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Identity, Critical Agency, and Engineering Careers: An Affective Model 
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Abstract 

Background – Prior to college, many students do not have experience with engineering, but 

some ultimately choose an engineering career. Additionally, women choose engineering at lower 

rates than men, which results in women’s underrepresentation. The framework of critical 

engineering agency (CEA) is utilized to understand student attitudes and beliefs for choosing 

engineering. 

Purpose/Hypothesis – We investigate the relationships among students’ math and physics 

identities in high school that predict choice of engineering careers; how students’ beliefs about 

science and technology predict a choice of engineering careers; whether these beliefs are 

different by gender; and how well CEA explains students’ engineering choice. 

Design/Method – The data were drawn from the nationally representative Sustainability and 

Gender in Engineering (SaGE) survey distributed during Fall 2011 (n = 6,772). Structural 

equation modeling (SEM) was used to understand students’ affective beliefs for predicting 

engineering choice in college. 

Results – Multiple subject-related identities compose engineering students’ identity at the 

beginning of college. Recognition from others and interest in a subject are important predictors 

of developing an identity. Students’ performance/competence alone are not significant predictors 

of engineering, but are mediated by interest and recognition from others. Student identities and 



 

agency beliefs are significant predictors of engineering choice (explaining 20.2% of the 

variance). Gender differences were found for students’ math and physics identities and agency 

beliefs. 

Conclusions – Students’ self-beliefs account for approximately one-fifth of the variance in 

engineering choice in the transition from high school to college. Steps can be taken to improve 

students’ affective beliefs in early engineering experiences through addressing identity and 

agency beliefs. 

Keywords – critical engineering agency, engineering choice, structural equation modeling 

  



 

Introduction 

Increasing diversity in engineering is an important focus of engineering education re- 

search for several reasons. First, there is a need for better quality and more creative engineering 

solutions to solve complex global problems (Committee on Prospering in the Global Economy 

of the 21st Century, 2007). Students from diverse backgrounds may bring with them new ideas 

that can contribute to these innovative engineering solutions. Additionally, a diverse engineering 

population that is at the helm of engineering decision-making should reflect the country's 

population and give greater voice to populations that have not been historically well-represented 

in STEM (National Science Board, 2003). Engineering has often been defined by a narrow 

framing of who engineers are and what they do. Broadening participation in engineering requires 

paying close attention to the kinds of people that we ask students to become and studying how 

students embrace or avoid these promoted identities. 

Prior to the beginning of college, most students have little to no direct engineering 

experience or meaningful exposure to an engineering community of practice (Committee on K-

12 Engineering Education, 2009). Additionally, the typical or appropriate choice of high school 

courses is often undifferentiated for students who intend to enter many different science, 

technology, engineering, or mathematics (STEM) fields. This lack of prior context and content 

learning makes the choice of engineering especially difficult to understand compared to other 

STEM disciplines, such as biology or chemistry for example, which offer at least some direct, 

explicit experiences for students in high school (Marra, Rodgers, Shen, & Bogue, 2009; 

Seymour & Hewitt, 1997; Williams, Engerman, & Fleming, 2006). Although interest in STEM-

related subjects develops much earlier in students’ academic careers (i.e., elementary and middle 

school), often the choice of engineering occurs for STEM-interested students in high school. In a 



 

study of 6,860 students’ engineering career decisions, 280 were interested in engineering careers 

at the beginning of high school (Cass, Hazari, Sadler, & Sonnert, 2011). The largest influx of 

students interested in engineering careers occurred during their high school years with 81% of 

students choosing engineering in college indicating new interest. During the high school years, 

students have the opportunity to take advanced math and science courses, including physics, 

which may have an impact on their choices of engineering in college. 

Our work focuses on students’ self-beliefs at the transition from high school to college to 

understand the impact of these beliefs on engineering choice. Students must be empowered to 

choose engineering before beginning their post-secondary education for engineering programs to 

attract the largest number of students (since it is more difficult to switch majors than to intend an 

engineering major from the start). There are other areas in which talented students are being lost 

(e.g., loss of interest in STEM-related subjects in middle school and the transition from college 

to the engineering workforce); however, this study focuses specifically on the transition from 

high school to college. Examining the attitudes of students choosing engineering can shed some 

light into this complicated decision and create access for more students to choose engineering as 

a career. 

The continued lack of women in engineering 

Although some professions such as law, medicine, and business have achieved equal (or 

near equal) representation of women, engineering remains a field predominated by men, with 

bachelor’s degree recipients comprising less than twenty percent women overall (19.5% in 

2013-2014 nationally, GE Fund, 2002; Yoder, 2014). Despite significant efforts to positively 

impact female enrollment in engineering, the number of bachelor’s degrees awarded to women 

has not significantly changed in the last three decades (National Science Board, 2014). Other 



 

demographics factors such as race, ethnicity, or class that could be considered as part of identity 

development may also have a significant impact on engineering access and choices in college; 

however, this study focuses on gender specifically. 

Performance in math and science is not the primary reason that women do not choose 

engineering as a major or leave engineering (Geisinger & Raman, 2013; Hill, Corbett, & St 

Rose, 2010; Min, Zhang, Long, Anderson, & Ohland, 2011). Although female students perform 

as well as male students in engineering, women’s self-perception of their performance and their 

confidence in their engineering skills are often lower than that of male students (Cech, 

Rubineau, Silbey, & Seron, 2011). Traditional roles for male students and female students create 

gendered patterns for access to engineering professions and their identity development as 

engineers. Often, women face the double load of authoring their identity as engineers while also 

contradicting the traditional stereotypes surrounding engineering as a masculine field 

(Jorgenson, 2002). A perceived incompatibility between women’s gender and STEM identity is 

one reason researchers cite for the lack of representation of women in STEM fields. Women 

who experience this incompatibility have heightened stress, tend to doubt their ability to 

perform, develop negative achievement expectations, and report lower performance, despite 

previous success in their area of study (Ancis & Phillips, 1996; Rosenthal, London, Levy, & 

Lobel, 2011). Developing an identity in STEM early is a vital step to increase both STEM 

enrollment and persistence in college, especially for women (Bieri Buschor, Berweger, Keck 

Frei, & Kapper, 2014). 

Previous findings on students’ choice of engineering as a career and the lack of women in 

engineering give strong incentive to continue to understand how and why students choose 

engineering. We investigate students’ engineering choice using structural equation modeling 



 

(SEM) to examine connections between latent and measured variables. This approach to 

understanding quantitative data is an improvement over regression models because it allows a 

more nuanced examination of the relationships between variables and the predicted outcome as 

well as allowing for multiple indicators per latent variable with no collinearity problems. In this 

analysis, we focus on students’ affective states through the framework of critical engineering 

agency (CEA). Developing this understanding can help educators and researchers provide 

support for developing students’ desire to choose engineering which in turn, can create a more 

diverse engineering field and more creative engineering solutions.  

Critical engineering agency 

This study situates a new framework in engineering education which we adapted from 

critical agency frameworks previously used to understand student identity development and 

agency in science and mathematics education (Basu, 2008; Basu & Calabrese Barton, 2009; 

Basu & Calabrese Barton, 2010; Basu, Calabrese Barton, Clairmont, & Locke, 2008; Mallya, 

Mensah, Contento, Koch, & Calabrese Barton, 2012; Turner & Font, 2003). Critical engineering 

agency (CEA) in our work uses multiple subject-related identities along with students’ agency 

beliefs to examine how students see themselves a powerful thinker and doer of a particular 

subject (identity) and how they view the world with a critical mindset to advance the world as a 

more equitable place (agency beliefs) (Basu et al., 2008). This work is the first application of a 

critical agency framework within an engineering context using quantitative measures. 

In CEA, identity is defined as the authoring of one’s self within a particular context and is 

a continually evolving, self-reflexive process (Johnson, Brown, Carlone, & Cuevas, 2011). 

Students who enter science and engineering often need to see themselves as the “kind of people 

who would want to understand the world scientifically” (Brickhouse, Lowery, & Schultz, 2000, 



 

p. 443). Students who aspire to be engineers have different professional and vocational identities 

than their peers (Capobioanco, French, & Diefes-Dux, 2012; Matusovich, Barry, Meyers, & 

Louis, 2011). Examining the identities of students choosing engineering can illustrate what 

kinds of STEM-related identities and attitudes they hold prior to experiences in an engineering 

community of practice. In the past, researchers have focused on understanding engineering and 

professional identity development at the college level while students are in an engineering 

program. For example, McCain, Chachra, Kilgore, Chen, and Loshbaugh (2008) studied the 

development of an engineering identity at the undergraduate level and found distinct differences 

based on the culture of an institution and students’ perceptions of engineering practice. The 

effect of school culture on engineering identity development also has been noted in other work 

which found explicit gender bias in an engineering school culture that alienated women (Tonso, 

2006). 

There are few studies, however, that focus on the impact of student experiences prior to 

college and other self-beliefs that may be precursors to the development of an affinity for 

engineering (Capobioanco et al., 2012), although the need for such research has been stressed in 

the past (Pierrakos, Beam, Constantz, Johri, & Anderson, 2009). Much of the existing prior 

research has acknowledged the need for understanding multiple STEM identities prior to the 

choice of engineering (Capobianco, Diefes-Dux, Mena, & Weller, 2011; Matusovich et al., 

2011; Pierrakos et al., 2009). Considering these identities is important because students’ self-

beliefs can impact their educational choices and, potentially, the later development of an 

engineering identity (Hsieh, Sullivan, Sass, & Guerra, 2012; Wang, Eccles, & Kenney, 2013). 

Understanding the beliefs that precede engineering identity development will help educators 

develop a better understanding of how and why students are drawn to engineering as well as the 



 

reasons why others may move away from it due to their perceptions that engineering conflicts 

with their view of themselves, their career aspirations, and other self-beliefs. 

Identity development, specifically related to a students’ role, has been framed around three 

key constructs in math and science education: 1) interest, 2) performance/competence, and 3) 

recognition. These constructs have been researched both qualitatively (Basu & Calabrese 

Barton, 2009; Calabrese Barton & Tan, 2009; Carlone & Johnson, 2007; Gee, 2000; Varelas, 

2012) and quantitatively (Godwin, Potvin, Hazari, & Lock, 2013; Godwin, Potvin, & Hazari, 

2013; Hazari, Sonnert, Sadler, & Shanahan, 2010; Potvin & Hazari, 2013). Carlone and Johnson 

(2007) framed identity as consisting of three factors, namely, perceived recognition, belief in 

ability to perform, and belief in one’s competence. By these definitions, a “good” science 

student was one who could demonstrate meaningful knowledge and understanding of STEM 

content, had fluency in discussing these topics, and believed that she could do well in these types 

of courses. Additionally, she recognized herself and was recognized by others as the type of 

person who does science (Carlone & Johnson, 2007). Hazari and colleagues (2010) built on this 

work in two distinct ways. First, interest was added to the framework of understanding students’ 

STEM-related identities. This interest was defined as students’ desire to participate in STEM-

related activities and finding STEM as an enjoyable pursuit. The second contribution was a 

quantitative measure of these four areas. In a factor analysis, these four subconstructs only 

factored into three underlying subconstructs including: interest, recognition, and 

performance/competence. Students did not respond differently to types of questions intended to 

measure how they believed they could perform in class and how well they could understand 

class content. The authors hypothesized that the overlap of these two constructs was due to 

students’ inability to distinguish grades from conceptual knowledge in a course. These 



 

quantitative measures of identity have been used in several studies to understand the impact of 

students’ physics and math identities on physics, math, and engineering career outcomes 

(Cribbs, Hazari, Sonnert, & Sadler, 2015; Hazari et al., 2010; Potvin et al., 2013). Our framing 

of identity focuses on these three areas to understand how physics and math identities relate to 

one another and impact engineering choice in college. Though these subconstructs capture 

students’ STEM-related identities, we acknowledge that these are only one small part of their 

overall identities; however, we believe that the way they see themselves with respect to STEM 

in particular has the potential for furthering our understanding of what impacts engineering 

outcomes. 

Interest in a particular subject plays a key role in the choice of an engineering career. 

Previous studies have shown that students who are interested in engineering show particular 

interest and skill in math and science (Godwin, Potvin, & Hazari, 2013; Potvin, Tai, & Sadler, 

2009) and that these identity constructs are connected to students’ choice of engineering as a 

career in college. In particular, students’ physics and math identities have been found to be the 

vital parts of their precursor identities for the choice of engineering careers (Godwin, Potvin, 

Hazari, & Lock, 2013). The connection to math is not surprising from the strong connections 

drawn in earlier literature (Li, Swaminathan, & Tang, 2009); a strong physics connection may be 

explained by the conceptual connections between engineering and physics content that 

emphasizes the heavy application of math with physical science. Additional parallels between 

these areas exist in the numbers of women enrolling in engineering and physics programs across 

the U.S. (Chen, 2013), though whether they are a consequence of similarities in the content, 

culture, both, or other factors is not clearly understood. 

Students’ performance/competence beliefs have also been shown to be an important part 



 

of identity development and engineering choice. This idea is related to students’ self-efficacy 

beliefs, which have been shown to be a significant positive predictor in engineering persistence 

(Marra et al., 2009; Mau, 2003). Traditional measures of self-efficacy have focused on task-

specific behaviors and actions related to students’ attainment beliefs (Bandura, 1986). Fouad and 

colleagues (2002) found that performance influences career choices, albeit indirectly through 

self-efficacy development. Cleaves (2005) also captured this self-efficacy domain through in-

depth longitudinal interviews with students and found that post-compulsory science-taking 

choices involved a variety of dynamic considerations including not only interest and enjoyment, 

but competency beliefs such as ‘‘confidence in their own ability to do science’’ (p. 484). 

Students’ beliefs about their ability to perform the practices of their discipline and understand 

the content of their discipline – whether science, math, or engineering – has an impact on their 

ability to see themselves as the kind of person who can legitimately participate in these areas 

(Marsh, Hau, & Kong, 2002). In the framing of our work from an identity perspective, we 

acknowledge an overlap of performance/competence beliefs with self-efficacy measures. 

However, we distinguish performance/competence beliefs as specifically subject-related and 

broader than task-scale behaviors. 

Recognition is also an important part of identity development that has more recently 

become a focus in science identity research. How others view a student is vitally important to 

how a student sees himself or herself. Parental perceptions and expectations of students’ abilities 

to participate in STEM have significant impacts on students’ later success (Bleeker & Jacobs, 

2004; Dorie & Cardella, 2013; Jacobs & Eccles, 2000; Turner, Steward, & Lapan, 2004). 

Parental messages, along with teacher and peer messages, are integrated into how students see 

themselves and ultimately choose a career. These recognition messages are not only important 



 

early in children’s lives from parents, but also during engineering identity development in 

college through teachers and peers. Tonso’s (1999, 2006) ethnographic studies of an elite 

engineering program provided examples of how female students who showed great skill in 

engineering but were not recognized by their peers and professors had weaker identities as 

engineers and did not feel like they belonged in the culture of engineering. In sum, these prior 

studies highlight the importance of the aforementioned identity constructs for students across all 

educational stages including students with STEM identities in high school making relatively 

uninformed (by practice or personal knowledge) decisions about engineering in college. 

Previous work in the CEA framework has identified that the development of multiple 

identities in physics, math, and science, measured by the subconstructs of interest, 

performance/competence, and recognition, generally are important for students who choose 

engineering in college (Godwin, Potvin, Hazari, & Lock, 2013; Godwin & Potvin, 2014). In this 

study the most significant subject-related identities for predicting engineering choice were 

physics and mathematics. The choice of these identities in our work is consistent with previous 

work which demonstrated that students who chose and persisted in engineering were 

significantly more likely (p < 0.001) to see themselves as a “physics person” over both 

chemistry and biology subject areas (Cass, Hazari, Sadler et al., 2011). Because of these findings 

and the previous framing of identity, we chose to measure physics and math identities in the 

CEA framework employing the three subconstructs: interest, performance/competence, and 

recognition (Cass, Hazari, Cribbs, Sadler, & Sonnert, 2011; Cribbs, Hazari, Sadler, & Sonnert, 

2012; Hazari et al., 2010; Potvin, Beattie, & Paige, 2011; Potvin, Paige, & Beattie, 2012). 

Critical engineering agency is not simply a model of students’ identities, it also involves 

students’ agency beliefs. Agency, in this case, refers to the capacity of an agent, a person or 



 

other entity, to act in the world, and this paper focuses on students’ self-beliefs about their own 

agency in certain contexts. That is, this application of CEA as theoretical framework refers to 

students’ perceptions of their ability to change their world through everyday actions and their 

broader goals through agency beliefs which is related to but distinct from agency. Students’ 

agency beliefs involve how students see and think about STEM as a way to better themselves and 

the world (Godwin, Potvin, & Hazari, 2013) along with being a critic of themselves and science in 

general. The “critical” aspect of CEA incorporates the ways in which students become evaluators 

of STEM as well as become critics of themselves and the world around them through self-

reflection. Being a critic, in this latter sense, is not defined as simply making negative 

judgments, but rather as evaluating, judging, and analyzing. The development of CEA can 

subsequently lend to students’ professional identity development, advance their position or status 

in their community, society, or the world, and/or alter their world in ways they envision through 

science and engineering (Basu et al., 2008). In this prior work, agency may be an expression of 

identity whereas critical science agency simultaneously incorporates expressing science identity 

(through actions) that are relevant to one’s own world and critical (questioning) of the social and 

cultural structures in place. Other prior research has focused on the identity-agency relationship 

(i.e., how associations impact how we act and how we act changes how we author ourselves) 

(Boaler & Greeno, 2000; Sfard & Prusak, 2005) and on the structure-agency relationship (i.e., 

how cultural and social structures impact how we act and how we can change structures through 

our actions) (Calabrese Barton, Tan, & Rivet, 2008; Varelas, 2012; Varelas, Settlage, & Mensah, 

2015).  

Research questions 

This study uses SEM to examine the direct and indirect influence of students’ self-beliefs in 



 

multiple identity domains and their agency beliefs on their undergraduate engineering intentions. 

This research was conducted at a single time point and acts as a “snapshot” of the physics and math 

identities and agency beliefs that students hold, on average, when choosing engineering in college. 

This paper addresses four research questions through quantitative methods. 

Research Question 1: What are the relationships among students’ identities in high school that 

predict the choice of engineering careers? 

Research Question 2:  How do students’ agency beliefs predict a choice of engineering careers? 

Research Question 3: To what extent do students’ beliefs differ among men and women? 

Research Question 4: How well does critical engineering agency as an explanatory framework 

describe students’ choice of engineering careers? 

Methods 

Data source 

The data used in this paper were drawn from the Sustainability and Gender in Engineering 

(SaGE) survey which drew on responses from students at 2- and 4-year institutions across the U.S. 

(Klotz et al., 2014, “SaGE Survey,” 2011). This data set is a nationally representative, stratified 

random cluster sample of postsecondary students enrolled in introductory English courses during 

the beginning of the fall semester of 2011. The choice to survey in traditional, introductory English 

courses allowed for data to be collected from non-STEM and STEM students alike, including a 

representative fraction of engineering majors. Drawing from a stratified random sample of colleges 

and universities across the U.S. available from the National Center for Education Statistics (NCES), 

the survey study collected data from 6,772 students attending 50 different institutions. The 

stratification accounted for the size of the institution and prevented over-sampling of the smaller, 

but numerous, liberal arts colleges in comparison to the relatively few, large public state 



 

universities. In total, fifty institutions agreed to participate in the paper-and-pencil survey, and some 

number of completed surveys were returned from every one of these institutions (100% institutional 

response rate). The SaGE survey included 47 anchored (5-point), multiple choice, and categorical 

questions on students’ career goals, their high school science and math experiences, science 

enrollment and achievement (courses taken, grades, AP test scores, etc.), student attitudes about 

sustainability, science and engineering, as well as demographic information. 

Survey Items 

Specific items to measure engineering career choice and math and physics identity were 

used from previous studies with validity evidence (Cribbs et al., 2015; Godwin, Potvin, & Hazari, 

2013; Godwin, 2014; Hazari et al., 2010). Items measuring math and physics identity were taken 

directly from the PRiSE study, as developed and validated by Hazari and colleagues (2010). These 

items were developed to measure math and physics identities, and 100% of the questions to 

measure math and physics identities were used verbatim from this study. The items measure the 

subconstructs of interest (two items e.g., “I am interested in learning more about this subject”); 

performance/competence (six items e.g., “I am confident that I can understand this subject in class” 

and “I can do well on exams in this subject”); and recognition (two items e.g., “My parents see me 

as a [math or physics] person”). Additionally, a single direct measure of students’ overall identities 

in math and physics were included (e.g., “I see myself as a [math or physics] person”). To 

understand students’ likelihood of choosing an engineering career, they were asked the question: 

“Please rate the current likelihood of you choosing a career in the following.” The fourteen career 

options were “Mathematics,” “Science/math teacher,” “Environmental science,” “Biology,” 

“Chemistry,” “Physics,” “Bioengineering,” “Chemical engineering,” “Materials engineering,” 

“Civil engineering,” “Industrial/systems engineering,” “Mechanical engineering,” “Environmental 



 

engineering,” and “Electrical/computer engineering.” Students were asked to rate the likelihood of 

choosing a career in each discipline on an anchored scale from 0 (“not at all likely”) to 4 

(“extremely likely”). In the current analysis, students’ choice of engineering was taken to be the 

strongest response to any of the eight engineering responses. This method was chosen to include 

students interested in engineering generally (but as-yet undecided on a particular discipline) as well 

as students with a very well-specified interest in one or two engineering disciplines. The sample 

included in this study is representative of national enrollment in 2- and 4-year institutions across the 

U.S. Because of this sampling, not all institutions offer engineering as a major. The majority of 

students at 2-year institutions (78%) did not indicate a strong interest in engineering as a career 

choice. We chose to include students at 2-year institutions in this analysis because they provide 

additional information about a representative sample of students who may or may not choose 

engineering based on CEA constructs, including potential transfer students. 

Additionally, we specifically created the agency beliefs items used in this work to measure 

students’ perceptions of their ability to be a critic of science and the potential for science to make 

these kinds of impactful changes. Agency beliefs are a subconstruct of CEA in addition to physics 

and math identity. Some examples of these questions include: “Science has helped me see 

opportunities for positive change” and “Science has made me more critical in general.” These 

agency beliefs capture students’ beliefs about the impact of science to measure how these 

perceptions interact with how they “identify themselves as experts in one or more realms associated 

with physics [and math]” (Basu & Calabrese Barton, 2009, p. 346) as quantitative measures. We 

originally included more items in the SaGE survey to measure agency beliefs, but because they did 

not load together as a construct in exploratory factor analysis, we excluded from this analysis 

(Godwin, Potvin, & Hazari, 2013). The five remaining items that measured student agency beliefs 



 

were used in this study to ascertain how students, especially women, become empowered to choose 

engineering in college. Note that all of the measured variables used to build the latent constructs in 

this analysis are listed in Tables 1, 2, and 3. 

The validity and reliability of that data provided by these measures were re-evaluated for 

identity items from other studies and established for agency beliefs used to measure CEA. Lending 

to content validity, questions were refined based on feedback from assessors on the grant advisory 

board and STEM education researchers familiar with physics and math identity and critical agency 

theory as well as the results of pilot testing in first-year engineering courses at two universities. An 

in-person pilot of the survey and focus groups were also conducted with first-year engineering 

students. Thus, each item of the survey was further examined for face and content validity. 

Reliability of the items utilized in the factor analysis and SEM in this study (e.g., identity and 

agency beliefs measures) was evaluated by test-retest of 62 students, and the average Pearson’s 

correlation was 0.732 (which falls into the “acceptable” range; George & Mallery, 2003). 

Confirmatory Factor Analysis 

To conduct this analysis a two-part approach was undertaken. First, a “measurement model” 

was examined utilizing confirmatory factor analyses to assess how well the indicators items 

measured the hypothesized latent variables (see Tables 1, 2, and 3). Seven latent constructs related 

to the various components of CEA were measured: the three subconstructs of identity 

(performance/competence beliefs, interest, and recognition beliefs) for each of physics and 

mathematics, and agency beliefs. During this step, the fit indices of the measurement model were 

assessed and convergent validity was checked by examining the factor loadings. This step ensured 

that the subconstructs we hypothesized that we were measuring were, in fact, captured in our data. 

In all of the models shown, we standardized the estimates for factor loadings and structural paths 



 

range from zero to one so that the magnitude of these loadings can be directly compared within the 

models. 

Structural equation modeling 

The second step of this analysis involved building the “structural model” by testing paths 

between latent variables. Figure 1 shows the proposed model constructed from the CEA theoretical 

framework that was initially tested using SEM. From previous work on modeling CEA (Cribbs et 

al., 2015; Godwin, Potvin, Hazari, & Lock, 2013), the constructs of physics and math identity were 

built to include mediating paths from performance/competence to identity via interest and 

recognition. Items that asked students the degree to which they identify as a “physics person” or a 

“math person” were used as an overall measure of identity (Cribbs et al., 2015; Hazari et al., 2010). 

These identities, along with agency beliefs, were hypothesized to predict the choice of engineering 

as a major/career (RQ1 and RQ2). The hypothesized student beliefs model represented in Figure 1 

was tested using the lavaan package in R (R Core Team, 2013; Rosseel, 2012).  

As is common with survey research of this nature, some of the variables included in the study 

had missing data. To moderate the potential biasing effects of this phenomena, the data were 

imputed for missingness using a full information maximum likelihood method for the model-

dependent variables which is considered best practice for this methodology (Byrne, 1994; Hu & 

Bentler, 1999; Schreiber, Nora, Stage, Barlow, & King, 2006; Schumacker & Lomax, 2004). This 

technique utilizes all of the data in the analysis. The method has been shown to produce unbiased 

parameter estimates and standard errors under missing at random (MAR) and missing completely at 

random (MCAR) data.  

Additionally, the variance of each latent variable was fixed to one. A Satorra-Bentler 

estimation method (Satorra & Bentler, 2001) was used to account for any non-normality in the data. 



 

This method rescales the value of the full information maximum likelihood chi-square test statistic 

by an amount that reflects the degree of kurtosis. Several simulation studies have shown that this 

correction is effective with non-normal data (Chou, Bentler, & Satorra, 1991; Curran, West, & 

Finch, 1996), even in small to moderate samples. Thus, it is appropriate to use traditional cutoff 

values when using this estimation method. The model was trimmed of non-significant paths and for 

parsimony following Byrne (1994). This structure simultaneously estimates thirteen regression 

equations and one covariance between physics identity and math identity. Several fit indices and 

path significance tests were used the evaluate the model based on Byrne’s suggestions (1994), 

including chi-square [should be non-significant at the p < 0.05 value (Byrne, 1994)], Comparative 

Fit Index (CFI) [acceptable values occur above 0.9 (Hu & Bentler, 1995)], Non-Normed Fit Index 

(NNFI) [acceptable values occur above 0.9 (Hu & Bentler, 1995)], and root mean square error of 

approximation (RMSEA) [values less than 0.01, 0.05, and 0.08 indicate excellent, good, and 

moderate fit respectively (MacCallum, Browne, & Sugawara, 1996)]. 

The proposed model (Figure 1) includes mediated paths for the construction of physics and 

math identities. Maxwell and Cole (2007) argued that mediation in models can result in biased 

estimates due to the lack of time-responsive data. However, the use of mediated models in cross-

sectional studies is acceptable if the bias can be determined to be non-significant and the directional 

influences of the latent variables are essentially instantaneous. In a study of the effects of 

mathematics self-efficacy on performance on mathematics tests, Pajares and Miller (1995) argued 

that the effects of interest and self-efficacy were essentially instantaneous on the outcome and the 

variables should be measured as closely together as possible. In this study, the similar variables of 

interest and performance/competence are used along with students’ perceptions of recognition. 

These quasi-traits measured do not change over the time period of interest (Potvin & Hazari, 2013), 



 

and can therefore be interpreted in a mediated model. This argument is upheld by the discussion 

that as students move further along in their education, their identities become more and more 

established with each additional interaction with STEM-related subjects. At the macro level when 

students are asked to think reflexively back on these experiences, these identities are relatively 

stable compared to measuring than moment-to-moment instances of identity in specific situtations 

(Lichtwarck-Aschoff, van Geert, Bosma, & Kunnen, 2008). Only significant changes or 

experiences dramatically shift students’ overall identities. In this study, university freshmen were 

asked about their self-beliefs in traditional subjects like math and science, which have been 

practiced over numerous years of formal education. We argue that their overall STEM identities are 

relatively stable, or in equilibrium, unless a perturbation occurs and offsets the balance between 

interest, performance/competence, and recognition. These perturbations cause identity renegotiation 

and new identity development. We attempted to reduce the potential impact of these perturbations 

in the sampling of students in the first few months of their freshman year in college before they had 

new STEM experiences, especially in their new engineering communities of practice. Additionally, 

the magnitude of bias for mediated models can be estimated based on the stability coefficients of 

the latent variables (Maxwell & Cole, 2007). The bias for stable variables within a time of interest 

is negligible if the stability coefficients are similar. In this case, the equilibrium between the identity 

variables results in stable measurements and non-significant bias according to simulations by 

Maxwell and Cole (2007) on the estimates presented in this paper. 



 

 

Figure 1: Diagram of proposed structural model for the structural equation modeling analysis 

based on CEA theoretical framework. 

Multiple group analysis: Testing for model invariance 

After the full SEM model was evaluated for fit, the model was compared for females and 

males to see if the proposed structure was equivalent across these groups (RQ3). Model 

invariance tests were conducted to determine significant differences for men and women in the 

measurement and structural path parameters. First, a baseline model was created for males and 

females with all parameters freely estimated. Next, a model was created with only factorial 

equality constraints - the factor loadings between the male and female model were constrained 

to be equal while the regression coefficients were freely estimated across the groups. A 



 

measurement invariance test was conducted based on the chi-square diff statistic when 

compared to the baseline model. This chi-squared difference, called a mod or modification 

index, should be greater than 3.841 (p < 0.05) as indicated on a chi-square distribution table 

with one degree of freedom. A mod index less than or equal to 3.841 would indicate that there 

was not a significant difference in the model fit for men and women and, therefore, invariance 

between item responses and/or paths could be established across the two models. If non-

invariance was indicated by a significant chi-square difference test then the model would fit 

significantly better if the paths identified were estimated separately for men and women. 

Examination of the modification index for each variable revealed factor loadings that were 

different between groups and these loadings were allowed to be freely estimated until the chi-

square difference test indicated model invariance. This process was repeated to test for 

structural invariance by then constraining the regression coefficients to be equal across the 

models and testing for invariance. 

Results 

The CFA analyses included in Tables 1, 2, and 3 indicate that the measurement model fit 

the data. Individual item reliability was evaluated with the square multiple correlation (R2). 

Each correlation was above 0.5 indicating that construct reliability accounted for over 50% of 

the variance in each measured item in reference to the other observed items (Schreiber et al., 

2006). Construct reliability (Sin, 2009), also known as composite reliability, for the various 

latent constructs ranged from 0.881 to 0.941. This reliability gives a better estimate of the 

overall reliability of an item taking into account the individual reliabilities as well as standard 

errors. Values greater than 0.70 are acceptable (Hair, Anderson, Tatham, & Black, 1998). 

Though the squared multiple correlation (R2) indicates the reliability of a single measure and 



 

the construct reliability the reliability of the construct as a whole, neither one measures the 

amount of variance that is captured by the construct in relation to the amount of variance due to 

measurement error (Fornell & Larcker, 1981). The average variance extracted (AVE) provides 

this information and was calculated for each latent variable ranging from 0.717 to 0.825 (Sin, 

2009). The average variance extracted is the amount of variance that is captured by the latent 

variable in relation to the amount of variance due to its measurement error. In different terms, it 

is a measure of the error-free variance of a set of items measuring a single construct. Average 

variance extracted is used as measure of convergent validity, which should be 0.50 or above 

(Dillon & Goldstein, 1984). These results demonstrate that the items hypothesized to measure a 

single construct do, in fact, measure the intended construct and capture a strong majority of the 

variance within each block of items. Convergent validity establishes that measures that should 

be related are in reality related. This type of validity was evaluated by examining the factor 

loadings in the model, since all of these values were greater than 0.70, we provide evidence for 

convergent validity. Discriminant validity provides evidence that measures for one latent 

variable are not overly rated to another latent variable and was established through multiple 

methods. First, the AVE should be greater than squared multiple correlation between latent 

variables (Schreiber et al., 2006) which we established (AVE shown in Tables 1, 2, and 3). 

Additionally, the correlation between items of unrelated latent variables in our study is less than 

0.85 (Byrne, 1994). The overall fit indices for the measurement model were a CFI of 0.954, 

NNFI of 0.944, and an RMSEA of 0.056. All of these fit indices indicate that the measurement 

variables accurately reflect the latent variables in the measurement model. 

 
 
 
 
 



 

Table 1 
 
Confirmatory factor analysis estimates for physics identity subconstructs. 

Latent 
Variable Indicator Variable 

Standardized 
Factor 

Loadings 
Standard 

Error 

Item 
Reliability 

(R2) 
Construct 
Reliability 

Average 
Variance 
Extracted 

Q27Phys_d: "I am 
interested in learning 
more about [physics]" 

0.866 0.025 0.750 

Q27Phys_g: "I enjoy 
learning [physics]" 

0.912 0.025 0.832 

Q27Phys_b: "My 
parents/relatives/friends 
see me as a [physics] 
person" 

0.898 0.013 0.806 

Q27Phys_c: "My 
[physics] teacher sees me 
as a [physics] person" 

0.886 0.013 0.785 

Q27Phys_e: "I am 
confident that I can 
understand [physics] in 
class" 

0.886 0.014 0.785 

Q27Phys_f: I am 
confident that I can 
understand [physics] 
outside of class" 

0.877 0.014 0.769 

Q27Phys_h: "I can do 
well on exams in 
[physics]" 

0.903 0.014 0.815 

Q27Phys_i: "I understand 
concepts I have studied in 
[physics]" 

0.921 0.014 0.848 

Q27Phys_j: "Others ask 
me for help in [physics]" 

0.787 0.012 0.619 

Q27Phys_n: "I can 
overcome setbacks in 
[physics]" 

0.711 0.012 0.506 

Note. To summarize acceptable values: Item reliability (R2) > 0.50, Construct reliability >0.70, and Average 
Variance Extracted >0.50.  



 

Table 2 
 
Confirmatory factor analysis estimates for math identity subconstructs. 

Latent 
Variable Indicator Variable 

Standardized 
Factor 

Loadings 
Standard 

Error 

Item 
Reliability 

(R2) 
Construct 
Reliability 

Average 
Variance 
Extracted 

Q27Math_d: “I am 
interested in learning 
more about [math]” 

0.866 0.013 0.750 

Q27Math_g: “I enjoy 
learning [math]” 

0.909 0.013 0.826 

Q27Math_b: “My 
parents/relatives/friends 
see me as a [math] 
person” 

0.922 0.023 0.850 

Q27Math_c: “My 
[math] teacher sees me 
as a [math] person” 

0.894 0.021 0.799 

Q27Math_e: “I am 
confident that I can 
understand [math] in 
class” 

0.897 0.011 0.805 

Q27Math_f: I am 
confident that I can 
understand [math] 
outside of class” 

0.875 0.011 0.766 

Q27Math_h: “I can do 
well on exams in 
[math]” 

0.900 0.011 0.810 

Q27Math_i: “I 
understand concepts I 
have studied in [math]” 

0.909 0.011 0.826 

Q27Math_j: “Others 
ask me for help in 
[math]” 

0.814 0.011 0.663 

Q27Math_n: “I can 
overcome setbacks in 
[math]” 

0.703 0.010 0.494 

Note. To summarize acceptable values: Item reliability (R2) > 0.50, Construct reliability >0.70, and Average 
Variance Extracted >0.50. 
  



 

Table 3 
 
Confirmatory factor analysis estimates for agency beliefs. 

Latent 
Variable Indicator Variable 

Standardized 
Factor 

Loadings 
Standard 

Error 

Item 
Reliability 

(R2) 
Construct 
Reliability 

Average 
Variance 
Extracted 

Q29a: “Learning 
science will improve 
my career prospects” 

0.814 0.012 0.663 

Q29b: “Science is 
helpful in my 
everyday life” 

0.895 0.011 0.801 

Q29c: “Science has 
helped me to see 
opportunities for 
positive change” 

0.920 0.010 0.864 

Q29d: “Science has 
taught me to take care 
of my health” 

0.794 0.012 0.630 

Q29e: “Learning 
science has made me 
more critical in 
general” 

0.804 0.012 0.646 

Note. To summarize acceptable values: Item reliability (R2) > 0.50, Construct reliability >0.70, and Average 
Variance Extracted >0.50. 
 

We fitted the proposed SEM model for the entire imputed sample in Figure 2. There 

were 1,288 patterns of missingness found and imputed, and cases in which were missing not at 

random (MNAR) were deleted, for a final sample size of 6,511 from the original 6,772. The 

chi-square statistic for this model is 10,062 and is significant at the α < 0.05 level. Due to the 

large sample size, the chi-square statistic is artificially inflated, and the chi-square statistic is 

expected to be significant without indicating a poorly fitting model (Schumacker & Lomax, 

2004). The degrees of freedom reported are 331. The RMSEA indicates a reasonable fit of the 

model with the observed data with a value of 0.065 (90% confidence interval ± 0.001). 

Additionally, the RMSEA is largely invariant with increasing sample size, unlike the chi-square 

test. For sample sizes of 500 or greater, the RMSEA is sensitive to increasing misfit. Thus it is 

appropriate to use this supplementary fit statistic in the presence of large sample sizes, to 

inform if sample size is influencing the chi-square statistic, and hence its significance (Tennant 



 

& Pallant, 2012). The CFI also suggested good fit with a value of 0.947. Finally, an NNFI of 

0.939 indicates acceptable fit and can be influenced by larger sample sizes since it is calculated 

from the chi-square statistic. Research Questions 1 and 2 can be answered from this model. 

This model shows how identity in both physics and math as well as students’ beliefs about what 

science/engineering can do for the world (agency beliefs) which together encompass CEA 

predict a choice of engineering. 

 

 
Figure 2: Results of final structural equation model for all students. All paths are significant at 

the p < 0.001 level 

 



 

To answer Research Question 3, this model was compared for students who identified 

themselves as either male or female in the SaGE survey. The model invariance tests based on 

the modification indices revealed paths that were significantly different between males and 

females. Both a chi-square difference test and a delta CFI test were conducted to determine 

model invariance. Cutoff values of 0.01 were used for the delta CFI tests (Fan & Sivo, 2009). 

The parameter estimates have been added in Figure 3 for the final trimmed model with 

differences in freely estimated paths highlighted. The loadings for students’ responses to the 

question: “I can overcome setbacks in math” (M (male) = 0.771; F (female) = 0.681) were 

freely estimated while the remaining loadings were constrained to be equal in the measurement 

model. Additionally, the regression estimates for the paths from physics identity, math identity, 

and agency beliefs were estimated freely while the rest of the structural model paths were 

constrained equal. For both physics and math identity predicting engineering choice, male and 

female responses differed significantly (physics - p = 0.003, Cohen’s d = 0.12; math – p = 

0.009, Cohen’s d = 0.19). For agency beliefs predicting engineering choice, male and female 

responses also differed significantly (p = 0.026, Cohen’s d = 0.08). These separate model 

parameter comparisons were conducted by estimating the model parameters for each group 

separately and performing a between-group test of significance across the groups (Hsieh, Rai, 

& Keil, 2008; Keil et al., 2000; Qureshi and Compeau, 2009; Venkatesh and Morris, 2000). 

These effect sizes represent small, but significantly different effects between men and women 

(Cohen, 1988). On average, large sample studies have smaller effect sizes than smaller studies. 

However, as sample size increases above 2000 the effect sizes become more reliable and less 

likely to be artifacts of other disturbances (Slavin and Smith, 2009). The findings of larger, 

well-controlled studies should be considered as more conclusive evidence of the effects than 



 

the findings of small studies. The size of these effects are consistent with average effect sizes in 

education for “broad measures” such as nationally normed tests (Cohen’s d = 0.10) from which 

large policy decisions are made (Lipsey et al., 2012). Whereas the findings of these gender 

comparisons indicate small effects, these differences may have non-trivial effects on 

engineering recruitment and choice which is a complex and nuanced decision.  

The fit parameters for this model were: a chi-square of 4,389 on 705 degrees of 

freedom, RMSEA of 0.061 (90% confidence interval 0.059 to 0.063), CFI of 0.954, an NNFI of 

0.950, all indicating good fit for the gender comparison model. The total variance explained in 

the linear engineering career choice outcome was 20.2% for the model pictured in Figure 2 

(Adjusted R2 of engineering career choice scale). This result answers Research Question 4 and 

shows that this model of students’ self-beliefs explain just over one fifth of the variance in 

choice of engineering.  



 

 

Figure 3: Results of fitting gender comparison structural equation model (F=Female; M=Male). 

For gender comparisons, * indicates p-values < 0.05 and ** indicates p-values between 0.01 

and 0.001. All other paths in the model are significant at the p < 0.001 level. 

Addressing the research questions 

To discuss our results, we first describe how the resultant models address each of the research 

questions for this study: 

RQ1: What are the relationships among students’ identities in high school that predict the 

choice of engineering careers? 

In our model, physics and math recognition beliefs each have the largest direct effect on 

physics and math identity (with factor loadings of 0.718 and 0.742, respectively), and we have 



 

seen that they are critically important for engineering career choice. Although the importance of 

recognition has been cited in studies of identity (Carlone & Johnson, 2007; Gee, 2000), our work 

confirms its importance in a large-scale national data set. Furthermore, our work clarifies that 

performance/competence beliefs are not sufficient to predict identity development, with direct 

negative paths (loadings of −0.157 and −0.085 for physics and math identity, respectively) 

which are mediated by positive indirect paths through interest and recognition beliefs in each 

case. Performance/competence beliefs are important to both interest and recognition beliefs; 

however, they do not directly predict an identity in either math or physics. In support of this 

finding, Marra et al. (2009) found that female engineering students had positive shifts in self-

efficacy beliefs while simultaneously having negative shifts in their feelings of inclusion 

indicating self-efficacy beliefs alone may not capture students seeing themselves as the type of 

person who can participate in engineering. 

Identity is not simply a designation for students who are “good at” physics or math 

homework, tests, or concepts. Identity is more strongly impacted by students’ interests and 

beliefs that they are recognized as the type of person that engages in these subjects. This picture 

is similar for both men and women (see discussion of RQ3 for a detailed analysis), and any 

attempts to develop students’ identities in these situations are likely to be beneficial for both 

genders. The direct link between performance/competence and interest is well documented 

(Lent, Brown, & Hackett, 1994, 2000). This relationship means that students must develop the 

beliefs that they can accomplish the goals and perform proficiently in a course in order for an 

interest in the subject to also develop. The link between performance/competence and 

recognition, however, is more nuanced. Performance/competence beliefs predict students’ 

recognition beliefs (loadings of 0.808 and 0.841 for physics and mathematics, respectively), but 



 

the reverse path was not significant in our models; students’ feelings of recognition did not 

predict students’ performance/competence beliefs. Students who are recognized before they feel 

competent may not internalize the recognition, and very often teachers do not recognize students 

who are not excelling in their classrooms. Recognition is the most important part of an identity 

development in this model with loadings of 0.718 and 0.742 for physics and mathematics 

identities, respectively. Students who feel recognized by their peers, family, and teachers are 

more likely to identify as a “math person” or “physics person,” and the estimates for these paths 

in Figure 2 are over twice as large as any other direct path to identity. Fostering experiences 

which contribute positively to recognition beliefs for students in high school math and science 

classrooms may be a vital component to attracting and retaining a more diverse pool of 

engineering students. 

RQ2: How do students’ agency beliefs predict a choice of engineering careers? 

The resultant models show that students’ agency beliefs also play an important role in their 

choice of engineering. The direct path for all students between agency beliefs and the choice of 

engineering is 0.190 (significant at the p < 0.001 level, as with all paths shown in Figures 2 and 

3). When compared to physics or math identities for all students in Figure 2, agency beliefs were 

stronger predictors than math identity but weaker predictors than physics identity for predicting 

a choice of engineering (math identity loading = 0.123, agency beliefs loading = 0.190, and 

physics identity loading = 0.267). The construct of agency beliefs is somewhat distinct from the 

more traditionally defined construct of agency. This belief measure captures how students feel 

they are empowered to make changes, not necessarily the actions of empowered change that 

they take which are more readily measured through qualitative techniques. The finding that 

agency beliefs is a significant, positive predictor of engineering career choice on top of students’ 



 

identity beliefs is important because this allows us to understand ways in which high school 

students could come to perceive engineering as a more relevant and interesting choice in college: 

those who believe that they can make change in the world and in their lives, coupled with 

burgeoning self-beliefs about their role as physics and math people, can lead students to choose 

engineering careers at significantly higher rates than if they do not subscribe meaningfully to 

these identities or agency beliefs. 

RQ3: To what extent do students’ beliefs differ among men and women? 

Small gender differences in physics and math identity were found between women and 

men (Figure 3). Women had lower estimates than men for the path between seeing themselves as 

a “physics person” (F = 0.161 and M = 0.264 with p = 0.003) and a “math person” (F = 0.127 

and M = 0.186 with p = 0.009) and their choice of engineering. Though the estimates predicting 

engineering career choice were positive and significant at the p < 0.001 level for both men and 

women, seeing themselves as the “type of people” who do physics or math was less predictive of 

the choice of engineering for women than for men. This difference may be due to the fact that 

women identify less with the subjects of math and physics due to lower recognition beliefs 

(Bingham, 2001) and performance/competence beliefs (Zeldin & Pajares, 2000), both of which 

are important for women’s identity development (Carlone & Johnson, 2007; Gee, 2000; Lent et 

al., 2003). Additionally, studies have shown that women lose interest in math and science early 

on in their education (National Science Board, 2003). This loss of interest may feed into 

depressed math and physics identities for women in general, even those who choose 

engineering. This outcome would explain why women may not rely as much on identifying with 

math and physics when choosing engineering – they do not have the sources of recognition and 

interest to develop those identities as much as men do. This depressed view of themselves with 



 

respect to math and physics may lead to fewer women choosing engineering due to the emergent 

barrier of their self-ascribed identity not being amenable with an identity ascribed to the pursuit 

of physics, math, or engineering – an identity vital to students’ actual career choices (Brickhouse 

et al., 2000) and later persistence within that chosen career (Min et al., 2011). 

For both men and women, agency beliefs were a small, but significant positive influence 

on engineering career choice (p < 0.001). This influence was stronger for women than for men, 

with loadings of 0.236 and 0.205, respectively (p = 0.026). For women, the path between their 

agency beliefs and engineering career choice was stronger than the paths between both math and 

physics identities to engineering career choice. This finding is supported by Chinn’s (1999) 

study of female students, which found that agency towards engineering was important for their 

choice of engineering careers. This agency was influenced by powerful adults (such as teachers) 

and by curricular choices that did not alienate women or minorities but rather incorporate 

content and strategies personally meaningful to them. Holding empowering agency beliefs, 

coupled with choosing an engineering-related career, is an important first step towards 

actualizing the potential to create change in the world. Capobianco's (2006) longitudinal study of 

four engineering women documented the importance of women’s beliefs that they could have a 

positive impact on the world through their engineering degrees. Two students, Jess and Brianna, 

described gendered discrimination in their engineering courses through male peers’ attitudes and 

being silenced in the classroom. Both of these students overcame these incidences and authored 

engineering identities by seeing the unique contributions they had to offer in internship and co-

op positions that made a positive impact on their engineering projects and relationships in an 

industrial setting. The development of agency allows students to act against established social 

structures and cultural norms both within engineering (as, for example, a male dominated field) 



 

and outside of it. It also allows them to take action and separate their own actions from what is 

done to them (Roth & Tobin, 2007). 

This combination of findings in RQ3, that women’s physics and math identities are less 

predictive of engineering career choice than for men and, simultaneously, that their agency 

beliefs are more predictive, suggests that the factors that could lead women into engineering 

differ not only in the substance (e.g., women show weaker physics/math identities on average, 

therefore they choose engineering less frequently) but also in the structure (less importance of 

physics/math identities for women in making engineering-related choices and greater  

importance of their agency beliefs). The implication is that efforts to recruit women which solely 

focus on “building” their physics/math/engineering identities will be less effective than those 

which also emphasize their empowerment, or at least their perceived empowerment in changing 

their world through engineering (e.g., agency beliefs). 

What students experience (e.g., in a classroom setting) clearly impacts what they 

intentionally choose for themselves (e.g., their choice of major/career). Teachers’ pedagogical 

choices can impact students’ choices and behavior, especially if those pedagogical choices 

empower students to shape what happens around them or at least to realize that they have the 

ability to shape what happens in their world. Specific classroom practices including student 

autonomy and the creation of hybrid spaces can impact students’ agency (Basu & Calabrese 

Barton, 2010; Calabrese Barton & Tan, 2010; Godwin, 2014; Holland, Lachicotte, Skinner, & 

Cain, 2001; Tonso, 2006). Based on our work, it is likely that a woman who develops agency 

towards engineering within a science course will be more likely to intentionally choose to pursue 

engineering, going against social norms and structures, than otherwise. Thus, agency increases 

the potential for individual and social transformation (Emirbayer & Mische, 1998). Agency 



 

beliefs are an important consideration in understanding how affective beliefs influence the 

choice of engineering for students, especially women. 

RQ4: How well does critical engineering agency as an explanatory framework describe 

students’ choice of engineering careers? 

In the current study, the sample is large and representative of the national postsecondary 

population (including 2- and 4-year institutions) with a typical postsecondary population 

including gender distribution (55% female). For student choice of engineering at the critical 

juncture between high school and college, this model of self-beliefs explains 20.2% of the 

variance in choice of engineering (Adjusted R2 of engineering career choice).  

In education research with no controls for additional effects like level of family support, 

prior academic performance, race/ethnicity, socioeconomic status, and out-of-school 

experiences, 20% is a large proportion of the variance in engineering career choice explained by 

CEA constructs. Engineering career choice is a complex and nuanced decision for many 

students. Explaining one-fifth of the outcomes solely through a construct of self-beliefs like 

CEA is a significant contribution. For example, this framework explains as much variance 

(∼20%) in the engineering choice outcome as the combined variance explained by family 

support of math and science, academic performance, gender, race, ethnicity, and which high 

school and postsecondary institution students attended (Godwin & Potvin, 2014). 

The results of this analysis highlight how certain student self-beliefs are important for 

understanding the choice of engineering as a career in college. Engineering identity is a 

somewhat unclear construct at the juncture of high school and college when students often 

declare a major of study, but before many students have had the opportunity to gain any 

engineering-related community experiences. Engineering identity has been shown to be 



 

connected to two subject-related identities – specifically, physics and math identity. As first 

identified in previous work (Cribbs et al., 2015; Godwin, Potvin, Hazari, & Lock, 2013) a 

significant, negative direct path from performance/competence to identity was confirmed for 

both physics and math identities. This indicates that even though performance/competence 

beliefs are related to the development of an identity in these domains, without interest and 

recognition as mediating factors, identity development may be substantially hindered. Boaler 

and Greeno (2000) make a similar point about math learners. They state that the performance in 

a math class is not enough to support a strong development of mathematical identities for 

students. Thus, if a person feels competent and able to perform in physics or math, both 

considered difficult topics, but he or she is never recognized or does not develop some interest in 

the subject, the likelihood of her developing a physics or math identity may be depressed. On the 

other hand, perceiving oneself as competent may be a prerequisite for being recognized or 

having interest in a particular subject. Self-efficacy beliefs, somewhat conceptually similar to 

performance/competence beliefs in our framing, are often cited as a key factor in persistence 

(Marra et al., 2009; Mau, 2003). Without a deeper examination of the ways in which these 

performance/competence beliefs are related to other important self-beliefs, including identity, 

interest, and recognition, the nuances of students’ engineering career choice at the transition 

from high school to college are obscured. 

Discussion 

This paper represents a quantitative use of CEA as a framework to understand students’ 

affective states in relation to engineering. Students’ engineering identity prior to having 

significant engineering experiences in a community of practice has been found to comprise 

multiple subject-related identities corresponding to students’ subject-related experiences in high 



 

school. This finding is consistent with previous studies on the “types” of students who choose 

engineering; specifically, students who excel in math and science and show interest in these 

subjects (Seymour & Hewitt, 1997; Tonso, 2006; Zhang, Thorndyke, Ohland, Carter & 

Anderson, 2003). 

Understanding the transition between high school and college is important to address the 

“gender filter” that excludes many women from STEM careers (Blickenstaff, 2005). As students 

move through their academic careers from middle school to high school to college, the fraction 

of students interested in STEM declines (disproportionately so for women), and the pathways for 

students choosing STEM careers becomes smaller and less diverse. Although prior research has 

documented student persistence and attrition in engineering majors across the postsecondary 

years (Cech & Waidzunas, 2011; Marra, Rodgers, Shen, & Bogue, 2012; Min et al., 2011), the 

choice of engineering as a career in high school is not well understood. The self-beliefs model 

utilizing CEA alone explains one fifth of the variance in students’ engineering career intentions. 

Many other factors may potentially predict engineering career choice, including factors such as 

structural supports and barriers, prior academic success, and other aspects of students’ future 

goals, to name some prominent examples. These factors were not included in the current study 

because of the overriding goal to test how the framework of CEA explains engineering career 

choice. Additionally, CEA, as we have constructed and tested in this paper, is solely based on 

students’ self-beliefs including identity and agency factors rather than factors external to an 

individual. Students often cite a “lack of belonging” as a main reason that they leave engineering 

(Rodgers & Marra, 2012). The framing of this study begins to measure constructs that add to 

those feelings and offer some implications for improving belongingness in engineering through 

students’ identities and agency beliefs (CEA). Our contributions add to the understanding of 



 

how identity can be measured quantitatively and how CEA constructs impact engineering career 

choice with a nationally representative sample. 

Implications for Practice 

We found that recognition beliefs had the largest influence on students’ math and physics 

identities. For K-12 teachers and professors who teach courses fundamental to engineering, like 

math and physics, understanding student identity is valuable for guiding students in engineering 

career choices and promoting their persistence. Instructors in engineering, physics, and math 

courses can positively impact students’ engineering attitudes by recognizing their students as the 

kind of people that can do STEM. One practical way that recognition can be incorporated into 

high school science and postsecondary engineering classrooms is through valuing the 

background knowledge and lived experiences that students bring with them into classrooms, 

which provides students the opportunities to take on STEM-related challenges. These 

experiences can give students recognition in the classroom for various types of successes rather 

than the traditional paths of access to STEM with a single “right” answer that only gives 

recognition to the “smart” students in the classroom. Creating these opportunities may help 

reduce the gendered patterns of access and recognition prevalent within engineering culture 

(Tonso, 2006). 

Agency beliefs also had a significant impact on engineering choice. Emphasizing the 

utility of science and engineering to cause meaningful change in the world and help to make 

students more critical of themselves and the world around them in high school science and math 

classrooms (and even freshman engineering courses) can positively affect students’ attitudes and 

increase the likelihood of them choosing a career in engineering. These endeavors are a valuable 

use of classroom resources because they are positive for all students, but potentially more so for 



 

women. For the engineering community, branding engineering as not only a technical discipline 

centered in math, equations, systems, and computing, but also focusing on the social impact of 

engineering products and careers may foster a connection with engineering for women more 

interested in careers that make a positive impact on the world (Committee on Public 

Understanding of Engineering Messages, 2008). For engineering educators, demonstrating the 

positive utility of science and engineering can be accomplished through student-oriented 

classroom discussions or demonstrations as well as specific case studies of engineering projects. 

Incorporating such topics will likely help to increase the number of STEM students, which is a 

national goal (President’s Council of Advisors on Science and Technology, 2012), and also 

increase the proportion of women in engineering who remain a persistently underrepresented 

group in this field (Yoder, 2014). 

The timing of this research has implications for the implementation of the Next Generation 

Science Standards (NGSS) in schools. Unlike previous science standards, NGSS explicitly 

include practices and core ideas from engineering and technology. This exposure to engineering 

practices and ideas earlier than college may have an impact on students’ understanding of what 

engineers do and spark additional interest in engineering, particularly since students have a very 

limited understanding of what engineers do in their careers (Dabbagh & Menascé, 2006). The 

goal of integrating engineering into the standards is to help students understand the similarities 

and differences between science and engineering by making the connections between them 

explicit (Pratt & Bybee, 2012). In contrast, traditional approaches to science regularly favor 

aspects of science/math identity development that are more structured around classroom 

environments rather than science itself. These practices do not allow students to access their rich 

knowledge based on non-school experiences (Bricker & Bell, 2012; Brickhouse et al., 2000; 



 

Brickhouse & Potter, 2001). As NGSS are implemented, care must be taken to provide learning 

opportunities that make students feel competent and give them opportunities to express that 

competence. If teachers implement these standards without explicit attention to the ways they 

support different possible identities, it may be difficult to foster the kinds of identities that 

support meaningful learning towards engineering practices/concepts, especially for 

underrepresented students (Buxton, 2005; Johnson et al., 2011). Beyond learning outcomes, the 

goals of the NGSS to integrate engineering into the curriculum can provide further opportunities 

for students to engage with engineering in ways that stimulates their interest and helps them 

author identities related to engineering-. However, the research base examining the effect of 

such implementations on affective outcomes is sparse; particularly with respect to designing 

integrated STEM experiences to intentionally support interest and identity development which 

promotes career interest in engineering. 

Limitations and future work 

Some limitations of this study include the inability to see how the measured constructs 

interact over time because the data utilized in this analysis are cross-sectional. Without 

longitudinal data, the ability to see how identity changes and develops over time and how 

changing agency beliefs influence engineering career choice is restricted. We acknowledge that 

identity is formed and negotiated over time through students’ experiences and is a dialogic and 

self-reflexive process. This work can only offer a static “snapshot” of how students utilize 

identities at the end of high school to choose engineering in college. However, this work does 

shed light on the multiple STEM-related identities that increase the likelihood of choosing an 

engineering career, the relationship between identity sub-constructs, and the importance of 

agency beliefs for women in their choice of engineering careers. Additionally, the items used to 



 

measure students’ agency beliefs are a first attempt at capturing how students view their choice 

of a career that uses science to affect their surrounding world. As this concept is better 

understood, new questions that capture more diverse aspects of students’ agency beliefs can be 

developed and utilized in the framework of CEA. Another limitation is the aggregation of 

engineering as a homogenized monolith rather than examining disciplinary differences in the 

CEA constructs. In addition, the goal of this study was not to understand what students believe it 

means to be an engineer but simply whether they are interested and how their disciplinary 

physics/math identities and agency beliefs can affect these interests. We hope to address their 

ontological understanding of engineering careers in future work. Finally, this analysis only 

examines one facet of diversity in engineering. Although gender is a persistent issue facing 

engineering, other factors like race, ethnicity, and class impact who has access to engineering 

and are important considerations for promoting more equitable participation within engineering. 

We do not know if some aspects of the subject-related identities in this paper will fade or 

become incorporated into a distinct engineering identity as students complete engineering 

courses, have direct experience with practicing engineers, and develop the skills needed in an 

engineering career. Future studies that investigate the experiences and changing attitudes of 

students throughout their undergraduate careers may give insight into how engineering students’ 

CEA changes over time. Also, the methods used in this work have the ability to show 

connections between large-scale constructs but do not take into account individuals’ 

experiences. Future explanatory studies of how and why these connections might be made and 

explained are vital to the continuing evidence for using CEA as an affective model. It is 

especially important to understand the nuances of how students internalize recognition from 

teachers, family, and peers into their own identities. We are conducting a qualitative follow-up 



 

study on how students feel recognized in the classroom to better understand practical ways for 

engineering educators to implement evidence-based recognition practices. 

Conclusion 

Students’ affective beliefs are vital to understanding their choices related to an 

engineering career. Identifying with math and physics upon entrance to a university predicts 

engineering choice for both men and women. These subject-related identities are the types of 

identities that students hold prior to having direct experience with engineering. By fostering 

development of these subject-related identities prior to university enrollment and early in 

students’ postsecondary careers, more students may be recruited and retained in engineering. 

Additionally, students’ agency beliefs are also important to their engineering career choice. 

Seeing practical applications for engineering in the world can provide opportunities to make 

engineering more attractive by highlighting ways in which engineering can be used to make a 

positive change in the world. 

Critical engineering agency may be used to understand the affective states of students who 

choose engineering. As a construct of self-beliefs, it alone explains over one fifth of the variance 

in the choice of engineering careers. These affective beliefs are a demonstrably strong influence 

on why students choose engineering. With some educators and researchers discussing the focus 

of engineering education on issues of equality, it is imperative to understand how students are 

developing a sense of identity with engineering both in high school and in college. This need is 

especially dire for students who have been traditionally marginalized. The development of the 

CEA model and application through structural equation modeling adds to the current 

understanding of what leads students to choose engineering between high school and college. 

Because of the complexity of students’ engineering career choices in college, many avenues of 



 

research may be developed through this framework. As these areas grow, the ways in which 

educators and researchers can empower women to choose engineering should be more 

effectively explored. 
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