(Runijk) = 0, medianl(Featurel) = 0, and medianijk(εijkl) = medianl(εijkl) = 0

yijkl = µ + Runijk + Featurel + εijkl , where Run111 = 0, F eature1 = 0, εijkl
iid∼ N (0, σ2

ε )

Figure 3.4.: Proposed two-step estimation and inference procedure. (A) Subplot. The step imputes

missing log-feature intensities using a two-way linear model, which incorporates the accelerated

failure time censoring mechanism, and summarizes the resulting data structure using Tukey’s median

polish. (B) Whole plot. The step models the output or run-level summarization with a linear

mixed effects model that accurately represents the experimental design, and reports model-based

conclusions.
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3.3 Subplot summarization of feature intensities in a MS run

Figure 3.4 (A) shows that subplot is a two-way table, where rows are features, and

columns are mass spectrometry runs. All the features are quantified simultaneously

within a run, and therefore parameter estimation at the subplot level performs run-

level summarization. A desirable side-effect of the subplot is that it is agnostic of the

biological origin of the samples, e.g., of whether these are biological or technical repli-

cates, or samples from a same group or from different groups. Since the structure of

subplot is very simple, many approaches to run-level summarization (including those

that can address complications such as outlying measurements and missing data) can

be successfully applied regardless of the complexity of the experimental design. Be-

low we describe three such approaches, and then discuss how these approaches are

integrated in the proposed general and versatile workflow.

3.3.1 Approach 1: Two-way fixed effects Analysis of Variance (ANOVA)

It is described in Figure 3.4 (A), and is the simplest model for subplot. The

parameters are estimated by minimizing the residual sum of squares, and run-level

summaries are average log-intensities within each run. In experiments with no missing

values and equal technical variance of all features the estimation is unbiased and has

minimum variance. However, the approach is undermined by outliers, missing values,

or unequal variance.

3.3.2 Approach 2: Accelerated failure time (AFT) model

It was brought to proteomics from statistical methods for survival analysis. It

accounts for the censoring mechanism, i.e. for missing peak intensities that arise

due to the limited ability of mass spectrometers to detect low abundant analytes.

The AFT model in proteomics was originally proposed for group comparison designs,
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after averaging peak intensities from all peptides into a single quantity per protein

per run [57]. In contrast, here we propose to use the AFT model within subplot,

before the run-level summarization.

In presence of censored observations, the observed log-intensities of peaks yijkl can

be thought of as yijkl = max(yijkl, cijkl), were cijkl is the censoring threshold, i.e. the

lowest quantifiable signal on the log2 scale. We define an indicator of whether the

peak was detected and quantified as

δijkl =





1 if cijkl ≤ yijkl, i.e., observed

0 if cijkl > yijkl, i.e., censored

(3.1)

The likelihood for the model in Figure 3.4 (A) is then the product of the likelihoods

of the observed peak intensities (top line of Eq. (3.2)) and censored peak intensities

(bottom line of Eq. (3.2))

L(Runijkl, Featureijkl|yijkl) =
∏

i,j,k,l

f
(
yijkl | µ+Runijk + Featurel, σ

2
ε

)δijkl (3.2)

×
∏

i,j,k,l

F
(
yijkl | µ+Runijk + Featurel, σ

2
ε

)1−δijkl

Here f is the probability density function and F is the cumulative probability density

function of the Normal distribution with the expected value µ + Runijk + Featurel

and variance σ2
ε . The latter expresses the fact that the intensities of the censored

peaks are unknown, but are below the threshold. The parameters Runijk, Featurel

and σ2
ε are estimated by maximizing the likelihood.

The AFT model has the same mechanism of accounting for missing values with

a censoring threshold cijkl as in Eq. (3.1), and the same maximum likelihood-based

estimation Eq. (3.2). The AFT model for subplot describes the contributions of the

systematic sources variation (in our case, features and runs) to the untransformed

intensity of the peaks, xijkl, in a way that works directly with cumulative probability

density functions. It assumes that
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F (xijkl) = Φ
(
2µ+σzijkl · 2Runijk+Featurel

)
, where Run111 = 0, Feature1 = 0 (3.3)

Φ is the cumulative density function of the Standard Normal distribution. If xijkl

were to represent the time to a failure, then the parameters of the model would have

had the effect of ‘accelerating or contracting’ the time with respect to the reference,

hence the name of the model.

Denoting as zijkl ∼ N (0, 1) we can re-write the model as

xijkl = 2µ+σzijkl · 2Runijk+Featurel

log2 xijkl = µ+ σzijkl +Runijk + Featurel

yijkl = µ+Runijk + Featurel + σzijkl (3.4)

where yijkl is log2 transformation of xijkl.The similarity of Eq. (3.4) to linear re-

gression is the source of the flexibility, and also of the popularity of this model in

applications. The parameters µ, Runijk, Featurel and σ are estimated by maximum

likelihood with censoring mechanism, as described in the main manuscript. In ab-

sence of missing values, the parameter estimates Runijk and Featurel are the same

with those of two-way ANOVA. The AFT model can be easily extended to other

distributions of the peak intensities in addition to the Normal.

Several aspects of parameter estimation in presence of censoring require attention.

First, the censoring threshold is effectively one more parameter in the model. Here

we assume that the threshold is feature-specific but constant across the runs, i.e.

cijkl = cl, and estimate it by the smallest observed log-intensity of each feature.

Second, in mass spectrometric experiments missing values may also arise by random

chance. Some signal processing tools such as Skyline distinguish between these two

types of missing values, and in this case randomly missing peak intensities can be left

missing. However, as the technology improves, the proportion of randomly missing

values becomes small, and it is reasonable to assume that all the missing values are

in fact censored. Third, although the proposed approach takes care of the censored
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missing values, it can be negatively affected by misidentified or misquantified peaks,

which manifest themselves through outlying intensity values. Finally, the AFT model

can be used to predict the log-intensities of the missing peaks. This prediction is more

accurate than the imputation of missing values with, say, minimal value in the run,

because it takes into account the intensities of the feature and the run, and also

the censoring threshold. We will take advantage of this aspect of the model in the

proposed approach below.

3.3.3 Approach 3: Tukey’s Median Polish (TMP)

TMP [69] is a robust parameter estimation method for a two-way fixed effects

ANOVA. It has a long and successful history in bioinformatics, used, e.g., in affymetrix

microarrays to summarize multiple probes in a probe set [70]. TMP iteratively sub-

tracts medians of rows and columns from the observed log-intensities in Figure 3.4

(A) until there is no change. The values that remain in the table after these opera-

tions are the residuals of the model fit. The run-level summarization is obtained by

summing the fitted overall and run effects in the run.

This median-based summarization down-weighs the outliers and the highly vari-

able features, and the simple structure of subplot allows us to implement this approach

in an arbitrary complex experimental design. However, the approach is negatively

affected by the missing values, especially by informative missing values that are due

to censoring. The effect is particularly strong when more than 50% of the intensities

in a run are sensored.

3.3.4 Proposed workflow: integration of approaches 1, 2 and 3

We propose a subplot summarization that combines the advantages of the three

approaches above. First, we fit the AFT model to the subplot, and predict the
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censored log-intensities of peaks. Second, we summarize the resulting subplot data

structure, which now includes both the observed and the predicted log-intensities,

using Tukey Median Polish. The summaries are then analyzed in the whole plot using

a linear model that accurately reflects the experimental design (see Section 3.4).

The proposed framework is easily extended to experiments with labeled reference

peptides. Example data structure and statistical model for these experiments are

described in Section 3.3.5.

3.3.5 Extension : experiment with labeled reference peptides

The proposed summarization approach for subplot can be extended for the ex-

periments with labeling strategy. SRM experiments with isotope labeled reference

peptides is the case. Figure 3.5 demonstrates example data structure for simplified

group comparison experiment with triplicate. In the notation of the figure, i = 1, ..., I

is the index of a Condition, j = 1, ..., J is the index of a biological replicate, called

Subject in each group, k = 1, ..., K is the index of a mass spectrometry run. When a

subject for certain condition is represented by multiple runs, the runs are technical

replicates. The experiment has I × J × K mass spectrometry Runs. l = 1, ..., L is

the index of a Feature, m = 0 or 1 is the index of a Label, 0 denotes labeled refer-

ence features and 1 denotes endogenous features. To compare with data structure of

label-free experiment, there are additional L rows for labeled reference features.

The linear mixed effects model in Figure 3.2 is easily extended to reflect for the

experiments with labeled reference peptides as Figure 3.6. Whole plot is the same

as in label-free experiment. But, subplot model is different including Label and

Run× Label.

We specify the model in Figure 3.6, and use the approach in Figure 3.4 to esti-

mate model parameters. The subplot summarization step should have two additional

variables, Label and Run×Label, in the model in order to consider labeled reference
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Figure 3.5.: The general data structure of the experiment with labeled reference peptides. A group

comparison design with technical replicates. The whole plot aspect of the experimental design is

shown in pink. The subplot is shown in yellow. y denotes the log intensity of the observed feature

in each cell. Empty cells indicate missing values.
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Supplementary Figure 3: The general data structure of the experiment with labeled reference
peptides. A group comparison design with technical replicates. The whole plot aspect of the
experimental design is shown in pink. The subplot is shown in yellow. y denotes the log intensity
of the observed feature in each cell. Empty cells indicate missing values.

The linear mixed effect model in Supplementary Figure 4 reflects for the data structure of
label-free experiments in Supplementary Figure 3.

Whole plot Subplot

yijklm = µ + Conditioni + Subject(Condition)j(i) + Runijk + Labelm +Run× Labelijkm +Featurel + εijklm

Whole-plot Whole-plot Subplot
biological technical error
variation variation

where
∑I
i=1 Conditioni = 0,

∑L
l=1 Featurel = 0,

∑1
m=0 Labelm = 0

Subject(Condition)j(i)
iid∼ N (0, σ2

Subject)

Runijk = ψijk
iid∼ N (0, σ2

ψ)

εijklm
iid∼ N (0, σ2

ε )

Supplementary Figure 4: Linear mixed effects model for the split plot design in a label-based
experiment with group comparison design.

We specify the model in Supplementary Figure 4, and use the approach in Figure 2 to
estimate model parameters. The subplot summarization step should have two additional variables,
Label and Run× Label, in the model in order to consider labeled reference feature intensities.

Imputation step for missing values should be considered, even though SRM experiments with
isotope labeled reference have very few missing values. For label-based experiment, we consider
only endogenous intensities for imputation because we can assume that missing values for reference
intensities are random. Because reference intensities are expected to be consistent across runs,

14

Figure 3.6.: Linear mixed effects model for the split plot design in a label-based experiment with

group comparison design. The model has three variance components, that reflect the biological and

the technological variation.

feature intensities.

Imputation step for missing values should be considered, even though SRM exper-

iments with isotope labeled reference have very few missing values. For label-based
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experiment, we consider only endogenous intensities for imputation because we can

assume that missing values for reference intensities are random. Because reference

intensities are expected to be consistent across runs, random missing assumption for

missing reference intensities is reasonable. Imputation for missing values in endoge-

nous intensities will be performed by the same model for label-free experiments in

Section 3.3.2.

For run-level summarization step, Tukey’s median polish is used for estimating

parameter in Eq. (3.5). First, Runijk+Labelm+Run×Labelijkm substitutes forRunink

in Eq.(4) as in Eq. (3.5), which considers the data matrix including (i × j × k) ∗ 2

columns and l rows.

yijklm = µ+Runijk + Labelm +Run× Labelijkm + Featurel + εijklm, where

medianijkm(Runink + Labelm +Run× Labelijkm) = 0,

medianl(Featurel) = 0,

medianijkm(εijklm) = medianl(εijklm) = 0 (3.5)

Then we can get summarized intensities per run and label from estimation of

parameters as in Eq. (3.6).

ŷijk.1 = ̂Label1 + ̂Runijk + Run× Labelijk1
∧

for endogenous intensities

ŷijk.0 = ̂Label0 + ̂Runijk + Run× Labelijk0
∧

for reference intensities (3.6)

Next, summarized reference intensity is used to adjust summarized endogenous

intensity for MS run variations, because we can assume the equal summarized refer-

ence intensity across MS runs. Final summarized endogenous intensity is adjusted as

in Eq. (3.7), which shifts the summarized intensities in a run by a constant to equalize

the median of summarized reference intensities across runs.
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̂yijk.1,adjusted = ŷijk.1 − (ŷijk.0 −medianijk.0(Label0 +Runink +Run× Labelijk.0))
(3.7)

These run-level summarized endogenous intensities are used for the same whole-

plot inference with label-free experiments for finding differential abundance proteins.

3.4 Whole plot: representation of experimental design and model-based

inference.

After the log-intensities of the peaks are summarized in each run, we model the

whole plot using a linear mixed effects model that appropriately reflects the exper-

imental design. Figure 3.4 (B) illustrates one such model for a group comparison

design. This model is identical to a particular model in the previous version (v2)

of MSstats, which specifies expanded scope of biological replication, and which only

has one input feature. The positive side-effect of this framework is that the between-

feature variance does not need to be estimated, and therefore the parameter estima-

tion is simpler and faster. Figure 3.7 provides another example of such model for the

time course design.
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ConditionI or TimeI

Subject1 Subject2 SubjectJ
. . .

. . .

. . .yy y y y y y y y . . .

. . .

. . .

. . .

y y y y y y y y

Run Run RunIJKRun1 Run2 Run3 Run4 Run5 Run6 RunJK-2RunJK-1 RunJK
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(I-1)JK+2
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(I-1)JK+3

Run
(I-1)JK+4

Run
(I-1)JK+5
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(I-1)JK+6 IJK-2 IJK-1

Figure 3.7.: The general data structure for time-course or paired design with technical replicates.

The difference between group comparison design and time course design is subject

notation. The subjects for group comparison are nested in condition. However, the

subjects for time course design are crossed in different time points. For example,

if there are I Conditions and J subjects for each condition for group comparison

design, there are I × J unique subjects are in experiment. If there are I time points
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and J subjects for each condition for time course design, there are total J subjects

in experiment and these subjects are measured multiple time points. Therefore, the

notation for subject in Figure 3.7 is different from Figure 3.1 and Figure 3.4(B). Then,

variables for linear mixed model of whole plot are also different as Eq. (3.8).

ŷijk = µ+ Timei + Subjectj + Timei × Sujectj + εijk, where
∑

i

Timei = 0, Subjectj
iid∼ N (0, σ2

Subject), εijk
iid∼ N (0, σ2

ε ) (3.8)

If there is no technical replicate, there is no interaction term in the model as below.

Paired design has the same data structure with time course design, shared subjects

across different conditions. The same model as Eq. (3.8) with replacing Time with

Condition can be used.
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4. EXPERIMENTAL RESULTS

4.1 Experimental data

We demonstrate the performance of the method using ten controlled mixtures of

known composition and ten biological investigations, acquired with label-free DDA,

DIA, and SRM with isotope labeled reference peptides. The controlled mixtures

are spike-in mixtures or dilutions of a same parent mixture. They cover a broad

range of known fold changes between condition, and are well suited for evaluating the

sensitivity and specificity of detecting differentially abundant proteins, and evaluating

the accuracy of estimation of fold changes between conditions. However, the spike-

in datasets typically have a small number of technical replicates and no biological

replicates. The processed data are not hand-curated, and have many missing values.

Therefore, they may not be fully representative of the real biological investigation. In

contrast, biological and clinical investigations have biological replicates (and, in our

case, no technical replicates), and smaller fold changes. For some datasets the output

of signal processing is manually curated. The datasets have few missing values. Each

dataset was processed with up to four signal processing tools to demonstrate that the

proposed statistical method performs well regardless of the signal processing. The

datasets are listed below.
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4.1.1 Controlled spike-in mixtures

Controlled mixture - label-free DDA and SRM with labeled reference pep-

tides

Thirty commercial proteins were prepared at 1.5 pmolµL in three different subsets

of 10 proteins each. Proteins from these subsets were spiked to a 15-µg Escherichia

coli background in different amounts and five different mixtures were prepared in

triplicates. The final amount of each protein in each mixture was either 100, 200 or

400 fmol/µg of E. coli background for the subsets marked as 1, 2 and 4, respectively,

as Table 4.1. Samples were digested using the sequential in-solution Lys-C/trypsin

digestion protocol.

The peptides mixtures were analyzed by online nanoflow liquid chromatography

tandem mass spectrometry (nanoLCMS/MS) using an EASY-nLC system (Proxeon

Biosystems, Odense, Denmark) connected to the LTQ Orbitrap Velos instrument

(Thermo Fisher Scientific, Bremen, Germany) through a nanoelectrospray ion source.

The instrument was operated in data-dependent acquisition mode, with full MS scans

used over a mass range of m/z 250-2,000 with detection in the Orbitrap (1 microscan,

resolution of 60,000). In each cycle of data-dependent acquisition analysis, following

each survey scan, the twenty most intense ions with multiple charged ions above a

threshold ion count of 5,000 were selected for fragmentation at normalized collision

energy of 35%. Fragment ion spectra produced via collision-induced dissociation

(CID) were acquired in the ion trap, with AGC set to 5e4, an isolation window of

2.0 m/z, an activation time of 0.1 ms, and a maximum injection time of 100 ms. All

data were acquired with Xcalibur software v2.2.

MS/MS spectra were searched using Proteome Discovery software suite (v1.3.0.339)

and Mascot (v2.3.01) as search engine. Acquired data were searched against an in-

house generated database containing all the spiked-in proteins (Table 1), and the E.

coli Swissprot protein database (July 2012 version) plus the most common protein
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contaminants. Precursor ion mass tolerance was set to 7 ppm at the MS1 level and

to 0.5 Da at the fragment ion level. Up to three missed cleavages for trypsin were

allowed. Oxidation of methionine and protein N-terminal acetylation were considered

as variable modifications, whereas carbamidomethylation on cysteines was set as a

fixed modification. False discovery rate (FDR) in peptide identification was evalu-

ated by using a decoy database and it was set to a maximum of 1%. Peptide areas

were extracted with the Precursor Area Ion Detector module of Proteome Discoverer

with a mass tolerance of 2 ppm. Only the spiked-in proteins were selected for further

quantitative analysis and all calculations and comparisons were processed.

Supplementary - Relative protein quantification in mass

spectrometry-based proteomics: a split plot approach, and its

implementation in MSstats

1 Detailed information about datasets

1.1 Controlled mixture - label-free DDA and SRM with labeled reference pep-
tides

[TODO: need to update details in main]

Mixture
Protein 1 2 3 4 5

Protein subset1 (7 proteins) 1 2 4 2 1
Protein subset2 (7 proteins) 4 1 2 1 2
Protein subset3 (7 proteins) 2 4 1 2 1

Supplementary Table 1: Spike-in dataset : composition of the different controlled mixtures. Rela-
tive amounts among the different protein subsets

1.2 2015 iPRG (1)

There are total six proteins spiked in each sample with yeast proteins background. Four proteins
were spiked with four different concentrations by Latin Square design in four biological samples
with triplicate. Another two proteins were spiked with another four different concentrations in
the same four biological samples with triplicate. Detailed concentrations are in Supplementary
Table 2. It is a DDA dataset. Skyline was used to analysis and to calculate MS1 peak intensities.
The processed data from Skyline was distributed from iPRG. [TODO: If reanalyzed, setting xxx]
Reported three monoisotope peaks per peptide were summed for peptide-level in a MS run. The
same raw files also were reanalyzed by MaxQuant and Progenesis [TODO: setting]. All pairwise
fold changes between concentrations (65/55, 55/15, 65/15, 15/2, 55/2 65/2, 11/10, 10/0.6, 11/0.6,
500/11, 500/10, 500/0.6) among six proteins were used for sensitivity evaluation. Specificity was
calculated using constant background yeast proteins.

1.3 Dynamic Range Benchmark (2)

A mixture of 48 human UPS proteins were spiked in E. coli lysate with different ratios between
two conditions. There were six different concentration ratios between conditions. Detailed proteins
and ratios are in Supplementary Table 3. Each condition was analyzed in 4 replicates. Data

1

Table 4.1.: Composition of the different controlled mixtures for controlled spike-in dataset. The

values are relative amounts among the different protein subsets. Subset 1 includes 10 proteins

(P02701, P00711, Q29443, Q29550,P0CG53, P68082, P00432,P02754, P24627, P80025), Subset 2

includes 10 proteins (P00915, P02787, P02663, P01008, P00921, P05307, P61769, P02662, P01012,

P02666), and Subset 3 includes 10 proteins (Q3SX14, P00563, P02769, Q58D62, P00698, P00004,

P00442, P01133, P02753)

The 2015 study of the Proteome Informatics Research Group (iPRG) of

the Association of the Biomedical Resource Facilities (ABRF) [71]

There are total six proteins spiked in each sample with yeast proteins background.

Four proteins were spiked with four different concentrations by Latin Square design

in four biological samples with triplicate. Another two proteins were spiked with an-

other four different concentrations in the same four biological samples with triplicate.

Detailed concentrations are in Table 4.2. It is a DDA dataset. Skyline was used
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to analysis and to calculate MS1 peak intensities. The processed data from Skyline

was distributed from iPRG. Peptides were searched by Comet, OMSSA and MSGF+.

Reported three monoisotope peaks per peptide were summed for peptide-level in a

MS run. The same raw files also were reanalyzed by MaxQuant with defaults and

Progenesis with searching result by Comet. All pairwise fold changes between con-

centrations (65/55, 55/15, 65/15, 15/2, 55/2 65/2, total six fold changes) among four

proteins by Latin Square design were used for sensitivity evaluation. Specificity was

calculated using constant background yeast proteins.
Supplementary 1 DETAILED INFORMATION ABOUT DATASETS

Concentnration(fmol)
Protein Sample1 Sample2 Sample3 Sample4

P44015 65 55 15 2
P44752 55 15 2 65
P44374 15 2 65 55
P44983 2 65 55 15

P44683 11 0.6 10 500
P55249 10 500 11 0.6

Background +200ng yeast digest

Supplementary Table 2: 2015 iPRG study

was generated with DDA. Raw files were processed by three spectral processing tools. One was by
MaxQuant, used the original peptide-level intensities, not performed by MaxLFQ. Second dataset
was analyzed by Skyline [TODO: with xxx setting] It was evaluated after filtering by xxx and
summing per peptide in each run. Last dataset was processed by Progenesis [TODO: with settings].
We will evaluate the ability of statistical methods to detect 10000, 1000, 100, 10, 0.1 true fold
changes between conditions among 40 proteins, and true constant signals with 8 human UPS
proteins and around 2200 E.coli background proteins.

Relative concentration
Protein UPS1 UPS2

P00441ups, P01375ups, P02741ups, P02788ups 10000 1
P05413ups, P08758ups, P10145ups, P10636-8ups

P06396ups, O00762ups, P01112ups, P01579ups 1000 1
P09211ups, P51965ups, P99999ups, P02787ups

O76070ups, P01127ups, P01344ups, P08263ups 100 1
P10599ups, P55957ups, P61769ups, P01008ups

P00709ups ,P02753ups, P06732ups,P12081ups 10 1
P16083ups, P61626ups, P63279ups, Q15843ups

P00167ups, P01133ups, P02144ups, P04040ups 1 1
P15559ups, P62937ups, P63165ups, Q06830ups

P68871ups,P02768ups, P00915ups, P00918ups 1 10
P01031ups, P41159ups, P62988ups, P69905ups

Background E.coli digest

Supplementary Table 3: Dynamic range benchmark dataset

1.4 Spike-in dataset by Latin Square design (3)

Six proteins were spiked into human serum in six known concentrations according to the latin
square design as Supplementary Table 4. Each sample measured in triplicate. DDA datasets
were quantified and annotated using the Superhirn software (4) and Skyline [TODO: with xxx
parameters]. We evaluated the statistical methods in terms of sensitivity for five fold changes,
starting from maximum concentration baseline (800/400, 800/200, 800/100, 800/50, 800/25) with

2

Table 4.2.: Protein IDs and concentrations of spike-in proteins for 2015 iPRG study

Dynamic Range Benchmark [32]

A mixture of 48 human UPS proteins were spiked in E. coli lysate with different

ratios between two conditions. There were six different concentration ratios between

conditions. Detailed proteins and ratios are in Table 4.3. Each condition was ana-

lyzed in 4 replicates. Data was acquired by DDA. Raw files were processed by three

spectral processing tools. I used the original peptide-level intensities, not performed

by MaxLFQ of MaxQuant output. Second dataset was processed by Progenesis QI

with searching results by Comet. We will evaluate the ability of statistical methods

to detect 10000, 1000, 100, 10, 0.1 true fold changes between conditions among 40
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proteins, and true constant signals with 8 human UPS proteins and around 2200

E.coli background proteins.

Supplementary 1 DETAILED INFORMATION ABOUT DATASETS

Concentnration(fmol)
Protein Sample1 Sample2 Sample3 Sample4

P44015 65 55 15 2
P44752 55 15 2 65
P44374 15 2 65 55
P44983 2 65 55 15

P44683 11 0.6 10 500
P55249 10 500 11 0.6

Background +200ng yeast digest

Supplementary Table 2: 2015 iPRG study

was generated with DDA. Raw files were processed by three spectral processing tools. One was by
MaxQuant, used the original peptide-level intensities, not performed by MaxLFQ. Second dataset
was analyzed by Skyline [TODO: with xxx setting] It was evaluated after filtering by xxx and
summing per peptide in each run. Last dataset was processed by Progenesis [TODO: with settings].
We will evaluate the ability of statistical methods to detect 10000, 1000, 100, 10, 0.1 true fold
changes between conditions among 40 proteins, and true constant signals with 8 human UPS
proteins and around 2200 E.coli background proteins.

Relative concentration
Protein UPS1 UPS2

P00441ups, P01375ups, P02741ups, P02788ups 10000 1
P05413ups, P08758ups, P10145ups, P10636-8ups

P06396ups, O00762ups, P01112ups, P01579ups 1000 1
P09211ups, P51965ups, P99999ups, P02787ups

O76070ups, P01127ups, P01344ups, P08263ups 100 1
P10599ups, P55957ups, P61769ups, P01008ups

P00709ups ,P02753ups, P06732ups,P12081ups 10 1
P16083ups, P61626ups, P63279ups, Q15843ups

P00167ups, P01133ups, P02144ups, P04040ups 1 1
P15559ups, P62937ups, P63165ups, Q06830ups

P68871ups,P02768ups, P00915ups, P00918ups 1 10
P01031ups, P41159ups, P62988ups, P69905ups

Background E.coli digest

Supplementary Table 3: Dynamic range benchmark dataset

1.4 Spike-in dataset by Latin Square design (3)

Six proteins were spiked into human serum in six known concentrations according to the latin
square design as Supplementary Table 4. Each sample measured in triplicate. DDA datasets
were quantified and annotated using the Superhirn software (4) and Skyline [TODO: with xxx
parameters]. We evaluated the statistical methods in terms of sensitivity for five fold changes,
starting from maximum concentration baseline (800/400, 800/200, 800/100, 800/50, 800/25) with

2

Table 4.3.: Protein IDs and concentrations of spike-in proteins for dynamic range benchmark

dataset

Label-based SRM controlled spiked-in dataset [8]

Total twelve proteins were spiked into six mixtures with the same background. Six

proteins were spiked with six different concentrations, 8 to 512 folds, in each mixture

according to the Latin Square design as positive control. Remaining six proteins were

mixed at constant concentrations across mixtures as negative controls. Each two

proteins among 6 proteins had different concentrations. Detailed concentrations per

protein are in Table 4.4. Each mixture had two replicates. This is from SRM with

isotope labeled reference peptides. MultiQuant was used for quantifying the peaks.

We will evaluate the ability of statistical methods methods to detect true 8, 32, 128,

256, 512 fold changes, starting from maximum concentrations as baseline among six

proteins and true constant fold changes with six negative control proteins.
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Supplementary 1 DETAILED INFORMATION ABOUT DATASETS

six proteins.

Mixture
Protein 1 2 3 4 5 6

Myoglobin (horse) 800 25 50 100 200 400
Carbonic anhydrase (bovine) 400 800 25 50 100 200
Cytochrome C (horse) 200 400 800 25 50 100
Lysozyme (chicken) 100 200 400 800 25 50
Alcohol dehydrogenase (yeast) 50 100 200 400 800 25
Adolase A (rabbit) 25 50 100 200 400 800

Supplementary Table 4: DDA Spike-in dataset by Latin Square design

1.5 Controlled spiked-in dataset (5)

Total twelve proteins were spiked into six mixtures with the same background. six proteins were
spiked with six different concentrations, 8 to 512 folds, in each mixture according to the Latin Square
design as positive control. Remaining six proteins were mixed at constant concentrations across
mixtures as negative controls. Each two proteins among 6 proteins had different concentrations.
Detailed concentrations per protein are in Supplementary Table 5. Each mixture had two
replicates. This is from SRM with isotope labeled reference peptides. MultiQuant was used for
quantifying the peaks. We will evaluate the ability of statistical methods methods to detect true
8, 32, 128, 256, 512 fold changes, starting from maximum concentrations as baseline among six
proteins and true constant fold changes with six negative control proteins.

Mixture
Protein 1 2 3 4 5 6

YBR132C Max Max/512 Max/256 Max/128 Max/32 Max/8
YBR144C Max/8 Max Max/512 Max/256 Max/128 Max/32
YBR147W Max/32 Max/8 Max Max/512 Max/256 Max/128
YBR184W Max/128 Max/32 Max/8 Max Max/512 Max/256
YBR203W Max/256 Max/128 Max/32 Max/8 Max Max/512
YBR184W Max/512 Max/256 Max/128 Max/32 Max/8 Max

YBR168W Max Max Max Max Max Max
YBR186W Max Max Max Max Max Max
YBR204C Max/32 Max/32 Max/32 Max/32 Max/32 Max/32
YBR228W Max/32 Max/32 Max/32 Max/32 Max/32 Max/32
YBR250W Max/256 Max/256 Max/256 Max/256 Max/256 Max/256
YBR270C Max/256 Max/256 Max/256 Max/256 Max/256 Max/256

Supplementary Table 5: Experimental design of SRM controlled spike-in experiment. ’Max’ denotes
the maximal concentration in each mixture and was 50 fmol.

3

Table 4.4.: Experimental design of label-based SRM controlled spike-in experiment. ’Max’ denotes

the maximal concentration in each mixture and was 50 fmol.

CPTAC study III from site 52 [72]

CPTAC dataset for SRM with labeled reference peptides has seven proteins that

were spiked in human plasma with three biological replicates at nine levels of concen-

trations as in Table 4.5. The dataset for study III from site 52 was used for evaluation.

Peaks were detected and quantified with MultiQuant. We evaluated the sensitivity for

detecting six different true fold changes in protein abundance between D-513 fmol/µL

and six largest concentrations (1500/513, 2760/513, 4980/513, 9060.513, 16500/513,

30000/513).

Mouse liver mitochondrial protein lysate [73]

100ng and 33ng mitochondrial lysates from mouse liver cell were processed in

duplicates and three injection replicates, total twelve MS runs. Samples were acquired

in DIA. Total 25 proteins were quantified. All proteins were expected to change
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Supplementary 1 DETAILED INFORMATION ABOUT DATASETS

1.6 CPTAC (6)

CPTAC dataset for SRM with labeled reference peptides has seven proteins that were spiked in
human plasma with three biological replicates at nine levels of concentrations as in Supplementary
Table 6. The dataset for study III from site 52 was used for evaluation. Peaks were detected and
quantified with MultiQuant. We evaluated the sensitivity for detecting true fold changes in protein
abundance between D-513 fmol/µL and six largest concentrations (1500/513, 2760/513, 4980/513,
9060.513, 16500/513, 30000/513).

Condition Concentration (fmol/µL)

D 513
E 1500
F 2760
G 4980
H 9060
I 16500
J 30000

Supplementary Table 6: Concentrations for each condition in CPTAC SRM dataset

1.7 Mouse liver mitochondrial protein lysate (7)

100ng and 33ng mitochondrial lysates from mouse liver cell were processed in duplicates and three
injection replicates, total twelve MS runs. Samples were acquired in DIA. Total 25 proteins were
quantified. All proteins were expected to change between conditions (100ng vs. 33ng) with 3 fold
changes. Dataset was processed by Skyline. We evaluated the ability of statistical methods to
detect three fold changes.

1.8 Profiling standard sample set (8)

Twelve non-human proteins, grouped into three master mixtures, were spiked into HEK-293. Each
mixture was diluted in eight different concentrations with triplicate as in Supplementary Table 7.
Therefore, there were 24 MS runs in total. The DIA dataset is available in the supplementary of
(8), which was processed with Spectronaut 5. The raw data also were re-processed in Skyline

with centroided with 15 ppm mass accuracy and 5 minute retention time tolerance. We used
only quantifiable peptides with q-value less than 0.01 from mProphet in Skyline. The features
with q-value greater than 0.01 were replaced with censored missing values. Among 3 mixtures,
we used two master mixers, Mix1 and Mix2 (5 proteins per mixer), which were diluted with small
concentrations, for evaluation. We evaluated the statistical methods in terms of the sensitivity for
different fold changes from lowest concentration baseline (1.1, 1.21, 1.33, 10, 11.01, 12.11 13.33 for
Mix1 and 1.59, 2.52, 4, 50, 79.37, 125.99, 200 for Mix2) and the specificity for constant background
proteins across samples.

1.9 Gold standard data (9)

The dataset included 16 proteins in ten dilution steps into three different backgrounds(water,
whole-cell protein extracts from human or yeast). Detailed concentrations are available in Sup-

4

Table 4.5.: Concentrations of spike-in proteins in each condition for CPTAC SRM dataset

between conditions (100ng vs. 33ng) with 3 fold changes. Dataset was processed by

Skyline. We evaluated the ability of statistical methods to detect three fold changes.

Profiling standard sample set [74]

Twelve non-human proteins, grouped into three master mixtures, were spiked into

HEK-293. Each mixture was diluted in eight different concentrations with triplicate

as in Table 4.6. Therefore, there were 24 MS runs in total. The DIA dataset is

available in the supplementary of [74], which was processed with Spectronaut 5. The

raw data also were re-processed in Skyline with centroided with 15 ppm mass accuracy

and 5 minute retention time tolerance. We used only quantifiable peptides with q-

value less than 0.01 from mProphet in Skyline. The features with q-value greater

than 0.01 were replaced with censored missing values. Among 3 mixtures, we used

two master mixers, Mix1 and Mix2 (5 proteins per mixer), which were diluted with

small concentrations, for evaluation. We evaluated the statistical methods in terms

of the sensitivity for different fold changes from lowest concentration baseline (1.1,

1.21, 1.33, 10, 11.01, 12.11 13.33 for Mix1 and 1.59, 2.52, 4, 50, 79.37, 125.99, 200 for

Mix2) and the specificity for constant background proteins across samples.
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Sample
Protein 1 2 3 4 5 6 7 8

Mix1 concentration(fmol/µL) 1.5 1.65 1.815 1.995 15 16.515 18.165 19.995
relative concentration 1 1.1 1.21 1.33 10 11.01 12.11 13.33

Mix2 concentration(fmol/µL) 100 62.995 39.685 25 2 1.26 0.795 0.5
relative concentration 200 125.99 79.37 50 4 2.52 1.59 1

Mix3 concentration(fmol/µL) 0.05 0.2 0.8 3.2 12.8 51.2 204.8 819.2
relative concentration 1 4 16 64 256 1024 4096 16384

Background concentration(fmol/µL) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
relative concentration 1 1 1 1 1 1 1 1

Supplementary Table 7: Sample series of DIA Profiling standard sample set. Mix 1 includes 5
proteins (P02754, P80025, P00921, P00366, P02662), Mix2 contains 5 proteins (P61823, P02789,
P12799, P02676, P02672), and Mix3 has 2 proteins (P02666, P68082).

plementary Table 8. We used the datasets with human cell protein extracts background. The
DIA datasets from supplementary of (9), which was processed with OpenSWATH, were used with
filtering out peaks with greater than 0.01 of m-score. Also we processed the same raw data in
Skyline with 40,000 rp and +/- 5 min and then filter out peaks by q-value greater than 0.01 from
mProphet. The peaks with q-value greater than 0.01 were replaced with censored missing values.
We evaluated the ability of statistical methods to detect nine different fold changes from maximum
concentration as baseline (2, 4, 8,16, 32, 64, 128, 256, 512 true fold changes).

Condition (Dilution) Concentration (amol/µL)

1x 30000
2x 15000
4x 7500
8x 3750
16x 1875
32x 937.5
64x 468.75
128x 234.38
256x 117.19
512x 58.6

Supplementary Table 8: Concentrations for dilution steps in DIA gold standard data

1.10 Cardiovascular disease study (3)

This study is for investigation for cardiovascular disease between control and 4 disease stages (0,
1, 2, 3, 4 in Condition). 246 samples from control and disease patients were analyzed with single
injection by label-free DDA as described in (10). There are 77 identified proteins. Unusually,
this DDA dataset had no missing values because [TODO: xxx] reported the background signal if a
feature in a run was not detected.

5

Table 4.6.: Sample series of DIA Profiling standard sample set. Mix 1 includes 5 proteins (P02754,

P80025, P00921, P00366, P02662), Mix2 contains 5 proteins (P61823, P02789, P12799, P02676,

P02672), and Mix3 has 2 proteins (P02666, P68082).

Gold standard data [40]

The dataset included 16 proteins in ten dilution steps into three different back-

grounds(water, whole-cell protein extracts from human or yeast). Detailed concentra-

tions are available in Table 4.7. We used the datasets with human cell protein extracts

background. The DIA datasets from supplementary of [40], which was processed with

OpenSWATH, were used with filtering out peaks with greater than 0.01 of m-score.

We also processed the same raw files in Skyline with 40,000 rp and +/- 5 min and

then filter out peaks by q-value greater than 0.01 from mProphet. The peaks with

q-value greater than 0.01 were replaced with censored missing values. We evaluated

the ability of statistical methods to detect nine different fold changes from maximum

concentration as baseline (2, 4, 8,16, 32, 64, 128, 256, 512 true fold changes).

4.1.2 Biological and clinical investigations.

Cardiovascular disease study [6]

This study was for investigation for cardiovascular disease between control and

four disease stages (0, 1, 2, 3, 4 in Condition). 246 samples from control and disease
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Sample
Protein 1 2 3 4 5 6 7 8

Mix1 concentration(fmol/µL) 1.5 1.65 1.815 1.995 15 16.515 18.165 19.995
relative concentration 1 1.1 1.21 1.33 10 11.01 12.11 13.33

Mix2 concentration(fmol/µL) 100 62.995 39.685 25 2 1.26 0.795 0.5
relative concentration 200 125.99 79.37 50 4 2.52 1.59 1

Mix3 concentration(fmol/µL) 0.05 0.2 0.8 3.2 12.8 51.2 204.8 819.2
relative concentration 1 4 16 64 256 1024 4096 16384

Background concentration(fmol/µL) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
relative concentration 1 1 1 1 1 1 1 1

Supplementary Table 7: Sample series of DIA Profiling standard sample set. Mix 1 includes 5
proteins (P02754, P80025, P00921, P00366, P02662), Mix2 contains 5 proteins (P61823, P02789,
P12799, P02676, P02672), and Mix3 has 2 proteins (P02666, P68082).

plementary Table 8. We used the datasets with human cell protein extracts background. The
DIA datasets from supplementary of (9), which was processed with OpenSWATH, were used with
filtering out peaks with greater than 0.01 of m-score. Also we processed the same raw data in
Skyline with 40,000 rp and +/- 5 min and then filter out peaks by q-value greater than 0.01 from
mProphet. The peaks with q-value greater than 0.01 were replaced with censored missing values.
We evaluated the ability of statistical methods to detect nine different fold changes from maximum
concentration as baseline (2, 4, 8,16, 32, 64, 128, 256, 512 true fold changes).

Condition (Dilution) Concentration (amol/µL)

1x 30000
2x 15000
4x 7500
8x 3750
16x 1875
32x 937.5
64x 468.75
128x 234.38
256x 117.19
512x 58.6

Supplementary Table 8: Concentrations for dilution steps in DIA gold standard data

1.10 Cardiovascular disease study (3)

This study is for investigation for cardiovascular disease between control and 4 disease stages (0,
1, 2, 3, 4 in Condition). 246 samples from control and disease patients were analyzed with single
injection by label-free DDA as described in (10). There are 77 identified proteins. Unusually,
this DDA dataset had no missing values because [TODO: xxx] reported the background signal if a
feature in a run was not detected.

5

Table 4.7.: Concentrations of spike-in proteins for dilution steps in gold standard data

patients were analyzed with single injection by label-free DDA as described in [75].

There are 77 identified proteins. The dataset was processed by Monarch, http://

www.bloomberg.com/research/stocks/private/snapshot.asp?privcapid=20704167).

Unusually, this DDA dataset had no missing values because the procedure reported

the background signal if a feature in a run was not detected.

A study of subjects with ovarian cancer [76]

Original published raw data, SRM with isotope labeled reference peptides, has

total 83 patients plasma samples. Skyline succeeded to analyze 81 patients samples.

The dataset including 66 ovarian cancer (OC) patients and 15 patients with benign

ovarian tumors was used to evaluate. Each patient sample measured once without

technical replicate. Total 36 proteins were used to evaluate the ability of statistical

method to detect differential abundance proteins between OC and benign groups.
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The training and the validation sets from a study of subjects with malig-

nant pleural mesothelioma [10]

To identify candidate biomarkers for MPM in serum, the experiment targeted

51candidate peptides with SRM with isotope labeled reference peptides. There were

two datasets. First was the training set including total 75 subjects: 25 MPM, 25

healthy donors(HD), 25 non-small cell lung cancer (NSCLC). Second, the validation

set consisted of total 75 subjects: 23 MPM, 26 HD, 26 NSCLC. Each sample was

injected once without technical replicate. All samples were processed by Skyline.

The training and the validation sets from a study for subjects with col-

orectal cancer [11]

70 proteins were targeted for plasma samples with SRM with isotope labeled

reference peptides in order to identify candidate protein biomarker for non-invasive

detection of CRC. The training cohort included 100 subjects in control group and

100 subjects with CRC. The validation cohort had 67 subjects in controls, and 202

subject with different clinical stages of CRC. Each sample for subject was measured

in a single injection without technical replicate. The training cohort was analyzed

with Skyline. The validation cohort was processed with MultiQuant 1.2.

Time course investigation of central carbon metabolism of S. cerevisiae

[77]

45 proteins in the glycolysis/gluconeogenesis/TCA cycle/glyoxylate cycle network

were targeted in the experiment. Three biological replicates were measured at ten time

points (T1-T10). It covered dynamic growth phases of S. cerevisiae, in a glucose-rich
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medium (T1-T4), diauxic shift (T5-T6), post-diauxic phase (T7-T9), and stationary

phase (T10). Each transition was quantified automatically using MultiQuant with no

missing values.

Human liver micro tissue study with APAP treatment [74]

This study identified differential abundance proteins by four different concentra-

tions of APAP in human liver micro tissues from DIA dataset. There are 5 conditions

(one control, S1, and four concentrations of APAP, S3, S4, S7, S9) with three biolog-

ical replicates per condition. Total 2788 proteins were measured. Increasing concen-

trations of APAP was expected to detect more number of proteins as changed. The

dataset from supplementary of [74] was used, which was analyzed with Spectronaut

5 with default settings.

Saccharomyces cerevisiae proteome quantification [78]

S. cerevisiae cell cultures in biological triplicates were sampled at six time points

(0 min (T0), 15 min(T1), 30 min (T2), 60 min (T3), 90 min (T4), 120 min (T5))

after osmotic stress. SWATH data was extracted by the Spectronaut. To validate the

fold changes in proteins of SWATH, 100 proteins were quantified with SRM. Among

them, measurements from 90 proteins are available in the supplementary of [78]. The

data with SRM was processed using Skyline.
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4.2 Evaluation strategy

4.2.1 Methods used in evaluation

We compared the performance of the proposed framework to three other summa-

rization methods.

TMP To evaluate the importance of modeling missing values via a censoring mecha-

nism, we considered the split-plot approach with Tukey median polish summarization,

without imputing missing values (Section 3.3.3).

Linear model To evaluate the importance of both modeling missing values via a

censoring mechanism and robust estimation, we considered the split-plot approach

with linear model summarization (Section 3.3.1).

log(sum) Log(sum) is frequently used, and is implemented in signal processing tools

such as Skyline and MaxQuant. The summarization consists of summing the peak

intensities in the run on the original scale, and applying the log2 transformation to

the sum. This summarization effectively gives higher weights to peaks with higher

intensities, and sets the intensities of missing values to 0.

In order to produce comparable results, the summarized intensities in a run were

analyzed with the same family of linear mixed effects model for all the approaches

above. The specific models varied between the datasets, to appropriately reflect the

experimental design as described in [7]. For example, the model for group comparison

designs in presence of biological and technical replicates is given in Figure 3.4(B). For

all the datasets we used the whole plot model to compare protein abundances between

all possible pairs of conditions, while controlling the False Discovery Rate separately

for each comparison at the significance level, 0.05.
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4.2.2 Criteria for evaluation

We evaluated the performance of the methods with respect to the goals of testing

proteins for differential abundance between conditions, and estimating the associated

log-fold change. For the controlled mixtures the true changes in abundance are known.

Therefore, the ability of the methods to detect differentially abundant proteins was

evaluated in terms of sensitivity, specificity and positive predictive value (PPV ),

defined in Table 4.8 and Eq. (4.1). The ability of the methods to accurately estimate

the log-fold changes was evaluated in terms of Mean Squared Error (MSE) defined

in Eq. (4.2).

Number of proteins Decision

Differentially abundant Not differentially abundant

Truth
Differentially abundant True positive (TP ) False negative (FN)

Not differentially abundant False positive (FP ) True negative (TN)

Table 4.8.: Outcomes of testing proteins for differential abundance between conditions in a con-

trolled mixture.

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
, and PPV =

TP

TP + FP
(4.1)

MSE =

∑
proteins

∑
condition pairs

{estimated log2(fold change)− true log2(fold change)}2

# proteins × # condition pairs

(4.2)

For the biological and clinical investigations the true number of differentially abun-

dant proteins and the true log-fold changes are unknown. Therefore, we simply re-

ported the number of detected proteins that change abundance between conditions.
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4.2.3 Summarization of criteria across statistical methods and signal pro-

cessing tools

Signal processing tools make many choices regarding identification of peaks and

reporting their intensity, all of which impact both testing for differential abundance

and estimation of log-fold changes. Therefore, we processed the experimental datasets

with up to four signal processing tools. The DDA datasets were processed with

MaxQuant, Progenesis, Skyline and ProteomeDiscover or SuperHirn. The DIA datasets

were processed with Skyline, Spectranaut and OpenSWATH. The SRM datasets were

processed with Skyline and with MultiQuant.

This manuscript does not aim at comparing the performance of various signal

processing tools. Instead, our goal is to verify that the proposed downstream data

analysis framework performs well regardless of the signal processing. Therefore, for

the controlled mixtures we reported relative performance of detecting differential

abundance of the four approaches (Proposed, TMP, Linear model, log(sum)), sepa-

rately for each signal processing tool, and separately for each true fold change. This

was calculated as

relative sensitivity =
sensitivity

max sensitivity{Proposed, TMP, Linear model, log(sum)}(4.3)

relative specificity =
specificity

max specificity{Proposed, TMP, Linear model, log(sum)}

Larger values indicate better performance. The best performant approach has rel-

ative sensitivity and specificity of 1. Similarly, we reported relative performance of

estimation of log-fold changes of the four approaches (Proposed, TMP, Linear model,

log(sum)), separately for each signal processing tool, and separately for each true fold

change. This was calculated as

relative MSEapproach =
MSEapproach

max MSE{Proposed, TMP, Linear model, log(sum)}(4.4)

Smaller values indicate better performance. The best performant approach has

relative sensitivity and specificity of 1.



45

4.3 Evaluation results

4.3.1 Robust parameter estimation for summarization accounts outliers.

First we evaluated robust parameter estimation by TMP for outlier issue. If

there is no problem for quality of data, which means no outliers, no missing values,

small variability across features, four summarization methods generate similar perfor-

mances. Figure 4.1 illustrates the example proteins with different pattern of outliers

using the dataset, iPRG 2015 DDA, as described in Section 4.1.1 and processed by

Skyline. Figure 4.1(A) shows the profile plot with all individual measurements for

each peptide ion and each run and summarized intensities by different summariza-

tion methods in one example protein, TIM9. It has no outlier and no missing value.

Also summarized intensities across different methods are similar except by log(sum).

Even though summarized intensities by log(sum) method are higher than other, it is

parallel across runs and has similar variability with other methods. Estimated fold

changes and even adjust p-values are similar across summarization methods. How-

ever, different outlier pattern affect differently to the summarization methods. Linear

model-based summarization is easily affected by outliers in the peptides or features

with both high and low intensity. Figure 4.1(B) presents the example protein with

outliers in low intensities, in Run=3 for Condition 1. In this case we can see that

summarized intensities for run with lower outlier with linear model (yellow dot in

Run=3) is lower than other summarized intensities with other methods. It makes

that estimated fold change with linear model is worst among summarization meth-

ods. Also, in Figure 4.1(C), the protein, which has outliers in high intensities, has

worse estimated fold change with linear model than with TMP. log(sum) approach

is insensitive by outliers in low intensity peptides, but it is still affected by outliers

in high intensity peptides. That is because summing original intensities gives more

weight to higher original intensities, which means that high intensities contribute

more to summed intensities. Therefore it could be sensitive to variation for high
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intensities. Figure 4.1(C) shows the example with outliers in the highest peptide at

condition 3 and with more variability in high intensity. Even though significance

testing results with FDR cutoff=0.05 are the same across summarization methods,

estimated fold change with log(sum) is the worst. On the other hand, TMP method

is least influenced by outliers. Figure 4.1(D) shows the example protein, which has

some zero intensities at condition2 and 3, which are censored missing values, and also

outliers in the peptide ions with low intensities at condition4. In this case, log(sum)

method can not detect the change between condition2 and 3 with quite smaller es-

timated fold change than true fold change. Linear model-based summarization has

worst estimated fold change, even can not detect the change between condition2 and

3. Therefore TMP method performs better than log(sum) and linear model-based

method. With TMP approach, Imputation for missing values before TMP helps the

performance than TMP alone in terms of estimated fold change.

4.3.2 Model-based imputation before robust estimation accounts missing

values.

Even though TMP is least sensitive for outlier, TMP method can be affected

by missing values. TMP is median-based estimation with observed measurement.

Therefore less number of observed measurement can be change TMP summarization.

Then imputation for missing values before TMP can improve the performance. In

order to show how imputation affects the performance, Figure 4.2 demonstrates two

example proteins from the a label-free controlled mixture dataset in Section 4.1.1,

which have some outliers and missing values in low intensities. The protein in Fig-

ure 4.2(A) has the best performance with the proposed method in terms of sensitivity

with the same specificity across methods. The comparison Mix2-Mix1 is detected as

significant difference only with the proposed method. Mix1 has many missing val-

ues in low intensities. Therefore after imputing missing values, TMP summarization

works better than without imputation or other methods. Compared with the protein
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in Figure 4.2(A), the example in Figure 4.2(B) has more number of peptide than

Figure 4.2(A). Then it can be less affected by summarization methods. However, it

still has outliers and many missing values in low intensities. In this example protein,

Impute+TMP has better specificity with the same sensitivity than TMP. The table in

Figure 4.2(B) shows that the comparison Mix1-Mix4 is detected as significant differ-

ence incorrectly in TMP. The proposed method also has better estimated fold change

than log(sum) with the same sensitivity and specificity. In addition, we summarized

how much the proposed method improves MSE compared to log(sum) across all 28

proteins in Figure 4.2(C). As the percentage of missing value increases, the proposed

method improves MSE more than log(sum). Therefore, it is important how to sum-

marize in subplot level If the datasets have many missing values or unequal variance

between features, for example, DDA and DIA case. SRM datasets are expected to

have similar performance across different methods because they have relatively few

missing values and less variability between features.

4.3.3 Datasets and signal processing matter for performance

We showed some individual protein examples above sections in order to how the

different methods summarized differently some special cases. Next, we evaluated

the performance of methods with 4 DDA datasets, 3 SRM datasets, 3 DIA/SWATH

datasets in order to see the performance across spectral acquisition experiments. For 4

DDA experiments, we processed by up to four signal processing tools among Skyline,

MaxQuant, Progenesis, superHirn, Proteome Discoverer per DDA dataset. Figure 4.3,

Figure 4.4, Figure 4.5, and Figure 4.6 visually summarized all performance with less

than 100 true fold change across true fold changes, datasets, spectral acquisitions, and

spectral processing tools. Overall, the performance varies between the datasets and is

confounded by datasets and spectral tools. DDA experiment has more variability in

quality of data, such as outliers and missing values. Therefore, it has major difference

between methods. DIA is intermediate between SRM and DDA, which doesn’t have
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many outliers, but still has missing values in low intensities. SRM datasets with

isotope labeled reference have mostly very clear, good quality of data, compared with

other type of experiments. Therefore, most of summarization methods works very

well similarly.

First, the abilities to detect proteins with known fold changes for different sum-

marization methods are shown by the relative sensitivity and relative specificity as

described in Eq. (4.3). In Figure 4.3(A), for DDA experiments, sensitivities with the

proposed method and TMP are better than with log(sum) or linear model-based sum-

marization and specificities are little better across datasets and spectral tools. For

DIA datasets in Figure 4.4(A) sensitivities for more than fold change=4 are similar

across 3 datasets and spectral processing tools. But, mostly the proposed method

and log(sum) for fold changes less than 4 have similarly better results than others in

terms of sensitivity across datasets and spectral processing tools. For SRM datasets

in Figure 4.4(B), all different summarization methods work very well in terms of sen-

sitivity. However, the proposed method works better than other methods in terms of

MSE and specificity.

In some cases such as DDA of iPRG, 2015 processed by Progenesis, log(sum)

have better sensitivity than the proposed method. But, also has worse specificity. In

these cases, PPV tells more details in Table 4.9. In general, PPV for the proposed

method are better than for log(sum). It means that log(sum) overfits. Therefore,

it detects more number of false positive proteins as differentially abundant proteins,

even though finding more number of true positive proteins as differentially abundant

proteins. The previous version of MSstats, which use the full linear mixed effect model

without considering split-plot approach, has the same issue. Even if It could have

better sensitivities for some datasets or processing tools, it commonly has much more

number of false positive proteins and generates worse specificity and worse PPV.

Second, accuracy of fold change estimation among different summarization meth-

ods can be evaluated with relative MSEs. As same as sensitivity, MSEs for DDA
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Supplementary 4 EVALUATION

4 Evaluation

Details of performance comparison of statistical methods in terms of positive predictive value

DDA Spike-in dataset

MaxQuant Progenesis Skyline

Proposed TMP Linear log(sum) v2 Proposed TMP Linear log(sum) v2 Proposed TMP Linear log(sum) v2

TP 217 218 156 215 222 209 209 195 207 200 217 217 195 199 217
FP 16 15 3 12 24 8 10 4 5 11 11 11 8 7 24

total P 234 243 159 227 246 217 219 199 212 211 228 228 203 206 241
PPV 0.93 0.94 0.98 0.95 0.90 0.96 0.95 0.98 0.98 0.95 0.95 0.95 0.96 0.97 0.90

Proteome discover

Proposed TMP Linear log(sum) v2

TP 203 210 126 202 207
FP 3 3 1 3 12

total P 206 213 127 205 219
PPV 0.99 0.99 0.99 0.99 0.95

DDA iPRG study, 2015

MaxQuant Progenesis Skyline

Proposed TMP Linear log(sum) v2 Proposed TMP Linear log(sum) v2 Proposed TMP Linear log(sum) v2

TP 26 23 19 25 27 20 20 24 24 33 22 21 18 13 11
FP 5 4 5 28 160 125 97 144 199 898 16 16 50 98 390

total P 31 27 24 53 187 145 117 168 223 931 38 37 68 111 401
PPV 0.84 0.85 0.79 0.47 0.14 0.14 0.17 0.14 0.11 0.04 0.58 0.57 0.26 0.12 0.03

DDA Dynamic range benchmark - Cox, 2014

MaxQuant Progenesis Skyline

Proposed TMP Linear log(sum) v2 Proposed TMP Linear log(sum) v2 Proposed TMP Linear log(sum) v2

TP 31 26 22 29 32 26 20 13 31 39 39 39 35 36 38
FP 7 8 5 13 36 3 2 2 7 186 9 10 2 14 50

total P 38 34 27 42 68 29 22 15 38 225 48 49 37 50 88
PPV 0.82 0.76 0.81 0.69 0.47 0.90 0.91 0.87 0.82 0.17 0.81 0.80 0.95 0.72 0.43

DIA Profiling standard sample set - Bruderer, 2015

Spectronaut Skyline

Proposed TMP Linear log(sum) v2 Proposed TMP Linear log(sum) v2

TP 68 63 53 70 65 60 51 48 62 55
FP 889 869 566 1045 1012 303 402 55 297 1692

total P 957 932 619 1115 1077 363 453 103 359 1747
PPV 0.07 0.07 0.09 0.06 0.06 0.17 0.11 0.47 0.17 0.03

SRM Controlled spiked-in data - Chang, 2012 Spike-in dataset

MultiQuant MultiQuant

Proposed TMP Linear log(sum) v2 Proposed TMP Linear log(sum) v2

TP 4 0 2 2 25 190 191 192 192 192
FP 0 0 0 0 2 2 2 12 8 18

total P 4 0 2 2 27 192 193 204 200 210
PPV 1 0 1 1 0.93 0.99 0.99 0.94 0.96 0.91

Supplementary Table 10: PPV across run-level summarization methods, datasets and spectral
processing tools. Three DDA datasets, one DIA dataset, and two SRM datasets, which have both
differentially abundant proteins and constant proteins between comparisons, are presented. ‘v2’
represents the previous version, v2, of MSstats.

19

Table 4.9.: PPV across run-level summarization methods, datasets and spectral processing tools.

Three DDA datasets, one DIA dataset, and two SRM datasets, which have both differentially abun-

dant proteins and constant proteins between comparisons, are presented. ‘v2’ represents the previous

version, v2, of MSstats.

experiments have more variability among methods and known fold changes in Fig-

ure 4.5, even though MSEs for the proposed method in most DIA and SRM experi-

ments perform better than others in Figure 4.6(A) and (B) .

Beyond relative comparisons between four methods, we compared two paired sum-

marization methods, the proposed method vs log(sum) and the proposed method vs

TMP, by absolute difference between original sensitivities or MSEs. The comparison

between the proposed method vs log(sum) shows how much the proposed method
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performs better than log(sum) in Figure 4.7(A) and (B) by acquisition experiments

by the percentage of missing values. We see that the proposed method works bet-

ter than log(sum). In DDA, there are more improvements than DIA and SRM. In

DIA, cases with more missing values have more improvements in MSE. Even SRM

has improvement in terms of MSE. The comparison between the proposed method vs

TMP shows how much imputation improves performance than TMP in Figure 4.7(C)

and (D). DIA and SRM, which have less outliers issue, have better performance for

Imputation than TMP only for large percentage of missing intensities. Because DIA

have more missing value than SRM, the improvement for DIA is bigger than SRM.

We can tell that imputation is helpful in case of lower fold changes which has more

missing values, compared with TMP alone, that means missing value is main issue

for DIA analysis. Even though SRM has similar performance across summarization

method, imputation help to improve MSEs for lower true fold changes, which has

more missing values. In DDA experiment, there are some improvements for sensitivi-

ties, but worse MSEs than TMP. That is because outliers could affect imputation and

then bias could be generated and outliers and variation across peptides were bigger

difficulty than missing values for DDA.

4.3.4 Performance of detecting differentially abundant proteins in bio-

logical investigations

Usually controlled mixture dataset has small number of replicates with small num-

ber of biological replicates or without any biological replicates. However, actual

experiments for research have more technical and biological replicates in complex de-

sign of experiment. To check the difference between summarization methods in real

experiments, we tested ten published biological investigation datasets with various

experiments, across acquisition methods, different diseases, also time-course design of

experiment.
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Figure 4.8 shows the number of significant proteins in each comparison across

different summarization methods, because we do not know true changes between

comparison and can not calculate statistical performance. Original difference between

numbers of significant proteins in most of comparisons especially for SRM is very

small, such as only one or two proteins are different in list of detected significant

proteins. The difference between the methods is less apparent, because of the larger

sample size and more careful hand curation, large sample size, more targeted. Mostly

log(sum) has largest number of significant proteins for many comparisons. It is similar

with the result of controlled mixture datasets in terms of total number of detected

proteins as differentially abundant, even though log(sum) is less sensitive for true

positive proteins as Table 4.9. It means that there is the possibility that log(sum)

can detect more false positive proteins by overfitting for biological studies.

4.4 Discussion

Even though the proposed method takes advantage of both imputation and TMP

in the summarization stage, there are some potential disadvantages. TMP helps to

remove outlier effects. On the other hand, we could throw away potentially useful in-

formation from outliers. The imputation strategy can possibly add bias with imputed

values in the summarization level. Also, the quality of the data including outliers can

affect the imputation; because the threshold for censored missing values is decided

among all observed intensities. Therefore, DDA datasets, which usually have issues

with outliers and miss values, do not have much improve with imputation.

In addition, the proposed approach still cannot impute the missing value if there

is no measurement at all in a particular run or in a particular condition. The pro-

teins with completely missing intensities in a particular condition can be interesting

candidates for some types of experiments, such as PTM.



52

The performance varies between the datasets and is confounded by datasets and

spectral tools. Some datasets are easier than others. Some have aspects that af-

fect the performance of individual methods in specific ways. This emphasizes several

points. First, it is important to evaluate the proposed method over multiple datasets

and multiple spectral processing tools. The newly suggested statistical models in

the journal are tested usually with one or two datasets by one specific processing

tool. But, the results can be the evaluation for particular datasets and processing

tools. Second, it is also important to process the data correctly with an understand-

ing of spectral processing tools, prior to statistical analysis for protein differential

abundance.
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Figure 4.1.: Profile plots with processed feature-level intensities and run-level summarized intensi-

ties and testing results for example proteins with or without outliers from iPRG 2015 DDA dataset

(Section 4.1.1). Legend for profile plot in the box of 2(A) : Gray dots show log 2 transformed and

normalized feature-level intensities individually and line means each peptide ions. Colored dots and

lines show run-level summarized intensities by different summarization methods. Tables for each

protein show estimated fold change(FC) and adjusted p-value(Adj.pvalue) across different run-level

summarization methods in rows. (A) No outlier: Protein TIM9, (B) Outliers in low intensity: Pro-

tein INV2, (C) Outliers in high intensity: Protein SIR3, (D) Outliers in low and high intensity:

Protein ISCB
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Figure 4.2.: Profile plots with processed feature-level intensities and run-level summarized inten-

sities and testing results for example proteins including missing values. Controlled spike-in DDA in

Section 4.1.1 is used. Legend for profile plot is the same as Figure 4.1. (A) Protein, P02753, has

61% missing values. (B) Protein, P00563, has 31% missing values. (C) Improvement in fold change

estimation of the proposed method as compared to log(sum). Y-axis is the difference between MSE

for log(sum) and MSE for Imputation+TMP among 10 possible pairs for each protein. Positive

values in y-axis means that Imputation+TMP method performs better for fold change estimation

than log(sum) method. X-axis is the group of the percentage of missing values among 28 proteins.

The percentage of missing values is calculated by dividing the number of NA measurements by the

required number of measurements (the number of MS runs × the number of peptides)
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Figure 4.3.: Relative sensitivity or specificity of run-level summarization methods, evaluated on

3 controlled mixtures of DDA. (A) Relative sensitivity and specificity of pairwise comparisons, for

the true fold change below 100. Each panel quantified with different signal processing tools. Colors

indicate relative sensitivity (true fold changes different from 1) and relative specificity (true fold

changes equal to 1), calculated by standardizing each sensitivity and specificity by the maximum

value in each row, separately by the panel. Darker green or blue indicate better performance as

shown in color key.
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Figure 4.4.: Relative sensitivity or specificity of run-level summarization methods, evaluated on

controlled mixtures of DIA and SRM. (A) DIA datasets, relative sensitivity, specificity of pairwise

comparisons, for the true fold change below 100. Left panel for peaks intensities quantified with

the original signal processing tools, Spectronaut or OpenSWATH. Right panel for peaks intensities

quantified with Skyline. Colors are as in Figure 4.3. (B) SRM datasets, relative sensitivity, specificity

of pairwise comparisons, for the true fold change below 100. Colors are as in (A).



57

Relative MSE
100  10   4.2   2.6   1.6   1

%
 m

is
si

ng
 p

ea
ks

# 
co

m
pa

ris
on

s

10.4

38.1
38.6

51.0

16.5

17.1

 4.2
17810

4

4
4

4

4

4

Pr
op

os
ed

TM
P

Li
ne

ar
 m

od
el

lo
g(

su
m

)

%
 m

is
si

ng
 p

ea
ks

# 
co

m
pa

ris
on

s

Pr
op

os
ed

TM
P

Li
ne

ar
 m

od
el

lo
g(

su
m

)

0.5

2.8
2.8

5.0

2.1

2.1
0

23421

4

4
4

4

4

4

%
 m

is
si

ng
 p

ea
ks

# 
co

m
pa

ris
on

s

Pr
op

os
ed

TM
P

Li
ne

ar
 m

od
el

lo
g(

su
m

)

0.1

3.8

4.0
5.1

1.7

1.9
0.6

20442

4

4
4

4

4

4

26.8

10.2

8

7
13.0 2132

1.8

0

1.8

8

7
2222

1.5

1.5

1.6

54

162

54

0.1

0.1

0.1

58

174

58

 9.0

 9.3

11.3

56

168

56

%
 m

is
si

ng
 p

ea
ks

# 
co

m
pa

ris
on

s

Pr
op

os
ed

TM
P

Li
ne

ar
 m

od
el

lo
g(

su
m

)

56

168

56

30.8

36.7

40.3

3.0

0.9
0.6

8

8

2179

Proteome discoverSkyline ProgenesisMaxQuant

Skyline ProgenesisMaxQuant

Skyline ProgenesisMaxQuant

10
0.1

4
2

Tr
ue

 fo
ld

 c
ha

ng
e

1

1

1

32.5
27.5
7.5

4.33
3.67
1.18

C
ox

,2
01

4
iP

R
G

,2
01

5
Sp

ik
e-

in

D
D

A
D

at
as

et

Figure 4.5.: Accuracy of fold change estimation of run-level summarization methods among pair-

wise comparisons, for the true fold change below 100, evaluated on 3 controlled mixtures of DDA.

Each panel quantified with different signal processing tools. Colors indicate relative MSEs. Darker

reds indicate better performance as shown in color key.



58

A

58.48
32.16
17.66
9.71
5.38
2.92

4
2

0
0

0

0

0
0

0.7

0.6

7

7

7

7

7

7

48
144

Ch
an

g,2
01

2
C

PT
AC

Sp
ik

ed
-in

1 0.6 48

Sk
yl

in
e

SR
M

 w
ith

 is
ot

op
e 

re
fe

re
nc

e

B

D
at

as
et

Tr
ue

 fo
ld

 c
ha

ng
e

%
 m

is
si

ng
 p

ea
ks

# 
co

m
pa

ris
on

s

Pr
oc

es
si

ng
 to

ol
M

ult
iQ

ua
nt

32
8
1

5.3

9.1

6.2

6

6

36M
ult

iQ
ua

nt

Relative MSE
100  10   4.2   2.6   1.6   1

Pr
op

os
ed

TM
P

Li
ne

ar
 m

od
el

lo
g(

su
m

)

Pr
op

os
ed

TM
P

Li
ne

ar
 m

od
el

lo
g(

su
m

)
79.37

50

4
2.52
1.59

13.33
12.11
11.01

10

1.33
1.21
1.1

64
32
16
8
4
2

Tr
ue

 fo
ld

 c
ha

ng
e

1

3 0.1 25

Skyline

16

16

16

16

16

16

%
 m

is
si

ng
 p

ea
ks

# 
co

m
pa

ris
on

s

21681

Spectronaut

Br
ud

er
er

,2
01

5
R

os
t,2

01
4

D
at

as
et

*
OpenSWATH

Skyline

Skyline

46.1

39.2

30.9

21.3

11.7

 6.5

16

16

16

16

16

16

47.0
40.6
32.3

21.7

11.4

 4.5

41.6

43.1

65.7

62.7

65.5

31.0

30.3

33.6
30.8

42.2

43.0

43.6

5

5

7

5

5

5

5

5

5

5

5

5
2130918.5

Pr
op

os
ed

TM
P

Li
ne

ar
 m

od
el

lo
g(

su
m

)

%
 m

is
si

ng
 p

ea
ks

# 
co

m
pa

ris
on

s

5

5

7

5

5

5

5

5

5

5

5

5

Rardin, 2015 *

 2.2

37.8

38.9

12.3

12.6

12.7
13.5
59.7

63.7

66.6
21.6

23.1

22.5

Figure 4.6.: Accuracy of fold change estimation of run-level summarization methods, evaluated

on 3 controlled mixtures of DIA and 3 of SRM datasets. (A) DIA datasets. Relative MSEs of

pairwise comparisons, for the true fold change below 100. Each panel quantified with different

signal processing tools. Left panel for peaks intensities quantified with the original signal processing

tools, Spectronaut or OpenSWATH. Right panel for peaks intensities quantified with Skyline. (B)

SRM datasets, relative MSE of pairwise comparisons, for the true fold change below 100. Colors

indicate relative MSEs. Darker reds indicate better performance as shown in color key.
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Figure 4.8.: Sensitivity of run-level summarization methods in biological and clinical investigations.

Colors are as in Figure 5. The numbers in cells are the number of differentially abundant proteins

for each comparison. Since these datasets have no ground truth, the relative specificity of the four

statistical approaches is unknown.
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5. OPEN-SOURCE SOFTWARE AND IMPLEMENTATION

5.1 R package, MSstats, statistical tool for quantitative MS proteomics

MSstats is an open-source R-based package for statistical relative quantification of

peptides and proteins in mass spectrometry-based proteomic experiments that inte-

grates the suggested methodology from our group across several mass spectrometric

workflows and data acquisition strategies, contains functionalities for model-based

analyses and enable interoperability with the existing popular spectral processing

tools and computational tools. It takes as input identified and quantified spectral

peaks, and outputs a list of differentially abundant peptides or proteins, or sum-

maries of peptide or protein relative abundance.

For special cases of some experimental workflows, the underlying statistical method-

ology was previously implemented in R-based packages MSstats 1.0 [7] and SRM-

stats [8,79]. MSstats 2.0 supersedes MSstats 1.0 and SRMstats, in that it implements

all the analysis steps that are available in these packages. In addition, it extends the

methodology and the implementation across three acquisition methods (SRM, DDA

and DIA) and labeling strategy ((label-free, and workflow using labeled reference pro-

teins or peptides). MSstats 3.0 improves the statistical method as proposed above

chapter and execution time and also facilitates the interoperability with existing com-

putational tools. I describe the most recent version, MSstats 3.0, in this section.

5.1.1 Applicability

MSstats is applicable to multiple types of sample preparation, including label-free

workflows, workflows that use stable isotope labeled reference proteins and peptides,
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and workflows that use fractionation. It is applicable to targeted SRM, DDA or

shotgun, DIA or SWATH-MS. It is applicable to experiments that make arbitrary

complex comparisons of experimental conditions or times.

MSstats performs statistical analysis steps, that follow peak identification and

quantitation. Therefore, input to MSstats is the output of other spectral processing

software tools (such as Skyline or MultiQuant) that read raw spectral files and identify

and quantify spectral peaks. The output from any spectral processing tool, which

satisfies the required information, can be applicable for MSstats.

5.1.2 Statistical functionalities

MSstats performs three analysis steps as in Figure 5.1. The first step, data pro-

cessing and visualization, performs log transformation of intensities and normalizes

the intensities of the peaks, and summarizes the protein abundance for subplot level.

Then it generates workflow-specific and customizable numeric summaries for data

visualization and quality control.

The second step, whole plot inference, automatically detects the experimental

design (e.g. group comparison, paired design or time course, presence of labeled

reference peptides or proteins) from the data. It then reflects the experimental design,

and fits an appropriate linear mixed model by means of lm and lmer functionalities

in R. The model is used to detect differentially abundant proteins or peptides.

The third step, statistical experimental design, views the dataset being analyzed as

a pilot study of a future experiment, utilizes the variance components of the current

datasets, and calculates the minimal number of replicates necessary in the future

experiment to achieve a pre-specified statistical power.
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Figure 5.1.: Overview of the functionalities and of the associated functions in MSstats. Colored

boxes indicate the actual function names.

5.1.3 Suggested statistical analysis workflow for MS experiments

Required input

MSstats performs statistical analysis steps, that follow peak identification and

quantitation. Therefore, input to MSstats is the output of other software tools (such
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as Skyline or MultiQuant) that read raw spectral files and identify and quantify

spectral peaks. MSstats requires 10 columns input including the following variables:

‘ProteinName’, ‘PeptideSequence(or PeptideModifiedSequence)’, ‘PrecursorCharge’,

‘FragmentIon’, ‘ProductCharge’, ‘IsotopeLabelType’, ‘Condition’, ‘BioReplicate’, ‘Run’,

‘Intensity’. There are several convenient ways to make the required input from pop-

ular spectral processing tools. (1) Skyline supports MSstats input report format,

which automatically extracts all required input columns for MSstats and additional

columns, ‘Truncated’ and ‘StandardType’, which can help to control quality of data.

(2) MSstats provides the function, MQtoMSstatsFormat, to convert the output of

MaxQuant to required input for MSstats. (3) SWATH data from OpenSWATH

software can be reformatted by R package, SWATH2stats, in Bioconductor, which

was developed to support the conversion the output from OpenSWATH to input for

MSstats after MSstats release.

Pre-processing data and quality control of MS runs

After reading the input for analysis, data processing steps follow as below.

• Check the correctness of input such as correct input format, names of columns

in data structure, correct options.

• Detect duplicate rows, which is multiple rows for a same feature in a same run

which are generated by signal processing tools and warn the user should decide

which rows should be used.

• Detect incomplete rows in the input. MSstats requires that the input contains a

separate row for every feature in every run. If MSstats detects incomplete rows,

it will output the list of problematic features. With the decision of the option

for incomplete rows from user, the data processing can be stopped with list of

incomplete rows or the incomplete rows can be filled with adding intensity=NA.
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• Perform logarithm transform with base 2 (default) or 10 of the intensities.

• Do normalization to remove systematic bias between mass spectrometry runs.

The normalization is applied after the logarithm transform. There are several

options for normalization: (1) constant normalization shifts all the intensities

in a run by a constant, to equalize the median of reference intensities across

runs. (2) quantile normalization [80] applies a non-linear transformation to

all the intensities in a run, to equalize the distribution of reference intensi-

ties across runs. (3) normalization with standard proteins, which are expected

with equal amount across MS runs, is applied to endogenous intensities. First,

the normalization equalizes endogenous intensities of global standard proteins

across runs. Second, it applies the same between-run shifts to the remaining

endogenous proteins in the experiment. For SRM experiments with stable iso-

tope labeled reference peptides, the normalization is typically based on labeled

reference peptides of all the proteins. If all the transitions in a biological or

technical replicate are split into multiple methods (and are recorded in multiple

files), this structure of the data is detected automatically by MSstats, by read-

ing the values of the column ‘Run’. In this case the normalization is performed

separately for each method.

• Produce an output summarizing the experimental design including the warning

message with the list of problematic features, subjects, conditions and their

labels.

• Summarize feature-level intensities for protein-level per run by the proposed

statistical approach as in Section 3.3.4

The output is the reformatted data that includes feature-level data for the data

visualization and run-level summarized data for downstream model-based inference.
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Visualization for explanatory data analysis

(a) DDA (b) DDA with summarized intensities
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Figure 5.2.: Visualization of one representative protein in a DDA, an SRM and a DIA experiment.

Colors represent peptides, and multiple line types of a same color represent the fragments of the

peptide. Vertical lines separate times or conditions. (a) Protein Alcohol dehydrogenase-Yeast spiked

into a complex background in 6 concentrations from DDA Spike-in dataset by Latin Square design

[35] (b) With summarized intensities after subplot summarization for the same data in (a). Red

dashed line shows summarized intensities. (c) Protein ACH1, at 10 times points after a stress. from

a time course of S. Cerevisiae in Section 4.1.2 (d) Protein FabG of Streptococcus, with 0% and 10%

human plasma added. a group comparison of S. Pyogenes from [40]. All three datasets are available

in MSstats as example datasets.
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Figure 5.3.: Quality control (QC) plots for all the proteins combined. A time course study of S.

Cerevisiae in Section 4.1.2 is used. X-axis: MS run. Y-axis: log-intensities of transitions. Refer-

ence/endogenous signals are in the left/right panel. (a) Before normalization. (b) After constant

normalization. (c) After quantile normalization. The plots visualize potential artifacts in mass

spectrometry runs.

The function, called ProcessPlots, takes as input the quantitative data from the

function dataProcess, and generates three types of plots for data visualization and

quality control.
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Profile plot as Figure 5.2 helps identify potential sources of variation (both vari-

ation of interest and nuisance variation) for each protein. Such plots should be done

after the normalization.

QC plot Figure 5.3 visualizes potential systematic biases between mass spectrome-

try runs. After constant normalization, the median intensities of reference transitions

across all proteins should be equal between runs (Figure 5.3(b)). After quantile nor-

malization, the distribution of reference intensities across all proteins should be equal

between runs (Figure 5.3(c)).

Condition plot visualizes potential systematic differences in protein intensities

between conditions with error bars for confidence interval with 0.95 significant level

or standard deviation for each condition for descriptive purpose only.

Model-based whole-plot inference

The function groupComparison needs (1) the output of function dataProcess,

which includes subplot summarization, and automatically recognizes the design of

experiments based on the structure of the input data. Then It requires the users

(2) to state the conditions that they would like to compare. The statistical model in

Section 3.4 will be used to evaluate each protein for evidence of differential abundance

between these conditions, while taking into account the experimental design, and the

available sources of variation. It then reports log fold change estimation, standard

error of the log fold change, test statistic of the Student test, degree of freedom, raw

p-values and p-values adjusted for multiple testing across the entire protein set by

Benjamini and Hochberg [81].
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Visualization for inference result

The function groupComparisonPlots takes as input the results of testing in func-

tion groupComparison above and visualizes them as below.

Volcano plots (Figure 5.4(a)) visualize the outcome of one comparison between

conditions for all the proteins, and combines the information on statistical and practi-

cal significance. The y-axis displays the FDR-adjusted p-values on the negative log10

scale, and represents statistical significance. The horizontal dashed line represents

the FDR cutoff, commonly 0.05. The x-axis is the model-based estimate of log-fold

change, and represents practical significance.

Heatmaps (Figure 5.4(b)) illustrate the patterns of up- and down-regulation of

proteins in several comparisons. Columns in the heatmaps are comparisons of con-

ditions, and rows are proteins. The heatmaps display signed FDR-adjusted p-values

of the tests, colored in red/blue for significantly up-/down-regulated proteins, while

taking into account the specified FDR cutooff and the additional optional fold change

cutoff.

Comparison plots illustrate model-based estimates of log-fold changes, and the

associated uncertainty, in several comparisons of conditions for one protein. X-axis is

the comparison of interest. Y-axis is the log fold change. It presents the model-based

estimates of log-fold change, and the error bars for the model-based 95% confidence

intervals.

Sample size calculation for a future experiment

This last analysis step views the dataset as a pilot study of a future experiment,

utilizes its variance components, and calculates the minimal number of replicates re-

quired in a future experiment to achieve the desired statistical power. The calculation

is performed by the function designSampleSize, which takes as input the output of
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(a) Volcano plot (b) Heatmap
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Figure 5.4.: Visualization for testing result with DDA Spike-in dataset by Latin Square design [35]

(a) Volcano plot for the comparison, C2-C1. The dashed line represent the FDR cutoff=0.05. (b)

Heatmap for results of testing proteins for differential abundance in six pairwise comparisons of

conditions. As color key shows below heatmap, brighter colors indicate stronger evidence in favor of

differential abundance. Black color represents proteins are not significantly differentially abundant.

function groupComparison, which contains the fitted model and variance components

in whole plot level. Sample size calculation assumes same experimental design (i.e.

group comparison, time course or paired design) as in the current dataset, and uses

the model fit to estimate the median variance components across all the proteins. Fi-

nally, sample size calculation assumes that a large proportion of proteins (specifically,

99%) will not change in abundance in the future experiment. This assumption also

provides conservative results. Using the estimated variance components, the function

relates the number of biological replicates per condition, average statistical power

across all the proteins (power), minimal fold change that we would like to detect,

and the False Discovery Rate (FDR). Either minimum number of biological repli-
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cates per condition or average statistical power is the output with specifying all other

quantities.

Execution time

For the experiment with simple design of experiments including small number of

proteins, features and subjects, executing time is short with few seconds. But, as the

design of experiments gets complex and the number of samples and feature increases,

MSstats version 3.0 or later saves more time than previous version (v2) with full

linear model. Here are the examples about running time for three large datasets. I

analyzed the datasets with 1.8GHz inter core i5.

DDA datasets generally have several thousand proteins, even though the number

of samples is small. As one example of DDA datasets, Dynamic benchmark DDA

data in Section 4.1.1, processed by MaxQuant, has 2173 proteins with 22365 unique

combination of peptides and charge states. The percentage of missing values is 14%.

It took 5 minutes for the proposed method in MSstats version 3, 15 minutes for

MSstats version 2.3.7.

DIA datasets usually have large number of proteins as DDA. But, DIA has more

number of features. Profiling standard sample DIA data in Section 4.1.1, processed

by Skyline, contains 3097 proteins with 162492 unique features, 19% missing values.

It took 140 minutes for the proposed method of v 3 and 550 minutes for MSstats v

2.3.7.

SRM datasets have relatively small number of proteins and features. However,

if the number of subjects are large, running time between statistical methods are

different. The validation set of CRC biomarker study with SRM in Section 4.1.2 has

large number of subjects, 269 subjects in total, even though the number of features is

small, 276 unique features in 70 proteins. 12% of measurements are missing. It took

1.5 minutes for the proposed method of v 3, but 16 minutes for v 2.3.7.
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5.2 Availability of MSstats

5.2.1 MSstats website : msstats.org

MSstats is available under the Artistic-2.0 license at msstats.org. The most

recent version is available at msstats.org and related source codes are available

at MSstats github (https://github.com/MeenaChoi/MSstats). The versioning of

the main package is updated several times a year, to fix the reported bugs and to

synchronise with the Bioconductor release. The published data sets and example R

scripts are available in this website to help user as the guide.

5.2.2 Bioconductor

MSstats satisfies all requirements of Bioconductor including interoperability, main-

tenance and documentation and is available in Bioconductor (http:\\www.bioconductor.

org) from version 2.0 and later (now 3.3) since October 2013. 1734 downloads from

unique IPs, which is in top 20% of downloads in Bioconductor.

5.2.3 External tool in Skyline

MSstats as an external tool in Skyline [9] is designed as a link between researchers

with and without statistical background. Proteomic practitioners (the primary au-

dience of the package) have a limited familiarity with R, and in the past this has

hindered a broad adoption of R-based implementations. MSstats from version 2.0

and later is available at http://proteome.gs.washington.edu/software/Skyline/

tools.html as a popular Graphical user interface (GUI) tool for quantitative pro-

teomics with 1100 registered users. The external tool support within Skyline man-

ages MSstats installation, point-and-click execution, parameter collection in Windows

forms and output display. Skyline manages the annotations of the experimental de-
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Figure 5.5.: Screen captures of MSstats external tool webpage and GUIs for three main function-

alities, (1) MSstats QC : preprocessing data and run-level summarization with suggested statistical

model (2) MSstats Group Comparison : whole plot inference for interested group comparison, and

(3) MSstats Design Sample Size : sample size calculation.

sign and the processing of raw data. It outputs a custom report that is fed as a

single stream input into MSstats. This design buffers proteomics users from the de-

tails of the R implementation, while enabling rigorous statistical modeling. MSstats

also benefits from inclusion in Skyline community resources such as message boards,

support in tutorials and examples of publicly available datasets.
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6. APPLICATION OF MSSTATS

Several joint projects with my collaborators confirm the statistical framework pro-

posed in the chapters above for broad biological and clinical investigation with mass

spectrometry-based proteomics experiments.

We addresses the statistical framework for biomarker study in MS proteomics ex-

periments, including (1) design of experiments including separation of training set and

independent validation datasets, normalization between datasets, (2) use of MSstats

for finding significantly abundant proteins, statistical quantification for each subject

as in Chapter 5, (3) selection of candidate proteins by statistical variable selection

method. Selected protein markers by suggested statistical strategy are matched with

candidates from many literatures and expectation. Other biological studies, such as

antibody-based immunochemistry assay or signatures from genomic datasets, confirm

the proposed statistical framework.

Here is the list of peer-reviewed publications.

• Cerciello et.al. Identification of a seven glycopeptide signature for malignant

pleural mesothelioma in human serum by selected reaction monitoring [10] is the

protein biomarker investigation for malignant pleural mesothelioma in human

serum by SRM.

• Borràs et.al. Protein-based classifier to predict conversion from clinically iso-

lated syndrome to multiple sclerosis [13] studies the protein biomarkers to pre-

dict conversion from clinically isolated syndrome to Multiple Sclerosis.
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• Surinova et.al. Prediction of colorectal cancer diagnosis based on circulating

plasma proteins [11] is the non-invasive diagnostic biomarker studies for col-

orectal cancer.

• Surinova et.al. Non-invasive prognostic protein biomarker signatures associated

with colorectal cancer [12] is the non-invasive prognostic biomarker studies for

colorectal cancer.

I describe the proposed statistical procedure for biomarker study as downstream

analysis with one of examples above, the biomarker investigation for colorectal cancer

[11] in this chapter.

6.1 Design of experiments for biomarker study

The workflow for the development of predictive biomarkers consists of three phases.

Phase 1is to discover biomarker candidates between tumor and normal tissue epithelia

by discovery-driven mass spectrometric (MS) profiling of the glycoproteome. Phase

2 is the screening stage in patient plasma by targeted MS via selected reaction mon-

itoring (SRM). The first cohort was used both the discovery and the screening phase

with different MS technologies. The subset of candidates among the list of candi-

dates from Phase 1 is reproducible in terms of consistently quantified and detected

proteins as significantly differential protein. Phase 3 is the biomarker development

stage, which select biomarker signatures and evaluate their performance. Two large-

scale independent clinical cohorts, training and validation cohorts were involved in

Phase 3. The training cohort consisted of patients with colorectal cancer (CRC) and

subjects representing a control population at risk, in order to find biomarker signa-

tures and develop prediction model. The validation cohort contained the two groups,

CRC group including approximately equal number of patients from 4 clinical stages

and control group including clinically healthy blood donors and subjects with vari-
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ous non-malignant gastrointestinal tract (GIT) conditions such as adenoma, benign

condition, diverticular disease, dysplastic polyps, and Crohns disease.

6.2 Relative quantification and statistical significance analysis

Label-free quantification for discovery stage Label-free quantification was pro-

cessed by OpenMS 1.7. Quantitation with peptide sequences were were log2-transformed,

and a scale-normalization procedure [82] was performed. Protein significance analysis

between CRC and control was performed with MSstats (v1.0) with restricted scope

of conclusions for biological replication.

Label-based quantification for screening and clinical cohorts Automatic SRM

peak integration was performed by MultiQuant 1.2 for the screening and validation

cohorts and by Skyline for the training cohort.

Two steps of normalization was used to logarithm base 2-transformed peak areas,

separately for each cohort. The first normalization used internal stable isotope labeled

standard reference peptides for each targeted endogenous peptide. in order to remove

systematic variations in the signal during MS runnings. The second normalization was

based on internal standard bovine proteins, which we can assume the same amounts

across runs. It help to explain potential artifacts during sample preparation before

data acquisition.

Statistical analysis for differentially abundant proteins between CRC and control

was performed by MSstats v2.3.5 with expanded scope of conclusions for technical

replication and with restricted scope of conclusions for biological replication. Model-

based estimation of sample-level quantification for individual protein was calculated

by MSstats and used predictive analysis in next step.
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6.3 Predictive analysis

Before prediction analysis, normalization between cohorts and consideration of

missing quantification should be required in order to make relatively quantified inten-

sities comparable between cohorts. The normalization between cohorts was performed

by making the median normalization log2-relative quantification of the training co-

horts and validation cohort same. Imputation for missing relative quantifications was

also considered, because NA is not accepted for suggested predictive model and zero

is biased value, which affect parameter estimation and performance. Missing summa-

rized intensities were imputed with a minimum summarized quantification observed

for that protein in each cohort, assuming that missing intensities were under limit of

detection.

Statistical analysis workflow of prediction analysis for protein biomarker signatures

had several steps as below. Step 1 discovered predictive signatures using multivariate

logistic regression with 10-fold cross validation with 100 CRC patients and 100 control

subjects in the training set. For each fold, first, protein significance analysis between

CRC and controls with feature-level intensities was carried out for each protein, using

the nine-tenths of the subjects with FDR < 0.05 and fold change > 1.1. Significant

proteins changing in abundance in CRC are the candidates for predictive modeling.

Then subject-level summarized relative abundance of these candidate proteins were

used as input to logistic regression. Stepwise selection by minimizing the Akaike

information criterion (AIC) reduced the list of candidates within each fold. Among

the ten folds, the candidate signatures, which were selected more than five times,

are ceruloplasmin (CP), leucine-rich alpha-2-glycoprotein (LRG1), serpin peptidase

inhibitor, clade A (SERPINA3), serum paraoxonase/ arylesterase 1 (PON1), and

tissue inhibitor of metalloproteinases 1 (TIMP1) and they are final biomarkers for

CRC predictive model. The parameters of the multivariate logistic regression model

were estimated by these five final proteins in whole training set.
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To assess the reproducibility of the selected biomarkers, the prediction analysis

was repeated an additional three times on differently partitioned subjects with 10-

fold cross-validation and also employed 8-fold cross validation. Overall, the results

confirmed that the selected biomarkers by the original analysis are robust to the

specific choice of the parameters and of the folds.

Step 2 characterized the selected biomarkers on the full training cohort by pro-

viding the original scale of fold changes and standard errors, which log2 transformed

scale were estimated using a linear mixed effect model in MSstats and transformed

to the original scale using Delta method [83] in Eq. (6.1).

F̂Coriginal = 2F̂Clog2scale

ŜEoriginal = ŜElog2scale × ln(2)× 2F̂Clog2scale (6.1)

, where F̂C is the estimated fold change, and ŜE is the estimated standard error.

Two visualizations were shown for characterization of selected biomarkers. The

plot with proportion of subjects with CRC for subgroups, which were partitioned by

relative protein abundance separately by each protein, showed that an increase in

protein abundance for four out of the five proteins was associated with CRC and one

out of the five proteins had the opposite trend. Another plot illustrated model-based

probabilities of CRC as a function of estimated log2-abundance of CP, while fixing

the estimated abundances of the other proteins to their quantiles.

In step 3, the performance of the final predictive model was evaluated in the

independently acquired validation dataset. The threshold was determined based on

the best accuracy in the training set for detection of the disease and the control. The

performance for detection of the disease and the control is assessed by AUC of ROC,

specificity, sensitivity, and accuracy with the determined threshold. In addition, the

predictive ability of the protein biomarker signatures to distinguish CRC with some

characteristics from controls, such as clinical stages or tumor size was tested.
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Furthermore, the selected diagnostic signatures have been previously linked to col-

orectal cancer and are assessed independently in other many literatures. Also their

ability to predict colorectal cancer are confirmed with other diagnostic test, ELISA.

Moreover, it compares the performance with selected proteins list with other diag-

nostic candidates, as CEA which is popularly used and shows the better performance

of the suggested statistical analysis in terms of accuracy.

In summary, we proposed the experimental and statistical framework for biomarker

investigation in MS proteomics from the discovery, screening to validation and pro-

vided other biological evidence to support the suggested statistical framework.
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7. SUMMARY AND FUTURE WORK

This dissertation shows that a two-step split-plot approach improves current statisti-

cal methods for protein significance analysis across different acquisition methods for

relative quantification of MS proteomics. In addition, the proposed statistical frame-

work is fully implemented in the open source R package, MSstats with ready-made

visualization. Through multiple channels with easy-to-use GUIs, such as the external

tool in spectral processing tools, the number of MSstats users has been increasing.

Beyond protein significance analysis, I present the biomarker investigation framework

as the downstream analysis with several cancer biomarker studies and also show its

validity.

The proposed approach leaves room for a number of directions for future research

as shown below.

7.1 Publication of ExperimentData package in Bioconductor

I will make all datasets that were used in this dissertation publicly available as an

ExperimentData package in Bioconductor. It can help other researchers to evaluate

statistical methods.

7.2 Decision on the threshold for censored missing values

The datasets with more noise features tend to have worse performance in the

imputation method. The suspected reason is that noisy measurements affect the

decision on threshold for censored missing value at the imputation stage. A better
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strategy for the decision on the threshold for censored missing values is needed for

the data including many outliers.

7.3 Adjustment of degree of freedom for model-based inference

After run-level summarization in subplot, the degrees of freedom for inference per

protein are the same regardless of the number of features or missing values, except

the proteins which have any MS run with complete missing. A better adjustment to

degree of freedom for different number of features or missing measurement is needed

to be considered.

7.4 Investigation into quality control of spectral processing tools

This dissertation shows relative performance separately in each signal processing

tool in order not to compare spectral processing tools, but to focuses on comparing

the summarization methods given a signal processing tool. As we discussed above, the

performance varies between the datasets and also spectral processing tools. I suspect

that depends on how to handle missing values and quality of data by the spectral

processing tools. I will look into various decisions made by each tool, including a

filtering strategy for quality control, and how these decisions affect the downstream

statistics and suggest the best decision.

7.5 Potential extension for PTM

Relative quantification of post-translation modification (PTM) is one of the biggest

questions in mass spectrometry-based proteomics. PTM provides a more precise

mechanism and key functional roles for cellular function. However, there are some

challenges for PTM analysis, such as many missing values due to a very low abundance

for PTM quantification, and the need for statistical methods that can improve sen-
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sitivity and specificity for PTM data. I will extend the methods implemented in the

proposed statistical modeling and analysis framework, and implemented in MSstats,

to a peptide-level statistical analysis workflow for PTM data. The method will an-

alyze post-translated peptides and non-post-translated peptides separately, integrate

the results into a single conclusion that distinguishes differential post-translational

modifications from differential protein abundance, and adjust p-values for multiple

testing that considers the correlation between peptides from the same protein.
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[39] M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange,
N. Pfeifer, O. Schulz-Trieglaff, A. Zerck, K. Reinert, and O. Kohlbacher. OpenMS
- An open-source software framework for mass spectrometry. BMC Bioinformat-
ics, 9(163):1–11, 2008.
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