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ABSTRACT

Ashman, Benjamin W. Ph.D., Purdue University, May 2016. Incorporation of GNSS
Multipath to Improve Autonomous Rendezvous, Docking and Proximity Operations
in Space. Major Professors: James L. Garrison and Mark R. Bell.

Automated rendezvous and docking (AR&D) operations are important for many

future space missions, such as the resupply of space stations, repair and refueling

of large satellites, and active removal of orbital debris. These operations depend

critically on accurate, real-time knowledge of the relative position and velocity be-

tween two space vehicles. Unfortunately, Global Navigation Satellite System (GNSS)

capabilities remain severely limited in close proximity to large space structures due

to significant multipath e↵ects and signal blockage. Although GNSS is used for the

initial stages of approach, other instruments such as laser, radar and vision-based

systems, are required to augment GNSS during AR&D over the last few hundred

meters.

This dissertation models the GNSS signal received during such proximity oper-

ations, and uses this information to improve relative navigation accuracy and in-

tegrity. Methods for separating and interpreting reflected signals are demonstrated

using GNSS data collected during Hubble Servicing Mission 4 (HSM4), a model of

the mission geometry, electromagnetic (EM) ray tracing, and a custom GNSS soft-

ware receiver. EM ray tracing is used to show that a number of signals su�cient for

ranging are reflected by the Hubble Space Telescope (HST) during HSM4, and the

properties of these reflections are used to generate simulated GNSS data. The impact

of reflected signals on code correlation shape, code tracking error, and pseudorange

measurement is demonstrated using the simulated and experimental data.
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Relative navigation is demonstrated using simulated reflected signal measurements

and the dependence of relative navigation on the reflecting object’s scattering proper-

ties is illustrated. From the tracking of data from two oppositely polarized antennas,

both simulated and experimental, it is determined that multipath measurements are

limited by system properties such as antenna polarization quality and front end band-

width. Design considerations involved in optimizing a receiver to measure reflected

signals are discussed.
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1. INTRODUCTION

NASA has done extensive work over the past two decades to incorporate GNSS into

a variety of missions as a source of position, velocity, time, and attitude [1] [2], in-

cluding the U.S. portion of the International Space Station, where GNSS has been

the primary source of this information since April 2002 [3]. Historically, spacecraft

navigation has been dependent on communication with ground stations, where or-

bit determination is performed o✏ine, i.e., not real-time. Regular communication

links must be performed and ground assets maintained, introducing additional ex-

penses and logistical challenges that limit mission design. However, with the advent

of advanced, space-capable receivers, such as the Navigator receiver designed at God-

dard Space Flight Center (GSFC) [4], on-board, autonomous navigation has become

increasingly feasible for any operations in cis-lunar space [5].

In the rendezvous and docking of spacecraft, GNSS signals can reflect o↵ the

target vehicle and cause prohibitively large error in the chaser vehicle receiver at

ranges below 200 meters [6]. These errors vary in time due to the relative motion

and geometry of the vehicles involved [7] or produce systematic errors if the direct

signal is completely blocked. In order to calculate a receivers position, the time of

travel for line of sight signals must be determined from at least four satellites. When a

large object is located in close proximity to the receiver, reflections of the transmitted

signals may also be received. These delayed replicas of the direct signals contribute

erroneous time of travel information to the receivers position calculation, an error

called multipath. Although GNSS is used for the initial stages of approach, relative

range information during docking must currently be obtained from other sensors over

the last few hundred meters. Availability of a single, reliable relative range source

over all approach stages would be especially useful for autonomous rendezvous and

docking (AR&D) missions, such as satellite servicing.
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The significance of multipath error in docking scenarios has been studied, but most

methods address it by modeling the multipath signals and developing methods to

mitigate the resulting receiver errors [8] [1] [2]. Rather than eliminating multipath, it

has been proposed that these additional ray paths be used as a source of information

about the distance of the target vehicle from the receiver [9]. The technique of

estimating receiver-to-target range using a reflected signal from a separate transmitter

is known as bistatic radar. This has been demonstrated using reflected GNSS signals

in the case of aircraft altimetry [10] and a fixed target [11].

Unlike the estimation of error due to multipath, determining a reflected signal’s

additional path length requires measuring and comparing the raw signal correlation

properties of the direct and reflected signals. If the di↵erence in arrival time for

these two signals corresponds to a path di↵erence of less than one C/A code chip

(approximately 293 m), it is di�cult to separate them using conventional tracking

methods. The shape of the code correlation will be the result of summing both

signals. Consequently, an experiment was performed during Hubble Servicing Mission

4 (HSM4), in which sampled intermediate-frequency (IF) data were collected from two

oppositely polarized antennas, one tuned to receive direct signals, the other reflected

signals. This dissertation explores the challenges involved in processing reflected

GNSS signals for relative navigation during spacecraft rendezvous and docking, using

HSM4 as a case study.
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2. OVERVIEW OF GLOBAL NAVIGATION SATELLITE

SYSTEMS

2.1 Background

Radio navigation relies on the principle that electromagnetic signals travel through

space at a known rate. If a signal’s time of travel can be measured, the distance be-

tween the points of reception and transmission can be calculated. With measurements

from multiple transmitters, the receiver’s position can be estimated using the tech-

nique of trilateration. Several radio navigation systems preceded satellite navigation

(e.g., LORAN and Omega in the 1940s and 1960s respectively), but these employed

ground-based beacons that were limited in range and provided only two-dimensional

estimates of a receiver’s position. This was su�cient for terrestrial and maritime

applications, but the advent of aviation made altitude increasingly important.

In 1957 it was observed that Sputnik I ’s orbit could be determined by measuring

the Doppler shift of its signals received at a ground station with a known location.

Using this principle, the U.S. Navy developed the first satellite navigation system,

Transit, in which the transmitting satellite positions were known and a receiver’s po-

sition was estimated from the Doppler shifts. Parallel navigation projects were being

pursued in the U.S. Army and U.S. Air Force (MOSAIC and SECOR, respectively)

throughout the 1960s. In 1973, these programs were combined, along with the Navy’s

Timation satellite system, into NAVSTAR, now referred to as the Global Positioning

System (GPS). The first satellite was launched in 1978 and the system was declared

to have Full Operational Capacity in 1995 [12].

The Soviet Union simultaneously developed its own satellite navigation system,

GLONASS, from two systems similar to Transit (Parus and Tskikada). Other sys-

tems in various stages of planning or testing include China’s BeiDou and the European
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Union’s Galileo. Systems with regional coverage include India’s IRNSS and Japan’s

QZSS. These systems are referred to collectively as Global Navigation Satellite Sys-

tems (GNSS). Although the following discussion will use the specific architecture of

GPS as an example, the concepts explored in this dissertation are broadly applicable

to all GNSS.

2.2 Global Positioning System Signal Structure

GNSS signals are designed to satisfy a number of constraints. The primary objec-

tive is to estimate the receiver’s position using trilateration. To this end, signals must

be designed so that the propagation delay between the transmitter and receiver can

be measured. GNSS signals must also allow multiple access and provide robustness

to interference and multipath.

The GPS constellation consists of 32 satellites in six orbital planes. The satellites

are in nearly circular orbits, each with a radius of approximately 26, 600 km. This

arrangement ensures that more than eight satellites are always visible at any point on

the earth. A complete description of GPS signals is given in the interface specifications

document maintained by the U.S. government [13]. Each satellite transmits several

signals at di↵erent carrier frequencies, but only the civilian signal transmitted on the

L1 carrier will be considered here. This signal received from the i-th GPS satellite

can be written

yi(t) = ai(t)di(t� ⌧ i(t))pi(t� ⌧ i(t)) cos(2⇡(fL1 + f i
D)t+ ✓i(t

0

)) + vi(t). (2.1)

Dropping the satellite superscripts when there is no risk of ambiguity, the signal

essentially consists of two codes, d(t) and p(t), modulated by a radio frequency (RF)

carrier with an amplitude a(t). Random noise a↵ecting the signal at reception is

modeled by adding a circular symmetric Gaussian random variable v(t) with zero

mean and variance �2. The carrier frequency of the GPS L1 signal, fL1, is 1.57542

GHz. This is chosen to penetrate the atmosphere and satisfy spectrum restrictions

for satellite navigation. This particular value is mathematically related to the code
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frequencies, as well as the L2 and L5 frequencies, allowing all to be generated from the

same on-board clocks. The carrier is shifted in frequency by an unknown Doppler shift

fD due to the rate of change of the distance between the transmitting satellite and

the receiving antenna. For distance rate of change ṙ(t) and rate of signal propagation

c, fD = ṙ(t)fL1/c. Doppler e↵ects on d(t) and p(t) are ignored for now, as their lower

frequencies result in comparatively minor e↵ects.

Amplitude is a function of the signal power, a(t) =
p
2PR(t). The received signal

power is the result of the satellite’s 27 Watt transmission, 14.7 dB antenna gain (at

boresight), spreading loss over the distance of propagation, and receive antenna gain

properties. The signal d(t) is a 12.5 minute navigation data message, transmitted at

50 bits per second. The navigation message contains information on the transmitting

satellite’s health, ephemeris, and clock bias, as well as reduced-precision ephemerides

for all of the satellites in the constellation. This message also contains time of trans-

mission information, essential for resolving cycle ambiguities in the spreading code.

The spreading code p(t) is referred to as the Coarse Acquisition code (C/A code).

This is chosen to have autocorrelation and cross correlation properties that enable

propagation delay measurement and multiple access. To meet these requirements,

signals must have a small autocorrelation function except at zero o↵set, and a small

cross correlation function at all shifts [14]. This means that for two di↵erent satellites

the cross correlation of their corresponding codes is nearly zero, allowing multiple

access, and for a single satellite the autocorrelation of its code is nearly zero at all

shifts other than zero, enabling delay measurement. Several di↵erent coding schemes

meet this criteria, but 1023-length Gold sequences are used for the GPS civilian

code [15].

The C/A code is a sequence of 1.023 MHz square pulses that is periodic with period

1 ms. Each code is the sum of two maximal length sequences (of length 210�1 = 1023)

generated by tapped linear feedback shift registers. Although deterministic, the codes

exhibit noise-like properties and are also referred to as pseudo-random noise (PRN)

codes. A unique code is generated for each satellite by di↵erent shift register taps.
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The code’s pulses are called “chips” to distinguish them from the 50Hz information-

bearing “bits” of the navigation message.

The signal arrives at the receive antenna delayed by ⌧(t) seconds due to the time

of propagation. This delay can be seen in each of the components of Equation (2.1);

in the carrier term it is contained in the unknown initial phase ✓(t
0

). The ability

to determine this delay and reference it to the time of transmission contained in

the navigation data message is essential to the satellite navigation concept. This is

accomplished by processing the ambiguity function.

2.2.1 Ambiguity Function

Fig. 2.1. Example of correlation peak in Doppler and delay from
HSM4 data processing
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In order to determine the delay and frequency of the incoming signal, or the

presence of a signal at all, it is necessary to form a decision statistic. A GPS receiver

is a correlation receiver, that is, it correlates the incoming signal with a local copy of

that signal. This is equivalent to convolving the input signal with a matched filter,

and is optimal in the sense that it maximizes the signal to noise ratio (SNR). Recall

that the incoming signal arrives with an unknown delay and Doppler. The filter

matched to the C/A code is mismatched with respect to the received signal in delay

and Doppler by ⌧ and fD respectively. The two-dimensional function at the matched

filter output is an asymmetric ambiguity function,

�(⌧, fD) =

Z t

t�TI

p(↵)p⇤(↵� ⌧)ei2⇡fD↵ d↵, (2.2)

where the asterisk indicates a complex conjugate.

An example ambiguity function is shown in Figure 2.1. For illustrative purposes,

only a segment of the code delay axis is shown. This is an optimal decision statistic for

estimating the delay and Doppler of the received signal defined in Equation (2.1) after

removal of the carrier [16]. A GPS receiver applies a test delay ⌧̃ and test Doppler f̃D

to the local code replica, and the values that maximize the decision statistic (i.e., the

ambiguity function peak in delay and Doppler space) are taken as the estimated delay

and Doppler of the incoming signal. The convolution sample time, TI , corresponds

to the signal length and is an important factor in noise performance known as the

pre-detection integration time.

The ranging properties of the GPS signal depend on the shape of the ambiguity

function. Along the zero delay axis, p2(t) = 1 for a normalized C/A code. Considering

signals with finite length TI and t
0

= 0,

�(0, fD) =

Z TI

0

ei2⇡fDt dt =
1

i2⇡fD

�
ei2⇡fDTI � 1

�

=
TIe

i2⇡fDTI/2

i2⇡fDTI

�
ei⇡fDTI � e�i⇡fDTI

�
.

Using Euler’s formula for expressing sine in terms of exponentials, this simplifies to

ei2⇡fDTI/2

i2⇡fDTI
2i sin(⇡fDTI) = TIe

i⇡fDTI sinc(fDTI).
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This amounts to the Fourier transform of a square pulse with length TI . Therefore,

�(0, fD) is a scaled sinc function with nulls occurring at integer multiples of ±1/TI .

In order to detect the main lobe of �(⌧, fD) in the Doppler dimension, the frequency

search must have a step size less than or equal to 1/(2TI). A finer resolution search

will maximize the detected peak but require more computation. The range of Doppler

frequencies that must be searched can be determined from estimated receiver dynam-

ics.

Along the delay dimension (i.e., �(⌧, 0)), the ambiguity function has the shape of

a C/A code autocorrelation function. For local C/A code replica p(t), the normalized

correlation of the incoming code shifted by ⌧ is given by

R(⌧) =
1

TI

Z t

t�TI

p(↵)p(↵� ⌧)d↵. (2.3)

Here the complex conjugate has been ignored - the locally generated replica code

sequence is strictly real. Although the exact shape of the correlation function over all

⌧ varies by PRN, in every case the autocorrelation has a peak at ⌧ = 0, decreasing

linearly to approximately zero at ⌧ = ±Tc, where Tc is the chip period.

Note that in the preceding formulas the reference local code replica is not shifted,

so the propagation delay ⌧ of the incoming signal is identical to the shift o↵set between

the two codes. In general a test shift of ⌧̃ is applied to the local code, so that the

relative shift is ✏ = ⌧̃ � ⌧ and the ideal code correlation function is

R(✏) =

8
<

:
1� |✏|

TC
for |✏|  TC

0 elsewhere
. (2.4)

The shift in the local code necessary to maximize the code correlation function is the

incoming signal delay modulo one code period, also referred to as the code phase.

2.2.2 Complex Accumulations

The ambiguity function formed by a GPS receiver is complex, however. A detailed

model of complex accumulations is given by Psiaki et al. in their 2015 article on
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multipath estimation using antenna motion [17]; a simplification of their model is used

in this dissertation. The received signal in Equation (2.1) is mixed to an intermediate

frequency, filtered, and sampled. The raw RF front end output sample at receiver

sample time ti can be written

yi = y(t)2ej!LOt ⇤ h(t)|
at t=iTs . (2.5)

Here !LO is the local oscillator frequency such that the intermediate frequency !IF =

!LO � !L1, h(t) is the front end filter’s complex envelope response function and ⇤

indicates convolution. The signal is sampled at sampling rate fs = 1/Ts. This

is shown in Figure 2.2. Omega is used to indicate a frequency in radians (e.g.,

!L1 = 2⇡fL1, where fL1 is in hertz).

If h(t) is a bandpass filter centered at !IF with two-sided bandwidth B in Hz such

that B < fs (i.e., there is no aliasing), then

yi = a(ti){p̃I(ti � ⌧(ti)) cos(!IF ti + �NBC(ti))

+ jp̃Q(ti � ⌧(ti)) sin(!IF ti + �NBC(ti))}+ v(ti). (2.6)

Assuming the code correlation is aligned with the start edge of a navigation bit and

the accumulation length TI is no longer than one bit (20 ms), the navigation message

d(t) can be ignored here. Doppler e↵ects on the code are again ignored for now. The

negative beat carrier frequency arising from the local oscillator phase mismatch during

downconversion to IF is defined �NBC(ti) = �!Dti � ✓(t
0

) (i.e., the time integral of

the Doppler).

Here p̃I and p̃Q are, respectively, the in-phase and quadrature components of the

signal’s PRN code after front end filtering:

p̃I(t) = real

⇢Z 1

�1
p(�)h(t� �) d�

�
(2.7)

p̃Q(t) = imag

⇢Z 1

�1
p(�)h(t� �) d�

�
. (2.8)

Although the PRN code is nominally transmitted on the in-phase channel only, some

code will appear on the quadrature channel due to imperfect phase alignment of the
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local oscillator with the incoming signal. The two codes are further distinguished by

the real and imaginary responses of the front-end filter, which in general are not the

same [18].

I

Q

BPF h(t)
fc = fIF

BPF h(t)
fc = fIF

ADC
fs > B

ADC
fs > B

2cos(ωLO)

-2sin(ωLO)

complex
IF data

i

Re(•)

Im(•)

Fig. 2.2. RF front end

The ideal code correlation in Equation (2.4) is a function of the o↵set ✏ between

the incoming code and the local code replica. For an estimated delay ⌧̂ , consider an

arbitrary number of correlators o↵set by ⌘ from ⌧̂ . The correlation value at each ⌘

is the sum of the incoming code and local code product over the correlation length,

or predetection integration time, TI . This sum is known as an accumulation, and the

k-th in-phase and quadrature accumulations are computed

Ik(⌘) = real

⇢ ik+Nk�1X

i=ik

yip(ti � ⌧̂k � ⌘)exp(�j(!IF ti + �̂k + !̂k(ti � ⌧̂k)))

�
, (2.9)

Qk(⌘) = imag

⇢ ik+Nk�1X

i=ik

yip(ti � ⌧̂k � ⌘)exp(�j(!IF ti + �̂k + !̂k(ti � ⌧̂k)))

�
. (2.10)

where Nk is the number of samples in TI . The delay estimate ⌧̂k is formed in the

receiver by the Delay Lock Loop, while estimates of the negative beat carrier phase

�̂k and Doppler shift !̂k are formed by the Phase Lock Loop, both described in more

detail in Sections 2.3.3.
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Consider the in-phase accumulation. Assuming double frequency terms average

out in the accumulation,

Ik(⌘) =
1

2

ik+Nk�1X

i=ik

a(ti)

⇢
p̃I(ti � ⌧(ti))p(ti � ⌧̂k � ⌘) cos(�̂k + !̂k(ti � ⌧k)� �NBC(ti))

� p̃Q(ti � ⌧(ti))p(ti � ⌧̂k � ⌘) sin(�̂k + !̂k(ti � ⌧k)� �NBC(ti))

�
. (2.11)

The frequency term

f(ti) = �̂k + !̂k(ti � ⌧k)� �NBC(ti), (2.12)

is the error in the PLL carrier estimate. For small errors this can be approximated

as constant over the accumulation

f(ti) ⇡ f(t̄k) = ��k +�!k t̄k, (2.13)

where ��k is the phase di↵erence between the local oscillator and the carrier, and

�!k the carrier Doppler shift error at the accumulation midpoint t̄k. If the code

correlations are written as a function of the DLL error �⌧k = ⌧k � ⌧̂k,

R̃I(�⌧k + ⌘) =
ik+Nk�1X

i=ik

p̃I(ti � ⌧k)p(ti � ⌧̂k � ⌘), (2.14)

and

R̃Q(�⌧k + ⌘) =
ik+Nk�1X

i=ik

p̃Q(ti � ⌧k)p(ti � ⌧̂k � ⌘), (2.15)

then the complete description of the in-phase accumulation is

Ik(⌘) =
1

2
Ak

⇢
cos(��k +�!k t̄k)R̃I(�⌧k + ⌘)

� sin(��k +�!k t̄k)R̃Q(�⌧k + ⌘)

�
, (2.16)

where Ak is the signal amplitude at the start of the k-th accumulation interval. The

quadrature channel can be computed in a similar manner and the complex accumu-

lation formed Ik(⌘) + jQk(⌘). When tracking is locked, power is concentrated in the

in-phase accumulations, and the presence of the quadrature code term on the in-phase

channel is negligible. In the presence of multipath, however, the shape of the ambigu-

ity function is distorted in complex space, so the representation of the accumulation

as complex becomes important [17]. This is discussed further in Section 3.3.
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2.3 RNS SDR Receiver Architecture

A GPS receiver has three main tasks: determine which satellites are visible, and

estimate the delay and Doppler associated with each; refine the delay and Doppler

estimates and track these features as they change over time; and use measurements

from all visible signals to produce an estimate of the receiver’s position and velocity.

These processes are referred to as acquisition, tracking and navigation respectively,

and are covered in detail in the corresponding chapters of the American Institute of

Aeronautics and Astronautics’ Global Positioning System: Theory and Applications

(references [19], [20] and [21] respectively). Acquisition and tracking will be discussed

here by describing the particular features of the software receiver developed and used

in this research. Navigation is addressed later in Chapter 7.

A software-defined radio (SDR) is a system for processing RF signals that is con-

structed entirely in software. Input data is in the form of real or complex samples

taken immediately after the received signal is downconverted to an intermediate fre-

quency. An SDR allows complete flexibility in the design and modification of receiver

components. An SDR also provides access to the signal at every stage of processing.

A custom software-defined GPS receiver was constructed specifically to analyze the

HSM4 data because the novel processing of multipath for relative range information

involves examination and exploitation of signal features on a fundamental level. This

receiver, the Relative Navigation Sensor Software-Defined Radio (RNS SDR), was

written in MATLAB and consists of several interconnected modules.

2.3.1 Program Operation

Running the RNS SDR script calls a separate settings file, then performs ac-

quisition, plots carrier to noise spectral density (C/N
0

) estimates from acquisition,

performs signal tracking, plots tracking results and finally saves the acquisition and

tracking results. The settings script allows the receiver to be configured for processing

simulated data or data from HSM4. The receiver has also been used for processing
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a number of other data sets of various data types, though always complex in the

form of interleaved in-phase and quadrature samples. When processing HSM4 data,

predictions of Doppler for each satellite from Systems Tool Kit (STK) are used to aid

satellite search.

The start time of tracking is set in terms of Universal Consolidated Time (UTC),

which is then referenced to a specified file start time. Tracking duration is set in

seconds. The pre-detection integration time, Doppler search resolution and other ac-

quisition and tracking parameters can be adjusted. An acquisition threshold can be

chosen to determine satellite visibility at the time of acquisition, but a non-visible

satellite must be set as a noise floor reference for computing acquisition C/N
0

esti-

mates. After the receiver loses lock it does not automatically attempt to re-acquire.

The receiver can be run for the whole GPS constellation, but because channels are

processed serially this is computationally time consuming. Typical operation is to

run the receiver for a particular PRN and time frame of interest. Acquisition and

tracking results are saved in directories by date for access by post-processing scripts

(e.g., prompt power oscillation plots, excess pseudorange calculations).

2.3.2 Acquisition

After establishing signal parameters and file identifiers, program flow proceeds

to signal acquisition. Acquisition seeks to determine which satellites are visible and

then form an estimate of the delay and Doppler of each in order to initialize tracking.

The basic premise has been described above: correlate the incoming signal with local

replica signals across a span of frequencies, and seed tracking with the Doppler and

delay estimates that maximize the correlation.

A pre-detection integration time longer than 1 ms is needed for the acquisition of

weak signals. Consider that the nominal received GPS signal power is �130 dBm.

Due to the 1.023 MHz C/A code, the received GPS signal has a bandwidth of ap-

proximately 2 MHz. For this bandwidth, the noise power is greater than the signal
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strength: PN,dB = 10 log
10

(kTB) = �110 dBm, where k is Boltzmann’s constant, T

is the equivalent noise temperature (usually 273 K) and B is the bandwidth consid-

ered. Using an integration time of 1 ms to correlate with the C/A code corresponds

to a filter bandwidth of 1 kHz and a noise power of �144 dBm, bringing the noise

floor below the received signal power. Increasing the pre-detection integration time

to raise the SNR is critical for weaker signals [22].

When TI > 1 ms, data bits cannot be regarded as constant. Even when TI = 1

ms is used for tracking, RNS SDR performs fine acquisition using 10 ms coherent

integration. Following the Alternate Half-Bits Method in [23], four 10 ms correlations

of N samples are formed,

z(⌧̃ , !̃D) =
N(`+1)�1X

i=N`

yipi�⌧̃exp(�j(!IF � !̃D)ti), (2.17)

for correlation start time ` = {1, 2, 3, 4}, test delay ⌧̃ and test Doppler !̃D. The

N sums within each correlation preserve phase and therefore add coherently. The

duration of each coherent correlation is adjusted for code Doppler according to the

test Doppler value, so the sum is performed across an integer number of code periods.

The first and third sums are then added together non-coherently (i.e., the magnitudes

are summed, no longer preserving phase between them) and compared to the non-

coherent addition of the second and fourth coherent sums. Each coherent sum is half

the duration of a navigation bit, so one of the non-coherent sums is guaranteed to be

free of navigation bit transitions, providing increased SNR for estimating ⌧ and !D.

Doppler and delay search results from the maximum coherent sum pair are used

to form estimates. As discussed above, due to the shape of the ambiguity function’s

Doppler dimension, Doppler must be searched with a minimum resolution of 1/(2TI).

RNS SDR uses a 5 Hz frequency step over a span of ±175 Hz, centered around the

STK Doppler prediction for HSM4 data. When other data is used and the frequency

span is larger, a step size of 250 Hz is used an approximation of finer search grid is

achieved through

z
fine

(⌧̃ , !̃D) = exp(j�!̂D t̄`)z(⌧̃ , !̃D) (2.18)
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where t̄` is the midpoint of the `-th accumulation as detailed in [23].

The process of correlating a local copy with the input signal itself e↵ectively

searches all possible delays with a resolution corresponding to the input signal sample

rate, fs. C/A codes are pre-generated and read from a file for speed. The circular

correlation of two finite and equal length sequences x[n] and y[n] is equivalent to

Z(k) = X⇤(k)Y (k), (2.19)

where X⇤(k) is the complex conjugate of the frequency domain representation of x[n],

and Y (k) is the frequency domain represenation of y[n]. Using this relationship, the

C/A code can be e�ciently correlated by taking the Fast Fourier Transform (FFT) of

the received signal after carrier removal and multiplying it by the complex conjugate

of the FFT of the locally generated code. The peak corresponding to the delay

o↵set of the local and received codes can be found through the Inverse Fast Fourier

Transform (IFFT).

The method of determining C/N
0

during acquisition is only an approximation.

Correlation is performed over a range of frequencies to form the statistic zj(⌧̃ , !̃D)

using the C/A code for a non-visible satellite j. Due to the cross correlation properties

of the codes, this produces only noise. The average over delay and Doppler of the

magnitude squared (or power) of zj(⌧̃ , !̃D) is taken to be the noise floor, N
0

. The

carrier to noise spectral density of satellite j, (C/N
0

)i, is approximated as the ratio

of the magnitude squared of zi(⌧̃ , !̃D) to N
0

divided by TI ,

✓
C

N
0

◆i

=
|zi(⌧̃ , !̃D)|

2

TImean(|zj(⌧̃ , !̃D)|2)
. (2.20)

This result is compared with the user-specified threshold in order to evaluate visibil-

ity. A more accurate and precise measurement is determined during the subsequent

tracking procedure.
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2.3.3 Tracking

After all visible satellites are acquired, the desired signals can be tracked. Satel-

lites to be tracked are specified in the RNS SDR settings. If determined visible by

acquisition, these are processed serially. Tracking starts at the sample in the data file

corresponding to the start of the next C/A code period, as determined from the ac-

quisition delay estimate. The tracking loop continues for the specified time duration.

After all satellites are processed, the results are plotted. Loop lock occurs in 1 second

or less, depending on signal strength, but the C/N
0

estimate takes approximately six

seconds to settle.

The goal of tracking is to refine the delay and Doppler estimates produced by

acquisition. In short, this involves correlating the input signal with a local replica

and filtering the results to produce error terms that quantify the di↵erence between

the local replica and the actual input signal. A feedback process makes adjustments

to the local signal replica according to the code delay and frequency error terms. In

addition to converging on the input signal parameters ⌧ and !D, the tracking of the

dynamic signal allows for measurements of changing signal features and more accurate

measurements of C/N
0

than possible with acquisition. Tracking is achieved using a

phase lock loop (PLL) for the carrier and a carrier-aided delay lock loop (DLL) for

the code.

Phase Lock Loop

The PLL is characterized by its loop discriminator and loop filters. At the start

of tracking, a local carrier is generated at a frequency equal to !IF + !̃D,k. This

finite-length signal is multiplied by an input signal of the same length and a sampled

version of the C/A code, delayed (via a circular shift) according to ⌧̂k, to form the

k-th prompt correlation

eP,k =
ik+Nk�1X

i=ik

yip(ti � ⌧̂k)exp(�j(!IF ti + �̂k + !̂k(ti � ⌧̂k))). (2.21)
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The number of samples in the correlation, Nk, is determined by TI and the compres-

sion or expansion of the C/A code periods by the Doppler shift. The prompt correlator

output is a complex signal consisting of in-phase and quadrature components ePI,k

and ePQ,k. As such, eP,k contains information about the frequency di↵erence between

the locally generated carrier and the received signal. This is translated into an error

term by the loop discriminator,

✏carr,k = arctan

✓
ePQ,k

ePI,k

◆
. (2.22)

The loop filter is designed to make phase adjustments to the local oscillator (i.e.,

the frequency of the locally generated carrier) on the basis of the discriminator output

such that ✏carr,k is driven to zero. In the RNS SDR, this discriminator output is filtered

by the third-order loop filter shown in Figure 2.3 and fed back to the carrier generator

as a correction !IF + !̂k [24]. A third order filter is used to handle the high dynamics

present in HSM4.

Fig. 2.3. PLL loop filter

The transfer function of the loop filter in the z domain is

H(z) = T 2

I !
3

03

(1 + z�1)2 + aTI!
2

03

(1 + z�1) + b!
03

, (2.23)

where !3

03

is the natural frequency of the filter and a and b are adjustable parameters.

Loop bandwidth is an important factor in PLL noise performance; a wider bandwidth

is less susceptible to high dynamics but a narrower bandwidth is more robust if the
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signal is weak. The filter parameters are adjusted to achieve a loop bandwidth Bn that

accommodates these factors based on the integration time used (in general, TI = 1

ms for strong signals and TI = 20 ms for weak signals). Bandwidth is calculated

Bn =
1

2⇡

Z 1

0

|H(!)|2 d!. (2.24)

Recall that H(!) = H(z)|z=ej! . The integral in Equation (2.24) can be solved using

contour integration and Cauchy’s integral formula [25].

A key performance metric of the PLL is its carrier loop thermal noise error. A

1-sigma rule-of-thumb bounds the standard deviation of the PLL to less than or

equal to 15� in order to maintain lock. Breaking the PLL standard deviation into its

components, this means

�PLL =
q
�2

t,PLL + �2

v + ✓2A + ✓e/3  15� (2.25)

must hold to maintain carrier lock [24]. Here, �2

t,PLL is the thermal noise jitter, �2

v

is the vibration induced oscillator jitter, ✓2A is the Allan variance induced oscillator

jitter and ✓e is the dynamic stress error.

Thermal noise is the only factor of significance in the case of HSM4, as the latter

quantities are either relatively small (in the case of oscillator jitters), or depend on

higher-order dynamics, such as jerk, that are not a concern (in the case of the dynamic

stress error). Thermal noise jitter depends on the carrier loop noise bandwidth, carrier

to noise spectral density, and pre-detection integration time according to

�t,PLL =
360

2⇡

s
Bn

C/N
0

✓
1 +

1

2TIC/N0

◆
, (2.26)

where the coe�cient of 360/(2⇡) degrees per radian is used to produce a noise jitter

in units of degrees. The condition for PLL lock, then, is that the following hold:

�PLL =
360

2⇡

s
Bn

C/N
0

✓
1 +

1

2TIC/N0

◆
 15�. (2.27)
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Delay Lock Loop

As with the PLL, the DLL is characterized by its loop discriminator and loop

filters. The basic process is similar to that used in carrier tracking: the correlation

between an input signal and a locally generated signal is translated into an error term

by the loop discriminator and this is used to correct the local signal generation via

loop filters to reduce the error.

Code tracking is performed on the baseband signal,

yb,i = yiexp(�j(!IF ti + �̂k + !̂k(ti � ⌧̂k))), (2.28)

by forming the correlations between two locally generated codes - an early and a late

code. The k-th early and late correlations are, respectively,

eE,k =
ik+Nk�1X

i=ik

yb,ip(ti � ⌧̂k +
d

2
Tc), (2.29)

eL,k =
ik+Nk�1X

i=ik

yb,ip(ti � ⌧̂k �
d

2
Tc), (2.30)

where d is the o↵set of the two correlations in chips, i.e., the early-late correlator

spacing.

The result of these correlations can be understood intuitively through Figure 2.4,

where the magnitudes of the complex quantities eE and eL are plotted against delay

error �⌧ = ⌧� ⌧̃ for d = 1 chip. In Case A the estimated code delay is a chip less than

the true delay and the received code arrives later than estimated, maximizing the late

correlator. The early code, however, is o↵set by a full chip, yielding a magnitude of

zero due to the C/A code cross correlation properties. Case B shows when both the

early and late codes are a half chip o↵set from the input data, resulting in equal

magnitudes at half the maximum. When the early code is perfectly aligned with the

input data Case C occurs: |eL| = 0 and |eE| is maximized.
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Fig. 2.4. Case A: ⌧̂ = ⌧ � dTc Case B: ⌧̂ = ⌧ Case C: ⌧̂ = ⌧ + dTc

The local code is perfectly aligned with the input data when the correlations are

equal, as in Case B, so the error must be zero when |eE|� |eL| = 0. The loop discrim-

inator is normalized so as to range over [�1, 1]. For a noncoherent discriminator,

✏code =
|eE|� |eL|
|eE|+ |eL|

=

q
e2E,I + e2E,Q �

q
e2L,I + e2L,Q

q
e2E,I + e2E,Q +

q
e2L,I + e2L,Q

. (2.31)

A noncoherent discriminator is used in the RNS SDR with d = 1. The noise perfor-

mance of the discriminator is determined by the early-late correlator spacing - notice

that changing d changes the slope of the discriminator and, in turn, the discrimina-

tor’s tolerance to large errors in ⌧̂ . Increasing d enables the loop to handle higher

dynamics and noise, but is less precise. If the carrier were perfectly aligned, it would

be su�cient to compare the early and late correlations of only the in-phase branch.

Using (2.31) makes the DLL operation theoretically independent of PLL lock. The

normalized power di↵erence enables the DLL to track signals with di↵erent strengths

and C/N
0

levels better than simply using ✏code = |eE|� |eL| would [26].

The loop filter seeks to track the null of the discriminator, adjusting ⌧̂ to achieve

Case B. A first order DLL is used, so the transfer function is simply H(z) = �!
0

.

This term, the loop’s natural frequency, is chosen to obtain a desired noise bandwidth

Bn where Bn = !
0

/4, computed using (2.24). The output of the loop filter is used to

adjust the local code chip frequency via

fchip = u+ (1 +
x

2⇡fL1
)fchip,nominal. (2.32)



21

The nominal chip frequency is 1.023 MHz and x is the L1 Doppler frequency calculated

by the PLL loop filter (see Figure 2.3). In Equation (2.32), x is converted to the chip

frequency Doppler shift. This is added to the nominal chip frequency. Thus, u is an

adjustment above or below the frequency estimate from carrier tracking [24].

Fig. 2.5. DLL loop filter

2.3.4 C/N
0

Estimation

The RNS SDR method of estimating carrier to noise spectral density is an itera-

tive procedure, based on a method employed in GSFC’s Siggen tracking utility. For

accumulation k of the tracking loop, the C/N
0

is estimated as

 
Ĉ

N
0

!

k

= 10 log
10

✓
1

2TI

✓
zI,var[k]

zQ,var[k]
� 1

◆◆
(2.33)

where zI,var[k] and zQ,var[k] are the estimated variance of the in-phase and quadrature

components of ep respectively. Following [19], these are computed according to

zI,var[k] = ↵�

 
ik+Nk�1X

i=ik

Iik

!
2

+ (1� ↵)zI,var[k � 1], (2.34)

zQ,var[k] = ↵�

 
ik+Nk�1X

i=ik

Qik

!
2

+ (1� ↵)zQ,var[k � 1], (2.35)

for accumulation k and samples Nk. The filter parameters ↵ and � depend on the

value of TI . For TI = 1 ms, ↵ = 1/128 and � = 1. For TI = 20 ms, ↵ = 1/32 and

� = 1/256.
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2.4 Other Receivers Used

Two other SDRs were used in this dissertation, both developed by engineers in

Code 596 at GSFC. These receivers provided independent testing and validation dur-

ing the development of RNS SDR, as well as certain additional capabilities. The

custom RNS SDR is used for results presented throughout this dissertation, however,

unless stated otherwise.

2.4.1 NavSDR

The Navigator GPS Receiver is a receiver designed by engineers at GSFC for space-

based platforms [4]. It incorporates numerous techniques to overcome challenges that

arise in space applications, such as weak signals, ionospheric scintillation, and high

receiver velocity. A software version of Navigator, the GSFC NavSDR, was used to

perform conventional tracking of all the rendezvous data, taking advantage of the

receiver’s sophisticated space-specific features and history of testing and validation.

2.4.2 Siggen

In addition to the signal simulation features described in Section 5.2, GSFC’s

Siggen includes a tracking script. This was primarily used to validate RNS SDR

measurements during development and more than once uncovered important errors,

particularly in code phase and pseudorange measurements.

2.5 Pseudorange

The fundamental measurements of a GPS receiver described above are used to

calculate pseudorange. Pseudorange is distinguished from range because it is a mea-

sure of the distance between the transmitting satellite and receiver that is biased by

the transmitter and receiver clocks. Distance to the i-th satellite can be calculated
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as the di↵erence between the times of transmission and reception, multiplied by the

nominal signal propagation rate c to get units of distance,

⇢i = c(tr � (tis � ⌧ i)) + ✏i. (2.36)

Error in the pseudorange is represented by ✏i, tr is the time of reception according

to the receiver clock, and tis is the time of reception according to the clock on the

transmitting satellite. If the time of propagation was ⌧ i, then (tis � ⌧ i) was the time

of transmission according to the satellite clock. Both the satellite and receiver clocks

are biased relative to the reference GPS time, tr = tGPS + tb,R and tis = tGPS + tib,s,

where tGPS is the GPS time standard and tb,R and tib,s are the receiver and satellite

clock biases. The time of propagation is the result of the geometric range between

the satellite and receiver and delays due to the atmosphere,

⌧ i = (ri + I iL1 + T i)/c, (2.37)

where ri is the geometric range between the satellite and receiver, I iL1 the delay due

to the ionosphere, and T i the delay due to the troposphere. The ionosphere is a

region of ionized gas in the upper atmosphere where the time varying density of free

electrons and ions introduces a dispersive (i.e., frequency dependent) delay. This does

not delay the di↵erent components of the GPS signal equally, but for simplicity the

delay on the L1 frequency is used here. The troposphere, consisting of dry gases and

water vapor, is not a dispersive medium.

Substituting tr, tis and ⌧
i into Equation (2.36), pseudorange can be written,

⇢i = ri + ctb,R � ctib,s + I iL1 + T i + vi, (2.38)

where the time dependence of all terms is suppressed for notational simplicity. In

order to form a pseudorange measurement, the navigation message must be decoded.

The message is organized into six second subframes, each beginning with an eight

bit Telemetry word (TLM) and Hand-over word (HOW), the latter of which contains

the satellite time the subframe was transmitted. The position of the code tracked
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by the receiver relative to the subframe start is used to determine the transmission

time (according to the satellite clock) of a given sample and, through a comparison

to the time of reception of that sample (according to the receiver clock), to calculate

the time of propagation. This is covered in more detail in [12], but it is ultimately

the combination of pseudorange measurements from four or more satellites that is

used to solve for a receiver’s position [21]. This concept is revisited in Chapter 7

incorporating reflected signals.
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3. MULTIPATH AND RELATIVE NAVIGATION

3.1 Electromagnetic Propagation

The propagation of electromagnetic energy is described by Maxwell’s Equations.

In free space (i.e., in the absence of free charges or currents), these equations can be

written

r⇥ ~E = �µ
@ ~H

@t
(3.1)

r⇥ ~H = ✏
@ ~E

@t
(3.2)

r · ✏ ~E = 0 (3.3)

r · µ ~H = 0 (3.4)

where ~E is the electric field and ~H is the magnetic field. These fields can be written

in terms of rectilinear components, ~E = Exî+Ey ĵ +Ezk̂ and ~H = Hxî+Hy ĵ +Hzk̂,

where î, ĵ, and k̂ are the unit vectors in the x, y, and z directions respectively.

The electrical permittivity and magnetic permeability of the propagation medium

are given by ✏ and µ respectively. The ⇥ symbol indicates the vector cross product,

and · the vector dot product. The del “operator” is the vector di↵erential operator

r = @
@x î+

@
@y ĵ +

@
@z k̂, so that r⇥ as used above represents the vector curl operation

and r· the vector divergence.

For a linear, isotropic, homogenous and nondispersive medium, Maxwell’s Equa-

tions can be shown to reduce to a scalar wave equation [27] [28]. A rearrangement of

the equations produces the vector wave equation describing propagation of an electric

field in a homogenous (constant ✏) medium,

r2 ~E � n2

c2
@2 ~E

@t2
= 0. (3.5)
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Here n is the refractive index of the medium, n = (✏/✏
0

)2, and c is the velocity of

propagation in a vacuum, c = 1/
p
µ
0

✏
0

. Both ✏
0

and µ
0

are reference values, the

permittivity and permeability of a vacuum. Significantly, Maxwell’s Equations can

also be rearranged to produce an identical wave equation for the magnetic field,

r2 ~H � n2

c2
@2 ~H

@t2
= 0.

Because both the electric and magnetic field follow the vector wave equation, the

field components propagate according to a scalar wave equation of the same form.

By substituting u(~r, t) for any scalar field component, a single scalar wave equation

can be used to describe the electric and magnetic vector fields,

r2u(~r, t)� n2

c2
@2u(~r, t)

@t2
= 0. (3.6)

The scalar field is dependent on position ~r and time t. Without loss of generality, we

can establish the coordinate system such that the electric field is propagating along

the z axis. The x and y components of an electric field propagating along the z axis

must each satisfy the scalar wave equation.

One solution to the wave equation of interest in the present work is the linear

combination of two wave functions in the î and ĵ directions (relying on the assumption

of a linear medium). If these wave functions are chosen to be identical cosine functions,

the electric field can be written [29]

E(z, t) = Ex cos(!t± kz)̂i+ Ey cos(!t± kz � !t
0

)ĵ.

The reference time t
0

is arbitrary, so if it is selected so the spatial displacement, z,

relative to the coordinate system origin is zero, then

E(t) = Ex cos(!t)̂i+ Ey cos(!t�  )ĵ. (3.7)

Here ! is the wave frequency in radians per second, Ex and Ey are the magnitudes

of the x and y electric field components, respectively, and  = !t
0

is the phase o↵set

of the wave function in the y direction relative to that in the x direction. This phase
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o↵set determines the polarization of the electric field. The signal transmitted by a

GPS satellite is circularly polarized, and specifically right hand circularly polarized

(RCP), so  = ⇡/4:

ERCP (t) = Ex cos(!t)̂i+ Ey sin(!t)ĵ. (3.8)

In this case the resulting electric field traces out a circle on the x-y plane, moving

clockwise when looking along the z axis in the direction of propagation.

The received “signal” in Equation 2.1 is then no more than a polychromatic wave

representation of this scalar electric field. This is the electromagnetic disturbance

at the receiving antenna arriving along the direction of the line of sight between the

antenna and the transmitting GNSS satellite (including the e↵ect of antenna polar-

ization). In this way, the propagating electric field is approximated as a ray - a vector

in space along the direction of propagation. However, the scalar wave equation is just

an approximation that relies on the assumptions made above about the propagation

medium. The approximation breaks down, for instance, when boundary conditions

are applied to the field, as in the interaction of the field with obstructing surfaces

and objects. The errors introduced extend only a few wavelengths from the boundary

condition, however, and so remain tolerable as long as the object dimensions are large

relative to the signal wavelength.

This representation of the propagating field as a ray is known as geometrical

optics (GO). As long as the wavelength condition is met, the interaction of this ray

with surfaces and di↵erent mediums is described by the GO laws of reflection and

refraction. The Geometrical Theory of Di↵raction expands the GO laws to handle

complex bodies by introducing di↵raction to describe the scattering of rays at edges

[30] [31]. The Uniform Geometrical Theory of Di↵raction (UGTD) further refines this

description by introducing a more precise di↵raction coe�cient in transition regions

adjacent to shadow and reflection boundaries.

A ray is more rigorously defined in GO as the trajectory satisfying the Fermat

principle [31], that the path taken by a ray is the path that can be traveled in the

least amount of time. When the electrical properties of an environment are fully
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defined, EM ray tracing can be used to determine the path taken by an EM ray. EM

ray tracing is used in this dissertation to model the GNSS rays scattered by a target

spacecraft during docking.

3.2 Bistatic Radar

The concept of ranging from a reflected RF signal is known as radar. When

introduced in 1940, radar was an acronym for RAdio Detection And Ranging, but

has since become a common noun. The particular case of interest for ranging during

spacecraft proximity operations is known as bistatic radar. As illustrated in Figure

3.1 for the case of HSM4, this involves a receiver and transmitter that are in separate

locations. The signal transmitted by the GNSS satellite travels along theRT direction,

reflects o↵ HST, and travels along the RR direction to the receiver in the space shuttle

cargo bay.

Fig. 3.1. Bistatic radar using direct and reflected GNSS signals during HSM4
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The ranging properties of GNSS signals described in Chapter 2 allow the distances

traveled by each signal to be measured. By computing the propagation path length of

signals reflected o↵ the same target from several GNSS satellites, the target location

can be estimated. This is described below in Section 3.4. Detection of a reflected

signal relies on su�cient received power.

3.2.1 Direct Signal

The received direct signal power, inclusive of the receiver antenna gain and receiver

losses, is calculated as

PR,direct = PT,rcvrAR [W ], (3.9)

where PT,rcvr is the power spatial density produced by the transmitter at the receiver

in Watts per square meter, and AR is the e↵ective area, or aperture, of the receive

antenna in square meters. The e↵ective area of the receive antenna is a measure of

the antenna’s ability to capture power in an electric field incident on the antenna

from a certain direction, defined as

Aeff =
G�2

4⇡
[m2], (3.10)

where G is the antenna’s gain over an isotropic radiator and � the signal wavelength

(19 cm for GPS).

An isotropic antenna radiates power equally in all directions. At a given distance

from the transmitter, R, this power is spread uniformly over a sphere of the same

radius. Thus, the power density at R, in power per square meter, is simply the trans-

mitted power divided by the surface area of the sphere: PT/(4⇡R2). This accounts

for the spreading loss. Spreading loss can be o↵set by focusing the transmitted power

in a particular direction, a property described by the transmit antenna gain, G. The

GPS satellites under consideration have antennas biased toward the earth, with a

beamwidth of ±21.3� from the antenna boresight. Although the resulting gain is a

function of azimuth and elevation, a constant 14.7 dB can be used; the signal trans-

mission is designed to be stronger at larger angles to compensate for the increased
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range [12]. By the reciprocity theorem of antennas, an antenna’s transmit gain also

describes its ability to focus received power, so G = 4⇡Aeff/�
2, regardless of whether

the antenna in question is transmitting or receiving.

Regarding atmospheric losses as negligible, the power density at the receiver can

be written as

PT,rcvr =
PTGT

4⇡R2

LOS

[W/m2]. (3.11)

for the particular case of GPS transmitter gain GT , transmitted power PT , and line

of sight (LOS) range RLOS. For receiver gain GR,

PR,direct =
PTGTGR�

2

L1

(4⇡RLOS)2
[W ], (3.12)

This is a form of the well-known Friis transmission equation, and is valid when

RLOS � 2a2/�, where a is the largest linear dimension of either antenna [32]. The

Friis equation follows from scalar di↵raction theory, and so depends on conditions dis-

cussed above for which scalar di↵raction is a valid approximation (i.e., large di↵racting

structures compared with the signal wavelength, and a linear, isotropic, homogeneous,

nondispersive medium) [28].

3.2.2 Reflected Signal

In the case of monostatic radar, where the receiver and transmitter are collocated,

the received power can be calculated via the radar equation,

PR,refl = PT,targ · �m · 1

4⇡R2

T

· A =
PTA

2�m
4⇡�2R4

T

[W ]. (3.13)

The first term, PT,targ, is the power spatial density produced by the transmitter at the

target (e.g., HST). This is identical to (3.11) but for the range RT rather than RLOS.

The monostatic radar cross section (RCS) of the target, �m, quantifies the amount

of incident power that is scattered back in the direction of the receiver in units of

square meters. An additional spreading loss term is added to account for losses from

the reflecting target back to the transmitter/receiver location, and the e↵ective area

of the transmitting and receiving antenna is represented by A.
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The calculation of received signal power in the bistatic radar case takes the same

form,

PR,refl = PT,targ · �B · 1

4⇡R2

R

· AR [W ],

where the bistatic radar cross section is denoted �B in square meters. The spreading

loss term accounts for losses from the target to the receiver, and AR is the e↵ective area

of the receiving antenna. Substituting PT,targ gives the bistatic radar equation [33]:

PR,refl =
PTGTGR�

2

L1�b
(4⇡)3R2

TR
2

R

[W ]. (3.14)

The bistatic RCS describes the scattering properties of the target and is a function

of the target’s material, shape, and orientation relative to the transmitter and receiver.

In the bistatic case, this is a function of the incident angle and the angle to the

receiver line-of-sight relative to the target body frame, as indicated by the angles

✓ and � in Figure 3.1. The scattering properties can be broadly broken into three

regions according to the magnitude of the bistatic angle �. In order of increasing �,

these are the pseudo-monostatic, bistatic, and forward-scattering regions [34]. This

simplified treatment has limited use, however. An analytic model of a structure like

HST is complicated, involving the decomposition of the target into simple shapes

for which closed form scattering formulas exist. A further discussion of this analytic

approach is provided in Appendix B, but given the high dynamics and multi-faceted

structures involved in HSM4, such calculations are prohibitively complex and slow. In

this dissertation, numerical EM ray tracing is primarily used to determine the signals

scattered by HST.

3.2.3 Carrier to Noise Spectral Density

Received signal power PR can be related to C/N
0

by dividing by the noise power

per frequency unit,

N
0

= kTEff . (3.15)

Here k is Boltzmann’s constant and TEff the total e↵ective noise temperature of the

receiver (in Kelvins) [16]. E↵ective noise temperature includes the receiver noise fig-
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ure, ambient temperature, and receiver implementation losses (e.g., A/D conversion).

This is related to SNR by

C

N
0

= SNR +B = (PR � B �N
0

) + B [dB-Hz], (3.16)

where B is the two-sided receiver filter bandwidth. Unlike SNR, C/N
0

is independent

of the receiver bandwidth - it is a power to noise density per unit frequency.

3.3 GNSS Multipath

Reflected signals can be a significant source of error in GNSS measurements.

In order to calculate a receiver’s position, the time of travel for LOS signals must

be determined from at least four satellites. When a large object is located near

the receiver, reflections of the GNSS signals may also be received. These delayed,

attenuated replicas of the LOS signals contribute erroneous time of travel information

to the receiver’s position calculation, an error called multipath.

Multipath modeling e↵orts fall into two broad categories: those that seek to model

the receiver errors produced by multipath (e.g., [35], [8], and [7]), and those that seek

to model properties of the multipath signals themselves (e.g., [36], [1] and [37]). This

latter category is most relevant to the work presented here; in order to estimate envi-

ronment features from multipath (such as the distance of a reflecting target spacecraft

from a receiver), it is necessary to characterize the relationship between the environ-

ment features of interest and the observable multipath signal properties.

The Multipath Estimation Delay Lock Loop (MEDLL) is an important method of

this class. The algorithm directly estimates the components of each recieved multi-

path ray using maximum likelihood criteria, essentially performing a nonlinear curve

fit of the measured correlation function to find the number of rays and amplitude,

phase, and delay of each [36]. Psiaki et al. expanded the MEDLL model of multipath

to estimate multipath features from antenna motion [17]. An expression for LOS

complex accumulations was introduced in Section 2.2.2 based on this previous work,

and is here extended to include multipath.
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Ignoring the navigation message and satellite superscripts, the received signal in

Equation (2.1) with multipath can be written

y(t) =
MX

m=0

am(t)p(t� ⌧m(t)) cos(2⇡(fL1 + fD,m)t+ ✓m(t0)) + vm(t). (3.17)

forM multipath rays. The LOS signal is assigned the indexm = 0, while the reflected

signals are indexed from m = 1 to M . Therefore, assuming an RCP antenna, the

signal amplitude for m = 0 is a function of the antenna’s co-polarization gain,

a
0

(t) =
q
PT,0GR�2L1/4⇡ (3.18)

where PT,0 is the power spatial density produced by the GNSS satellite at the receiver

along the LOS, and GR depends on the elevation and azimuth of the incoming signal.

Notation indicating the time dependence of PT,0 and GR is left o↵ for simplicity. The

signal amplitude for m 6= 0 is a function of the antenna’s cross polarization gain,

am(t) =
q
PT,mGR⇥�2L1/4⇡. (3.19)

After the signal is downcoverted to IF, filtered, and sampled, the i-th sample can

be written

yi =
MX

m=0

am(ti)

⇢
p̃I(ti � ⌧m(ti)) cos(!IF ti + �NBC,m(ti))

+ jp̃Q(ti � ⌧m(ti)) sin(!IF ti + �NBC,m(ti))

�
+ vm(ti). (3.20)

The k-th in-phase and quadrature accumulations are computed according to Equa-

tions (2.9) and (2.10) respectively. If the error in the PLL carrier estimate is indexed

by m,

fm(ti) = �̂m,k + !̂m,k(ti � ⌧m,k)� �NBC,m(ti) ⇡ ��m,k +�!m,k t̄k, (3.21)

and the code correlations are written as a function of the DLL error �⌧m,k = ⌧m,k� ⌧̂k,

R̃m,I(�⌧m,k + ⌘) =
ik+Nk�1X

i=ik

p̃I(ti � ⌧m,k)p(ti � ⌧̂k � ⌘), (3.22)
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and

R̃m,Q(�⌧m,k + ⌘) =
ik+Nk�1X

i=ik

p̃Q(ti � ⌧m,k)p(ti � ⌧̂k � ⌘), (3.23)

then the complete description of the in-phase accumulation under the influence of

multipath is

Ik(⌘) =
1

2

MX

m=0

Am

⇢
cos(��m,k +�!m,k t̄k)R̃m,I(�⌧m,k + ⌘)

� sin(��m,k +�!m,k t̄k)R̃m,Q(�⌧m,k + ⌘)

�
. (3.24)

The quadrature accumulations can be computed in a similar manner, and complex

accumulation formed Ik(⌘)+jQk(⌘). As discussed previously, the accumulation power

is concentrated on the in-phase channel when tracking is locked, but the presence

of multipath will cause distortion of the ambiguity function in complex space. An

example of this is shown in Figure 3.2, where the solid blue line shows the tracking

result for a simulated PRN without multipath. The dashed orange line shows the

distorted ambiguity function of a PRN with multipath. Both are complex, due to

random noise, but the additional distortion of the multipath-corrupted PRN can be

seen in the projections onto the Q-delay plane.

Each multipath ray can be characterized by its amplitude, code phase and carrier

phase relative to the LOS signal, denoted ↵m, �m and  m respectively. The EM

ray tracing used in this dissertation characterizes each multipath ray by its relative

electric field strength Em = PT,m/PT,0. The relationship between the simulated value

and the ↵m component described above is

↵m =

r
Em

GR⇥

GR
=

r
am
a
0

, (3.25)

where again the antenna gains are azimuth and elevation dependent. Relative code

phase is �m = ⌧m � ⌧
0

and relative carrier phase  m = ✓
0

� ✓m.
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Fig. 3.2. Complex ambiguity function under the influence of multipath
(inspired by Figure 2 in [17])

3.4 Use of Multipath in Relative Navigation

Rather than eliminating multipath, this dissertation proposes that these additional

ray paths be used as a source of information about the location of the target vehicle

relative to the receiver during spacecraft proximity operations. Point positioning

using GNSS is achieved by solving, usually in the least-squares sense, the system

of pseudorange measurements for the receiver location [21]. The problem can be

visualized in two dimensions as shown in Figure 3.3. The transmitting satellites are

represented by plus signs. Their positions are known, and pseudorange measurements

from each satellite place the receiver on the dashed circles of corresponding radii.

The point solution is the intersection of these circles, indicated by an x. The actual

problem is complicated by three dimensions (i.e., the point solution is the intersection

of spheres), measurement noise, satellite geometry, and overdetermination.
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Fig. 3.3. Estimation of target and receiver in two dimensions

A range measurement from a reflected signal from one GNSS satellite constrains

the target position to the locus of points for which the sum of the distances from

the GNSS satellite to the target and from the target to the receiver is equal to the

reflected pseudorange. This corresponds to an ellipse with the target and receiver at

its foci. The target position is the intersection of the ellipses corresponding to all of the

reflected signal range measurements, shown in Figure 3.3 as a small circle. Again the

actual problem involves three dimensions (i.e., the intersection of ellipsoids), variable

satellite geometry, and measurement noise.
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3.4.1 Previous Work

Calculating range from reflected GNSS signals has been successfully demonstrated

in the simpler case of radar altimetry. As with the bistatic radar problem described

above, reflected GNSS signals are measured by a receiver and used to measure the

distance of the receiver from the reflecting point. The problem is simplified by the

reflecting target properties - essentially an infinite plane, albeit with topographical

and material variations. In 1994, researchers for Dassault Electronique observed that

a GPS-based aircraft tracking system gave an incorrect position estimate when the

aircraft was flying over water. Furthermore, they found that the aircraft position

errors were related to the aircraft’s height above the water surface [38]. Katzberg

et al. followed these results in 1999 with a theoretical and experimental study of an

altimeter using GNSS reflections over water [39]. Subsequent experiments by other

researchers further validated the ocean-reflected GNSS altimeter concept [40] [41]

Masters et al. expanded upon upon the concept in 2001 to consider land reflection,

achieving 0.68 m root mean square error (RMSE) for aircraft-based measurements

made over the ocean at low altitudes, and an RMSE below 20 m over land [42]. In

2005, Vinande et. al at the University of Colorado used a MATLAB-based software

receiver to collect and process data from a similar experimental flight [10]. This

experiment successfully measured the aircraft altitude, and observed variations in

received signal strength corresponding to ground material reflectivity, highlighting

bodies of water below the aircraft. The methods employed were similar to some of

those used in this dissertation: a bank of closely spaced correlators in which the

correlators of the LCP channel were “slaved in time” to those of the RCP channel. In

the aircraft altimeter experiments, it is is important to note that direct and reflected

signals were well isolated, not just by di↵erently polarized antennas, but also by

antenna placement: LCP antennas were mounted on the bottom of the aircraft, RCP

antennas on the top.
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The di�culty of reflected-GNSS ranging increases with target complexity, as is

evident even in the comparison between ocean and land altimetry [42]. In 1998,

Stockmaster et al. used GNSS signals reflected o↵ a cylindrical metal buildling to

determine the its range from the receiver [11]. A least squares approach was used

to produce a single range measurement from multiple satellite reflections. Reflected

signal tracking was initialized with direct signal acquisition results and a target range

estimate (accurate to within 150 m). With 1.3 seconds of data, the target range at

36.6 m and 65.5 m was measured to within 1-2 m. Three years later, Treuhaft and

others at Jet Propulsion Laboratory (JPL) demonstrated the use of carrier phase

techniques to measure the surface of Crater Lake in Oregon with 2 cm precision [43].

A single antenna was used to collect a signal containing both the direct satellite

transmission and a component reflected o↵ the lake 480 meters below. Nonlinear

parameter estimation was used to estimate the reflected signal properties through 20

ms correlations with a local signal replica.

A patent granted to researchers at The Charles Stark Draper Laboratory in 2004

describes the use of reflected signals for terrestrial vehicle navigation, primarily to

overcome signal blockage by terrain or buildings [44]. Tracking of a signal reflected

o↵ a mountain or building is performed when the LOS signal is still visible, and a

relationship between the two is established. This is then used to estimate LOS mea-

surements if the direct signal becomes blocked. In his 2007 dissertation on spacecraft

formation flying, Chris Lane explored the idea of using reflected signals for relative

navigation between members of a formation [45]. In a master’s thesis that same year,

Ian Cohen proposed that GNSS multipath be used as a bistatic radar in spacecraft

rendezvous and docking [9] [46] [47]. This concept was the motivation for including

RCP and LCP GPS antennas in the RNS experiment described in Chapter 4. The

resulting data provided the first opportunity to experimentally study this theory and

formed the basis of this dissertation.
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4. HUBBLE SERVICING MISSION 4

4.1 Relative Navigation Sensor Experiment

HSM4, or STS-125, was performed in 2009 by the crew of the space shuttle Atlantis

over the course of thirteen days, from May 11th to May 24th. During HSM4, the

Relative Navigation Sensor (RNS) experiment collected several hours of imagery and

other data for estimating the space telescope’s position and attitude relative to the

shuttle cargo bay. The primary objective of the RNS experiment was to compare the

performance of several vision processing algorithms: Goddard Natural Feature Image

Recognition (GNFIR), both real-time and post-processed, and Ultra Lethal Targeting

by Optical Recognition (ULTOR) Passive Pose and Position Engine (P3E) [48]. Three

cameras of varying optical ranges were mounted in the shuttle cargo bay to collect

images throughout rendezvous and docking [49]. Additionally, two GPS antennas

were included as part of this experiment, one right-hand circularly polarized (RCP),

optimally polarized for receiving direct signals, the other left-hand circularly polarized

(LCP), optimally polarized for receiving reflected signals. Data were collected during

the shuttle’s rendezvous and docking with HST on May 13th (16:12 - 18:30 UTC), and

its deploy of HST on May 18th (10:21- 21:06 UTC). The RNS hardware was mounted

in the shuttle cargo bay on the Multi-use Logistic Equipment carrier (MULE), shown

in Figure 4.1.

4.2 GPS Data

The received signals were mixed to an intermediate frequency of 604 kHz, sampled

at 2.048 MHz, then stored on the Mass Storage Module (MSM) using commercial

hard drives at eight bits per sample (four bits real, four bits imaginary). Data were
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Fig. 4.1. RNS hardware mounting locations on MULE carrier (image from [49])

digitized from the antennas by the Navigator Signal Processor and transferred to the

MSM via a high speed serial interface in packets, shown in Figure 4.2(a) [50]. Packets

were combined into files, shown in Figure 4.2(b). This file structure is not included

in the documentation and was determined experimentally. A bash script was used

to call C++ parsing code written by previous researchers, Greg Heckler and Mike

Walker. Separate output files were created for RCP and LCP data, each containing

three MSM files (152.55 seconds of 16-bit complex data). Data have been parsed for

the duration of rendezvous and docking, but deploy data have not yet been processed.

4.3 Antennas

Sensor Systems RCP (Model S67-1575-39) and LCP (Model S67-1575-139) anten-

nas were flown on HSM4 [51]. The antennas were mounted in the shuttle cargo bay

on top of the MULE beside the RNS cameras, as indicated by the arrow in Figure
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(a) Data packet contents (from [50])

(b) Data file structure

Fig. 4.2. HSM4 file structure

4.3(a). After initial tracking results suggested poor isolation of direct and reflected

signals, it was important to determine the cross-pole discrimination of the antennas.

The antennas were not measured prior to the mission, but information provided by

Sensor Systems suggested only a 3 dB cross-pole attenuation. More accurate mea-

surements were needed. The antenna mounting plate was reconstructed according to

HSM4 photographs, and then the flight antenna gain patterns were measured in the

Goddard ElectroMagnetic Anechoic Chamber (GEMAC), shown in Figure 4.3(b).
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(a) Antenna placement on space shuttle

(image from RNS researchers)

(b) Antenna testing in GEMAC

Fig. 4.3. HSM4 flight antennas

Azimuth cuts of the measured gain patterns are shown in Figure 4.4. Measure-

ments were taken across antenna elevation from �179 to 179 degrees in increments

of one degree at each antenna azimuth cut. Antenna azimuth was tested from 0 to

180 degrees in increments of 15 degrees. Both antennas are active antennas, but the

26 dB gain of the low noise amplifier has been subtracted. In each case, the co-pole

gain is plotted with solid lines and the cross-pole gain with dotted lines. Average

gain across the di↵erent azimuth cuts is plotted in black; the attenuation of an LCP

signal at the RCP antenna boresight is 12 dB, while the attenuation of an RCP signal

at the LCP antenna boresight is 7 dB. This is better than the cross-pole attenuation

specified by the manufacturer, but the poorer polarization of the LCP antenna causes

di�culty in the isolation of LCP signals.
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Fig. 4.4. Elevation (solid) and azimuth (dashed) gain cuts of HSM4
antennas measured in GEMAC

Another issue is the large azimuthal variation of the gain patterns. This is espe-

cially apparent in the polar gain plots, Figures 4.5 and 4.6, and is likely a ripple due

to the size of the ground plane. The ground plane has been constructed to approxi-

mately match the antenna mount plate flown on the servicing mission, but the exact

dimensions are not known. Furthermore, the antenna order was not recorded (i.e.,

which antenna was closer to the front of the shuttle), making it di�cult to accurately

reconstruct the e↵ects of the ground plane. The boresight cross-pole discrimination

is used in simulation as an approximation, but modeling the RCP/LCP mix received

through each antenna is hindered by this azimuth variation and ambiguity.

4.4 Model of Mission Truth Geometry

United Space Alliance calculated the absolute position and attitude of the space

shuttle as part of their Postflight Attitude And Trajectory History (PATH) product, a

standard product for shuttle missions. This incorporated tracking data (both ground-
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Fig. 4.5. Co-pole and cross-pole gain of RCP flight antenna

Fig. 4.6. Co-pole and cross-pole gain of LCP flight antenna

based C-band radar tracking and TDRS tracking), telemetry data, and data generated

during real-time support in the Mission Control Center [52].

As an optional service, United Space Alliance also calculated the relative position

and attitude of HST as part of the Relative Best Estimate Trajectory (RELBET)

product. This primarily relied on the shuttle’s on-board rendezvous radar for rela-
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tive range information [53]. The rendezvous radar is part of a dual-purpose shuttle

subsystem, the Ku-band radar/communication system, that can either communicate

with the ground or act as a radar [54]. The functions are not available simultane-

ously, however, and during docking at 16:37:30 UTC, the radar was switched over

to wideband communications [48]. Error increased in the RELBET estimate of HST

position after the rendezvous radar was switched to communications, rendering the

solution invalid.

Using images from the three RNS cameras, vision processing algorithms sought

to track physical features of HST and estimate the space telescope’s state relative to

the shuttle. Noting discrepancies between their estimate and the RELBET estimate,

researchers used RNS flight imagery to justify the HST position from RNS algorithms

as the correct solution [48]. Therefore, the RELBET HST position is used for this

work until the rendezvous radar is turned o↵ at 16:37:30 UTC, then the position esti-

mate from RNS image processing is used. The attitude truth is taken from RELBET

throughout rendezvous. Spline interpolation was used to produce a composite HST

trajectory from the RELBET and RNS data. This HST relative state was combined

with the PATH ephemeris and attitude for the shuttle and GPS satellite positions

from the International GNSS Service (IGS) to create a simulation of the mission

geometry in STK. This is used as the reference truth geometry.

The range between the shuttle and composite HST trajectory is shown in Figure

4.7 for the RNS experiment time frame, overlaid on the range from each of the three

data sources. A vertical dashed line indicates when the rendezvous radar was turned

o↵. Note that scalar range alone does not fully describe the relative HST states of

the three di↵erent data sources, or the transitions between them. See Appendix A

for further details.
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Fig. 4.7. HST-Shuttle range during rendezvous (May 13, 2009)

4.4.1 Accuracy

Qualitatively, the HST trajectory formed through the combination of these data

sources produces a spacecraft geometry that closely agrees with the nominal mission

profile [55]. The shuttle flies horizontally, parallel to the surface of the earth, as

it approaches within 300 meters of HST (approximately 16:10 UTC). The shuttle’s

cargo bay is facing the space telescope, referred to as “target track attitude” [48].

As in the nominal approach [55], the shuttle flies below HST in preparation for the

R-bar approach. Because HST is inertially fixed, it slowly rotates from its rendezvous

attitude to the grapple attitude, where the HST aft bulkhead faces the shuttle cargo

bay.

Due to a shuttle-HST S-band link failure, none of the planned HST maneuvers

were performed. Instead, a 45� shuttle yaw maneuver was performed at 16:53 UTC

when the inter-vehicle range was approximately 45 meters. At this point the space-
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craft passed into orbital night and the shuttle began its R-bar approach. As the

range to HST dropped below 40 meters, the shuttle was placed in an inertial hold,

matching the space telescope rotation rate. All of these features of the shuttle and

Hubble trajectories are accurately reproduced. Hubble was grappled with the Shuttle

Remote Manipulator System at 17:13:56 UTC.

Quantifying the simulation accuracy is more di�cult. The rendezvous radar used

to determine RELBET position has a published 3� bound of 25 meters downrange,

2 meters cross-track and 2 meters radial when the target spacecraft is less than 300

meters away [54] [52]. These bounds correspond to x, y and z in the shuttle body

frame respectively. Attitude from RELBET has an accuracy of 0.2� when data from

the Inertial Measurement Unit (IMU) is available and an accuracy of 0.75� when IMU

data is not available and interpolation is used instead.

Due to errors in the RELBET solution after the rendezvous radar was powered

o↵, no true HST trajectory was available for calculating the accuracy of the RNS

algorithm’s position estimates. Camera images were used to justify using the post-

processed GNFIR solution as truth, and errors in RELBET, real-time GNFIR and

ULTOR are stated relative to this trajectory. RNS researchers ultimately concluded,

however, that their position estimation met the project’s accuracy goals, reproduced

here in Table 4.1. Although “lateral” and “range” refer to the x and z axes of the

relevant RNS camera, these roughly correspond to the y and z axes of the shuttle

structure frame respectively. These error bounds are consistent with a 1/10-th scale

simulation conducted in the Flight Robotics Lab at Marshall Space Flight Center

prior to the actual servicing mission [49].

Accuracy is even more uncertain for the absolute position of the shuttle (upon

which the space telescope position is based). The PATH Interface Control Document

states that “the 3� ephemeris position accuracies may range from 0.5 to 5 km, while

the 3� ephemeris velocity accuracies may range from 0.5 to 5 m/sec” [52]. Typical

flight values are shown in Table 4.2, but the PATH document notes that this is

“excluding rendezvous periods.” The lack of a reliable truth trajectory is a significant
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challenge in analyzing and interpreting the HSM4 GPS data and hinders validation

of an EM ray tracing model.

Table 4.1.
HST 3� relative position accuracy (from [52] and [48])

Target Lateral Range

Range [m] Accuracy [m] Accuracy [m]

Rndz. Radar < 300 2 2

150 1 3.3

RNS Cameras 30 0.3 0.5

5 0.1 0.1

Table 4.2.
Shuttle 3� position and velocity accuracy (from [52])

Radial Downtrack Crosstrack

position [m] 200 450 200

velocity [m/s] 0.45 0.20 0.25
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5. MULTIPATH MODELING AND SIGNAL

SIMULATION

5.1 EM Ray Tracing

In order to estimate environment features from multipath (such as the distance of

a reflecting target spacecraft from a receiver), it is necessary to characterize the rela-

tionship between the environment features of interest and the observable multipath

properties. In an e↵ort to quantify this relationship, a simulation of signal reflections

in HSM4 has been constructed using EM ray tracing software. Reflected signals are

characterized by their amplitude attenuation, carrier phase shift and code phase shift

relative to LOS signals, as described in Section 3.3. These properties can be related

to the additional path length traveled by the reflected signal. This can, in turn, be

related to the location of the reflecting surface.

The Advanced GNSS Multipath Model (AGMM) developed at the Colorado Cen-

ter for Astrodynamics [56] is used to simulate the expected multipath during HSM4.

AGMM integrates the commercially-available wave propagation software WinPropR�

(developed by AWE Communications [57]) into the following suite of modules [58].

The scenario was set up in collaboration with researchers at the University of Col-

orado, Jeanette Veldman and Penina Axelrad. They then performed the ray tracing

runs [59]. The modules employed to produce the ray tracing results used in this

dissertation are described below. Other modules of the AGMM, such as the antenna

and tracking loop modules, were not used.

1. The receiver environment module is initialized with a CAD model describing

the structures surrounding the receiving antenna. For the HSM4 simulation, a

CAD model of HST provided by GSFC was imported into the software. The

model was simplified to decrease ray tracing computation time. This simulation
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neglects multipath generated in the shuttle bay. Structures were translated and

rotated within WinProp to reproduce the time-variant relative geometry of HST

and the shuttle while docking.

2. The transmitter motion module describes the relative trajectory of the GPS

satellites with respect to the receiver on the shuttle. The satellite motion in

WinProp is defined by azimuth, elevation, and range relative to the receiving

antenna. For the HSM4 simulation, trajectories of visible GPS satellites during

docking were defined using final solutions from the IGS. Combined with the

trajectory of the shuttle discussed in Section 4.4, GPS satellite positions were

converted into azimuth and elevation in the receive antenna frame.

3. The ray tracing module incorporates environment information from the first two

modules and generates all possible signal paths between the transmitter and

receiver. This module calculates all possible signal paths between the transmit-

ter and receiver based on concepts from GO and UGTD [57]. WinProp logs

the characteristics of each incoming ray path, including time of arrival, field

strength, and number of interactions. Several interaction parameters are also

logged, including coordinates, material properties, and object ID number.

A ten-minute ray tracing simulation was developed to replicate HSM4 geometries

from 16:22 to 16:23 UTC on May 13, 2009. Continuous interactions were observed

lasting up to three minutes. The ray tracing results for all PRNs are summarized in

Figure 5.1, where each interaction is plotted in the antenna frame coordinates and

colored according to the received field strength relative to the corresponding LOS

signal. The combination of reflections reveals the outline of HST. The translation of

HST due to the docking approach trajectory is evident (progressing from top to bot-

tom of the figure), and the relative field strengths increase as the shuttle approaches.

Some of the strongest reflections arise from the spacecraft’s solar panels.

Additional summarizing features of the ray tracing results are shown in Figure

5.2. In 5.2(a), the number of PRNs with visible reflections is shown over the duration
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Fig. 5.1. Relative field strength of interactions generated by all PRNs
between 16:22 and 16:32 UTC, plotted in receive antenna coordinates
(figure produced by J. Veldman [59])

of the EM simulation. The variety of PRNs causing reflections is important, as the

quality of a reflection for navigation depends on HST’s scattering properties for a

given incident angle. The navigation solution quality also depends on the geometric

distribution of transmitters. Reflection duration is important if the reflections are to

be measured. The relative delays of four PRNs with continuous reflections greater

than a minute are shown in 5.2(b). Note that these are the relative delays of each

PRN’s strongest reflection; in actuality there are numerous simultaneous reflections

for each.

5.2 Signal Simulation

The reflected ray properties produced by the EM ray tracing are used to generate

simulated GPS data, where the geometric features causing multipath are precisely
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(a) Number of PRNs with visible reflections

(b) Relative delay of strongest visible reflections for selected PRNs

Fig. 5.2. EM ray tracing results



53

known. Signal simulation code was initially created in MATLAB by GSFC engineers

as a development tool, the GSFC Siggen (“Sig-gen”), then modified for this research

to include multipath. The GPS constellation is simulated by propagating the satellite

states described in a RINEX file for the appropriate epoch. The shuttle ephemeris

from United Space Alliance’s PATH product is used as the receiver trajectory. At

each time step (a sampling interval), a clean, multipath-free signal is generated, where

the i-th sample of the simulated signal for the n-th satellite is

sn
0

[i] = an
0

[i]dn
0

[i]cn
0

[i]e✓
n
0 [i]. (5.1)

Here dn
0

[i] is the navigation data bit and cn
0

[i] the C/A code, each shifted according to

the propagation delay due to the receiver-transmitter range, rn
0

[i]. A carrier-to-noise

spectral density is calculated from a receiver-transmitter link budget and transformed

into signal amplitude

an
0

[i] =

s
10C/Nn

0 [i]/10�

2fs
, (5.2)

while carrier phase is determined from the geometric range, ionospheric delay and

transmitter clock bias

✓n
0

[i] = j(2⇡fIF t[i]� 2⇡fL1(r
n[i]/c� ⌧niono[i] + ⌧nb,s[i])). (5.3)

Multipath parameters ↵n
m[i], �

n
m[i] and  

n
m[i] are obtained from the EM ray tracing

simulation and used to calculate the m-th multipath signal

snm[i] = anm[i]d
n
m[i]c

n
m[i]e

✓mm [i], (5.4)

where the navigation data bit and C/A code are shifted according to rnm[i] = rn
0

[i] +

�nm[i], and

anm[i] = ↵n
m[i] ⇤ an0 [i], (5.5)

✓nm[i] = ✓n
0

[i]�  n
m[i]. (5.6)

The total simulated signal is formed by summing the direct signals for each of the N

visible satellites, as well as any corresponding multipath signals,

stotal[i] =
NX

n=1

 
MnX

m=0

snm[i]

!
+ ✏[i], (5.7)
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where ✏[i] is a circular symmetric Gaussian random variable with variance �2.

5.3 Implementation

Four PRNs are used as examples in the following chapters, each selected for the

presence of continuous reflections lasting several seconds: 1, 26, 27, and 30. Data

simulation and tracking was performed from 16:25:27 to 16:28:12 UTC, a time span

of 165 seconds (2.75 minutes). Some practical di�culties arise when using the ray

tracing results to simulate signals, however. For example, the delay and power of

reflections relative to the LOS signal for PRN 26 are shown in Figure 5.3. It is

clear by inspection that a number of reflected rays are arriving simultaneously. This

is a common feature of the ray tracing results. When generating simulated signals

from these data, however, the individual rays are indistinguishable. It is not possible

to associate one time-tagged delay value with a preceding delay value in order to

reconstruct the time evolution of a single ray.

To resolve this, a curve fit is used to approximate the reflected ray represented

by the data points. For instance, in Figure 5.3 a ray with a slope of 0.0145 ns/s

starting at a delay of 56.48 ns would well approximate the reflected signal from

16:26:10 to 16:27:09 UTC. An average of the relative power is used. This approach

is followed for each of the PRNs, producing the delay profiles described in Table 5.1.

This approximation is justified by considering that the plurality of nearly identical,

simultaneous reflections is likely due to the necessary discretization in the ray tracing

simulation of shapes, such as the curved body of HST, into polygons. The e↵ect can

be seen in the ray tracing simulation itself, shown for a single time instant in Figure

5.4.
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Fig. 5.3. Relative delay (top) and power (bottom) of reflected rays
from PRN 26 ray tracing

Fig. 5.4. PRN 26 ray tracing at 16:25 UTC (figure produced by J. Veldman)
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Table 5.1.
Simulated multipath parameters from ray tracing starting at 16:25:27 UTC

PRN �
0

[m] �̇ [cm/s] ↵2

m/↵
2

0

1 70.80 -4.94 0.45

26 16.75 0.44 0.66

27 16.32 0.47 0.67

30 73.84 -5.73 0.38
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6. MODEL VALIDATION

The simulated and experimental data sets discussed in the preceding chapters are pro-

cessed with the RNS SDR and other software receivers. Signal tracking measurements

made by these receivers constitute the observables upon which this analysis is based.

These measurements fall into two categories: those that provide range information,

discussed in Chapter 8, and those that do not, discussed in this chapter. Although

not useful for ranging, these measurements are nevertheless useful for model valida-

tion. In order to confirm that the EM ray tracing and simulated signals accurately

model the relationship between geometry, reflected rays, and tracking observables,

it is important to find measurements of multipath that can be made from both the

simulated and experimental data. Oscillation of the prompt correlator power due to

the presence of multipath, known as fading, was measured in both the simulated and

experimental tracking outputs. Multipath-induced code tracking error was measured

through simulated data tracking and used to verify model consistency - the presence

of Hubble-reflected rays led to the expected signal tracking e↵ects.

6.1 Multipath Fading

As the excess path length traveled by a reflected signal changes, the relative

carrier phase will cycle through phases that add to the LOS signal constructively and

destructively, an e↵ect known as fading. This results in a characteristic oscillation

of received power, the frequency of which is determined by the rate of change of the

excess path length:

 ̇ = (1/�L1)�̇. (6.1)

The dot indicates a time derivative. In stationary terrestrial receivers, this oscillation

frequency is known to be a function of satellite elevation. Ground reflections will cause
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a higher frequency oscillation from low elevation satellites, as the excess path length

of the reflections is changing more rapidly than for satellites at higher elevations [60].

In spacecraft docking, the oscillation frequency is driven by the relative geometry of

the transmitting GNSS satellite, target, and receiver.

6.1.1 Simulation

Figures 6.1 and 6.2 show the prompt correlator power in the time and frequency

domains (left and right plots, respectively). The expected oscillation from the simu-

lated geometry (i.e., �̇ in Table 5.1) and Equation (6.1) is 0.2595 Hz for PRN 1 and

0.3012 Hz for PRN 30. The peak measured oscillation, determined through the first

peak in the frequency domain, is 0.2594 Hz for PRN 1 and 0.3052 Hz for PRN 1. Due

to the simulated signal length (165 seconds), the resolution of the FFT is 0.0061 Hz;

both measured fading frequencies are accurate to within the FFT resolution.

Fig. 6.1. Simulation: PRN 1 prompt power oscillation

PRNs 26 and 27 are an order of magnitude slower. The frequency of each is

di�cult to identify in the frequency domain but easily confirmed in the time domain.

Figure 6.3 shows PRN 26, for example, where the calculated frequency is 0.0230 Hz.
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Fig. 6.2. Simulation: PRN 30 prompt power oscillation

This corresponds to a period of 43.55 seconds - approximately 3.8 periods over the

simulation duration. The measured fading features in Figure 6.3 agree with these

values. In the frequency domain on the right, a secondary peak may be present in the

spectrum of the filtered power measurement at 0.0244 Hz, but the relatively coarse

resolution of the FFT makes this di�cult to discern.

6.1.2 Experiment

Multipath-induced oscillation of the prompt correlator power can also be measured

in the experimental data. The measured frequency of oscillation is generally consistent

with the rate of change of the reflected signal’s relative delay in Table 5.1. This e↵ect

was first observed by University of Colorado collaborators [61].

The prompt correlator power for PRN 1 is shown in Figure 6.4. On the top left

is the RCP time domain, where a coherent integration time of 1 ms is used. A 20 ms

non-coherent average is overlaid in orange. The spectra of these unfiltered and filtered

RCP power measurements are shown on the top right. The measured frequency of
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Fig. 6.3. Simulation: PRN 26 prompt power oscillation

Fig. 6.4. Experiment: PRN 1 prompt power oscillation
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Fig. 6.5. Experiment: PRN 30 prompt power oscillation

the unfiltered LCP power is 0.2595 Hz - within the FFT resolution of the expected

 ̇ = 0.2596 Hz. Frequencies in the filtered RCP and LCP data do not agree quite as

closely (0.2441 Hz and 0.2686 Hz respectively). However, the similarity between the

results of tracking the simulated and experimental data suggest that the ray specified

in Table 5.1 for PRN 1 is accurate. PRN 30 exhibits close agreement with ray tracing

results as well, shown in Figure 6.5, with a measured  ̇ = 0.2686 Hz (from the filtered

RCP peak) and calculated  ̇ = 0.30118 Hz.

The conclusion that this oscillation is due to multipath is further supported by the

LCP tracking results, shown below the RCP results in both figures. The depth of the

oscillation is greater, resulting in a larger frequency domain peak. While the frequency

of multipath fading is determined by the rate of change of the multipath delay, the

magnitude is a consequence of multipath strength. In the LCP data, reflected signals

are expected to be stronger.
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Fig. 6.6. Experiment: PRN 26 prompt power oscillation

Fig. 6.7. Experiment: PRN 27 prompt power oscillation

The slower oscillations of PRNs 26 and 27 are more di�cult to detect. A peak of

0.0244 Hz was measured in the filtered RCP spectra of both PRN 26 and 27, shown

in Figures 6.6 and Figures 6.7 respectively. LCP tracking fails for PRN 27 and is

not shown. While this  ̇ is within the FFT resolution of the calculated frequency for
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both (0.0230 Hz for PRN 27 and 0.0244 Hz for PRN 26), the peak is not pronounced

and the coarseness of the FFT leaves some doubt as to whether this measurement is

physically meaningful. The time domain results are inconclusive.

Although the multipath o↵set rate of change is simulated as constant, this is not

the case in reality. Unmodeled variation in the power oscillation frequency over time

causes the wider frequency peak observed in PRNs 1 and 30, as compared to the

simulated cases, and contributes to the di�culty in measuring  ̇ experimentally for

PRNs 26 and 27.

6.2 Code Tracking Error

When the delay of a reflected signal is within one chip of the LOS (approximately

293 m), the reflected signal will distort the shape of the main lobe of the code correla-

tion (see Figure 8.7). Furthermore, when the reflected signal is within the early/late

correlator spacing, the multipath will a↵ect the operation of code tracking, introduc-

ing errors.

A noncoherent DLL calculates the error in the current delay estimate ⌧̂ by forming

the discriminator

S(⌧̂) =
��aR(⌧̂ � ⌧ +

d

2
TC)e

j✓
��2 �

��aR(⌧̂ � ⌧ � d

2
TC)e

j✓
��2, (6.2)

where a is the signal amplitude, ✓ the carrier phase, d the o↵set of the two correlations

(in chips) and TC the chip period. When tracking is locked (i.e., error in the DLL code

phase estimate is less than dTC/2) the discriminator output is linearly proportional

to the estimate error and is used to adjust the propagation delay estimate.

When multipath is present, however, correlations between the reflected signals

and the early and late local codes distort the response of the DLL discriminator.

Following the discussion in van Nee’s dissertation on MEDLL [36], the discriminator

curve in the presence of M multipath signals is,

S(⌧̂
0

) =
���

MX

m=0

amR(⌧̂
0

� ⌧m +
d

2
TC)e

j✓m
���
2

�
���

MX

i=0

amR(⌧̂
0

� ⌧m � d

2
TC)e

j✓m
���
2

(6.3)
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where the zero subscript corresponds to the LOS signal. For DLL code phase error

⌧e = ⌧̂ � ⌧ , the multipath-free case described by Equation (6.2) yields 0 when ⌧e = 0.

However, Equation (6.3) yields 0 when ⌧e = ⌧M . Thus the discriminator drives the

propagation delay estimate to ⌧
0

+ ⌧M rather than ⌧
0

.

In order to obtain a more convenient form for determining ⌧M , let ⌧d = dTC/2,

↵m = am/a0, �m = ⌧m � ⌧
0

, and  m = ✓
0

� ✓m, so that ⌧d represents the correlator

o↵set in seconds, and ↵m, �m and  m represent the relative amplitude, delay and

phase of the i-th multipath signal respectively. Dividing Equation (6.3) by a2
0

and

writing as a function of error,

Se(⌧e) =
���R(⌧e + ⌧d) +

MX

i=1

↵mR(⌧e + ⌧d � �m)e
�j m

���
2

�
���R(⌧e � ⌧d) +

MX

i=1

↵mR(⌧e � ⌧d � �m)e
�j m

���
2

. (6.4)

The error in the propagation delay measurement caused by multipath rays with pa-

rameters ↵, � and  can then be calculated by finding ⌧ ? such that Se(⌧ ?) = 0.

To provide further insight, consider the case of a single multipath ray (M = 1):

Se(⌧e) =
���R(⌧e + ⌧d) + ↵R(⌧e + ⌧d � �)e�j 

���
2

�
���R(⌧e � ⌧d) + ↵R(⌧e � ⌧d � �)e�j 

���
2

. (6.5)

In this case the problem can be summarized as solving

0 =
���R(⌧ ? + ⌧d) + ↵R(⌧ ? + ⌧d � �)e�j 

���
2

�
���R(⌧ ? � ⌧d) + ↵R(⌧ ? � ⌧d � �)e�j 

���
2

(6.6)

for ⌧ ?. Without multipath, ⌧ ? = 0, but with multipath this is some o↵set, ⌧ ? = ⌧M .

Figure 6.8 shows the numerically computed multipath code tracking error, ⌧M ,

as a function of �, parameterized by  , where ↵ = 1/2. The solid lines show the

maximum error cases, when  = 0 (top) or  = ⇡ (bottom). The dashed lines show

cases of  between these extremes. This fails to tell the whole story, however, as



65

Fig. 6.8. Code tracking error in a noncoherent DLL due to one mul-
tipath signal (d = 1 chip, ↵ = 1/2)

 is functionally dependent on �:  m = mod(✓
0

� 2⇡�m/�L1, 2⇡), where mod(·, 2⇡)

indicates modulo 2⇡. Figure 6.9 shows a plot of ⌧M for a single multipath signal over

the space of relative amplitude and delay, demonstrating the importance of carrier

o↵set in the code tracking error; ⌧M varies significantly for even adjacent values of �.

This underscores an important point: the range of a reflecting target is not linearly

related to the magnitude of the DLL tracking error, i.e., a larger code delay � does not

directly translate into a larger ⌧M . Figures 6.8 and 6.9 show that ⌧M does not map

to unique � values and therefore cannot be used as a measurement of the additional

path length traveled by a reflected signal.

It is useful to have a closed form expression for the multipath-induced code error

for code o↵sets of interest (i.e., small relative code delays that are measurable when

tracking is locked). Consider again the case of one multipath ray, and set Equation
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Fig. 6.9. Code tracking error over ↵ and �

(6.5) equal to zero and substitute the ideal code correlation function in Equation (2.4)

for R(·). Assuming ⌧e + ⌧d < TC (i.e., the code correlation functions are nonzero),

0 =
���
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TC
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◆
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◆
e�j 

���
2

.

For cases when tracking is locked, ⌧e < ⌧d, so

0 =
���1�

⌧e + ⌧d
TC

+ ↵

✓
1� |⌧e + ⌧d � �|

TC

◆
e�j 

���
2

�
���1�

⌧d � ⌧e
TC

+ ↵

✓
1� |⌧e � ⌧d � �|

TC

◆
e�j 

���
2

.
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As demonstrated by the numerical solution in Figure 6.8, the code tracking error

can be divided into � regions. Consider the first region, where � < ⌧e + ⌧d:

0 =
���1�

⌧e + ⌧d
TC

+ ↵

✓
1� ⌧e + ⌧d � �

TC

◆
e�j 

���
2

�
���1�

⌧d � ⌧e
TC

+ ↵

✓
1� ⌧d + � � ⌧e

TC

◆
e�j 

���
2

.

Expanding and multiplying both sides by TC ,

0 =

✓
4⌧d
TC

� 4� 4↵2 +
4↵2⌧d
TC

� 8↵ cos +
8↵⌧d cos 

TC

◆
⌧e

+ 4↵2� � 4↵2⌧d�

TC
+ 4↵� cos � 4↵⌧d� cos 

TC
.

After substituting ⌧d = TCd/2 and some algebra, the solution for ⌧e is

⌧e =
↵2�(d� 2) + ↵� cos (d� 2)

(d� 2)(1 + ↵2) + 2↵ cos (d� 2)
.

This yields a closed-form expression for the DLL discriminator error in terms of

multipath parameters,

⌧M =
↵2� + ↵� cos 

1 + ↵2 + 2↵ cos 
, (6.7)

when the code delay o↵set is less than the sum of the resulting error and early-late

spacing.

Note that the relative amplitude of the received signals is a factor of not only the

relative power incident on the antenna, ↵, but also the relative gain of the antenna

in response to the signal’s polarization. In the case of an RCP antenna, which has

been assumed so far in this section, the primary polarization (or “co-polarization”) is

optimally tuned to receive direct signals. LCP signals will be received through the an-

tenna’s cross-polarization gain. The relative amplitude of multipath is therefore scaled

by the ratio of these two gains, GR⇥/GR, where GR⇥ is the cross-polarization gain

of the RCP antenna, and GR the co-polarization gain. This results in a multipath-

induced code tracking error of

⌧M,RCP =

⇣
↵GR⇥

GR

⌘
2

� + ↵GR⇥
GR

� cos 

1 +
⇣
↵GR⇥

GR

⌘
2

+ 2↵GR⇥
GR

cos 
. (6.8)
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The tracking error due to multipath that arises when tracking LCP data is anal-

ogous, but depends on whether the reflected signal or LOS signal is treated as the

interferer. When a LOS signal is tracked, the co-polarization of the LCP antenna is

applied to the reflected signal causing the error:

⌧M,LCP =

⇣
↵ GL

GL⇥

⌘
2

� + ↵ GL

GL⇥
� cos 

1 +
⇣
↵ GL

GL⇥

⌘
2

+ 2↵ GL

GL⇥
cos 

. (6.9)

This is the situation that appears to arise in Figures 6.4 and 6.5. If a reflected signal

is being tracked, however, the LOS signal causes fading and

⌧M,LCP =

⇣
↵GL⇥

GL

⌘
2

� + ↵GL⇥
GL

� cos 

1 +
⇣
↵GL⇥

GL

⌘
2

+ 2↵GL⇥
GL

cos 
. (6.10)

These two cases are discussed further in Chapter 8.

Although multipath-induced code tracking error does not translate into inter-

vehicle range, it is useful as a means for detecting multipath. Features of the measured

error can be used to assess the consistency of the EM ray tracing and signal simulation.

6.2.1 Simulation

If the true pseudorange is known, code tracking error can be measured through

pseudorange error. The impact of M reflected signals on the pseudorange measure-

ment can be summarized by adding an additional delay term to the multipath-free

propagation delay in Equation (2.37),

c⌧ i = (ri + I iL1 + T i) + c⌧ iM , (6.11)

so that the measured pseudorange from the i-th satellite is

⇢i = ri + ctb,R � ctib,s + I iL1 + T i + c⌧ iM + vi. (6.12)

The multipath-induced tracking error can then be measured by subtracting the true

pseudorange from this measured pseudorange,

⌧ iM = ⇢i � ⇢itrue, (6.13)
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where the true pseudorange is constructed from known or estimated quantities accord-

ing to Equation (2.38). This requires knowledge of the multipath-free pseudorange

to an accuracy less than the magnitude of ⌧ iM .

In the simulation case the geometric range, clock biases, and atmospheric de-

lays are known, so a multipath-free pseudorange can be formed and multipath-

induced tracking error can be calculated according to Equation (6.13). The measured,

multipath-corrupted pseudorange is written ⇢i and is defined in Equation (6.12). A

simple case is shown in Figure 6.10 in which PRN A and PRN C each contain one

reflected signal with a constant c� of 74.2 m and 55.6 m respectively [59]. Once track-

ing is locked, the excess pseudorange converges to the theoretical multipath-induced

code tracking error given by Equation (6.7) and plotted by the corresponding dashed

lines. PRN B has no multipath and predictably converges to zero.

Fig. 6.10. Measurement of multipath-induced tracking error in the
case of constant �

In the case of multipath that changes relative to the LOS signal, ⌧M is dominated

by oscillations due to the relative carrier phase. The theoretical and measured track-

ing error is shown in Figures 6.11 and 6.12 for PRNs 1 and 26 respectively. There

are several important di↵erences between the realistic results and the constant mul-
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tipath case. The dynamic code o↵set cases are characterized by carrier phase-driven

oscillation and very little bias - all four simulated PRNs have a mean of nearly zero

once tracking is locked. The apparent multipath-induced bias in Figure 6.10 is the

result of a fixed relative carrier phase. The depth of the oscillation, i.e., the maximum

and minimum code error values, is driven by the relative amplitude of the reflected

signal. As seen in Figure 6.9, this can be as great as 0.5 chips (approximately 145 m).

However, unlike the signals simulated in the constant multipath case, the realistic

multipath has been attenuated according to the cross-polarization gain of the HSM4

RCP antenna. Code error in these cases does not exceed twenty meters.

Fig. 6.11. Simulation: measurement of PRN 1 multipath-induced
tracking error 16:25:27 to 16:28:12 UTC

For each of the example PRNs the pseudorange error measured by tracking simu-

lated data agrees with the error calculated from the multipath parameters via Equa-

tion (6.7), plotted as black, dashed lines in Figures 6.11 and 6.12. This demonstrates

the consistency of the multipath model: the simulated reflected rays are manifested

in tracking observables as expected. Discrepancies between the theoretical and mea-

sured code error are due to unmodeled features of the tracking loop.
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Fig. 6.12. Simulation: measurement of PRN 26 multipath-induced
tracking error 16:25:27 to 16:28:12 UTC

6.2.2 Experiment

During HSM4 rendezvous, the direct/reflected signal path length di↵erence ranged

from approximately 235 meters down to 20 meters, or 0.8 to 0.07 chips. As in the

simulation case, Hubble-reflected signals should result in perceptible code tracking

errors. The di�culty in the experimental case is reconstructing a true pseudorange.

Clock bias terms and atmospheric delays must be estimated with a combined error

✏, where ✏ << c⌧ iM < TC/A. A true pseudorange was constructed using the geometric

range from the truth geometry and satellite clock biases from the IGS. The receiver

clock bias was estimated by the NavSDR, and the ionospheric delay estimated using

the International Reference Ionosphere 2012 (IRI-2012), developed by the Committee

on Space Research and International Union of Radio Science. Unfortunately the

results were inconclusive. The di↵erence between the constructed “true” pseudorange

and the measured pseudorange is shown in Figure 6.13 for PRNs 26 and 30. The

erroneous bias and drift common to both measurements suggests the clock bias has

not been correctly removed.
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Fig. 6.13. Experiment: ⇢i � ⇢itrue

In order to eliminate clock bias, an attempt was also made to determine a relative

multipath error by di↵erencing pseudoranges from two satellites:

⇢i � ⇢j = (ri � rj)� c(tib,s � tjb,s) + c(⌧ iatm � ⌧ jatm) + c(⌧ iM � ⌧ jM). (6.14)

Here ⌧ iatm and ⌧ jatm are the combined delay due to the ionosphere and troposphere

for each satellite. Receiver clock biases, common to both measurements, cancel. For

satellites at similar elevations, the di↵erence between the atmospheric delays may

be negligible and the relative multipath error experienced by each channel can be

compared if the geometric ranges and satellite clock biases are known with su�cient

accuracy. This too was inconclusive, however, as the di↵erence between two satellite

pseudorange measurements was on the order of hundreds of meters. Ultimately it is

concluded that measurement of code tracking error in the simulation case is hindered

by poor knowledge of the true geometry (see Table 4.2).
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7. NAVIGATION WITH REFLECTED SIGNALS

The principle of navigation with reflected signals was introduced in Section 3.4. Pseu-

dorange measurements from four or more GNSS satellites can be used to solve for the

receiver position and velocity. If measurements of signals from four or more GNSS

satellites reflecting o↵ the same target can be related to the propagation path length

of these signals, the target state can be solved for. In this chapter it will be assumed

that the distance traveled by a reflected signal can be measured; the specifics of this

measurement, and its feasibility, will be discussed in Chapter 8.

The relative navigation problem was examined in the context of spacecraft for-

mation flying by [45], with a particular focus on high earth orbit (HEO). Crosslink

signals between the members of the formation were incorporated. Thus, inter-vehicle

range was estimated from reflected GNSS signals and reflected crosslink signals. All

reflections were treated as specular reflections. Measurements were supplied to a

Kalman filter in the form of singly di↵erenced pseudoranges. Framing the state in

Keplerian elements rather than Cartesian elements was shown to be more robust to

measurement outages in the HEO case. The specific case of HSM4 was considered

by [46] prior to the mission itself. The shuttle position was assumed known, and

range measurements were supplied to an Extended Kalman Filter (EKF) in the form

of di↵erences between the direct and reflected pseudoranges. Range rate measure-

ments were also used. The HST position was estimated using Hill’s equations (also

known as the Clohessy-Wiltshire equations) as a model for the relative dynamics.

The simplifications and assumptions used here are di↵erent than those discussed

above. Although previous researchers have shown that relative navigation is feasible

in principle, the objective of this chapter is to study target state estimation under con-

ditions suitable for making reflected pseudorange measurements. Analysis of HSM4

data has suggested that separability of the direct and reflected signals is a significant
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concern [59] [62]. Although the target spacecraft must be close enough to the receiver

to produce su�ciently strong reflections, reflected signals with a longer additional

path length are more easily distinguished from LOS signals.

Simplified target and chaser spacecraft trajectories have been generated based on

HSM4 such that the two vehicles maintain a separation of approximately 80 meters.

Spacecraft states are specified in Cartesian elements and restricted two body dynamics

are used.

7.1 Problem Definition

In this simulation, the state of interest is

x =
⇥
xT
rcvr ẋT

rcvr xT
targ ẋT

targ c b f
⇤T

, (7.1)

where xrcvr and ẋrcvr are the receiver position and velocity respectively, xtarg and

ẋtarg the target position and velocity, c b the receiver clock bias (in kilometers) and

f the clock drift (in kilometers per second).

7.1.1 Measurement Model

It is assumed here that range measurements can be made from both the direct

and reflected signals. As an example, these will be treated as direct and reflected

pseudorange measurements. However, the measurement model used in the following

estimation allows for any measurement technique that results in direct and reflected

range information. This is further discussed in Chapter 8.

Pseudorange measurements are obtained from direct and reflected signals. The

direct pseudorange from GNSS satellite i is

ydirect,i = |ri � xrcvr|+ c b+ vdirect,i. (7.2)

The position of the i-th satellite is represented by ri. The reflected pseudorange

measurement from GNSS satellite i is

yrefl,i = |ri � xtarg|+ |xtarg � xrcvr|+ c b+ vrefl,i. (7.3)
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The measurement sensitivity matrix has the form

H =

2

4 @ydirect/@xrcvr 0Mx3

0Mx3

0Mx3

1Mx1

0Mx1

@yrefl/@xrcvr 0Nx3

@yrefl/@xtarg 0Nx3

1Nx1

0Nx1

3

5 (7.4)

for M direct measurements and N reflected measurements, where 1jxk and 0jxk indi-

cate a j by k matrix of ones or zeros, respectively, and

@yi,direct
@xrcvr

=
�(ri � xrcvr)

|ri � xrcvr|
@yi,refl
@xrcvr

=
�(xtarg � xrcvr)

|xtarg � xrcvr|
@yi,refl
@xtarg

=
�(ri � xtarg)

|ri � xtarg|
+

(xtarg � xrcvr)

|xtarg � xrcvr|

for a particular satellite i. Note, however, that a reflected measurement from a

satellite may not always exist when a direct measurement does and vice versa. In

the sequential estimation case, the measurement noise for each measurement, vdirect,i

or vrefl,i, is calculated via a link budget. First a point solution is considered without

measurement noise to demonstrate the solution convergence.

7.2 Point Solution

A receiver point solution is the location that best satisfies the overdetermined

system of pseudorange measurements. This was introduced in Chapter 3 - the point

solution is indicated by the x in Figure 3.3. The problem can be formulated as an

optimization problem

minimize f(x̂) =
2N+2MX

i=1

ri(x̂)
2, (7.5)

for estimated state x̂, N LOS measurements and M reflected measurements, where

ri are the measurement residuals

ri(x̂) = yi � (Hx̂+ vi). (7.6)

for measurement yi - either a direct or reflected pseudorange. The sum of the squares

of the measurement residual quantifies the error in the current estimated state. This
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is an example of a nonlinear least squares problem, and the solution is the x̂ that

minimizes the cost function f(x̂).

The Gauss-Newton method can be applied to the nonlinear least squares problem,

x̂(k+1) = x̂(k) � (HTH)�1HT r(x̂(k)), (7.7)

where H is the Jacobian of r given in Equation (7.4). Descent is guaranteed if the

matrix HTH, the Gramian, is positive definite; if it is not, the Levenberg-Marquardt

modification can be used to ensure descent [63].

At a given time instant, measurements are computed according to the measure-

ment model from the receiver, target, and GNSS satellite positions. Using the

attitude-independent RCS of a conducting sphere [64] as the target’s bistatic RCS,

any satellite with an unobstructed line of sight to the target is treated as producing

a reflected signal visible at the receiver. This is a first approximation; the actual vis-

ibility of a reflected signal will depend on the angle of incidence and target features

at the point of incidence. There will likely be far fewer strong reflections visible at

the receiver than the current approximation suggests.

Fig. 7.1. Estimation of target and receiver positions via the Gauss-
Newton algorithm
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Figure 7.1 shows a typical run of the position and target estimation using simu-

lated measurements. The results are consistent with the guarantee that the Gauss-

Newton method converge with an order of at least two when the Gramian is positive

definite [63]. In the case shown in Figure 7.1, only the position states are used. That

is, pseudorange measurements are used to estimate the state

x =
h
xrcvr xtarg c b

i
. (7.8)

Note that in this section no measurement noise is applied - the point solution is used

to demonstrate optimal solution convergence from an unknown initial state. As such,

the errors in Figures 7.1 and 7.2 indicate only the convergence of the iteration, not

the physical accuracy of the state estimate.

Two cases are considered: one in which the target and receiver states are estimated

simultaneously, another in which the receiver state is assumed known (e.g., through a

previously executed conventional GNSS point solution) and only the target position is

estimated. Performance in either case appears comparable, and the errors essentially

converge to zero, limited by machine precision (2.2204x10�16).

The convergence is still superlinear when pseudorange rate measurements and

velocity state components are included, but worse than the position-only case. The

estimation of the full state in Equation (7.1) is shown in Figure 7.2. The errors in the

target estimation case appear to be lower than those in the receiver estimation case.

It is expected that target state estimation will be less robust than that of the receiver.

However, due to the leniency in the reflected signal visibility criteria discussed above,

more reflected signal measurements are available than direct ones here.

7.3 Sequential Estimation

Sequential estimation methods incorporate both prior state estimates and knowl-

edge about the system dynamics to better estimate the instantaneous state of a time
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Fig. 7.2. Estimation of target and receiver positions and velocities via
the Gauss-Newton algorithm

varying system. The discrete time Kalman filter is an estimation method of this class

that can be used to estimate the state of a discrete time system of the form

xk+1

= f (xk,uk,wk, k) (7.9)

yk = h (xk,vk, k) , (7.10)

where xk represents the state, uk the input, and wk the process noise at time k.

Bold typeface is used to distinguish vector and matrix quantities from scalars. The

subsequent state at k + 1 is a linear function f(·) of the current state, input, and

measurement noise. The system state itself cannot be directly observed, however.

Instead, an estimate of the state at time k is formed from measurements yk. The

measurements are a linear function h(·) of the state and measurement noise vk. The

function f describes the system dynamics, and h the measurements.
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In the case of spacecraft navigation, system dynamics and measurements are non-

linear, so the Kalman filter described above cannot be applied directly. Instead an

EKF is used, which handles nonlinearities by linearizing the system about the current

state estimate. This is an approximation, however; if the assumption of local linearity

is invalid, the filter will diverge. Filter convergence is also highly dependent on the

process noise and measurement noise covariance matrices, Qk and Rk respectively.

These are often treated as tuning matrices [21]. It is assumed that errors have zero

mean and are uncorrelated.

A Kalman filter recursively propagates the first two moments of the distribution

of the state, alternating between projections and measurement corrections [65]. Esti-

mates of the state and state covariance prior to a measurement update are denoted

with a superscript minus sign and referred to as a priori information. The state

estimate is updated with a measurement according to

x̂+

k = x̂�
k +Kk(ŷk � yk), (7.11)

where the superscript plus sign indicates an a posteriori estimate. The new infor-

mation contained in the measurement is incorporated in the state estimate via the

measurement innovation ŷk � yk, where the estimated measurement, denoted by ŷ,

is formed from the a priori state estimate by

ŷk = h(x̂�
k ). (7.12)

The filter weighs the measurement update according to the gain matrix,

Kk = P�
k H

T
k (HkP

�
k H

T
k +Rk)

�1, (7.13)

where Hk is the Jacobian:

Hk(x̂
�
k ) =

@h(x̂�
k )

@x
. (7.14)

The state covariance is updated according to

P+

k = (I�KkHk)P
�
k (I�KkHk)

T +KkRkK
T
k . (7.15)
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This form of the covariance update ensures that if P�
k is symmetric, P+

k will be as

well [66].

After a measurement update, the state and state covariance estimates are pro-

jected by numerically integrating the dynamics model, forming a priori estimates for

the subsequent time step. The conventional sequential estimation methods described

above are implemented using the Orbit Determination Toolbox (ODTBX), a mission

simulation and analysis tool developed in MATLAB by engineers at GSFC [67]. The

measurement model is described above. Additional features and the dynamics models

developed for this specific problem are described in the following sections.

7.3.1 Measurement Weighting

As described in Section 3.2, the power delivered to the receiver by a LOS signal is

determined by the Friis transmission equation, and the power delivered to the receiver

by a reflected signal is determined by the bistatic radar equation. Gain patterns of

the flight antennas are used that were measured in the GEMAC, as described in

Section 4.3, but the gain average over azimuth is used (shown in Figure 4.4). In this

simulation, measurements are excluded that have a calculated C/N
0

below 25 dB-Hz.

Measurements can be weighted according to the measurement covariance matrix.

The C/N
0

from the link budget calculation is used to approximate the covariance

of each link. The ranging error resulting from a given signal power spectral density

is dependent on a number of receiver properties. For a receiver with a conventional

early/late type discriminator, the standard deviation of the code range measurement

in chips is given by

�DLL =

s
2d2Bn

(C/N
0

)


2(1� d) +

4d

T (C/N
0

)

�
, (7.16)

where d is the correlation spacing between the early and late discriminators in chips,

Bn the code loop noise bandwidth in Hz and T the pre-detection integration time in

seconds [24]. These parameters are taken from the Navigator GPS receiver flown on

HSM4 [4]. Although this weighting is not used in the Navigator receiver itself, filter
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performance is shown to be improved here by calculating the diagonal elements of Rk

according to the link budgets and Equation (7.16).

7.3.2 Dynamics Model

The dynamics model separates the state in Equation (7.1) into three independent

components: receiver, target and clock.

Each spacecraft state is propagated using the dynamics of the restricted two-

body problem, a simplified model of orbital mechanics in which only the Earth and

the spacecraft are considered and the spacecraft mass is much less than the mass of

the central body [68]. The state derivative is calculated,

2

6666666666664

ẋ

ẏ

ż

ẍ

ÿ

z̈

3

7777777777775

=

2

6664

ṙs/c

�µ
rs/c

|rs/c|3

3

7775
(7.17)

and integrated over the propagation interval, where rs/c and ṙs/c are the position and

velocity components of the spacecraft state, respectively, and µ is the gravitational

parameter for the Earth (3.986 ⇥ 105 km2/s2). The derivative of the process noise

matrix for each spacecraft is diagonal (i.e., the derivatives of the process noise terms

are assumed uncorrelated) and constant, with a standard deviation of 0 km2/s and

1⇥ 10�9 km2/s2 for the velocity and acceleration dimensions, respectively.

A simple two-state clock dynamics model included in ODTBX is used, where the

derivative, 2

4 f

ḟ

3

5 =

2

4 0 1

0 0

3

5

2

4 c · b

f

3

5 , (7.18)
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is integrated over the propagation interval [67]. The derivative of the process noise

matrix is defined as

Q̇clk =

2

4 c2h
0

/2 0

0 c22⇡2hm2

3

5 (7.19)

where h
0

and hm2

represent classical Allan variance parameters; here h
0

= 2.4⇥10�22

and hm2

= 8.0⇥ 10�28 [21].

Initial State and State Covariance

Errors in the components of the initial state estimate are assumed uncorrelated,

so the initial state covariance P�
0

is a diagonal matrix. In a rendezvous and docking

scenario like HSM4, the receiver position is likely available from conventional navi-

gation systems, so knowledge of the initial receiver position is expected to be better

than that of the target. The standard deviations of the receiver and target positions

are chosen to be 10 m and 1 km respectively. Velocity and position are physically

related quantities, so the covariance of the velocity terms should be consistent with

the covariance of the position terms. For this simulation the velocity covariance was

related to the position covariance by

�2

velocity =

✓
µ

|rs/c|2|ṙs/c|

◆
�2

position, (7.20)

a relationship obtained by manipulating the relationship between an orbit’s semi-

major axis, orbital radius, orbital velocity, and orbital energy.

The initial state estimate is calculated as

x�
0

= x
0,true + xerr (7.21)

where x
0,true is read from a file of the generated true spacecraft trajectories. The

initial clock bias is set to �2 km and the initial clock drift to 5 m/s, a typical drift

for an oven-controlled crystal oscillator (OCXO) [12]. The perturbation of the initial

state, xerr, is sampled from N (0 m, 100 m2) in the position dimensions.
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7.3.3 Results

The number and strength of reflected signals depends on the EM scattering prop-

erties of the target. A previous simulation of HSM4 using EM ray tracing software

suggests that numerous reflected signals exist during the period of approach when the

inter-vehicle range is approximately 80 meters [59]. The rays scattered by HST vary

with the spacecraft’s attitude, but as a first approximation two scattering models will

be considered that are attitude independent: a specular reflection and a perfectly

conducting sphere.

Estimation was performed over a simulation duration of 1.5 hours with measure-

ment updates every 90 seconds. The previous EM ray tracing simulation indicated

that nearly all reflected signals at the receiver were produced by satellites above the

receiver horizon (i.e., less than 90 degrees from the antenna boresight) [59], so in this

simulation signals from satellites below this horizon were masked.

Specular Reflection Model

The study of relative navigation in [45] assumed each signal visible to the reflect-

ing spacecraft would result in a specular reflection. This mirror-like reflection has

the e↵ect of simply extending the signal propagation path, avoiding the additional

spreading loss in Equation (3.14) associated with a signal that is re-radiated at the

point of reflection. In the specular case, the power delivered to the receiver by a

reflected signal is determined by

PR,refl =
PTGTGR�

2

L1

(4⇡)2(RT +RR)2
�2, (7.22)

where the Fresnel reflection coe�cient � ⇡ 0.9, as in [45].

This model a↵ects all reflected signals equally, resulting in an attenuation of ap-

proximately 2 dB relative to the corresponding LOS signals. Every reflected signal is

still above the 25 dB-Hz tracking threshold. A constant measurement covariance of

36 m2 was used for all direct and reflected measurements. Figures 7.3 and 7.4 show
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the spacecraft position RSS errors from 50 simulations. The RSS position errors are

plotted as dots and the state covariance for each run is plotted as a black line. Both

the receiver and target states are estimated to within less than a meter.
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Fig. 7.3. Receiver position estimation in specular reflection case

Sphere Target Model

A perfectly conducting sphere has an RCS given by

�b = ⇡a2
✓
1� sin(2ka)

ka
+

1� cos(2ka)

(ka)2

◆
, (7.23)

with k the wave number (for L1 in our case) and a the sphere radius [69]. As in

the specular case, every LOS signal results in a reflected signal for every LOS sig-

nal. However, the radius of the sphere was adjusted to produce an attenuation of

approximately 21 dB relative to the corresponding LOS signals, so only between four

and six reflected signals exceeded the acquisition threshold at a given time. Again

the constant measurement covariance of 36 m2 was used for all direct and reflected

measurements.
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Fig. 7.4. Target position estimation in specular reflection case

Figures 7.5 and 7.6 show the spacecraft position estimate results for the receiver

and target respectively from 50 runs. The performance is worse than in the specular

case, particularly for target position estimation. This is not surprising, given the

small number of reflected measurements being made, but both position estimates

converge to within a few meters for most runs. Figure 7.7 shows improved filter

performance when the measurement weighting via Equation (7.16) is used. In the

target case, shown in Figure 7.8, the performance is comparable to the non-weighted

case. The covariance bounds are more accurate, however, giving the impression of

poorer performance.
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Fig. 7.5. Receiver position estimation in sphere case with fixed mea-
surement covariance

7.4 Relative Navigation Dilution of Precision

In conventional satellite navigation, the relationship between the pseudorange

error and the receiver position estimate is quantified by the geometric dilution of

precision (GDOP),

GDOP =
1

�
=
q
�2

x + �2

y + �2

z + �2

b =
p
tr((HTH)�1) (7.24)

for the three position dimensions and the clock bias dimension [70]. The trace is

denoted tr and H is the measurement sensitivity matrix in Equation (7.4). GDOP

provides a metric for position estimate quality based on the geometry of the GNSS

satellites relative to the user for a given pseudorange error.

For GDOP in the case of relative navigation, consider the notation in Figure 7.9.

The unit vector from the receiver to the i-th satellite is d̂ (the direction of the direct

signal), the unit vector from the receiver to the target is r̂, and the unit vector from
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Fig. 7.6. Target position estimation in sphere case with fixed mea-
surement covariance

the target to the i-th satellite is t̂i. In accordance with the partial derivatives defined

for Equation (7.4) these unit vectors are 1x3. Then H is

H =

2

6666666664

�d̂
1

0
1x3

0
1x3

0
1x3

1 0

�r̂ 0
1x3

�t̂
1

+ r̂ 0
1x3

1 0
...

...
...

...
...

...

�d̂N 0
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1x3

0
1x3

1 0

�r̂ 0
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1 0

3

7777777775
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The Gramian can be written in terms of blocks

HTH =

2

6666666666664
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88

simulation time [s]
0 1000 2000 3000 4000 5000

rs
s 

po
si

tio
n 

er
ro

rs
 [m

]

0

2

4

6

8

10

Fig. 7.7. Receiver position estimation in sphere case with variable
measurement covariance

where

A =
NX

i=1

d̂Ti d̂i +Mr̂T r̂, (7.27)

B =
MX

i=1

r̂T (t̂i � r̂), (7.28)

C = �
NX

i=1

d̂i �Mr̂Ti , (7.29)

D =
MX

i=1

r̂T (t̂i � r̂) (7.30)

E = �
MX

i=1

t̂Ti +Mr̂T . (7.31)

GDOP can be formulated according to [70],

tr
⇥
(HTH)�1

⇤
=

"
1

det(H)2

X

ij

(h0
ij)

2

#
(7.32)

where h0
ij/det(H) are the elements of H�1 and h0

ij are the elements of adjoint matrix.
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Fig. 7.8. Target position estimation in sphere case with variable mea-
surement covariance

Fig. 7.9. Relative navigation geometry

7.4.1 Two Dimensions

For N GNSS satellites in two dimensions, GDOP is minimized by arranging satel-

lites as the vertices of an N -sided polygon [70]. Limiting visibility to above the
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receiver horizon, the optimal arrangement of satellites is from 0 to 180 degrees spaced

by �✓ = 180/(N � 1). If the receiver is placed at the origin and satellites are placed

at their respective angles 24,000 km from the receiver, the relative GDOP can be

compared for a variety of target spacecraft locations. Relative GDOP is shown in

Figure 7.10 over target angle relative to the horizon. The optimal orientation of the

target increases from 24� to 38� as the number of satellites grows. Distance between

the target and receiver does not change relative GDOP - here 80 meters is used.

Fig. 7.10. 2D relative GDOP over HST position and number of GNSS satellites



91

8. RANGE MEASUREMENTS FROM MULTIPATH

8.1 Measurement Model Assumptions

The demonstration of relative navigation using reflected signals in Chapter 7 relied

on several assumptions. The first is that reflected signals are available. The scattering

cross sections used were greatly simplified, and these simplifications favored reflected

signal availability. Every signal incident on the target was treated as a reflected signal

source, and only power attenuation due to the link budget prevented these signals

from being received. In actuality, target surface features will scatter the incident

signals in a variety of directions, limiting the number of signals visible to the receiver.

However, EM ray tracing has suggested that in the case of HSM4, numerous reflected

signals of su�cient strength, duration, and variety for navigation are available. With

a higher fidelity dynamics model, the shuttle and HST trajectories could be used for

the navigation simulation, and EM ray tracing results could be used as inputs to the

measurement model. This would improve the accuracy of the navigation simulation.

Because of the large number of reflections predicted by ray tracing, however, the

underlying assumptions of the measurement model itself are of more interest here.

The measurement model consisted of a measurement of the LOS range, and a mea-

surement of the path length of the reflected signal. In Chapter 7, it was assumed that

reflected signals could be isolated from the LOS signals and tracked independently

to form reflected pseudoranges. This is the ideal case, in which signal polarization is

fully reversed upon reflection, and the RCP and LCP antennas have excellent cross-

polarization rejection, forming two separate data sets of direct and reflected signals

respectively. The RNS experiment was designed with this methodology in mind [9].

Retaining the first assumption, that polarization is perfectly reversed upon reflec-

tion, the feasibility of this measurement model relies on the antennas to su�ciently
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isolate incident RCP and LCP energy. Consider the multipath-induced code tracking

error in Equation (6.7) for an antenna with RCP gain GR and LCP gain GL:

⌧M =

⇣
↵GL

GR

⌘
2

� + ↵GL

GR
� cos 

1 +
⇣
↵GL

GR

⌘
2

+ 2↵GL

GR
cos 

. (8.1)

In the case of a very good RCP antenna, GL is small and ⌧M approaches zero. Thus

the measured pseudorange is the multipath-free

⇢RCP = r + ctb,R � ctb,s + IL1 + T + 0 + vRCP . (8.2)

For a very good LCP antenna, GR is small, and in the limit ⌧M approaches �, the

multipath relative delay in seconds. This is the case of reflected signal tracking, and

the measured pseudorange is

⇢LCP = r + ctb,R � ctb,s + IL1 + T + c� + vLCP . (8.3)

Reflected signal tracking can be confirmed by taking the di↵erence between the pseu-

doranges measured through the two antennas to find the excess pseudorange

⇢LCP � ⇢RCP ⇡ c� = R
�

, (8.4)

where R
�

is the geometric additional path length of the reflected signal relative to

the direct: R
�

= (RT +RR)�RLOS (see Figure 3.1).

8.1.1 Simulation

Data from a good RCP antenna was simulated with Siggen by applying a 20 dB

attenuation to the reflected signals, and from a good LCP antenna by applying a 20

dB attenuation to the direct signals. Under these conditions the reflected signals were

well isolated in the LCP data set and tracking of the LCP data locks onto reflected

signals. Excess pseudorange, shown in Figure 8.1, was computed by finding the

di↵erence between the RCP and LCP pseudoranges. Excess range calculated from the

truth geometry is given by the corresponding dashed lines for each PRN. The excess
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Fig. 8.1. Simulation: excess pseudorange with 20 dB cross-pole discrimination

pseudorange and truth geometry show strong agreement, indicating that reflected

signal range measurements are feasible with su�cient cross-pole discrimination.

This measurement begins to break down, however, as antenna isolation decreases.

For less than perfect antennas, both the RCP and LCP data sets contain a mix of

direct and reflected signals. The pseudoranges su↵er from error due to the presence

of interfering signals:

⇢RCP = r + ctb,R � ctb,s + IL1 + T + (0 + ⌧M,RCP ) + vRCP , (8.5)

⇢LCP = r + ctb,R � ctb,s + IL1 + T + (c� + ⌧M,LCP ) + vLCP . (8.6)

Excess pseudorange departs from the excess geometric range of the reflected signals

as this error increases. For large enough errors,

⇢LCP � ⇢RCP ⇡ (⌧M,LCP � ⌧M,RCP + c�) 6= R
�

. (8.7)

This error is already apparent in the oscillation of the excess pseudorange measure-

ment in the 20 dB case, but the measurement still su�ciently approximates R
�

. This

approximation breaks down as the antennas degrade. In Figure ??, for example, at a
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cross-pole discrimination of 10 dB the LOS-induced tracking errors experienced when

tracking the reflected signal overwhelm the measurement of R
�

. Eventually tracking

of the reflected signal fails altogether. The cross-pole discrimination at which mea-

surement of the reflected signal pseudorange fails depends on polarization reversal at

reflection, reflected signal strength, and receiver features such as early-late correlator

spacing. However, with the LCP antenna’s cross-pole discrimination of 7 dB, the

HSM4 GPS data was likely collected under conditions for which the approximation

in Equation (8.4) is invalid.

Fig. 8.2. Simulation: excess pseudorange with 10 dB cross-pole discrimination

8.1.2 Experiment

The initial concept of operations for relative navigation using reflected GNSS sig-

nals during HSM4 relied on tracking reflected signals in the LCP data. The excess

path length of the reflections could then be computed through comparison to LOS

signal tracking in the RCP data [9]. Initial results suggested this might be feasible.

In 2010, Shah et al. performed repeated acquisition of PRN 19 to show that a corre-

lation peak was visible in the LCP data that was not visible in the RCP data [71].
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Furthermore, this peak exhibited a Doppler shift relative to the LOS rate of change

consistent with the inter-vehicle motion. At the time studied, 16:17:45 UTC, PRN

19 was located below the horizon of the space shuttle, so that a LOS signal was not

visible and the bistatic angle was nearly 90�. This geometry is particularly conducive

to reception of strong Hubble reflections. In the absence of a corresponding LOS sig-

nal, however, ranging relies on a good estimate of the LOS range to the transmitting

satellite. Focus was instead directed at those cases where direct and reflected signals

are simultaneously visible.

Using the RNS SDR, a large number of signals were acquired in the LCP data,

suggesting an abundance of strong reflections. C/N
0

estimates from acquisition are

shown in Figure 8.3, where the LCP results are plotted on top of the RCP results.

An LCP signal is acquired for every RCP case, and a few times in cases without

an RCP peak (such as PRN 19 mentioned previously). The 25 dB-Hz acquisition

threshold is shown by a dashed line. Even if every LCP signal acquired is a reflected

signal, the small power di↵erence relative to the corresponding RCP signals suggests

a nearby reflection, possibly from within the shuttle cargo bay around the antenna.

Nevertheless, a few signals seem promising.

Fig. 8.3. C/N
0

estimated by acquisition (16:17:45 UTC)
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NavSDR was used to perform conventional tracking on the RCP and LCP data

sets for the entire duration of rendezvous (16:12:09-17:13:56 UTC). A summary of

the number of signals tracked is shown in Figure 8.4. The number of LCP signals

tracked and the lack of variation in this number as the inter-vehicle range decreases

suggests that many of the signals being tracked in the LCP data are either reflections

from within the shuttle bay or LOS signals strong enough to dominate despite the

antenna polarization mismatch. This hypothesis is further borne out by the results of

subtracting the measured RCP pseudorange from the measured LCP pseudorange for

all PRNs tracked in both data sets, shown in Figure 8.5. The average pseudorange

di↵erence is approximately zero. There are no persistent pseudorange di↵erences

above forty meters, as would be expected if a reflected signal were being tracked prior

to 16:50 UTC.

Fig. 8.4. Number of satellites tracking by NavSDR and inter-vehicle range
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Fig. 8.5. LCP pseudorange minus RCP pseudorange from NavSDR

Tracking was then performed with RNS SDR to study the correlations in more

detail. Excess pseudorange measurements analogous to those made in the simulation

case are shown in Figure 8.6. As expected in the case of poor antenna isolation, the

tracked PRNs 1, 26 and 30 exhibit a mean LCP/RCP pseudorange di↵erence of zero.

Tracking of PRN 30 fails in the LCP data halfway through, and tracking of PRN 27

fails in both cases.

8.2 Alternatives

In the absence of reflected signal isolation via polarization, propagation path

length of reflected signals must be determined through other means if the same mea-

surement model is to be retained. One approach is to estimate the reflected signal

properties through the distortion of the code correlation shape, as in the MEDLL

algorithm [36]. In the case of spacecraft docking, the relative velocity of the target

spacecraft is slow, so the resulting Doppler shift of the reflected signals (on the order



98

Fig. 8.6. Experiment: measured excess pseudorange

of Hz) can be ignored. Only the code dimension of the ambiguity function need be

considered for multipath measurement. The code correlation is a sum of the correla-

tion with the LOS signal and delayed, attenuated replicas created by reflections. The

simple baseband case of two PRN codes is shown in Figure 8.7, where the measured

“composite” correlation is a result of the two individual correlations. This is a sim-

plification, but a good description of how multipath arises in code correlation power,

i.e., the sum of the squared in-phase and quadrature correlations.

As described in Section 2.3.3, a conventional tracking loop performs correlations

with three shifted C/A code replicas: a “prompt” code shifted to align with the

instantaneous code phase estimate, and “late” and “early” codes shifted to lag and

lead the prompt code respectively. Each correlation with an o↵set code is referred

to as a correlator. Performing many correlations, closely spaced in delay, provides

a more detailed view of the correlation shape. This bank of correlators concept has

been employed by other researchers [36] [10], and even incorporated into tracking

[72]. An example of the polycorrelator visualization is shown in Figure 8.8, in which
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Fig. 8.7. Code correlation in the presence of a reflected signal

correlations are calculated over ±2 chips at each time and plotted sequentially (from

bottom to top, in the 2D plot). A single reflected signal is immediately evident in this

case when the multipath is o↵set by several hundred meters relative to the LOS signal

tracked by the prompt correlator. A black line is overlaid on the two-dimensional

plot at the true delay o↵set of the simulated multipath and clearly corresponds to the

secondary correlation peak.

The example shown in Figure 8.8 is unrealistic for the cases of interest. It’s unlikely

that a signal with an excess path length of hundreds of meters would be so strong. A

more realistic example, using parameters from EM ray tracing, correlation magnitude

for PRN 30 is shown in Figure 8.9. A black line is overlaid on the two-dimensional

plot at the true delay o↵set of the simulated multipath. Unlike the extreme case of

Figure 8.8, the reflected signal is within the main lobe of the code correlation function

and a secondary peak cannot be distinguished.

Similarly, the results of tracking PRN 30 in the HSM4 data in Figure 8.10 show no

sign of a secondary correlation peak. In Figure 8.10(a) the correlation magnitude is

shown for the same time frame as the simulation results in Figure 8.9. There does not

appear to be any deformation of the correlation shape corresponding to a reflected
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Fig. 8.8. Polycorrelator view: tracking a simulated signal in the pres-
ence of a single multipath signal

Fig. 8.9. Simulation: PRN 30 correlation magnitude 16:25:27 to 16:28:12 UTC

signal. This is made clearer by looking at the correlation symmetry, subtracting

the left side of the correlation plot (corresponding to negative delay relative to the

prompt correlator) from the right side of the correlation plot in Figure 8.10(b). If a

reflected signal o↵set by less than one chip were present, a bulge in the positive half

of the correlation function would result in a positive di↵erence between the positive
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and negative delay sides of the correlation function. No such asymmetry is evident.

Results are similar for the other example PRNs identified to have reflections via EM

ray tracing that were discussed in Chapter 5 (1, 26 and 27).

(a) correlation magnitude

(b) RCP correlation symmetry

Fig. 8.10. Experiment: PRN 30 correlation measurements 16:25:27-16:28:12 UTC
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Although the multipath signal can clearly be perceived through the composite

correlation shape in Figure 8.7, this is complicated by the e↵ect of front end filtering

(see Figure 2.2). As a sequence of square pulses, a C/A code has an inherently

infinite bandwidth. If the incoming signal is sampled at a 2.048 MHz (as in the

case of HSM4), the signal must first be band-limited to less than half the sampling

frequency in order to avoid aliasing. The reduction of signal bandwidth, indicated by

the tilde in the signal models in Chapters 2 and 3, leads to a smoothing of the code

correlation functions.

An example is shown in Figure 8.11 using the relative delay and amplitude of

the multipath predicted by ray tracing for PRN 1 at 16:23 UTC. This is the same

correlator number and spacing used in Figure 8.9. Here the green plot shows the

correlation function of the composite signal without front-end filtering (as in the

large multipath o↵set case in Figure 8.9). The black plot shows the code correlation

function when the input signal is low-pass filtered with a cuto↵ frequency of 1.023

MHz (slightly wider than the two-sided 2 MHz bandwidth of the bandpass filter

applied during HSM4). Under these conditions, a reflected signal so closely o↵set

from the LOS signal (as expected in the case of Hubble reflections) does not manifest

itself in deformation of the correlation function shape, but rather in a shift of the

correlation peak.

Although the RCP and LCP antennas do not provide absolute isolation of direct

and reflected signals, their e↵ects can still be exploited. A direct signal may dominate

when performing tracking on the LCP data, but the ratio of reflected signal power to

the direct will be greater. This may not enable tracking of the reflected signal itself,

but the LCP data can be leveraged to better detect and measure the multipath.

A bank of correlators was applied to the LCP data, centered at the time in the

data corresponding to the RCP prompt correlator. With su�ciently wide front-end

bandwidth, the resulting LCP code correlation shape would better reveal secondary

correlation peaks. For multipath arriving delayed by less than a chip, the LCP code

correlation could be used to detect the peak shift due to multipath (as in Figure 8.11),
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Fig. 8.11. E↵ect of filtering on code correlation in the presence of a reflected signal

as this shift would be greater in the LCP case than the RCP case. Unfortunately,

in the narrowband case of the HSM4 data, this method of open-loop tracking of the

LCP data failed to produce reflected signal measurements.

Without good isolation of direct and reflected signals via antenna polarization,

or high resolution, wide-band code correlations, the simple direct and reflected range

measurement model must be modified. Despite the antenna and bandwidth limita-

tions, the e↵ects of multipath can be observed in the HSM4 tracking results. With

a su�ciently detailed model of how these observables arise from the multipath pa-

rameters, the observables themselves could be used as inputs to the EKF in order to

estimate the target and receiver states from the mix of direct and reflected signals

present in both data sets.
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The combination of the multipath-corrupted pseudorange in Equation (6.12) and

the closed form multipath-induced tracking error in Equation (8.1) is a start:

⇢i = ri + ctb,R � ctib,s + I iL1 + T i + c
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Such an expression relates the measured pseudorange to the multipath relative ampli-

tude, code phase, and carrier phase as well as the antenna cross-pole discrimination.

This relies on good knowledge of the antennas and the arriving multipath azimuth

and elevation. Furthermore, this is only valid for the case of a single multipath ray

and when � < ⌧e + ⌧d. Despite the di�culties that arise in modeling the relation-

ship between multipath and tracking observables in su�cient detail, this approach

has some precedent, as in the batch least squares method pursued by Psiaki et al. in

estimating multipath from known antenna motion and a detailed model of complex

accumulations [17].
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9. CONCLUSIONS

Previous work has focused on detailed measurement modeling not specifically in-

tended for navigation or navigation with assumed measurements. The perspective

presented in this dissertation seeks to advance the GNSS bistatic radar technique by

considering the problem in its entirety: measurements with consideration of imple-

mentation in navigation, and relative navigation with consideration of measurement

feasibility.

Forming range measurements from multipath relies first on signal availability, a

function of the reflecting object’s scattering properties. With solar panels and other

highly reflective surfaces, spacecraft are particularly suited to produce strong signal

reflections. In the case of HSM4, EM ray tracing confirmed what previous researchers

expected: the bistatic RCS of HST scattered numerous strong, sustained reflections

in the direction of the GPS receiver during rendezvous and docking.

In processing the RCP and LCP data sets, however, it was found that both con-

tained a mixture of direct and reflected signals. Multipath fading confirmed the

presence of reflected signals, and the agreement of these features with the e↵ects of

simulated Hubble-reflected signals suggested that the reflected signals were produced

by HST.

The concept of relative navigation was demonstrated in simulation: An EKF was

used to sequentially estimate the receiver and target states from simulated direct and

reflected pseudorange measurements. The feasibility of making reflected pseudorange

measurements was shown to be dependent on su�cient reflected signal isolation via

antenna polarization. With simulated RCP and LCP antennas, it was shown that

with a 20 dB cross-pole discrimination the direct and reflected signals could be sep-

arately tracked and the necessary measurements made for receiver and target state

estimation.
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With poorer cross-pole discrimination, closed-loop tracking of reflected signals

fails. This was the case with the HSM4 data, where the LCP flight antenna was

measured to have a cross-pole discrimination of less than 10 dB. Under such condi-

tions, the LCP data set was dominated by LOS signals, and reflected signal range

measurements could not be made.

In the absence of reflected signal isolation via antenna polarization, open-loop

tracking was attempted in which a bank of LCP correlators was used to generate a

detailed code correlation centered at the time of the RCP prompt correlator during

tracking of the RCP data. Estimation of multipath parameters from deformation of

the code correlation shape relies on wide bandwidth, however, and was not possible

with the narrow, 2 MHz data collected during HSM4.

Relative navigation with reflected GNSS signals is a promising technique that

has generated sustained research interest in applications such as urban navigation

and spacecraft proximity operations. The vacuum of space, scattering properties of

spacecraft, and well-understood dynamics make spacecraft rendezvous and docking an

application with particular potential. The unique use of space data in this dissertation

presented an opportunity, but also a challenge. This challenge led to insights regarding

measurement feasibility. In order to make reflected pseudorange measurements, an

LCP antenna with a cross-pole discrimination much greater than 10 dB must be

used. Without two, oppositely polarized antennas with high cross-pole discrimination,

measurement of reflected signals relies on the use of a wide front-end bandwidth (e.g.,

> 10 MHz).

9.1 Future Work

The relative navigation simulation should be improved by using EM ray tracing

for the generation of reflected signals rather than an analytic bistatic RCS. This would

require increasing the fidelity of the dynamics model to the point that the shuttle and

HST trajectories from HSM4 can be used. This would be di�cult, due to the shuttle
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maneuvers during rendezvous, so it may be more feasible to redo EM ray tracing for

the case of the simplified trajectories.

EM ray tracing should be improved by including the e↵ects of the shuttle cargo

bay. Although it seems likely that the signals tracked in the LCP data set were strong

LOS signals, some of these could be reflections from near the receiver. Processing

of the data collected after deploy of HST should be performed to see whether the

number of signals tracked in the LCP data changes when Hubble is not present.

Simulated wide-band data should be generated and the MEDLL algorithm imple-

mented. The estimated multipath properties could be checked against the simulated

rays and used as inputs to the relative navigation EKF. It would be useful to deter-

mine what the minimum necessary band-width is.

Recommendations should be explored as to what can be done with the target

spacecraft to support GNSS bistatic radar. Corner reflectors are sometimes used for

LIDAR, and something similar may be beneficial when ranging with reflected GNSS

signals. A spacecraft may be maneuvered into docking orientation, exposing a face

with known or desirable scattering properties. EM ray tracing results from HSM4

suggest that solar panels are a significant source of reflections, so even in the case of

a mostly passive target spacecraft it may be worthwhile to orient the solar panels in

an optimal manner.

In the course of this dissertation research, preliminary work was done to measure

multipath using carrier phase. The shorter wavelength of the L1 carrier provides

much higher precision than the code phase measurements used here. Given the small

ranges of interest in spacecraft docking, this is an important area for continued work.

The technique of measuring multipath using carrier phase is outlined by [73] and was

essential in the ranging experiments [11] and [43] mentioned previously, but a method

must be employed to resolve carrier phase ambiguity.

Finally, an experiment should be conducted under controlled, static conditions

using a large, simple reflecting object, as in the Stockmaster et al. experiment [11].

RCP and LCP antennas with good cross-pole discrimination should be used and,
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more importantly, the gain patterns should be well known, including ground plane

e↵ects. A wide front-end bandwidth should be used and the resulting data used to

validate the conclusions presented in this dissertation.
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A. CONSTRUCTION OF HST RELATIVE TRAJECTORY

TRUTH

A.1 RELBET and GNFIR

United Space Alliance provided an estimate of HST’s position and attitude relative

to the space shuttle during HSM4, but this relied on the shuttle’s on-board rendezvous

radar for relative range information [53]. When this system was switched over to

wideband communications during docking at 16:37:30 UTC, error increased in the

RELBET estimate of HST position, rendering the solution invalid. The error is

readily apparent when images from cameras in the shuttle bay are compared to the

STK simulation produced with RELBET HST data, as shown in Figure A.1.

Fig. A.1. Comparison of HST position in RNS camera image (left)
and RELBET (right) at 16:42:22 UTC

Three cameras with varying optical ranges were mounted on the Multi-use Logistic

Equipment Carrier (MULE), looking up out of the shuttle cargo bay. Using images

from these cameras, GNFIR and ULTOR sought to track physical features of HST
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and calculate the space telescope’s state relative to the shuttle. This relative state,

a quantity incorporating position and attitude, is referred to by RNS researchers as

“pose.”

Noting the “discrepancies between the pose generated from Shuttle and HST

position/attitude information, and the pose solutions from the RNS algorithms,”

researchers used RNS flight imagery to “justify the pose solution from the RNS algo-

rithms as the correct solution” [48]. As a result, the GNFIR post-processed solution

is used as a truth for the HST position after the rendezvous radar is turned o↵ at

16:37:30 UTC. However, the RELBET attitude for HST is regarded as a valid truth

throughout rendezvous [48].

A.2 Transformation from RNS Camera Frame to J2000.0

The shuttle and HST rendezvous poses from RELBET are available from 10:00:00-

20:00:00 UTC on May 13, 2009 in the B1950.0 inertial reference frame. Each of the

three RNS cameras recorded imagery during the time frames shown in Table A.1.

The GNFIR algorithm only tracked and produced pose estimates for the time frames

given in the table’s “pose soln.” fields. Interpolation must be used to produce a con-

tinuous trajectory for HST over the duration of rendezvous and docking. Researchers

determined that Hubble was grappled with the Shuttle Remote Manipulator System

(SRMS) at 17:13:56 UTC. Note that no pose solutions were produced from RNS cam-

era 3 data prior to grapple, so only the first two RNS cameras will be considered in

the following discussion.

The objective here is to construct improved HST position data through a com-

bination of RELBET and GNFIR, so the relative HST position from GNFIR must

be transformed from the corresponding RNS camera frame into the J2000.0 inertial

frame and added to the RELBET shuttle position. The notation introduced by [74]

is used, in which subscripts identify coordinate frames and are in the form ‘location-
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Table A.1.
Time spans of RNS camera data; pose solutions only available during
successful GNFIR tracking (May 13, 2009 UTC)

start end

RNS 1

data 16:17:57.309 17:07:31.355

pose soln.
16:21:34.646 16:49:03.673

17:03:30.686 17:03:31.352

RNS 2
data 16:50:36.683 17:09:22.702

pose soln.
16:50:48.684 16:51:00.017

17:06:35.700 17:08:07.035

RNS 3
data 17:49:05.902 17:55:46.572

pose soln. - - - -

origin.’ For instance, qba is the quaternion describing the rotation from frame a to

frame b. The coordinate frame abbreviations are shown in Table A.2.

Table A.2.
Coordinate frame subscripts

Abbreviation Reference Frame

b50 B1950.0 inertial frame

2k J2000.0

sts shuttle-fixed structure frame

orb orbiter-fixed body frame

hst HST-fixed structure frame

cm HST-fixed body frame

rns RNS camera frame

stk HST-fixed body frame in STK
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The HST relative position data available from GNFIR is the vector from the

corresponding RNS camera frame origin to the HST-fixed structure frame, ~rhstrns.

The starting frame is rns, and the transformations necessary to obtain the desired

vector (the HST center of mass expressed in the 2k frame) are listed below and

described in detail in the following sections:

1. Rotation into the shuttle structure frame (~rhstrns ! ~r0hstrns)

2. Translation of reference origin from RNS camera frame origin to orbiter body

frame origin, i.e., the shuttle center of mass (~r0hstrns ! ~r0hstorb)

3. Rotation into J2000.0 inertial frame (~r0hstorb ! ~r00hstorb)

4. Translation of reference origin from orbiter body frame origin to J2000.0 inertial

frame origin (~r00hstorb ! ~rhst2k)

5. Translation of reference point on HST from the HST structure frame origin to

the HST body frame origin, i.e., the HST center of mass (~rhst2k ! ~rcm2k)

A.2.1 Rotation Into Shuttle Structure Frame

The HST relative position data available from GNFIR is the vector from the

RNS camera frame origin to the HST-fixed structure frame, ~rhstrns. The HST-fixed

structure frame origin is just below the space telescope’s aft-bulkhead and is defined

with axes V1, V2 and V3 as shown in Figure A.2. First the HST relative position is

rotated so that it is expressed in the shuttle-fixed structure frame,

~r0hstrns = qstsrns � ~rhstrns. (A.1)

Again following the notation of [74], the prime on the rotated vector is used to indicate

it is expressed in an intermediate frame other than the one indicated by the second

subscript (e.g., here ~r0hstrns is expressed in the sts frame rather than the rns frame).
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Fig. A.2. Definition of HST-fixed structure frame [75]

A quaternion describes an arbitrary rotation as a rotation by � degrees about a

unit vector axis ~e =
h
e
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. Here the convention is followed where the fourth

component is a scalar, so
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. (A.2)

The � operator indicates a rotation by the preceding quaternion from the frame of

the quaternion’s right subscript into the frame of the quaternion’s left subscript. For
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a quaternion ~q =
h
q
1

q
2

q
3

q
4

iT
, this is implemented via a 3x3 rotation matrix,

R(q),

R(q) =
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so that

~r0hstrns = R(qstsrns)~rhstrns (A.5)

is equivalent to Equation (A.1).

The rotation matrices from the shuttle structure frame into the RNS camera

frames are given in [76]. The resulting quaternion for RNS camera 1 is

qstsrns1 =

2

6666664

0.666584362385609

0.740316935054896

0.0647693392335613

0.0583185749923974

3

7777775
, (A.6)

and the quaternion for RNS camera 2 is

qstsrns2 =

2

6666664

0.648140114229582

0.732589182849416

0.155716773064050

0.137766469069945

3

7777775
. (A.7)

A.2.2 Translation to Shuttle Center of Mass

The camera frame origin is

~rrns1sts =
h
31.115 0.9525 11.4935

iT
(A.8)
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for RNS camera 1 and

~rrns2sts =
h
31.115 1.143 11.4935

iT
(A.9)

for RNS camera 2 in meters with respect to the shuttle-fixed structure frame.

RELBET position data is referenced to the spacecraft center of mass for both

HST and the shuttle. The shuttle-fixed structure frame origin is 10.16 meters below

the center line of the payload bay and 5.99 meters in front of the nose [74]. The x-axis

points from the front of the shuttle toward the back, and the y-axis points out the

starboard side. The orbiter-fixed body frame is at the shuttle’s center of mass, and

is rotated 180� about the y-axis relative to the shuttle-fixed structure frame. Both

coordinate frames are shown in Figure A.3. Although the center of mass changed

slightly throughout HSM4 as fuel was consumed, the origin of the orbiter-fixed body

frame in the shuttle-fixed structure frame was initially

~rorbsts =
h
28.263 0.0058 9.472

iT
sts

(A.10)

in meters [74].

Therefore, the position of the HST-fixed structure frame relative to the shuttle

center of mass is

~r0hstorb = ~r0hstrns + ~rrnssts � ~rorbsts, (A.11)

where all of the vectors are expressed in the sts coordinate frame and ~r0hstrns is from

Equation (A.1).

A.2.3 Transformation From Shuttle Structure Frame to J2000.0

The RELBET shuttle attitude is given in the form of quaternions describing the

orientation of the orbiter-fixed body frame relative to the B1950.0 inertial reference

frame. Although RELBET documentation states that the shuttle attitude is given

as a “transformation, Aries mean-of-1950 to body, matrix” (i.e., B1950.0 to orbiter-

fixed body frame) [53], comments in RNS researcher’s MATLAB scripts indicate the
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Fig. A.3. Definition of orbiter-fixed body frame and shuttle-fixed
structure frame (from slides by C. Eugene Skelton II, published in [74])

RELBET quaternions actually describe the opposite - the orbiter-fixed body frame

to B1950.0 transformation. After reversing the transformation order (i.e., negating

the non-scalar terms) and transforming this to the J2000.0 frame according to [77],

the shuttle attitude from RELBET is ~qsts2k. Thus the position of the HST-fixed body

frame relative to the shuttle center of mass, expressed in J2000.0 inertial coordinates,

is

~r00hstorb = ~q
2ksts � ~r0hstorb, (A.12)

where the double prime is used to indicate the second intermediate frame, J2000.0,

~q
2ksts is the reversal of the transformed RELBET shuttle attitude, and ~r0hstorb is from

Equation (A.11).

Next, the location of the shuttle center of mass in the J2000.0 frame (obtained

by rotating the RELBET position data from B1950.0 to J2000.0) is added to the

HST relative position to obtain absolute position of the HST-fixed structure frame in

J2000.0:

~rhst2k = ~r00hstorb + ~rorb2k. (A.13)
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A.2.4 Translation of HST Reference to HST Center of Mass

Finally, in order to be consistent with the RELBET data, the HST position in

the J2000.0 coordinate frame must be referenced to the spacecraft’s center of mass.

The HST center of mass in the HST-fixed structure frame is

~rcmhst =
h
6.50 0.033 �0.175

iT
hst

(A.14)

in meters. Therefore the absolute position of HST in the J2000.0 inertial coordinate

frame from GNFIR is

~rcm2k = ~rhst2k + ~rcmhst. (A.15)

A.3 Spacecraft Attitude

Several adjustments are necessary in order to correctly simulate the attitude

of each spacecraft in STK. Although the PATH/RELBET shuttle attitude is valid

throughout the servicing mission [48], the provided quaternions actually specify the

rotation from the orbiter-fixed body frame to the B1950.0 inertial frame. Therefore,

this quaternion must be reversed.

HST is inertially-fixed, so its attitude remains constant throughout the shuttle

approach. The initial attitude for HST is

~qcm2k =

2

6666664

�0.0200219210460135

0.610672122288234

0.780859403727529

0.130143280072002

3

7777775
. (A.16)

However, the HST body frame in STK is di↵erent than the one specified in Figure

A.2. The STK frame is obtained through a 180� rotation about the y-axis. For the
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axis of rotation e =
h
0 1 0

iT
and the angle of rotation � = ⇡/2, the quaternion

specifying the rotation from the cm frame to the stk frame is

~qstkcm =
h
0 sin(⇡/4) 0 cos(⇡/4)

iT
(A.17)

=
h
0

p
2/2 0

p
2/2

iT
. (A.18)

Using the resulting rotation matrix, the correct HST attitude to enter into STK can

be calculated

~qstk2k =

p
2

2

2

6666664

1 0 �1 0

0 1 0 1

1 0 1 0

0 �1 0 1

3

7777775
~qcm2k =

2

6666664

�0.566308615673038

0.523835594616364

0.537993343385002

�0.339785202886818

3

7777775
. (A.19)

A.4 Additional Notes on Accuracy

Fig. A.4. HST position in shuttle structure frame according to REL-
BET and GNFIR from RNS cameras 1 and 2
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It is clear from Figure A.4 that the position estimates from each data source do

not perfectly align during times of overlap. The di↵erences between each of the HST

trajectory estimates are shown in Figure A.5 for these times. In the first case, the

deviation of RELBET from GNFIR in the x and y dimensions is within the 3-�

bound of RELBET, with an RMS error of less than 1.5 meters in both cases. Error

in the z (or range) dimension is significant, however. This 20 meter RELBET bias

was observed in [48] as well, and camera imagery and ULTOR results were used to

identify this as an error in RELBET. No further explanation is given, except to note

that the rendezvous radar was set to low power at 16:11:25 UTC, which “resulted in

increased noise in the radar angles” [48]. In producing a continuous trajectory, then,

the GNFIR solution from RNS camera 1 imagery will be used instead of RELBET

when it is available. The RELBET bias is particularly evident in the plot of inter-

vehicle range in Figure A.6.

Fig. A.5. Di↵erence between RELBET and GNFIR solutions in regions of overlap
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In the second region of overlap, both position estimates are within a meter of one

another for the first couple minutes. Even at this point, however, they do not meet the

RNS 3-� accuracy goals. Notice in Table A.1 that neither camera produced trackable

images from 16:51:00 to 17:03:30 UTC. In producing a continuous trajectory, however,

the results from RNS camera 2 will be used after 16:50:00 UTC, as the camera has a

working range of 6 to 40 meters [49]. RNS camera 1 is intended for distances greater

than 28 meters, and shuttle-HST range approaches this threshold during the overlap

region.

Fig. A.6. Range between shuttle and HST according to RELBET and GNFIR
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B. ANALYTIC APPROACH TO CALCULATING THE

HUBBLE BISTATIC RCS

B.1 Radar Cross Section

The RCS, �, is a term independent of the receiver and transmitter systems that

describes the target’s ability to re-radiate an incident power density. It is dependent

on target material, target absolute size, target size relative to �, incident and reflected

angles and the transmitter and receiver polarizations with respect to the target. The

quantity itself is theoretically the cross-sectional area of a perfectly reflecting sphere

that would produce the same strength reflection as the target object [78].

An accurate radar cross section of HST at L band frequencies is complicated.

In addition to the complicated electrical properties of the space telescope and its

moving solar panels, the spacecraft involved are rapidly changing position and orien-

tation with respect to one another. A full solution is only possible using numerical

electromagnetic simulation software.

A simplified analytic solution may be possible, however, using combinations of

simple shapes. First the RCS of a perfectly conducting sphere is examined. Due to

the symmetric nature of the sphere, this RCS can be generalized across all satellites

and geometries, so that the received power varies only with range terms. A perfectly

conducting cylinder is considered next. This is more accurate, in that it is highly

dependent on the orientation of the target relative to the transmitter and receiver.

Therefore, the cylinder RCS is considered here for the particular case of the satellite

transmitting pseudo-random noise code 9 (PRN 9).

From [79], RCS is defined in general to be

p
� = lim

R!1
2
p
⇡R

~Es · êr
Ei

eikR, (B.1)
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where the scattered electric field can be written

~Es = �jk⌘

Z

s

✓
~J � 1

k2

� · ~J� 
◆

ds (B.2)

for a perfect conductor, where  is the free-space Green’s function  = e�i~k·~Rfs/(4⇡ ~Rfs).

This is the sum of the surface integral over the scattering object surface for fields

caused by external sources and the volume integral over the scattering object for

fields caused by internal sources.

When the target dimensions are much larger than the incident field wavelength,

the the- ory of physical optics can be applied. Assuming the receiver is in the far field

with respect to the scatterer, the gradient of the Green’s function can be approxi-

mated � ⇡ ikŝ and there will be no surface field distribution component along

the scattering direction. Finally, by making the tangent plane approximation (i.e.

assigning surface fields values they would have if the body were smooth and flat at

ds) we arrive at the physical optics integral:

~Es = �i2kZ
0

H
0

 
0

Z

S

ŝ⇥ [ŝ⇥ (n̂⇥ hi)] e
ik~r·(ˆi�ŝ) ds, (B.3)

where S is the illuminated portion of the body [79].

Substituting this scattered electric field expression into the general radar cross

section in (B.1) to obtain the physical optics approximation for the square root of the

RCS that we must solve:

p
� = �i

kp
⇡

Z

S

n̂ · êr ⇥ ĥie
ik~r·(ˆi�ŝ) ds. (B.4)

B.1.1 Sphere Model

In a report on experiments at the University of Michigan Radiation Laboratory,

Crispin et al. present a Physical Optics approximation of the radar cross section of a

sphere

�(�)

⇡a2
= (2ka)2

����
Z

2⇡

0

sin(↵)cos(↵)J
0

(kasin(�)sin(↵))eika(1+cos(�)cose(↵)d↵

����
2

, (B.5)
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where a is the sphere radius, � is the angular separation of the incident and reflected

directions, k is the wave number and J
0

is the Bessel function of the first kind, 0th

order [64]. In the monostatic case � = 0, so this simplifies to

�(0)

⇡a2
= 1� sin(2ka)

ka
+

1� cos(2ka)

(ka)2
. (B.6)

The full-wave solution presented by Crispin et al. is proportional to the scattering

object volume, so a is chosen to generate a sphere of the same volume as HST. On

average, the bistatic radar cross section and monostatic radar cross section will vary

over comparable values [33], so the result from equation (B.6) can be used for the

bistatic RCS in determining an approximate loss in reflected signal power with respect

to the direct signal, if not for determining the actual loss at a particular configuration.

The wave number, k, is equal to !
c µr✏r, where µr and ✏r are the magnetic per-

meability and electric permittivity of the transmission medium, respectively. Both

are equal to 1.0 in this case, because transmission is through the vacuum of space.

The angular frequency, !, is 2⇡ ⇥ 1.57542 MHz for GPS and c is the speed of light

(299, 792, 458 m/s). Substituting the above values into equation (B.6), with a = 7.6

meters, produces a radar cross section of 181.97 m2.

B.1.2 Cylinder Model

For a cylinder, the general RCS in Equation (B.1) can be written

p
�cyl = �i

kap
⇡
IzI�e

ik~r0·(ˆi�ŝ) (B.7)

in cylindrical coordinates (i.e., ds = ad�dz, and ~r = ~r
0

+ zẑ+ an̂). The axial integral

for a cylinder with length l is

Iz =

Z l/2

�l/2

eikzẑ·(
ˆi�ŝ) dz = l

sin
h
(1/2)klẑ · (̂i� ŝ)

i

(1/2)klẑ · (̂i� ŝ)
, (B.8)

while the circumferential integral is

I� =

Z ⇡/2

�⇡/2
n̂ · êr ⇥ ĥie

ikan̂·(ˆi�ŝ) d�. (B.9)
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The second integral is not easily solved, however, because the limits of integration

are not symmetrically disposed with respect to the specular line along the side of the

cylinder [79]. The specular line is located such that a surface normal erected on it

bisects the projections of the incident and scattering angles on a plane perpendicular

to the cylinder axis. This means � is only from �⇡/2 to ⇡/2 in the case where the î,

ŝ plane is the same as the î, ẑ plane.

Note that the phase of the integrand varies sinusoidally, the real and imaginary

parts essentially canceling over time. The dominant contribution to this integral will

be when this variation stops. Using the method of secondary phase, this is found to

be at the specular line [79], so

I� ⇡ n̂
0

· êr ⇥ ĥie
ikan̂0·(ˆi�ŝ)

ha
�
n̂
0

· (̂i� ŝ)
i
1/2

. (B.10)

Substituting Iz and I� into the expression for
p
�cal leads to

p
�cyl = �il


2ka

n̂
0

· (̂i� ŝ)

�
1/2 sin[(1/2)klẑ · (̂i� ŝ)]

(1/2)klẑ · (̂i� ŝ)
(n̂

0

·êr⇥ĥi)e
ik~r0·(ˆi�ŝ)eikan̂·(

ˆi�ŝ)e�i⇡/4.

(B.11)

Taking the magnitude-squared, phase terms are eliminated to arrive at our working

formula for the bistatic RCS for a perfectly conducting cylinder,

�cyl =
l22ka

n̂
0

· (̂i� ŝ)

�����
sin((1/2)klẑ · (̂i� ŝ))

(1/2)klẑ · (̂i� ŝ)

�����

2

(n̂
0

· êr ⇥ ĥi)
2. (B.12)

The cylinder dimensions of length and radius are given by l and a respectively

(HST has a length of 13.2 meters and a radius of 2.1 meters), and ẑ is the unit vector

in the direction of the cylinder’s axis of symmetry. The unit vectors n̂
0

, î, and ŝ

indicate the direction of the cylinder surface normal at the point of reflection, the

incident ray and the scattered ray, while êr and ĥi are the reflected electric field and

incident magnetic field unit vectors.

Hypothesis

The transmitting GPS satellite, at approximately 20,000 km, is in the far field with

respect to HST. As a result, the infinite number of rays that make up the incident
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field are regarded as parallel. The receiver in the shuttle payload bay, however, is at

most two hundred meters from HST during the mission times of interest. Rays that

make up the scattered field are not treated as parallel, but rather as emanating from

a specular point on the hull of the space telescope.

The specular point is defined in a manner similar to the specular line described in

Section B.1.2, but for a receiver in the near field the specular reflection is limited to a

single point. This is the point on the ellipse formed by the intersection of the scatter

plane and HST (see Figure B.1) where the incident and scattered angles are equal.

The scatter plane is the plane formed by the line-of-sight (LOS) vectors from HST

to the transmitter and receiver. The following sections describe the computation of

n̂
0

, î, ŝ, êr and ĥi from the HST-to-shuttle and HST-to-GPS satellite LOS vectors

and any assumptions made in the process. The LOS vectors are obtained through a

Satellite Tool Kit (STK) simulation of HSM4 using mission ephemeris and attitude

data [53] [52].

The left-hand circularly polarized (LHCP) antenna in the shuttle payload bay

will experience an electric field due to many reflections from all parts of HST and

the antenna’s immediate environment in the shuttle. However, it is assumed that the

specular reflection from HST will be the dominant HST-reflected contributor to the

received electric field, and the most useful component for processing and determining

relative range information.

Ellipse

The strategy for finding the specular point is to compute the ellipse dimensions

that arise from the LOS vectors, then search along the ellipse for the point where the

incident and scattering angles are equal. The scatter plane is defined as perpendicular

to n̂p = îLOS ⇥ ŝLOS, where îLOS and ŝLOS are the unit line-of-sight vectors from HST

to the transmitter and receiver respectively. If ẑ is the cylinder axis, and n̂p is the

scatter plane normal, then the ellipse’s semi-minor axis is perpendicular to both:
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Fig. B.1. Intersection of scatter plane and HST (green arrow points
to PRN 9, light blue to the shuttle)

b̂ = ẑ ⇥ n̂p. The semi-major axis, in turn, is perpendicular to the scatter plane

normal and the semi-minor axis, â = n̂p ⇥ b̂.

The magnitudes of the ellipse axes can be determined by considering that their

projections onto the x-y plane (of the HST body frame) must equal the cylinder radius.

The inclination of â above the x-y plane is ↵ = cos�1(
p
â2
1

+ â2
2

2

), where â
1

and â
2

are the x and y components of the semi-major axis unit vector respectively. Denoting

the cylinder radius as r
1

, the magnitude of the semi-major axis is ||~a|| = r
1

/ cos↵.

The semi-major axis, in the HST body frame, is

~a =
r
1

cos↵
(n̂p ⇥ b̂). (B.13)

The semi-minor axis is found in a similar manner, for inclination � above the x-y

plane, to be

~b =
r
1

cos �
(ẑ ⇥ n̂p). (B.14)

The search for a specular point proceeds in the ellipse reference frame, where the

x axis is the semi-major axis, the y axis the semi-minor axis, and the z axis np.

Denoting the x, y, and z unit vectors as â
1

, â
2

and â
3

for the HST body frame, and
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b̂
1

, b̂
2

, and b̂
3

for the ellipse frame, the transformation from a vector [x, y, z] in the

ellipse frame to a vector [x0, y0, z0] in the HST body frame is given by the direction

cosine matrix R so that
2

6664

x0

y0

z0

3

7775
=

2

6664

â
1

· b̂
1

â
1

· b̂
2

â
1

· b̂
3

â
2

· b̂
1

â
2

· b̂
2

â
2

· b̂
3

â
3

· b̂
1

â
3

· b̂
2

â
3

· b̂
3

3

7775

2

6664

x

y

z

3

7775
= R

2

6664

x

y

z

3

7775
. (B.15)

The coordinate frame is indicated by a preceding superscript, so for example, a

vector ~v defined in the ellipse frame and transformed into the HST body frame is

written a~v = Rb~v.

Having defined the ellipse axes, the LOS vectors can be described in the ellipse

frame. It is convenient to define ✓
1

as the angle between b~iLOS and the semi-major

axis, and ✓
2

as the angle between b~sLOS and the semi-major axis. A search is then

performed along the angle between b~iLOS and b~sLOS (the bistatic angle � in radar

literature [34]), parameterized by the angle ✓p between the search point p and the

semi-major axis. An example is shown in Figure B.2.

Fig. B.2. Vectors in the ellipse frame involved in the specular point search
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Incident and Scatter Unit Vectors

The incident and scatter unit vectors, bî and bŝ, are found at each search point.

Because the transmitter is in the far field, incident rays are all parallel. Thus, at each

point,

bî =b îLOS. (B.16)

The receiver is not in the far field, however, so bŝ changes slightly at each p to point

at the receive antenna’s geometric center.

Fig. B.3. Calculation of scatter ray unit vector ŝ at candidate specular point p

The orientation of bŝ is determined using the law of cosines and the geometry

shown in Figure B.3. Here, point s is the receiver on the space shuttle, point p

is the candidate specular point, and point o is the origin of the ellipse frame (the

cylinder z axis). The objective is to find bŝ = ~rps/||~rps|| = r̂ps in the ellipse frame.

The convention of indicating normalized vectors with a hat is used throughout this
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report. The vector r̂ps can be calculated by first defining a coordinate frame at point

p oriented so that ĉ
1

= r̂op:

ĉ
1

= cos(✓p)b̂1 + sin(✓p)b̂2

ĉ
2

= � sin(✓p)b̂1 + cos(✓p)b̂2

ĉ
3

= b̂
3

.

After finding r̂ps in this frame it can be transformed into the ellipse frame.

Using the notation in Figure B.3, it is first determined that ⌦ = cos�1(r̂op · r̂os).

From the law of cosines,

||~rps|| =
p

||~rop||2 + ||~ros||2 � 2||~rop||||~ros|| cos(⌦). (B.17)

Here, ||~ros|| is simply the HST-shuttle range from the STK simulation. To find ||~rop||,

consider the equation of an ellipse with semi-major and semi-minor axes a and b

centered at the origin of an x-y cartesian coordinate system,

x2

a2
+

y2

b2
= 1. (B.18)

A line extending radially from the ellipse center, parameterized by its angle, ✓, with

the x axis, will have the equation

y = tan(✓)x. (B.19)

Substituting this into Equation (B.18), the intersection of the line and ellipse is

[x⇤, y⇤]T =

"
abp

b2 + a2 + tan2(✓)
,

ab tan(✓)p
b2 + a2 tan2(✓)

#T
. (B.20)

Thus, the magnitude of ~rop is the magnitude of the vector from the origin to this

point of intersection, with the previously defined angle ✓p substituted for ✓:

||~rop|| = ab

cos(✓)
p
b2 + a2 tan2(✓)

. (B.21)

The axes a and b are the magnitudes of ~a and ~b in Equations (B.13) and (B.14).
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From the law of cosines,

� = cos�1

✓
||~rps||2 + ||~rop||2 � ||~ros||2

2||~rps||||~rop||

◆
. (B.22)

Finally, using the relationship between the coordinate frame rotating with ✓p and the

ellipse frame,

bŝ = r̂ps =

2

6664

� cos(�) cos(✓p)� sin(�) sin(✓p)

� cos(�) sin(✓p) + sin(�) cos(✓p)

0

3

7775
. (B.23)

Incident and Scatter Angles

The specular point is that point on the ellipse where the incident and scatter

angles are equal. These are the angles the incident and scatter unit vectors make

with a line tangent to the ellipse at the reflecting point. To find the tangent line at

a point, consider again the equation for the ellipse centered at zero with semi-major

axis a and semi-minor axis b,
x2

a2
+

y2

b2
= 1. (B.24)

From [80], the line
xx

0

a2
+

yy
0

b2
= 1 (B.25)

is tangent to the ellipse at [x
0

, y
0

]T . It is evident that the line intersects the ellipse

at this point, as substituting [x
0

, y
0

]T into Equation (B.25) satisfies Equation (B.24).

Furthermore, it can be shown that this is the only point of intersection. Rearranging

Equation (B.25) for y,

y =
(1� xx

0

/a2)b2

y
0

.

Substituting this into the formula for the ellipse,

x2

a2
+

(1� xx
0

/a2)b4

b2y2
0

= 1 ! x2a2 +
b2

y2
0

(a4 � 2xx
0

a2 + x2x2

0

) = a4

! (a2y2
0

+ b2x2

0

)x2 + (�2b2x
0

a2)x+ (b2a4 � y2
0

a4) = 0.
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In finding the roots to this equation, the discriminant is

d = 4b4x2

0

a4 � 4(a2y2
0

+ b2x2

0

)(b2a4 � y2
0

a4),

but from Equation (B.24) a2y2
0

+ b2x2

0

= a2b2 and b2a4 � y2
0

a4 = a2b2x2

0

, leading to

d = 4b4x2

0

a4 � 4b4x2

0

a4 = 0.

Thus, only one root exists, so only one point is common to the ellipse and line.

In order to determine the vector expression for the tangent line, consider that the

line
xx

0

a2
+

yy
0

b2
= 0

is parallel to that in Equation (B.25). By inspection, the vector [x
0

/a2, y
0

/b2]T is

perpendicular to this line (its inner product with [x, y]T is zero). Note that this

vector is the cylinder unit normal, n̂
0

, used in Equation (B.12). The vector normal

to n̂
0

, and thus the vector expression of the tangent line itself, is

~T =


�y

0

b2
,
x
0

a2

�T
. (B.26)

The incident and scatter angles, ✓i and ✓s, are therefore the angles between î and ŝ

and the tangent line ~T . Some care must be taken to ensure that the angle measured is

the smallest angle referenced from the outer side of the tangent line (the side opposite

the ellipse center).

Ideally, the specular point search is stopped when ✓i = ✓s. The search algorithm

is similar to a golden section search, except that step sizes are not chosen according

to golden sections: The search begins at a point halfway between b~iLOS and b~sLOS,

where ✓i[0] and ✓s[0] are calculated. The next test point is halfway between the initial

point and the search limit in the direction of the smaller angle. For instance, if at

p[0], ✓i < ✓s, then p[1] will be at the point on the ellipse halfway between ~rop[0] and

the vector b~iLOS. The new search limits will be b~iLOS and ~rop[0]. The following test

point will be halfway between ~rop[1] and the new search limit in the direction of the

smallest angle. This continues until ✓s[k+1]�✓s[k] < � for some threshold �, and the
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point p at this iteration is the specular point used in calculating �cyl. This algorithm

is not optimal, but greatly reduces the number of steps necessary to achieve a precise

solution over an exhaustive search. For � = 0.001, about ten steps are required.

Electric and Magnetic Field Unit Vectors

The last components needed for calculating �cal via Equation (B.12) are the re-

flected electric field and incident magnetic field unit vectors, êr and ĥi. The plane

wave solution at point ~r and time t for an electromagnetic wave traveling in the z

direction is

~E(~r, t) =

2

6664

E0

x cos(kz � !t+ ↵x)

E0

y cos(kz � !t+ ↵y)

0

3

7775
(B.27)

where E0

x and E0

y are the magnitudes of the x and y electric field components, re-

spectively, and ↵x and ↵y indicate the phases of these field components at the initial

time reference t = 0. The variable z is the spatial position of the plane wave along

the direction of propagation. The electric field can equivalently be written

~E(~r, t) = | ~E|Re{Q | i ei(kz�!t)}. (B.28)

The magnitude of the field is given by | ~E| and is related to E0

x and E0

y according to

| ~E|2 ⌘ (E0

x)
2 + (E0

y)
2. The columns of matrix Q are the orthogonal vectors spanning

the x-y plane and | i is the Jones vector describing the field polarization.

The reference time t = 0 is arbitrary, so this can be selected so that the spatial

displacement relative to the coordinate system origin is zero, i.e., z = 0. Considering

the field in a coordinate frame such that the x-y plane is perpendicular to the direction

of propagation,

Q =

2

6664

1 0

0 1

0 0

3

7775
(B.29)
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and so

~E(t) = | ~E|Re{|�i e�i!t}. (B.30)

The direct signal from a GPS signal is right-hand circularly polarized (RHCP). Fol-

lowing the convention adopted by the Institute of Electrical and Electronic Engineers

(IEEE) [81], the Jones vector for RHCP is

|�iRHCP =
1p
2

2

4 1

i

3

5 . (B.31)

A Jones vector represents the relative amplitude and phase of ~E in the x and y

directions. It is important to note that conventions di↵er, however, and the convention

used here is the opposite of that often used in optics. When the GPS signal reflects

o↵ the conducting surface of HST, the polarity is reversed. The LHCP Jones vector

is

|�iLHCP =
1p
2

2

4 1

�i

3

5 . (B.32)

Thus, for a signal traveling in the z direction, the RHCP and LHCP unit vectors can

be written

~ERHCP (t) =

2

4 cos(!t)

sin(!t)

3

5 (B.33)

~ELHCP (t) =

2

4 cos(!t)

� sin(!t)

3

5 , (B.34)

as in [82].

Both the electric field and magnetic field are oriented perpendicular to the di-

rection of propagation and are orthogonal to one another. Lacking any further con-

straints beyond these and Equation (B.33), it is assumed that the ~E and ~H field

vectors are oriented as shown in Figure B.4.

The incident and scatter directions of propagation have been determined in the

ellipse frame according to Equations (B.16) and (B.23). Consider an incident signal

coordinate frame, d, at the point of specular reflection such that the z axis points
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Fig. B.4. Orientation of electric and magnetic field vectors for a signal
propagating out of the page

along the direction of incident signal propagation, i.e., d̂
3

= �î. In terms of the ellipse

frame, this incident signal coordinate frame is:

d̂
1

= sin(✓
1

)b̂
1

� cos(✓
1

)b̂
2

d̂
2

= b̂
3

d̂
3

= � cos(✓
1

)b̂
1

� sin(✓
1

)b̂
2

,

where ✓
1

, as previously defined, is the angle between b~iLOS and the ellipse’s semi-major

axis. In this frame, the RHCP electric field follows simply from Equation (B.33):

d ~Ei(t) = | ~E|
⇣
cos(!t)d̂

1

+ sin(!t)d̂
2

⌘
.

From the ~E and ~H field relationship in Figure B.4,

d ~Hi(t) = | ~H|
⇣
� sin(!t)d̂

1

+ cos(!t)d̂
2

⌘
.

This leads to the incident RHCP magnetic field vector in the ellipse frame,

b ~Hi(t) = | ~H|
⇣
� sin(!t) sin(✓

1

)b̂
1

+ sin(!t) cos(✓
1

)b̂
2

+ cos(!t)b̂
3

⌘
, (B.35)

and the desired ĥi can be calculated

ĥi = R
b ~H(t)

|b ~H(t)|
. (B.36)
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In a similar manner, a scatter signal coordinate frame, f , can be defined such that

the z axis is in the direction of the scatter unit vector ŝ:

f̂
1

= � sin(✓
2

)b̂
1

+ cos(✓
2

)b̂
2

f̂
2

= b̂
3

f̂
3

= cos(✓
2

)b̂
1

+ sin(✓
2

)b̂
2

.

Here ✓
2

, as previously defined, is the angle between b~sLOS and the ellipse’s semi-major

axis. In this frame, the LHCP electric field follows simply from Equation (B.33),

f ~Es(t) = | ~E|
⇣
cos(!t)f̂

1

� sin(!t)f̂
2

⌘
,

and in the ellipse frame

b ~Es(t) = | ~E|
⇣
� cos(!t) sin(✓

2

)b̂
1

+ cos(!t) cos(✓
2

)b̂
2

� sin(!t)b̂
3

⌘
. (B.37)

The desired êr can be calculated

êr = R
b ~Es(t)

|b ~Es(t)|
. (B.38)

Cylinder Approximation Results

The time-varying terms described above, n̂
0

, î, ŝ, êr and ĥi, all follow from the

transmitter and receiver LOS vectors in the HST body frame and the HST-shuttle

and HST-GPS satellite ranges from the STK simulation of HSM4. These input data

are generated at one second intervals from 16:12:09 to 16:54:14 UTC on the day of

rendezvous and docking, May 13, 2009. At each second, a specular point search

is performed to supply the time-varying terms for the bistatic RCS calculation via

Equation (B.12). The RCS computed for PRN 9 geometry, in decibel square meters

versus GPS time since the start of the day, is shown in Figure B.5.

The RCS calculated from the STK simulation and cylinder approximation follows

an increasing trend from 16:12:09 up to a peak at 16:46:54. This peak occurs at the

near-singularity caused by the minimum of the numerator 1/(2klẑ · (̂i � ŝ)). The
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overall increase is reasonable, as HST is rotating into a position where it is viewed

end-on from the shuttle payload bay. The flat surface of the space telescope’s aft

bulkhead should have a strong specular reflection. The STK simulation must be

studied closer, however, to determine whether the sharp roll-o↵ has a reasonable

physical explanation. Note that the visibility of the specular point from the payload

bay is not considered here - masking due to the bay doors and floor must be applied

when calculating the expected received power.

Fig. B.5. Bistatic radar cross section of HST approximated as a cylin-
der for PRN 9 geometry

B.2 Relative Signal to Noise Ratio

The ratio of direct signal power to reflected signal power is a measure of how much

stronger the direct signal is than the reflected signal. This is essentially the power loss

of the reflected signal relative to the direct signal, and is referred to here as the LHCP’s
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relative signal-to-noise ratio (SNR). Relative SNR eliminates receiver parameters that

are common to both the direct and reflected signal power calculations:

PR,direct

PR,reflected
=

4⇡R2

TR
2

R

R2

D�
. (B.39)

The relative SNR predicted with the STK simulation and RCS models for HST pro-

vides an indication of the feasibility of tracking Hubble-reflected signals for relative

navigation. The power loss experienced by a reflected signal must be small enough

that when it is subtracted from a strong direct signal power (e.g. 50 dB-Hz) the

received signal power still exceeds a receiver’s tracking threshold. If the receiver

threshold is taken to be 25 dB-Hz, as suggested in [9], the relative SNR should be ap-

proximately 25 dB-Hz, though some post-processing techniques can be used to track

weaker signals [4]. Relative SNR is also used to distinguish Hubble-reflected signals

from those reflected by the environment near the receiver [62].

Fig. B.6. Relative SNR versus HST-shuttle range for sphere and cylin-
der RCS models
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Figure B.6 shows the relative SNR for the cylinder and sphere RCS models as a

function of HST-shuttle range. This is computed using the PRN 9 geometry. Inter-

estingly, the two models result in similar trends over the changing HST-shuttle range.

The deviation of the cylinder approximation from the smooth sphere approximation

is the result of including the e↵ects of HST attitude. This is presumed to be more

accurate (not an erroneous deviation from a theoretical curve, as it may appear at

first glance).
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