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ABSTRACT 

Aghazadeh Mahdieh Ph.D., Purdue University, May 2016. Enhancing Bioethanol 
Fermentation Through Removal of Acetic Acid Using Liquid-Liquid Extraction . Major 
Professor: Abigail S. Engelberth. 
 

 

The concern for the ever growing human population as well as the depletion of fossil fuel 

resources and their impact on global warming have long been motivations for the 

researchers to investigate means for sustainable producing carbon-neutral energy.  

Second-generation biofuel refers to liquid fuels that are produced from non-food 

resources and reduce the total greenhouse gas emission by at least 60 %. 

Acetic acid has been shown to be one of the most ubiquitous fermentation inhibitors in a 

bioethanol production facility which slows down the bioethanol production and reduces 

its yield through inhibition of the ethanol producing microorganisms. 

The use of liquid-liquid extraction has shown to be a viable tool to remove the acetic acid 

from corn stover hydrolysate.  Extraction coupled with a solvent recovery unit enhances 

the bioethanol production through improving the product yield as well as its production 

rate. 

Economic assessment of the proposed system showed that incorporating the extraction 

unit within an industrial scale corn stover bioethanol production plant is a feasible option 

which can drop the MESP by up to $0.35/gal. 
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CHAPTER 1. INTRODUCTION 

1.1 Research Motivations 

1.1.1 Bioethanol 

Growing population and fast pace of industrialization are strong contributors to the 

quickly diminishing fossil fuel resources.  Limited oil and gas reserves, combined with 

environmental concerns, and more dramatic consequences of global warming have 

pushed many researchers to investigate sustainable and renewable resources for energy.  

Second generation biofuels, i.e. bioethanol produced from lignocellulosic biomass 

through biochemical or thermochemical routes, can reduce the greenhouse gas emission 

by at least 60 % (M. Ladisch, Ximenes, Engelberth, & Mosier, 2014).  The biochemical 

conversion of non-food cellulosic biomass to bioethanol is a multi-step process (M. R. 

Ladisch, Mosier, Kim, Ximenes, & Hogsett, 2010).  The biochemical option for 

bioethanol formation involves the following:  

1.Preparation of the biomass: biomass is collected post-harvest, stored properly to be 

used continuously over the year.  Often in this step the size of biomass is reduced through 

grinding and milling and then it is dried.   

2.Pretreatment: the crystallinity of the feedstock is attacked to make the cellulose and 

hemicellulose more accessible.  High pressure and temperature, along with acid or base 

in some methods, are the necessary elements.
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3.Enzymatic hydrolysis: it is stated that this is the most cost intensive stage in the 

process due to high enzyme cost.  Six and five carbon sugars are being formed from the 

hydrolysis of cellulose and hemicellulose. 

4.Fermentation:  microorganisms are added to the hydrolysate and consume the 

sugars in their metabolism; ethanol is a byproduct of this mechanism.   

5.Ethanol separation and recovery: common practice is to use distillation to recover 

the ethanol that has been produced during the fermentation. 

1.1.2 Fermentation inhibitors 

In second-generation bioethanol production, pretreatment is necessary to enhance the 

accessibility of cellulose and hemicellulose for enzymes.  Fermentation inhibitors are 

compounds that are inherently present in the after pretreatment lignocellulose biomass 

(Klinke, Thomsen, & Ahring, 2004; Maiorella, Blanch, & Wilke, 1983b; Palmqvist & 

Hahn-Hagerdal, 2000).  Examples of the inhibitors include weak acids - like acetic, 

formic, and levulinic- furans and phenols (Almeida et al., 2007).  Figure 1-1 summarizes 

the source for the major inhibitory compounds. 

The inhibition effect of acetic acid on fermentation has been widely studied; biomass 

growth, ethanol production, and the conversion efficiency in presence of acetic acid are 

the most scrutinized parameters.  Casey et al. (2010) demonstrated that the yeast growth, 

substrate consumption, and ethanol volumetric productivity decrease in presence of acetic 

acid. 
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Figure  1-1: Plant component sources  and their resulting fermentation inhibitors. 

  

Acetic acid, 5-hydroxymethyl furfural (HMF), furfural, and formic acid are among 

the most well studied of these inhibitors.  Inhibition slows down the fermentation and 

reduces the production of ethanol (Almeida et al., 2007; Delgenes, Moletta, & Navarro, 

1996; Jönsson, 2013; Phowchinda, Deliadupuy, & Strehaiano, 1995).  Fermentation in an 

environment free of inhibitors will progress significantly faster with higher final ethanol 

yield (Kim, Kreke, Hendrickson, Parenti, & Ladisch, 2013, Nilvebrant, Reimann, Larsson, 

& Jonsson, 2001).  

Concentrations of inhibitory compounds in the corn stover hydrolysate depend on the 

type of the plant and the pretreatment process.  Öhgren et al (2006) reported 1.6 g/L 

acetic acid, 0.06 g/L HMF, 1.1 g/L furfural, 1.4 g/L formic acid for steam pretreated corn 

stover; Mancilha et al. (2003) 1.06 g/L of acetic acid, 0.0034 g/L HMF, and 2.2 g/L 

furfural from dilute acid pretreated corn stover; while Zhao et al. (2013) stated that the 
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concentrations of acetic acid, HMF, and furfural are 4.7 g/l, 1.2 g/L, and 1.1 g/L 

respectively with dry dilute acid pretreatment.  Much higher concentration of acetic acid 

has been reported when the solid loading in the pretreatments are higher; in Humbird et 

al. work the acetic acid concentration reached 16.1 g/L at 30 % solid loading dilute acid 

pretreatment (2010).  

Quantitative studies about the toxicity effect of the inhibitors on different strains of 

yeast are extensive.  The inhibition effect can be divided in four major categories:  

1- Ethanol yield 

2- Ethanol production rate 

3- Growth rate 

4- Substrate consumption. 

 Figure 1-2 summarizes data from a review study on furans inhibition effect on 

different strains of S. cerevisiae (2007).  Table 1-1 includes more examples of the effect 

of some fermentation inhibitors on different strains of S. cerevisiae. 
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Figure  1-2: The effect of HMF and furfural concentration on the yeast growth, ethanol 
production rate, and yield (data obtained from Almeida et al. (2007)) 

 

It is evident from Figure 1-2 that the inhibition effect of furfural and HMF results in 

the inability of the yeast to reproduce at concentrations above 5 g/L and 15 g/L, 

respectively.  Presence of furfural in the fermentation medium drops the ethanol 

production rate up to 90 %, whereas HMF drops it to almost 50%.  However, HMF does 

not cause a substantial difference in the yield of the fermentation. 
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Table  1-1: Inhibition effect on S. cerevisiae in the fermentation of bioethanol 

Inhibitor Amount The strain The effect Reference 

Acetic acid 15 g/L 424A (LNH-ST) 67% drop in ethanol volumetric 
production rate 

(Casey et 
al., 2010) 

Acetic acid 15 g/L 424A (LNH-ST) ~ 20 % drop in cell growth 
(Casey et 
al., 2010) 

Formic acid 2 g/L ATCC 4226 67 % drop in cell concentration 

(Maiorella, 
Blanch, & 

Wilke, 
1983a) 

HMF 4 g/L Y-1528 45 % drop in ethanol 
production rate 

(Keating, 
Panganiban, 

& 
Mansfield, 

2006) 

Furfural 42 mM baker’s yeast 69 % drop in ethanol 
production rate 

(Palmqvist, 
Almeida, & 

Hahn-
Haegerdal, 

1999) 

Syringaldehyde 1.5 g/L CBS 1200 67 % drop in ethanol 
production rate 

(Delgenes 
et al., 1996) 

 

Inhibition of acetic acid largely depends on the pH of the medium.  Undissociated 

acetic acid can enter through the cell wall and dissociates due to higher pH inside the cell.  

The plasma ATPase hydrolyzes the ATP to pump the proton outside the cell leaving less 

ATP for the cell reproduction (Casey et al., 2013).  Formic acid has higher level of 

toxicity because of a different inhibition mechanism due to its smaller size.  Narendranath 

et al. (2001) reinstated this mechanism for acetic acid and showed that acetic acid starts 

to change the intracellular pH at concentration 0.25 % w/v and above.  Other studies are 

available on the pH and acetic acid concentration effect on S. cerevisiae.  The findings of 
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Matsushika et al. (2012) demonstrated negligible inhibition of acetic acid at pH 6 but 

significant inhibition (especially on xylose consumption) at lower pH.  Almost all of the 

studies in this area have mentioned synergistic effects from these inhibitors, especially 

between the furan compounds (Matsushika & Sawayama, 2012). 

1.2 Research Objectives 

1.2.1 Solvent selection for the liquid-liquid extraction separation 

Solvent selection study starts with obtaining ternary phase diagrams of water, acetic 

acid, and the organic solvent (Sorensen, 1980).  The ternary phase diagrams determine 

whether or not the system forms a biphasic regime and that acetic acid has high solubility 

in the organic solvent.  The solvents that have these properties will be used to simulate 

the liquid-liquid extraction unit in Aspen Plus™ software.  Based on the extraction yield, 

consumption rate of the solvent, the miscibility with aqueous solutions, and their non-

attraction to the sugars, the original list of the fifty organic solvents will be narrowed 

down to a number of solvents that can be tested in laboratory experiments.  Split fraction 

of acetic acid in organic phase should also be measured in both model solutions with 

glucose and xylose, and liquid part of pretreated corn stover to validate the simulation 

results.  The performances of the selected solvents are to be tested to extract the other 

known inhibitors using Aspen Plus™ simulation.  

1.2.2 Fermentation performance after applying liquid-liquid extraction 

Dilute acid pretreatment at 140 °C will be used to prepare the corn stover and the 

liquid part will be filtered for the extraction.  Liquid-liquid extraction experiments will be 
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conducted with selected solvents to analyze the extraction efficiency of the acetic acid 

removed from the biomass hydrolysate.  Further fermentation experiment will be carried 

out with the collected lower phase and USDA NRRL Y-1546 (a strain of S. cerevisiae) as 

the yeast to quantify the impact of liquid-liquid extraction on different fermentation 

parameters.  The interactive inhibition of the solvent and acetic acid needs to be studied 

in order to specify the level of the acetic acid and solvent that are tolerable to the yeast.  

Solvent recovery is an essential step to make LLE economically feasible and also reduce 

the solvent content below the inhibition threshold.  In this part of the study the impact of 

removing the acetic acid with means of liquid-liquid extraction on the bioethanol 

production performance during the fermentation will be assessed. 

1.2.3 Techno-economic analysis of the liquid-liquid extraction system 

Incorporating extraction column and the solvent recovery step in a biorefinery will 

change the dynamic of the plan.  The size of the extraction column can be estimated 

using the flowrate of the feed and solvent streams.  The characteristics of the extract 

stream exiting the column will determine the size of the flash drum to evaporate the 

solvent.  The size, the material of the equipment, and the type are the key parameters to 

estimate their purchasing and installing costs.  The manufacturing cost of the system 

mainly includes the cost of the solvent which is a strong function of solvent recyclability.  

On the other hand adapting this system increases the revenue of the biorefinery by 

increasing the ethanol production rate and ethanol yield. 
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CHAPTER 2. REVIEW OF FERMENTATION INHIBITOR REMOVAL 

TECHNIQUES 

2.1 Inhibition mechanism of acetic acid 

Many approaches have been taken to manage acetic acid inhibition on S. 

cerevisiae.  The effect of acetic acid on S. cerevisiae is a strong function of the pH of 

the fermentation medium (Graves, Narendranath, Dawson, & Power, 2006; Pampulha 

& Loureirodias, 1989; Thomas, Hynes, & Ingledew, 2002).  The dependence on pH 

suggests that it is the undissociated form of acetic acid that diffuses through the 

plasma membrane of the cell and causes the chemical disturbance (Casey et al., 2010).  

Acetic acid reduces cell growth rate thereby reducing the substrate – glucose and 

xylose –consumption rate which result in decrease of the production of ethanol 

(Casey et al., 2010; Graves et al., 2006; Thomas et al., 2002). 

The mechanism of acetic acid inhibition has been widely published and there is a 

consensus that the diffusion of undissociated acetic acid into the cell lowers the 

intracellular pH  (Ullah et al., 2012, Zhao et al., 2008, Narenranath et al., 2001, 

Maiorella et al. ,1983, Pampulha et al. ,1989)
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Higher proton content inside the cell facilitates the hydrolysis of ATP which 

results in lower amount of ATP for the cell reproduction (Carmelo, Santos, & Sá-

Correia, 1997). 

To overcome the effects of the fermentation inhibitors there are two main 

strategies: directed evolution and the removal of inhibitors.  Directed evolution occurs 

through adaptation or gene modification to increase the tolerance of the 

microorganisms to harsher environment (Almeida et al., 2007; Wright et al., 2011; 

Zheng et al., 2011). 

The directed evolution of different strains of S. cerevisiae has been well 

researched.  The programmed cell deaths of S. cerevisiae caused by acetic acid can be 

prevented by prior adaptation of the cells to acetic acid (Giannattasio, Guaragnella, 

Corte-Real, Passarella, & Marra, 2005).  Short-term adaptation of S. cerevisiae at pH 

optimal for cell growth can improve the fermentation at lower pH and presence of 6 

g/L acetic acid (Sànchez i Nogué, 2013).  This adaptation was done by pre-treating 

the cells at low pH acidic medium for 200 minutes increased the cell viability up to 

180 % and improved the ethanol production.  In an attempt to specify the genes that 

cause the weak acid inhibition, Fernandes et al. (2005) identified the transcription 

factor in S. cerevisiae that contributes to the yeast adaptability to short chain 

carboxylic acids.  Overexpression of HAA1 gene in S. cerevisiae enhanced the cell 

growth under acetic acid environment specially at medium level of the acid (Tanaka, 

2012). 
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Most of the published research has been strain specific.  To perform gene 

modification, the inhibition mechanism and the “-omics” analysis have to be 

thoroughly understood.  Conversely, removing inhibitors can have the added benefit 

of producing a value-added bio-product along with the production of bioethanol from 

the biorefinery. 

2.2 Separation methods to remove the inhibitors 

2.2.1 Membrane Separation 

Membrane separations use a selective permeable medium to recover a product of 

interest from a mixture.  In general, membrane separations are controlled by some 

type of size exclusion as depicted in Figure 2-1.  Ion exchange, vacuum, and 

evaporation are also implemented in some systems to enhance the driving force 

(Mulder, 1996).  

 

Figure  2-1: Schematic membrane separation system.  The porous and selective 
membrane allows certain compounds to diffuse to the permeate side. 
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The selection of the commercial or synthetic membrane is a vital design factor to 

determine the feasibility of this technique to remove the acetic acid from biomass 

hydrolysate. 

Hollow fiber membrane combined with extractive effect of a mixture of tertiary 

amines and octanol, as diluent, was used to remove the acetic acid from the liquid 

hydrolysate collected from dilute acid pretreatment of corn stover.  Although the 

membrane extraction removed the sulfuric acid and some other phenolic inhibitors, 

the extracted acetic acid could only reach 60 % (Grzenia, Schell, & Wickramasinghe, 

2008). 

Successful research has been performed with nano-filtration membrane to remove 

acetic acid from rice straw hydrolysate prior to fermentation.  This method used a 

membrane with 150-300 Da cut-off to allow acetic acid to permeate through while 

prohibiting the passage of sugars (Weng et al., 2009).  This separation resulted in up 

to 95% of acetic acid content in the retentate side from xylose solution, at pH 9 and 

pressure of 24.5 bars, but a build-up of sugars decrease the amount of acetic acid that 

passes through and eventually lead to membrane fouling.  Later a nano-filtration 

membrane was also used on wood-based hydrolysate to remove acetic acid, methanol, 

furfural, and HMF from sugars (Weng et al., 2010).  The results indicated that 

repeated dilution and concentration were necessary to wash the inhibitors from the 

sugars. 

Other membrane separation methods have been tested.  Pervaporation, which is a 

technique that combines membrane permeation with an evaporator apparatus, with 
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grafted PVA membrane has a clear trade-off between separation factor and the 

permeation rate; the former increases with the thickness of the membrane while the 

latter decreases at higher membrane thickness (Al-ghezawi, Sanli, & Isiklan, 2006).  

The separation factor ranged between 3.64 to 14.6 for 10-90 wt. % of acetic acid 

content in the feed stream.  This range is much higher than the common acetic acid 

content in the liquid biomass hydrolysate – 1 to 2 wt. % – (Almeida et al., 2007). 

Grafted co-polymer membrane composed of polyvinyl alcohol and 

polyacrylamide in a pervaporation system were examined to find an optimal acetic 

acid separation with respect to temperature and separation factor of 23was achievable 

(T. A. Aminabhavi & Naik, 2002). 

Vacuum membrane distillation with hollow fiber membrane was verified for the 

separation of acetic acid and furfural from water solutions at elevated temperatures 

(Chen et al., 2013).  Acetic acid removal percentage reached about 30 % at 70 °C, and 

was much lower than furfural. 

A pervaporation system was modified to avoid the contact of the feed stream to 

the membrane by placing the evaporation step prior to the permeation (evapomeation) 

to gain better results of up to 52 separation factor (Isiklan & Sanli, 2005).  Although 

the acetic acid concentration range was above the average acetic acid content in 

biomass hydrolysate, this synthetic membrane separation work demonstrated higher 

separation factor at higher acetic acid concentration. 

Membrane separation has the advantage of minimal contamination to the feed 

stream.  Even though there have been promising results for fermentation inhibitors 

removal using various membrane separation methods, high purchasing cost of 
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commercial membranes and frequent fouling during these processes are the major 

drawbacks of adopting this method at the industrial scale.  As many studies have 

shown, the flux and selectivity have opposite trends with respect to the membrane 

thickness; therefore to get the desired selectivity considerable pressure drop is 

inevitable in these types of processes. 

2.2.2 Adsorption studies 

Adsorption is one the most highly selective separation processes (Seader, Henley, 

& Roper, 1998).  Adsorption operates by flowing the feed, mixed in a mobile phase, 

over an adsorbent (Crittenden, 1998).  The adsorbent has various affinities to the 

different compounds present in the feed stream which result in varying retention 

times.  As a result, at the outflow stream these compounds can be detected and 

collected at different times corresponding to their retention times on the adsorbent.  In 

Figure 2-2 the green compound has the higher affinity and therefore higher retention 

time while the yellow compound has the lower affinity and lower retention time on 

the surface of the adsorbent. 

 

Figure  2-2: Schematics adsorption separation.  Different compounds can be separated 
from the feed stream based on their retention time on the adsorbent. 
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The use of adsorption to remove fermentation inhibitors from the broth have been 

studied by numerous research groups (Carvalho, 2006; Mancilha & Karim, 2003; 

Nilvebrant, Reimann, Larsson, & Jonsson, 2001; Sainio, Turku, & Heinonen, 2011). 

The isotherms of acetic acid adsorption from a water solution on five different 

types of synthetic activated carbon were plotted and characterized and it was 

determined that activated carbon is an adequate adsorbent material for acetic acid 

removal from aqueous solutions at lower concentrations (Dina, Ntieche, Ndi, & 

Mbadcam, 2012).  

100 % removal of acetic acid was achievable by combining the evaporation with 

activated charcoal adsorption followed by resin adsorption in a study by Carvalho et 

al. (2006) which compared fermentation inhibitors removal from eucalyptus 

hydrolysate using vacuum evaporation versus adsorption with activated charcoal, 

diatomaceous earth, ion exchange resin, and adsorbent resins.  The downside of their 

technique was high sugar loss (of about 30 %) during the adsorption process. 

Isotherm characterization and the regeneration performance were used to compare 

the cation exchange adsorbents with neutral polymeric adsorbent and activated carbon 

in removing acetic acid from water solutions that modeled the biomass hydrolysate.  

Acetic acid had the highest adsorption efficiency compared to furfural and HMF but 

selecting the most efficient adsorbent depends on the feed composition and initial 

concentration of the inhibitors (Sainio et al., 2011). 
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Seven other resins to remove acetic acid, HMF, and furfural from aqueous 

solutions were tested for the purpose of maximizing the xylose recovery for xylitol 

fermentation in Mancilha et al.’s study.  According to their study, weak-base anion 

exchange commercial resin was the best performing adsorbent to remove acetic acid 

from corn stover hydrolysate (2003). 

Adsorption of sugars instead of the inhibitors has also been primary focus of some 

publications.  The adsorption of the five and six carbon sugars on two different 

polymeric adsorbents, Dowex 99 and poly 4-vinylpyridine (PVP), from corn stover 

hydrolysate yielded in a higher final ethanol yield compared to the overliming 

technique (Xie, Phelps, et al., 2005).  In a later study a five zone simulated moving 

bed (SMB) system, loaded with aforementioned adsorbent, showed 85-92% 

fermentability of the sugars that were recovered at different zones of the SMB (Xie, 

Chin, et al., 2005).  The acetic acid in these studies was co-eluted with the sugars but 

its low concentration (3.37 g/L) had no negative impact on the fermentation.  Cost 

analysis, ignoring the utility cost, was also showed minimal impact on the 

manufacturing cost of the fermentable sugars.  

Different types of ion exchange columns can be used in the removal of the 

majority of the inhibitors from a dilute acid hydrolysate of spruce to increase the 

ethanol production in the downstream process; despite high pressure drop and 

frequent need to recharge of the column (Nilvebrant et al., 2001). 

Adsorption technologies exhibit high efficiency in respect of either fermentation 

inhibitors or fermentable sugars recovery.  Using stationary phase systems also have 
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minimal toxicity effect on any of the downstream processes  mainly fermentation.  On 

the downside, column regenerations, which are inevitable parts of any adsorption 

systems, are extremely energy intensive.  Furthermore the use of synthetic adsorbents 

makes the biorefinery less sustainable and adding a chromatography column in the 

process contributes to additional pressure drop in the system. 

2.2.3 Liquid-liquid extraction studies 

Liquid-liquid extraction is a well-known process that is frequently used in 

chemical and petrochemical plants.  This technology involves adding an immiscible 

solvent to the liquid system.  The desired component has more affinity to the solvent 

and when the equilibrium is reached the solvent (extract phase) is rich with the 

desired compound (Figure 2-3).  Solvent selection is a prominent part of this 

technology, since purification of the desired compounds and recycling the solvent 

back to the system are essential steps for this process. 

 

Figure  2-3: Schematic liquid-liquid extraction separation which is a separation 
method in which an immiscible solvent with high affinity to the desired compound is 

added to the mixture 
 

Laboratory experiments were conducted to extract acetic acid via liquid-liquid 

extraction with trioctylphosphine oxide (TOPO) followed by distillation to remove 
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the acetic acid from the solution and recycle the solvent.  TOPO binds with the acetic 

acid and removes it from the water solution; however it shows poor capability for 

repeated recycle, which greatly increases the cost of using this solvent for an large 

scale extraction (Um, Friedman, & van Walsum, 2011).  

The partition coefficient of acetic acid, furfural, HMF, vanillin, syringeldehyde, 

and coniferyl aldehyde in eleven different organic solvents, ranging from C6 alkene 

to C18 alcohol, from synthetic solution were measured by Zautsen et al. (2009).  

Considering the biocompatibility of the solvents in fermentation experiments, it was 

indicated that the extractability of the solvents have negative correlation with the 

biocompatibility of them. 

High liquid-liquid extraction efficiencies to recover acetic acid from pre-

hydrolysis liquor from a Kraft pulp process were recorded using tri-n-octylamine with 

octanol as the diluent and sodium hydroxide in water solution for back extraction and 

recovery (Ahsan, Jahan, & Ni, 2013).  Increasing the salt loading in the back 

extraction step kept the first and back extractions efficiency as high as almost 100 %. 

Development of a mathematical model for pilot-scale liquid-liquid extraction of 

acetic acid followed by a stripping step to recover the solvent, demonstrated that 

higher flowrate of the solvent increases the efficiency of the process.  Ethyl acetate 

was the best performing solvent compared to diethyl ether, and a mixture of the two 

(Jipa, Dobre, Stroescu, & Stoica, 2009). 

Liquid-liquid extraction with varying solvent loading, feed concentration, and pH 

with Alamine-336 as the solvent and 2-ethyl-1-hexanol as diluent was optimized at 
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85 % efficiency at pH of 3.5 with initial concentration as high as 45 g/L acetic acid 

(Katikaneni & Cheryan, 2002).  

Table 2-1 summarizes the literature regarding the usage of membranes, 

adsorbents, and liquid-liquid extraction to remove acetic acid from either model 

aqueous solutions or biomass hydrolysate. 

Table  2-1: Summary of separation methods used for acetic acid removal from 
aqueous systems 

Membrane Studies 
The method The finding Reference 

Hollow fiber membrane with 
mixture of tertiary amine and 

octanol 

60 % acetic acid removal (Grzenia et al., 
2008) 

Nano filtration 95 % acetic acid removal (Weng et al., 2009) 
Grafted PVA membrane for 

pervaporation 
Up to 14.6 separation factor 

for acetic acid 
(Al-ghezawi et al., 

2006) 
Grafted co-polymer for 

pervaporation 
Up to 23 separation factor for 

acetic acid 
(T. M. Aminabhavi 

& Toti, 2003) 
Vacuum membrane distillation 
with hollow fiber membrane 

30 % acetic acid removal (Chen et al., 2013) 

Evapomeation Up to 52 separation factor for 
acetic acid 

(Isiklan & Sanli, 
2005) 

Adsorption Studies 
The method The finding Reference 

Activated carbon Development of isotherms (Dina et al., 2012) 
Vacuum evaporation + 

activated charcoal + adsorbent 
resin 

100 % acetic acid removal 
with the combination of 

methods 

(Carvalho, 2006) 

Cation exchange resin Higher acetic acid adsorption 
compared to HMF and 

furfural 

(Sainio et al., 
2011) 

Weak-base anion exchange 
resin 

100 % acetic acid removal (Mancilha & 
Karim, 2003) 

Dowex 99 and PVP as 
adsorbent in SMB 

Recovered sugars have 
enhanced fermentation 

performance 

(Xie, Chin, et al., 
2005) 

Ion-exchange column Complete removal of 
inhibitors 

(Nilvebrant et al., 
2001) 
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Table 2-1 continued 

Liquid-liquid Extraction Studies 
The method The finding Reference 

TOPO as the organic solvent Low recyclability of the 
solvent 

(Um et al., 2011) 

Eleven different organic solvents Low biocompatibility (Zautsen et al., 
2009) 

Tri-n-octylamine as organic 
solvent and octanol as the diluent 

100 % removal of acetic 
acid 

(Ahsan et al., 
2013) 

Ethyl acetate, diethyl ether, and 
their mixtures as organic solvents 

Ethyl acetate shows the 
highest performance 

(Jipa et al., 2009) 

Alamine-336 as organic solvent 
with 2-ethyl-1-hexanol as the 

diluent 

85 % efficiency at lower 
pH 

(Katikaneni & 
Cheryan, 2002) 

 

2.3 Challenges regarding liquid-liquid extraction 

There are many challenges facing the use of liquid-liquid extraction systems for 

acetic acid removal from biomass hydrolysate to enhance the industrial scale 

bioethanol production.  Even though many well-studied separation techniques have 

been successful in removing the fermentation inhibitors from the biomass hydrolysate, 

the shortcoming in this area is an integrated and structured study that quantifies and 

reports a systematic liquid-liquid extraction experiments along with the solvent 

recovery and its economic impact.  Therefore this work addresses these three major 

issues which are associated with an extraction system. 

1- Solvent selection: is an area where most of the previous studies have paid 

little attention to; and therefore there is a need for a strategic plan to select the most 

efficient and sustainable organic solvent for acetic acid removal. 
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2- Biocompatibility and solvent recovery: another gap in the current state-of-the-

art in the extraction is whether the better performing solvents have any impact on the 

bioethanol-producing microorganisms and also if they are recyclable.  

Biocompatibility of alkanes and alcohols, that were used for fermentation 

inhibitors removal, is measureable by the carbon dioxide emitted during the 

fermentation (Zautsen et al., 2009).  Limited up-to-date publications are available 

regarding the toxicity mechanism of the organic solvent except for toxicity effects 

study of organic solvents on the S. cerevisiae cell membrane as chromosome loss 

inducers (Mayer, Goin, Arras, & Taylor-Mayer, 1992; Zimmermann, Scheel, & 

Resnick, 1989).  Most of the published studies on organic solvent toxicity or 

biocompatibility on fermentative yeasts are focused on the solvents which are suitable 

for simultaneous product extraction (Roy, 2013).  The mixture of Alamine336 and 

oleyl alcohol showed toxicity to the lactic acid fermentation due to the small amount 

of solubility in water and therefore it can be lowered by decreasing the miscibility 

(Yabannavar & Wang, 1991).  Tertiary amines with different carriers and diluent 

demonstrated medium toxicity in lactic acid fermentation process and the use of any 

of the modifiers intensified this effect (Martak et al., 1997).  An innovative computer 

based simulation to select the most biocompatible solvent for fermentation processes 

ranked esters are as the most toxic solvents compared to alkanes, ketones, and 

alcohols (Cheng & Wang, 2010). 

The biocompatibility study of the selected solvents, in the previous section, to the 

ethanol fermenting yeast is essential for bioethanol production enhancement.  
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When the organic solvents are used for extraction, a proper recovery stage has to 

be added to the process in order to reutilize the solvent.  Therefore this work aims to 

characterize a solvent recycling unit that would follow the extraction.  After an ideal 

recycling step: 

 The solvent is prepared to re-enter the extraction column and perform with 

the same extractability characteristics as before.  At this point any solvent 

loss can be compensated from the solvent storage unit to maintain the 

flowrate. 

 The level of the organic solvent in the aqueous phase would drop below 

the inhibition threshold of that solvent. 

 The energy and cost balance of the overall system are not affected 

significantly. 

3- Economic feasibility: the last area that needs further study to evaluate the LLE 

viability is to estimate the economic impact of liquid-liquid extraction.  It includes 

techno-economic evaluation of the fermentation inhibitors removal to estimate the 

capital and manufacturing cost associated with constructing a separation unit in an 

existing second generation bioethanol plant.  

2.4 Conclusion 

Studying the mechanism of bioethanol fermentation inhibition has persuaded 

many research groups to investigate the adaptation and gene modifications of the 

yeast.  Various separation methods have been used to remove the inhibitors and many 

of them have proven to be efficient for removing many of the known inhibitors. 
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Literature review reveals that liquid-liquid extraction is an alternative separation 

method that needs to be further tested for biocompatibility with yeast and also for its 

economic feasibility.  LLE can be improved for the purpose of fermentation inhibitor 

removal by incorporating a systematic solvent selection to select the most efficient 

solvent to decrease acetic acid content present in the biomass hydrolysate below its 

inhibition threshold.  Testing the solvent for its compatibility with the fermentation 

yeast is the second part of this work.  The practicality of LLE is dependent upon a 

recovery stage to recycle the solvent.  After proving the concepts with model 

simulation and lab scale experiment, the potential economic impact of this process on 

industrial scale biorefinery needs to be addressed.
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CHAPTER 3. EXPLORATION INTO LIQUID-LIQUID EXTRACTION 
SOLVENTS TO REMOVE SACCHAROMYCES CEREVISIAE INHIBITORS1 

3.1 Abstract 

The process of converting lignocellulosic biomass bioethanol involves 

pretreatment of the woody structure of the biomass.  Pretreatment allows for better 

accessibility of the polymeric sugars for enzyme digestion, but also results in the 

release of detrimental compounds that can inhibit fermentation. 

Laboratory results indicate that liquid-liquid extraction (LLE) is able to remove 

the common fermentation inhibitors and reduce the concentration in a pre-

fermentation broth below an inhibitory threshold.  Bench top studies were used in 

conjunction with process simulations to select an organic solvent for use in LLE.  The 

goal was to identify an organic extraction solvent with the lowest miscibility with the 

biomass liquid hydrolysate while allowing the sugars and water to remain in the 

stream destined for fermentation. 

Through careful study, an initial list of fifty solvents was narrowed to nine using 

an Aspen Plus™ simulation.  Laboratory experiments were then conducted to 

demonstrate that the affinity of each of the nine solvents to sugars is negligible.

                                                
1 Chapter 3 is adapted from the conference proceeding “Aghazadeh M, Engelberth AS. Exploration 
into Liquid-Liquid Extraction Solvents to Remove Saccharomyces cerevisiae Inhibitors. In: 2015 
AIChE Annual Meeting. Salt Lake City, UT, USA: American Institute of Chemical Engineering; 
2015”. 
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One solvent proved that it was also able to achieve complete extraction of acetic 

acid – the most ubiquitous inhibitor – from biomass liquid hydrolysate.  Further 

simulation clarified the impact of LLE on the remaining known inhibitors. 

3.2 Introduction 

The biochemical option for bioethanol formation involves: preparation of the 

biomass, pretreatment, enzymatic hydrolysis, fermentation, and ethanol separation 

and recovery (Ladisch, Ximenes, Engelberth, & Mosier, 2014).  Pretreatment is 

necessary to make the cellulose and hemicellulose accessible for enzymatic 

hydrolysis.  Fermentation inhibitors are compounds that are inherently present in the 

solution after pretreatment of lignocellulose biomass.  Examples of inhibitors include 

weak acids (e.g. acetic, formic, and levulinic), furans and phenols.  All biomass is 

comprised of some combination of cellulose, hemicellulose, and lignin.  When the 

weak ester bonds in the hemicellulose breaks, the acetyl groups are easily liberated 

during the biomass pretreatment, therefore acetic acid is present in all pretreated 

biomass (Grzenia, Schell, & Wickramasinghe, 2008).  

Inhibition slows down the fermentation and reduces the yield of ethanol produced 

(Kim, Kreke, Hendrickson, Parenti, & Ladisch, 2013; Nilvebrant, Reimann, Larsson, 

& Jonsson, 2001).  Casey et al. (2010) demonstrated that the yeast growth, substrate 

consumption, and ethanol volumetric productivity decrease in presence of acetic acid. 

Studies have been performed to determine the extent of removal of fermentation 

inhibitors prior to fermentation using ion exchange column, nano-filtration, and 

hollow fiber membranes (Grzenia et al., 2008; Nilvebrant et al., 2001; Weng et al., 
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2009; Weng et al., 2010).  Liquid-liquid extraction (LLE) is a well-known process 

that has not been applied to this particular extraction issue.  LLE uses the addition of 

an immiscible solvent to the liquid system that has higher affinity to the desired 

compounds.  Solvent selection is a prominent part of this technology since 

purification of the desired compounds and recycle of the solvent are essential steps in 

this process. 

Laboratory experiments have been performed to extract acetic acid via liquid-

liquid extraction with trioctylphosphine oxide (TOPO) (Um, Friedman, & van 

Walsum, 2011).  Zautsen et al. (2009) measured the partition coefficients of 

inhibitors in many organic solvents and found that the better performing solvents may 

not be biocompatible with the fermentation microorganisms.  Ahsan et al. (2013) 

found high liquid-liquid extraction efficiencies in their work to recover acetic acid 

from pre-hydrolysis liquor from a Kraft pulp process.  Katikaneni and Cheryan (2002) 

conducted a comparative study to select the most effective method between LLE and 

esterification to recover acetic acid from an acetic acid fermentation process.  They 

found that at higher acetic acid content and lower pH the extraction efficiency 

increases.  

The research reported in this manuscript was conducted in an effort to identify the 

most efficient solvent to extract fermentation inhibitors using LLE and determine the 

subsequent economic impact on an existing biorefinery.  This study examined 

multiple organic solvents using Aspen Plus™ simulations, quantified the extraction 



27 
 

performance on both a test solution and on biomass hydrolysate; and finally 

calculated the economic impact of this process on a biorefinery. 

3.3 Materials and Methods 

3.3.1 Simulation 

 Aspen Plus™ version 7.3 (Aspen Technology Inc., Burlington, MA) was used to 

simulate the extraction of acetic acid, glucose, and xylose from a water solution using 

a 10 stage LLE column.  The column was sized for economic purposes using simple 

flooding calculations.   

3.3.2 Laboratory Experiment and Analysis 

 The LLE method was modified from the experimental method of Katikaneni and 

Cheyran (2002).  LLE was performed in 50 mL vials with 10 mL of an aqueous feed 

and 10 ml of the solvent.  Two types of solutions were created: a test solution 

containing only the compounds used in the simulation, and a corn stover hydrolysate 

solution with concentrations adjusted to match the simulation.  The test solutions 

were made with 30 g/L glucose, 25 g/L xylose, and 10 g/L acetic acid.  These 

concentrations were picked based on literature review on common acetic acid, 

glucose, and xylose concentrations in hydrolysate from lignocellulosic biomass 

(Casey et al., 2010; Garlock et al., 2011; Grzenia et al., 2008; Mao, Genco, van 

Heiningen, & Pendse, 2010).  Biomass hydrolysate was the result of pretreating corn 

stover (40 mesh sieve) with 1% wt. sulfuric acid at 140 °C for 40 minutes.  

Pretreatment was conducted in 1” OD × 0.083” wall thickness, 316 stainless steel 
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tubing capped with 1” Swagelock tubes and fittings (Swagelock, Indianpolis, IN).  

After adding the 10 mL of the organic solvent (solvent to feed volume ratio of 1:1), 

the vials were shaken for 5 minutes, left to equilibrate at room temperature for 12 

hours, and then centrifuged for 20 minutes at 5000 rpm.  All chemicals were 

purchased from Sigma (Sigma Aldrich, St. Louis, MO). 

HPLC (Waters 2695 Separation Module, Waters Corporation, Milford, MA) was 

used to measure the glucose, xylose, and acetic acid contents of aqueous phase 

(Aminex HPX-87H Column, Bio-Rad, Hercules, CA – 300 x 7.8 mm pre-packed 

HPLC carbohydrate analysis column).  The mobile phase was 5 mM sulfuric acid 

with a flow rate 0.6 mL/min, an internal temperature 35 °C and external temperature 

65 °C.   

3.4 Results and Discussion 

Removal of fermentation inhibitors, especially acetic acid, using liquid-liquid 

extraction (LLE) is the focus of this work.  To establish the best performing solvent to 

extract acetic acid and other fermentation inhibitors in an LLE apparatus, a series of 

AspenPlus™ simulations and experiments were conducted.  An initial list of fifty 

solvents were selected for screening based on the ternary phase diagrams of acetic 

acid, water and the solvent (Sorensen, 1980).  To narrow down the fifty solvents to a 

more reasonable list, four benchmarks were developed.  These benchmarks took into 

account both process and environmental constraints.  The benchmarks are: 1) the 

consumption rate of the solvent should be as low as possible while achieving a high 

acetic acid yield, 2) water content in the extract stream should be as low as possible, 3) 
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the sugar initially entering with the feed stream should leave the column in the 

raffinate stream and 4) the solvent must not be carcinogenic or toxic.  Based on the 

fourth benchmark, eighteen solvents were immediately discarded due to their inherent 

toxic properties. 

3.4.1 Simulation: Narrowing Down the Solvents  

For the remaining thirty-two solvents, an AspenPlus™ simulation was developed 

to test the split fraction, SF= acetic acid in the extract
acetic acid in the feed

, of the acetic acid between the water 

and the third solvent.  Each of the solvents were run through the simulation varying 

the solvent volumetric flow rate until the split fraction of acetic acid was equal to a 

desired set point of 0.99.  This meant that some solvents required a high solvent 

consumption rate to achieve the chosen SF and were thus eliminated, as they did not 

fit the first benchmark.  The simulation allowed for the elimination of nine additional 

solvents; twenty-three of the solvents were able to achieve the desired SF within a 

ten-stage extraction column.  Figure 3-1 displays the solvent flow rate and the water 

content in the extract stream for the twenty-three viable solvents.  It is apparent in 

Figure 3-1 that there is a trade-off when selecting the ideal extraction solvent, as the 

solvent consumption rate decreases, the water content in the extract stream increases.  

The optimum range, based on Figure 3-1, includes solvents between ethyl acetate to 

methyl butyrate; these nine solvents consumed less than 150 kmol/hr for 500 kmol/hr 

of aqueous feed, while allowing the water content in the extract to remain low (less 

than 25 kmol/hr).  The gray box in Figure 3-1 clearly displays the nine solvents that 

fit the first two benchmarks, which include: ethyl acetate, n-butyl acetate, cyclohexyl 
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acetate, ethyl propionate, isobutyl acetate, n-pentyl acetate, isopentyl acetate, ethyl 

butyrate, and methyl butyrate. 

3.4.2 Experimental: Acetic Acid Extraction 

The nine solvents that were selected via simulation were then subjected to a 

single-stage LLE experiment to determine their ability to remove acetic acid from the 

aqueous solution.  The LLE was necessary to test the solvents with the aqueous 

solution because the destination stream of the sugars could be easily manipulated in 

the simulation based on the chosen property method.  An initial LLE experiment with 

a test solution was conducted to evaluate the simulation results.  Figure 3-2 shows the 

experimental results of the test solution for SF of acetic acid for each of the nine 

solvents tested along with the percent of xylose and glucose that remain in the 

aqueous phase (labeled as % Recovery).  For all nine solvents, sugars remained 

predominately in the aqueous phase; 92%-95% for glucose, and 93%-99% for xylose.  
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Figure  3-1: Solvent consumption rate and water content in the extract stream from the 
simulation results of the solvents extracting 99% acetic acid from a solution of water, 
acetic acid, glucose, and xylose.  The compounds within the box were chosen as the 
best performing solvents based on their low solvent consumption while keeping the 

water in the extract as low as possible. 

 

To gain a more complete understanding of the performance of each of the nine 

solvents the LLE experiment was performed on a solution of corn stover hydrolysate.  
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The procedure to make the hydrolysate was described in the material and methods 

section.  A summary of the LLE experimental results comparing the test solution with 

actual corn stover liquid hydrolysate is shown in Figure 3-2.  Note that the 

performance of the nine solvents is the same for the test solution as for the liquid 

hydrolysate.  Using the data gathered from the LLE experiment, the nine solvents 

were ranked based on their ability to meet the benchmarks previously stated.  The 

ranking of nine solvents, from best performing to unsatisfactory are: ethyl acetate, 

butyl acetate, isobutyl acetate, ethyl propionate, methyl butyrate, ethyl butyrate, 

cyclohexyl acetate, pentyl acetate, isopentyl acetate.   

It was evident that ethyl acetate, butyl acetate, isobutyl acetate, and ethyl 

propionate were able to extract more acetic acid from the corn stover hydrolysate than 

from the test solution likely due to the presence of other molecules present in the 

hydrolysate such as sulfuric acid.  The acid content, and thus lower pH can enhance 

the LLE yield for acetic acid (i.e. produce a salting-in effect) (Cohn, 1943; Katikaneni 

& Cheryan, 2002; Wheelwright, 1991).  The noteworthy result from Figure 3-2 is that 

ethyl acetate is able to extract 85% of the acetic acid from a real solution while 

allowing the sugars to remain with the raffinate.
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Figure  3-2: Comparison of the test solution and a real biomass hydrolysate to determine the performance of each of the nine organic 
extraction solvents. A) fraction of acetic acid extracted by each solvent – shown as split fraction, SF.  A split fraction closer to one is 
more ideal as it indicates that the solvent removes more acid.  B) Percent of glucose retained in aqueous phase, and C) percentage of 
xylose retained in aqueous phase.  The ideal case is for the % retained to be as close to 100% since the goal is for the sugars to not be 

extracted by the solvent.  
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3.4.3 Simulation: Extraction of Other Common Inhibitors  

Based on the results gathered for the performance of the nine solvents to remove 

acetic acid from a solution of corn stover hydrolysate, the next question was to see 

how well the solvents were able to extract other common fermentation inhibitors from 

biomass hydrolysate.  The common fermentation inhibitors were determined from 

existing literature and the higher end of the reported concentration was used in our 

simulation.  Each of the inhibitors was added to the feed stream in the Aspen Plus™ 

simulation.  The inhibitors, along with the common concentration found in a post-

pretreatment solution, are shown in Table 3-1. 
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Table  3-1: Concentration of additional fermentation inhibitors tested with each of the 
nine extraction solvents in the Aspen Plus™ LLE simulation. 

Inhibitor Concentration 
(g/L) 

Common Biomass 
Source Reference 

Acetic Acid 16.1 Hemicellulose 
acetyl bonds 

(D. Humbird, 
Mohagheghi, 

Dowe, & Schell, 
2010) 

Furfural 2.9 Lignin degradation (D. Humbird et al., 
2010) 

Formic Acid 3.5 Carbohydrate 
degradation 

(Martin & Jonsson, 
2003) 

Levulinic Acid 2.6 Carbohydrate 
degradation 

(Almeida et al., 
2007) 

Vanillin 0.43 Lignin degradation (Almeida et al., 
2007) 

Cinnamic Acid 0.15 Lignin degradation (Martin & Jonsson, 
2003) 

4-Hydroxy 
benzoic Acid 0.005 Lignin degradation (Nichols et al., 

2008) 
Hydroxyacetaphe

none 0.004 Lignin degradation (Almeida et al., 
2007) 

Acetovanillone 0.008 Lignin degradation (Almeida et al., 
2007) 

3,4 
dihydroxybenzoic 

acid 
0.000005 Lignin degradation (Nichols et al., 

2008) 

Syringic Acid 0.44 Lignin degradation (Almeida et al., 
2007) 

Hydroquinone 0.017 Lignin degradation (Almeida et al., 
2007) 

Phenol 0.035 Lignin degradation (Almeida et al., 
2007) 

 

The results of the simulation are shown in Figure 3-3.  The solvents in Figure 3-3 

are arranged along the x-axis in the order of how well they extract each of the 

inhibitors.  Ethyl Acetate is shown to be able to fully extract eleven of the thirteen 

inhibitors.  The order of the inhibitors in the legend has been arranged to demonstrate 
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how likely each is to be extracted by the solvents tested.  Furfural, cinnamic acid, 

hydroxyacetophenone, phenol, 4-hydroxybenzoic acid, and acetovanillone are all 

fully extracted by each solvent.  The remaining seven inhibitors would require a 

higher solvent flow rate for better extraction.  Based on the results shown in Figure 

3-3, the ideal solvent is ethyl acetate due to its capacity to completely extract all 

inhibitors at a low solvent consumption (Flow rate = 100 kmol/hr) except acetic acid 

(SF =0.73) and formic acid (SF = 0.19).  These findings are in agreement with the 

experiment results in Figure 3-2 and greatly simplify the solvent selection process as 

it predicts that selected solvent from the experimental results will perform well with 

the other inhibitors as well. 
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Figure  3-3: Split fraction of common fermentation inhibitors compounds using the selected nine organic solvents.  Fraction of 1 
indicates 100% extraction of the inhibitor.  The legend explains the symbols on each line.  The lines were included to more easily 

compare the performance of the inhibitors in each solvent. 
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3.5 Conclusion 

A group of twenty-three solvents were ranked on their ability to extract acetic 

acid from biomass hydrolysate using Aspen Plus™ simulation.  Laboratory results 

confirmed that ethyl acetate, butyl acetate, and isobutyl acetate have the capacity to 

reduce the acetic acid concentration below its inhibition threshold (less than 0.5 % 

wt.).  Further simulation predicted that solvents that perform well to extract acetic 

acid also perform well to extract other common fermentation inhibitors.  These non-

toxic solvents have the capability to remove the fermentation inhibitors at low flow-

rates, have no or negligible solubility with the pre-fermentation broth, and have 

minimum affinity to the sugars.
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CHAPTER 4. ACETIC ACID REMOVAL FROM CORN STOVER 
HYDROLYSATE USING ETHYL ACETATE AND THE IMPACT ON 
SACCHAROMYCES CEREVISIAE BIOETHANOL FERMENTATION2 

4.1 Abstract 

Acetic acid is introduced into cellulose conversion processes as a consequence of 

composition of lignocellulose feedstocks, causing significant inhibition of adapted, 

genetically modified and wild-type S. cerevisiae in bioethanol fermentation.  While 

adaptation or modification of yeast may reduce inhibition, the most effective approach is 

to remove the acetic acid prior to fermentation.  This work addresses liquid-liquid 

extraction of acetic acid from biomass hydrolysate through a pathway that mitigates 

acetic acid inhibition while avoiding the negative effects of the extractant, which itself 

may exhibit inhibition.  Candidate solvents were selected using simulation results from 

Aspen Plus, based on their ability to extract acetic acid which was confirmed by 

experimentation.  All solvents showed varying degrees of toxicity towards yeast, but the 

relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could 

reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels.  The 

toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g/L.  

The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate

                                                
2 Chapter 4 is in press for publication in Biotechnology Progress with the title “Acetic Acid Removal from 
Corn Stover Hydrolysate Using Ethyl Acetate and the Impact on Saccharomyces cerevisiae Bioethanol 
Fermentation” by Mahdieh Aghazadeh, Michael Ladisch, and Abigail S. Engelberth. 
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followed by vacuum evaporation to remove 88 % removal of residual ethyl acetate 

along with 10% of the broth.  NRRL Y-1546 yeast was used to demonstrate a 13% 

increase in concentration, 14% in ethanol specific production rate, and 11% ethanol 

yield.  This study demonstrated that extraction of acetic acid with ethyl acetate 

followed by evaporative removal of ethyl acetate from the raffinate phase has 

potential to significantly enhance ethanol fermentation in a corn stover bioethanol 

facility. 

4.2 Introduction 

Process optimizations and improvements are needed to strengthen the commercial 

viability of the second-generation bioethanol industry in the United States (Ladisch, 

Ximenes, Engelberth, & Mosier, 2014).  The yield and the robustness of the current 

biochemical conversion of lignocellulosic biomass to bioethanol must improve to 

make this process more sustainable.  Economic analysis has demonstrated that by 

increasing the solid loading and eliminating the effect of enzyme and fermentation 

inhibitors, the manufacturing cost can be reduced (Balan, 2014; Humbird, 

Mohagheghi, Dowe, & Schell, 2010).  Removal of acetic acid will result in a higher 

ethanol production rate which can, in turn, lower the residence time in the 

fermentation bioreactor ultimately increasing the overall revenue of the biorefinery. 

Biomass is comprised of cellulose, hemicellulose, lignin, extractives, and ash 

where the acetic acid is released from the acetyl bonds of hemicellulose during 

pretreatment of lignocellulosic biomass (Grzenia, Schell, & Wickramasinghe, 2008).  

During biomass pretreatment, acetic acid along with other inhibitors are released into 
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solution (Table 4-1).  Acetic acid has a pronounced inhibitory effect on 

Saccharomyces cerevisiae cell growth rate and ethanol production rate (Almeida et al., 

2007; Klinke, Thomsen, & Ahring, 2004; Palmqvist & Hahn-Hagerdal, 2000; 

Phowchinda, Deliadupuy, & Strehaiano, 1995).  This inhibition impacts substrate 

consumption rate and ethanol production rate was quantified in earlier works 

(Almeida et al., 2007; Klinke et al., 2004; Palmqvist & Hahn-Hagerdal, 2000).  

Table  4-1: The concentration of known bioethanol fermentation inhibitors in corn 
stover hydrolysate categorized by their origin in the lignocellulosic biomass structure 

(Almeida et al., 2007; Humbird et al., 2010; Serate, 2015).  It is evident that acetic 
acid is one of the most abundant fermentation inhibitors present in lignocellulosic 

biomass and hence forms the focus of this study. 

 Source of Inhibitor Inhibitor Amount (g/L) 
 Hemicellulose Acetyl Bonds Acetic Acid 16.1 

 

Carbohydrate Degradation 

Formic Acid 2.7 

 Levulinic Acid 1.3-2 

 5-hydroxymethyl furfural 3.9 

Lignin Degradation 

Furfural 2.9 

Vanillin 0.5-0.9 

4-Hydroxybenzoic Acid 0.005 

4-Hydroxyacetaphenone 0.007-0.015 

Acetovanillone 0.24 

3,4 dihydroxybenzoic acid 0.000005 

Syringic Acid 0.035-0.05 

 

Either directed evolution through adaptation and gene modification of the yeast 

strain or removal of acetic acid prior to fermentation may be used to decrease 
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inhibition.  The aim of directed evolution is to render the microorganisms more 

amenable to the harsher environment, and has yielded positive results in: 1) 

improving the survival rate of S. cerevisiae (Giannattasio, Guaragnella, Corte-Real, 

Passarella, & Marra, 2005), 2) increasing the specific ethanol production rate 

(Sànchez i Nogué, 2013), 3) enhancing the sugar consumption rate, and 4) improving 

ethanol productivity (Keating, Panganiban, & Mansfield, 2006).  However, the effect 

is strain specific and industrial strains modified in this manner are not yet in use 

(Balan, 2014).  Furthermore residual inhibitory effects due to acetic acid are still 

prevalent.  Reduction in inhibition by physical separation to remove the inhibitor 

from the broth prior to fermentation is therefore relevant because it would enhance 

performance of adapted yeast or reduce inhibition of yeast lacking acetate tolerant 

characteristics.  Both solid adsorbents and liquid extractants have been used, but may 

introduce their own inhibitory effects. 

Various approaches to remove acetic acid include anion exchange resins, 

membranes (Han et al., 2006), membrane distillation, and liquid-liquid extraction.  

The combination of a hollow fiber membrane and an organic phase mixture of 

octanol and Alamine 336 demonstrated 60 % removal of the acetic acid in dilute acid 

pretreated corn stover (Grzenia et al., 2008).  Vacuum membrane distillation has also 

been reported to decrease the concentration of acetic acid and furfural in the corn 

stover hydrolysate (Chen et al., 2013).  Although liquid-liquid extraction is the most 

efficient approach and has a prior history of use including acetic acid from aqueous 

solutions; toxicity of the solvent itself can result in potential limitations (Al-Mudhaf, 

Hegazi, & Abu-Shady, 2002; Cai, 2001; Manzak & Sonmezoglu, 2010; Matsumoto, 
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Otono, & Kondo, 2001).  Amine and phosphine based solvents with different diluents 

(Ahsan, Jahan, & Ni, 2013; Lee, 2015; Ren, Wang, Li, & Wang, 2012; Um, Friedman, 

& van Walsum, 2011; Zautsen et al., 2009) and trioctylphosphine oxide (TOPO) are 

effective in extracting acetic acid from hydrolysates (Um, Friedman, & van Walsum, 

2011).  The better performing solvents, based on the measured partition coefficients 

of inhibitors in various organic solvents, were not biocompatible with the 

fermentation microorganisms (Zautsen et al., 2009). 

Recovery of acetic acid from a prehydrolysis liquor in the Kraft pulp process 

showed that high liquid-liquid extraction efficiencies were achievable (Ahsan et al., 

2013), however fermentation was not the goal.  A comparative study to select the 

most effective method between LLE – using Alamine-336 and 2-ethyl-1-hexanol as 

the organic solvent – and esterification to recover acetic acid from an acetic acid 

fermentation process found that the extraction efficiency of 85% was achievable at a 

pH below 3.5 (Katikaneni & Cheryan, 2002).  Recyclability and biocompatibility of 

the organic solvent with the fermentation microorganisms are key considerations for 

implementing solvent extraction into the bioethanol production process, and 

motivated the current study that combined acetic acid extraction and recovery 

followed by fermentation. 

The goal for employing LLE is to remove acetic acid from a pre-fermentation 

broth while allowing the sugars to remain in the aqueous phase.  Based on 

thermodynamic analysis of solvent/acetic acid interactions, ethyl acetate and butyl 

acetate were selected from twenty-three candidates for further testing.  These short-

chained esters have a strong attraction to protonated acetic acid and have negligible 



44 
 

solubility sugars with the sugars.  Ethyl acetate was the least toxic, when extraction 

was followed by a short vacuum partitioning step, and resulted in a fermentation 

media that exhibited higher performance when compared to corn stover hydrolysate.  

This study examines the synergistic inhibition of small amounts of ethyl acetate and 

acetic acid that remain in the extracted broth, and fermentation conditions that are 

able to convert corn stover hydrolysate into ethanol at significantly higher rate and 

yield. 

4.3 Materials and Methods 

4.3.1 Materials 

Corn stover was collected after the harvest in Lafayette, Indiana in September 

2012.  The moisture content was measured to be 9% wt. and the samples were stored 

in freezer at 4°C until use.  Glucose, xylose, and butyl acetate were purchased from 

Sigma Aldrich (Sigma Aldrich, St. Louis, MO), sulfuric acid and acetic acid from 

Mallinckrodt (Mallinckrodt Chemicals, Phillipsburg, NJ), peptone and yeast extract 

from BD (Becton, Dickinson and Company, Franklin Lakes, NJ), and ethyl acetate 

from J. T. Baker (Avantor Performance Materials, Center Valley, PA). 

4.3.2 Biomass Preparation and Pretreatment 

The corn stover was hammer-milled (Model 10 HMBD, Glen Mills Inc., Clifton, 

NJ) with ¼″ screen and further milled by Thomas Wiley mill (Model 4, Thomas 

Scientific, Swedesboro, NJ) to make finer particles (~2 mm). 
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The dilute acid pretreatment was performed in a 2-L floor stand Parr reactor 

(Model 4530, Parr Instrument Company, Moline, IL).  The biomass was impregnated 

in water solution with 0.8% wt. sulfuric acid for two hours before starting the 

pretreatment.  The mixture was then heated from ambient to 140C in about 30 

minutes and kept at 140°C for 40 minutes.  The solid loading was set at 4% to fully 

hydrolyze the hemicellulose and obtain maximum conversion of acetyl bonds to 

acetic acid.  The solid and liquid were separated using cheesecloth followed by 

filtration with Whatman paper filter No.1.  The pH of the collected liquid was 2.2 

prior to neutralization of acetic acid.  The glucose, xylose, and acetic acid 

concentrations after the pretreatment were 0, 13, and 2 g/L respectively.  

After HPLC analysis of the liquid portion of the pretreated biomass, the 

concentration of the glucose, xylose, and acetic acid are adjusted to 100 g/L, 60 g/L, 

and 10 g/L (Takahashi, Takahashi, Carvalhal, & Alterthum, 1999) respectively; as 

indicated by Hodge et al (2008) an equivalent synthetic solution is a good 

approximation for inhibition studies and hence was used here to enable specific 

concentrations of fermentable sugars and acetic acid to cover a range of conditions.  

The condition used in this study is representative of the pretreated corn stover at its 

highest flowable solid loading (Casey, Sedlak, Ho, & Mosier, 2010; Kim, Kreke, 

Hendrickson, Parenti, & Ladisch, 2013; Schell, 2003) while remaining economically 

feasible, as stated by Humbird et al. (2010) to be 19% solid loading at enzymatic 

hydrolysis to minimize the ethanol selling price,. 
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4.3.3 Selection of Solvent Candidates Using Aspen Plus 

The solvent selection process utilized Aspen Plus™ version 7.3 (Aspen 

Technology Inc., Burlington, MA) to simulate the extraction of acetic acid, glucose, 

and xylose from a water solution using a 10-stage LLE column.  Candidate extraction 

solvents were first selected using Aspen Plus™ software to carry out a 

thermodynamic calculation to predict the acetic acid extractability.  A list of 23 

candidates, after eliminating the more toxic solvents, were generated and evaluated 

based on inherent distribution coefficients and toxicity to yeast.  These solvents 

ranged from C1 to C9 with most of them being esters, alcohols, acids, and ethers. 

The nine solvents that were selected via simulation were then subjected to single-

stage LLE experiments to determine their ability to remove acetic acid from the corn 

stover liquid hydrolysate.  LLE was performed in 50 mL vials with 10 mL of sample 

and 10 mL of the solvent resulting in a 1:1 volume ratio.  The vials were shaken for 5 

minutes at room temperature, left to equilibrate at room temperature – maintained at ~ 

25 °C – for 12 hours, and then centrifuged for 20 minutes at 5000 rpm.  The aqueous 

layer was then analyzed using HPLC, and distribution of acetic acid between the two 

phases was calculated.  Ethyl and butyl acetates were selected for further 

investigation.  

4.3.4 Liquid-liquid extraction 

The LLE experiment was adopted and adjusted from Katikaneni and Cheryan 

(2002).  One hundred mL of liquid corn stover hydrolysate, with adjusted glucose, 

xylose, and acetic acid concentration, was mixed with the organic solvent at a 1:1 
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volume ratio.  The mixture was shaken vigorously for 5 minutes and then poured in 

250 mL separatory funnel and allowed to equilibrate for at least 12 hours at room 

temperature.  For further equilibrium stages, the aqueous phase was collected from 

the previous stage and mixed with fresh organic solvent of same volume and same 

procedure was performed on the new mixture.  Each sample run was tested in 

triplicates.  The pH of the liquid hydrolysate was not adjusted until immediately 

before the fermentation process was initiated since previous studies that have shown 

that acetic acid extraction performance is enhanced at lower pH (Katikaneni & 

Cheryan, 2002). 

4.3.5 Synergistic Inhibition Experimental Design 

A full factorial experimental design was used to test the hypothesis whether or not 

synergistic inhibition of ethyl acetate and acetic acid exist on the final ethanol 

concentration and its production rate.  The fermentation was performed with NRRL 

Y-1546 in the YEPD media (1 g/L of dry cell mass as the starting concentration) and 

glucose concentration of 100 g/L.  Initial concentration of acetic acid in the 

experiments was set to 10 g/L and after a two-stage LLE the amount of acetic acid 

reduces to 1 g/L.  Therefore, four levels of acetic acid concentrations (0, 2, 5, 10 g/L) 

to represent the levels of acetic acid concentration that is obtainable during different 

stages of LLE (data shown in Results and Discussion).  In a separate study (data not 

shown) the inhibition threshold of ethyl acetate alone on NRRL Y-1546 was found to 

be 20+ g/L; therefore, three levels of ethyl acetate between 0 and 20 g/L were 

selected.  The levels (0, 10, 20 g/L of ethyl acetate and 0, 2, 5, 10g/L of acetic acid) 
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made up the twelve combinations that are sufficient points to test for the inhibition 

effect on the fermentation at the mentioned conditions (Table 4-2).  Each condition 

was tested in duplicate. 

Table  4-2: The twelve combinations of different ethyl acetate and acetic acid 
concentrations that were used in the factorial design experiment for synergistic 
inhibition effect.  The numbers in parenthesis are ethyl acetate and acetic acid 

concentrations respectively. 

Combination (Ethyl acetate (g/L), acetic acid (g/L)) 
1 (20,0) 2 (10,0) 3 (0,0) 
4 (20,2) 5 (10,2) 6 (0,2) 
7 (20, 5) 8 (10,5) 9 (0,5) 

10 (20,10) 11 (10,10) 12 (0,10) 
 

4.3.6 Evaporation 

A rotary evaporator (Model R-200, Rotavapor, Büchi Labortechnik AG, Flawil, 

Switzerland) was used for solvent recycle.  The temperature was set at 40°C with 

vacuum at 93 KPa (8 KPa absolute pressure) and the rotation rate set to 120 rpm.  The 

liquid was stored in the collection flask during the evaporation process.  The lost 

volume, of about 10%, was replaced with the adjusted liquid corn stover hydrolysate 

to attain the initial volume of 100 mL. 

4.3.7 Fermentation 

The yeast that was used for the fermentation experiments was NRRL Y-1546.  

The inoculum was prepared by propagating the yeast in YEPD media (1% yeast 

extract, 2% peptone, 2% glucose) at 28°C and 200 rpm (Casey et al., 2010).  
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The reference runs for yeast and the YEPD with glucose concentration was 

adjusted to 100 g/L.  The pH, of both the liquid biomass hydrolysate and the samples 

collected after evaporation followed by LLE, were neutralized using potassium 

hydroxide.  The concentration of the yeast added to each of the samples was 1 g/L of 

dry cell biomass.  The experiment was performed at 28°C and 200 rpm for a period of 

48 hours and samples were taken at equal intervals.  All conditions were tested in 

triplicate.  Detailed fermentation methods concerning the cell mass measurement and 

rate calculations can be found in earlier studies (Casey et al., 2013).  The ethanol 

yield in this manuscript is defined as the ethanol concentration at each time interval 

divided by the maximum theoretical ethanol concentration (0.51 × initial glucose 

concentration). 

4.3.8 HPLC Analysis 

Sugars, acetic acid, ethanol, butyl acetate, and ethyl acetate in the fermentation 

and extraction samples were analyzed by Bio-Rad Aminex HPX- 87H ion exchange 

column.  The method, including the analysis procedure, column characteristics, and 

the data storage and process tools, was adopted from Kim et al. (2013). 

4.3.9 Statistical Analysis 

Fermentation and extraction results were statistically analyzed using JMP (SAS 

institute, Cary, NC).  The software also was used to fit the statistical model to the 

obtained experimental data with ANOVA.  Student’s t-test pairwise comparison of 

the different levels of the synergistic inhibition experiment was performed on the 

estimated data from the fitted model with JMP software.  
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4.4 Results and Discussion 

4.4.1 Solvent Selection Using Aspen Plus™ 

The nine solvents were tested in the simulation and the performance of each was 

compared based on the partition coefficient (Equation 1).  The partition coefficient 

was calculated based on the activity coefficient calculated from Aspen Plus™. 

Partition Coefficient	(K)= Concentration in	the organic	phase
Concentration	in	the	aqueous	phase

  (1) 

Equations 2 through 7 summarize the thermodynamic equations used to estimate 

the partition coefficients.  The chemical potential of a particular component, i, is the 

derivative of the Gibbs free energy with respect to the molar content of i at constant 

pressure, temperature, and mixture composition (Equation 2).  Chemical potential in 

non-ideal systems is a function of fugacity (푓 )(Equation 3) which is estimated using 

the activity coefficient (훾 ), molar fraction (푥 ), and fugacity of the compound in its 

pure form (푓∗) (Equation 4). 

µi=( ∂G
∂Ni

)
T,P,Nj≠i

       (2) 

µi=RTln(fi)       (3) 

fi=xiγifi
*        (4) 

At bi-phasic equilibrium, the chemical potential of acetic acid in the two phases is 

equivalent (Equations 5 and 6).  Using Equation 7 to estimate the partition coefficient, 

K, and assuming constant temperature, it can be concluded that K of acetic acid (AA) 

has an inverse relationship with the ratio of the activity coefficient in the two phases 

(Equation 8). 
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µAA Aqueous
= µAA Organic

     (5) 

(xAAγAAfAA
* )

Aqueous
=(xAAγAAfAA

* )
Organic

    (6) 

K=
(xAA)

Organic
(xAA)Aqueous

=
(γAAfAA

* )
Aqueous

(γAAfAA
* )

Organic

(7) 

K ∝ 1
γ ratio      (8) 

The selected property method in Aspen Plus™ is used to predict the activity 

coefficient of acetic acid in the two phases and therefore dictates the thermodynamic 

equilibrium.  The partition coefficients measured by laboratory experiment are 

compared to the activity coefficient ratio predicted by the software and exhibit 

consistent ranking for the solvents studied (Table 4-3).  The acetic acid present in the 

mixture is protonated due to the low pH (pH of the hydrolysate is 2.2 where the pKa 

of acetic acid is 4.75).  The chemical structures of the nine solvents included ester 

functional group with a carbonyl oxygen that has partial negative charge.  The 

ranking of the partition coefficients of these solvents can be explained by the density 

of the electron cloud on the carbonyl oxygen that is influenced by the length and 

symmetry of the molecule chain.  The more negative carbonyl oxygen in ethyl acetate 

can attract the protonated acetic acid more strongly than the other the larger ester 

molecules that have less negative charge on their carbonyl oxygen. 
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Table  4-3: The ranking of the solvents based on the partition coefficient measured by 
laboratory experiments and the activity coefficient estimated by Aspen Plus ™ 

property method, the two have inverse relationship as predicted by Equation 8.  Ethyl 
acetate and butyl acetate were selected for further studies regarding their impact on 

bioethanol fermentation. 

Solvent 
Measured Partition 

Coefficient 
(KAA) 

Activity Coefficient Ratio 
γAA

Organic

γAA
Aqueous 

Ethyl Acetate 5.67 2.74 

Butyl Acetate 3.17 3.12 

Iso-Butyl Acetate 3.17 3.15 

Cyclohexyl Acetate 0.72 3.1 

Ethyl Propionate 0.39 3.09 

Methyl Butyrate 0.37 3.08 

Ethyl Butyrate 0.20 3.21 

Pentyl Acetate 0.10 3.27 

Iso-Pentyl Acetate 0.00 3.29 
 

4.4.2 Liquid-liquid Extraction 

To assess the original goal of LLE – high extraction of acetic acid and low 

extraction of the sugars – the partition coefficients of these compounds were 

calculated.  The partition coefficient, Equation 1, quantifies performance of the 

solvent in the extraction process.  In this experiment, the impact of sequential 

equilibrium stages of LLE on extraction of acetic acid, sugar loss, and solvent 

concentration was measured.  Different stages of LLE were completed using the 

procedure outlined in the materials and methods section; the aqueous feeds for stages 

II and III were obtained from the preceding stages.  As the acetic acid concentration 
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in the aqueous phase decreases at each stage, the new composition of the system 

defines a new equilibrium at the organic and aqueous phase at the following stage.  

The partition coefficient of acetic acid increases significantly from stage I to II – from 

0.52 to 9.05 – which translates to 6.6 g/L of acetic acid in the aqueous phase after the 

first stage decreasing to 1 g/L after the second stage, but does not increase 

dramatically from stages II to III (1 g/L to 0 g/L).  For this reason, later extraction 

experiments were discontinued after two stages.  The partition coefficient of sugars 

remained below 0.04 through all stages of LLE; which signifies that during LLE 

sugars were minimally transferred to the organic phase.  The amount of sugar that 

diffused to the organic phase was 3, 2, and 0 g/L for glucose and 1, 2, and 0 g/L of 

xylose for the three different stages respectively; which is likely attributed to the 

cyclic structure of the sugars and the weak Van der Waals bonds between the sugars 

and ethyl acetate (an ester).  The amount of ethyl acetate in the aqueous phase 

changes with different stages of LLE without an apparent pattern.  The measured 

amount of ethyl acetate in this experiment (40 g/L) is lower than the reported 

solubility of ethyl acetate in water (8 g/100 mL at 20°C) and could be attributed to the 

low pH, ~ 2, of the mixture.  Table 4-4 summarizes the partition coefficients of acetic 

acid, glucose, and xylose, along with the ethyl acetate concentration; all after three 

equilibrium stages of LLE.  This shows that acetic acid extraction plateaus after two 

stages and that ethyl acetate concentration is not stage dependent. 
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Table  4-4: The partition coefficient of acetic acid, glucose, and xylose as well as the 
concentration ethyl acetate at three different equilibrium stages of liquid-liquid 
extraction using ethyl acetate as the organic solvent.  Glucose and xylose have 

negligible affinity to ethyl acetate, acetic acid extraction reaches a plateau after two 
equilibrium stages of LLE.  Ethyl acetate concentration in aqueous phase, while 

smaller than its recorded solubility, does not show a pattern with equilibrium stages.  
The errors indicate the standard deviation. 

Variable Stage 1 Stage 2 Stage 3 
 Partition Coefficient 

Glucose 0.03 ± 0.01 0.01 ± 0.01 0.00 ± 0.03 
Xylose 0.02 ± 0.01 0.04 ± 0.01 0.00 ± 0.02 
Acetic Acid 0.52 ± 0.01 9.05 ± 0.98 ∞* 

 Concentration (g/L) 
Ethyl Acetate 59.7 ± 0.1 35.8 ± 1.8 42.9 ± 0.5 
*There is 0 g/L acetic acid present in the aqueous phase  

 

4.4.3 Synergistic Inhibition of Ethyl Acetate and Acetic Acid 

Biocompatibility of organic solvent with a strain of yeast needs to be carefully 

considered when designing an LLE process (Zautsen et al., 2009).  Ethyl acetate and 

butyl acetate were able to extract acetic acid from the corn stover hydrolysate more 

efficiently than the other solvents tested (Table 4-3).  Ethyl acetate and butyl acetate 

were then selected to test their biocompatibility with the Y-1546 strain of S. 

cerevisiae.  Additionally, Aspen Plus™ modeling results indicated that ethyl acetate 

and butyl acetate are also the most effective solvents for removal of the most common 

S. cerevisiae inhibitors (Chapter 3).  The LLE procedure – outlined in the materials 

and methods section – was carried out to extract acetic acid from biomass hydrolysate.  

Figure 4-1 displays the fermentation results of the aqueous phase collected from the 
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extraction experiment and it shows that both ethanol production and glucose 

consumption stop when ethyl acetate or butyl acetate is present in the broth at 40 and 

4 g/L, respectively. 

 

Figure  4-1: Glucose and ethanol concentrations in presence of the organic solvent 
ethyl acetate and butyl acetate in contrast to no inhibition fermentation.  The graphs 

on the left show how the fermentation proceeds with no extraction applied.  The 
graphs on the right show how the presence of the extraction solvent at 40 g/L ethyl 
acetate or 4 g/L butyl acetate in the fermentation dramatically inhibits the ethanol 

production.  Butyl acetate content is much lower but has severe toxicity to the 
fermentation process; the same amount of ethyl acetate exhibits significantly lower 

toxicity and thus ethyl acetate selected for further experimentation.  Error bars 
indicate the standard deviation. 

 

The solubility of butyl acetate in water is 0.68 g/100 mL (at 20°C) (Haynes, 2012), 

while the solubility of ethyl acetate in water is 8 g/100 mL (at 20°C) (Wypych, 2000).  

Butyl acetate present in the fermentation broth had the same effect as if there were ten 

times the amount of ethyl acetate.  Due to the greater toxicity of butyl acetate, ethyl 

acetate was selected for further study. 
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The model (Figure 4-2) proved that the final ethanol yield and its specific 

production rate are negatively influenced by acetic acid, ethyl acetate; while the 

ethanol yield is also significantly impacted by their interaction term (acetic acid × 

ethyl acetate).  Figure 4-2 displays the fitted model in comparison with the collected 

data for the ethanol yield.  The exact level of inhibition was determined using a 

Student’s t- test pairwise comparison between each level (Figure 4-3).  It is apparent 

from Figure 4-3 that the inhibition of ethyl acetate, on the ethanol yield and its 

production rate, is a strong function of the amount of acetic acid present in the 

fermentation broth.  Acetic acid inhibition is more significant on the rate of the 

fermentation at concentrations 2 g/L and above; while ethyl acetate inhibition on both 

ethanol yield and its production rate is prominent at 10 g/L when in the presence of 

acetic acid and above 20 g/L concentration without acetic acid present in the media.  

The significant reduction in the specific ethanol production rate is noticeable at 

combinations (0 g/L ethyl acetate, 2 g/L acetic acid) and (10 g/L ethyl acetate, 2 g/L 

acetic acid).  Therefore, acetic acid must be below 2 g/L if there is any ethyl acetate 

remaining the raffinate or that if there is acetic acid present in the media that the ethyl 

acetate concentration must be reduced to below 10 g/L. 
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Figure  4-2: The effect of ethyl acetate and acetic acid on final ethanol yield and rate 
after 48 hours of fermentation and the ethanol specific production rate.  A) 
Experimental data points of ethanol yield, B) the statistically fitted model using 
ANOVA results of the ethanol yield, C) experimental data points of ethanol specific 
production rate, and D) the statistically fitted model using ANOVA results of the 
ethanol specific production rate.  The model for each type of inhibition is included 
below the respective figures.  
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Figure  4-3: Student’s t-test pairwise comparison of the twelve different combinations 
of ethyl acetate and acetic acid concentrations on A) the ethanol specific production 
rate and B) the ethanol yield.  The letters above the bars show significant statistical 

difference between the means of the levels; the means are significantly different when 
they have no letter in common.  Acetic acid inhibition on the ethanol specific 

production rate starts at 2 g/L + whereas this inhibition is not significant on the yield.  
Ethyl acetate inhibition on both specific production rate and yield is significant at 10 

g/L in presence of acetic acid; while this number is 20 g/L + with no acetic acid in the 
media.  The error bars indicate the standard deviation. 
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4.4.4 Solvent Recycle 

The LLE results in Table 4-4 indicate that ethyl acetate concentration is 35.8 g/L 

in the aqueous phase after stage II which is higher than its inhibition threshold; 

therefore, it is necessary to lower the concentration of ethyl acetate below its 

inhibition level.  The solvent reduction step will also serve as the recovery and 

recycle process for the extraction solvent.  Evaporation under vacuum was selected to 

remove the ethyl acetate from the raffinate stream because of the high relative 

volatility of ethyl acetate.  Using UNIF-LL property method within Aspen Plus™ to 

estimate the vapor-liquid equilibrium of water-ethyl acetate system at different 

pressures, indicates that the relative volatility at the evaporation condition is about 

600 (at 8 KPa) (Magnussen, Rasmussen, & Fredenslund, 1981).  The azeotropic point 

of ethyl acetate and water, 8.5% wt. of water at 70.3°C (Sorensen, 1980) is not close 

to the composition of this mixture from the beginning to the end of the evaporation 

step.  Figure 4-4 shows how evaporation readily reduces the ethyl acetate 

concentration in the extracted biomass hydrolysate.  The ethyl acetate concentration 

was below the level of inhibition within ten minutes of evaporation.  Glucose, xylose, 

and acetic acid concentrations do not significantly change with evaporation; sugars 

are not volatile and acetic acid concentration is very low, around 1.0 g/L, after two 

stages of LLE. 
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Figure  4-4: Rotary evaporation effect on the samples collected after two-stage LLE 
with ethyl acetate, glucose, xylose, acetic acid, and ethyl acetate concentrations 

versus time.  Concentration of glucose, xylose, and acetic acid were not significantly 
altered during evaporation; while ethyl acetate concentration decreases to its non-

inhibitory level (5 g/L) after 10 minutes of evaporation.  The error bars indicate the 
standard deviation. 

 

4.4.5 Impact on Fermentation 

The samples collected after the rotary evaporation were used for fermentation.  

Figure 4-5 compares the four fermentation environments; 1) a reference broth 

consisting of the YEPD media with adjusted sugars content to 100 g/L of glucose, 2) 

a control broth consisting of the YEPD media with adjusted sugars content to 100 g/L 

of glucose and 10 g/L ethyl acetate, 3) liquid biomass hydrolysate after two stages of 

LLE with ethyl acetate followed by rotary evaporation, and 4) the liquid biomass 
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hydrolysate sans manipulation.  The results, shown in Figure 4-5, indicate that while 

the extraction does not modify the hydrolysate to behave like the reference broth of 

pure glucose, it does improve the performance from the hydrolysate that has not been 

subjected to LLE. 

 

Figure  4-5: The ethanol production yield of the reference and control samples, YEPD 
media with adjusted sugar to 100 g/L glucose with 0 and 10 g/L ethyl acetate 

respectively, in contrast to the ethanol production from the liquid biomass hydrolysate 
and liquid biomass hydrolysate after LLE and solvent recovery steps.  LLE with ethyl 
acetate followed by vacuum evaporation enhances the performance of liquid biomass 

hydrolysate fermentation through yield and specific production rate improvement.  
The error bars indicate the standard deviation. 

 

Statistical analysis was performed to compare the final ethanol concentration, 

ethanol production rate, and the ethanol yield between the fermentation products of 

liquid biomass hydrolysate that was subjected to LLE and the liquid biomass 

hydrolysate with no extraction.  The ethanol specific production rate was calculated 
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assuming linear production rate of ethanol after the lag phase (0-6 hours) and before 

the plateau.  The ethanol yield in these results is the final concentration of ethanol per 

maximum theoretical ethanol concentration.  The Student’s t-test revealed significant 

difference between the two extracted and non-extracted groups; when comparing the 

final ethanol content, ethanol specific production rate, and the ethanol yield.  The 

extraction on the hydrolysate resulted in a final ethanol concentration increase of 13.3% 

± 1.5, ethanol specific production rate of 13.8% ± 1.3, and ethanol production yield of 

10.6% ± 0.9. 

4.5 Conclusion 

There is a need for a scalable technology to increase the efficiency of the 

commercial scale second-generation bioethanol.  The approach for this study was to 

use liquid-liquid extraction to remove the acetic acid, followed by evaporation to 

recover the extraction solvent and to decrease it toxic effect on the yeast.  A two-stage 

LLE was sufficient to reduce the acetic acid content below the inhibition level by 

extracting 90% of the acid.  The interactive and synergistic inhibition of the acetic 

acid and ethyl acetate on yeast fermentation was demonstrated and was found to a 

significant factor.  The designed process, including LLE and evaporation, resulted in 

significant increase in ethanol specific production rate, ethanol yield, and final 

ethanol concentration. 
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Nomenclature 

γ: Activity coefficient 

µ: Chemical potential 

f: Fugacity 

f*: Fugacity of the pure compound 

G: Gibbs free energy 

K: Partition coefficient 

N: Molar amount 

P: Pressure 

R: Universal gas constant 

T: Temperature 

x: Molar fraction 
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CHAPTER 5. TECHNO-ECONOMIC ANALYSIS FOR 
INCORPORATION OF LIQUID-LIQUID EXTRACTION SYSTEM TO REMOVE 

ACETIC ACID INTO A COMMERCIAL SCALE BIOREFINERY3 

5.1 Abstract 

Mitigating the effect of fermentation inhibitors in bioethanol plants can have a 

great positive impact on the economy of this industry.  Liquid-liquid extraction (LLE) 

using ethyl acetate is known for its ability to remove acetic acid from an aqueous 

solution.  Extraction using ethyl acetate as the organic solvent can also remove 

fermentation inhibitors in a bioethanol production facility.  The fermentation broth 

resulting from LLE has higher performance for ethanol yield and its production rate. 

The techno-economic analyses that have studied the second-generation biofuel 

have not yet addressed the impact of removing the fermentation inhibitors on the 

economic performance of an industrial plant.  This manuscript attempts to fill the 

knowledge gap in fully analyzing the application of a separation system to mitigate 

the fermentation inhibition effect and to provide an analysis on the economic impact 

of removal of acetic acid from corn stover hydrolysate on the overall revenue of the 

biorefinery.  This study examines the pros and cons associated with implementing 

liquid-liquid extraction column along with the solvent recovery system into a

                                                
3 Chapter 5 is adapted from the manuscript “Techno-economic Analysis for Incorporation of Liquid-
Liquid Extraction System to Remove Acetic Acid into a Commercial Scale Biorefinery”. Which is in 
preparation for submission to Journal of  Biomass and Bioenergy 
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commercial scale bioethanol plant.  Using the necessary details from the NREL-

developed model of corn stover biorefinery, the capital costs associated with the 

equipment and the operating cost for the use of solvent were estimated and the results 

were compared with the profit gain due to higher ethanol production.  The results 

suggest that the additional capital and manufacturing cost were about 1 and 5.9 % of 

the total capital and manufacturing costs of the plant respectively whereas the higher 

ethanol production rate and yield resulted in $0.35 lower MESP per gallon of 

bioethanol. 

5.2 Introduction 

Current challenges facing commercialization of second-generation bioethanol 

production from sustainable lignocellulosic resources include but are not limited to: 

the biomass transport and its liquidation and the enzyme and microorganism 

inhibitors that increase the bioethanol production cost (Balan, 2014; Ladisch, 

Ximenes, Engelberth, & Mosier, 2014).  A thriving bioethanol industry is possible if 

higher yields of bioethanol can be achieved in every step of the production process 

(Sassner, 2008).  Cost estimation studies have shown that the most promising cost 

reductions were achievable through enhanced fermentation kinetics to increase the 

reaction rates and reduce residence time (Stephen, Mabee, & Saddler, 2012). 

It was previously demonstrated that the use of liquid-liquid extraction (LLE) to 

remove acetic acid, a ubiquitous fermentation inhibitor, has no negative impact on the 

fermentable sugars (Chapter 3).  When ethyl acetate is used as the organic solvent, it 
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can be removed from the fermentation broth and therefore has no lasting toxicity on 

downstream fermentation.  LLE can enhance bioethanol fermentation performance by 

increasing the reaction rate and final specific ethanol yield by 14 and 11 %, 

respectively. 

Numerous techno-economic analyses have been published that evaluate the 

economic aspects for moving forward with production of second-generation 

bioethanol at an industrial scale (Aden et al., 2002; D. Humbird, Mohagheghi, Dowe, 

& Schell, 2010; Kazi, 2010; Klein‐marcuschamer, Simmons, & Blanch, 2011; 

Mussatto, 2010; Petter & Tyner, 2014; Sievers, Tao, & Schell, 2014; Wang, Ou, 

Brown, & Brown, 2015).  Each of the published techno-economic analyses has 

focused on different aspects of the second-generation bioethanol production facilities 

and how to optimize independent stages of the process.  Table 5-1 summarizes the 

stages of the corn stover biorefinery that have been considered for their impact on the 

overall economic feasibility of the bioethanol plant and how each can be improved. 
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Table  5-1: Breakdown of the areas that have been the focus of different studies for 
their techno-economic impact on an industrial scale biorefinery 

Bioethanol 
production aspect 

Areas that were 
studied Impact or measured outcome 

Biomass/feedstock 

Compositional 
variations 

Corn stover has the least ethanol 
production cost compared to woods and 
switchgrass. (Huang, Ramaswamy, Al-
Dajani, Tschirner, & Cairncross, 2009) 
An optimized unit configuration has a 
more significant impact on the economy 
than the biomass characterization 
differences. (Sassner, 2008) 
Composition variations in corn stover can 
lead up to 10 % of variation in MESP. 
(Ling Tao, Templeton, Humbird, & Aden, 
2013) 

Handling, storage, 
distribution, and 
harvest  

An MESP of above $2.27/gal makes this 
industry unattractive for farmers and 
investors. (Alex Marvin, Schmidt, 
Benjaafar, Tiffany, & Daoutidis) 

Pretreatment Different methods 
optimization  

Hot water pretreatment has the lowest 
capital cost but lime pretreatment has the 
lowest total fixed cost compared to other 
pretreatment methods. (Eggeman & 
Elander, 2005) 
Ionic liquid pretreatment is not 
economically viable compared to the other 
common practices. (Klein‐marcuschamer 
et al., 2011) 
To separate the solid and liquor after the 
acid pretreatment, vacuum filtration has 
the lowest capital cost. (Sievers et al., 
2014) 
Deacetylation and mechanic refining 
combined with dilute acid pretreatment 
can reduce the MESP by $0.23-$0.30/gal. 
(L. Tao et al., 2012) 
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Table 5-1 continued 

Enzymatic 
Hydrolysis 

Solids loading  
Solid loading of up to 30 % can 
significantly reduce the MESP. (D. 
Humbird et al., 2010) 

Enzyme 
production and 
resources  

At maximum ethanol yield the enzyme 
cost accounts for about $0.60 of the total 
MESP. (Klein‐marcuschamer, 
Oleskowicz‐popiel, Simmons, & Blanch, 
2012) 
Enzyme is the second largest contributor 
to the ethanol cost with $0.30-$0.50 / gal. 
(McMillan, Jennings, Mohagheghi, & 
Zuccarello, 2011) 

Fermentation 

Microorganism 
strain  

Optimum fermentation configuration can 
decrease MESP up to $0.27/ gal. (Dutta, 
Dowe, Ibsen, Schell, & Aden, 2010) 

Fermentation unit 
configuration  

S. cerevisiae can provide the most 
economically attractive bioethanol. 
(Meyer, 2013) 

By-product 
integration  

DDGS  
Integrating DDGS as a co-product 
increases MESP from $2.18 to $2.27. 
(Wang et al., 2015) 

Lignin 

Utilization of lignin in biorefinery can 
greatly enhances the biorefinery 
performance. (Holladay, White, Bozell, & 
Johnson, 2007) 

Acetic acid  

Acetic acid can be produced for $2.51/gal 
at a pulp mill biorefinery with 550 
tonne/day capacity. (Mao, Genco, van 
Heiningen, & Pendse, 2010) 

Ethyl acetate 

Cost effective production of ethyl acetate 
from bioethanol and bio-acetic acid is 
feasible through different technologies. 
(Hong Thuy, Kikuchi, Sugiyama, Noda, & 
Hirao, 2011) 

 

Table 5-1 clearly indicates that the focus of the techno-economic studies thus far 

has been on specific configuration of a single unit – simultaneous saccharification, 

continuous process, etc. – and not on optimization of units surrounding fermentation.  
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It has been shown that S. cerevisiae in a separate saccharification and fermentation 

unit along with the option of organic acid production, as co-products, was the most 

favorable option (Meyer, 2013).  The impact of varying fermentation configuration, 

implemented in an earlier NREL-developed model (Wooley & Putsche, 1996), 

demonstrated that at the highest achievable ethanol concentration but under the 

lowest performance setting there is a noticeable reduction in MESP – as much as 

$0.27/gallon ethanol (Dutta et al., 2010).  On the other hand integrating the 

bioethanol production with co-products, such as acetic acid along with ethanol, has 

shown to increases the sustainability and economic stability of biorefinery (Mao et al., 

2010; Van Heiningen, 2006). 

There remains a need for a more thorough understanding of the impact of 

inhibitor removal from the biomass hydrolysate on the economic aspects of a 

commercial scale second-generation bioethanol plant. 

The novelty of this manuscript lies within the techno-economic analysis of using 

an eco-friendly, non-toxic solvent to increase bioethanol production through both rate 

and yield enhancement.  The recyclability of the extraction solvent promotes its 

sustainability which falls within the overall long-time goal of embracing second-

generation bioethanol as viable energy source.  As previous study suggested (in 

Chapter 4), adopting a liquid-liquid extraction system is an efficient technique to 

remove known fermentation inhibitors regardless of the biomass type and the species 

of fermenting microorganism.  Though exact kinetics of the inhibition of acetic acid 

and other known inhibitors on the ethanol producing microorganisms requires 
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additional study (Athmanathan, Sedlak, Mosier, & Ho, 2010; David Humbird, 

National Renewable Energy, & Harris Group, 2011; Mohagheghi et al., 2014), the 

straight-forward, linear equations that have been used in these calculations are 

expandable for use at various flowrates, with different materials of constructions, a 

range of years of operation, and different compositions of feedstocks.  The 

comparative analysis that has been incorporated into this systematic study clarifies 

the most important parameters that determine whether or not liquid-liquid extraction 

can be a viable addition to an existing biorefinery.  

5.3 Materials and Methods 

The basis for this study is derived from the NREL model (David Humbird et al., 

2011) which simulates a 61 million gallon per year ethanol production plant from 

corn stover.  The parameters related to the total capacity of the plant the flowrates and 

the revenue that were used in this set of calculations were extracted from this model.   

The economic analysis of the proposed fermentation inhibitors removal system is 

performed using the cost breakdown algorithm (Turton, 2012).  Cost estimations 

associated with chemical processing facilities are categorized into capital and 

operational or manufacturing costs.  Incorporating a liquid-liquid extraction unit to 

remove the fermentation inhibitors, would alter the economy of the biorefinery 

mainly due to purchasing cost of new equipment (extraction column and the solvent 

recovery unit) and the extracting solvent.  On the other hand, enhanced production of 

the bioethanol – through yield and rate– would increase the sale and overall flowrate 

of the plant.  A six-tenth model was incorporated when necessary to adjust the 
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equipment pricing to the sizing relevant to the capacity of this biorefinery (Turton, 

2012). 

The sizing of the flash drum was estimated using the Aspen Process Economic 

Analyzer (Aspen Tech Inc., Burlington, MA) linked to the Aspen Plus ™ simulation 

file that was created to model the extraction and solvent recovery unit.  Furthermore 

the Aspen Process Economic Analyzer was incorporated to use the data and predict 

the flash drum purchasing cost as well as the rest of the costs related to capital 

(installing, piping, etc.) and manufacturing (labor, maintenance, etc.) for this system.  

The detailed economic report is provided in Appendix D.  

Flooding velocities calculations (Seader, Henley, & Roper, 1998) were used along 

with the known flowrates in the extraction column to estimate the cross sectional area 

of the extraction column.  These sizing parameters and the assumed retention time 

were used in the tray column cost analysis (Peters, Timmerhaus, & West, 2003) for 

purchasing cost estimation.  

To understand the impact of the ethanol specific production rate on the overall 

flowrate of the products, the fermentation rates were implemented in the reactor 

design kinetics equations.  Cell growth, glucose consumption, and ethanol production 

rates were extracted from Pearl (1927) using the assumptions and coefficients from 

later studies (Athmanathan et al., 2010; Ghose & Tyagi, 1979).  

The assumptions in this study are mentioned in the appropriate sections of the 

manuscript; detailed discussion of the assumptions can be found in Appendix C. 
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5.4 Results and Discussion 

Economic evaluation of chemical process plants involve considering both capital 

and manufacturing costs associated with each step of the plant.  Therefore, it was 

necessary to assume that incorporating a liquid-liquid extraction system into an 

existing biorefinery would alter the economic dynamic of the process in terms of 

column and solvent recovery units as the fixed and the solvent purchasing as the 

manufacturing cost, while profiting from the sale of additional ethanol produced from 

an increased throughput due to a higher fermentation rate.  As a result, this study aims 

to investigate the following: purchasing cost of the extraction column, solvent initial 

cost and its recovery procedure, excess sale of ethanol, and impact of higher 

fermentation rate.  Figure 5-1 shows the schematic diagram of a corn stover 

biorefinery and where the proposed system (in green) as implemented in the NREL 

system. 
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Figure  5-1: Schematic diagram of the main stages of corn stover biorefinery and 
where the solvent removal system is being incorporated.  The unit operations and 
streams in green were the focus of this study.  The unit operations in black were 

already present in the NREL Aspen Plus™ simulation files. 
 

5.4.1 Cost of the extraction column 

The major equipment for the LLE addition includes the flash drum and a tray 

column.  At the industrial scale, the vacuum evaporation unit can be modeled as a 

flash drum.  More detailed analysis includes piping and installation costs as well. 

Flooding calculations (Seader et al., 1998) were performed using the aqueous and 

organic phase flowrates given by the NREL model.  The cross sectional area of the 

LLE column was determined from the flooding calculations and preferred column 

type (sieve plate tray column).  By varying the retention time and the flowrates, the 

length of the column was also approximated.  The sizing characteristics implemented 

in the empirical models for column cost estimations (Turton, 2012), adjusting for the 
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cost year index, and the materials of construction suggested by the NREL study are 

used for column cost calculation.  Figure 5-2 depicts the linear relationship between 

the flowrate of the organic solvent and the cost of the extraction column.  The line on 

the plot specifies the desirable partition coefficient (KAA=the ratio of the acetic acid 

concentration in organic phase over the aqueous phase) of 3.5.  At solvent to feed 

volume ratio of 1, purchasing cost for the extraction column is $970,000 which 

accounts for less than 1 % of the total equipment cost of the biorefinery plant. 

 

Figure  5-2: The purchasing cost of the extraction column as a function of the flowrate 
and the volume ratio of the solvent stream.  The line on the plot shows the minimum 

solvent flowrate needed to achieve acetic acid partition coefficient (KAA) of 3.5 which 
makes the LLE process efficient to remove the acetic acid from biomass hydrolysate. 
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5.4.2 Initial and recovery cost of the solvent 

Previous study suggested that simple vacuum evaporation would recover ethyl 

acetate (Chapter 4).  Two flash drums were implemented following the extraction 

column connected to the two exiting streams from the extraction column.  The 

purpose of the first flash drum, connected to the extract stream, was to separate the 

acetic acid from ethyl acetate to enable the recycle of the solvent within the extraction 

column.  A second flash drum was connected to the raffinate stream and was used to 

evaporate ethyl acetate from the aqueous phase – being pumped to the fermentation 

reactor – below its inhibition point. 

The Aspen Process Economic Analyzer, along with ASME design code, was used 

to estimate the total cost of these flash drum at $490,202 for the conditions specified 

in the simulation.  The total cost for the evaporation module was estimated to be 

$980,404. 

Initial purchasing cost of the solvent is a function of the flowrate of the needed 

solvent as well as the retention time in the column.  Figure 5-3 shows the effect of 

solvent flowrate (and the solvent to feed ratio) on partition coefficient of acetic acid.  

Conclusively more than 300,000 kg/hr flow of solvent is essential to obtain 

satisfactory extraction performance (KAA greater than 1) to remove enough of acetic 

acid below its inhibition threshold (2 g/L of acetic acid significantly reduces the 

fermentation rate. 
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Figure  5-3: Solvent flowrate and solvent to feed volume ratio effects on the partition 
coefficient of acetic acid.  At flowrates above 300,000 kg/hr (=0.87 solvent to feed 

volume ratio) KAA starts to increase exponentially (starting from KAA=4).  A flowrate 
of 350,000 kg/hr (corresponding to solvent to feed volume ratio of 1) is the point 

where KAA equals 12.8 and makes the liquid-liquid extraction efficient to remove the 
acetic acid. 

 

The extent of the importance of the purity of the solvent on its performance in 

extracting the acetic acid is demonstrated in Figure 5-4.  Ethyl acetate will dissolve 

acetic acid in each run through the extraction column and if recycled without 

removing acetic acid, its extractability drops significantly.  Figure 5-4 shows the 

significant impact of acetic acid present in the solvent stream on the acetic acid 

partition coefficient in the extraction column; any amount more than 1.2% wt. of 

acetic acid drops the partition coefficient below one which makes the extraction 
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column completely inefficient.  Only at 0.2 wt. % and below of acetic acid the 

partition coefficient gets above 3.6. 

 

Figure  5-4: Acetic acid content and its corresponding weight fraction in the solvent 
stream impact on the partition coefficient of acetic acid through the extraction column.  
Acetic acid content in the solvent stream has a very strong negative effect on KAA.  At 
0.2 wt. % the acetic acid partition coefficient is 3.6 and at 1.2 wt. % (5000 kg/hr) the 

partition coefficient drops to less than 1 (0.8). 

 

Figures 5-3 and 5-4 clarify that at sufficient flowrate and purity, ethyl acetate can 

remove the necessary amount of acetic acid from the biomass hydrolysate.  The 

solvent stream entering the extraction column should have a flowrate above 300,000 

kg/hr with less than 0.2 % wt. acetic acid content to achieve an acetic acid partition 

coefficient of ≥ 3.6 during the extraction process. 

Vapor-liquid equilibrium  predicted using the UNIFAC property methods set – 

was used to determine the optimum temperature for the flash drum at 10 % vacuum 

(8KPa) to obtain reasonable relative volatility of acetic acid over ethyl acetate for the 
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first flash drum and ethyl acetate over water for the second flash drum.  The relative 

volatilities acetic acid and water were found to be 6.15 and 250, respectively at 

14.8 °C and 41 °C.  At the optimized conditions in flash 1, 100 wt. % of ethyl acetate 

is collected in the vapor phase exiting the unit, gets liquefied at ambient pressure, and 

then recycled to solvent storage.  In flash 2, 99.6 wt. % of ethyl acetate, which was 

dissolved in the aqueous phase, evaporates.  This decreases the ethyl acetate 

concentration below its inhibition in the stream that is entering the fermentation 

reactor (as shown in Chapter 4); while the vapor is being recycled to the solvent 

storage tank.  These two flash drums collect over 99.9 wt. % of ethyl acetate in each 

run (3499000kg/hr from a total of 350000 kg/hr).  Figure 5-5 illustrates the recovery 

of ethyl acetate from flash drums 1 and 2.  

 

Figure  5-5: The recovery of the solvent from the two flash drums.  The percentages 
on the recycled solvent streams indicate the percentages of ethyl acetate recovered in 

the vapor stream compared to the amount that entered the drum. 
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The annual purchasing cost of the solvent is a linear function of solvent 

recyclability.  99.9 % recovery in each run means that 0.1 wt. % (350 kg/hr) of ethyl 

acetate from the solvent storage has to be added to the solvent stream at each run and 

this amount keeps accumulating over the course of the year that the plant is 

continuously running.  The amount of the solvent that has to be purchased annually to 

replace the lost solvent was added up to $7,800,000.  When 99.9 % of the solvent is 

being recovered at each run of the extraction, the annual purchasing cost of the 

solvent ($7,800,000) adds 5.9 % to the total estimated manufacturing cost of the plant 

calculated by the NREL model.  Figure 5-6 further demonstrates the annual cost of 

the solvent increases as percent of the recovered solvent decreases and clarifies the 

importance of achieving high recovery of ethyl acetate followed by the extraction unit. 

 

Figure  5-6: The purchasing cost of the solvent per year as a function of the recovery 
percentage of the solvent.  The purchasing cost of the solvent increases linearly with 

decrease in ethyl acetate recovery. 
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5.4.3 Excess sale of ethanol 

Various studies have been conducted to recover ethanol from fermentation broth.  

Pervaporation is a well-studied method (Bolto, Hoang, & Xie, 2011; Jin et al., 2011) 

with optimized operational conditions (Peng, Shi, & Lan, 2011).  Sorption (Kim, 

Hendrickson, Mosier, Ladisch, & Hilaly, 2011) and liquid-liquid extraction (Egan, 

Lee, & McWhirter, 1988) were also viable for ethanol dehydration techniques.  The 

NREL model incorporated a distillation column for initial product recovery, so for the 

sake of comparison, same was applied in this study. 

Energy requirements to recover and purify ethanol increase as more ethanol is 

produced.  The distillation process to recover ethanol produced in a sugar 

fermentation unit was modeled and it was determined that the steam required per unit 

of ethanol is a function of the ethanol content present in the broth (Zacchi & Axelsson, 

1989).  

Using the steam tables (Harvey, 1998), to find the enthalpy (kJ/kg) of the steam at 

the conditions of the steam generator of the NREL model – 125 psig and 164 °C –, 

and the unit price of the steam (Turton, 2012) the dollar amount of steam needed for 

ethanol distillation can be obtained.  The net changes in ethanol sale was estimated 

based on the beer flowrate leaving the fermentation reactor and the change in its 

ethanol content times the MESP (Minimum Ethanol Selling Price) minus the steam 

cost to recover that amount of ethanol.  It was assumed that the other costs associated 

with distillation, such as reboiler, condenser, and pump sizes, as well as the corrosion 

rate, were not going to change in the range of 0.2 to 12 % wt. of ethanol content.  
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Figure 5-7 displays the steam price and the ethanol sale – MESP of $2.15 – in one 

plot and it illustrates that separation costs were negligible when compared to the sale 

increase from higher bioethanol concentration. 

 

Figure  5-7: The effect of the ethanol content in the fermentation broth on the cost of 
steam to recover the ethanol as well as its impact on the net changes in the revenue of 

the biorefinery.  The cost of the steam used to recover the ethanol from the 
fermentation broth was negligible compared to the profit gained by the excess ethanol 

sale as the net change in revenue line has a linear relationship with the wt. % of 
ethanol despite increasing amount of steam needed to recover the ethanol. 

  



82 
 

5.4.4 Impact of higher fermentation rate 

An improved fermentation rate results in shorter residence times in the bioreactor 

which translates into either smaller bioreactor size or higher flowrate of the pre-

fermentation broth.  Higher total flowrate of the fermenting streams will cause higher 

annual production. 

Material balance on a batch reactor leads to Equation 1 (Levenspiel, 1979) where 

tR is the residence time at the reactor, Ni0 is the starting molar content of the i 

compound in the mixture, Xi is fraction of the i compound, VR is the reacting volume 

of the vessel, and ri is the kinetic rate of compound i. 

tR=Ni0 ∫
dXi

-VRri

Xie
0      (1) 

For ethanol anaerobic fermentation reaction, the glucose consumption rate and 

ethanol production rate were estimated with Equations 2 and 3 respectively.  In these 

equations, G is the glucose, P the product (ethanol), and C the cell mass 

concentrations.  Vmax is the maximum rate of the reaction, Pmax,g is the maximum 

tolerable concentration of ethanol by the microorganism, YP/G is ratio of production 

over consumption, and n is an arbitrary number to fit the inhibition term (Ghose & 

Tyagi, 1979). 

dG
dt =-vmaxC(1- P

Pmax,g
)
n
    (2) 

dP
dt =-YP/G

dG
dt     (3) 
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Under the designed NREL conditions for fermentation, the inhibition effect of 

ethanol was negligible and therefore the ethanol production rate equation was not a 

function of ethanol concentration.  Substituting ri in Equation 1 with Equation 3, 

shows that the retention time has an inverse linear relationship with the rate of the 

reaction.  Hence it is safe to conclude that since the retention time decreases with 

higher production rate, the flowrate will increase linearly with higher production rate. 

Therefore 14 % of higher ethanol production rate (as shown in Chapter 4) will 

increase the fermentation broth flowrate by about 14 % as well and this will translate 

to 514,203 kg/hr of beer exiting the bioreactor instead of 451,055 kg/hr and 20 

M$ /year of excess ethanol (about 12 % increase) at 5.4 % wt. of ethanol content.  

5.4.5 Sensitivity Analysis 

Breakeven calculations (Sen, 2012) to obtain MESP showed the significant 

impact of solvent recovery percentage.  The results indicate that the at the conditions 

of this study, 11% higher ethanol yield lowers the MESP by $0.09, however the rate 

increase of 14% reduces the MESP by $0.16 per gallon.  Combining the effect of 

yield and rate increase has even a more significant drop in the MESP of $0.35 

compared to MESP of the NREL model. 

Table 5-2 summarizes the costs and profits associated with the LLE system and it 

shows that the most pronounced cost imposed by liquid-liquid extraction system on 

the overall economic balance of the plant is introduced by the purchasing cost of the 
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solvent.  Therefore sensitivity analyses were performed on the impact of the solvent 

cost on the MESP. 

Table  5-2: The costs and profits associated with inserting a liquid-liquid extraction 
system in a corn stover biorefinery to remove acetic acid from pre-fermentation broth 

 Sources Amount 

Costs 

Fixed Column $ 970,000 

Flash drums $ 980,404 

Variable Solvent $/year 7,800,000 

Profits 
Improved ethanol yield $/year 18,200,000 

Improved flowrate $/year 21,000,000 

 

Sensitivity analysis is performed to show how MESP changes with yield and/or 

rate increase in the fermentation process with respect to the cost of purchasing the 

solvent per year.  The results in Figure 5-8 indicate that solvent recovery has a 

prominent impact on the MESP at all of the three different scenarios.  In scenarios 1 

and 2, the fermentation improves by 11 % yield and 14 % production rate increase 

respectively and the results were very close with the first scenario being marginally 

competitive with NREL-calculated MESP at lower than 38×106 $/year solvent cost.  

Scenario 3 however combines the 11 % yield and 14 % production rate improvements 

to breakeven point MESP calculation and it shows significant drop in the MESP.  The 

three scenarios tend to merge at lower solvent annual cost and diverge at higher 

solvent annual cost.  Adapting liquid-liquid extraction system lowers the MESP from 

$2.15/gallon when the annual purchasing cost of the solvent is 38×106 and lower. 
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Figure  5-8: Sensitivity analysis on MESP with varying solvent annual purchasing cost 
for three scenarios, 1) 11 % increase in the ethanol yield through the fermentation, 2) 

the 14 % increase in the ethanol production rate, and 3) both ethanol yield and 
production rate improvement implemented together.  The line on the graph indicates 

the MESP estimated by NREL-developed model. 

 

5.5 Conclusion 

Side-by-side comparison of the two major costs with two major sources of excess 

profit leads to concluding that solvent cost is primary concern for adapting this 

fermentation inhibitors removal system into an existing corn stover biorefinery. 

The fixed costs that were being added to the capital cost of the plant was less than 

1 % and the purchasing cost of the solvent added 5.9% to the total manufacturing cost, 

the profit gained by the excess ethanol sale outweighs the manufacturing and capital 

cost. 
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In this study, major fixed expenses (i.e. land acquisition) and variable expenses 

(i.e. piping and labor costs) were assumed to be included in the existing biorefinery.  

It can be concluded that adaptation of this system as fermentation inhibitors removal 

technology is greatly depended on the recovery stage of the solvent.  When high 

percentage of solvent can be recovered at low cost then liquid-liquid extraction to 

remove acetic acid is an economically viable choice to add to a corn stover 

biorefinery plant.  Sensitivity analysis indicated that MESP greatly decreases when 

the effects of ethanol yield and production rate enhancements, through liquid-liquid 

extraction, are combined in the system. 

List of Abbreviations 

NREL: National Renewable Energy Laboratory 

MESP: Minimum Ethanol Selling Price 

LLE: Liquid-Liquid Extraction 

UNIFAC: UNIQAC (Universal Quasi-Chemical) Functional-group Activity 

Coefficient 

AA: Acetic Acid 

DDGS: Distiller’s Dried Grain with Solubles 

 



87 
 

CHAPTER 6. SUMMARY AND CONCLUSION 

6.1 Restatement of the objectives 

The objectives stated in Chapter 1 were addressed throughout this dissertation.  

The three main areas that were studied include: 

6.1.1 Solvent selection studies 

This study demonstrated that shorter chain esters, namely ethyl acetate and butyl 

acetate, were performing well in extracting acetic acid from corn stover hydrolysate.  

6.1.2 Fermentation performance 

The tests proved that solvent recovery is a necessary tool to eliminate the toxicity 

effect of the organic solvent.  It was shown that when acetic acid is removed from 

biomass hydrolysate, fermentation performance enhances in terms of yield, final 

concentration, and specific production rate of ethanol. 

6.1.3 Techno-economic analysis 

Through this analysis it was clear that the purchasing cost of the solvent is the 

biggest contributor to the cost estimation of this system.  Achieving high solvent 

recovery is essential to lower the MESP in the process.
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6.2 Chapter summaries 

Chapter 1 introduced bioethanol as the sustainable resource for liquid 

transportation fuel and stated the importance to improve the technology to produce 

bioethanol from lignocellulosic biomass.  This background and the challenges for 

overcoming the inhibition effect of the pretreatment degradation products were 

discussed in this chapter and led to the objectives that motivated this research. 

Chapter 2 gave an overview of the state of the art of the methods and techniques 

that have shown to mitigate the inhibition effect of acetic acid on different strains of 

Saccharomyces cerevisiae.  The pros and cons associated with each of the separation, 

gene modification, and adaptation methods were evaluated.  Literature review lead to 

discovering the gap of knowledge that exists in optimizing and systematically 

assessing liquid-liquid extraction for the purpose of fermentation inhibitors removal. 

Solvent selection results were discussed in Chapter 3.  The criteria that were 

implemented to narrow down the selection of organic solvents in the Aspen Plus 

simulation model seemed to be in good agreement with the laboratory experiments 

that were conducted to further test the selected solvents.  The nine solvents that were 

broadly studied have very low miscibility with water and low affinity to the 

fermenting sugars. 

Fermentation studies in Chapter 4 revealed the significant impact of liquid-liquid 

extraction on the performance of S. cerevisiae NRRL Y-1546.  In order to pinpoint 

the level of toxicity of ethyl acetate in presence of acetic acid, synergistic inhibition 
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experiments were conducted.  Simple vacuum evaporation was shown to be effective 

in removing the organic solvent from the broth.  Improvements in yield, ethanol 

content, and ethanol production rate proved the significant positive effect of liquid-

liquid extraction on bioethanol production process. 

Techno-economic analysis in Chapter 5 gave a prospective on the economic 

aspect of incorporating the liquid-liquid extraction system in a corn stover biorefinery 

plant.  The specifics for this study were extracted from an earlier Aspen Plus™ model 

of a 61Mgal/ year bioethanol production plant with corn stover as feedstock.  Capital 

and manufacturing costs that are associated with this system are mainly related to the 

extraction column and the purchasing cost of the solvent.  Sensitivity analysis of the 

impact of the fermentation enhancement and solvent recovery on MESP (Minimum 

Ethanol Selling Price) indicated that high percentage of the solvent recovered and 

making use of both yield and rate improvements are necessary to significantly 

decrease the MESP. 

6.3 Recommendations for future work 

This work can be extended in two major categories:  

1. Exploring science behind organic solvent inhibition: 

It was shown that ethyl acetate and butyl acetate have severe toxicity impact on 

NRRL Y-1546, however the inhibition and toxicity mechanism of these esters at 

different pH is not known.  Complete genomic studies on acetic acid effect on many 

different types of ethanol producing microorganisms at different condition have 
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already been published; however the exact inhibition effect of the other organic 

solvent is an area that needs further investigation.  This study will be helpful to have a 

more detailed and scientific understanding on the impact of liquid-liquid extraction 

with organic solvents on the bioethanol fermenting yeasts. 

2. Engineering studies on scale-up and detailed economic and energy balance of 

the liquid-liquid extraction and solvent recovery system: 

The fermentation performance at the pilot scale must be verified improve the 

accuracy of the assumptions for commercial scale outcome.  Implementing pilot scale 

fermentation results in a detailed techno-economic study can result in a better 

understanding of the changes in fermentation parameters after removing acetic acid 

with ethyl acetate.  As examples: if glucose and xylose consumption rates change, 

what is the effect on total production rate?  Is ethanol production a linear function of 

the rate changes?  How will the co-products increase in volume?  How does the un-

recycled solvent change the waste treatment of the facility? 

Life cycle assessment through energy balance and carbon footprint studies of the 

system within the boundaries of biorefinery is other latitude of this project that can be 

further developed in later studies.  Both pilot scale and life cycle assessment results 

will help move forward the developing second-generation biofuel industry. 
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Appendix A Schematic Diagram of the Parr Reactor 

 

Figure A-1: The components are the Parr reactor (Model 4530, Parr Instrument Company, 
Moline, IL) a) the controller, the stand, and the heating element, b) the coil and magnetic 

stirrer, and c) the 2 liter vessel 

 
Figure A-2: The schematic diagram of the Parr reactor and the Sussman boiler 

a) c) b) 
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Appendix B Inhibition Effect of Ethyl Acetate on glucose consumption by 

NRRL Y-1546 in Bioethanol Fermentation 

The growth of cell yeast follows Equation 1(Pearl, 1927): 

dC
dt =μC(1- C

Cmax
)(1- P

Pmax,grow
)
n
   (B-1) 

Where C is the cell mass concentration, Cmax is the maximum concentration of the 

cell, P is the product concentration, Pmax,grow is the maximum concentration of product in 

which the cell growth is possible, n is the Levenspiel constant of the inhibition term, and 

μ is the specific growth rate of the cell. 

Ghose et al. (1979) estimated n as 1 and Pmax,grow as 87 g/L for the bioethanol 

fermentation. 

The substrate consumption rate therefore can be studied with Equation 2. 

dS
dt =-( vmaxS

Km+S )(1- P
Pmax

)
n
C   (B-2) 

Where S is the substrate concentration, vmax is the maximum consumption rate, and 

Km is the Monod constant which represents the rate when the substrate consumption is 

half of the initial value. 

In bioethanol fermentation the substrate is glucose.  In this case n is estimated to be 1 

(Brown, Oliver, Harrison, & Righelato, 1981) and Pmax to be 140 g/L (Athmanathan, 
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Sedlak, Mosier, & Ho, 2010).  Considering the low Km in glucose consumption, 0.315,  

(Maiorella, Blanch, & Wilke, 1983) compared to the high initial amount of glucose (100 

g/L in this work), Equation 2 can be replaced by Equation 3 because Km<<S. 

dG
dt =-vmaxC(1- P

Pmax,G
)
n
     (B-3) 

In this case the production rate of ethanol is linearly related to the glucose 

consumption rate with yield constant (YP/G) (Equation 4). 

dP
dt =-YP/G

dG
dt      (B-4) 

In this work the ethanol final concentration reaches 50 g/L at 100 % yield, therefore it 

is safe to assume that the ethanol inhibition term in Equation 3 is negligible.  The 

fermentation experiments were started with an initial cell mass concentration of 1 g/L 

which makes for minor the cell mass concentration gradient over time.  Therefore for this 

study the glucose consumption rate can be modeled with Equation 5. 

1
C

dG
dt =-vmax,G×(Inhibition term of ethyl acetate) (B-5) 

The fermentation data with no inhibition was used in the built-in solver tool in 

Microsoft Excel to estimate vmax,G for this yeast strain, and it was calculated at 4.003 

g/g/h (data not shown). 

In order to find the inhibition term in Equation 5, the specific glucose consumption 

rate of each fermentation experiment was calculated by fitting a first order linear equation 

to the data after the lag phase and before the plateau.  The slope of this linear equation 
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divided by the cell mass concentration equals the specific consumption rate of glucose at 

each condition.  Plotting the natural logarithm of the rates versus the ethyl acetate (Figure 

B-1) concentration shows an apparent correlation. 

 

Figure B-1: The linear relationship between the natural logarithm of specific rate of 
glucose consumption and ethyl acetate concentration present in the media with no other 

inhibition 

This linear equation can be incorporated in Equation 5 to showcase the ethyl acetate 

impact on the specific rate of glucose consumption in bioethanol production by NRRL y-

1546. 

1
C

dG
dt =98.82×e-0.1408×Ethyl acetate concentration(g

L)   (B-6) 
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Appendix C Equations and Tables Used in the Cost Estimation and Analysis 

Part I: Mass balance and unit conversion factors 

Initial cost of the solvent = unit cost of the solvent ($/kg) ×volume ration of the 

solvent to feed ×flowrate of the stream to the fermenter (kg/hr) ×retention time of the 

extraction column (hr) 

The cost of the solvent per year = (initial cost of the solvent/years of operation of the 

plant) + initial cost of the solvent ×(1-fraction of the recovered solvent per run) ×runs 

per year 

The steam price to recover the ethanol ($/year) = unit steam price ($/kJ) × steam 

needed per unit ethanol (kJ/kg) (Zacchi & Axelsson, 1989)×ethanol production (kg/year) 

Part II: Constants, equations and tables used from the engineering textbooks 

Unit steam price (Turton, 2012) = 14.05 $/GJ 

- Extraction Column Cross Sectional Area Estimation (Seader, Henley, & Roper, 

1998) 

- Unlike vapor-liquid columns, designing liquid-liquid extraction columns are 

complex and not as straightforward.  One way to estimate the cross sectional area of an 

extraction column is by estimating the sum of flooding conditions as 50 % of the total 

actual superficial phase velocities. 
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Table C-1 is reconstructed based on table 8.6 from Seader et al. and is a useful tool to 

select the appropriate total superficial phase velocity depending on the column type. 

Table C-1: The range of characteristics for different extraction columns (Seader et al., 
1998), HETP refers to the “Height Equivalent to Theoretical Plate” and UD+UC refers to 

total superficial phase velocity 

Extractor Type 1/HETP, m-1 UD+UC, m/h 

Packed column 1.5-2.5 12-3 

Pulsed packed column 3.5-6 17-23 

Sieve-plate column 0.8-1.2 27-60 

Pulsed-plate column 0.8-1.2 25-35 

Schiebel column 5-9 10-14 

RDC 2.5-3.5 15-30 

Kuhni column 5-8 8-12 

Karr column 3.5-7 30-40 

RTL contactor 6-12 1-2 

- Cost of the extraction column  

The model fitted to the equipment costs by Turton (2012) was used to estimate the 

purchasing cost of the extraction column based on its size.  In Equation C-1, Cp
0 is the 

cost of the equipment at ambient pressure and carbon steel as constructing material, A is 

the size of the equipment, and K1, K2, and K3 are empirical constants fitted to specific 

equipment type and its description. 

Log10Cp
0=K1+K2log10(A)+K3[log10(A)]2  (C-1) 

The constants for the tray and packed towers are K1=3.4974, K2=0.4485, and 

K3=0.1074. 
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Equation C-1 is normalized for 2001 prices therefore the cost indices of 2011 and 

2001 (from table 7.4 of Turton) was used to adjust the calculated price with equation C-2, 

since the NREL model was also developed in 2011. 

C2=C1(I2/I1)      (C-2) 

In Equation C-2, C2 and C1 are the cost of the equipment in year 2 and 1, and I2 and I1 

are the cost indices of these years respectively. 

Part III: Properties that were extracted from the NREL model (Humbird, National 

Renewable Energy, & Harris Group, 2011) 

- Years of the operation of the plant = 30 years 

- Operating hours in year = 8410 hours 

- MESP (Minimum Ethanol Selling Price)= $2.15 

- Flowrates 

Stream 501 (the beer leaving the fermentation unit) = 451055 kg/hr 

Stream 301(the stream leaving the pretreatment unit to the bioreactor) = 383574 kg/hr 

- Materials of construction 

The fermenters are assumed to be made of 304SS.  

- Physical conditions of the streams, steams, and blocks 

The steam is produced at the steam generator at 900 psig and 850 °F; 35 % of this 

steam is being used for distillation at 125 psig and 164 °F.  Using the steam table (Harvey, 

1998) the enthalpy of this steam is 2770 kJ/kg. 

There are five fermenters in this simulation each 950,000 gallon capacity with 36 

hours of residence time.  
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- Capital and manufacturing cost breakdown  

Total installed equipment cost of this plant is $232,000,000; Table C-2 gives the 

detailed list of the equipment cost. Total capital investment is estimated to be 

$422,500,000.  Total manufacturing cost per year of operating the biorefinery is 

$131,500,000 per year and Table C-3 lists the sources of these costs.  

Table C-2: The capital cost of the corn stover biorefinery plant ($) 

Parameter Value 
Pretreatment 29900000 
Naturalization/conditioning 3000000 
Saccharification & fermentation 31200000 
On-site enzyme production 18300000 
Distillation and solid recovery 22300000 
Wastewater treatment 49400000 
Storage  5000000 
Boiler/turbogenerator 66000000 
Utilities  6900000 

Table C-3: The manufacturing cost of the corn stover biorefinery plant ($/year) 

Parameter Value 
Feedstocks + Handling 45200000 
Sulfuric Acid 1500000 
Ammonia 4000000 
Glucose  11800000 
Other raw materials 7900000 
Waste disposal 1500000 
Net electricity -6600000 
Fixed costs 10700000 
Capital depreciation 13400000 
Average income tax 7500000 
Average return on investment 34600000 
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Table C-4: The economic parameters used in MESP calculations 

Parameter Value Unit 
Total operating cost 95,064,356 $/year 
Electricity revenue 6,600,000 $/year 
Discount Rate 10% - 

Total project investment 
422,500,00

0 $ 
Tax Rate 35% - 
Equipment life span 30 year 
Depreciation period 7 years 
Depreciation cost 13,400,000 $/year 
Return on investment 34,600,000 $ 

Part IV: The rate of reactions in batch reactors 

Using the material balance in a batch reactor and assuming well-mixing and 

uniformity at all time results in Equation C-3 and C-4, which at constant volume they can 

be further rearranged to Equation C-5. (Levenspiel, 1979)  

Input-output=accumulation + disappearance  (C-3)  

0= −dNA/dt= (−rA)V     (C-4) 

t= −∫ dCA −rA
CA

CA0
      (C-5) 

In these equations, rA is the reaction rate of compound A, NA is the molar amount of 

A, CA is the concentration of A, CA0 is the initial concentration of A, V is the total reactor 

volume, and t is time.  Appendix B includes the fermentation reaction rate derivations 

and assumptions. 
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Part V: The Aspen Plus ™ model  

Figure C-1 shows the PFD (Process Flow Diagram) of the Aspen Plus ™ simulation 

that modeled the acetic acid extraction and solvent recovery system.  This model was also 

used to perform the sensitivity analyses that were reported in Chapter 5. 

 

Figure C-1: PFD of the liquid-liquid extraction and flash solvent recovery system 

In this model the “Extract” block is the extraction column with 30 trays and operating 

at ambient pressure and 25 °C.  “Flash1 and 2” refer to the flash drum used to recover the 

solvent from both raffinate and extract streams at 40 °C and 60 mmHg – Chapter 4 –.  

“Solvent” and “Feed” streams enter the column at the first and last tray at 25 °C.  The 
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property method of choice for this simulation was UNIF-LL.  For the purpose of vapor-

liquid equilibrium data generation the property method was changed to UNIFAC. 

Part VI: Minimum Selling Price of Ethanol (MESP) calculation 

These equations are derived from Sen et al. (2012) selling price calculations.  At a 

breakeven point the total revenue and total cost are equal.  We can break down the total 

revenue to biofuel revenue (BR) and the revenue from electricity sale (ER).  This total 

equals the summation of operating cost (OC), return on investment (ROI), and income 

tax (IT) as shown in Equation C-6. 

BR+ER=OC+ROI+IT    (C-6) 

In this equation the income tax is defined as the multiplication of the tax rate (TR) on 

the total revenue minus the total cost.  Equation C-7 is showing this relationship. 

IT=TR×(BR+ER−OC−DC)   (C-7) 

These equations make it possible to estimate the amount of the biofuel revenue, using 

the total capacity of the biorefinery it is possible to estimate the per gallon price of 

ethanol. 

The data that were extracted from the NREL-developed model for MESP calculations 

are presented in Table C-4.   
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Appendix D Labor and Maintenance Costs 

The labor and maintenance cost for different sections of the separation system as 

estimated by the Aspen Process Economic Analyzer are presented in Table D-1. 

Table D-1: The breakdown cost of the separation system in US dollars 

Prime Contractor Labor Cost Maintenance Cost Total Cost 
Equipment 11,602 478,600 490,202 
Piping 28,191 101,301 129,491 
Civil 66,488 85,199 151,687 
Steel 5,282 28,696 33,978 
Instrument 11,283 322,847 334,130 
Electrical 57,618 388,720 446,339 
Paint 8,976 5,604 14,580 
Direct Subtotals 189,439 1,410,968 1,600,407 
Construction 
Equipment and 
Indirect 

  203,500 

Construction 
Management, Staff, 
and Supervisor 

  208,000 

Fright   56,400 
Taxes and Permits   88,200 
Engineering   499,700 
Other Project Costs   210,306 
Contingency   515,972 
Indirect Subtotals   1,782,078 
Contract Totals 189,439 1,410,968 3,382,485 
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