
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

4-2016

Learning in vision and robotics
Daniel P. Barrett
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Artificial Intelligence and Robotics Commons, and the Robotics Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Barrett, Daniel P., "Learning in vision and robotics" (2016). Open Access Dissertations. 620.
https://docs.lib.purdue.edu/open_access_dissertations/620

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/620?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F620&utm_medium=PDF&utm_campaign=PDFCoverPages

LEARNING IN VISION AND ROBOTICS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Daniel P. Barrett

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2016

Purdue University

West Lafayette, Indiana

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . xii

1 INTRODUCTION . 1

2 ACTION RECOGNITION BY TIME-SERIES OF RETINOTOPIC AP-
PEARANCE AND MOTION FEATURES 4

2.0.1 Contribution . 7

2.1 Related Work . 9

2.2 Action Model . 11

2.3 Simultaneous Tracking and Action Recognition 17

2.4 Training the Models . 20

2.4.1 Mining for Difficult Negatives 24

2.4.2 Implementation Details . 25

2.5 New Dataset . 28

2.6 Experiments . 29

2.6.1 Classification Accuracy . 31

2.6.2 Localization . 37

2.7 Discussion . 38

2.8 Conclusion . 40

3 DRIVING UNDER THE INFLUENCE (OF LANGUAGE) 42

3.1 Related Work . 44

3.2 Experimental Platform . 45

3.3 Extracting Meaning from a Sentence 45

3.3.1 Constructing graphical models from a sentence 48

iii

Page

3.3.2 Representation of the lexicon 49

3.3.3 Computing the graphical model score 52

3.4 Tasks . 53

3.4.1 Acquisition . 58

3.4.2 Generation . 60

3.4.3 Comprehension . 61

3.5 Experiments . 66

3.5.1 Dataset collection . 66

3.5.2 Experimental evaluation . 70

3.6 Conclusion . 73

4 THE LARGE CONTINUOUS ACTION CORPUS 74

4.1 Introduction . 74

4.2 Collection . 77

4.3 Annotation . 82

4.4 Analysis . 84

4.5 Experiments . 86

4.6 Conclusion . 89

5 COMPARISON OF ACTION RECOGNITION WITH FMRI MIND READ-
ING . 91

5.1 Dataset . 91

5.2 Action Recognition Software . 95

5.3 Computer-Vision Action-Recognition Experiments 96

5.4 Discussion . 99

5.5 Conclusion . 101

6 LINGUISTICS MEETS VIDEO SEARCH 102

6.1 Experiments . 102

6.1.1 The Ten Westerns Video Corpus 102

6.1.2 Query Corpora . 103

iv

Page

6.1.3 Models . 104

6.1.4 Baseline . 105

6.1.5 Evaluation Procedure . 106

6.1.6 Results . 106

REFERENCES . 110

VITA . 119

v

LIST OF TABLES

Table Page

2.1 Classification accuracy of the current method compared with recent prior methods

(all published since 2009) on the Weizmann, KTH, UCF Sports, LCA, and Office11

datasets. Our numbers are uniformly reported to one decimal place. Prior results are

uniformly reported to the published precision. 32

4.1 Video filenames from the LCA dataset. The original names of the filed provided by

DARPA were used. Filenames containing GPTC were filmed at GPJTC.Filenames

containing STOPS were filmed at STOPS.Filenames consisting solely of a number were

filmed at FITG.Numbers of the form YYYYMMDD indicate filming date. CR indicates

country road. SH indicates safe house. Indices on CR, SH, and VT indicate variant

backgrounds of the given class. CP1, CP2, C1, and C3 indicate camera. Text indicates

the staging directions to guide filming. The remaining numbers serve to uniquely

identify the video. 79

4.2 Verbs used as labels in the LCA dataset. The starred verbs were used as part of the

stage directions to the actors. The remaining verbs were not used as part of the stage

directions but may have occurred incidentally. 81

4.3 Comparison of Accuracy for state of the art systems on the baseline experiment. . 88

5.1 Accuracy of within-subject and cross-subject classification of fMRI brain scans of sub-

jects watching video clips on a 1-out-of-6 action-recognition task (chance performance

is 0.1666), by subject and run, aggregated across subject, aggregated across run, and

aggregated across subject and run. Comparison with seven computer-vision action-

recognition methods, by run and aggregated across run. 98

vi

LIST OF FIGURES

Figure Page

2.1 Visualization of appearance and motion models for the bend action. Appearance (top

row) and motion (bottom row) are represented as dense grids of edge and optical-flow

orientation histograms (HOG and HOF) centered on the action. These models depict

a person bending over and standing back up. 8

2.2 Diagram illustrating the presented method. Appearance (and motion, not shown)

features (second row) are extracted from the images within bounding boxes in the

video frames (top row). These features are matched against the output models (third

row) associated with each state (bottom row) of an HMM which models a particular

action class. The sequence of states, and thus the sequence of appearance and motion

associated with that action class, is modeled with a transition distribution. 12

2.3 Visualization of the learned HOF models from jumping jack (Weizmann) and learned

HOG models from swing (UCF Sports), and open drawer (Office11). The jumping jack

models closely follow the person’s sequence of body and limb movements, while the

swing and open drawer models closely follow the sequence of edge-structure charac-

teristics of each action. Each visualization was produced on an unseen test video by

using the forward-backward algorithm to produce a weighted assignment of each frame

to each HMM state, and rendering onto each frame that model which belongs to the

HMM state with the highest weight. 15

2.4 Visualization of the learned appearance and motion models from example states from

a variety of action models. These each depict the edge orientations (white) and motion

orientations (green arrows) associated with a particular state of a particular action.

These examples all show the general form of a person, but in different postures, and

with motion in different places and orientations. For example, the UCF Sports golf

model (bottom row, third column) shows the form of a person bent over while putting,

with horizontal motion at the position of the club, while the Weizmann wave1 model

(second row far left) shows a person standing up straight, with motion corresponding

to waving a single hand in the air. 16

2.5 Confusion matrices for the current method with automatic tracks on each dataset. . 33

2.6 Localization accuracy as a function of Intersection-over-Union (IoU) threshold. Com-

parison between the presented method (solid lines) and the TLD tracker initialized

with the DPM object detector (dashed lines) 38

vii

Figure Page

2.7 Example tracks automatically produced by our system on unseen test video. The top

example, from Office11, shows successful tracking of a kick despite complete occlusion.

A tracking system unaware of the action would not produce this track because it is

highly sub-optimal according to low-level criteria. The bottom example, from UCF

Sports, shows successful tracking of the single person performing the kick action out of

many other visible and moving people. Low-level tracking systems have no mechanism

to choose that particular person to track. 39

3.1 (left) A human drives the mobile robot through paths according to sentential instruction

while odometry reconstructs the robot’s paths. Natural-language descriptions of these

paths are obtained from AMT.This allows the robot to learn the meanings of the nouns

and prepositions. Hand-designed word models are shown here for illustration; actual

learned word models are shown in Fig. 3.12. Note that the distributions are uniform in

velocity angle (bottom row) for left of, right of, in front of, and behind and in position

angle (top row) for towards and away from. These learned meanings support generation

of English descriptions of new paths driven by teleoperation (top right) and autonomous

driving of paths that meet navigational goals specified in English descriptions (bottom

right). 43

3.2 Illustration of the sequence of graphical models induced by a sentence. The sentence

is broken into sequential segments, and a path variable (P1, P2) is created for each

segment. Next, a floorplan variable (O1–O6) is created for each noun in each segment,

applying the noun’s label distribution (in blue) to the variable’s set of labels. Finally,

the arguments of each preposition are found, and each preposition’s distributions (in

green) over relative positions and velocities are applied between its arguments. . . 46

viii

Figure Page

3.3 Illustration of the score function induced by the sentence-segment graphical model

from the right side of Fig. 3.2, using the word models obtained from the learning

process. The graphical model is marginalized over all possible mappings from floorplan

variables to objects, yielding a scoring function over the position and velocity of the

path variable. The velocity is computed as the difference between the position at two

adjacent time steps, so that, given the position of the robot at the previous time step,

the function can be plotted at each point in space. The score function corresponding to

the graphical model is plotted for two different previous positions: the point (3.0, -0.55)

(left) and the point (3.0, -2.0) (right). Note that the differing positions for the previous

position drastically change the function. In the image on the right, the function prefers

points directly between the cone and the previous position, thus satisfying the towards

requirement, which are also to the right of the bottom-most chair. In the left image,

the previous position is such that there is no point both between it and the cone and

directly to the right of the chair. The optimal point is therefore to move toward the

cone, biased somewhat to the right, thus partially satisfying right of the chair. This

point has a much lower score that the optimal point on the right plot. Also note that

the scoring function correctly prefers points to the right of the chair described in the

phrase, and not the other chair or other objects. This is because those mappings of

floorplan variable O5 to other objects have a score close to zero at all points. The

noun distribution associated with O5 results in low score when the label of the object

mapped to O5 is not chair, and the distribution induced by the phrase right of the

table, results in low score for any mapping for which the object mapped to O5 is not to

the right of O6, and for any mapping for which the label of the object mapped to O6 is

not table. Therefore, with the learned word models, only those mappings of floorplan

variables to the proper objects significantly influence the score. 47

3.4 How position angles (left) and velocity angles (right) are measured. 51

3.5 A hidden Markov model is created representing the semantics of a sentence. The

sentence is broken into segments, and a graphical model is created representing each

segment. When a segment cannot be understood, it is pruned, and no graphical model is

created. Next, an HMM state is created for each remaining segment. The output model

of each such state represents the distribution over the possible positions and velocities

of the robot at a given point in time. These output distributions are the graphical

models associated with each segment, marginalized over the possible labelings of the

floorplan variables. Additional dummy states with uniform output distributions are

added at the beginning, end, and between each state. These dummy states allow the

HMM to match paths for which the semantics of the sentence are true, but for which

their are points in time where the robot does not fulfill any of the stated conditions.

The HMM transition distribution encodes the sequence of the sentence by forcing each

state to self transition or pass to the next state, as well as by requiring that the model

begin in the first state and end in the last. 54

ix

Figure Page

3.6 Illustration of aligning an example sentence-path pair from the training set. An HMM

is produced to represent the semantics of the sentence (top left). Given a floorplan and

path (top right), the HMM is used during learning to perform an alignment between the

states (and therefore the temporal segments of the sentence) and the densely sampled

waypoints of the path. Each HMM output model computes the score of the position

and velocity at each path waypoint (middle row). Because the preposition and noun

distributions are unknown at the start of the learning process, the labels of the floorplan

variables, which map nouns in the sentence to objects in the floorplans, are also un-

known. Therefore each state’s output score is the likelihood of the associated graphical

model, marginalized over all possible mappings of floorplan variables to labels. These

scores, along with the HMM transition model, are used with the forward-backward

algorithm to compute the probability of the HMM being in each state (bottom row),

along with the HMM likelihood. Prior to learning the word meanings, all preposition

and noun distributions are random. During acquisition of such meanings, the model

is updated to increase the overall HMM likelihood summed over all training samples.

At each iteration, this concentrates the probability mass of the distributions associated

with the prepositions for each HMM-state output model at those angles seen among

waypoints and objects at those time steps at which the probability of the HMM be-

ing in that state is high. It also concentrates the probability mass of the object-label

distributions in those bins associated with the mappings corresponding to high HMM

likelihoods. This example shows the scores and HMM state-probability assignments

using the word models after the learning process is complete. 55

3.7 Viewing the learning process as a constraint-satisfaction problem. Individual words

appear across multiple path-sentence pairs. This allows inference across different words

in the same sentence, where knowledge about one word constrains which points in the

path or objects are described by or referred to by another. It also allows inference

across multiple instances of the same word in the descriptions of different paths, where

relationships among waypoints and objects in one sentence-path pair, whose description

includes a particular word, constrain which relationships are referred to by that same

word in the description of another path. 56

x

Figure Page

3.8 Illustration of the word meanings and resulting scoring functions at different steps in

the learning process. The scoring function corresponding to the same phrase illustrated

in Fig. 3.3 is shown for the first four iterations of the learning process, along with the

word models used in interpreting that phrase. Iteration 0 (top left) shows the randomly

initialized word models, and the resulting score surface, which does not encode the

meaning of the phrase at all. The noun distributions are largely uniform, resulting in

no visible correlation between the score and the individual object positions. After the

first iteration (top right), the noun models have just begun to concentrate in the correct

bins, and the position distribution of the right model is beginning to concentrate in

the correct direction. This change is evident in the score surface, which shows that

it depends upon the position of the cone, but not in the correct way, as the towards

model is still completely wrong. After the second iteration (bottom left), the noun

distributions are further concentrated in the correct bins, and the towards velocity

distribution is now pointed in the correct direction, although still almost uniform. The

score surface now clearly depends on both the cone and the proper chair. After the third

iteration (bottom right), the noun distributions are further concentrated, as are both

the position angle distribution of the right model and the velocity angle distribution of

the towards model. The cost surface now largely represents the meaning of the phrase,

and already looks quite similar to that in Fig. 3.3, which is the result after convergence. 57

3.9 Illustration of the generation algorithm. A disambiguating noun phrase is generated for

each floorplan waypoint. Path waypoints are described by prepositional phrases, and

then sets of identical phrases are merged into intervals, which are combined to form

the sentence. 59

3.10 Illustration of the effect on the comprehension system of single-word changes to the

input sentence. The top row shows the effect of changing the preposition specifying

the relation between the robot and a reference object between left (left), right (center),

and behind (right). The bottom row shows the effect of changing the prepositions

specifying which object is is being referred to. This allows the system to correctly

distinguish between many objects of the same type, such as each of the four boxes in

the example. As the prepositions away from and toward only specify the direction of

motion, and are not specific about how far to go, the comprehension system sometimes

chooses points which result in rather short distances traveled, particularly when there

is an obstacle in the way, such as in the paths shown at the top-right and bottom-left. 62

3.11 Illustration of the scoring function after the addition of the barrier penalties, which

keep the comprehension path waypoints away from the objects and from each other,

and attraction terms, which encode preference for proximity to the target object. . 63

3.12 Example experimental runs, 6 for each of acquisition, generation, and comprehension.

Our source code and dataset will be available upon publication. 67

xi

Figure Page

3.13 Bar graphs showing the distribution of responses given by AMT workers for each of the

four questions: sentence correctness (far left), sentence completeness (middle left), path

completeness (middle right), and sentence conciseness (far right). The distributions are

shown for sentences elicited from AMT workers and judged against the acquisition (dark

blue) and comprehension (light blue) paths used to elicit the sentences, as well as for

paths produced by the comprehension system judged against the human sentences used

as input (yellow), and for machine-generated sentences judged against the paths used

as input (red). 68

4.1 Several frame sequences from the LCA dataset illustrating several of the backgrounds

in which they were filmed. 80

4.2 Intercoder agreement on the annotations of the LCA dataset. F1 score for each pair of

annotators as the overlap criterion is varied. Overlap of two intervals is measured as

the length of their intersection divided by the length of their union. 85

5.1 Key frames from sample stimuli for each of the six action classes. 92

5.2 Intercoder agreement for each annotator pair on (a) the C-D2b/Country_Road dataset

and (b) the Recognition and Description portions of the y2-evaluation dataset that

were part of the Year 2 evaluation of the DARPA Mind’s Eye program, as a function

of requisite temporal overlap. 93

5.3 Box plot corresponding to the results in Table 5.1, aggregated across subject and run

for fMRI and aggregated across run for the computer-vision methods. Red lines in-

dicate medians, box extents indicate upper and lower quartiles, error bars indicate

maximal extents, and crosses indicate outliers. The dashed green lines indicates chance

performance. 97

5.4 Confusion matrices corresponding to the results in Table 5.1, aggregated across subject

and run for fMRI and aggregated across run for the computer-vision methods. . . . 99

6.1 (top left) Comparison of average precision in the top 1, 3, 5, and 10 hits,
over the SVO queries for both the baseline and the sentence tracker. (bot-
tom left) Precision/recall curve over the SVO queries for the sentence
tracker. Results for synthetic (top row) and human (bottom row) queries
in the top 1, 3, 5, and 10 hits (right three columns). (second column) Frac-
tion of queries with at least the the indicated number of hits, correct or
ambiguous hits, and correct hits. (third column) Fraction of queries that
have at least the indicated fraction of correct hits. (fourth column) Preci-
sion of returned hits as a function of threshold. 107

6.2 Frames from hits returned for several synthetic and human queries. Some
clips are returned for multiple queries. As indicated above, theses hits
were judged as correct or ambiguous for the associated query by human
judges. 109

xii

ABSTRACT

Barrett, Daniel P. PhD, Purdue University, May 2016. Learning in Vision and
Robotics. Major Professor: Jeffrey M. Siskind.

I present my work on learning from video and robotic input. This is an important

problem, with numerous potential applications. The use of machine learning makes

it possible to obtain models which can handle noise and variation without explic-

itly programming them. It also raises the possibility of robots which can interact

more seamlessly with humans rather than only exhibiting hard-coded behaviors. I

will present my work in two areas: video action recognition, and robot navigation.

First, I present a video action recognition method which represents actions in video

by sequences of retinotopic appearance and motion detectors, learns such models au-

tomatically from training data, and allow actions in new video to be recognized and

localized completely automatically. Second, I present a new method which allows a

mobile robot to learn word meanings from a combination of robot sensor measure-

ments and sentential descriptions corresponding to a set of robotically driven paths.

These word meanings support automatic driving from sentential input, and gener-

ation of sentential description of new paths. Finally, I also present work on a new

action recognition dataset, and comparisons of the performance of recent methods on

this dataset and others.

1

1. INTRODUCTION

I present my work on machine learning from video and robotic input. This work

has resulted in several published papers and several others which are still in review.

Specifically, I am first author on two accepted IEEE journal papers and on two journal

papers currently in review, as well as coauthor on two accepted conference papers and

one currently in review, and coauthor on three technical reports. The journal papers

are:

1. Daniel P. Barrett and Jeffrey M. Siskind, “Action Recognition by Time-Series

of Retinotopic Appearance and Motion Features,” in IEEE Transactions on

Circuits and Systems for Video Technology, 2015.

2. Daniel P. Barrett, Andrei Barbu, N. Siddharth, and Jeffrey M. Siskind, “Saying

What You’re Looking For: Linguistics Meets Video Search,” in IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2015.

3. Daniel P. Barrett, Scott A. Bronikowski, Haonan Yu, and Jeffrey M. Siskind,

“Driving Under the Influence (Of Language),” manuscript in review.

4. Daniel P. Barrett, Ran Xu, Haonan Yu, and Jeffrey Mark Siskind, “Collecting

and Annotating the Large Continuous Action Dataset,” manuscript in review.

The conference papers are:

1. Andrei Barbu, Daniel P. Barrett, Wei Chen, Narayanaswamy Siddharth, Caim-

ing Xiong, Jason J, Corso, Christiane D. Fellbaum, Catherine Hanson, Stephen

Jose Hanson, Sebastien Helie, Evguenia Malaia, Barak A. Pearlmutter, Jef-

frey Mark Siskind, Thomas Michael Talavage, and Ronnie B Wilbur, “Seeing

is Worse than believing: Reading People’s Minds Better than Computer-Vision

2

Methods Recognize Actions,” in the Proceedings of the European Computer

Vision Conference (ECCV), 2014.

2. Yu Cao, Daniel Barrett, Andrei Barbu, Siddharth Narayanaswamy, Haonan

Yu, Aaron Michaux, Yuwei Lin, Sven Dickenson, Jeffrey Mark Siskind, Song

Wang, “Recognize Human Activities from Partially Observed Videos,” in the

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2013.

3. Scott A. Bronikowski, Daniel P. Barrett, and Jeffrey M. Siskind, “Object Code-

tection from Mobile Robot Video,” in review.

The technical reports are:

1. Daniel P. Barrett, Scott A. Bronikowski, Haonan Yu, and Jeffrey M. Siskind,

“Robot Language Learning, Generation, and Comprehension,” on Arxiv, 2015.

2. Haonan Yu, Daniel P. Barrett, and Jeffrey M. Siskind, “A Faster Method for

Tracking and Scoring Videos Corresponding to Sentences,” on Arxiv 2014

3. Daniel P. Barrett and Jeffrey M. Siskind, “Felzenszwalb-Baum-Welch: Event

Detection through Changing Appearance,” on Arxiv 2013

In all of these ten documents, my technical contribution was significant enough

that the paper would not exist without it. In many of these, I am the first author,

performed the majority of the work, and am responsible for the majority of the

technical contribution.

The majority of my work consists of that described in the two journal papers: “Ac-

tion Recognition by Time-Series of Retinotopic Appearance and Motion Features,”,

which constitutes Chapter 2, and “Driving Under the Influence (Of Language),’ which

constitutes Chapter 3. In the first, 100% of the technical contribution of the paper

is solely my work: the learning algorithm, the action recognition method, the new

dataset, and all code, experiments, figures, and text. In the second, the vast majority

3

of the technical contribution of the paper is my work, including the sentence parsing

method, sentence and word representations, learning algorithm, sentence comprehen-

sion and planning algorithm, experiments, and the majority of the code, text and

figures. The material from these two journal papers constitutes the bulk of this doc-

ument, with the addition of a second journal paper currently in review “Collecting

and Annotating the LCA dataset”, (Chapter 4), for which I am also responsible for

the majority of the technical contribution: the annotation of the new dataset and

the experiments demonstrating its difficulty through the poor performance of state-

of-the-art action recognition methods. The final two chapters include material from

my contributions to other published papers, specifically ECCV 2014 (Chapter 5), for

which I conducted all the experiments with video action recognition methods, and

PAMI 2015 (Chapter 6), in which I conducted large scale video retrieval experiments

and evaluation of results through Amazon Mechanical Turk.

4

2. ACTION RECOGNITION BY TIME-SERIES OF

RETINOTOPIC APPEARANCE AND MOTION

FEATURES

We present a method for recognizing and localizing actions in video by the sequence

of changing appearance and motion of the participants. Appearance is modeled by

histogram of oriented gradients (HOG) object detectors while motion is modeled by

optical-flow motion-pattern detectors. Sequencing is modeled by a hidden Markov

model (HMM) whose output models are these appearance and motion detectors. The

HMM and associated detectors are simultaneously trained, learning the sequence of

detectors that match the most distinctive temporal subsequences of the action rep-

resented in the training data. Training uses both positive and negative samples of

a given action class and is accomplished without need for annotation of the cor-

respondence between training-video frames and the state-conditioned detectors, by

minimizing a discriminative cost function through gradient descent. Trained models

are used to perform recognition and localization by simultaneous detection, tracking,

and action-recognition. In contrast to many prior methods, our approach learns intu-

itively meaningful models that represent action as a sequence of retinotopic models.

We demonstrate such by rendering these models on unseen test video. This method

was found to perform competitively on three standard datasets, Weizmann, KTH and

UCF Sports, as well as on video from the DARPA Mind’s Eye program and a newly

filmed dataset. Action recognition in video is a growing field, applicable to areas such

as surveillance, robotics, and video retrieval. This field largely focuses on forced choice

one-out-of-K classification of video clips, rather than binary classification or detection

in long streaming videos, which can, in theory, be done by extension of a classifica-

tion system. The most prominent datasets [1–6] reflect this focus. Every video clip

in these datasets contains a single instance of an action; no clip contains multiple

5

actions or fails to depict any action. The most prominent current methods [1, 6–15]

generally employ a bag of spatio-temporal visual-words approach (BOW). They gen-

erally extract feature vectors, such as spatio-temporal interest points (STIP) [4] or

Dense Trajectories [13], at a subset of space-time points, build a codebook by pooling

such, vector quantize such feature vectors on this codebook, compute a histogram of

codebook-entry occurrences on the pooled frames of a video, and classify these his-

tograms with temporally invariant models, such as support vector machines (SVM).

However, such methods leave something to be desired, as they do not represent the

coarse-grained temporally variant appearance and motion that is characteristic of an

action class in a human discernible fashion, relying instead on aggregation of very

fine-grained properties. Such methods can learn models for actions based upon low-

level features which have correlation with the classes in the particular dataset used,

but which are unrelated to the meaning of the action class that a human might un-

derstand. For example, they might associate diving with a blue Olympic swimming

pool [16], or basketball and volleyball with a wooden gym floor [17]. The aggregated

properties by which a video is classified, therefore, may not even have come from the

part of the video in which the action takes place. Such methods therefore generally

do not localize the recognized actions.

These methods are akin to distinguishing lasagna from spaghetti by blending them

up and analyzing the ratios of elements with a mass spectrometer. Fundamentally,

spaghetti and lasagna differ only in the shape of the pasta, but are usually associated

with different sauces, resulting in correlations with different microscopic properties.

Thus, such a blender approach would generally have high performance, but completely

fail to distinguish lasagna and spaghetti without sauce or fail to distinguish pesto or

Alfredo lasagna from spaghetti when trained on tomato lasagna and spaghetti, and

would not be well suited to localizing individual pieces of pasta. Similarly, models for

diving and basketball which rely on the backgrounds would have difficulty recognizing

a person shooting a basketball in a swimming pool. Perhaps for this reason, many

datasets focus on classes which might be better thought of as scenes than actions.

6

For example, the UCF50 [1] dataset depicts classes, such as military parade and horse

race, which are not localizable atomic actions, but rather general scene categories.

One reason that much recent work focuses on BOW-style methods is precisely

because they do not involve localization, which itself has proven to be quite difficult.

Localization of the action participants generally involves the use of some kind of de-

tector or tracker. However, detection and tracking are themselves unsolved problems,

with no totally reliable solution. Background subtraction (e.g., Lin et al. [18]) avoids

explicit object detection, and aims to identify those pixels which are in the “fore-

ground” by building a model of the background, and assigning areas that move or

otherwise deviate from this model to the foreground. General tracking methods like

that of Kalal et al. [19] take a bounding box as input, and attempt to track the entity

bounded by that box through the rest of a video. However, none of these methods

have a way to track the particular person performing an action and fail in the pres-

ence of occlusion or, in the case of background subtraction, in the presence of several

moving objects. Any method which relies on such preprocessing steps to provide the

locations of the action participants is subject to cascading failure when the detec-

tor or tracker fails to track the relevant participants. The localization performance

therefore sets an upper bound on recognition performance.

However, the benefits of localizing the action participants in addition to recog-

nizing the action class have been shown by the recent work of Yu & Siskind [20]

and Siddharth et al. [21]. They track action participants and use them to recog-

nize and generate natural-language sentences complete with adjectives, adverbs, and

prepositional phrases describing the properties of and interactions between multi-

ple participants. This kind of deep analysis is impossible without localization. The

key to both of these methods is the Event Tracker of Barbu et al. [22] which is a

framework for performing simultaneous tracking and action recognition. It allows

a high-level action model to influence the tracking process, preventing the issue of

cascading failure, and making it more reliable than two step independent tracking

and action-recognition methods.

7

The Event Tracker is not an action recognition model, nor a learning method, but

a way to combine an existing action recognizer which satisfies certain properties with

existing object-detectors to perform simultaneous tracking and action recognition.

The action models used by Barbu et al. [22], Yu & Siskind [20], and Siddharth et

al. [21] represent actions only through simple features such as the gross motion and

relative position of the action participants. They therefore can only support rather

simple action classes, such as pick up and approach, which can be represented by

such features. They rely on pretrained generic person and object detectors to provide

detections to the simultaneous tracking and action-recognition process. However, the

actions in many standard action-recognition datasets, like UCF Sports [2], depict

people in rather unusual poses which result in failure of generic person detectors. For

these reasons, the Event Tracker framework has not been shown to work on standard

action-recognition datasets.

2.0.1 Contribution

We present a new method which performs action recognition and localization us-

ing intuitively meaningful models, while still achieving competitive performance on

complex actions and on standard action-recognition datasets. This is made possible

by a novel learning method, which integrates detection, localization and action recog-

nition, training a combined model to maximize action classification. Further, it does

so in a way compatible with the Event Tracker, allowing it to be used as a tool, and

showing that it can be extended to complex actions. This new method models the

time series of the appearance and motion of the people and/or objects that partici-

pate in an action. This is done by learning, for each action class, a temporal sequence

of actor-centered Histograms of Oriented Gradients (HOG) object detectors [23] and

optical-flow-based motion-pattern detectors. These models are retinotopic. That is,

like the receptors of the retina, they are spatially organized in a dense grid. They are

therefore able to represent coarse spatial organization which is lost in sparse interest-

8

Fig. 2.1. Visualization of appearance and motion models for the bend action.
Appearance (top row) and motion (bottom row) are represented as dense grids
of edge and optical-flow orientation histograms (HOG and HOF) centered on the
action. These models depict a person bending over and standing back up.

point-based methods, and can be meaningfully visualized and understood by humans

as we demonstrate in Fig. 2.1.

Each of these models represents the motion or appearance of the actor during a

highly distinguishing temporal subsequence of an action. A sequence of such mod-

els represents the changing characteristics of an actor in a video as they evolve over

time during that action. Each action class is modeled with a hidden Markov model

(HMM) [24] whose state-conditioned output models are the appearance and motion

detectors. Thus each HMM state represents one of the characteristic appearance

and/or motion patterns, and the sequence of HMM states models the changing ap-

pearance and motion over time. Such an HMM is learned automatically through a

novel discriminative training procedure on both positive and negative samples of an

action class. This results in simultaneously learning which subsequences of the action

are useful for recognition, the order in which they take place, and the appearance

and motion detectors associated with each, without the need for manual key-framing

or other extensive manual annotation. We require only bounding boxes around the

actor in the training videos. We further show how our learned models allow for im-

9

provements to the Event Tracker to perform simultaneous object detection, tracking,

and recognition of actions.

2.1 Related Work

There is recent prior work which also attempts to model time-series in general [25],

which model actions in video as temporal sequences, or which attempt to model the

appearance or pose of the participants. Tang et al. [26] break videos into fixed-

length segments, on which BOW features are computed, and then use an HMM

to model the sequence of segments. However, the segment length was manually

specified, varying by dataset, and was very long, reducing each video to a very small

number of segments, and largely providing the HMM with the latent state-assignment

information. Niebles et al. [5] model actions as sequences of motion segments at

varying time scales. However, they represent each segment as a histogram of sparse

STIP features, whereas our method uses a dense sampling grid to represent the coarse-

scale appearance and motion. Like Tang et al. [26], Liang et al. [27] also break videos

into fixed length segments. They employ a Spatio-Temporal-And-Or-Graph, which

models actions as a sequence of disjunctions of local BOW models over HOF and

HOF features computed at STIP interest points. They attempt to account for spatial

structure by explicitly modeling the relative positions of these local models. Wang

et al. [8] explicitly model human joint pose, mine for clusters of pose sequences, and

then reduce videos to BOW histograms for classification with a temporally invariant

SVM. Wu & Shao [28] also classify video with explicitly modeled human pose. They

model the sequence of human skeleton estimates extracted from 3D RGB-D sensor

data through a Hidden Markov Model with a series of neural networks. In contrast,

our method implicitly models pose through appearance and motion models, allowing

application to appearance change of non-human objects, and models the temporal

sequence of changing appearance rather than reducing it to a histogram like Wang

et al. [8]. Barbu et al. [22] also employ an HMM model, but do not represent the

10

appearance or motion patterns of the action. They instead rely on features computed

directly from bounding boxes themselves, ignoring the content of the video inside

these boxes. They obtain such boxes from pretrained object models which are used

only for detection and are not state conditioned. Thus, while they do model the

sequence of changing gross object motion and of spatio-temporal relationships among

action participants, they do not model the sequence of changing object appearance

or motion patterns which cannot be captured by the gross movement of the bounding

detection boxes. Banerjee & Nevatia [29] present a method based on key-pose filters

which model both appearance and motion. However, whereas we model the temporal

sequence of action state and infer the state at each frame with an HMM, they explicitly

model and infer the position of the key frames with a hidden conditional random field

(HCRF). This model cannot localize the action, and instead depends on a separate

pedestrian tracker, whereas we learn models which enable simultaneous detection,

tracking, and action recognition.

The two methods which are most similar in spirit to our work are Tian et al.

[30] and Yao et al. [31]. Tian et al. [30] present a spatio-temporal extension to the

deformable part model (DPM) [32] intended to serve as an action detector. They

train a template for each action which includes a cuboid root filter and a number of

displaceable cuboid part filters. Because the filters are cuboids, they must be large

enough to encompass the entire space traversed by a moving object over the course

of the entire action, whereas our models track the object through time, allowing the

filters to be centered on the image region where an object is present in a specific frame

in the video. Their method must also be provided with annotation of the temporal

extent of a single cycle of each training action, such as a single jumping jack, whereas

our method can automatically handle such repetition without any annotation. Yao

et al. [31] present another recent method which extends the ideas of the DPM object

detector to action recognition. They use an HMM to model the sequence of such

models, each of which contains a HOG root filter and a set of explicitly labeled body-

part models which each consist of a HOG model and a Histograms of Oriented Flow

11

(HOF) model [33]. For training, they require manual annotation and labeling of the

body parts. We require no such part annotations. Whereas our training procedure

can automatically cluster the training video frames into a sequence of discriminative

poses to be modeled, they must do so by performing clustering on these manual part

annotations.

2.2 Action Model

The sequence of each action class is modeled by an HMM with N states. An

HMM assumes the existence of a hidden state sequence Xt, for t = 1, ..., T , and that

a series of observations Dt were sampled from state-conditioned output distributions

bi(Dt) = P (Dt|Xt = i). An HMM’s parameter set λ consists of an initial state

distribution π, specifying the probability of beginning in each state, an N by N

transition matrix A, whose elements aij specify the probability of transitioning from

state i at time t to state j at time t+ 1, and the parameters of the set of state output

models bi, for i = 0, ..., N , which depend on the particular output models used.

The likelihood l = P (D1, . . . , DT |λ) of the data given the HMM can be computed

efficiently via the forward algorithm [24]. It is computed as l =
∑N

i=1 αT (i), where

αt(i) = P (D1, . . . , Dt, Xt = i|λ), and is computed recursively via αt(j) =
∑N

i=1 αt−1aijbj(Dt).

Given a uniform prior over action classes, a video can be classified by computing the

likelihood of the HMM for each class and choosing the class with the highest likeli-

hood.

In the present method, as illustrated in Fig. 2.2, the observations Dt of a video are

a sequence of dense n× n grids of HOG and/or HOF feature vectors extracted from

each frame of the video along a sequence of bounding boxes around the actor. For

training, we assume that such boxes are available by some means, either manually

specified or produced automatically. Such a sequence can be produced automatically

by a variety of methods: background subtraction, adjacent-frame image differenc-

ing, or more powerful tracking methods. For simple datasets such as Weizmann [3],

12

Fig. 2.2. Diagram illustrating the presented method. Appearance (and motion,
not shown) features (second row) are extracted from the images within bounding
boxes in the video frames (top row). These features are matched against the
output models (third row) associated with each state (bottom row) of an HMM
which models a particular action class. The sequence of states, and thus the
sequence of appearance and motion associated with that action class, is modeled
with a transition distribution.

13

background subtraction is sufficient to find the actor, and such background masks

are provided with the dataset. We automatically extract bounding boxes from these

masks for use in training. Other datasets, such as UCF Sports, UCF11 [16], and UT-

interaction [34], provide such boxes directly. At test time, we obtain such bounding

boxes automatically. Our trained models allow us to employ a modified version of

the Event Tracker [22] to perform simultaneous detection-based tracking and action

recognition, which is described further in Section 2.3.

Following Dalal & Triggs [23], our HOG features use 9 orientation bins. However,

rather than using 4 such histograms normalized according to different blocks, which

would result in a 36 element vector for each block, we only normalize each histogram

once in each block in order to reduce the feature dimensionality. Thus each HOG grid

position consists of a 9 element vector. Our flow feature is similar to HOF. While

HOF involves computing differential flow, breaking the image region into overlapping

patches, binning the differential flow by orientation in each patch, and then normal-

izing each patch, our feature, in contrast, is computed for each patch by taking the

average flow and then binning its horizontal and vertical components each into three

bins, resulting in a 6 element vector for each grid position. The feature vectors at

the grid positions are concatenated into a single HOG vector and single HOF vector

per frame. Thus, the feature vector Dt for each frame is of length 9n2
h for an nh× nh

HOG grid, and is of length 6n2
f for an nf × nf HOF grid.

The HMM state output model bj(Dt) for a particular state j and the normalized

HOG or HOF feature vector for a particular frame t is computed with a sigmoided

dot product,

bj(Dt) =
1

1− exp

(
−h
∑
i

wjiDti

) (2.1)

where h is a smoothing parameter of the sigmoid and wj is a weight vector of length

9n2
h for a HOG model and 6n2

f for an HOF model.

We further take symmetry into account when computing bj(Dt). This is done by

computing both bj(Dt) using the original features Dt and using those features D′t,

14

which were computed from the video after reflecting it along the vertical axis. For

each state j, and for each frame t, the maximum of these two scores is taken to be

bj(Dt). This provides a degree of viewpoint invariance, allowing a single model to

match an action when viewed from either side, or to switch from one orientation to

another, as in row two of Fig. 2.3.

These output models do not satisfy the sum-to-one constraint, and are therefore

are not probability distributions, but rather single-layer neural networks. Niles &

Silverman [35] showed that HMMs can be viewed as a special case of neural networks

and that, in this context, relaxing the sum-to-one constraints is natural, and may

result in a better classifier. However, doing so does remove the probabilistic interpre-

tation of the HMM. Therefore, we refer to the output of the HMM forward algorithm

as an HMM score, rather than a likelihood.

HOG object detectors generally also use a dot product model. Thus, each state’s

HOG output model can be thought of as an object detector, and its HOF output

model as a motion-pattern detector. The use of object and motion detectors as HMM

output models allows an action to be recognized by a sequence of appearances, by a

sequence of motion patterns, or by a combination of the two. For example, an open

drawer action could be recognized by the appearance of a closed drawer, as determined

by a high scoring closed-drawer detector in one state, followed by a transition to the

appearance of an open drawer, as determined by a high scoring open-drawer detector

in another state. Fig. 2.3 depicts a visualization of such a model on an unseen test

video. This figure was generated automatically by rendering, on a given frame t, the

HOG output model from the state j with the highest P (Xt = j|D1, . . . , DT , λ) as

computed by the forward-backward algorithm [24]. The white lines indicate HOG

model weight at an orientation and location. Brighter lines indicate more weight,

while those with non-positive weight are not drawn. Fig. 2.3 also shows a similar

visualization of the HOF model for jumping jack on an unseen test video. A green

arrow indicates the weight of the model at a particular position and orientation.

Brighter arrows have higher weight, while those with negative or zero weight are not

15

W
ei

zm
an

n
ja

ck
H

O
F

U
C

F
S
p

or
ts

sw
in

g
H

O
G

O
ffi

ce
11

op
en

dr
aw

er
H

O
G

Fig. 2.3. Visualization of the learned HOF models from jumping jack (Weiz-
mann) and learned HOG models from swing (UCF Sports), and open drawer
(Office11). The jumping jack models closely follow the person’s sequence of body
and limb movements, while the swing and open drawer models closely follow the
sequence of edge-structure characteristics of each action. Each visualization was
produced on an unseen test video by using the forward-backward algorithm to
produce a weighted assignment of each frame to each HMM state, and rendering
onto each frame that model which belongs to the HMM state with the highest
weight.

drawn. Fig. 2.4 shows visualizations of a number of example output models showing

both HOG and flow.

Because the opening of a drawer involves simple linear motion which depends on

the viewpoint, such an action might not be easily recognizable with motion features.

Other actions, such as the skateboarding and walking classes in UCF Sports, which

have very similar appearance, might be more easily distinguished by the difference in

motion of the person’s legs. The use of both appearance and motion detectors allows

16

Weizmann pjump Weizmann run Weizmann side Weizmann skip Weizmann walk

Weizmann wave1 Weizmann wave2 KTH handclapping KTH handwaving KTH jogging

KTH running KTH walking UCF Sports golf UCF Sports lift Office11 lunge

Fig. 2.4. Visualization of the learned appearance and motion models from exam-
ple states from a variety of action models. These each depict the edge orientations
(white) and motion orientations (green arrows) associated with a particular state
of a particular action. These examples all show the general form of a person, but
in different postures, and with motion in different places and orientations. For
example, the UCF Sports golf model (bottom row, third column) shows the form
of a person bent over while putting, with horizontal motion at the position of
the club, while the Weizmann wave1 model (second row far left) shows a person
standing up straight, with motion corresponding to waving a single hand in the
air.

17

such differences to be modeled. Other actions might involve the same appearance

or motion, but in a different sequence, such as a close drawer action, which involves

the same appearances as an open drawer action, but in the opposite order. The

combination of the HMM’s state transition matrix with the detectors in its output

models allows such actions to be distinguished by the order in which these appearances

take place. BOW approaches would not be able to make such a distinction.

2.3 Simultaneous Tracking and Action Recognition

At test time, the goal of our system is to both recognize and localize the actions

occurring in video. We use a modification to the Event Tracker [22] to combine

our action model and its internal object detectors into an integrated simultaneous

detection, tracking and action recognition system. Given a video, a set of scored

object-detection boxes in each video frame, and an HMM action model, the Event

Tracker produces a track composed of a single detection in each frame along with a

score indicating how well the track depicts the action based upon the HMM action

model.

The Event Tracker operates by globally optimizing a joint tracking and action-

recognition objective function.

max
q1,...,qT

j1,...,jT

T∑
t=1

f(ptqt) +
T∑
t=2

g(pt−1qt−1 , p
t
qt)

+
T∑
t=1

e(jt, ptqt) +
T∑
t=2

a(jt−1, jt),

(2.2)

where the four terms are: f(p), the detection score of each box p in the sequence,

g(p, p′), the track-coherency score between each pair of boxes p and p′ in adjacent

frames, e(j, p), the HMM state output-model score of the features in box p scored

against the state j, and a(j, j′), the state-transition score between the states j and j′

assigned to each pair of adjacent frames. Thus, it simultaneously finds the best possi-

18

ble sequence of detections and the best possible sequence of HMM states, producing

the MAP estimate of the HMM score given the optimal track.

The Event Tracker has three steps:

1. Obtain an over-generated set of scored object-detection boxes.

2. Construct a lattice through the cross-product of detections and HMM states.

3. Use the Viterbi algorithm [36] to find the optimal path through the lattice.

The Viterbi algorithm uses dynamic programming to efficiently find the optimal path

through a lattice with unary vertex costs and binary edge costs. Because the HMM

and tracking cost functions each consist of unary and binary terms, a combined lattice

with unary and binary costs acting on the cross-product of all box-state pairs can

be generated. The Viterbi algorithm then finds the optimal combined sequence of

detections and HMM states, along with the corresponding cost.

Joint optimization of the combined cost function allows the action model to bias

the tracker. This is advantageous when compared to the use of tracking and ac-

tion recognition in independent steps. For instance, only one of several people in a

particular video might be performing a given action. If that person is also difficult

to track, perhaps partially occluded or in the background, an independent tracker

would have difficulty in finding that person amidst the other, more easily tracked

people. However, the Event Tracker allows the high level information reflected in the

action model to bias the low-level tracker towards that person which best exhibits

the characteristics of that action.

Our use of HMMs allows us to make use of the Event Tracker. In addition, the

availability of HMM state conditioned object models produced by our method allows

us to improve upon it.

In step (1) of the Event Tracker, Barbu et al. [22] use generic pretrained DPM

object detectors to generate a large number of detection boxes. Then they discard all

but the top P detections in each frame based upon their detection scores. In contrast,

we produce the detections using the action-specific HMM state output models which

19

have been trained by our system to maximize recognition performance. We do so

by running our state-conditioned output models as object detectors, producing, as

in DPM, a score pyramid in each frame corresponding to the scores of boxes at each

possible box position at a variety of scales. Thus, for each position in the pyramid,

which corresponds to a box with a particular position and scale, we have the output

score for each HMM state. Next, the top P boxes in each frame are kept for each

HMM state based upon this score. This differs from Barbu et al. [22], where the

top P boxes are kept based solely on a generic object-detector score. Step (2) differs

in that our detection boxes were produced using state-conditioned models, and thus

each box has an associated HMM state. We therefore add a constraint to the lattice

which forces the chosen HMM state in a given frame to match the state associated

with the chosen box in that frame.

These modifications allow further influence of the high-level action model onto to

not only the tracker, but also the object-detection process. This has two advantages.

First, the action-specific HMM state-conditioned object models can detect people or

objects in poses or configurations which are generally unusual, and thus score poorly

with a generic detector, but which might be common, or even characteristic of the

action in question. Thus, actions which are very difficult to track with generic models

because the person takes an unusual pose become straightforward to track with our

method. Further, the inclusion of other features like motion into the score prior to

thresholding the boxes avoids the loss of detections which have comparatively poor

object appearance score, but which exhibit the desired motion so well that they are

part of the optimal track.

We run our modified Event Tracker using the model for each action class. For each

action, this yields the optimal track, along with a score indicating how well each such

optimal track depicts the action. If there is no person or other agent performing a

given action in the video, the associated score will be low. We perform classification

and localization by choosing the class and track from the model with the highest

score.

20

2.4 Training the Models

The action models are discriminatively trained through gradient descent with a

maximum-margin objective function. Such an objective encourages each model to

score highly on training samples of its own class, and poorly on others. It also

encourages each model to have higher score on training samples with matching class

than the other models on those same samples. Thus optimizing such a function aims

to improve classification performance.

The objective function used, O, is a sum over individual training-video costs Ov.

Each video cost Ov is the square of a soft version of the multi-class hinge-loss function

used by Crammer & Singer [37] for multi-class SVMs:

Ov = max(0, 1 + SoftMax({svr|r 6= kv})− svkv)2 (2.3)

where svr is the HMM score (in log space) of video v with HMM r, kv is the index of

the HMM whose class matches the class of video v, and

SoftMax(S) = y log

(
U∑
i=1

exp

(
Si
y

))
(2.4)

where U is the dimension of S and y is a smoothing constant. Thus, when the correct

HMM score svkv on a video v is greater than the SoftMax of the incorrect scores svr

by a margin greater than 1, the video is classified correctly with a margin of at least 1,

and the cost is zero. If the margin is less than 1, then

Ov =

1 + y log

 C∑
r=1
r 6=kv

exp

(
svr
y

)− svkv

2

(2.5)

where C is the number of classes.

To optimize O, we compute its gradient with respect to the HMM parameters,

and perform gradient descent. We use the chain rule to compute the gradient as a

21

function of the gradients of the individual video costs with respect to the parameters

of individual HMMs. The derivative ∂O
∂xrd

of O with respect to xrd, the dth parameter

of HMM r, is
∂O

∂xrd
=
∑
v

∂Ov

∂xrd
(2.6)

where by the chain rule,
∂Ov

∂xrd
=
∂Ov

∂svr

∂svr
∂xrd

(2.7)

and ∂Ov

∂svr
depends on whether r = kv, i.e., whether this HMM’s class matches that of

video v.

If r = kv, then ∂Ov

∂svr
= −2

√
Ov, otherwise

∂Ov

∂svr
= 2
√
Ov

∂SoftMaxu(svu)
∂svr

. After simplifying, we obtain

∂O

∂xrd
=
∑
v

2Z
√
Ov

∂svr
∂xrd

(2.8)

where Z = −1 if r = kv, otherwise

Z =
svr exp(svr)
C∑
u=1
u6=kv

exp

(
svu
y

) (2.9)

and where ∂svr
∂xrd

is the derivative of the score computed by the HMM forward algorithm

on video v with HMM r, with respect to parameter d. Using the techniques of reverse-

mode automatic differentiation [38], which is a systematic way to apply the chain

rule, the entire gradient of svr with respect to all HMM parameters can be computed

efficiently within a small constant factor of the time needed to compute the score svr.

This is done by taking a forward pass through the program, computing the value

of the function while storing intermediate values, and then taking a backward pass,

computing the derivatives using these stored intermediate values. This process is

analogous to back propagation in neural networks [39].

22

The parameters of an HMM are composed of three parts, π, a, and w. The

derivative āij of an HMM’s score on a video with features Dt with respect to the

elements of its transition matrix aij, and π̄i, the derivative with respect to the elements

of its initial state distribution, πi, are given by

āij =
∑
t

ᾱtjα(t−1)i

π̄i = ᾱ0ibi(D0)

where ᾱti, the derivative of the HMM score with respect to αti, is given by

ᾱti =
∑
j

ᾱ(t+1)jbj(Dt)aij (2.10)

The derivative w̄jm of the HMM score with respect to wjm, the mth weight parameter

of the output model of state j, is given by

w̄jm =
∑
t

hDtmb̄tj exp(−hγtj)
(1 + exp(−hγtj))2

(2.11)

where h is the smoothing parameter of the sigmoid function, Dtm is the value of the

mth element of the feature vector Dt at frame t, γtj is the value of the dot product

between Dt and wj, and where b̄jt, the derivative of the HMM score with respect to

bj(Dt) is given by

b̄jt =

ᾱtj
∑
i

aijα(t−1)i t > 0

ᾱ0jπj t = 0

(2.12)

During optimization, the output models are constrained to have unit magnitude. This

is accomplished in two ways. First, the gradient of the objective function is made to

take the normalization into account. This is done by creating an augmented objective

function which normalizes the output models before passing them into the original

23

objective function. We then take the gradient of this augmented objective function.

We let

wjm =
w′jm∑
z

w′jz
(2.13)

Then, the desired derivative becomes

w̄′jm =
w̄jm∑
z

w′jz
−

∑
z

w̄jzwjm(∑
z

wjz

)2 (2.14)

The optimization procedure breaks the parameter space into two subspaces, the

space of initial-state parameters π and transition parameters aij and the space of

output-model parameters wjm. It alternates between taking steps in each space.

The initial-state parameters π and transition parameters aij are updated using the

growth transform [40], while the output models are updated using gradient descent

with a dynamic step size. While the above gradient points in a direction for which

an infinitesimally small step will maintain the magnitude of the output models, the

finite step size taken by gradient descent results in small changes to the magnitude.

To compensate, the output models are also renormalized after each gradient-descent

step.

The effect of this optimization process is that the HMM parameters are updated

in a way that maximally improves the discriminative power of the HMM score. The

state-conditioned output models each gradually become more distinct and specialized

towards a particular temporal subsequence of the action as the weighted assignment

of frames to states becomes less uniform. This results in the HMM states for a given

action model matching the sequence of the most distinct appearance and/or motion

that occurs in that action class, and rejecting the appearance and motion that occurs

in other actions as encoded in negative training samples. The latent HMM states are

automatically assigned to these distinctive moments in the video without need for

manual annotation of such. Fig. 2.3 shows visualizations of the models learned for

24

jumping jack from Weizmann, for swing from UCF Sports, and for open drawer from

Office11, a new dataset that we have filmed.

In contrast to pretraining object models and treating the detector output scores

as features, which would require manual assignment of training frames to each model,

the use of detectors as HMM state-conditioned output models allows the sequence of

detectors to be trained automatically as part of the action model. Thus the latent

state assignment is learned without supervision in conjunction with the detectors

themselves.

Training the detectors in conjunction with an HMM also makes it possible for the

detectors to be trained in a discriminative fashion specifically to maximize action-

class discrimination. In contrast, an object detector is generally trained to maximize

detection of that object, and therefore seeks to score highly on all positive training

frames. This is achieved in methods such as DPM by the use of a disjunction of

root filters. However, some poses are not useful for discriminating between actions,

such as a person standing upright, who might be preparing to either bend, kick, or

jump. Training a DPM model for each action would result in each model including

a root filter corresponding to a person standing before the action. In contrast, the

simultaneous training of the detectors and the HMM to maximize discrimination

between the actions allows non-discriminative poses to be ignored automatically as

the detectors learn to model the most discriminative sequence.

2.4.1 Mining for Difficult Negatives

The HMM scores svr depend upon the sequence of boxes on which the features

have been computed. For the positive samples, i.e., when r = kv, the provided track of

bounding boxes around the actors are initially used to compute svr. After the models

have been partially trained, the Event Tracker is used to find the highest scoring

track through each training video with the model whose class matches that video.

The score svr for r = kv is then taken to be a weighted mean between that computed

25

on the provided track, and that computed on the automatically determined track.

This allows the system to handle errors and misalignments in the tracks provided for

training.

We obtain additional negative samples by running our partially trained action

detector on the training videos similar to the way Felzenszwalb et al. [32] obtain such

for training an object detector by running it on training images. To produce difficult

negative samples, our modified Event Tracker is used to find the highest scoring tracks

in each video v using all non-matching models of class r such that r 6= kv. These

tracks are used to compute the HMM scores svr for the non-matching models for each

training video. Thus the objective O pushes each model to score as high as possible

on the tracks through the positive videos and as low as possible on all tracks through

other videos. The use of such difficult negative tracks is very important. Without

them, the system can easily classify the training videos on the provided tracks and

will not learn models that can classify videos with automatically produced tracks, as

will be shown in Section 2.6.

2.4.2 Implementation Details

In addition to the output parameters w and the transition parameters a, which

are fully learned, our system contains eight hyper-parameters, which are not learned.

There are four hyper-parameters in the training procedure: the iteration delay until

the onset of retracking the training videos, the frequency of retracking, the automatic

track queue size, and the smoothing parameter of the SoftMax in the objective

function. There are four hyper-parameters in the model: the number N of states, the

grid sizes nh and nf for the HOG and HOF models, and the smoothing parameter h

to the output model sigmoid.

SoftMax is used in place of Max in the objective function in order to make the

objective smooth. It removes the discontinuities in the gradient that would otherwise

be caused by Max. The smoothing constant y in SoftMax, which controls how

26

closely it approximates Max, was fixed at 0.1. This small value was chosen so that

the value of SoftMax is close to the true Max.

At the start of training, the models are initialized in the following way. The output

models are initialized randomly with elements sampled uniformly in [−1, 1]. These

are then shifted so that each output model sums to zero and subsequently normalized

to have unit magnitude. The shift is done in order to prevent some output models

from having lower mean, and thus scoring poorly on all feature vectors. This would

be undesirable and potentially cause the model to learn to skip that state before it

has a chance to adapt to the data.

The transition matrices are initialized to a chain structure which allows arbitrary

backward transitions but only allows transitions forward by a single state, i.e., the

states are labeled 0, . . . , N − 1 and state i can transition to all states j ≤ i + 1,

where the probabilities are uniform among allowed transitions. Thus skipping states

is initially disallowed, but arbitrary looping is possible. The HMMs are constrained

to begin in the first state 0, and end in the last state N − 1. This is done so that

the HMM cannot return a high score on a video which depicts only a subsequence

of an action, but must find the full sequence. On such a video, the low score of

states corresponding to undepicted parts of the action will result in a poor overall

score. The number of states N was set to 4 by looking at the actions in the datasets

and observing that there are generally fewer than 4 major human-discernible poses.

Because the model can learn that not all states are necessary, we used this upper

bound for all datasets and for all classes.

The computation needed to mine a training video for high-scoring negative tracks,

O(TNB(n2
f +n2

h)) (where B denotes the number of locations in the image pyramid),

dominates that needed to compute the gradient and perform a parameter update,

O(TN(n2
f + n2

h) + TN2), because of the comparatively compute-intensive step of

running the HMM state-conditioned models as detectors at a large number B of

positions and scales in each frame. Therefore, new negative tracks are not produced

every iteration of training. This is done with a retracking frequency of once per

27

1000 iterations instead, so that the models are will have been substantially modified

and will produce a new set of negative tracks each time. To avoid cyclic behavior

caused by abrupt changes in the set of negatives, we do not discard the previous set

of negative tracks each time new tracks are found. Instead, we maintain a queue of

three such sets, discarding the oldest set when the queue becomes full. Thus each

set of negative tracks is used for 3000 updates. Positive mined tracks are not used

until the model has been substantially trained in order to avoid using garbage tracks

as positive samples. In practice, they have been used after an onset delay of 2000

iterations, and the weight given to the mined positives has been half the accuracy on

the training set.

As in Dalal & Triggs [23], our HOG features are computed using 8×8 pixel blocks.

During training, the image inside each bounding box is scaled so that the number

of 8 × 8 pixel blocks in each box matches the size of the grid of the output models.

When performing automatic detection and tracking, the computation of the image

scale pyramid controls the size of the boxes. Larger values of the grid sizes nh and

nf allow the modeling of finer grained spatial information, but increase the runtime,

particularly for running all the output models as detectors. The balance between

detail in the model and computational efficiency is thus determined by the scale of

the participants in the dataset. We want the grid size to be large enough to match

the scale of the participants in the training videos: if it is smaller, the boxes will be

scaled down and details lost; if it is larger, the boxes will be scaled up, and the extra

detail will be redundant and add unnecessary computation. For all datasets except

the LCA dataset, we used nh = 10 and nf = 10, yielding 10 × 10 grids of HOG

and HOF features. For the LCA dataset, we used nh = 6 because the participants

tend to be at a smaller scale, and the larger dataset makes computational efficiency

more important. The smoothing parameter of the output model sigmoid h controls

its steepness. It was chosen to be 10 so that the output for the dot product of two

random unit vectors is usually close to zero. Since our method performs well with

these intuitively chosen values on all the datasets, we have not done a search through

28

the space of these parameters to maximize performance. It is possible that some other

values produce better results.

2.5 New Dataset

We filmed a new dataset, Office11, to highlight the power of the current method.

We are interested in recognizing and localizing specific actions, such as might be used

for a robotics or surveillance application. Many other methods are focused on web

video and general pattern recognition. These different focuses result in different chal-

lenges. Video taken from movies or the from web sites like YouTube were produced

for human consumption, and contain scene transitions, highly zoomed in camerawork,

and unknown camera movement. However, a surveillance camera or robot would not

be presented with these difficulties, but instead have other challenges, like occlu-

sion and multiple simultaneous actions. Localization of detected objects and actions

would be also be more important than in a web-based setting. The types of actions to

recognize in these two contexts also differ. Whereas it might be useful to categorize

and retrieve YouTube videos based on general scene categories like military parade,

wedding, or horse race, specific actions like a person marching, giving an object, or

riding a horse would be more relevant to a surveillance system or robot.

Our dataset is meant to better reflect these challenges, and attempts to remove

two shortcomings of prior standard datasets. First, most action-recognition datasets

focus on people, and do not include actions which involve the manipulation of ob-

jects. Second, many action-recognition datasets have strong correlation between the

background and the action taking place. For example, in UCF Sports, diving always

occurs in an Olympic swimming pool. No other actions take place in a pool, so iden-

tification of the background provides a powerful cue to the action: “For instance,

v spiking normally happens in a crowd of people, and diving happens in a pool. This

is common for professional sport actions which take place in highly structured en-

vironments” [16]. Similarly, in UCF11, “Basketball shooting and volleyball actions

29

are also confused in some cases: this is largely because most of the time, the basket-

ball and volleyball sports use very similar courts” [17]. While some consider the use

of contextual information to inform the classification process to be a virtue, we de-

sire to recognize actions in a semantically meaningful way, solely by recognizing and

localizing the action itself, which is more true to the goal of video action recognition.

Office11 was filmed to remove these two shortcomings. It avoids spurious cor-

relation between actions and backgrounds and includes actions which involve both

manipulation of objects and human body-posture changes. The dataset includes 11

action classes: bend, kick, lunge, wave, open drawer, close drawer, answer phone, hang

up phone, talk on phone, operate hole punch, and knock over cup. Some actions are

the same or similar to those in other datasets, such as bend, kick, and wave, but they

all take place in the same background, with several people constantly walking around

in the field of view, often occluding each other and depicting parts of other actions

as one person performs the entirety of the desired action. The open drawer and close

drawer actions take place in the same cluttered office with 7 different drawers, which

are opened and closed. The remaining actions also take place in a cluttered office. In

this dataset, the background cannot be used to distinguish bend, kick, lunge, and wave

from each other, nor to distinguish open drawer from close drawer, or discriminate

answer phone, hang up phone, talk on phone, operate hole punch, or knock over cup

from each other. The dataset is slightly bigger than UCF Sports, with 179 videos.

2.6 Experiments

The performance of the current method was compared with state-of-the-art prior

methods on three standard datasets (Weizmann, KTH [4], and UCF Sports), as well

as on the LCA dataset [41] and Office11, and was found to be competitive with recent

methods. We also compare to several baseline methods: the HOG baseline, the HOF

baseline, and the 3-Stage Baseline. The HOG and HOF baselines use the method

described in the current manuscript, but with only a single HMM state and using

30

only the HOG or HOF feature, respectively. Both baselines use the same combined

automatic tracking method described here. Their poor relative classification accuracy

shows that the performance of our method is not due simply to the strength of the

features, but due to their combination together with the sequence model. The 3-Stage

baseline classifies each video by detecting the person, tracking them, and running the

classifier of the current manuscript in sequence. The DPM object detector produces

the top person detection in the first frame of the video, initializing the Tracking-

Learning-Detection (TLD) tracker of Kalal et al. [19]. Finally, this track is passed to

the same trained action recognition models used to evaluate our method. The poor

relative performance of this baseline shows the importance of the integration of the

detection, tracking, and classification systems. The tracks produced by this baseline

are also used to compare localization performance.

Classification results are reported in Table 2.1 and Fig. 2.5, and localization ac-

curacy results are reported in Fig. 2.6. The standard leave-one-actor-out evalua-

tion protocol from prior publication was used for the Weizmann dataset. The KTH

dataset was run with the train-test split associated with the dataset and used by

Yao et al. [31]. The UCF Sports dataset was run with 16-fold cross-validation. To

compare against prior work on the LCA dataset, we used the same 70:30 train-test

split used to produce the results in Barrett et al. [41]. For Weizmann, UCF Sports,

and Office11, the bounding boxes for training were determined using information

provided with the dataset. For KTH, we used the boxes made available by Lin et

al. [42]. For the LCA dataset, as no such information was provided, the boxes used

as input for training were generated automatically. For each dataset, we report the

accuracy of our method on the test videos with boxes produced automatically by our

learned models through simultaneous tracking and action recognition. We also re-

port classification accuracy with manually annotated boxes on the Weizmann, KTH,

UCF Sports, and Office11 datasets, in order to observe performance in the absence

of difficulties caused by tracking. As no such manual boxes are available for the LCA

dataset, we also report results using boxes obtained with the same method used to

31

obtain the training boxes. We also report results with models which were trained

without the use of additional bounding boxes produced by mining for high scoring

tracks with the Event Tracker during training. This last number is included in order

to show the importance of such negative training data. Without it, performance is

much worse than any of the other baselines on almost every dataset.

2.6.1 Classification Accuracy

Weizmann Dataset

The Weizmann dataset consists of 90 low resolution video clips. There are 10

classes, each depicted once by each of 9 different actors, wearing a variety of differ-

ent clothing. Experiments are done with 9-fold leave-one-actor-out cross validation.

These videos have a clean white background and a single visible person, who per-

forms the action. As noted in Tian et al. [30], many methods which report results on

this dataset depend on this clean background to obtain a clean mask of the actors’

silhouette by performing background subtraction as a preprocessing step.

Like Tian et al. [30] we do not rely on such properties. We instead perform si-

multaneous recognition and localization with our general-purpose system. Table 2.1

compares our results against recent methods on this dataset. Our results with auto-

matic tracking are almost identical to those with manual tracks, both making very

few mistakes and outperforming several recently published methods. While we do

not achieve perfect results like Tian et al. [30], we significantly outperform the result

they report without deformable parts. As Tian et al. [30] is among the most similar

methods to this work, particularly the version without parts, this is an interesting

result.

32

Table 2.1.
Classification accuracy of the current method compared with recent prior methods
(all published since 2009) on the Weizmann, KTH, UCF Sports, LCA, and Office11
datasets. Our numbers are uniformly reported to one decimal place. Prior results
are uniformly reported to the published precision.

Weizmann Accuracy (percent)
Tian et al. (2013) [30] (with parts) 100
Oreifej & Shah (2014) [12] 92.8
Tian et al. (2013) [30] (without parts) 92.4
Nagar & Agrawal (2014) [43] 92
current manuscript (automatic tracks) 96.7
current manuscript (manual tracks) 97.8
current manuscript (without negative mining) 12.2
HOG baseline 75.5
HOF baseline 92.2
3-Stage-Baseline 43.3

KTH Accuracy (percent)
Yao et al. (2014) [31] (with annotated parts) 94.53
Yao et al. (2014) [31] (without annotated parts) 84.70
current manuscript (automatic tracks) 94.9
current manuscript (manual tracks) 91.2
current manuscript (without negative mining) 44.9
HOG baseline 62.5
HOF baseline 82.8
3-Stage-Baseline 59.7

UCF Sports Accuracy (percent)
Sadanand & Corso (2012) [44] 95.0
Yuan et al. (2013) [10] 92.67
Wu et al. (2011) [7] 91.3
Wang et al. (2013) [8] 90.22
Oreifej & Shah (2014) [12] 89.7
Wang et al. (2013) [13] 89.1
Everts et al. (2013) [9] 85.7
Yuan et al. (2013) [11] 87.33
Tian et al. (2013) [30] (with parts) 75.2
Tian et al. (2013) [30] (without parts) 64.9
current manuscript (automatic tracks) 82.0
current manuscript (manual tracks) 94.0
current manuscript (without negative mining) 38.6
HOG baseline 48.6
HOF baseline 48.6
3-Stage-Baseline 38.3

LCA Accuracy (percent)
Sadanand & Corso (2012) [44] 16.667
Wang et al. (2013) [45] 15.556
Wang et al. (2013) [13] 14.074
Kuehne et al. (2011) [6] 9.259
Cao et al. (2013) [46] 7.592
Le et al. (2011) [47] 6.667
Ryoo (2011) [48] as reimplemented by [46] 6.667
Messing et al. (2009) [49] 6.296
current manuscript (automatic tracks) 14.3
current manuscript (pregenerated tracks) 11.8
current manuscript (without negative mining) 5.5
HOG baseline 6.3
HOF baseline 12.0
3-Stage-Baseline 7.6

Office11 Accuracy (percent)
Sadanand & Corso (2012) [44] 87.2
Kuehne et al. (2011) [6] 73.2
current manuscript (automatic tracks) 93.3
current manuscript (manual tracks) 98.3
current manuscript (without negative mining) 21.8
HOG baseline 33.5
HOF baseline 73.2
3-Stage-Baseline 24.5

33

Weizmann KTH

UCF Sports Office11

LCA

Fig. 2.5. Confusion matrices for the current method with automatic tracks on each dataset.

34

KTH Dataset

We evaluate our method on the KTH dataset in order to compare against Yao

et al. [31], the most recent and most similar method. The KTH dataset consists of

videos depicting six human action classes: boxing, hand clapping, jogging, running,

walking, and hand waving. Each action is performed several times by 25 different

people each in four scenarios: indoors, outdoors, outdoors while wearing different

clothes, and outdoors with scale variation caused by camera zoom. This yields a

total of 600 videos and 2391 action instances. The dataset provides a split into

training, validation, and testing videos. Like Yao et al. [31], we use the training and

validation sets for training, and test on the test videos. While the training videos

each contain several instances of each action, they are quite similar, so we need only

use the first from each video.

Table 2.1 compares our performance against that of Yao et al. [31]. The method of

Yao et al. [31] depends on manual annotation of bounding boxes in the training videos,

as we do, but also uses manual annotation of part locations. They report results both

with manual annotation of part locations in the training videos, and without. We

outperform both numbers, despite not using all the training data. In particular, we

greatly outperform them when they only have bounding-box annotations for training,

as we do. Since they use clustering on the part locations to determine how the frames

of training videos should be broken up into distinct poses, the fact that we greatly

outperform them given the same level of manual supervision shows that our method

is better able to automatically learn the relevant characteristics of the actions.

UCF Sports Dataset

The UCF Sports dataset consists of 150 videos obtained from the web. This

dataset also contains 10 classes. The videos in UCF Sports are much more difficult

than those of Weizmann, containing substantial camera movement, widely variant

backgrounds and viewpoints, and occasionally low temporal resolution. It also in-

35

cludes scene changes which result in the actor sometimes jumping significantly in the

image from frame to frame. As noted earlier, it contains significant correlation in

background between videos of the same class.

Previous work often uses leave-one-out cross-validation. It has been shown in Lan

et al. [50] that the leave-one-out setting allows methods to take advantage of scene

correlation between training videos. We instead use 16-fold cross-validation. Doing so

reduces the amount of training data available, but our method performs well despite

this. Table 2.1 compares our results to recently published work. Our result with

manual tracks outperforms all previous work except Sadanand & Corso [44], but the

result with automatic tracks only outperforms Tian et al. [30]. The camera movement,

scene changes, and sometimes low temporal resolution make tracking in this dataset

very difficult. Many of these other methods are BOW based: they do not perform

localization, and can take advantage of the correlation in background, which we ignore

by design. However, our results with automatic tracking are still good, and critically,

outperform Tian et al. [30].

Because Tian et al. [30] also attempt to localize actions and recognize them based

on the appearance and motion of the actor, this comparison is worth discussing fur-

ther. As on the Weizmann dataset, they report results both with part models, and

without, showing that they perform much better with such part models. As our

method does not use part models, it is more similar to the version that lacks parts.

On this dataset, we outperform both numbers. This suggests that our method of

closely tracking the actor so that the models are centered on the action better han-

dles the variation present in UCF Sports than the cuboid models of Tian et al. [30].

LCA Dataset

The LCA dataset is very difficult, consisting of a 13 hour subset of the video

produced by DARPA for year 2 of the Mind’s Eye program, designed to simulate a

ground-based surveillance task. It contains 24 classes (approach, arrive, bury, carry,

36

chase, dig, drop, enter, exchange, exit, flee, follow, give, hold, leave, pass, pick up,

put down, replace, run, stop, take, turn, and walk) in a number of outdoor environ-

ments depicted from a variety of viewpoints and scales, and often includes several

people simultaneously moving in the same video, partially occluding one another,

and performing other actions not in the list of 24 classes. Being designed to emulate

surveillance, there is no camera movement. All the action classes occur in each back-

ground environment, so that the background gives little to no clue as to the action.

This is a very difficult dataset, despite the lack of camera motion. A recent paper [41]

compares the results of 8 recent methods. No method surpasses 17% accuracy.

As no bounding box information is included with LCA, we used automatically

generated boxes to initialize training. This was done using our tracker with a generic

object proposal method [51] and a motion prior. To bias the tracker towards moving

objects, the mean optical-flow magnitude of each proposal was added to its score to

produce the detection score f used by the tracker. The single highest scoring track

as determined by the Viterbi algorithm was used as the initial positive track for each

video. This simple tracker has no information about the actions, and therefore has no

way to determine which visible person to track when, as is often the case in the LCA

dataset, several people are simultaneously visible and moving. Therefore, these initial

tracks are quite poor, often tracking the wrong person. However, our method can

handle these noisy training detections. The use of the Event Tracker to repeatedly

resample the positive tracks according to the partially learned action models during

training allows our method to recover from this, and perform competitively, as can

be seen in Table 2.1.

We report results both using tracks for the test videos which were pregenerated

in the same manner described for the training videos and using the learned models

to automatically localize the action with the Event Tracker. The results using the

Event Tracker outperform those with pregenerated tracks, because the learned action

models make it possible to determine which person is performing the action. Our

method performs better than several methods, including Dense Trajectories [13], and

37

performs at a similar level with Improved Trajectories [45] and Action Bank [44].

These four top methods significantly outperform the rest, with all others besides

C2 [6] performing at a near chance level. This shows that our method is able to

match the state of the art on this difficult dataset, even with no manual annotation

on the training videos, using only noisy automatically generated boxes.

Office11 Dataset

As described previously, Office11 consists of 179 videos, depicting 11 classes. It

contains both human-pose related actions as well as manipulation of objects. We

performed a comparison experiment between our method and two top-performing

methods for which software is available: Action Bank [44] and C2 [6]. Action Bank

performs the best on both the UCF Sports and LCA datasets, and so provides a

strong comparison. We performed an identical 5-fold cross-validation experiment on

this dataset with both these methods and our own. Results are shown in Table 2.1.

Our method outperforms both other methods on this dataset.

2.6.2 Localization

We evaluated the localization accuracy of our method, separate from classification

accuracy. It is evaluated by computing the Intersection-over-Union (IoU) measure

between the track produced by the highest scoring model and the ground-truth track.

We report the accuracy of localization as the fraction of test videos with IoU above a

certain threshold. Fig. 2.6 shows the localization accuracy of our method on each of

the datasets as a function of this threshold, and compares this against that produced

by the TLD tracker. Results are not reported for LCA because ground-truth is not

available. Fig. 2.7 visualizes localization examples which cannot be produced by low-

level tracking systems. Our method outperforms the TLD tracker on every dataset.

The performance of our system is somewhat similar to that of TLD on the easier to

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intersection over Union (IoU) Threshold

A
cc

ur
ac

y

Weizmann

KTH

UCF Sports

Office11

Fig. 2.6. Localization accuracy as a function of Intersection-over-Union (IoU)
threshold. Comparison between the presented method (solid lines) and the TLD
tracker initialized with the DPM object detector (dashed lines)

track Weizmann and KTH datasets, but is dramatically superior on the more difficult

UCF Sports and Office11 datasets.

2.7 Discussion

Our method outperforms both Tian et al. [30] and Yao et al. [31], the two most

similar methods, both of which were published recently. It also outperforms two

state-of-the-art methods on our new dataset Office11, and performs competitively

in the very difficult LCA dataset. It performs well with both manual and automatic

tracking. On the KTH dataset, classification performance is actually higher than with

manual tracking. This is likely due to the manually annotated tracks being aligned

poorly with the person in some videos, a problem which is solved by performing

automatic tracking. On the LCA dataset, it performs well despite noisy bounding

boxes used for training, and also performs better with automatic tracking than with

39

Fig. 2.7. Example tracks automatically produced by our system on unseen test
video. The top example, from Office11, shows successful tracking of a kick despite
complete occlusion. A tracking system unaware of the action would not produce
this track because it is highly sub-optimal according to low-level criteria. The
bottom example, from UCF Sports, shows successful tracking of the single person
performing the kick action out of many other visible and moving people. Low-level
tracking systems have no mechanism to choose that particular person to track.

40

predefined tracks obtained with a tracker unaware of the action class. Evaluation of

localization shows that lower classification performance on the UCF Sports dataset

with automatic tracks when compared to manual tracks may be due to the difficulty

in tracking the people performing the actions in that dataset. Our results also show

the importance of mining for difficult negative tracks in the training data, rather than

using only instances of other actions as negative samples. Without this additional

negative training data, our method learns models which perform extremely poorly.

This suggests that other methods such as Tian et al. [30] or Yao et al. [31] may benefit

from a similar step during training.

2.8 Conclusion

We have presented a method for automatically learning the changing appear-

ance and motion patterns of actions in video. It accomplishes this by automatically

identifying the most discriminative temporal subsequences of the action classes, and

training sequences of appearance and motion detectors to maximize the training clas-

sification margin. The learned sequences of detectors are shown by their visualizations

to be intuitively meaningful representations of the actions. These learned models can

then be used to perform simultaneous recognition and localization of actions in new

video. This method has been shown to perform competitively with the state of the

art in action recognition on several datasets. In particular, it outperforms two re-

cent methods which also attempt to recognize and localize actions by appearance and

motion.

Acknowledgments

This research was sponsored, in part, by the Army Research Laboratory and was

accomplished under Cooperative Agreement Number W911NF-10-2-0060. The views

and conclusions contained in this document are those of the authors and should not be

interpreted as representing the official policies, either express or implied, of the Army

41

Research Laboratory or the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes, notwithstanding any

copyright notation herein.

42

3. DRIVING UNDER THE INFLUENCE (OF

LANGUAGE)

We present a unified framework which supports grounding natural-language semantics

in robotic driving. This framework supports acquisition (learning grounded mean-

ings of nouns and prepositions from human sentential annotation of robotic driving

paths), generation (using such acquired meanings to generate sentential description

of new robotic driving paths), and comprehension (using such acquired meanings to

support automated driving to accomplish navigational goals specified in natural lan-

guage). We evaluate the performance of these three tasks by having independent

human judges rate the semantic fidelity of the sentences associated with paths. Over-

all, machine performance is 74.9%, while the performance of human annotators is

83.8%. With recent advances in machine perception and robotic automation, it be-

comes increasingly relevant and important to allow machines to interact with humans

in natural language in a grounded fashion, where the language refers to actual things

and activities in the world. Here, we present our efforts to automatically drive—and

learn to drive—a mobile robot under natural-language command. Our contribution

is summarized in Fig. 3.1. A human teleoperator is given a set of sentential instruc-

tions designating robot paths. The operator then drives a mobile robot under radio

control according to these instructions through a variety of floorplans. The robot uses

onboard odometry and inertial guidance sensors to determine its location in real time

and saves traces of the driving paths to log files. Visualizations of these paths are then

placed on Amazon Mechanical Turk (AMT), where anonymous workers are asked to

provide sentential descriptions. From a training corpus of these paths paired with

their corresponding sentential descriptions and floorplan specifications, our system

automatically learns the meanings of nouns that refer to objects in the floorplan and

prepositions that describe both the spatial relations between floorplan objects and

43

a
cq

u
is

it
io

n

in
p
u
t

The robot went behind the
cone and then turned around
and went further behind the
cone to the right of the chair.

o
u
tp

u
t

n
o
u

n
s

bag box chair cone stool table

p
re

p
o
si

ti
o
n

s

p
o
si

ti
o
n

v
e
lo

ci
ty

left of right of in front of behind towards away from

=⇒

g
e
n
e
ra

ti
o
n

in
p
u
t

o
u
tp

u
t The robot went behind the cone then went in front of the stool then went in front of

the table then went right of the box which is right of the box then went left of the cone
then went in front of the box which is right of the box then went in front of the box
which is left of the box

+

co
m

p
re

h
e
n
si

o
n

in
p
u
t The robot went behind the table, then toward the table, then toward the stool, then

when the robot was to the left of the stool it went in front of the stool.

o
u
tp

u
t

Fig. 3.1. (left) A human drives the mobile robot through paths according to
sentential instruction while odometry reconstructs the robot’s paths. Natural-
language descriptions of these paths are obtained from AMT. This allows the
robot to learn the meanings of the nouns and prepositions. Hand-designed word
models are shown here for illustration; actual learned word models are shown in
Fig. 3.12. Note that the distributions are uniform in velocity angle (bottom row)
for left of, right of, in front of, and behind and in position angle (top row) for
towards and away from. These learned meanings support generation of English
descriptions of new paths driven by teleoperation (top right) and autonomous
driving of paths that meet navigational goals specified in English descriptions
(bottom right).

between such objects and the robot path. With such learned meanings, the robot can

then generate sentential descriptions of new driving activity undertaken by a teleop-

erator. Moreover, instead of manually controlling the robot through teleoperation,

one can issue the robot natural-language commands which induce fully automatic

driving to satisfy the path specified in the natural-language command.

We have conducted experiments with an actual radio-controlled robot that demon-

strate all three of these modes of operation: acquisition, generation, and comprehen-

sion. We demonstrate successful completion of all three of these tasks on hundreds

of driving examples. We evaluate the fidelity of the sentential descriptions produced

automatically in response to manual driving and the fidelity of the driving paths in-

duced automatically to fulfill natural-language commands, by presenting the pairs of

sentences together with the associated paths to anonymous human judges on AMT.

For machine generated results overall, the average “sentence correctness” (the de-

44

gree to which the sentence is true of the path) reported is 74.2%, the average “path

completeness” (the degree to which the path fully covers the sentence) reported is

76.0%, and the average “sentence completeness” (the degree to which the sentence

fully covers the path) reported is 74.5%, for an average of 74.9%.

3.1 Related Work

While there is prior work which learns word meanings, both in the context of

robot navigation and in other contexts such as robotic manipulator arms, there is

no prior work which learns word meanings from robotically driven paths annotated

only with sentences, combines these words to form new sentences correctly describing

newly driven paths, and paths and physically drives new paths satisfying newly input

sentences.

Those prior works [52–59] which perform word learning do so within discrete

simulations and make use of discrete symbolic primitives from those simulations,

such as move forward N steps or drive to location 1. In contrast, our

method operates in continuous space, and learns intuitive word meanings in terms

of the relative positions and velocities as measured from sensor data, rather than

simple mappings to predefined logical primitives. Since not every point in a path is

described, and the correspondence between phrases and path segments is unknown,

our system performs automatic alignment between the temporal sequence of measured

robot path positions and the sequence of temporal segments in a sentence, without

the additional annotation required by prior work.

Some prior work (e.g., [60,61]) perform learning in the context of a physical robot,

but do not perform all three tasks, and still make use of pre-defined logical primitives

like A is near B. These methods do not learn word meanings that are combined to

produce or describe new paths. Some other work on natural language interaction

with robots (e.g., [62–67]) does not perform any learning.

45

There is other work on the topic of natural-language interaction with robots

(e.g., [62–67]), both within and outside the realm of robotic navigation, however,

such work does not involve any learning. Some prior work (e.g., [68–71]) performs

learning in the context of robotics, but not robotic navigation. For example, McGuire

et al. [68] interact with a robotic arm via speech and hand gestures, and learn to asso-

ciate certain tasks with certain commands, and Matuszek et al. [70] learn a mapping

between color and shape classifiers operating on RGB-D camera data and words like

red and square. These are static properties of individual objects, rather than dynamic

properties and complex relationships among objects and the robot as our system uses.

3.2 Experimental Platform

Experiments were conducted using a small wheeled robot. This robot makes use

of odometry, inertial guidance, and an Extended Kalman Filter [72] to localize itself

in real-time, and to log a densely sampled sequence of such positions for later use.

Real-time localization is used in conjunction with the sentence-comprehension and

planning algorithm to automatically drive paths given an English-language sentential

description, while the logging of the position information supports the learning and

path description algorithms.

3.3 Extracting Meaning from a Sentence

This paper concerns itself with semantics, not syntax, and only addresses issues

relating to the grounding of word meanings. We represent the meaning of a sentence

describing a robot path as a sequence of graphical models composed of probability

distributions corresponding to word meanings. Each such graphical model represents

the meaning of a clause describing the path at a particular point in time. Each graph-

ical model is a factorized joint distribution over a set of variables: a path variable,

which is a pair of 2D vectors representing the position and velocity of the robot at

46

Fig. 3.2. Illustration of the sequence of graphical models induced by a sentence.
The sentence is broken into sequential segments, and a path variable (P1, P2)
is created for each segment. Next, a floorplan variable (O1–O6) is created for
each noun in each segment, applying the noun’s label distribution (in blue) to the
variable’s set of labels. Finally, the arguments of each preposition are found, and
each preposition’s distributions (in green) over relative positions and velocities
are applied between its arguments.

47

previous position: (3.0, -0.55) previous position: (3.0, -2.0)

Fig. 3.3. Illustration of the score function induced by the sentence-segment
graphical model from the right side of Fig. 3.2, using the word models obtained
from the learning process. The graphical model is marginalized over all possible
mappings from floorplan variables to objects, yielding a scoring function over
the position and velocity of the path variable. The velocity is computed as the
difference between the position at two adjacent time steps, so that, given the
position of the robot at the previous time step, the function can be plotted at
each point in space. The score function corresponding to the graphical model is
plotted for two different previous positions: the point (3.0, -0.55) (left) and the
point (3.0, -2.0) (right). Note that the differing positions for the previous position
drastically change the function. In the image on the right, the function prefers
points directly between the cone and the previous position, thus satisfying the
towards requirement, which are also to the right of the bottom-most chair. In the
left image, the previous position is such that there is no point both between it
and the cone and directly to the right of the chair. The optimal point is therefore
to move toward the cone, biased somewhat to the right, thus partially satisfying
right of the chair. This point has a much lower score that the optimal point on
the right plot. Also note that the scoring function correctly prefers points to the
right of the chair described in the phrase, and not the other chair or other objects.
This is because those mappings of floorplan variable O5 to other objects have a
score close to zero at all points. The noun distribution associated with O5 results
in low score when the label of the object mapped to O5 is not chair, and the
distribution induced by the phrase right of the table, results in low score for any
mapping for which the object mapped to O5 is not to the right of O6, and for any
mapping for which the label of the object mapped to O6 is not table. Therefore,
with the learned word models, only those mappings of floorplan variables to the
proper objects significantly influence the score.

48

that particular time, and a set of floorplan variables, which are labeled 2D Cartesian

coordinates representing the class and position of each object in a floorplan.

3.3.1 Constructing graphical models from a sentence

We automatically generate such a sequence of graphical models directly from a

sentence. Fig. 3.2 illustrates this process. Each noun induces a floorplan variable with

a univariate distribution over possible object labels that it may take. Each preposition

induces a joint distribution between its target and referent objects. Prepositions may

be used adverbially to describe the motion of the robot in relation to objects in the

floorplan, or adjectivally to describe the static position of an object relative to other

objects.

The task of constructing a sequence of graphical models from a sentence has three

parts: breaking the sentence into its temporally sequential parts, identifying nouns

and prepositions, and determining the arguments to each preposition. Off-the-shelf

semantic parsers such as the Stanford parser [73] produce largely erroneous parse

trees on our corpus of sentences, and thus cannot be used directly for this purpose.

We do, however, use the Stanford parser to perform part-of-speech tagging. Fasola

& Mataric [67] similarly use the Stanford parser solely for part-of-speech tagging.

To break a sentence into its temporal segments, we identify all verbs that do not

immediately follow a WH-determiner (i.e., which, that, etc.), as well as adverbial

transition words (i.e., then) and use them as the segment boundaries. We next

identify prepositions and nouns of interest using a combination of the Stanford parser

and the list of prepositions from Wikipedia [74]. For precise details on how the lexicon

is determined, see Section 3.5.2.

Identifying the arguments to prepositions is done with a small number of rules.

The first argument of a preposition may be either a path variable or a floorplan vari-

able corresponding to a noun within the same temporal segment and preceding the

preposition. If neither preceded by a conjunction, nor a comma, or if preceded by

49

a WH-determiner, but not a conjunction, the first argument is considered to be the

immediately preceding noun. If the preposition is immediately preceded by a con-

junction and there are no preceding WH-determiners in the temporal segment, then

the first argument is considered to be the path variable. If the preposition is imme-

diately preceded by a conjunction followed by a WH-determiner (e.g., and which) or

is immediately preceded by a conjunction and there is no WH-determiner preceding

the preposition in the temporal segment, then the first argument is considered to be

the noun prior to the immediately preceding noun. There are cases where attachment

ambiguity exists. In such cases, the first argument is assumed to be the path variable.

The second argument to a preposition is considered to be the noun immediately fol-

lowing the preposition. If there is a temporal break or another preposition between

a preposition and the nearest following noun, the preposition is ignored.

Once the arguments to each preposition in a temporal segment have been found,

the graphical model is formed as a product of the factors associated with each of

the nouns and prepositions. Given a floorplan specifying the positions and class

labels of objects, along with the distributions for each noun and preposition, each

such graphical model represents the probability that a point in 2D space satisfies

the semantics of the corresponding temporal segment of the sentential description.

Fig. 3.3 illustrates the distribution over points in 2D space induced by such a graphical

model.

3.3.2 Representation of the lexicon

The lexicon specifies the meanings of the nouns and prepositions as a set of prob-

ability distributions. The nouns are represented as discrete distributions over the set

of class labels. These labels are abstract symbols corresponding to object classes,

such as might be obtained by grouping object detections according to class with a

clustering algorithm on sensor data. In this work, we do not perform such detection

and clustering, but provide such data in the form of a floorplan. For a given floorplan,

50

the robot is provided a list of objects, each of which has a class label and 2D location.

The class labels are consistent across floorplans. For example, objects of class bag,

might have class label class0, while objects of class stool, might have label class4.

A discrete distribution of weights wij is learned for each noun i in the lexicon which

scores the mappings between it and each possible label j.

Each floorplan variable generated from a sentence can be mapped to one of the

objects in a floorplan. When mapped to the to the kth object, whose label is lk and

which resides at location (xk, yk), the score of the noun distribution i applied to that

variable is wi,lk Because a given floorplan often has multiple instances of objects of

the same class, these class labels do not uniquely identify the objects. These would

be disambiguated with complex noun phrases such as the chair which is right of

the stool and the chair which is left of the cone. Such disambiguating prepositional

phrase modifiers of noun phrases can be nested and conjoined arbitrarily. Similarly,

the locations of path variables can be disambiguated by conjunctions of prepositional

phrase adjuncts.

Prepositions specify relations between target objects and reference objects. When

used adjectivally, the reference object is the object of the preposition while the target

object is the head noun, thus applying the preposition distribution between two floor-

plan variables. For example, in the chair to the left of the table, chair is the target

object and table is the reference object. When used adverbially, the target object is a

waypoint in the robot path while the reference object is the object of the preposition,

thus applying the preposition distribution between a path variable and a floorplan

variable. For example, in went towards the table, table is the reference object, and the

target object is a waypoint in the robot path. The lexical entry for each preposition

is specified as the location µ and concentration κ parameters for two independent

von Mises distributions [75] over angles between target and reference objects. One,

the position angle, is the orientation of a vector from the coordinates of the reference

object to the coordinates of the target object (Fig. 3.4 left).1 The second, the velocity

1Without loss of generality, position angles are measured in the frame of reference of the robot at
time zero, which is taken to be the origin.

51

Fig. 3.4. How position angles (left) and velocity angles (right) are measured.

angle, is the angle between the velocity vector at a waypoint and a vector from the

coordinates of the waypoint to the coordinates of the reference object (Fig. 3.4 right).

This second angle is only used for adverbial uses, because it requires computation

of the direction of motion, which is determined from temporally adjacent waypoints,

and is undefined for stationary objects. This angle is thus taken from the frame of

reference of the robot. The von Mises distribution f(x|µ, κ) is given by

f(x|µ, κ) =
eκcos(x−µ)

2πI0(κ)
, (3.1)

where I0 is the modified Bessel function of order 0.

Fig. 3.1 (bottom left) illustrates how this framework is used to represent the

meanings of prepositions. We render the angular distributions as potential fields

around the reference object at the center for the position angle, and the target object

at the center for the velocity angle. The intensity of a point reflects its probability

density. Note that in the idealized distributions of Fig. 3.1, the distributions are

uniform in velocity angle for left of, right of, in front of, and behind and in position

angle for towards and away from.

52

When the ith preposition in the lexicon is applied between two variables, whose

physical relationship is specified by the position angle θ and velocity angle γ between

them, its score si is given by

si(θ, γ) =

(
eκi,1cos(θ−µi,1)

2πI0(κi,1)

)(
eκi,2cos(γ−µi,2)

2πI0(κi,2)

)
, (3.2)

where µi,1 and κi,1 are the location and concentration parameters of the position angle

distribution of the ith preposition, and µi,2 and κi,2 are the location and concentration

parameters of the velocity angle distribution.

3.3.3 Computing the graphical model score

Once constructed from a sentence segment, each graphical model induces a dis-

tribution over the path variable p = (px, py, pvx , pvy), conditioned on the O objects in

the floorplan f = (o1, o2, . . . , oO) and the mapping m from the N floorplan variables

to floorplan objects. Each element of the mapping mn is the index of the floorplan

object mapped to floorplan variable n. Let a be {p, om1 , . . . , omN
}, a set consisting

of the path variable and the floorplan objects mapped to each of the N floorplan

variables. Further, let bc,1 and bc,2 be the indices in a of the target and referent,

respectively, of the cth preposition in the graphical model. The 2D world position of

the target and referent of the cth preposition can then be referenced with (axbc,1 , a
y
bc,1

)

and (axbc,2 , a
y
bc,2

), respectively. The velocity vector of the target can similarly be ref-

erenced with (avxbc,1 , a
vy
bc,1

). Therefore, the position angle of the target and referent of

the cth preposition in the graphical model is given by

θc = tan−1
aybc,1 − a

y
bc,2

axbc,1 − a
x
bc,2

(3.3)

and the velocity angle γc between them is given by

γc = tan−1
a
vy
bc,1

avxbc,1
− tan−1

aybc,2 − a
y
bc,1

axbc,2 − a
x
bc,1

(3.4)

53

A sentence-segment graphical model’s conditional probability P (p|f ,m,Λ) of the path

variable given an object mapping m, floorplan f , and lexicon parameters Λ is therefore

given by the product of preposition and noun scores:

P (p|m, f,Λ) =
C∏
c=1

sdc(θc, γc)
N∏
n=1

wen,lmn
(3.5)

where c indexes into the C prepositions in the graphical model, dc is the index in the

lexicon of the cth preposition in the graphical model, n indexes into the N nouns in

the graphical model, en is the index in the lexicon of the nth noun in the graphical

model, and lmn is the class label of the object mapped to the nth noun.

3.4 Tasks

We formulate sentential semantics as a variety of relationships between a sen-

tence s, or more precisely its corresponding sequence of graphical models, a path p,

which is a sequence of path waypoints, a floorplan f , which is a set of labeled points,

and a lexicon Λ, which is the collective µ and κ parameters for the angular distribu-

tions for each of the prepositions and the discrete distributions for each of the nouns.

This allows us to accomplish the following tasks:

acquisition Learn a lexicon Λ from a collection of observed paths pi taken by the

robot in the corresponding floorplans fi as described by human-generated sen-

tences si.

generation Generate a sentence s that describes an observed path p taken by the

robot in a given floorplan f with a known lexicon Λ.

comprehension Generate a path p to be taken by the robot that satisfies a given

human-generated sentence s issued as a command in a given floorplan f with a

known lexicon Λ.

54

Fig. 3.5. A hidden Markov model is created representing the semantics of a
sentence. The sentence is broken into segments, and a graphical model is cre-
ated representing each segment. When a segment cannot be understood, it is
pruned, and no graphical model is created. Next, an HMM state is created for
each remaining segment. The output model of each such state represents the dis-
tribution over the possible positions and velocities of the robot at a given point
in time. These output distributions are the graphical models associated with
each segment, marginalized over the possible labelings of the floorplan variables.
Additional dummy states with uniform output distributions are added at the be-
ginning, end, and between each state. These dummy states allow the HMM to
match paths for which the semantics of the sentence are true, but for which their
are points in time where the robot does not fulfill any of the stated conditions.
The HMM transition distribution encodes the sequence of the sentence by forcing
each state to self transition or pass to the next state, as well as by requiring that
the model begin in the first state and end in the last.

55

The robot started to the right of the stool, traveled toward the bag, doubled back to pass to the right of the bag, stool, then chair and slowly
circled in front of the cone, ending just to the right of it.

0 10 20 30 40 50 60 70 80
−7

−6

−5

−4

−3

−2

−1

0

time step index

sc
or

e
of

 g
ra

ph
ic

al
 m

od
el

right of stool

toward bag

right of bag

front of cone

dummy score

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step index

pr
ob

ab
ili

ty
 o

f H
M

M
 b

ei
ng

 in
 s

ta
te

dummy 1

right of stool

dummy 2

toward bag

dummy 3

right of bag

dummy 4

front of cone

dummy 5

Fig. 3.6. Illustration of aligning an example sentence-path pair from the train-
ing set. An HMM is produced to represent the semantics of the sentence (top
left). Given a floorplan and path (top right), the HMM is used during learning to
perform an alignment between the states (and therefore the temporal segments of
the sentence) and the densely sampled waypoints of the path. Each HMM output
model computes the score of the position and velocity at each path waypoint (mid-
dle row). Because the preposition and noun distributions are unknown at the start
of the learning process, the labels of the floorplan variables, which map nouns in
the sentence to objects in the floorplans, are also unknown. Therefore each state’s
output score is the likelihood of the associated graphical model, marginalized over
all possible mappings of floorplan variables to labels. These scores, along with the
HMM transition model, are used with the forward-backward algorithm to com-
pute the probability of the HMM being in each state (bottom row), along with
the HMM likelihood. Prior to learning the word meanings, all preposition and
noun distributions are random. During acquisition of such meanings, the model
is updated to increase the overall HMM likelihood summed over all training sam-
ples. At each iteration, this concentrates the probability mass of the distributions
associated with the prepositions for each HMM-state output model at those angles
seen among waypoints and objects at those time steps at which the probability
of the HMM being in that state is high. It also concentrates the probability mass
of the object-label distributions in those bins associated with the mappings cor-
responding to high HMM likelihoods. This example shows the scores and HMM
state-probability assignments using the word models after the learning process is
complete.

56

Fig. 3.7. Viewing the learning process as a constraint-satisfaction problem.
Individual words appear across multiple path-sentence pairs. This allows inference
across different words in the same sentence, where knowledge about one word
constrains which points in the path or objects are described by or referred to by
another. It also allows inference across multiple instances of the same word in the
descriptions of different paths, where relationships among waypoints and objects
in one sentence-path pair, whose description includes a particular word, constrain
which relationships are referred to by that same word in the description of another
path.

57

toward the cone and right of the chair right of the table

Iteration 0 Iteration 1

chair

cone

table

p
o
si

ti
o
n

v
e
lo

ci
ty

right

p
o
si

ti
o
n

v
e
lo

ci
ty

towards

chair

cone

table

p
o
si

ti
o
n

v
e
lo

ci
ty

right

p
o
si

ti
o
n

v
e
lo

ci
ty

towards

Iteration 2 Iteration 3

chair

cone

table

p
o
si

ti
o
n

v
e
lo

ci
ty

right

p
o
si

ti
o
n

v
e
lo

ci
ty

towards

chair

cone

table

p
o
si

ti
o
n

v
e
lo

ci
ty

right

p
o
si

ti
o
n

v
e
lo

ci
ty

towards

Fig. 3.8. Illustration of the word meanings and resulting scoring functions at
different steps in the learning process. The scoring function corresponding to the
same phrase illustrated in Fig. 3.3 is shown for the first four iterations of the
learning process, along with the word models used in interpreting that phrase.
Iteration 0 (top left) shows the randomly initialized word models, and the resulting
score surface, which does not encode the meaning of the phrase at all. The noun
distributions are largely uniform, resulting in no visible correlation between the
score and the individual object positions. After the first iteration (top right), the
noun models have just begun to concentrate in the correct bins, and the position
distribution of the right model is beginning to concentrate in the correct direction.
This change is evident in the score surface, which shows that it depends upon
the position of the cone, but not in the correct way, as the towards model is still
completely wrong. After the second iteration (bottom left), the noun distributions
are further concentrated in the correct bins, and the towards velocity distribution
is now pointed in the correct direction, although still almost uniform. The score
surface now clearly depends on both the cone and the proper chair. After the
third iteration (bottom right), the noun distributions are further concentrated, as
are both the position angle distribution of the right model and the velocity angle
distribution of the towards model. The cost surface now largely represents the
meaning of the phrase, and already looks quite similar to that in Fig. 3.3, which
is the result after convergence.

58

3.4.1 Acquisition

To perform acquisition, we formulate a large set of hidden Markov models (HMMs),

one for each path-sentence pair in the training corpus. Each such HMM has a state

k corresponding to every temporal segment its corresponding training sentence. The

observations for each such HMM consist of the sequence of path waypoints in the

path-sentence pair. The output model Rk for each state is the graphical model con-

structed from that temporal segment, given the current estimate of the parameters in

Λ and marginalized over all mappings m between floorplan variables in the graphical

model and objects in the floorplan.

Rk(pt, f ,Λ) =
∑
m

Pk(p|m, f,Λ) (3.6)

The transition matrix for each HMM is constructed to allow each state only to

self loop or to transition to the state for the next temporal segment in the training

sentence. The HMM is constrained to start in the state associated with the first

temporal segment in the sentence associated with each path. Dummy states, with a

small fixed output probability, are placed between the states for each pair of adjacent

temporal segments, as well as at the beginning and end of each sentence, to allow

for portions of the path that are not described in the associated sentence. Fig. 3.5

illustrates the automatic construction of such an HMM from a sentence.

The HMMs are used to infer the alignment between the densely sampled points

in each path and the sequence of temporal segments its corresponding sentence. This

process is illustrated in Fig. 3.6.

The output models for the HMMs are all parametrized by the word meanings

from the lexicon Λ. Thus, the meaning of each word is constrained by many path-

sentence pairs. As illustrated in Fig. 3.7, this can be thought of as a large (soft)

constraint-satisfaction problem. This mutual constraint allows the learning system

to gradually infer the unknown mappings between points in the paths and the seg-

ments of sentences, and between nouns in the sentences and objects in the floorplans,

59

Fig. 3.9. Illustration of the generation algorithm. A disambiguating noun phrase
is generated for each floorplan waypoint. Path waypoints are described by prepo-
sitional phrases, and then sets of identical phrases are merged into intervals, which
are combined to form the sentence.

while simultaneously learning the parameters of the lexicon. Thus, it uses its cur-

rent estimate of the word meanings to infer which physical relationships between

the robot and the objects, or between several objects, are being described, and uses

this knowledge to further update the word meanings in order to match the described

relationships.

This learning is accomplished by maximizing the summation of the log likelihoods

of all HMMs on their corresponding paths through Baum-Welch [24, 76, 77]. This

trains the distributions for the words in the lexicon Λ as they are tied as components

of the output models. Specifically, it infers the latent alignment between the large

number of noisy robot path waypoints and the smaller number of temporal segments

in the training descriptions while simultaneously updating the meanings of the words

to match the relationships between waypoints described in the corpus. In this way,

the meanings of both the nouns and the prepositions are learned. Fig. 3.8 illustrates

the gradual learning process by showing how the scoring function corresponding to

an example phrase begins in a completely meaningless state, but gradually changes

to represent the meaning of that phrase as the meanings of the words are gradually

learned.

60

3.4.2 Generation

Language generation takes as input a path p obtained by odometry during human

teleoperation of the robot. This path consists of a collection of 2D floor positions

sampled at 50Hz. To generate a sentence, one must select a subsequence of this dense

sequence worthy of description.

During generation, we care about three properties: “correctness,” that the sen-

tence be logically true of the path, “completeness,” that the sentence differentiate

the intended path from all other possible paths, and “conciseness,” that the sentence

be the shortest that does so. We attempt to find a balance between these properties

with the following heuristic algorithm (Fig. 3.9). First, we sample path waypoints

in a way that the sampled points evenly distribute along the path. To this end, we

downsample the path by computing the integral distance traveled from the initial

position for each point in the dense path and selecting a subsequence whose points

are separated by 5cm of integral path length. We then produce a prepositional phrase

to describe each path waypoint by selecting that preposition with maximum posterior

probability with the path waypoint as its first argument and with a floorplan way-

point as its second argument. Identical such choices for consecutive sets of waypoints

in the path are coalesced and short intervals of such path prepositional phrases are

discarded. We then generate a noun phrase for the object of each path waypoint

preposition that refers to that referenced floorplan object. For each floorplan object,

we take that noun with maximum posterior probability given the class of the floor-

plan object. Similarly, for each pair of floorplan objects, we take that preposition

with maximum posterior probability to be true of that pair and all other prepositions

applied to that pair to be false. Thus when the floorplan contains a single instance

of a class, it can be referred to with a simple noun. But when there are multiple

instances of a class, the shortest possible noun phrase, with one or more prepositional

phrases, is generated to disambiguate.

61

More formally, let q(o) be the most probable noun for floorplan object o given Λ.

For each pair of floorplan objects (o, o′), there exists only one preposition φ that is

true of this pair. Let u(o) be the noun phrase we want to generate to disambiguate the

floorplan object o from others o′. Then o can be referred to with u(o) unambiguously

if (a) u(o) = (q(o), {}) is unique; or (b), there exists a collection of prepositional

phrases {φ(o, o′)} such that formula u(o) = (q(o), {(φ, u(o′))}) is unique. To produce

a concise sentence, we want the size of the collection of prepositional phrases in step

(b) above to be as small as possible. However, finding the smallest collection of

modifiers is NP-hard [78]. To avoid exhaustive search, we use a greedy heuristic that

biases towards adding the least frequent pairs (φ, u(o′)) into the collection until u(o)

is unique. This results in a tractable polynomial algorithm. After we get u(o), we

map it to a noun phrase by simple realization, for example:

(table, {(leftOf,chair), (behind,table)})

↓

the table which is left of the chair and behind the table

3.4.3 Comprehension

To perform comprehension, we use gradient ascent to optimize a scoring function

with respect to an unknown path p

p∗ = arg max
p
R(s,p, f ,Λ) (3.7)

where R(s,p, f ,Λ) is the product of the graphical model likelihoods Pk(pk|m, f,Λ)

from (3.5) constructed from the temporal segments of the sentence s. The unknown

path p is constructed to contain one path waypoint pk for each temporal segment

k in the sentence, whose locations are optimized to maximize the scoring function,

62

The robot went away from
the cone then went left of
the box which is left of the
chair and behind the cone
then went towards the stool.

The robot went away from
the cone then went right of
the box which is left of the
chair and behind the cone
then went towards the stool.

The robot went away from
the cone then went behind
the box which is left of the
chair and behind the cone
then went towards the stool.

The robot went away from
the cone then went behind
the box which is right of the
chair and which is behind
the cone then went towards
the stool.

The robot went away from
the cone then went behind
the box which is right of the
chair and in front of the
cone then went towards the
stool.

The robot went away from
the cone then went behind
the box which is left of the
chair and in front of the
cone then went towards the
stool.

Fig. 3.10. Illustration of the effect on the comprehension system of single-
word changes to the input sentence. The top row shows the effect of changing
the preposition specifying the relation between the robot and a reference object
between left (left), right (center), and behind (right). The bottom row shows the
effect of changing the prepositions specifying which object is is being referred to.
This allows the system to correctly distinguish between many objects of the same
type, such as each of the four boxes in the example. As the prepositions away
from and toward only specify the direction of motion, and are not specific about
how far to go, the comprehension system sometimes chooses points which result
in rather short distances traveled, particularly when there is an obstacle in the
way, such as in the paths shown at the top-right and bottom-left.

63

toward the chair left of the bag

Fig. 3.11. Illustration of the scoring function after the addition of the barrier
penalties, which keep the comprehension path waypoints away from the objects
and from each other, and attraction terms, which encode preference for proximity
to the target object.

64

and thus maximize the degree to which these waypoints satisfy the semantics of the

sentence.

The above optimization computes a MAP estimate of the product of the likeli-

hoods of the graphical models associated with the sentence s. These graphical models

represent the semantics of the sentence, but do not take into account constraints of the

world, such as the need to avoid collision with the objects in the floorplan. Further,

the scoring function as stated can be difficult to optimize because the velocity angle

computed between two waypoints becomes increasingly sensitive to small changes in

their positions as they become close together. To remedy the problems of the path

waypoints getting too close to objects and to each other, additional factors are added

to the graphical models. A barrier penalty B(r) is added between each pair of a path

waypoint and floorplan waypoint as well as between pairs of temporally adjacent path

waypoints to prevent them from becoming too close. We use the formula

B(r) = smoothMax

(
1, 1 +

2r1 + r2
r

)−1
(3.8)

where r is the distance either between a path waypoint and an object or between

two path waypoints, and where r1 and r2 are the radii of the two things being kept

apart, either the robot or an object. This barrier is approximately 1 until the distance

between the two waypoints becomes small, at which point it decreases rapidly, pushing

them away from each other by approximately the robot radius. For the penalty

between the path waypoints and objects, meant to prevent collision, both the robot

radius and object radii are assumed to be 40cm. For the penalty between temporally

adjacent path waypoints, meant to ease the optimization problem, r1 and r2 are set

to 10cm. Finally, because our formulation of the semantics of prepositions is based

on angles but not distance, there is a large subspace of the floor that leads to equal

probability of satisfying each graphical-model factor, i.e., the cones in Fig. 3.1. This

allows a path to satisfy a prepositional phrase like to the left of the chair while

being very far away from the chair, which, while technically correct, can result in

65

paths which appear to a human to be infelicitous. To remedy this, we encode a

slight preference for shorter distances by adding a small attraction A(r) = exp(− r
100

)

between each path waypoint and the floorplan waypoints selected as its reference

objects, where r is the distance between the path waypoint and the target object of a

preposition. The score optimized is the product of the graphical-model factors for each

path waypoint along with the barrier and attraction terms. An example of the scoring

function corresponding to the example phrase toward the chair left of the bag, together

with the additional terms, is shown in Fig. 3.11. Its gradient with respect to the path

waypoint locations is computed with Automatic Differentiation [38]. The sequence

of path waypoints maximizing this product is then found with gradient ascent. The

individual points cannot be optimized independently because each graphical model

score depends on the velocity, and thus the previous point. The score is optimized

repeatedly with subsets of the waypoints increasing in size. The waypoints are added

sequentially, each time intitializing the newest point 10cm from the last point in such a

way that direction of motion is maintained. Then, the product of scores corresponding

to the current set of points is optimized. In the final stage of optimization, all points

have been added, and the entirety of the score is optimized. This process helps to

prevent the optimization procedure from becoming stuck in local optima.

Fig. 3.10 shows the effect of small differences in the input sentence on the resulting

paths for a series of example sentences. A single-word change can greatly alter the

path by changing where the robot goes with respect to one object or completely

changing which object is referenced. This leads to changes in other parts of the path.

The barrier penalties prevent the path waypoints from being chosen close to ob-

jects, but do not prevent the paths between them from doing so. Therefore, a post-

processing step performs obstacle avoidance by adding additional path waypoints as

needed to ensure that the straight-line path between any two adjacent path waypoints

does not pass too close to any floorplan object. This is done by looping over all line

segments between temporally adjacent waypoints, checking whether the distance be-

tween each object and that point v on the line closest to that object is less than the

66

sum of the object and robot radii. If so, a new waypoint is created at the point closest

to v which is separated from the object by the sum of the two radii. This process is

then repeated recursively on all modified line segments until no segment passes too

close to any object.

3.5 Experiments

We conducted an experiment as outlined in Fig. 3.1. A corpus of robot paths

paired with sentences describing those paths was first collected and used to learn

a lexicon. This lexicon was then used to automatically generate sentences from a

new set of paths and to produce and follow paths satisfying a new set of sentences.

Fig. 3.12 illustrates examples of input to the learning system, the learned lexicon, and

examples of the input to and output from the generation and comprehension systems.

All sentences were obtained from independent, anonymous workers on AMT. All

paths were recorded using odometry and sensor data from the robot. A second set

of judgments were obtained from AMT workers in which they judged the degree

to which the sentences and paths matched. Such judgments were obtained for the

robot paths automatically driven according to human sentences, for automatically

produced sentences describing human-driven paths, and also for the sentences pro-

duced by AMT workers to describe human-driven paths. This allows us to compare

the performance of the automatic systems against that of AMT workers. Fig. 3.13

depicts the performance of both AMT workers and of our system.

3.5.1 Dataset collection

Three sets of robot paths and sentences were collected. The first, called the

acquisition corpus, consisted of 750 path-sentence pairs, 3 sentences for each of 250

robot paths. The second, called the generation corpus, consisted of 100 robot paths.

The third, called the comprehension corpus, consisted of 300 path-sentence pairs, 3

sentences for each of 100 robot paths.

67

a
cq

u
is

it
io

n

in
p

u
t

The robot went
to the right of
the table which
is to the right of
the table, then
away from the
table which is
right of the table,
then away from
the cone, then
toward the table
which is right of
the table, then
toward the stool,
then left of the
stool.

The robot began
by heading to-
wards the stool-
turning around
when it reached
the right side of
the stool, then it
headed towards
the cone, turning
around in front
of the cone and
turned around
and ended in
front of the stool
and behind the
chair.

The robot loops
around the left
side of the cone
and then goes
underneath the
box.

The robot went
toward the back
of the chair,
then went in
front of the stool
but behind the
box, then went
away from the
stool to the left
and behind it.

The robot went
behind the cone
and then turned
around and went
further behind
the cone to the
right of the
chair.

The robot went
toward and
around the
chair, right of
the box and bag,
then in front of
the box.

o
u

tp
u

t

n
o
u

n
s

bag box chair cone stool table

p
o
si

ti
o
n

v
e
lo

ci
ty

left of right of in front of behind towards away from

g
e
n

e
ra

ti
o
n

in
p

u
t

o
u

tp
u

t

The robot went
left of the cone
then went behind
the chair which
is right of the
table then went
in front of the
cone then went
right of the cone
then went away
from the cone
then went behind
the cone

The robot went
behind the cone
then went in
front of the stool
then went in
front of the table
then went right
of the box which
is right of the
box then went
left of the cone
then went in
front of the box
which is right
of the box then
went in front of
the box which is
left of the box

The robot went
in front of the
table then went
right of the table
then went in
front of the table
then went behind
the cone then
went in front
of the bag then
went left of the
box

The robot went
behind the chair
which is right of
the chair then
went in front of
the table then
went behind the
chair which is
left of the chair
then went left of
the chair which
is left of the
chair then went
in front of the
chair which is
left of the chair
then went in
front of the chair
which is right of
the chair

The robot went
left of the table
then went behind
the cone then
went right of the
table

The robot went
right of the
table then went
towards the bag
then went right
of the box.

co
m

p
re

h
e
n

si
o
n

in
p

u
t

The robot went
toward the bag
that is left of the
chair, then to-
ward the chair,
then toward the
box, then toward
the right of the
box.

The robot went
behind the table,
then toward the
table, then to-
ward the stool,
then when the
robot was to the
left of the stool it
went in front of
the stool.

The robot went
toward the cone
which is right
of the bag, then
went in front of
the bag which is
in front of the
bag, then went
behind the bag
which is left of
the chair, then
went toward the
chair.

The robot went
to the left of
the bag which is
in front of the
cone, then be-
hind the cone,
then toward the
bag which is in
front of the cone.

The robot went
towards the bag
that is in front
of the cone, then
went down/right
towards the stool
and went away
from the bag and
ended left of the
front of the stool.

The robot started
by heading to-
wards the table,
stopping in front
of it, then it
turned around
and headed to-
wards the right
of the cone, then
it turned around,
away from the
cone, and then
headed to the
cone and finally
one last turn
that ended with
the robot slightly
to the right of
the cone.

o
u

tp
u

t

Fig. 3.12. Example experimental runs, 6 for each of acquisition, generation, and
comprehension. Our source code and dataset will be available upon publication.

68

Fig. 3.13. Bar graphs showing the distribution of responses given by AMT
workers for each of the four questions: sentence correctness (far left), sentence
completeness (middle left), path completeness (middle right), and sentence con-
ciseness (far right). The distributions are shown for sentences elicited from AMT
workers and judged against the acquisition (dark blue) and comprehension (light
blue) paths used to elicit the sentences, as well as for paths produced by the com-
prehension system judged against the human sentences used as input (yellow), and
for machine-generated sentences judged against the paths used as input (red).

69

All sentences were obtained from anonymous workers on AMT. These workers were

asked to provide a sentence describing a robot path as depicted in an image. They

were asked to describe the path in terms of its relation to objects in the floorplan, but

were not given any restrictions on the syntax of the sentence. Neither were they told

what the sentences were for. Therefore the sentences are not artificially mechanical

or specific, as they might have been had they known that they were to be used by

a robot. Rather, they are representative of human path descriptions in this domain.

Each of the paths used to elicit sentences from workers was obtained by a human

driving the robot in a path through a randomly generated floorplan in accordance

with a randomly generated sentence.

For the acquisition corpus, 10 floorplans were generated, each with 25 random

sentences. Each floorplan contained four random objects, with up to one duplicate

object. The objects were placed randomly at the corners of floor tiles in a large

room. The random sentences used to guide the driving of the acquisition paths

used to elicit sentences contained a sequence of two or three instructions to move

according to random prepositions chosen from left, right, front, behind, towards, and

away with respect to randomly chosen objects in the floorplan. For the generation

and comprehension corpora, the floorplan contained five random objects, also limited

to one duplicate, which were placed randomly on the corners, centers, or edge centers

of the floor tiles. The randomly generated sentences for these corpora were generated

similar to those of the acquisition corpus, only longer, with a sequence of five or six

instructions. For each such sentence, the robot was driven in a path according to

the instructions of the random sentence. The human driver was allowed to drive

freely, so long as the sentence remained true of the path. Therefore, while these

paths do contain, in the proper order, portions which depict the described physical

relationships, the driven paths are generally more complex than the original randomly

generated sentence.

Images of these paths were given to the AMT workers to elicit sentences. Workers

were shown paths in this way in order to elicit sentences which describe a variety of

70

paths. Many of these elicited sentences contain ambiguity, misspellings, grammatical

errors, or describe relations which are untrue or impossible, such as describing a chair

as the chair to the right of the chair, when there is, in fact, only a single chair.

We corrected for obvious misspellings, but did not otherwise make modifications to

the sentences. Quantitative evaluation of the quality of the sentences from a second

round of AMT judgments can be seen in Fig. 3.13, where the results of the human-

generated sentences judged against the paths used to elicit them are shown in dark

blue (acquisition sentences) and light blue (comprehension sentences). Only about

60% of human-generated sentences received the highest possible rating from human

judges on AMT, with the rest being judged less than 80% correct or complete. Our

methods are robust enough to handle such errors gracefully: the learning system

learns the correct meaning of words despite the noisy and ambiguous training data,

and the comprehension system ignores parts of sentences it cannot understand.

3.5.2 Experimental evaluation

The path-sentence pairs in the acquisition corpus were used to learn a lexicon of

word models. The paths in the generation corpus were used to test the robot’s ability

to use its learned lexicon to generate a sentence which describes a given path. The

sentences in the comprehension corpus were used to test the robot’s ability to use its

learned lexicon to automatically generate and follow a path described by a sentence.

We determined the nouns and prepositions to learn as follows. We identified

prepositions of interest as words which appear in the Wikipedia list of prepositions,

and which appear more than 100 times in our combined corpus of 1050 sentences,

(excluding in, on, and to). This resulted in the following list of prepositions: left,

right, front, behind, towards, and away. We identified nouns of interest as words which

have not been identified as prepositions, and which have been tagged as nouns by the

Stanford parser more than 100 times in our corpus (excluding the word robot). This

resulted in the following list of nouns: bag, box, chair, cone, stool, and table.

71

Among the 750 sentences in the acquisition corpus are a number of extremely

long sentences which approach the limit of the Stanford parser, and which slow down

the learning process. Therefore, the sentences were sorted according to the number

of references to objects, and the 600 shortest sentences were used for training. This

resulted in the exclusion of sentences with more than 16 object references. The

acquisition system used the resulting 600 path-sentence pairs to learn the lexicon of

word meanings.

After learning the meanings of the words, the recorded paths from the generation

corpus were used to automatically produce sentential descriptions and the sentences

from the comprehension corpus were used to automatically drive the robot, recording

its path through odometry. A second round of AMT judgments were obtained, judg-

ing the degree to which the sentence and path in each pair match. Such judgments

were obtained for the robot paths automatically driven according to human sentences,

for the automatically produced sentences describing human-driven paths, and also for

the sentences produced by AMT workers to describe human-driven sentences. This

allowed us to compare the performance of the automatic systems with that of AMT

workers through four multiple-choice questions:

Sentence Correctness: Approximately how much of the sentence is true of the path?

Sentence Completeness: Approximately how much of the path is described by the sen-

tence?

Path Completeness: Approximately how much of the sentence is depicted by the path?

Sentence Conciseness: Rate the length of the sentence.

For the first three questions, the possible answers were 0–20%, 20–40%, 40–60%,

60–80%, and 80–100%. The first two questions allow us to evaluate how true (sen-

tence correctness) each sentence is and how fully it describes its corresponding path

(sentence completeness). The third question allows us to evaluate how fully a driven

path executes the sequence of actions described in its corresponding sentence. For the

last question, the possible answers were much too short, somewhat too short, about

72

right, somewhat too long, and much too long. This allows us to evaluate the verbosity

of the sentence-generation system, compared to human-generated sentences.

We obtained three independent judgments for each path-sentence pair in order

to evaluate the reliability of the human judgments. For 26.5% of the path-sentence

pairs, all three judgments agreed, for 54.1% of the pairs, two of the judgments agreed,

and for 19.4% of the pairs, all three judgments differed.

Fig. 3.13 shows details of the distributions of judgments given to each of the

sets of path-sentence pairs for each question. The fraction of human judgments in

each of the possible responses for each of the questions is shown for the output of

human annotators (dark and light blue), the comprehension system (yellow), and

the generation system (red), each judged against the paths or sentences given as

input. Sentence length was judged about right 58.1% of the time for humans and

39.1% of the time for our sentence generation system. The about right and somewhat

too short/long judgments combine to 92.4% for humans and 81.3% for our generation

system. Averaging the judgments for the first three questions yields 82.4% and 85.3%

for the human sentences on the acquisition and comprehension corpora, respectively,

when judged against the paths used to elicit those sentences. Averaging the judgments

for the automatically driven paths judged against the human sentences used as input

yields 71.1%. Averaging the judgments for the automatically produced sentences

judged against the paths used as input yields 78.6%. Overall, machine performance

is 74.9%, while the performance of human annotators is 83.8%.

Our system learns the proper meanings of the words despite the fact that the

human sentences used as input are far from perfect, and using these learned meanings,

can produce paths and sentences whose quality averages 89.2% of the way towards

human performance. The mistakes made by the automatic driving system were due

to the input sentences containing words which were too rare to learn (e.g., zig-zagged,

circled, between, past, near, above, and underneath), and occasionally sophisticated

grammar usage not handled by our framework for mapping sentences to sequences of

graphical models. While the generation system generally produces sentences which

73

are technically correct, such sentences are not always the most intuitive or helpful from

a human perspective, resulting in lower scores than for human-generated sentences.

3.6 Conclusion

We demonstrate a novel approach for grounding the semantics of natural language

in the domain of robot navigation. Sentences describe paths taken by the robot rela-

tive to other objects in the environment. The meanings of nouns and prepositions are

trained from a corpus of paths driven by a human teleoperator annotated with sen-

tential descriptions. These can then support both automatic generation of sentential

descriptions of new paths as well as automatic driving of paths to satisfy navigational

goals specified in provided sentences. This is a step towards the ultimate goal of

grounded natural language that allows machines to interact with humans when the

language refers to actual things and activities in the real world.

Acknowledgments

This research was sponsored, in part, by the Army Research Laboratory, ac-

complished under Cooperative Agreement Number W911NF-10-2-0060, and by the

National Science Foundation under Grant No. 1522954-IIS. The views, opinions, find-

ings, conclusions, and recommendations contained in this document are those of the

authors and should not be interpreted as representing the official policies, either ex-

press or implied, of the Army Research Laboratory, the National Science Foundation,

or the U.S. Government. The U.S. Government is authorized to reproduce and dis-

tribute reprints for Government purposes, notwithstanding any copyright notation

herein.

74

4. THE LARGE CONTINUOUS ACTION CORPUS

We make available to the community a new dataset to support action-recognition

research. This dataset is different from prior datasets in several key ways. It is sig-

nificantly larger. It contains streaming video with long segments containing multiple

action occurrences that often overlap in space and/or time. All actions were filmed

in the same collection of backgrounds so that background gives little clue as to action

class. We had five humans replicate the annotation of temporal extent of action oc-

currences labeled with their class and measured a surprisingly low level of intercoder

agreement. A baseline experiment shows that recent state-of-the-art methods perform

poorly on this dataset. This suggests that this will be a challenging dataset to foster

advances in action-recognition research. This manuscript serves to describe the novel

content and characteristics of the LCA dataset, present the design decisions made

when filming the dataset, and document the novel methods employed to annotate the

dataset.

4.1 Introduction

There has been considerable research interest in action recognition in video over

the past two decades [2,5–10,12,14–17,20–22,26,30,44,45,49,79–115]. To support such

research, numerous video datasets have been gathered. Liu et al. [116] summarize

the available datasets as of 2011. These include KTH (6 classes, [93]), Weizmann

(10 classes, [84]), CMU Soccer (7 classes, [117]), CMU Crowded (5 classes, [110]),

UCF Sports (9 classes, [2]), UR ADL (10 classes, [49]), UM Gesture (14 classes,

[42]), UCF Youtube (11 classes, [16]), Hollywood-1 (8 classes, [118]), Hollywood-2 (12

classes, [119]), MultiKTH (6 classes, [120]), MSR (3 classes, [121]), and TRECVID

(10 classes, [122]). These datasets contain short clips, each depicting one of a small

75

number of classes (3–14). Several more recent datasets also contain short clips, each

depicting a single action but with a larger number of action classes: UCF50 (50

classes, [103]), HMDB51 (51 classes, [6]), and UCF101 (101 classes, [123]). The

VIRAT dataset [124] has 12 classes and longer streaming video.

Here, we introduce a new dataset called the Large Continuous Action Corpus

(LCA). This dataset contains depictions of 24 action classes. A novel characteristic

of this dataset is that rather than consisting of short clips each of which depicts

a single action class, this dataset contains much longer streaming video segments

that each contain numerous instances of a variety of action classes that often overlap

in time and may occur in different portions of the field of view. The annotation

that accompanies this dataset delineates not only which actions occur but also their

temporal extent.

Many of the prior datasets were culled from videos downloaded from the internet.

In contrast, the LCA dataset contains videos that were filmed specifically to construct

the dataset. While the video was filmed with people hired to act out the specified

actions according to a general script, the fact that the video contains long streaming

segments tends to mitigate any artificial aspects of the video and render the action

depictions to be quite natural. Moreover, the fact that all of the video was filmed in

a relatively small number of distinct backgrounds makes the dataset challenging; the

background gives little clue as to the action class.

A further distinguishing characteristic of the LCA dataset is the degree of am-

biguity. Most prior action-recognition datasets, in fact most prior datasets for all

computer-vision tasks, make a tacit assumption that the labeling is unambiguous

and thus there is a ‘ground truth.’ We had a team of five human annotators each

annotate the entire LCA dataset. This allowed us to measure the degree of intercoder

agreement. Surprising, there is a significant level of disagreement between humans

as to the temporal extent of most action instances. We believe that such inherent

ambiguity is a more accurate reflection of the underlying action-recognition task and

76

hope that the multiplicity of divergent annotations will help spur novel research with

this more realistic dataset.

Another distinguishing characteristic of the LCA dataset is that some action oc-

currences were filmed simultaneously with multiple cameras with partially overlapping

fields of view. While the cameras were neither spatially calibrated nor temporally syn-

chronized, the fact that we have multiple annotations of the temporal extent of event

occurrences may support future efforts to perform temporal synchronization after the

fact. Furthermore, while most of the video was filmed from ground-level cameras

with horizontal view, some of the video was filmed with aerial cameras with bird’s

eye view. Some of this video was filmed simultaneously with ground cameras. This

may support future efforts to conduct scene reconstruction.

Some datasets are provided with specific tasks and evaluation metrics. We refrain

from doing so for this dataset. Inter alia, we do not provide official sanctioned splits

into validation sets. Instead, we leave it up to the community to make use of this

dataset in a creative fashion for as many different tasks as it will be suited.

In particular, the evaluations conducted by Mind’s Eye included a specific set

of tasks, namely Recognition (REC), Description (DES), Gap Filling (GAP), and

Anomaly Detection (ANM) with specific evaluation metrics. Such tasks and metrics

are expressly not part of LCA. The evaluations conducted under Mind’s Eye make use

of material that is not included in LCA and metrics that are not public. Likewise, LCA

contains material that was not available for use during the Mind’s Eye evaluations.

Thus said evaluations could not be replicated outside of the context of Mind’s Eye.

Any potential future evaluations conducted with LCA would thus be incomparable

to the results obtained under Mind’s Eye.

The entire LCA dataset, including the video and the annotations, has been cleared

for release by DARPA. The remaining material gathered by DARPA for the Mind’s

Eye Year 2 evaluation that is not included in LCA may not have been cleared for

release. As part of the release process, some video was edited to remove certain

portions. Furthermore, the annotation process was performed with the particular

77

versions of the videos included in LCA as provided by DARPA. These may have been

transcoded from the original as filmed by the camera. Thus, the time alignment of

the annotations can only be guaranteed with the versions of the videos included in

LCA. The time alignment may not be correct for any other versions of these videos

that may be residual from the DARPA Mind’s Eye program.

4.2 Collection

The video for this dataset was filmed by DARPA in conjunction with Mitre and

several performers from the Mind’s Eye program.1 The bulk of the video was filmed

as part of the Mind’s Eye Year 2 evaluation. Within the Mind’s Eye program, that

video was referred to as C-D2a, C-D2b, C-D2c, and the Y2 Evaluation dataset. This

video is disjoint from that gathered by Janus Research Group as part of the Mind’s

Eye Year 1 evaluation. Within the Mind’s Eye program, that video was refereed to

as C-D1a, C-D1b, C-D1, and C-E1. As the LCA dataset contains only a subset of

that material, we refrain from using all such terminology in reference to LCA.

The LCA dataset was filmed at three different locations over four periods:

1. The Great Plains Joint Training Center (GPJTC), an army training facility in

Kansas, on 22 August 2011. Filming took place in two contexts at GPJTC, a

simulated country road and a simulated safe house.

2. Strategic Operations, Inc. (STOPS), a training facility in San Diego, on 14–15

December 2011 and on 6–9 March 2012. Filming during the first period took

place in three contexts: two different simulated country roads and one simulated

safe house. Filming during the second period took place in five contexts: two

different simulated country roads, two different simulated safe houses, and one

other.

3. Fort Indiantown Gap (FITG), an army training facility in Pennsylvania, on

19–20 June 2012.

1http://www.darpa.mil/Our_Work/I2O/Programs/Minds_Eye.aspx

http://www.visint.org/

78

A portion of the video was annotated by Mitre for the Mind’s Eye Year 2 evalu-

ation. That annotation is not included in LCA. After the completion of the Mind’s

Eye Year 2 evaluation, we undertook a systematic annotation effort for a portion of

the above video. That annotation forms the basis of LCA. LCA contains all and only

the portion of the above video that was annotated as part of this process. This video

comprises 190 files as delineated in Table 4.1. Eight files are MOV format, 46 are

MP4 format, and 136 are AVI format. The MOV files all use the MP4V codec and are

640×384 at 60 fps. The MP4 files all use the H264 codec and are 640×360 at 30 fps.

The AVI files all use the XVID codec and are either 640×384 at 60 fps or 1440×1080

at 30 fps. This constitutes 2302144 frames and a total of 12 hours, 51 minutes, and

16 seconds of video. For comparison, UCF50 has 1330936 frames and 13.81 hours,

HMDB51 has 632635 frames and 5.85 hours, UCF101 has 27 hours, Hollywood-2 has

20.1 hours, and VIRAT has 8.5 hours. Several frame sequences from this dataset

illustrating several of the backgrounds are shown in Fig. 4.1.

The Mind’s Eye program specified a set of 48 verbs of interest. Of these, the

LCA corpus uses only 24 verbs as annotation labels, as delineated in Table 4.2. Of

these, 17 verbs were used as part of the stage directions given to the actors to guide

the actions that they performed. The remainder were not used as part of the stage

directions but occurred incidentally. Nothing, however, precluded the actors from

performing actions that could be described by other verbs. Thus the video depicts

many other actions than those annotated, including but not limited to riding bicycles,

pushing carts, singing, pointing guns, arguing, and kicking balls. The only restriction,

in principle, to these 24 verbs is that these were the only actions that were annotated.

Identifying the presence of specific verbs in the presence of many such confounding

actions should present additional challenges.

79

GPTC 20110822 SH 02 CP1 NOACTIVITY

GPTC 20110822 SH 02 CP2 NOACTIVITY

GPTC 20110822 SH 07 CP1 EX&RET

GPTC 20110822 SH 07 CP2 EX&RET

GPTC 20110822 SH 13 CP1 WARYHO

GPTC 20110822 SH 13 CP2 WARYHO

GPTC 20110822 SH 11 CP1 PARAHO

GPTC 20110822 SH 11 CP2 PARAHO

GPTC 20110822 SH 12 CP1 HOSTILEHO

GPTC 20110822 SH 12 CP2 HOSTILEHO

GPTC 20110822 SH 06 CP1 SUPCACHRET

GPTC 20110822 SH 06 CP2 SUPCACHRET

GPTC 20110822 SH 09 CP1 GIVE&CONT-BLDG

GPTC 20110822 SH 09 CP2 GIVE&CONT-BLDG

GPTC 20110822 SH 05 CP1 SUPCACHDUMP

GPTC 20110822 SH 05 CP2 SUPCACHDUMP

GPTC 20110822 SH 08 CP1 HO&EX-mixBKG

GPTC 20110822 SH 08 CP2 HO&EX-mixBKG

GPTC 20110822 SH 03 CP1 HO&RET

GPTC 20110822 SH 03 CP2 HO&RET

GPTC 20110822 SH 04 CP1 HO&RET2

GPTC 20110822 SH 04 CP2 HO&RET2

GPTC 20110822 CR 13 CP1 NOACTIVITY

GPTC 20110822 CR 13 CP2 NOACTIVITY

GPTC 20110822 CR 07 CP1 SALESMAN

GPTC 20110822 CR 07 CP2 SALESMAN

GPTC 20110822 CR 12 CP1 BAGDOWNHO&RET

GPTC 20110822 CR 12 CP2 BAGDOWNHO&RET

GPTC 20110822 CR 02 CP1 RoutineActivity

GPTC 20110822 CR 02 CP2 RoutineActivity

GPTC 20110822 CR 05 CP1 CONTHUR-NOHO

GPTC 20110822 CR 05 CP2 CONTHUR-NOHO

GPTC 20110822 CR 04 CP1 EX

GPTC 20110822 CR 04 CP2 EX

GPTC 20110822 CR 08 CP1 SALESMAN INSIST

GPTC 20110822 CR 08 CP2 SALESMAN INSIST

GPTC 20110822 CR 11 CP1 DOUBLEAVOIDBADGUY

GPTC 20110822 CR 11 CP2 DOUBLEAVOIDBADGUY

GPTC 20110822 CR 09 CP1 UPTONOGOOD

GPTC 20110822 CR 09 CP2 UPTONOGOOD

GPTC 20110822 CR 06 CP1 DISAGREE NOGIVE RETURN

GPTC 20110822 CR 06 CP2 DISAGREE NOGIVE RETURN

GPTC 20110822 CR 10 CP1 AVOIDBADGUY

GPTC 20110822 CR 10 CP2 AVOIDBADGUY

GPTC 20110822 CR 03 CP1 HO

GPTC 20110822 CR 03 CP2 HO

STOPS 20120307 SH3 06 C1-edited-01

STOPS 20120307 SH3 06 C3-edited-01

STOPS 20120307 SH3 03 C1-edited-01

STOPS 20120307 SH3 03 C3-edited-01

STOPS 20120307 SH3 02 C1-edited-01

STOPS 20120307 SH3 02 C3-edited-01

STOPS 20120307 SH3 01 C1-edited-01

STOPS 20120307 SH3 01 C3-edited-01

STOPS 20120308 CR1 07a C1

STOPS 20120308 CR1 07a C3

STOPS 20120309 VT1 23 C1

STOPS 20120309 VT1 23 C3

STOPS 20120308 CR1 NA C1

STOPS 20120308 CR1 NA C3

STOPS 20120306 SH1 06 C1

STOPS 20120306 SH1 06 C3

STOPS 20120306 SH1 NA C1

STOPS 20120306 SH1 NA C3

STOPS 20120308 CR1 08a C1

STOPS 20120308 CR1 08a C3

STOPS 20120308 CR1 12a C1

STOPS 20120308 CR1 12a C3

STOPS 20120308 CR1 01a C1

STOPS 20120308 CR1 01a C3

STOPS 20120309 VT1 01 C1

STOPS 20120309 VT1 01 C3

STOPS 20120309 VT1 26 C1

STOPS 20120309 VT1 26 C3

STOPS 20120308 CR1 02a C1

STOPS 20120308 CR1 02a C3

STOPS 20120308 CR1 05a C1

STOPS 20120308 CR1 05a C3

STOPS 20120309 VT1 04 C1

STOPS 20120309 VT1 04 C3

STOPS 20120306 SH1 07 C1

STOPS 20120306 SH1 07 C3

STOPS 20120309 VT1 21 C1

STOPS 20120309 VT1 21 C3

STOPS 20120307 SH3 07 C1

STOPS 20120307 SH3 07 C3

STOPS 20120308 CR1 09a C1

STOPS 20120308 CR1 09a C3

STOPS 20120307 SH3 08 C1

STOPS 20120307 SH3 08 C3

STOPS 20120308 CR1 11a C1

STOPS 20120308 CR1 11a C3

STOPS 20120306 SH1 05 C1

STOPS 20120306 SH1 05 C3

STOPS 20120309 VT1 12 C1

STOPS 20120309 VT1 12 C3

STOPS 20120309 VT1 10 C1

STOPS 20120309 VT1 10 C3

STOPS 20120308 CR1 06a C1

STOPS 20120308 CR1 06a C3

STOPS 20120306 SH1 04 C1

STOPS 20120306 SH1 04 C3

STOPS 20120306 SH1 01 C1

STOPS 20120306 SH1 01 C3

STOPS 20120308 CR1 13a C1

STOPS 20120308 CR1 13a C3

STOPS 20120309 VT1 07 C1

STOPS 20120309 VT1 07 C3

STOPS 20120309 VT1 25 C1

STOPS 20120309 VT1 25 C3

STOPS 20120309 VT1 05 C1

STOPS 20120309 VT1 05 C3

STOPS 20120308 CR1 01c C1

STOPS 20120308 CR1 01c C3

STOPS 20120309 VT1 NA C1

STOPS 20120309 VT1 NA C3

STOPS 20120308 CR1 03a C1

STOPS 20120308 CR1 03a C3

STOPS 20120306 SH1 02 C1

STOPS 20120306 SH1 02 C3

STOPS 20120307 SH3 11 C1

STOPS 20120307 SH3 11 C3

STOPS 20120308 CR1 04a C1

STOPS 20120308 CR1 04a C3

STOPS 20120307 SH3 10 C1

STOPS 20120307 SH3 10 C3

STOPS 20120309 VT1 22 C1

STOPS 20120309 VT1 22 C3

STOPS 20120308 CR1 01b C1

STOPS 20120308 CR1 01b C3

STOPS 20120309 VT1 28 C1

STOPS 20120309 VT1 28 C3

STOPS 20120309 VT1 20 C1

STOPS 20120309 VT1 20 C3

STOPS 20120309 VT1 03 C1

STOPS 20120309 VT1 03 C3

STOPS 20120309 VT1 27 C1

STOPS 20120309 VT1 27 C3

STOPS 20120309 VT1 13 C1

STOPS 20120309 VT1 13 C3

STOPS 20120308 CR1 06b C1

STOPS 20120308 CR1 06b C3

STOPS 20120309 VT1 02 C1

STOPS 20120309 VT1 02 C3

STOPS 20120308 CR1 10a C1

STOPS 20120308 CR1 10a C3

STOPS 20120309 VT1 24 C1

STOPS 20120309 VT1 24 C3

STOPS 20120308 CR1 03b C1

STOPS 20120308 CR1 03b C3

100

105

114

118

11

121

128

133

154

158

162

175

188

195

196

200

211

226

22

230

238

243

252

265

269

277

30

39

41

46

52

57

59

62

68

69

81

86

88

97

Table 4.1.
Video filenames from the LCA dataset. The original names of the filed provided
by DARPA were used. Filenames containing GPTC were filmed at GPJTC. File-
names containing STOPS were filmed at STOPS. Filenames consisting solely of a
number were filmed at FITG. Numbers of the form YYYYMMDD indicate film-
ing date. CR indicates country road. SH indicates safe house. Indices on CR,
SH, and VT indicate variant backgrounds of the given class. CP1, CP2, C1, and
C3 indicate camera. Text indicates the staging directions to guide filming. The
remaining numbers serve to uniquely identify the video.

80

Fig. 4.1. Several frame sequences from the LCA dataset illustrating several of
the backgrounds in which they were filmed.

81

approach∗ drop∗ give∗ replace∗

arrive enter∗ hold run
bury∗ exchange∗ leave stop
carry∗ exit∗ pass∗ take∗

chase∗ flee∗ pick up∗ turn
dig∗ follow∗ put down∗ walk

Table 4.2.
Verbs used as labels in the LCA dataset. The starred verbs were used as part of
the stage directions to the actors. The remaining verbs were not used as part of
the stage directions but may have occurred incidentally.

82

4.3 Annotation

We annotated all occurrences of the 24 verbs from Table 4.2 in the videos in Ta-

ble 4.1. Each such occurrence consisted of a temporal interval labeled with a verb.

The judgment of whether an action described by a particular verb occurred is subjec-

tive; different annotators will arrive at different judgments as to occurrence as well as

the temporal extent thereof. To help guide annotators, we gave them the specification

of the intended meaning of each of the 24 verbs as provided by DARPA. Annotators

performed the annotation at workstations with dual monitors. One monitor displayed

the annotation tool while the other monitor displayed the documentation of intended

verb meaning. The documentation of intended verb meaning is included in the LCA

distribution.

We also asked annotators to annotate intervals where certain object classes were

present in the field of view. These include bandannas, bicycles, people, vehicles, and

weapons. (The bandannas were worn by people around their head or arms.) For

these, a count of the number of instances of each class that were visible in the field

of view was maintained. It was incremented each time a new instance became visible

and decremented each time an instance became invisible. We instructed annotators

that there was no need to be precise when an instance was partially visible. We

further instructed annotators that vehicles denoted motor vehicles, not push carts,

and weapons denoted guns, not other things like clubs or rocks that could be used as

weapons.

We provided annotators with a tool that allowed them to view the videos at

ordinary frame rate, stop and start the videos at will, navigate to arbitrary points in

the videos, view individual frames of the videos, add, delete, and move starting and

ending points of intervals, and label intervals with verbs. The tool also contained

buttons to increment and decrement the counts for each of the object classes and

appraised the annotator with the running counts for the objects classes in each frame

as the video was played or navigated.

83

Because of the large quantity of video to be annotated, and the fact that nothing

happens during large portions of the video, we preprocessed the video to reduce the

amount requiring manual annotation. We first downsampled the video to 5 fps just

for the purpose of annotation; the annotation was converted back at the end to the

original frame rate. Then segments of this downsampled video where no motion

occurred were removed. To do this, we computed dense optical flow on each pixel

of each frame of the downsampled video. We then computed the average of the

magnitude of the flow vectors in each frame and determined which frames were above

a threshold. Stretches of contiguous frames that were above threshold that were

separated by short stretches of contiguous frame that were below threshold were

merged into single temporal segments. Then such single temporal segments that

were shorter than a specified temporal length were discarded.2 Annotators were only

given the remaining temporal segments to annotate. We performed a postprocessing

step whereby the authors manually viewed all discarded frames to make sure that no

actions started, ended, or spanned the omitted temporal segments. As part of this

post processing step the authors manually checked that none of the specified object

classes entered or left the field of view during the omitted temporal segments.

We had five annotators each independently annotate the entire LCA corpus. An-

notators were given initial instructions. During the annotation, annotators were en-

couraged to discuss their annotation judgments with the authors. The authors would

then arbitrate the judgment, often specifying principles to guide the annotation.

These principles were then circulated among the other annotators. The annotator

instructions and principles developed through arbitration are included in the LCA

distribution.

We performed a consistency check during the annotation process. Whenever an

annotator completed annotation of a temporal segment, if that annotator did not

2The threshold for average optical flow magnitude was 150. The threshold for ignoring short
below-threshold spans when merging contiguous above-threshold frames into temporal segments
was 50 frames. The threshold for ignoring short temporal segments was 15 frames.

84

annotate any intervals during that segment but other annotators did, we asked that

annotator to review their annotation.

The LCA dataset contains five verb annotation files for each of the video files

in Table 4.1. These have one of the annotator codes bmedikon, cbushman, kim861,

nielder, and nzabikh in the filename, the keyword verb in the filename, and the

extension txt. Each line in each of these files contains a single temporal interval as

two zero-origin nonnegative integers specifying the starting and ending frames of the

interval inclusive and a text string specifying a verb. The LCA dataset also contains

five object-class annotation files for each of the video files in Table 4.1. These have

one of the above annotator codes in the filename, the keyword object-class in the

filename, and the extension txt. Each line in each of these files contains a single

zero-origin nonnegative integer specifying a frame, a text string specifying an object

class, and either the text string enter or exit.

4.4 Analysis

We analyzed the degree of agreement between the different annotators. To do

this, we compared pairs of annotators, taking the judgments of one as ‘ground truth’

and computing the F1 score of the other. An interval in the annotation being scored

was taken as a true positive if it overlapped some interval with the same label in

the ‘ground truth’. An interval in the annotation being scored was taken as a false

positive if it didn’t overlap any interval with the same label in the ‘ground truth’.

An interval in the ‘ground truth’ was taken as a false negative if it didn’t overlap any

interval with the same label in the annotation being scored. From these counts, an

F1 score could be computed.

We employed the following overlap criterion. For a pair of intervals, we computed

a one-dimensional variant of the ‘intersection over union’ criterion employed within

the Pascal VOC Challenge to determine overlap of two axis-aligned rectangles [125],

namely the length of the intersection divided by the length of the union. We consid-

85

Fig. 4.2. Intercoder agreement on the annotations of the LCA dataset. F1
score for each pair of annotators as the overlap criterion is varied. Overlap of two
intervals is measured as the length of their intersection divided by the length of
their union.

ered two intervals to overlap when the above exceeded some specified threshold. We

then computed the F1 score as this threshold was varied and plotted the results for

all pairs of annotators (Fig. 4.2).

Note that there is a surprisingly low level of agreement between annotators. An-

notators rarely if ever agree on the precise temporal extent of an action as indicated

by the fact that all agreement curves go to zero as the overlap threshold goes to one.

At an overlap threshold of 0.5, the F1 score varies between about 0.3 and about 0.6.

At an overlap threshold of 0.1, the threshold employed by VIRAT to score machines

against humans, the F1 score varies between about 0.38 and about 0.67. This would

put an upper bound on machine performance with this dataset using the VIRAT

threshold. Even if the overlap threshold is reduced to zero, the F1 score varies be-

86

tween about 0.43 and about 0.7. This indicates that this dataset should be challenging

for computer action recognition.

This difficulty is corroborated by a recent paper [126]. That paper employs a

different subset of video from the DARPA Mind’s Eye Year 2 evaluation that is

extremely similar to that in the LCA dataset. That dataset was annotated with the

procedures used to annotate the LCA dataset. The six verbs with highest intercoder

agreement were selected: carry, dig, hold, pick up, put down, and walk. For each of

these between 23 and 30 clips of 2.5s duration with the highest level of intercoder

agreement were selected, yielding 169 distinct clips. Seven different state-of-the-art

computer-vision action recognition methods (C2 [127], Action Bank [44], Stacked ISA

[47], VHTK [49], Cao’s implementation [46] of Ryoo’s method [48], Cao’s method [46],

and our own implementation of the classifier described in [82] on top of the Dense

Trajectories [45, 82,83] feature extractor) were employed on this dataset, performing

one-of-out-six classification in an eight-fold cross-validation. Note that for this task,

each 2.5s clip was labeled with precisely one of the six verbs as ground truth. All

seven methods performed extremely poorly on this dataset (C2 47.4%, Action Bank

44.2%, Stack ISA 46.8%, VHTK 32.5%, Cao’s implementation of Ryoo’s method

31.2%, Cao’s method 33.3%, Dense Trajectories 52.3%), a task with only six classes

and chance performance of 16.6%.

4.5 Experiments

We performed a set of baseline experiments to present and compare the perfor-

mance of all known action recognition systems for which the code for the end to

end system is available, as well as implementations of several for which the code is

unavailable. We used the same set of seven state-of-the-art event-recognition sys-

tems compared in a recent paper [126] (C2 [127], Action Bank [44], Stacked ISA [47],

VHTK [49], Cao’s implementation [46] of Ryoo’s method [48], Cao’s method [46],

and our own implementation of the classifier described in [82] on top of the Dense

87

Trajectories [82,83] feature extractor), as well as on top of the more recent Improved

Trajectories method [45].

As these methods are designed for classification of video clips, rather than for

streaming video, this experiment was performed on a subset of the LCA designed to

be similar in character to other event-recognition datasets, and composed of short

video clips. It was created as follows. First, we took the human-annotated event

instances produced by one of the annotators, cbushman. This annotator was chosen

to maximize the number of available event intervals: while cbushman did not have

the highest agreement with the other annotators, it was observed to be because this

annotator found a large number of event intervals which were missed by the others.

Next, a random set of 100 intervals was selected for each event class for which 100

or more were available, and all available intervals were chosen for those classes for

which fewer than 100 intervals were available. A 2 second clip was extracted from

the original videos centered in time on the middle of each selected event interval, and

downsampled in time to 20 fps and in space to a width of 320 pixels, maintaining

aspect ratio. This process resulted in a total of 1858 clips used for the baseline

experiments.

The class label of each such clip was considered to be the event corresponding to

the human-annotated interval from which the clip was derived. The clips for each

class were randomly split into a training set with 70 percent of the clips and a test

set with 30 percent of the clips, under the constraint that sets of clips extracted

from the same video should fall completely into either the training or test set. This

was done to avoid having clips (e.g. two clips from the same person digging in the

same location) from appearing in both the training and test sets. This resulted in a

training set of 1318 training videos and 540 test videos. Each method was trained

on the training set and used to produce labels on the test set. All methods were

run with default or recommended parameters. These labels were compared to the

intended class labels to measure the accuracy of each method. The results of such

experiments are summarized in Table 4.3

88

Table 4.3.
Comparison of Accuracy for state of the art systems on the baseline experiment.

Method #correct accuracy (%)

Action Bank [44] 90 16.667
Improved Trajectories [45] 84 15.556
Dense Trajectories [82, 83] 76 14.074
C2 [127] 50 9.259
Cao [46] 41 7.592
Cao’s [46] implementation of Ryoo [48] 36 6.667
Stacked ISA [47] 36 6.667
VHTK [49] 34 6.296

89

There are several things of note in these results. First, all the accuracies are quite

low, indicating the difficulty of the task. The highest performing method, Action

Bank [44], is correct only 16.667% of the time. The four lowest performing methods

have accuracies approaching chance performance (5.555%).

Additionally, the newer methods do not necessarily outperform the older meth-

ods. C2 [127] significantly outperforms four more recently published methods, while

Action Bank is the best, outperforming even Improved Trajectories [45], which has

the highest performance on several well known datasets such as datasets including

HMDB (57.2% vs Action Bank’s 26.9%) and UCF50 (91.2%). We suspect that this

difference in relative performance compared to other datasets is the result of the lack

of correllation between background and event class which is often present in other

datasets. That the performance is so low and that the highest scoring methods on

other datasets are not necessarily the same here shows that this dataset presents new

and difficult challenges not present in other datasets.

4.6 Conclusion

We make available to the community a new dataset to support action-recognition

research.3 This dataset has more hours of video than HMDB51, roughly the same

amount of video as UCF50, about half as much video as UCF101 and Hollywood-2,

but unlike these has streaming video and has about twice as much video and twice

as many classes as VIRAT, the largest dataset of streaming video. A distinguishing

characteristic of this dataset is that the video is streaming; long video segments

contain many actions that start and stop at arbitrary times, often overlapping in

space and/or time. A further distinguishing characteristic is that while all actions

were filmed in a variety of backgrounds, every action occurs in every background

so that background gives little information as to action class. We employed novel

techniques to annotate the temporal extent of action occurrences. A multiplicity of

3http://upplysingaoflun.purdue.edu/~qobi/lca.tgz

90

human annotations allows measuring intercoder agreement. The above characteristics

together with the surprisingly low level of intercoder agreement suggest that this will

be a challenging dataset. This is confirmed by the low performance of recent methods

on a baseline experiment which also shows that those methods which perform best on

other datasets do not necessarily outperform other methods on this dataset. The new

difficulties posed by this dataset should spur significant advances in action-recognition

research.

91

5. COMPARISON OF ACTION RECOGNITION WITH

FMRI MIND READING

This chapter describes a comparison of the performance of video action recognition

methods and fMRI mind-reading techniques in an apples-to-apples experiment. The

on the one hand, action recognition methods were used to classify a set of videos. On

the other hand, videos were classified using fMRI brain scan data of human subjects

while they were watching these same videos.

5.1 Dataset

We employed a small portion of the video dataset gathered as part of the Year 2

evaluation for the DARPA Mind’s Eye program.1 (Note that we did not design

the corpus or film the video ourselves; it was designed and filmed by DARPA and

provided to all teams funded by the Mind’s Eye program.) In particular, we used

data from two components of that dataset: the portion known as C-D2b, which was

intended to be used as training data, and the portion known as y2-evaluation,

what was used as test data for the actual evaluation. Of C-D2b, we used solely the

Country_Road portion (both Country_Road_1 and Country_Road_2), videos filmed

on a rural country road depicting the specified action classes. This portion contains

22 video clips ranging in length from about 13.5 minutes to about 41 minutes totaling

about 8.5 hours of video. Of y2-evaluation, we used all of the videos employed for

evaluating the ‘Recognition’ and ‘Description’ tasks that were part of the Year 2

evaluation. This portion contains 11 video clips ranging in length from about 6

minutes to about 13 minutes totaling about 2 hours of video. Two of these video

clips were filmed in a country-road setting while the remainder were filmed in a

1http://www.visint.org/datasets#Year_2_Videos

92

carry

dig

hold

pick up

put down

walk

Fig. 5.1. Key frames from sample stimuli for each of the six action classes.

‘Safe House’ setting, a simulated middle-eastern urban environment. Nominally, this

dataset depicts 24 distinct action classes: approach, arrive, bury, carry, chase, dig,

drop, enter, exchange, exit, flee, follow, give, hold, leave, pass, pick up, put down,

replace, run, stop, take, turn, and walk. However, the video is streaming; action

occurrences start and stop at arbitrary points in the time course of the video, and

often overlap.

There is no official ground-truth action labeling associated with this dataset. To

remedy this, we had five humans annotate the entire Country_Road portion of C-D2b

(both Country_Road_1 and Country_Road_2) and had a different set of five anno-

tators (with one annotator in common) annotate the entire set of videos for the

Recognition and Description portions of y2-evaluation. Each annotator annotated

the entire corpus portion independently, labeling each occurrence of the 24 speci-

fied action classes along with the start and end times for each occurrence. Thus

we have five complete redundant annotations of the entire corpus. Having multiple

93

(a) (b)

Fig. 5.2. Intercoder agreement for each annotator pair on (a) the
C-D2b/Country_Road dataset and (b) the Recognition and Description portions of
the y2-evaluation dataset that were part of the Year 2 evaluation of the DARPA
Mind’s Eye program, as a function of requisite temporal overlap.

annotators allows us to measure intercoder agreement, which we did for all pairs of

annotators. We considered two annotated action occurrences to match when they

were labeled with the same action class and temporally overlapped by a minimum

specified amount. The temporal overlap was measured using a 1-dimensional variant

of the 2-dimension spatial-overlap metric used in PASCAL VOC [125], namely the

ratio of the length of the intersection of the two intervals to the length of their union.

We then computed the F1 score for each pair of annotators as a function of overlap.

The result is shown in Fig. 5.2. The F1 score naturally decreases monotonically with

increasing minimum overlap and goes to zero when the required overlap is 100%,

indicating that human annotators never agree on the precise temporal extent of the

actions in question. But the F1 score ranged between 0.27 and 0.8 at 50% overlap

and between 0.39 and 0.81 at 0% overlap (which still requires temporal adjacency).

This surprisingly low level of human-human intercoder agreement indicates that

even in this setting where the actions are easily interpretable by humans and occur

largely unoccluded in an outdoor setting with an uncluttered background, the task of

delineating temporal extent of action occurrences is ambiguous. Thus we selected a

subset of 6 out of the 24 action classes with the highest level of intercoder agreement:

94

carry, dig, hold, pick up, put down, and walk. For each of these classes, we selected

intervals of at least 2.5 seconds where at least two human annotators agreed on the

label with at least 50% overlap. From these, we attempted to select 30 random 2.5-

second clips for each of the six classes. The 2.5-second clips were chosen to maximally

coincide with the intersection of the human-annotated intervals. However, two classes

did not have sufficient clips with the requisite level of intercoder agreement: dig with

23 and hold with 26. Thus we selected a total of 169 distinct clips across all six

action classes with the highest possible level of intercoder agreement.2 Key frames

from sample stimuli are shown in Fig. 5.1.

We employed a technique to further reduce the potential ambiguity in determining

the intended action-class label for each stimulus. This technique was borrowed and

adapted from the Natural Language Processing community. Natural language ex-

hibits lexical polysemy: words can have multiple senses, which leads to ambiguity in

contexts. WordNet represents word meanings with synsets, unordered sets of words

that share a same meaning. A polysemous word with n different meanings occurs

in n different synsets, along with its synonyms. For example, the verb break is found

in the synsets {break , interrupt} and {break , bust}. To further reduce the potential

ambiguity in the intended class label depicted by each video, we constructed pairs of

video clips with the same label, in the spirit of WordNet’s synsets. In other words,

we constructed longer stimuli as pairs of different video clips with the same intended

action-class label, where each might otherwise be mildly ambiguous as to which ac-

tion class was intended, but where together, the ambiguity is resolved. Sequences of

such video-clip pairs constituted both the stimuli presented to human subjects during

fMRI as well as training and test sets for computer-vision action recognition.

2The supplementary material contains the complete set of 169 video clips.

95

5.2 Action Recognition Software

We sought to try our corpus with as many published action-recognition methods

as possible. We searched all papers on action recognition published in all conferences

listed under Computer Vision Paper Indexes3 since 2011, namely ICCV 2011 and

2013, CVPR 2011, 2012, and 2013, ECCV 2012, ACCV 2012, BMVC 2012, SIG-

GRAPH 2011, EUROGRAPHICS 2011, and IJCAI 2011, for indication that their

code was publicly available. We sought end-to-end implementations that included

both feature extraction and classification. (Some authors release only the code for

feature extraction, for example binaries for STIP [111]4 and source for Dense Trajec-

tories [45, 82, 83]5. The lack of a compatible released classifier makes it difficult to

run and further difficult to compare with the precise published method.) The only

papers that we found that indicated such were for C2 [6,127]6 and Action Bank [44].7

C2 is particularly relevant to our comparison with fMRI as [6] claims that it

uses a hierarchical architecture modeled after the ventral and dorsal streams

of the primate visual cortex for the task of object and action recognition,

respectively.

Additionally, we posted a query for available action-recognition software to CVNet

which yielded a single response pointing us to the code for Stacked ISA [47].8 Further-

more, we contacted Rogerio Feris to see if any code was collected for the study in [116].

He pointed us to a website9 that yielded only one available system that we hadn’t al-

ready been aware of, namely Velocity Histories of Tracked Keypoints (VHTK) [49].10

As far as we can tell, these are the only published action-recognition methods for

which there are corresponding publicly available end-to-end implementations.

3http://www.cvpapers.com/index.html
4http://www.di.ens.fr/~laptev/download.html
5https://lear.inrialpes.fr/people/wang/download/dense_trajectory_release_v1.2.tar.

gz
6https://github.com/hueihan/Action_Recognition
7http://www.cse.buffalo.edu/~jcorso/r/actionbank/
8http://ai.stanford.edu/~quocle/video_release.tar.gz
9http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html
10http://www.cs.rochester.edu/~rmessing/uradl/

96

Note that the released code for Stacked ISA is only able to perform binary clas-

sification and so must differ from that used to generate the published results which

include evaluation of KTH that requires multi-label classification. Also note that for

VHTK, the documentation for the released code states that the released code differs

from that used to produce the results in the corresponding publication; the actual

code used to produce the results in the corresponding publication has not been pub-

licly released. Thus the only publicly available systems that we are aware of that can

replicate the associated published results are C2 and Action Bank.

We also have access to two action-recognition software packages that are not

publicly available. Cao [46] reports that they reimplemented Ryoo’s method [48] as it

is not publicly available. We tested against both Cao’s implementation [46] of Ryoo’s

method [48] as well as Cao’s method [46]. Further, we implemented our own classifier

using the methods described in [82] on top of the publicly available source code for

the Dense Trajectories [45,82,83] feature extraction and tested against this as well.

5.3 Computer-Vision Action-Recognition Experiments

We applied C2 [127], Action Bank [44], Stacked ISA [47], VHTK [49], Cao’s imple-

mentation [46] of Ryoo’s method [48], Cao’s method [46], and our own implementation

of the classifier described in [82] on top of the Dense Trajectories [45,82,83] feature ex-

tractor to the same dataset.11 When running Action Bank, we used the precomputed

205-template bank that was provided with the release. These experiments employed

the same eight-fold leave-one-run-out cross validation. One complication arises, how-

ever. Since the stimuli were selected randomly from a uniform distribution over the

set of available video clips, the same video clip could appear both within a given

run and across runs. In the case of computer-vision systems, which directly process

the stimuli, this would constitute training on the test data. In particular, several of

11These experiments were analogous to the within-subject fMRI experiment. It would be meaningless
to perform a computational analog of the cross-subject fMRI experiments because there would be
no variation between different runs of the same program.

97

Fig. 5.3. Box plot corresponding to the results in Table 5.1, aggregated across
subject and run for fMRI and aggregated across run for the computer-vision meth-
ods. Red lines indicate medians, box extents indicate upper and lower quartiles,
error bars indicate maximal extents, and crosses indicate outliers. The dashed
green lines indicates chance performance.

the computer-vision systems that we evaluated are memory-based and would gain an

unfair advantage by recalling from memory the class labels of test videos that occur

in the training set. This is not a problem for the fMRI experiments because we did

not directly process the stimuli; we process the brain-scan data that was evoked by

the stimuli and there is significant natural variation in such.

To ameliorate this problem when performing the computer-vision experiments, we

removed from each training set any pair that contained a video clip shared with a pair

in the test set. This kept each test set unmodified but resulted in slightly smaller

training sets. After removing such pairs, the two video clips from each pair were

temporally concatenated in the same order as presented to human subjects to yield

the training and test samples for the computer-vision action-recognition experiments.

The results are presented in Table 5.1 and Figs. 5.3 and 5.4. Note that all the

computer-vision action-recognition systems that we tested on yield similar accuracy to

the cross-subject fMRI experiments and much lower accuracy than the corresponding

within-subject fMRI experiments.

98

run

analysis subject mean stddev 1 2 3 4 5 6 7 8

fMRI within subject 1 0.7943 0.0783 0.8333 0.8125 0.8958 0.8542 0.7292 0.8125 0.7708 0.6458
2 0.8880 0.0589 0.8750 0.9375 0.9792 0.9167 0.8958 0.7917 0.8333 0.8750
3 0.7500 0.0568 0.7917 0.7083 0.7292 0.7500 0.7500 0.6458 0.8125 0.8125
4 0.3828 0.0945 0.4583 0.5417 0.3750 0.3542 0.3750 0.2083 0.3750 0.3750
5 0.9063 0.0686 0.8750 0.8542 0.9583 0.9583 0.9583 0.9583 0.9167 0.7708
6 0.8385 0.0348 0.8750 0.8750 0.8542 0.8333 0.8125 0.8542 0.7708 0.8333
7 0.5104 0.2260 0.1667 0.1458 0.6875 0.5417 0.6875 0.6875 0.6042 0.5625
8 0.5078 0.1531 0.2083 0.6458 0.5208 0.6458 0.3958 0.4375 0.6042 0.6042
mean 0.6973 0.6354 0.6901 0.7500 0.7318 0.7005 0.6745 0.7109 0.6849
stddev 0.2171 0.3092 0.2557 0.2156 0.2061 0.2136 0.2450 0.1734 0.1694

fMRI across subject 1 0.2917 0.1045 0.2708 0.1458 0.2917 0.3750 0.3542 0.2708 0.1667 0.4583
2 0.4141 0.0901 0.5417 0.5208 0.3750 0.3958 0.2500 0.3958 0.4167 0.4167
3 0.3698 0.0761 0.4167 0.4375 0.2917 0.3750 0.3333 0.3125 0.2917 0.5000
4 0.2917 0.1210 0.4167 0.2292 0.4792 0.2500 0.3958 0.1667 0.2292 0.1667
5 0.3568 0.0550 0.3958 0.4167 0.3125 0.3333 0.3958 0.3750 0.3750 0.2500
6 0.4036 0.0695 0.4375 0.3750 0.3333 0.3542 0.3333 0.5208 0.4792 0.3958
7 0.3698 0.1677 0.1042 0.1042 0.4375 0.4792 0.3958 0.4375 0.5000 0.5000
8 0.2865 0.0770 0.1458 0.2917 0.2917 0.3958 0.2708 0.2500 0.3750 0.2708
mean 0.3480 0.3411 0.3151 0.3516 0.3698 0.3411 0.3411 0.3542 0.3698
stddev 0.1068 0.1527 0.1475 0.0725 0.0647 0.0567 0.1135 0.1173 0.1254

C2 [127] 0.4740 0.0348 0.5000 0.4792 0.3958 0.4792 0.4583 0.5000 0.5000 0.4792
Action Bank [44] 0.4427 0.1112 0.5625 0.4583 0.2917 0.6250 0.3958 0.4792 0.3542 0.3750
Stacked ISA [47] 0.4688 0.0649 0.5208 0.5000 0.5417 0.4583 0.3333 0.5000 0.4375 0.4583
VHTK [49] 0.3255 0.0721 0.3750 0.2708 0.2708 0.3333 0.2292 0.3542 0.4583 0.3125
Ryoo’s method∗ [48] 0.3125 0.0459 0.2500 0.2708 0.2917 0.3750 0.3333 0.2917 0.3750 0.3125
Cao’s method [46] 0.3333 0.0964 0.3958 0.2292 0.2500 0.4375 0.1875 0.4167 0.3958 0.3542
Dense Trajectories [45, 82,83] 0.5234 0.0634 0.6667 0.5625 0.5000 0.5000 0.4792 0.4792 0.5000 0.5000
∗as implemented in Cao et al. [46]

Table 5.1.
Accuracy of within-subject and cross-subject classification of fMRI brain scans
of subjects watching video clips on a 1-out-of-6 action-recognition task (chance
performance is 0.1666), by subject and run, aggregated across subject, aggre-
gated across run, and aggregated across subject and run. Comparison with seven
computer-vision action-recognition methods, by run and aggregated across run.

99

fMRI within subject fMRI across subject C2 [127]

Action Bank [44] Stacked ISA [47] VHTK [49]

Cao’s implementation [46] of Cao’s method [46] Dense Trajectories [45,82,83]
Ryoo’s method [48]

Fig. 5.4. Confusion matrices corresponding to the results in Table 5.1, aggre-
gated across subject and run for fMRI and aggregated across run for the computer-
vision methods.

5.4 Discussion

Fig. 5.3 illustrates some interesting issues. It shows that Action Bank [44] has

lower median accuracy and a higher variance profile that extends to much lower

accuracy than C2 [127] and Stacked ISA [47] which predate it. It shows that Cao’s

implementation [46] of Ryoo’s method [48] and Cao’s method [46] have lower median

100

accuracy and a much lower span of accuracies than C2 [127], Action Bank [44], and

Stacked ISA [47] which predate them. It shows that Cao’s method [46] has higher

variance than Cao’s implementation [46] of Ryoo’s method [48] which predates it.

Thus generally, the newer methods perform worse than the older ones; it shows that

the field is basically not progressing.

Fig. 5.4 gives some indication as to why. It shows that all the computer-vision

methods tested confuse carry and walk much more than fMRI, which could be ex-

plained if these methods detected these action classes solely by detecting horizontal

motion. It shows that all the computer-vision methods tested confuse dig and hold,

which could be explained if these methods detected these action classes solely by de-

tecting the lack of horizontal motion. It shows that all the computer-vision methods

tested confuse pick up and put down, which could be explained if these methods de-

tected these action classes solely by detecting vertical motion, without detecting the

object being picked up or put down and without accounting for the temporal ordering

of the motion. It also suggests that the semantics of human perception may play a

role in action recognition, which the statistical classifiers cannot pick up. This is all to

be expected when one considers that, generally, most current computer-vision meth-

ods employ techniques that look solely at local image features at very short spatial

and/or temporal scales. Even Action Bank ultimately relies on local image gradients

to define its templates. And none of the methods, even Dense Trajectories which can

incorporate a person detector, detect the objects being interacted with as part of the

action class. In other words, they don’t detect the object being carried, the shovel

used to dig, the hole in the ground that is dug, or the objects being held, picked up, or

put down. Moreover, they don’t model the time course of the changing human pose

and relative position and orientation of the person and the object interacted with.

These are the semantic characteristics of the action class. Thus it shows that none of

these methods are, in fact, doing action recognition.

101

5.5 Conclusion

Despite the explosive growth of interest in action recognition over the past three

years and the perfect or near-perfect classification accuracies reported on datasets

with small numbers of action classes, we show that the problem remains difficult.

Uniformly, the newer methods we tried performed no better than or even worse than

the older methods on this new dataset. One potential explanation is that the field as

a whole is collectively overfitting to the datasets, i.e., having individual researchers

repeatedly hone their methods to a small number of datasets and having the com-

munity collectively perform hill climbing on these datasets is tantamount to training

on the test data. We advocate ameliorating this problem by testing methods on

read-once data, data that has never been processed by the method.

102

6. LINGUISTICS MEETS VIDEO SEARCH

This chapter describes experiments conducted to evaluate the performance of the

sentence tracker [21] for video retrieval on a large realistic dataset comprised of ten

full length Hollywood movies, cut into a large number of short video clips. Given a

sentence drawn from a small grammar and vocabulary, the system returns a set of the

top hits for that sentence, those clips which have been determined to best match the

semantics of that sentence. An experiment was undertaken using Amazon Mechanical

Turk to obtain independent judgments of the truth of query sentences on all clips of

this dataset in order to measure the precision and recall of the system. A comparison

baseline system was also constructed using state of the art object detectors and action

recognition systems, and its performance was also evaluated.

6.1 Experiments

We present three experiments which test video retrieval using sentential queries.

All three use the same video corpus but use different query corpora.

6.1.1 The Ten Westerns Video Corpus

Our video corpus consists of 10 full-length Hollywood movies, nominally of the

genre westerns. This corpus is very challenging and demonstrates the ability of our

approach to handle videos found in the wild and not filmed specifically for this task:

Black Beauty (Warner Brothers, 1994), The Black Stallion (MGM, 1979), Blazing

Saddles (Warner Brothers, 1974), Easy Rider (Columbia Pictures, 1969), The Good

the Bad and the Ugly (Columbia Pictures, 1966), Hidalgo (Touchstone Pictures,

2004), National Velvet (MGM, 1944), Once Upon a Time in Mexico (Columbia Pic-

103

tures, 2003), Seabiscuit (Universal Pictures, 2003), and Unforgiven (Warner Brothers,

1992). In total, this video corpus has 1187 minutes of video, roughly 20 hours. The

appendix specifies the duration and spatial and temporal resolution of each movie.

We temporally downsampled all videos to 6fps but kept their original spatial

resolutions, splitting them into 37186 clips, each clip nominally being 18 frames (3

seconds) long, while overlapping the previous clip by 6 frames. This overlap ensures

that actions that might otherwise occur on clip boundaries will also occur as part of

a clip. While there is prior work on shot segmentation [128] we did not employ it for

two reasons. First, it complicates the system and provides an avenue for additional

failure modes. Second, the approach taken here is able to find an event inside a longer

video with multiple events. The only reason why we split the videos into clips is to

return multiple hits.

6.1.2 Query Corpora

The grammer used allows for queries that describe people interacting with horses,

hence our choice of genre for the video corpus, namely westerns. We generated two

of the three query corpora from this grammar. The first consisted of 9 SVO queries

generated by the grammar. We omitted the 3 SVO queries that involve people riding

people, horses riding people, and horses riding horses. We refer to this collection of

9 queries as the SVO queries. The second consisted of the 204 queries generated by

the template included in the appendix. This consisted of all queries generated by the

grammar except those that involve a PP in an NP and further restricting the lexical

PPM to be appropriate for the verb. For this query corpus we included all queries,

including those that involve people riding people, horses riding people, and horses

riding horses. We refer to this collection of 204 queries as the synthetic queries.

The third collection of queries was elicited from 300 distinct, disinterested, inde-

pendent, and anonymous humans via Amazon Mechanical Turk through a mock up

of our system, as described in the appendix. We obtained 3000 unrestricted queries,

104

completely unconstrained as to grammar and lexicon. We discarded 22 blank queries

and 351 that violated the instructions given to workers, as described in the appendix.

We processed all remaining 2627 queries by mapping them to synthetic queries using a

spelling and grammar correction process based on Levenshtein distance, as described

in the appendix. We refer to this collection of 2627 queries as the human queries. The

mock up did not expose this spelling and grammar correction process to the workers,

who simply entered queries, which were recorded, and obtained search results. We

evaluated the truth of the retrieved results relative to the original human queries, not

their mapping to the synthetic queries.

6.1.3 Models

A requirement for determining whether a video depicts a query, and the degree

to which it depicts that query, is to detect the objects that might fill roles in that

query. Previous work has shown that people and horses are among the easiest-to-

detect objects, although the performance of object detectors, even for these classes,

remains extremely low. To ensure that we did not test on the training data, we em-

ployed previously-trained object models that have not been trained on these videos

but have instead been trained on PASCAL VOC. We use models provided with the

software release associated with Sadeghi & Forsyth [129] which were trained by the

UoCTTI LSVM-MDPM team (the authors of Felzenszwalb et al. [32, 130]) for the

2009 Challenge. On the 2009 Challenge, the person model achieves an AP score of

41.5% and the horse model achieves an AP score of 38.0%. We note that the improve-

ment in AP scores for these object classes in subsequent years of the Challenge has

been minor. When running the object detectors, we set the non-maximal-suppression

parameter to 0.7 and use at most the top 4 detections returned for each class in each

frame.

We also require settings for the 9 parameters which are required to produce the

predicates which encode the semantics of the words in this grammar. For this purpose,

105

we judiciously selected values for these parameters that are consistent with their

intent: far = 180, close = 120, stationary = 2, ∆closing = 3, ∆angle = 45◦,

∆pp = 50, ∆quickly = 30, ∆slowly = 30, and overlap = 0.1. Yu & Siskind et

al. [20] present a strategy for training the parameters of a lexicon of words given a

video corpus.

6.1.4 Baseline

We compared the performance of the sentence tracker against a baseline on the

SVO queries. We compare against a baseline only for the SVO queries and not the

synthetic and human queries because we know of no other system that can support

the more complex syntax and ontology in these query corpora. This baseline employs

the same approach that is used in state-of-the-art video-search systems in that it uses

a bag-of-words approach to search independently for the subject and object of an SVO

query using object detection and the verb of an SVO query using event detection.

We do not compare against any particular existing system because no current system

employs state-of-the-art object or event detectors and thus any such system would

be severely handicapped by its inability to reliably detect people, horses, and the

particular verbs we search for.

Our baseline operates as follows. We first apply an object detector to each frame

of every clip to detect people and horses. For comparison purposes, we employ the

same object detector and pretrained models as used for the experiments with the

sentence tracker, including passing the raw detector score through the same sigmoid.

We rank the clips by the average score of the top detection in each frame. If the query

sentence contains only the word person, we rank only by the person detections. If the

query sentence contains only the word horse, we rank only by the horse detections. If

the query sentence contains both the words person and horse, we rank by the average

of the top person and top horse detection in each frame. We then apply a binary event

detector to eliminate clips from the ranking that do not depict the event specified by

106

the verb. For this purpose, we employ a state-of-the-art event detector, namely that

of Kuehne et al. [6]. We train that detector on 70 positive and 70 negative samples of

each verb and remove those samples from the test set. We then report the top 1, 3,

5, and 10 ranked clips that satisfy the event detector and compare those clips against

the top 1, 3, 5, and 10 clips produced by our method.

6.1.5 Evaluation Procedure

For each query, we scored every clip paired with that query and return the top 1,

3, 5, and 10 best-scoring clips for that query. Each of these top 10 clips was annotated

by a collection of nominally 5 distinct, disinterested, independent, and anonymous

humans via Amazon Mechanical Turk. Each judge was presented with a query and

associated hit and asked: is this query true of this clip? The precise details of how

such assessment was performed are described in the appendix.

6.1.6 Results

Our results are summarized in Fig. 6.1. The left column summarizes the experi-

ments with the SVO queries. Our approach yields significantly higher precision than

the baseline on the SVO queries. Precision of the sentence tracker on the SVO queries

varies as a function of recall as controlled by the threshold on the sentence-tracker

score. Note that it is not possible to achieve high recall with our method, because we

employ hard FSMs to model sentential semantics which cannot be overcome by any

threshold on sentence-tracker score because such is −∞ when the FSM is violated.

Recall is thus limited to about 10−2. Precision is around 0.3 for most of the attainable

recall range. It reaches a peak of 0.5 when recall is about 2× 10−5. Its lowest value

is 0.125 with a similar recall.

The right three columns summarize the experiments with the synthetic and human

queries in the top and bottom rows respectively. For the second and third columns,

no threshold on sentence-tracker score was employed; we evaluated the top 1, 3, 5,

107

Fig. 6.1. (top left) Comparison of average precision in the top 1, 3,
5, and 10 hits, over the SVO queries for both the baseline and the
sentence tracker. (bottom left) Precision/recall curve over the SVO
queries for the sentence tracker. Results for synthetic (top row) and
human (bottom row) queries in the top 1, 3, 5, and 10 hits (right three
columns). (second column) Fraction of queries with at least the the
indicated number of hits, correct or ambiguous hits, and correct hits.
(third column) Fraction of queries that have at least the indicated
fraction of correct hits. (fourth column) Precision of returned hits as
a function of threshold.

108

and 10 hits returned. Because of the stringent FSM model, the sentence tracker can

return fewer than the requisite number of hits, even without a threshold. Thus the

red bars in the second column depict the fraction of the queries for which at least the

indicated number of hits were returned. Because the human judges were sometimes

divided as to whether the queries were true of the hits, we classified these hits as

correct, ambiguous, or incorrect, as described in the appendix. The green bars depict

the fraction of the queries for which the indicated number of correct or ambiguous

hits were returned, while the blue bars depict the fraction of the queries for which

the indicated number of correct hits were returned.

The third column depicts the fraction of the queries that yield at least the indi-

cated fraction of correct hits. For example, with the synthetic queries, slightly more

than 30% of the queries yield 10% or more correct hits in the top 10. As a point of

comparison, with the human queries, slightly more than 55% of the queries yield 10%

or more correct hits in the top 10. Note that for much of the range, the precision in

the top hits requested for human queries exceeds that of the synthetic queries.

The fourth column depicts the variation in average precision as a function of a

threshold on the sentence-tracker score. As the threshold nears zero, the sentence

tracker becomes very precise. As the threshold tends to −∞, the average precision

asymptotes. Again note that overall precision for the human queries is significantly

higher than that of the synthetic queries over almost all of the range of thresholds.

We highlight the usefulness of this approach in Fig. 6.2 where we show one of

the top few hits for a variety of different synthetic and human queries. Note that

two pairs of similar queries, both The person approached the horse and The horse

approached the person as well as The person approached the horse slowly from the

left and The horse approached the person slowly from the left, yield different but

appropriate results. With existing systems, both queries in each pair would provide

the same hits as they treat sentences as conjunctions of words.

109

The person led the horse rightward away. (human query, hit #1, true)
Towards the right, the person led the horse. (human query, hit #1, true)

The horse led the horse rightward. (synthetic query, hit #1, true)

The person approached the person slowly from the right. (synthetic query, hit #1, true)

The person rode slowly leftward. (human query, hit #2, ambiguous)

The person led the horse from the right. (human query, hit #1, true)
The person approached the horse slowly. (both synthetic and human queries, hit #1, ambiguous)

The person approached the horse. (both synthetic and human queries, hit #1, true)
The person approached the horse from the left. (both synthetic and human queries, hit #1, ambiguous)

The horse approached the person. (both synthetic and human queries, hit #3, ambiguous)

The person approached the horse slowly from the left. (both synthetic and human queries, hit #1, ambiguous)

The horse approached the person slowly from the left. (both synthetic and human queries, hit #4, true)

Fig. 6.2. Frames from hits returned for several synthetic and human
queries. Some clips are returned for multiple queries. As indicated
above, theses hits were judged as correct or ambiguous for the asso-
ciated query by human judges.

REFERENCES

110

REFERENCES

[1] K. K. Reddy and M. Shah, “Recognizing 50 human action categories of web
videos,” Machine Vision and Applications, vol. 24, no. 5, pp. 971–981, 2013.

[2] M. D. Rodriguez, M. Sullivan, and M. Shah, “Action MACH: Maximum average
correlation height filter for action recognition,” in CVPR, 2008, pp. 1–8.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as
space-time shapes,” in ICCV, 2005, pp. 1395–1402.

[4] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: A local
svm approach,” in ICPR, 2004, pp. 32–36.

[5] J. C. Niebles, C.-W. Chen, and L. Fei-Fei, “Modeling temporal structure of
decomposable motion segments for activity classification,” in ECCV, 2010, pp.
392–405.

[6] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: A large
video database for human motion recognition,” in ICCV, 2011, pp. 2556–2563.

[7] X. Wu, D. Xu, L. Duan, and J. Luo, “Action recognition using context and
appearance distribution features,” in CVPR, 2011, pp. 489–496.

[8] C. Wang, Y. Wang, and A. L. Yuille, “An approach to pose-based action recog-
nition,” in CVPR, 2013, pp. 915–922.

[9] I. Everts, J. C. van Gemert, and T. Gevers, “Evaluation of color STIPS for
human action recognition,” in CVPR, 2013, pp. 2850–2857.

[10] C. Yuan, W. Hu, G. Tian, S. Yang, and H. Wang, “Multi-task sparse learning
with Beta process prior for action recognition,” in CVPR, 2013, pp. 423–429.

[11] C. Yuan, X. Li, W. Hu, H. Ling, and S. Maybank, “3D R transform on spatio-
temporal interest points for action recognition,” in CVPR, 2013, pp. 724–730.

[12] O. Oreifej and M. Shah, Robust Subspace Estimation Using Low-Rank Opti-
mization. Springer, 2014, ch. 5, pp. 55–67.

[13] H. Wang, A. Kläser, C. Schmid, and C. Liu, “Dense trajectories and motion
boundary descriptors for action recognition,” International Journal of Com-
puter Vision, vol. 103, no. 1, pp. 60–79, 2013.

[14] J. Zhu, B. Wang, X. Yang, W. Zhang, and Z. Tu, “Action recognition with
Actons,” in ICCV, 2013, pp. 3559–3566.

[15] D. Oneata, J. Verbeek, and C. Schmid, “Action and event recognition with
Fisher vectors on a compact feature set,” in ICCV, 2013, pp. 1817–1824.

111

[16] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos “in the
wild”,” in CVPR, 2009, pp. 1996–2003.

[17] N. Ikizler-Cinbis and S. Sclaroff, “Object, scene and actions: Combining mul-
tiple features for human action recognition,” in ECCV, 2010, pp. 494–507.

[18] L. Lin, Y. Xu, X. Liang, and J. Lai, “Complex background subtraction by
pursuing dynamic spatio-temporal models,” IEEE Transactions on Image Pro-
cessing, vol. 23, no. 7, pp. 3191–3202, 2014.

[19] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp.
1409–1422, 2012.

[20] H. Yu and J. M. Siskind, “Grounded language learning from video described
with sentences,” in ACL, 2013, pp. 53–63.

[21] N. Siddharth, A. Barbu, and J. M. Siskind, “Seeing what you’re told: Sentence-
guided activity recognition in video,” in CVPR, 2014.

[22] A. Barbu, N. Siddharth, A. Michaux, and J. M. Siskind, “Simultaneous object
detection, tracking, and event recognition,” Advances in Cognitive Systems,
vol. 2, pp. 203–220, 2012.

[23] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in CVPR, 2005, pp. 886–893.

[24] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of
finite state Markov chains,” The Annals of Mathematical Statistics, vol. 37, pp.
1554–1563, 1966.

[25] Z. Chen, W. Zuo, Q. Hu, and L. Lin, “Kernel sparse representation for time
series classification,” Information Sciences, vol. 292, no. 20, pp. 15–26, 2015.

[26] K. Tang, L. Fei-Fei, and D. Koller, “Learning latent temporal structure for
complex event detection,” in CVPR, 2012, pp. 1250–1257.

[27] X. Liang, L. Lin, and L. Cao, “Learning latent spatio-temporal compositional
model for human action recognition,” in ACM International Conference on
Multimedia, 2013, pp. 263–272.

[28] D. Wu and L. Shao, “Leveraging hierarchical parametric networks for skeletal
joints based action segmentation and recognition,” in CVPR, 2014, pp. 724–731.

[29] P. Banerjee and R. Nevatia, “Pose filter based hidden-crf models for activity
detection,” in ECCV, 2014, pp. 711–726.

[30] Y. Tian, R. Sukthankar, and M. Shah, “Spatiotemporal deformable part models
for action detection,” in CVPR, 2013, pp. 2642–2649.

[31] B. Yao, B. Nie, Z. Liu, and S.-C. Zhu, “Animated pose templates for model-
ing and detecting human actions,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 36, no. 3, pp. 436–452, 2014.

112

[32] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part based models,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645,
2010.

[33] N. Dalal and B. Triggs, “Human detection using oriented histograms of flow
and appearance,” in ECCV, 2006, pp. 428–441.

[34] M. S. Ryoo and J. K. Aggarwal, “Spatio-temporal relationship match: Video
structure comparison for recognition of complex human activities,” in ICCV,
2009, pp. 1593–1600.

[35] L. Niles and H. Silverman, “Combining hidden Markov model and neural net-
work classifiers,” in ICASSP, 1990, pp. 417–420.

[36] A. J. Viterbi, “Error bounds for convolutional codes and an asymtotically opti-
mum decoding algorithm,” IEEE Transactions on Information Theory, vol. 13,
no. 2, pp. 260–267, 1967.

[37] K. Crammer and Y. Singer, “On the algorithmic implementation of multiclass
kernel-based vector machines,” Journal of Machine Learning Research, vol. 2,
pp. 265–292, 2002.

[38] A. Griewank, “On automatic differentiation,” in Mathematical Programming:
recent developments and applications, M. Iri and K. Tanabe, Eds. Kluwer
Academic, 1989, pp. 83–108.

[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[40] P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, and D. Nahamoo, “An inequality
for rational functions with applications to some statistical estimation problems,”
IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 107–113, 1991.

[41] D. Barrett, R. Xu, H. Yu, and J. M. Siskind, “Collecting and annotating the
large continuous action dataset,” 2015, manuscript in review.

[42] Z. Lin, Z. Jiang, and L. Davis, “Recognizing actions by shape-motion prototype
trees,” in ICCV, 2009, pp. 444–451.

[43] P. Nagar and A. Agrawal, “Geometric invariant model based human action
recognition,” in Industrial and Information Systems (ICIIS), 2014, pp. 1–6.

[44] S. Sadanand and J. J. Corso, “Action Bank: A high-level representation of
activity in video,” in CVPR, 2012, pp. 1234–1241.

[45] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in
ICCV, 2013, pp. 3551–3558.

[46] Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu, A. Michaux, Y. Lin,
S. Dickinson, J. M. Siskind, and S. Wang, “Recognizing human activities from
partially observed videos,” in CVPR, 2013, pp. 2658–2665.

[47] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invari-
ant spatio-temporal features for action recognition with independent subspace
analysis,” in CVPR, 2011, pp. 3361–3368.

113

[48] M. S. Ryoo, “Human activity prediction: Early recognition of ongoing activities
from streaming videos,” in ICCV, 2011, pp. 1036–1043.

[49] R. Messing, C. Pal, and H. Kautz, “Activity recognition using the velocity
histories of tracked keypoints,” in ICCV, 2009, pp. 104–111.

[50] T. Lan, Y. Wang, and G. Mori, “Discriminative figure-centric models for joint
action localization and recognition,” in ICCV, 2011, pp. 2003–2010.

[51] C. L. Zitnick and P. Dollár, “Edge Boxes: Locating object proposals from
edges,” in ECCV, 2014, pp. 391–405.

[52] M. MacMahon, B. Stankiewicz, and B. Kuipers, “Walk the talk: connecting
language, knowledge, and action in route instructions,” in AAAI, 2006, pp.
1475–1482.

[53] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding natural lan-
guage directions,” in International Conference on Human-Robot Interaction,
2010, pp. 259–266.

[54] C. Matuszek, D. Fox, and K. Koscher, “Following directions using statistical
machine translation,” in Proceedings of the 5th ACM/IEEE International Con-
ference on Human-Robot Interaction, 2010, pp. 251–258.

[55] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J. Teller,
and N. Roy, “Understanding natural language commands for robotic navigation
and mobile manipulation,” in AAAI, 2011, pp. 1507–1514.

[56] D. L. Chen and R. J. Mooney, “Learning to interpret natural language naviga-
tion instructions from observations,” in AAAI, 2011, pp. 859–865.

[57] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to parse natural
language commands to a robot control system,” in International Symposium on
Experimental Robotics, 2012, pp. 403–415.

[58] Y. Artzi and L. Zettlemoyer, “Weakly supervised learning of semantic parsers
for mapping instructions to actions,” Transactions of the Association for Com-
putational Linguistics, vol. 1, no. 1, pp. 49–62, 2013.

[59] S. Tellex, P. Thaker, J. Joseph, and N. Roy, “Learning perceptually grounded
word meanings from unaligned parallel data,” Machine Learning, vol. 92, no. 2,
pp. 151–167, 2014.

[60] S. Dobnik, S. Pulman, P. Newman, and A. Harrison, “Teaching a robot spatial
expressions,” Proceedings of the Second ACL-SIGSEM Workshop on The Lin-
guistic Dimensions of Prepositions and their Use in Computational Linguistics
Formalisms and Applications, 2005.

[61] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein, “Mobile robot programming
using natural language,” Robotics and Autonomous Systems, vol. 38, no. 3, pp.
171–181, 2002.

[62] S. Teller, M. R. Walter, M. Antone, A. Correa, R. Davis, L. Fletcher, E. Frazzoli,
J. Glass, J. P. How, A. S. Huang et al., “A voice-commandable robotic forklift
working alongside humans in minimally-prepared outdoor environments,” in
ICRA, 2010, pp. 526–533.

114

[63] A. Koller, K. Striegnitz, A. Gargett, D. Byron, J. Cassell, R. Dale, J. Moore, and
J. Oberlander, “Report on the second nlg challenge on generating instructions in
virtual environments (GIVE-2),” in Proceedings of the 6th International Natural
Language Generation Conference, 2010, pp. 243–250.

[64] T. K. Harris, S. Banerjee, and A. I. Rudnicky, “Heterogeneous multi-robot
dialogues for search tasks,” in Proceedings of the AAAI Spring Symposium In-
telligence, 2005.

[65] M. R. Marge, A. K. Pappu, B. Frisch, T. K. Harris, and A. I. Rudnicky, “Ex-
ploring spoken dialog interaction in human-robot teams,” in Robots, Games,
and Research: Success Stories in USARSim, IROS Workshop, 2009.

[66] A. Pappu and A. Rudnicky, “The structure and generality of spoken route
instructions,” in The Annual Meeting of the Special Interest Group on Discourse
and Dialogue, 2012, pp. 99–107.

[67] J. Fasola and M. J. Mataric, “Using semantic fields to model dynamic spa-
tial relations in a robot architecture for natural language instruction of service
robots,” in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2013, pp. 143–150.

[68] P. McGuire, J. Fritsch, J. J. Steil, F. Rothling, G. A. Fink, S. Wachsmuth,
G. Sagerer, and H. Ritter, “Multi-modal human-machine communication for
instructing robot grasping tasks,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 2, 2002, pp. 1082–1088.

[69] F. Doshi and N. Roy, “Spoken language interaction with model uncertainty: an
adaptive human-robot interaction system,” Connection Science, vol. 20, no. 4,
pp. 299–318, 2008.

[70] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox, “A joint model
of language and perception for grounded attribute learning,” in International
Conference on Machine Learning, 2012, pp. 1671–1678.

[71] L. She, S. Yang, Y. Cheng, Y. Jia, J. Y. Chai, and N. Xi, “Back to the blocks
world: Learning new actions through situated human-robot dialogue,” in The
Annual Meeting of the Special Interest Group on Discourse and Dialogue, 2014,
pp. 89–97.

[72] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Academic Press,
1970.

[73] D. Chen and C. D. Manning, “A fast and accurate dependency parser using
neural networks,” in Empirical Methods on Natural Language Processing, 2014,
pp. 740–750.

[74] Wikipedia, “List of English prepositions,” 2015, [Online; accessed 4-
June-2015]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=
List of English prepositions&oldid=662161282

[75] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions. Dover
New York, 1972.

115

[76] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique
occuring in the statistical analysis of probabilistic functions of Markov chains,”
The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164–71, 1970.

[77] L. E. Baum, “An inequality and associated maximization technique in statistical
estimation of probabilistic functions of a Markov process,” Inequalities, vol. 3,
pp. 1–8, 1972.

[78] R. Dale and E. Reiter, “Computational interpretations of the gricean maxims
in the generation of referring expressions,” Cognitive Science, vol. 19, no. 2, pp.
233–263, 1995.

[79] J. Yamoto, J. Ohya, and K. Ishii, “Recognizing human action in time-sequential
images using hidden Markov model,” in CVPR, 1992, pp. 379–385.

[80] Y. Wang and G. Mori, “Human action recognition by semilatent topic mod-
els,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31,
no. 10, pp. 1762–1674, 2009.

[81] S. Maji, L. Bourdev, and J. Malik, “Action recognition from a distributed
representation of pose and appearance,” in CVPR, 2011, pp. 3177–3184.

[82] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories and motion
boundary descriptors for action recognition,” International Journal of Com-
puter Vision, vol. 103, no. 1, pp. 60–79, 2013.

[83] ——, “Action recognition by dense trajectories,” in CVPR, 2011, pp. 3169–
3176.

[84] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as space-
time shapes,” in International Conference on Computer Vision, vol. 2, 2005,
pp. 1395–1402.

[85] A. Gaidon, Z. Harchaoui, and C. Schmid, “Activity representation with motion
hierarchies,” International Journal of Computer Vision, vol. 107, no. 3, pp.
219–238, 2014.

[86] L.-J. Li and L. Fei-Fei, “What, where and who? Classifying events by scene
and object recognition,” in ICCV, 2007, pp. 1–8.

[87] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden Markov models for
complex action recognition,” in CVPR, 1997, pp. 994–999.

[88] Z. Wang, E. E. Kuruoglu, X. Yang, Y. Xu, and S. Yu, “Event recognition with
time varying hidden Markov model,” in ICASSP, 2009, pp. 1761–1764.

[89] J. Liu, B. Kuipers, and S. Savarese, “Recognizing human actions by attributes,”
in CVPR, 2011, pp. 3337–3344.

[90] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense and scale-
invariant spatio-temporal interest point detector,” in ECCV, 2008, pp. 650–663.

[91] A. Kojima, T. Tamura, and K. Fukunaga, “Natural language description of
human activities from video images based on concept hierarchy of actions,”
International Journal of Computer Vision, vol. 50, no. 2, pp. 171–184, 2002.

116

[92] R. Gopalan, “Joint sparsity-based representation and analysis of unconstrained
activities,” in CVPR, 2013, pp. 2738–2745.

[93] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: a local
SVM approach,” in International Conference on Pattern Recognition, vol. 3,
2004, pp. 32–36.

[94] A. Gupta and L. S. Davis, “Objects in action: An approach for combining
action understanding and object perception,” in CVPR, 2007, pp. 1–8.

[95] P. Das, C. Xu, R. F. Doell, and J. J. Corso, “A thousand frames in just a few
words: Lingual description of videos through latent topics and sparse object
stitching,” in CVPR, 2013, pp. 2634–2641.

[96] A. Jain, A. Gupta, M. Rodriguez, and L. S. Davis, “Representing videos using
mid-level discriminative patches,” in CVPR, 2013, pp. 2571–2578.

[97] J. M. Siskind and Q. Morris, “A maximum-likelihood approach to visual event
classification,” in ECCV, 1996, pp. 347–360.

[98] P. Hanckmann, K. Schutte, and G. J. Burghouts, “Automated textual descrip-
tions for a wide range of video events with 48 human actions,” in ECCV Work-
shops, 2012, pp. 372–380.

[99] M. U. G. Khan and Y. Gotoh, “Describing video contents in natural language,”
in Workshop on Innovative Hybrid Approaches to the Processing of Textual
Data, 2012, pp. 27–35.

[100] C. Fernández Tena, P. Baiget, X. Roca, and J. Gonzàlez, “Natural language
descriptions of human behavior from video sequences,” in Advances in Artificial
Intelligence, 2007, pp. 279–292.

[101] C. Yuan, X. Li, W. Hu, H. Ling, and S. Maybank, “3D R transform on spatio-
temporal interest points for action recognition,” in CVPR, 2013, pp. 724–730.

[102] M. U. G. Khan, L. Zhang, and Y. Gotoh, “Human focused video description,”
in ICCV Workshops, 2011, pp. 1480–1487.

[103] K. K. Reddy and M. Shah, “Recognizing 50 human action categories of web
videos,” Machine Vision and Applications, vol. 24, no. 5, pp. 971–981, 2013.

[104] M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and B. Schiele, “Translat-
ing video content to natural language descriptions,” in ICCV, 2013, pp. 433–440.

[105] D. J. Moore, I. A. Essa, and M. H. Heyes, “Exploiting human actions and object
context for recognition tasks,” in ICCV, 1999, pp. 80–86.

[106] S. Guadarrama, N. Krishnamoorthy, G. Malkarnenkar, R. Mooney, T. Darrell,
and K. Saenko, “Youtube2text: Recognizing and describing arbitrary activities
using semantic hierarchies and zero-shot recognition,” in ICCV, 2013, pp. 2712–
2719.

[107] P. F. Dominey and J.-D. Boucher, “Learning to talk about events from narrated
video in a construction grammar framework,” Artificial Intelligence, vol. 167,
no. 1-2, pp. 31–61, 2005.

117

[108] M. U. G. Khan, L. Zhang, and Y. Gotoh, “Towards coherent natural language
description of video streams,” in ICCV Workshops, 2011, pp. 664–671.

[109] Y. Song, L.-P. Morency, and R. Davis, “Action recognition by hierarchical se-
quence summarization,” in CVPR, 2013, pp. 3562–3569.

[110] Y. Ke, R. Sukthankar, and M. Hebert, “Event detection in crowded videos,” in
ICCV, 2007, pp. 1–8.

[111] I. Laptev, “On space-time interest points,” International Journal of Computer
Vision, vol. 64, no. 2-3, pp. 107–123, 2005.

[112] J. M. Siskind, “Visual event classification via force dynamics,” in AAAI, 2000,
pp. 149–155.

[113] G. Xu, Y.-F. Ma, H. Zhang, and S. Yang, “Motion based event recognition
using HMM,” in ICPR, 2002, pp. 831–834.

[114] A. Barbu, N. Siddharth, A. Michaux, and J. M. Siskind, “Simultaneous object
detection, tracking, and event recognition,” Advances in Cognitive Systems,
vol. 2, pp. 203–220, 2012.

[115] N. Krishnamoorthy, G. Malkarnenkar, R. J. Mooney, K. Saenko, and S. Guadar-
rama, “Generating natural-language video descriptions using text-mined knowl-
edge,” in AAAI, 2013, pp. 541–547.

[116] H. Liu, R. Feris, and M.-T. Sun, Benchmarking datasets for human activity
recognition. Springer, 2011, ch. 20, pp. 411–427.

[117] A. Efros, A. Berg, G. Mori, and J. Malik, “Recognizing action at a distance,”
in ICCV, 2003, pp. 726–733.

[118] I. Laptev, M. Marsza lek, C. Schmid, and B. Rozenfeld, “Learning realistic
human actions from movies,” in CVPR, 2008, pp. 1–8.

[119] M. Marsza lek, I. Laptev, and C. Schmid, “Actions in context,” in CVPR, 2009.

[120] H. Uemura, S. Ishikawa, and K. Mikolajczyk, “Feature tracking and motion
compensation for action recognition,” in British Machine Vision Conference,
2008, pp. 1–10.

[121] J. Yuan, Z. Liu, and Y. Wu, “Discriminative subvolume search for efficient
action detection,” in CVPR, 2009, pp. 2442–2449.

[122] A. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns and TRECVID,”
in ACM International Conference on Multimedia Information Retrieval, 2006,
pp. 321–330.

[123] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: a dataset of 101 human
actions classes from videos in the wild,” Computing Research Repository, vol.
abs/1212.0402, 2012.

118

[124] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukher-
jee, J. Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy,
M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba,
B. Song, A. Fong, A. Roy-Chowdhury, and M. Desai, “A large-scale bench-
mark dataset for event recognition in surveillance video,” in CVPR, 2011, pp.
3153–3160.

[125] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The PASCAL visual object classes (VOC) challenge,” International Journal
of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

[126] A. Barbu, D. P. Barrett, W. Chen, N. Siddharth, C. Xiong, J. J. Corso, C. D.
Fellbaum, C. Hanson, S. J. Hanson, S. Hélie, E. Malaia, B. A. Pearlmutter,
J. M. Siskind, T. M. Talavage, and R. B. Wilbur, “Seeing is worse than believ-
ing: Reading people’s minds better than computer-vision methods recognize
actions,” in ECCV, 2014, pp. 612–627.

[127] H. Jhuang, T. Serre, L. Wolf, and T. Poggio, “A biologically inspired system
for action recognition,” in International Conference on Computer Vision, 2007,
pp. 1–8.

[128] M. Cooper, T. Liu, and E. Rieffel, “Video segmentation via temporal pattern
classification,” IEEE Transactions on Multimedia, vol. 9, no. 3, pp. 610–618,
2007.

[129] M. A. Sadeghi and D. Forsyth, “Fast template evaluation with vector quanti-
zation,” in NIPS, 2013, pp. 2949–2957.

[130] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object detec-
tion with deformable part models,” in CVPR, 2010, pp. 2241–2248.

VITA

119

VITA

Daniel Paul Barrett received the B.S. degree in Computer Engineering from Pur-

due University in 2011. He is currently a Ph.D. student in the School of Electrical and

Computer Engineering at Purdue University. His research interests include computer

vision, robotics, and artificial intelligence, particularly their intersection, where a

robot perceives, learns about, and acts on the world through noisy real-world camera

and sensor input.

	Purdue University
	Purdue e-Pubs
	4-2016

	Learning in vision and robotics
	Daniel P. Barrett
	Recommended Citation

	Blank Page

