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GLOSSARY

Community - A community is a set of nodes in a network that is densely connected
internally.

Community detection - The ability to detect a community structure in a network is
known as community detection (Girvan & Newman, 2002).

Modularity - It is a quality measure for partitions. It is a numerical value between -1 and
1, which is an index of how good the partitions are (Newman, 2002).



ABSTRACT

Shanbhag, Sunanda V. M.S., Purdue University, May 2016. A Faster Version of Louvain
Method for Community Detection for Efficient Modeling and Analytics of Cyber Systems .
Major Professor: John Springer.

Cyber networks are complex networks with various hosts forming the entities of
the network and the communication between them forming the edges of the network.
Most cyber networks exhibit a community structure. A community is a group of nodes
that are densely connected with each other as compared to other nodes in the network.
Representing an IP network in the form of communities helps in viewing the network
from different levels of granularity and makes the visualization of the network cleaner
and more pleasing to the eye. This will help significantly in cyber attack detection in
large scale cyber networks. In order to serve this purpose, it is important to retrieve the
community structure fast, before the damage done by the attacker spreads and
compromises the system.

This research is an effort to bring about fast community detection of large cyber
networks. The Louvain method, which is one of the most popular modularity
optimization algorithms, is studied thoroughly and modified to make it faster, while

preserving the quality of partitions at the same time.



CHAPTER 1. INTRODUCTION

This chapter gives a brief introduction to the research conducted. The
introduction chapter includes a description of the problem statement, the research
guestion, the scope of the research and its significance. It also specifies the assumptions,

limitations and delimitations of this research.

1.1 Problem Statement

This research was a study based on fast community detection in large scale cyber
networks for cyber security applications. Detecting communities in large scale networks
helps in obtaining multiple levels of granularity, which can make detection of cyber

attacks in large networks easier.

1.2 Research Question

Does the modified version of Louvain method proposed in this study perform
faster than the original algorithm, along with preservation of accuracy, for large scale

cyber systems?



1.3 Scope

Graph analytics has become very popular for many Big Data problems. Some
of these problems include social network analysis, semantic searches, biological and
chemical studies, network analysis and Cybersecurity. This study focuses on graph
analytics for Cybersecurity. Cybersecurity studies involve analysis of the Internet in
order to find anomalies in the network. The Internet has been growing physically,
functionally and geographically (Ge, 2001). This study considers only the physical
aspect of the Internet. The physical structure of the Internet shows its topology and
the interaction between the network hosts, routers and servers in the form of a
graph. A large IP network consists of millions of nodes and numerous edges between
these nodes, indicating the traffic between the nodes. This cyber traffic analysis
forms the base for analysis of Cybersecurity of the system. The traffic information can
be represented by graphs, where the hosts form the vertices and the traffic between
hosts forms the edges. These graphs can be used for analysis. However, many
algorithms for graph analytics, which are designed for small graphs, are very
inefficient while working with very large graphs. “Recent years have witnessed a
substantial new movement in network research, with the focus shifting away from
the analysis of single small graphs and the properties of individual vertices or edges
within such graphs to consideration of large-scale statistical properties of graphs”
(Newman, 2003, p167). The use of multi-scale graphs makes the analysis of large-

scale networks easier. Multi-scale graphs are traditional graphs paired with a



hierarchical partition of its nodes (Hogan, Hui, Choudhury, Halappanavar, Oler, &
Joslyn, 2013).

This study worked on one community detection algorithm, the Louvain method, to
make it work faster on large networks along with preserving the quality of communities

detected.

1.4 Significance

The Internet is a global network connecting millions of computers. Individuals
and organizations can connect to any place on the network at any time, irrespective of
the geographic boundaries. Global organizations have large cyber networks, which are
used to store and transfer data globally. Most of this data is confidential. It includes
personal information of the customers and employees as well as confidential business
data or intellectual property of the organization. While the Internet has made life easier
and more fun for most individuals and organizations, it has also led to an increase in
their vulnerability to attack or intrusion. According to the Ponemon Institute that
annually provides cross-country and cross-industry information, security and data
breaches resulted in an average financial impact of US$9.4 million in 2013 and the
numbers will increase significantly in the future years (Biener, Eling, & Wirfs, 2015). A
report prepared for the World Economic Forum estimates total economic losses from
cybercrime in 2009 in the United States alone at more than USS500 million (Biener,
Eling, & Wirfs, 2015). Cyber space is vulnerable to many attacks and risks. Breach of

such data may lead to severe problems. Cyber attacks can range from a minor attack on



an individual to major attacks on big organizations, leading to major losses. The attacks
that target government and critical infrastructure can become a national security issue.
Hence, it is very important to detect attacks. Also, it is important to identify the attacks
before the damage done by them goes beyond control. Fast detection of attacks helps

in controlling the damage done by the attacks on the network.

Cybersecurity has become a topic of utmost importance lately. Due to the
increasing popularity of the Internet, the amount of communication and transfer of data
over the network has been increasing at a very high rate. Cybersecurity analysts have to
work with a large number of packets in order to analyze large networks for cyber attack

detection.

Graph analytic techniques are widely used on cyber traffic data. However, these
techniques are computationally intensive, mainly because of the need to do the analysis
on such a large number of nodes. Hence, graph partitioning techniques are used in
order to divide the graphs into subgraphs that together represent the whole graph. Each
subgraph is known as a supernode. A graph is formed using these supernodes and
analytics is conducted on this smaller shrunken graph. Clustering of nodes of the graph
to form a supernode can help solve the issue mentioned above in two ways. Firstly, it
will help in detecting communities in the network. Each community will represent a
group of nodes that have high interaction with each other. A graph of communities will
let cyber defenders analyze the network at different levels of granularity (Hogan et al.,

2013). This will make the detection of an attack and victims affected easier. Secondly,



efficient visualization of large networks makes analysis significantly easier. A clustering
algorithm finds subgraphs, each of which is then replaced with a meta-node as a cluster.
In this way, a coarse graph is obtained by replacing all subgraphs with their
corresponding meta-nodes (Huang, X. & Huang, W., 2015). A graph that has less number
of nodes and is representative of the original graph makes it visually more
understandable. One of the requirements of visualizations is that they should aid in real-
time analysis (Huang, et al., 2015). Hence, using a clustering algorithm that is slow won’t
be very useful. A fast community detection algorithm will provide communities faster,

which in turn will lead to a faster analysis.

1.5 Assumptions

The assumptions of this study were:

1. The hardware used for implementing the algorithms was constant and worked
with equal efficiency and reliability for each algorithm.

2. The dataset used was an anonymized dataset. The loss due to data
anonymization did not affect the results.

3. According to Girvan and Newman (2004), values of modularity for networks with
a robust community structure fall within the range of 0.3 and 0.7. For this study,
if the modularity value is above 0.5, the quality of partitions made by the

algorithms was considered good.



1.6 Limitations
The limitations of this study were:
1. As this study focused on the runtime of the algorithm, it could have led to loss of
precision to some extent.
2. As the dataset is anonymized, the hardware specification of the components of

the network is not known.

1.7 Delimitations
The delimitations of this study were:

1. This study did not include any work on intrusion detection techniques. It
focuses only on graph partitioning techniques.

2. This study did not solve the general problem. It addresses only a part of it.

3. Even though the results of this study might be useful in other areas, this study
focused only on requirements of cybersecurity applications.

4. This study considered community detection of static networks only.
Community detection in dynamic networks was out of the scope of this
research.

5. This study considered only modularity and the Louvain algorithm. It does not
include other metrics or algorithms for comparison.

6. This study used only source IP and destination IP address for community



detection. Consideration of port numbers or any other characteristic of the network

was out of scope.

1.8 Summary

This chapter introduced the research being conducted by the researcher. Along
with the scope and significance, the assumptions, limitations and delimitations of the

study were mentioned too.



CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter gives details about the relevant literature that was studied by the
researcher in order to strengthen the theoretical framework for this research. Please
note that the use of symbols and formulas followed the convention used by the authors
of the relevant literature. This thesis attempted to cite cases where the notation was

adopted from other sources.

2.1 Approach to this Review

The literature review starts with explanation of a few commonly occurring cyber
attacks, which can be detected by analyzing the network traffic and looking for
anomalous behavior in it. Further, it gives a description of cyber networks in the form of
graphs. This is followed by explanation of community detection and the graph metrics

and algorithms used to detect communities in networks.

2.2 Cyber Attacks

As the Internet grows, failures and attacks can cause damage on a significantly
larger scale. Computers and devices are connected to each other in the network. An

attack on a device can propagate the effect of the attack to the devices it is connected



to, hence degrading the performance of the network as a whole (Park, Khrabov,
Pennock, Lawrence, Giles & Ungar, 2003). Most attacks are characterized by anomalous
behavior over the network. An unusual traffic pattern observed in a network could
indicate the presence of an attack in order to transmit data to unauthorized

destinations (Ahmed, Naser Mahmood, & Hu, 2016).

2.3 Cyber Networks as Graphs

As mentioned in section 2.2, large scale cyber networks include hosts and the
communication between them. This information can be best described in the form of a
graph.

In simple mathematical terms, a graph is the representation of a set of entities
(vertices) and a set of connections between these entities (edges). The graph theory has
vast applications in many research areas. Graphs are extensively used in chemistry.
According to Balaban (1985), graph theory, especially the concept of isomorphism,
provides a strong basis for studies in chemistry. Graph coloring is extensively used in
scheduling applications, like job scheduling, aircraft scheduling, etc. Graphs also
represent social networks very efficiently. Network security is another important
application of graph theory in the field of computer science. Other applications include
efficient routing, information networks and many others. This study focuses on using
graphs to make network traffic analysis for cybersecurity more efficient.

The relationships between entities, represented by edges, describe a lot about

the network. Analysis of these relationships leads to detection of various activities and
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events happening over the network that wouldn’t have been detected by analyzing
entities alone (Bliss & Schmidt, 2013). Anomalous behavior of nodes with other nodes of
the network can be an indication of a cyber attack. Unusual patterns or trends in the
traffic can be detected by analyzing the communication between nodes of the network.
One scenario for unusual patterns is high volume of data being transferred between two
nodes. Some attacks that come under this category are flooding based DDoS attacks,
exfiltration and ping flood attacks. The communication of a source IP with unusually
high number of destinations also can be categorized as an anomaly. The source device in
such cases is known as super spreader (Liu, 2013). All these vulnerabilities involve study

of the communication patterns within nodes of the network.

Many vulnerability scanners identify vulnerabilities in a specific host. However,
this identification in isolation is not very useful when a large network with many hosts
is involved (Ammann, Wijesekera, & Kaushik, 2002). The effect of an attack on one host
on the rest of the hosts in the network needs to be considered, in order to get an
estimation of the damage done by an attack over the network. This analysis can be
done using various graph concepts and theories, where the graph will be the large
network under threat. Graph concepts such as reachability and degree of nodes can be
used to analyze the graphs and find out the extent of damage of an attack on the

network.
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2.4 Community Detection

One of the most common topics related to large graphs is community detection.
An informal definition of community structure is the organization of nodes in modules,
such that the density of edges within a module is large compared to that between
different modules (Fortunato, 2010). This feature of graphs is very widely used in
disciplines where graphs are used as representation of the system.

Identifying communities has gained popularity for many reasons. Communities
formed in large graphs divide the graph into fairly independent parts. Hence, working
on individual independent parts makes the work easier and faster. For many cases
where graphs are used for representation, the size of the graph gets too big to do
computation for each node. In case of cyber networks, the graph consists of millions of
nodes. The structure of such a network is usually examined at a high level, either at a
level with nodes that control the movement of data, or groups of computers within
which networking is high as compared to the networking with the rest of the network.
Community detection also helps in visualizing dense networks. Efficient visualization of
large networks makes analysis significantly easier. A clustering algorithm finds
subgraphs, each of which is then replaced with a meta-node as a cluster. In this way, a
coarse graph is obtained by replacing all subgraphs with their corresponding meta-
nodes (Huang, X., & Huang, W., 2015). A graph that has less number of nodes and is

representative of the original graph makes it visually more understandable.
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2.5 Community Detection Algorithms

“A general approach for solving many large-scale graph problems, as well as
most other classes of large-scale computational science problems, is through multilevel
(multiscale, multiresolution, etc.) algorithms” (Ron, Safro, & Brandt, 2011, p407). Graph
analytics works better if there is a coarse version of the graph, with communities of
nodes, such that the communities form a coarse graph that represents the structure
and properties of the original graph. Working on such graphs is faster than working on
each host of the original network, especially for very large graphs with millions of
nodes and edges. Community structure detection is considered to be a data analysis
technique to explore features about the structure and behavior of a network. This
section will shed some light on the various approaches taken for community detection

in large networks.

2.5.1 Graph Metrics
While partitioning a graph into isolated subgraphs, the quality of the subgraphs
needs to be considered. Various graph metrics have been used in previous studies,
which quantify the quality of the partitions. This section will give a brief description of

the various metrics that help in quantifying the quality of the partitions.



2.5.1.1 Edge Betweenness

One of the first metrics used for modern age community detection was
edge betweenness. Vertex betweenness was studied and first proposed by
Freeman (1977) as a measure of centrality of the vertex in the network. Girvan and
Newman (2002) generalized Freeman’s betweenness centrality to edges, which led
to the introduction of edge betweenness. For an edge, it is defined as the number

of shortest paths that run along it.

2.5.1.2 Modularity

Girvan and Newman (2004) defined a new metric, known as modularity. It was
introduced as a stopping condition for the community detection algorithm that uses
edge betweenness to calculate modules. Modularity is now used very widely for
community detection and analysis of quality of partitions. This quantity measures the
fraction of edges within a community less the expected value of the same fraction

(Girvan & Newman, 2004).

Q= Zi(eii —a;)

where a; = ¥ e;;, which represents the fraction of links that connect to the nodes in
community (Girvan & Newman, 2004).
“The modularity of a partition is a scalar value between -1 and 1” (Blondel,

Guillaume, Lambiotte, & Lefebvre, 2008). According to Girvan and Newman (2004),

13
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values of modularity for networks with good community structure fall within the

range of 0.3 and 0.7.

2.5.1.3 Edge clustering coefficient

Edge-clustering coefficient was a local quantity used by Radicchi, Castellano,
Cecconi, Loreto, and Parisi (2004) to make their algorithm computationally less
intensive. It is the ratio of number of triangles or loops that the edge belongs to, to the
number of loops that it might potentially be a part of. The main idea behind this
calculation was that the nodes that are members of the loop would belong to the same

community, as they are tightly knit to each other.

2.5.1.4 Similarity

Tan, Poletto, Guttag, and Kaashoek (2003) have considered a metric, which
involves finding the similarity between hosts of an enterprise network in order to do the
grouping to coarsen the graph. The grouping algorithm described in the paper classifies
the nodes into groups depending on their connection habits. The partitioning is done
based on the value of similarity between pairs of hosts. A high similarity value means
that the 2 hosts have more chances of being grouped together. The main challenge is to
calculate the similarity. For this, the term connection has been defined as a pair of
hosts, which have a connection between them. A set of connections C(h) for a host h

consists of all hosts which are connected to h (Tan et al., 2003). According to the paper
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by Tan et al. (2003), once the connection set C is defined for all hosts, the similarity is
defined as:

similarity(hy, h,) = |C(hy) N C(h,)]
Thus, similarity between 2 nodes is the number of neighbors common to both the

nodes.

2.5.2 Algorithms

This section will shed some light on the various approaches taken for
community detection in large networks. Each algorithm uses some metric to quantify
the quality of the partitions made.

Radicchi et al. (2004) have divided the graph partitioning and community
identification into two types: agglomerative and divisive. Agglomerative algorithms
start with all nodes and no edges. Links are added iteratively depending on appropriate
metrics in order to group nodes together into communities.

Girvan and Newman (2002) introduced one of the first modern age community
detection algorithms. The Girvan Newman algorithm (GN algorithm) is a hierarchical
divisive algorithm wherein communities are detected using “edge betweenness”. The
edges that connect communities will have high edge betweenness. The algorithm
involves calculating the edge betweenness for all edges and removing the edges with
highest value of betweenness. The betweenness of the affected edges is recalculated.
These two steps are repeated until no edges are left. The main disadvantage of this

approach is the speed. This algorithm is very slow, with a worst case running time of
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2 3
O(m n), where m is the number of edges and n the number of vertices, or O(n") for a

sparse graph, where m is approximately equal to n. Another major disadvantage of this
algorithm was that it provided no guidance on the optimal number of communities a
network should be split into. (Newman, 2004) This means that this algorithm will make
divisions in the graph even if the division makes no sense and isn’t necessary.

In order to address the problems mentioned above, Newman (2004)
introduced a new algorithm, which was much faster as compared to previous
algorithms and gave excellent results on real networks. This algorithm is a hierarchical
agglomerative algorithm, which uses modularity as the metric to quantify the quality

of the partitions. The modularity is calculated as follows:

Q= Zi(eii —a;)

where eii is the fraction of edges within module i and ai is the fraction of edges with
one end in module i (Newman, 2004). The algorithm starts with n communities, where
n is the number of nodes. Initially, each vertex is the only member of one of the
communities. In each step, communities are joined in pairs, depending on the gain in
modularity. The communities that give maximum increase or minimum decrease in
gain are chosen for the join. The gain in modularity is calculated by Newman (2004)
using the following formula:

AQ = e;j + e;j — 2a;a; = 2(e;j — a;a;)
The worst-case running time of this algorithm is O((m+n)n), or O(nz) on a sparse graph.

Clauset, Newman, and Moore (2004) performed the same greedy optimization of
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modularity in their algorithm. However, they exploited some shortcuts for finding the
optimization of modularity and used more sophisticated data structures to make the
algorithm run faster. They used a heap tree of community pairs and a max heap of

community pairs sorted by the modularity gain on merging of each community pair.
2
Their algorithm has a running time of O(nlog n) (Clauset et al., 2004).

Blondel et al. (2008) have introduced another method to extract the
community structure from large networks. They have used the Louvain method for
community detection. The metric used to check the quality of the partitions is the
modularity of the partition. Previous studies have introduced and optimized
modularity for detecting communities in the network. Clauset et al. (2004) proposed
the fastest approximation algorithm for optimization of modularity on large-scale
networks. However, this method has a few drawbacks. It may produce significantly
low values of modularity as compared to the values given by some other algorithms.
Also, it has the tendency to group nodes together on networks that do not have a
significant community structure. This algorithm addresses these drawbacks. This
algorithm has been chosen for study and improvisation by the researcher. This
method is explained in detail in the next section.

Duch and Arenas (2005) proposed a divisive algorithm that involves a different
way of optimizing the modularity Q. Modularity is optimized using a heuristic search
based on Extremal Optimization (EO) algorithm, which was proposed by Boettcher and
Percus (2002). In extremal optimization, individual solution components are assigned a

quality measure, known as “fitness”. In this modularity optimization problem by Duch &
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Arenas (2005), the fitness measure will be related to the contribution of a node i to the
calculation of Q, given a partition

Qi = K:(j) — kiar (1)
where K.(i) is the number of links that i has with nodes within community r and k; is
the degree of node i. The contribution of node i to the modularity is given

mathematically by:

w=1=(%2)- a0
The value of Ai is the fitness of node i (Duch & Arenas, 2005). The algorithm begins with
the partition of the network into two subgraphs. The system then self-organizes by
moving nodes with low fitness value to the other partition. The fitness value of affected
nodes is recalculated. This is repeated till maximum value of modularity (Q) is reached.
After this, all the edges between the two partitions are deleted. The same is done for
each community to obtain multiple communities until the value of Q does not improve
further. In comparison to the GN algorithm, this algorithm could dive deeper into the
communities to find out communities that were difficult to reveal (Duch & Arenas,
2005).

There is some literature on community detection and graph coarsening in the
cybersecurity field too. There have been approaches that have been taken to find
modular structures in cyber networks for security applications.

Hogan, Johnson, and Halappanavar (2013) have used graph coarsening in order

to find paths in the cybersecurity graph. A cybersecurity network can be represented as
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a graph with nodes as vertices and the communication between them as edges. This
study is narrowed down to a particular type of attack known as pass-the-hash attack.
This attack targets single sign-on systems. When a user enters the password to log on,
the hashed value of the password is hacked by the attacker. This hash value can then be
used on other systems linked with the one to which the user logged on. The attacker
does not need the cleartext password. Once the hacker gets access to the
administrator, he can get more passwords, which will help him escalate the damage.
This problem deals with reachability within the graph. One of the constraints while
moving along the graph is that the credential in the credential store of the initiating
machine must match a local administrator credential on the machine that is being
logged into. “We define the reachability graph as the subgraph of the enterprise
network topology created by starting with all nodes that have high value credentials
(e.g. domain controller) and recursively adding edges to machines that meet these
criteria” (Hogan, Johnson, et al., 2013). This reachability is computed by coarsening the
graph. Traditional graph and matrix sparsification techniques speed up certain graph
algorithms. However, these techniques might result in loss of some paths. Hence, the
concept of graph minor has been used to coarsen the graph. A single edge is contracted
at a time, depending on the degrees of the two vertices connected by this edge. This
affects as few paths as possible. This form of graph coarsening gave a good

approximation of the paths in the graph.
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Hogan, Hui, Choudhury, Halappanavar, Oler and Joslyn (2013) have presented
initial results of their research related to multiscale cybersecurity modeling. The
research was with “the intent of achieving an efficient approximation of the system’s
state while trading off some level of precision in the process, with the intent of gaining
an asymmetric advantage over a potential cyber attacker” (Hogan, Hui, et al., 2013).
The concepts developed during this research will help in the efficient analysis of cyber
systems for cyber security and defense. This study focuses on the mathematical
concepts, without considering the application in the cyber space. A multiscale graph can
be viewed as a traditional graph with hierarchical partitioning of its nodes. Each
partition results in a set of vertices, which are grouped together as a supernode. After
multiple levels of partitioning, the original graph is converted into a graph of
supernodes. The edges between these supernodes are aggregate functions of the
weights of all edges between the supernodes in consideration. This aggregate function
returns a single value as the weight of the edge between the supernodes (min, max,
mean, etc.). Hogan et al. (2013) have laid a foundation to use a multiscale graph
approach to model cyber networks, for which, they have developed a multiscale version
of the Floyd-Warshall algorithm. This version of the algorithm has two parts: one part
calculates the diameter of the supernode while the second part calculates the array of

minimum distances between supernodes. The time complexity improved from over

3 2
O(N7) to O(N '), where N is the number of vertices in the original graph. The inference of
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this study was that multiscale variants of basic algorithms could improve the efficiency
significantly in exchange for loss in precision.

In this study, Hogan, Hui, et al. (2013) have also considered reachability in the
multiscale scenario. Multiscale reachability is defined as follows: “Given two supernodes,
) and rtik, are all nodes within rtik reachable from all nodes within 1tj? If there is no path

nn

from 1t to ¥ in G; then clearly the answer is “no”” (Hogan, Hui, et al., 2013). However,
the converse does not hold true. Connectivity between two supernodes does not mean
that all subnodes of the supernodes are connected. A probabilistic approach towards

reachability is discussed, in order to compute the probability that a subnode from rt/ is

connected to a subnode nik, given that the two supernodes are connected.

2.6 The Louvain Method

This study focuses on using the Louvain method for large cyber networks. The
Louvain method is an algorithm that carries out greedy optimization of modularity. The
maximization of modularity is an NP complete problem (Brandes et al., 2006). Hence,
several algorithms have been proposed in order to optimize modularity greedily in order
to get good partitions in a reasonably fast way. This method is one of the best
modularity optimization algorithms.

The Louvain method is an agglomerative algorithm that starts with each node
assigned to a unique community. This algorithm runs multiple passes till the best

partitions are achieved. Each pass further consists of two phases. In the first phase, for
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each node i, the gain in modularity is calculated if the node is removed from its
community and placed in the community of each of its neighbors. The modularity is

calculated using the following formula:
1 kik;
Q=g [0 = 2] 29
L
Here, A is the adjacency matrix representing the graph, k; = Z]-Aij is the total weight

of links going in nodeiand m = ﬁZi,j A;; is the total link weight over the whole

network (Blondel et al., 2008). The equation used by Blondel et al. (2008) to calculate

the gain in modularity is:

_|Bin At ki ((Ztot + kl-)>2] _[zin (E)Z _ (ﬁ)z l

2m 2m 2m 2m 2m

Here, Xin is the total link weight inside community C, Xtot is the sum of the link weights
incident to community C, k; is the sum of the weights of the links incident to
node i, k; ;, is the sum of the weights of the links from i to nodes in Cand m is the sum
of the weights of all the links in the network (Blondel et al., 2008).

The node i is removed from its community and placed in the community of the
neighbor that gives maximum modularity gain, only if the gain is positive. In case there
is no positive gain, i stays in its own community. The second phase of the pass is to
create a new network whose nodes will be the communities calculated in the first phase.
The weights between the new nodes are calculated by adding up all the weights
between the nodes of the corresponding communities. The two phases are then carried

out iteratively on the network created in the previous pass.
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This algorithm is extremely fast due to the fact that the number of communities
reduces drastically after the first few passes, making the amount of computations less in
the later passes. Also, the gains in modularity are very easy to compute with the given

formula. The time complexity of this algorithm is O(m), where m is the number of edges

in the network.

2.7 Summary

This section gave a background about the study and related literature. This
research involved studying the Louvain method and code thoroughly and trying to add

heuristics to it to make it run faster.
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CHAPTER 3. METHODOLOGY

This chapter gives details about the methodology and framework used in this
study. This includes the hardware and software setup, the variables and the

modifications carried out in the original algorithm.

3.1 Research Framework

The aim of this research was to study the Louvain method thoroughly and look
for places where heuristics could be added to make the algorithm run faster, while
preserving the accuracy at the same time. The results obtained were in the form of a
statistical analysis, which brought about a comparison of the running time of the original

algorithm and the modified algorithm proposed in this study.

3.2 Code Modifications and Heuristics added

This section includes a quick recap about the original Louvain algorithm and the
heuristics and modifications added by the researcher in order to make the algorithm run
faster.

The detailed implementation of the Louvain method is given in Section 2.6. The

Louvain method starts with a partition where each node is in its own community. The
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algorithm moves around and considers each node of the community in a random order.
Each node is moved into its neighboring communities in order to look for an
improvement in the modularity value (Q). AQ denotes the difference in modularity as a
result of removal of node i from its community and insertion into a neighboring
community C. Node i is inserted into the neighboring community that gives maximum
gain in modularity. This is repeated until there is no further improvement in the
modularity value. After this, a new graph is created using the formed communities and
the same steps are followed till maximum gain in modularity is achieved.

The researcher started working on the algorithm by profiling the original
implementation. In that process, it was observed that almost 40% of the time taken by
the algorithm was spent on removing the node i from its community, placing it in every
neighboring community and calculating the modularity gain. Hence, a heuristic was
added that brought down the running time spent on moving around neighbors. Instead
of considering all neighboring communities, the modified algorithm considers the
community of the neighbor with the largest weight. This way, the algorithm does not
visit every neighboring community and check the gain in modularity for that community.

The second change made by the researcher is the order in which the nodes are
considered for modularity gain calculation. The original algorithm chooses each node
randomly and carries out the removal, modularity gain calculation and insertion for that
node. Instead of choosing nodes randomly, the researcher sorts the nodes according to

the number of neighbors they have, starting with the node with least number of



26

neighbors. This heuristic is advantageous as it gives fixed results. In case of random
choosing of nodes, the community structure and modularity values might change each
time the algorithm is implemented. If the order is fixed, the community structure as well
as modularity value is fixed.

The time complexity of the modified algorithm is O(n), where n is the number of
nodes in the network. In the original algorithm, all nodes are considered randomly and
for each node, all neighbors are considered. According to Matula (1987), the average
degree of a node is 2m/n, where m is the number of edges and n the number of nodes.

The time complexity for the original algorithm is:
2m
O(nk) =0 (TlX T) = O(m)

However, in the modified algorithm, for each node only one neighbor is
considered, which is the neighbor with maximum weight. Hence the time complexity of

the algorithm reduces from O(m) to O(n).

3.3 Drawbacks of the Modifications

One of the major drawbacks of the Louvain algorithm is resolution limit.
Resolution limit is a phenomenon where communities that are smaller than a scale are
not identified. It is a very common problem that is observed in most modularity
optimization techniques. This study does not address this problem. Considering the
order in which the nodes are considered for modularity calculation, the resolution limit

will not reduce. However, as the main aim of this study is to speed up the community
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detection process, and as the resolution limit problem is not affecting the quality of

partition drastically, the researcher did not address this issue.

3.4 Experimental Setup

All the versions of the code have been implemented on a common hardware
setup. This study used the Conte community cluster at Purdue University, provided by
Information Technology at Purdue (ITaP) Research Computing (RCAC). Conte consists of
580 nodes and most nodes consist of identical hardware. The hardware specifications of

the cluster are shown in Table 3.1.

Table 3.1: Hardware specifications of Conte

Specification Value
Number of Nodes 580
Processors per node Two 8-Core Intel Xeon-E5 + Two 60-Core Xeon Phi
Cores per node 16
Memory per node 64GB
Operating System Red Hat Linux 6 (RHEL6)
Resource manager TORQUE Resource Manager 4

3.5 Data Used
This study aimed to test the community detection algorithms on cyber networks
for cyber security purposes. Hence, the data used by the researcher was a large dataset

of IP traces in the form of packet captures (.pcap files). This section gives details about
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the data used to test the algorithms and the cleaning and preprocessing needed before

using it.

3.5.1 Source of Data

The data used in this research was an anonymized IP traces dataset obtained
from the Center for Applied Internet Data Analysis (CAIDA). This dataset contains
anonymized passive traffic traces from CAIDA’s equinox-Chicago monitor on high-speed
Internet backbone links for the year 2015. This study used only a chunk of the whole
data. The data that was used was the traces that were collected on 29" February 2015.
The traces in this dataset were anonymized for security issues. This was done using
CryptoPan prefix-preserving anonymization. The anonymized traces are stored in pcap

format and can be read using software like tcpdump, Wireshark, etc.

3.5.2 Data Format and Processing
The data was decoded and read using tcpdump. Tcpdump is a packet analyzing
tool that allows the user to display packets being sent and received over a network. It is
used to capture, view and analyze packets. As the data is already available, this study
used tcpdump only to read and save the data in readable format. Running a tcpdump
command gave details about the IP traces, including source IP address, destination IP
address, source port number, destination port number, payload length and flag values in

readable format. The data, after decryption is shown in Figure 3.1.
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bash bash ssh ar
anon.pcap

tcpdump: no suitable device found

sshanbha@conte-fe@3:/scratch/conte/s/sshanbha/CAIDA/2015/data.caida.org/datasets/passive-2015/equinix-chicago/20150219-130000.UTC$ tcpdump -ntr equinix-chicago.dirA.20150219-130
900.UTC.anon. pcap

reading from file equinix-chicago.dirA.20150219-130900.UTC.anon.pcap, link-type RAW (Raw IP)

Ir
IpP
IpP
IpP
P
P
IP
IpP
IP
IpP
ER
P
P
IpP
IF
IpP
v
P
P
IP
IP
IpP
IP
IpP
IP
P
IP
IpP
IP
IpP
IR
P
P
IpP

152.9.7.248.55418 > 102.79.222.2.18133: UDP, length 37

220.28.114.28.https > 133.178.227.8.48048: Flags [.], seq 594442847:594444245, ack 1953865638, win 147, options [nop,nop,TS val 2928785586 ecr 17093870931, length 1398
139.138.219.208.11880 > 98.150.32.136.17218: UDP, length 172

192.204.191.208.http > 227.145.168.101.55588: Flags [.], seq 3996087564:3996089012, ack 1992447637, win 707, options [nop,nop,TS val 1834466902 ecr 746842868], length 1448
53.213.11.187.https > 100.228.42.246.23968: Flags [P.], seq 1456613356:1456613537, ack 801543052, win 278, options [nop,nop,TS val 1535026426 ecr 51059737], length 181
8.193.74.90.http > 136.25.189.9.41497: Flags [.], seq 3919213246:3919214694, ack 3506156044, win 1177, options [nop,nop,TS val 1467339840 ecr 3132451864], length 1448
96.153.184.198.http > 6.116.13.17.63349: Flags [.], seq 3414087395:3414088843, ack 2291198270, win 1320, options [nop,nop,TS val 3562128165 ecr 3318454591], length 1448
8.193.74.90.http > 136.25.189.9.41497: Flags [.], seq 1448:2896, ack 1, win 1177, options [nop,nop,TS val 1467339840 ecr 3132451864], length 1448

140.143.180.19.37043 > 139.163.96.106.32009: Flags [.], ack 2081827346, win 32874, options [nop,nop,TS val 384277074 ecr 2717112236], length @

192.204.191.208.http > 227.145.168.101.55588: Flags [.], seq 1448:2896, ack 1, win 707, options [nop,nop,TS val 1834466902 ecr 7468428681, length 1448
96.153.184.198.http > 6.116.13.17.63349: Flags [.], seq 1448:2896, ack 1, win 1320, options [nop,nop,TS val 3562128165 ecr 3318454591], length 1448

202.178.5.212.39427 > 158.62.19.105.domain: [|domain]

48.131.166.73.47724 > 220.221.92.76.https: Flags [P.], seq 4124886062:4124886371, ack 3614304255, win 319, options [nop,nop,TS val 29889638 ecr 2459013091], length 309
80.47.111.86.48643 > 215.158.238.236.http: Flags [.], ack 668397858, win 32723, options [nop,nop,TS val 3318745517 ecr 3316173221], length 0

146.140.45.189.ssdp > 109.91.50.218.27015: UDP, length 318

8.193.74.90.http > 136.25.189.9.41497: Flags [.], seq 2896:4344, ack 1, win 1177, options [nop,nop,TS val 1467339840 ecr 3132451864], length 1448

202.206.154.254.24701 > 145,57.157.23.35582: UDP, length 101

192.204.191.208.http > 227.145.168.101.55588: Flags [.], seq 2896:4344, ack 1, win 707, options [nop,nop,TS val 1834466902 ecr 746842868], length 1448
220.28.114.28.https > 133.178.227.8.48048: Flags [.]1, seq 1398:2796, ack 1, win 147, options [nop,nop,TS val 2928785586 ecr 17093870931, length 1398
96.153.184.198.http > 6.116.13.17.63349: Flags [.], seq 2896:4344, ack 1, win 1320, options [nop,nop,TS val 3562128165 ecr 3318454591], length 1448

50.145.207.45.https > 136.217.85.202.60056: Flags [.], ack 4029176584, win 2229, options [nop,nop,TS val 2093502561 ecr 1666188696], length @

8.193.74.90.http > 136.25.189.9.41497: Flags [.], seq 4344:5792, ack 1, win 1177, options [nop,nop,TS val 1467339840 ecr 3132451864], length 1448

96.153.184.198.http > 6.116.13.17.63349: Flags [.], seq 4344:5792, ack 1, win 1320, options [nop,nop,TS val 3562128165 ecr 3318454591], length 1448
192.204.191.208.http > 227.145.168.101.55588: Flags [.], seq 4344:5792, ack 1, win 707, options [nop,nop,TS val 1834466902 ecr 7468428681, length 1448
220.28.114.28.https > 133.178.227.8.48048: Flags [.], seq 2796:4194, ack 1, win 147, options [nop,nop,TS val 2928785586 ecr 1709387093], length 1398
192.204.191.208.http > 227.145.168.101.55588: Flags [.], seq 5792:7240, ack 1, win 707, options [nop,nop,TS val 1834466902 ecr 7468428681, length 1448
96.153.184.198.http > 6.116.13.17.63349: Flags [.], seq 5792:724@, ack 1, win 1320, options [nop,nop,TS val 3562128165 ecr 3318454591], length 1448

8.193.74.90.http > 136.25.189.9.41497: Flags [.], seq 5792:7240, ack 1, win 1177, options [nop,nop,TS val 1467339840 ecr 3132451864], length 1448

96.153.184.198.http > 6.116.13.17.63349: Flags [.], seq 7240:8688, ack 1, win 1320, options [nop,nop,TS val 3562128165 ecr 3318454591], length 1448
192.204.191.208.http > 227.145.168.101.55588: Flags [.], seq 7240:8688, ack 1, win 707, options [nop,nop,TS val 1834466902 ecr 746842868], length 1448
220.28.114.28.https > 133.178.227.8.48048: Flags [.], seq 4194:5592, ack 1, win 147, options [nop,nop,TS val 2928785586 ecr 17093870931, length 1398
223.146.230.199.29346 > 144,105.23.65.https: Flags [.], ack 2879315071, win 16560, length @

8.252.214.239.42741 > 215.158.238.53.https: Flags [.], ack 2127449523, win 26137, options [nop,nop,TS val 576503570 ecr 3221229148], length @

156.165.37.67.38736 > 215.158.140.75.https: Flags [.], ack 1630992186, win 32477, options [nop,nop,TS val 188996135 ecr 3558720956], length @

Figure 3.1. pcap data using tcpdump

The algorithm takes the source, destination and weight as input in the form of a text file

or csv file. However, it was very inconvenient to feed in the IP addresses and use data

structures for IP addresses. Hence, the IP addresses were converted to decimal values

using the following conversion:

Decimal;p = Octet1x2563 + Octet2X256% + Octet3x256' + Octet4x256°

Figure 3.2 shows a block diagram of the conversion mentioned above.



IP ADDRESS
R 4 4
OCTET 1 OCTET 2 OCTET 3 OCTET 4
01 * 2562 02 * 2563 03 * 256° 04 * 2563

Decimal equivalent of IP address

Figure 3.2. Conversion of IP address to decimal number.

3.6

Hypothesis
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Ho: There is no improvement in the runtime of the modified Louvain algorithm proposed

in this study as compared to the original algorithm.

Ha: There is an improvement in the runtime of the modified Louvain algorithm proposed

in this study as compared to the original algorithm.

In statistical terms,
Ho: pul-pu2=0

Ha: ul1-pu2<0

Where ul is the mean of the running times of the modified algorithm and u2 is that of

the original algorithm.
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3.7 \Variables
This section lists down the independent and dependent variables used to collect

the results in this study.

3.7.1 Independent Variables
The performance of the algorithms in terms of running time will vary with the
size of the network given as input, assuming that the hardware setup is constant. Thus,
the researcher tried to observe how the algorithms perform for different network sizes.
The sizes were varied in terms of nodes and edges. Hence, the independent variables
used in this study were:
1. The algorithm used:
The results were collected for the original algorithm and the modified algorithm
proposed in this research.
2. The number of nodes:
The original dataset consists of 3 million nodes. The researcher has taken
different subsets of this data, with range from 0.5 million to 3 million nodes, with
a step of 0.5 million.
3. The number of edges
The original dataset consists of 6 million unique edges. The researcher has taken
different subsets of this data, with range from 1 million to 6 million edges, with a

step of 1 million.
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3.7.2 Dependent Variables

The variables whose values are recorded and observed are mentioned in this

section. They are as follows:
1. The running time
The main property of the algorithms that is of concern in this study is the
running time of the algorithms. The modularity value is monitored only to check

if the quality of the partitions is preserved. Hence, the only dependent value is

running time.

3.8 Summary
This section described the methodology, framework and variables used in this

study
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CHAPTER 4. RESULTS AND ANALYSIS

This chapter displays all the results collected after running the Louvain method
and the modified Louvain method proposed in this study on different datasets. It also

includes an analysis of the results.

4.1 Two sample t-test

The statistical test chosen for this study was a two-sample t test. It is commonly used to
check if the difference between two groups is significantly different or not. A two-
sample t test calculates a confidence interval and does a hypothesis test of the
difference between two population means whose standard deviations are unknown.
The samples of the two groups are collected independent of each other. The test was
carried on various datasets with varying number of nodes and edges. Table 4.1 gives a

list of the different sizes of the network that were considered.

Table 4.1 Different sizes of network as input

Parameter Sizes

Number of edges (millions) 1.0 20 30 40 50 6.0

Number of nodes (millions) 05 10 15 2.0 25 3.0
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The researcher has chosen an alpha level of 0.05, which means that on repeating
the experiment multiple times the results that are obtained have a 95% chance of being
right. This level of significance was chosen as it was adequate for this study. As the
experiments were simple, a lower level of significance was not needed. A significance
level of 0.05 essentially means that if the p-value > 0.05 then the null hypothesis is not
rejected and the results obtained are not statistically significant. If the p-value is greater
than the significance level, the results obtained are statistically significant and the null

hypothesis can be safely rejected. The hypothesis that was tested in this study was:

Ho: pul-pu2=0
Ha: u1-pu2<0

where ul is the mean of the running times of the modified algorithm and u2 is that of

the original algorithm.

4.2 Results for Varying Number of Edges

This section includes all the results obtained by running the original Louvain
method and its modification on datasets having varying number of edges. The results
are shown in the form of tables showing the statistical analysis as well as graphical

representations of the results.
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4.2.1 1 Million Edges
This dataset consists of 1,000,000 unique links. Both algorithms were run 100

times on this input. The observations that were recorded are summarized in Table 4.2.

Table 4.2 Observations for 1 Million Edges

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time(s) 10.69 9.78

Modularity value 0.9565 0.9559

P value <0.0001

The p value shown in Table 4.2 is below the significance level chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the researcher can say that the modified algorithm
is faster than the original Louvain algorithm. Also, the average modularity values shown

in the table qualify the quality partitions as good.

4.2.2 2 Million Edges
This dataset consists of 2,000,000 unique links. Table 4.3 shows the results

collected for this input on both the algorithms.
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Table 4.3 Observations for 2 Million Edges

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 36.44 32.25

Modularity value 0.9262 0.9261

P value <0.0001

The p value shown in Table 4.3 is below the significance level chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the modified algorithm is faster than the original
Louvain algorithm. The modularity values for this input indicate that the quality of the

partitions has been preserved.

4.2.3 3 Million Edges
This dataset consists of 3,000,000 unique links. Table 4.4 summarizes the results
for this input. The average modularity values of the original algorithm is 0.931 and that
of the modified algorithm is 0.931 as well, indicating exact preservation of the quality of

quantities.
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Table 4.4 Observations for 3 Million Edges

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 45.37 41.46
Modularity value 0.931 0.931

P value <0.0001

The p value shown in Table 4.4 is below the significance, which is 0.05, hence,
the stated null hypothesis can be rejected. This leads to the inference that, with 95%

confidence, the modified algorithm is faster than the original Louvain algorithm.

4.2.4 4 Million Edges

This dataset consists of 4,000,000 unique links. Table 4.5 includes the results for

this input.

Table 4.5 Observations for 4 Million Edges
Algorithm Original Louvain Modified Louvain
Number of runs 100 100
Average running time 108.43 79.94
Modularity value 0.9386 0.9179

P value <0.0001
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The p value shown in Table 4.5 is below the significance level chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the modified algorithm is faster than the original

Louvain algorithm for 4 million edges. Also, the modularity values for this input are good.

4.2.5 5 Million Edges
This dataset consists of 5,000,000 unique links. The original algorithm gives an
average modularity value of 0.9388, while the modified algorithm gives an average
modularity value of 0.9376. Hence, the quality of the partitions is preserved. The details

about the results are shown in Table 4.6.

Table 4.6 Observations for 5 Million Edges

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 124.2 91.24
Modularity value 0.9388 0.9376

P value <0.0001

The p value shown in Table 4.6 is below the significance level chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the modified algorithm is faster than the original

Louvain algorithm.
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4.2.6 6 Millions Edges
This dataset consists of 6,000,000 unique links. Both the original and the
modified algorithm give an average modularity value of 0.9403. Hence, the quality of
the partitions is preserved. The details about the running time of both algorithms are

shown in Table 4.7.

Table 4.7 Observations for 6 Million Edges

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 155.6 91.4

Modularity value 0.9403 0.9403

P value <0.0001

The p value shown in Table 4.7 is below the significance level chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the modified algorithm is faster than the original

Louvain algorithm.

4.2.7 Summary of results
This section gave the results obtained after running both the algorithms on
varying number of edges. This was done in order to observe the change in performance

of the algorithms with respect to the number of nodes. Figure 4.1 shows the



improvement of the modified algorithm using a scatterplot. Figure 4.2 represents the

same results in the form of side-by-side boxplots. It is observed that the running time
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improves slightly for smaller number of edges and improves significantly for networks

with larger number of edges.
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4.3 Results for Varying Number of Nodes

This section includes all the results obtained by running the original Louvain
method and its modification on datasets having varying number of nodes. The results
are shown in the form of tables showing the statistical analysis as well as graphical

representations of the results.
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4.3.1 0.5 Million Nodes
This dataset consists of 0.5 million nodes. The details about the running time of

both algorithms are shown in Table 4.8.

Table 4.8 Observations for 0.5 Million Nodes

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 77.13 44.21
Modularity value 0.7852 0.783

P value <0.0001

The p value shown in Table 4.8 is below the significance level chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the modified algorithm is faster than the original
Louvain algorithm for 0.5 million nodes. The modularity values indicate that the quality

of the partitions is preserved.

4.3.2 1 Million Nodes
This dataset consists of 1 million nodes. The original algorithm gives an average
modularity value of 0.8148 while the modified algorithm gives an average modularity
value of 0.8126. Hence, the quality of the partitions is preserved. The details about the

results are shown in Table 4.9.
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Table 4.9 Observations for 1 Million Nodes

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 89.6 46.63
Modularity value 0.8148 0.8126

P value <0.0001

The p value shown in Table 4.9 is below the significance level chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the modified algorithm is faster than the original

Louvain algorithm for an input of 1 million nodes.

4.3.3 1.5 Million Nodes
This dataset consists of 1.5 million nodes. The details about the running time,
modularity and the statistical results after running both algorithms are shown in Table
4.10. The modularity values for the original and modified algorithm are 0.8285 and
0.8267 respectively. This indicates the good quality of the partitions for both the

algorithms.
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Table 4.10 Observations for 1.5 Million Nodes

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 99.67 57.82

Modularity value 0.8285 0.8267

P value <0.0001

The p value shown in Table 4.10 is below the significance level chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the modified algorithm is faster than the original

Louvain algorithm for this input.

4.3.4 2 Million Nodes
This dataset consists of 2 million nodes. The original algorithm gives an average
modularity value of 0.8479 while the modified algorithm gives an average modularity
value of 0.846. Hence, the quality of the partitions is preserved. The details about the

performance of both algorithms are shown in Table 4.11.



45

Table 4.11 Observations for 2 Million Nodes

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 110 57.79

Modularity value 0.8479 0.846

P value <0.0001

The p value shown in Table 4.11 is below the level of significance chosen for this
study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the
inference that, with 95% confidence, the modified algorithm is faster than the original

Louvain algorithm for 2 million nodes.

4.3.5 2.5 Million Nodes
This dataset consists of 2.5 million nodes. Table 4.12 gives a summary of the
results obtained on running both the algorithms with this dataset as input. The average
values of modularity shown in the table are above 0.5, which is the threshold for the
quality of partitions. Hence, this indicates that the quality of the partitions has been

preserved.
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Table 4.12 Observations for 2.5 Million Nodes

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 117 61.1

Modularity value 0.8569 0.8547

P value <0.0001

The p value shown in Table 4.12 is below the significance level, which is 0.05, hence, the
stated null hypothesis can be rejected. This leads to the inference that, with 95%

confidence, the modified algorithm is faster than the original Louvain algorithm.

4.3.6 3 Million Nodes
This dataset consists of 3 million nodes. The details about the running time of

both algorithms are shown in table 4.13.

Table 4.13 Observations for 3 Million Nodes

Algorithm Original Louvain Modified Louvain
Number of runs 100 100

Average running time 129.1 67.78

Modularity value 0.8663 0.8645

P value <0.0001



The p value shown in Table 4.13 is below the significance level chosen for this
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study, which is 0.05, hence, the stated null hypothesis can be rejected. This leads to the

inference that, with 95% confidence, the modified algorithm is faster than the original

Louvain algorithm.

This section described the performance of both the algorithms for different

4.3.7 Summary of Results

number of nodes. The modified algorithm worked much better than the original one in

terms of running time. The modified algorithm is almost twice as fast as the original

algorithm for each input. The scatterplot and side-by-side boxplot in Figures 4.3 and 4.4

respectively give a graphical representation of the running times.
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Box Plot for varying number of nodes
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4.4 Overall summary of results

This section gives a brief summary of the results discussed in this chapter. Tables

4.14 and 4.15 show the average running times of both algorithms.

Table 4.14 Average running times for varying number of edges

Average running time  Average running time Percentage
for Original Louvain for Modified Louvain reduction in
Size of network method (s) method (s) running time (%)

1.0M Edges 10.69 9.78 8.51
2.0M Edges 36.44 10.43 11.5
3.0M Edges 45.37 41.46 8.62
4.0M Edges 108.43 79.94 26.28
5.0M Edges 124.2 91.24 26.54

6.0M Edges 154.18 91.4 41.26




Table 4.15 Average running time for varying number of nodes
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Average running time  Average running time Percentage
for Original Louvain for Modified Louvain reduction in
Size of network method (s) method (s) running time (%)

0.5M Nodes 77.13 4422 42.67
1.0M Nodes 89.6 46.63 47.96
1.5M Nodes 99.67 57.82 41.99
2.0M Nodes 110 57.69 47.55
2.5M Nodes 117 61.1 47.78
3.0M Nodes 129.1 67.68 47.58

Figure 4.5 shows a graph representing the data in Table 4.14. It is evident from the

graph that the modified algorithm runs faster than the original algorithm. The difference

is more significant for larger graphs.
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Figure 4.5 Summary of running time for varying number of edges

Similarly, Figure 4.6 shows graphically how the modified algorithm performs better than

the original algorithm for varying number of nodes.
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Figure 4.6 Summary of running time for varying number of nodes

4.5 Summary

This chapter presents the results of this study, including all tabular and graphical
representation of the analyses. This chapter also does the hypothesis testing using the

collected results.
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CHAPTER 5. SUMMARY

This chapter is a final summary of the research conducted, the findings and the

analysis of results. It also includes relevant discussions and future scope of this study.

5.1 Conclusions

This study was conducted with the motive of making cyber network analysis
easier for cybersecurity. Community detection can be used to find a modular structure
in the network and create communities, wherein each community will have nodes that
are tightly connected with each other. Community detection to get a granular view of
the network.

After carrying out a literature review on the various community detection
algorithms and their performance on large networks, the Louvain method was chosen
for further study, as it is one of the faster algorithms for finding a modular structure in
large networks. Some heuristics were added to the algorithm to make it faster. At the
same time, the modularity value was monitored to check if the quality of the partitions
was preserved after making the modifications. Chapter 4 gives details about the results
collected. The results showed that the addition of heuristics to the algorithm helped the

algorithm speed up significantly.
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5.2 Discussions

This study considered a serial version of the Louvain method for research. Along
with adding heuristics to the serial algorithm, this study also looked into and proposed a
parallel heuristic.

There are many scenarios to be considered and addressed while parallelizing the
Louvain algorithm. They have been mentioned in a paper by Lu, Halappanavar, and
Kalyanaraman (2015). One of them is the negative gain scenario. Considering two nodes
i, belonging to C; and j, belonging to community C, are connected to any node in a
community C and both of them decide to move into community C at the same time, the
calculation of gain of modularity is affected, as two nodes are simultaneously trying to
change the value of Q (Lu et al., 2015). A solution has been proposed in this study to
address this problem. The algorithm below gives the steps for parallelizing the code

using this parallelization heuristic.
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Algorithm: Addressing the negative gain scenario and parallelizing the Louvain method. The

inputs are a graph and an array of integers that represents the neighbors of each node

(neighbor _id)

1. For each noden
2. For each neighbor i of n, set i*" bit of neighbor_id(n)
1.1 Ifn=0
1.1.1 validate=neighbor_id(n)
1.1.2 Assign a thread to n
1.2 Else
1.2.1 If (validate &neighbor_id[n]) =0
Assign a thread ton

2. Implement modularity gain calculation for all threads simultaneously

Figure 5.1 Algorithm for parallelization of the Louvain method

5.3 Future Scope

This study has many directions in which further research can be conducted.
Trying to parallelize the heuristics and adding new parallel heuristics to the code can
make it faster. This research only focused on the running time of the algorithms. The
quality of partitions can also be studied. The addition of heuristics will change the
community structure. The extent to which the community structure has changed can be
studied. It will be interesting to see if the addition of the heuristics gives better modules

than those given by the original algorithm.



54

From the results collected, it was observed that the percentage reduction in the
running time increased with an increase in the size of the network. The performance of
the proposed algorithm can be tested on larger inputs to observe the extent of

improvement for larger networks.

5.4 Summary

This chapter presents an overview of the results and a few thoughts on further

improvement of the algorithm. It also considers the possible future work on this study.
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APPENDIX



Table A Results collected for 0.5 million nodes

Original Modified
Time(s) Modularity  Time(s) Modularity
74 0.785172 45 0.783013
78 0.785268 44 0.783013
74 0.784037 45 0.783013
77 0.785206 44 0.783013
83 0.785055 44 0.783013
83 0.785252 44 0.783013
80 0.78515 44 0.783013
77 0.784653 44 0.783013
76 0.784236 44 0.783013
78 0.785076 44 0.783013
82 0.785414 45 0.783013
81 0.785136 44 0.783013
75 0.785376 44 0.783013
80 0.785089 44 0.783013
80 0.784911 45 0.783013
72 0.784501 44 0.783013
71 0.785282 44 0.783013
83 0.785039 44 0.783013
78 0.785366 45 0.783013
80 0.785118 44 0.783013
75 0.785437 44 0.783013
82 0.785424 45 0.783013
79 0.785328 44 0.783013
72 0.785227 44 0.783013
74 0.785269 45 0.783013
72 0.784295 44 0.783013
76 0.784689 44 0.783013
78 0.785565 45 0.783013
75 0.785406 46 0.783013
75 0.784374 44 0.783013
77 0.784994 44 0.783013
79 0.785197 45 0.783013
77 0.785284 44 0.783013
85 0.78515 44 0.783013
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Table A (Continued)

Original Modified
Time(s) Modularity  Time(s) Modularity
80 0.785179 44 0.783013
79 0.785326 44 0.783013
81 0.785324 45 0.783013
83 0.784372 44 0.783013
77 0.785244 44 0.783013
75 0.785194 44 0.783013
77 0.784463 44 0.783013
72 0.784911 45 0.783013
77 0.784934 44 0.783013
83 0.78514 44 0.783013
76 0.785117 44 0.783013
75 0.785259 45 0.783013
89 0.785225 44 0.783013
78 0.785389 44 0.783013
71 0.785114 44 0.783013
89 0.785365 44 0.783013
74 0.785131 44 0.783013
78 0.784948 44 0.783013
74 0.785287 44 0.783013
83 0.785278 44 0.783013
74 0.785252 45 0.783013
78 0.785155 44 0.783013
75 0.785414 44 0.783013
77 0.78489 44 0.783013
77 0.785393 44 0.783013
75 0.785169 45 0.783013
75 0.785181 44 0.783013
72 0.784371 44 0.783013
78 0.785254 45 0.783013
74 0.785346 44 0.783013
78 0.78525 44 0.783013
71 0.785163 44 0.783013
80 0.785171 44 0.783013
74 0.785322 45 0.783013
78 0.785257 44 0.783013
83 0.785283 44 0.783013
87 0.785223 44 0.783013
75 0.785133 44 0.783013
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Table A (Continued)

Original Modified
Time(s) Modularity  Time(s) Modularity
75 0.785204 44 0.783013
72 0.785356 44 0.783013
80 0.785085 44 0.783013
75 0.785307 44 0.783013
80 0.785269 44 0.783013
73 0.785143 45 0.783013
74 0.785102 44 0.783013
72 0.785292 44 0.783013
72 0.785118 44 0.783013
78 0.785488 44 0.783013
71 0.785008 44 0.783013
75 0.785104 44 0.783013
86 0.784533 44 0.783013
77 0.785032 45 0.783013
78 0.785275 44 0.783013
74 0.785228 44 0.783013
75 0.785009 44 0.783013
75 0.785042 44 0.783013
74 0.785163 44 0.783013
77 0.78508 44 0.783013
80 0.785317 44 0.783013
72 0.785342 44 0.783013
72 0.785458 44 0.783013
79 0.785289 44 0.783013
85 0.785029 44 0.783013
75 0.785215 44 0.783013
74 0.78512 45 0.783013
73 0.785371 44 0.783013
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Table B: Results collected for 1 million nodes

Original Modified
Time(s) Modularity Time(s) Modularity
87 0.814818 47 0.812592
87 0.814659 47 0.812592
88 0.815008 47 0.812592
82 0.815004 46 0.812592
84 0.814882 47 0.812592
82 0.81489 46 0.812592
94 0.815115 46 0.812592
99 0.814941 47 0.812592
87 0.815057 46 0.812592
94 0.815107 47 0.812592
91 0.814836 47 0.812592
109 0.815097 46 0.812592
92 0.814848 47 0.812592
88 0.814853 47 0.812592
87 0.81489 47 0.812592
81 0.814866 46 0.812592
85 0.814046 46 0.812592
95 0.814647 47 0.812592
85 0.814964 47 0.812592
82 0.814931 46 0.812592
92 0.814674 46 0.812592
84 0.8149 47 0.812592
90 0.814811 46 0.812592
97 0.815028 47 0.812592
94 0.815151 47 0.812592
82 0.814992 46 0.812592
85 0.815037 47 0.812592
101 0.814732 46 0.812592
85 0.814849 47 0.812592
98 0.81487 46 0.812592
136 0.814808 47 0.812592
91 0.814883 46 0.812592
92 0.8149 47 0.812592
88 0.814705 47 0.812592
91 0.813704 46 0.812592
85 0.814704 47 0.812592
88 0.814927 46 0.812592
88 0.814994 47 0.812592
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Table B (Continued)

Original Modified
Time(s) Modularity Time(s) Modularity
91 0.814881 46 0.812592
85 0.814831 47 0.812592
88 0.815001 46 0.812592
90 0.814963 47 0.812592
85 0.815078 47 0.812592
94 0.813988 46 0.812592
109 0.815077 47 0.812592
85 0.814856 47 0.812592
89 0.814941 46 0.812592
85 0.814943 47 0.812592
84 0.814485 47 0.812592
92 0.815085 47 0.812592
93 0.814635 47 0.812592
87 0.814613 47 0.812592
90 0.815017 46 0.812592
91 0.815095 47 0.812592
88 0.814108 47 0.812592
84 0.814789 46 0.812592
85 0.814899 47 0.812592
84 0.815042 47 0.812592
100 0.814901 47 0.812592
91 0.815065 46 0.812592
101 0.814575 47 0.812592
89 0.81486 47 0.812592
87 0.814609 47 0.812592
81 0.81517 46 0.812592
88 0.815031 47 0.812592
100 0.815004 47 0.812592
85 0.814231 46 0.812592
91 0.81405 47 0.812592
78 0.81491 46 0.812592
100 0.815109 47 0.812592
109 0.815069 46 0.812592
104 0.814911 47 0.812592
87 0.814198 47 0.812592
84 0.814791 47 0.812592
88 0.815085 46 0.812592
85 0.814048 47 0.812592
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Table B (Continued)

Original Modified
Time(s) Modularity  Time(s) Modularity
85 0.815162 46 0.812592
85 0.814942 47 0.812592
85 0.814674 46 0.812592
96 0.815053 47 0.812592
69 0.814425 47 0.812592
87 0.814989 46 0.812592
90 0.814572 47 0.812592
85 0.814787 46 0.812592
91 0.814744 46 0.812592
94 0.814662 47 0.812592
93 0.814961 46 0.812592
82 0.81486 47 0.812592
87 0.814825 47 0.812592
90 0.81499 47 0.812592
85 0.814912 47 0.812592
93 0.814936 47 0.812592
84 0.814911 46 0.812592
88 0.81482 47 0.812592
98 0.814636 46 0.812592
86 0.81496 47 0.812592
81 0.814455 47 0.812592
87 0.814979 47 0.812592
83 0.814952 47 0.812592
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Table C: Results collected for 1.5 million nodes

Original Modified
Time(s) Modularity time(s) Modularity
95 0.828403 58 0.826681
102 0.828598 58 0.826681
95 0.828088 58 0.826681
99 0.828393 59 0.826681
114 0.828277 58 0.826681
90 0.828337 58 0.826681
106 0.828577 58 0.826681
95 0.828124 58 0.826681
95 0.828533 57 0.826681
116 0.82845 58 0.826681
120 0.82841 60 0.826681
103 0.828631 58 0.826681
91 0.82847 57 0.826681
103 0.828786 58 0.826681
124 0.828383 58 0.826681
88 0.828254 58 0.826681
105 0.828601 58 0.826681
97 0.828373 57 0.826681
99 0.828661 58 0.826681
114 0.828515 58 0.826681
95 0.828413 58 0.826681
100 0.828412 57 0.826681
93 0.828587 58 0.826681
92 0.828641 58 0.826681
107 0.828617 57 0.826681
95 0.828441 58 0.826681
101 0.828526 58 0.826681
100 0.828687 58 0.826681
107 0.828431 57 0.826681
100 0.828655 58 0.826681
71 0.828346 58 0.826681
93 0.828656 58 0.826681
100 0.828547 57 0.826681
100 0.828765 58 0.826681
106 0.828601 57 0.826681
116 0.8284 58 0.826681
103 0.828646 58 0.826681
97 0.82864 57 0.826681
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Table C (Continued)

Original Modified
Time(s) Modularity time(s) Modularity
103 0.828729 58 0.826681
93 0.828557 58 0.826681
96 0.828354 58 0.826681
103 0.828451 57 0.826681
91 0.828465 58 0.826681
96 0.828632 58 0.826681
95 0.828377 59 0.826681
100 0.828627 58 0.826681
93 0.828596 58 0.826681
92 0.828633 58 0.826681
124 0.828541 57 0.826681
93 0.828298 58 0.826681
95 0.828201 57 0.826681
99 0.828632 58 0.826681
111 0.828686 58 0.826681
123 0.828715 57 0.826681
94 0.828482 58 0.826681
95 0.828617 58 0.826681
96 0.828184 58 0.826681
90 0.828421 58 0.826681
92 0.828691 58 0.826681
93 0.828447 58 0.826681
111 0.828416 58 0.826681
99 0.828502 58 0.826681
93 0.828539 58 0.826681
107 0.828383 58 0.826681
110 0.828492 58 0.826681
96 0.828491 58 0.826681
95 0.828456 58 0.826681
96 0.828602 57 0.826681
100 0.828541 58 0.826681
91 0.828347 58 0.826681
99 0.828721 58 0.826681
96 0.82843 58 0.826681
99 0.828432 58 0.826681
107 0.828557 58 0.826681
106 0.827639 57 0.826681
96 0.828705 58 0.826681
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Table C (Continued)

Original Modified
Time(s) Modularity time(s) Modularity
91 0.828647 58 0.826681
121 0.828547 57 0.826681
92 0.828506 58 0.826681
92 0.828173 58 0.826681
96 0.82834 58 0.826681
93 0.828486 58 0.826681
130 0.828561 57 0.826681
102 0.82792 58 0.826681
103 0.82869 58 0.826681
99 0.828554 58 0.826681
97 0.828535 58 0.826681
96 0.828652 57 0.826681
91 0.828394 58 0.826681
95 0.82867 58 0.826681
104 0.828579 58 0.826681
107 0.82818 58 0.826681
105 0.828551 57 0.826681
94 0.828572 58 0.826681
92 0.828583 57 0.826681
79 0.828272 58 0.826681
95 0.828668 58 0.826681




Table D: Results collected for 2 million nodes

Original Modified
Time(s) Modularity time(s) Modularity
100 0.847796 59 0.845967
103 0.847846 57 0.845967
103 0.84797 58 0.845967
112 0.847656 57 0.845967
107 0.847137 58 0.845967
107 0.847258 58 0.845967
100 0.847994 59 0.845967
116 0.848071 58 0.845967
102 0.847805 57 0.845967
103 0.847525 58 0.845967
108 0.848071 58 0.845967
112 0.848122 58 0.845967
108 0.848131 58 0.845967
102 0.84803 58 0.845967
103 0.847973 58 0.845967
99 0.848001 57 0.845967
112 0.847823 58 0.845967
86 0.847529 58 0.845967
104 0.848144 58 0.845967
115 0.84775 58 0.845967
131 0.848169 58 0.845967
103 0.848016 57 0.845967
99 0.847919 58 0.845967
120 0.847784 58 0.845967
104 0.84783 58 0.845967
107 0.84812 58 0.845967
103 0.84804 57 0.845967
115 0.847846 58 0.845967
137 0.847958 59 0.845967
99 0.848093 58 0.845967
107 0.847923 58 0.845967
103 0.847843 57 0.845967
116 0.847807 58 0.845967
107 0.848032 58 0.845967
111 0.848037 57 0.845967
116 0.847961 58 0.845967
99 0.848031 58 0.845967
112 0.848028 57 0.845967
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Table D (Continued)

Original Modified
Time(s) Modularity time(s) Modularity
108 0.847975 57 0.845967
119 0.848097 57 0.845967
128 0.847766 58 0.845967
124 0.847947 58 0.845967
127 0.848098 58 0.845967
116 0.84822 57 0.845967
120 0.847791 58 0.845967
111 0.847688 58 0.845967
107 0.847199 57 0.845967
112 0.847954 58 0.845967
100 0.848092 57 0.845967
115 0.847927 58 0.845967
107 0.848014 58 0.845967
107 0.848083 57 0.845967
111 0.847891 58 0.845967
103 0.847723 57 0.845967
107 0.847925 58 0.845967
168 0.847943 58 0.845967
126 0.848051 58 0.845967
110 0.847676 58 0.845967
107 0.847775 57 0.845967
99 0.848048 58 0.845967
103 0.847851 58 0.845967
115 0.847906 57 0.845967
126 0.847739 58 0.845967
112 0.847915 58 0.845967
114 0.848124 57 0.845967
79 0.847435 58 0.845967
103 0.848054 58 0.845967
100 0.848085 58 0.845967
108 0.847995 57 0.845967
107 0.84796 59 0.845967
124 0.848047 57 0.845967
108 0.847839 57 0.845967
127 0.847923 58 0.845967
100 0.847902 58 0.845967
104 0.84823 57 0.845967
104 0.847973 58 0.845967
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Table D (Continued)

Original Modified
Time(s) Modularity time(s) Modularity
108 0.848053 58 0.845967
108 0.847889 58 0.845967
103 0.84797 58 0.845967
105 0.84803 57 0.845967
107 0.848123 58 0.845967
103 0.848094 58 0.845967
103 0.847937 57 0.845967
138 0.848093 58 0.845967
99 0.847956 57 0.845967
129 0.847893 58 0.845967
100 0.848017 58 0.845967
112 0.847652 57 0.845967
118 0.848177 62 0.845967
115 0.847152 58 0.845967
111 0.847928 58 0.845967
144 0.847791 57 0.845967
95 0.848075 58 0.845967
112 0.847868 58 0.845967
103 0.847904 58 0.845967
99 0.848022 58 0.845967
100 0.84786 57 0.845967
108 0.847982 58 0.845967

69



Table E: Results collected for 2.5 million nodes

Original Modified
Time(s) Modularity Time(s) Modularity
115 0.857124 62 0.854717
113 0.856747 61 0.854717
106 0.856992 61 0.854717
112 0.85686 61 0.854717
128 0.857056 61 0.854717
116 0.857 61 0.854717
135 0.85629 61 0.854717
111 0.856912 62 0.854717
116 0.856358 60 0.854717
127 0.856554 61 0.854717
112 0.857046 61 0.854717
117 0.856936 61 0.854717
138 0.857008 61 0.854717
116 0.856726 61 0.854717
139 0.856888 61 0.854717
125 0.856963 60 0.854717
120 0.857015 61 0.854717
134 0.856973 61 0.854717
112 0.857008 61 0.854717
150 0.856957 61 0.854717
156 0.856964 61 0.854717
131 0.857044 62 0.854717
90 0.856553 61 0.854717
126 0.856315 61 0.854717
111 0.856799 61 0.854717
111 0.857136 60 0.854717
134 0.856723 61 0.854717
134 0.857189 67 0.854717
126 0.856949 61 0.854717
106 0.856481 61 0.854717
117 0.856331 61 0.854717
107 0.856622 61 0.854717
68 0.856749 61 0.854717
107 0.856997 61 0.854717
130 0.856772 61 0.854717
122 0.85704 61 0.854717
112 0.856949 62 0.854717
108 0.856987 61 0.854717
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Table E (Continued)

Original Modified
Time(s) Modularity Time(s) Modularity

116 0.856805 61 0.854717
108 0.856871 61 0.854717
107 0.856404 61 0.854717
112 0.857029 61 0.854717
116 0.856601 61 0.854717
148 0.857241 61 0.854717
112 0.857086 61 0.854717
112 0.85687 61 0.854717
112 0.85707 61 0.854717
121 0.856859 61 0.854717
111 0.856236 61 0.854717
121 0.856782 61 0.854717
111 0.857 61 0.854717
125 0.857048 61 0.854717
116 0.856996 61 0.854717
115 0.856876 61 0.854717
113 0.856889 61 0.854717
129 0.857076 61 0.854717
117 0.857101 61 0.854717
117 0.856742 61 0.854717
117 0.856911 61 0.854717
108 0.85677 61 0.854717
115 0.856964 61 0.854717
120 0.857165 61 0.854717
121 0.856831 61 0.854717
107 0.856988 61 0.854717
108 0.856977 62 0.854717
112 0.85709 61 0.854717
75 0.856417 61 0.854717
122 0.856923 61 0.854717
112 0.857117 61 0.854717

108 0.856871 61 0.854717

121 0.857172 61 0.854717

134 0.857128 61 0.854717

107 0.856832 62 0.854717

108 0.856902 61 0.854717

113 0.856824 61 0.854717

108 0.856938 61 0.854717
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Table E (Continued)

Original Modified
Time(s) Modularity Time(s) Modularity
129 0.857004 61 0.854717
120 0.856993 61 0.854717
112 0.856907 61 0.854717
112 0.857042 61 0.854717
121 0.856898 61 0.854717
112 0.856196 61 0.854717
106 0.857017 61 0.854717
121 0.857017 61 0.854717
126 0.856964 62 0.854717
111 0.857261 61 0.854717
113 0.857122 61 0.854717
120 0.856282 61 0.854717
118 0.856863 61 0.854717
106 0.856256 61 0.854717
107 0.856908 61 0.854717
121 0.856298 61 0.854717
116 0.85683 61 0.854717
116 0.856768 61 0.854717
121 0.856953 61 0.854717
125 0.856812 61 0.854717
127 0.856999 61 0.854717
115 0.857062 61 0.854717

Table F: Results collected for 3 million nodes

Original Modified
Time(s) Modularity time(s) Modularity
129 0.866398 76 0.864477
129 0.866616 68 0.864477
147 0.866429 68 0.864477
129 0.866376 68 0.864477
125 0.866588 67 0.864477
113 0.866039 67 0.864477
128 0.865425 68 0.864477
163 0.866456 68 0.864477
128 0.866365 68 0.864477
167 0.866404 67 0.864477
124 0.866234 68 0.864477
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Table F (Continued)

Original Modified
Time(s) Modularity time(s) Modularity
129 0.8655 68 0.864477
124 0.866381 68 0.864477
129 0.86634 67 0.864477
129 0.866324 68 0.864477
119 0.86641 68 0.864477
148 0.866137 68 0.864477
128 0.866296 67 0.864477
124 0.866367 68 0.864477
173 0.865447 67 0.864477
133 0.866288 68 0.864477
120 0.866369 67 0.864477
124 0.865662 68 0.864477
119 0.866233 68 0.864477
125 0.866278 68 0.864477
133 0.866603 67 0.864477
64 0.866142 68 0.864477
158 0.866422 67 0.864477
164 0.866369 68 0.864477
137 0.86621 68 0.864477
89 0.865945 67 0.864477
144 0.866327 68 0.864477
158 0.866338 68 0.864477
133 0.866524 68 0.864477
128 0.866284 68 0.864477
125 0.865673 67 0.864477
124 0.866328 68 0.864477
135 0.866353 67 0.864477
128 0.866336 68 0.864477
132 0.866372 68 0.864477
123 0.866268 68 0.864477
125 0.866271 67 0.864477
134 0.866212 68 0.864477
130 0.866117 67 0.864477
143 0.866301 68 0.864477
119 0.86636 68 0.864477
114 0.866489 70 0.864477
138 0.86651 68 0.864477
126 0.866152 68 0.864477
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Table F (Continued)

Original Modified
Time(s) Modularity time(s) Modularity
139 0.866517 67 0.864477
119 0.866228 68 0.864477
129 0.866278 68 0.864477
159 0.866608 67 0.864477
129 0.865888 68 0.864477
129 0.866276 68 0.864477
119 0.866274 68 0.864477
124 0.866486 67 0.864477
135 0.866443 68 0.864477
148 0.866443 68 0.864477
124 0.866154 68 0.864477
124 0.866528 67 0.864477
129 0.865732 68 0.864477
129 0.866187 68 0.864477
138 0.866454 67 0.864477
124 0.866357 68 0.864477
129 0.866347 68 0.864477
129 0.866114 67 0.864477
129 0.86624 68 0.864477
133 0.866366 67 0.864477
138 0.866306 68 0.864477
123 0.866458 68 0.864477
68 0.865422 67 0.864477
129 0.866441 68 0.864477
158 0.866479 68 0.864477
123 0.866185 67 0.864477
124 0.866352 68 0.864477
139 0.866393 67 0.864477
129 0.866374 67 0.864477
129 0.865721 68 0.864477
119 0.86633 68 0.864477
148 0.866428 67 0.864477
143 0.866448 69 0.864477
142 0.865852 67 0.864477
71 0.866119 68 0.864477
128 0.866279 67 0.864477
89 0.866039 67 0.864477
148 0.866254 68 0.864477
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Table F (Continued)

Original Modified
Time(s) Modularity time(s) Modularity
134 0.866352 67 0.864477
128 0.86648 68 0.864477
124 0.866258 68 0.864477
134 0.865735 68 0.864477
93 0.866169 68 0.864477
123 0.866558 67 0.864477
124 0.866305 68 0.864477
115 0.866324 67 0.864477
140 0.86622 68 0.864477
119 0.86629 68 0.864477
129 0.866545 68 0.864477
138 0.866223 68 0.864477
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