
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

4-2016

Bridging statistical learning and formal reasoning
for cyber attack detection
Kexin Pei
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Pei, Kexin, "Bridging statistical learning and formal reasoning for cyber attack detection" (2016). Open Access Theses. 806.
https://docs.lib.purdue.edu/open_access_theses/806

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F806&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/806?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F806&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:

 Head of the Departmental Graduate Program Date

PEI, KEXIN

Master of Science

Dr. Dongyan Xu
Chair

Dr. Xiangyu Zhang

Dr. Luo Si

Dr. Dongyan Xu

Dr. Sunil Prabhakar/Dr. William J Gorman 4/22/2016

BRIDGING STATISTICAL LEARNING AND FORMAL REASONING FOR

CYBER ATTACK DETECTION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Kexin Pei

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2016

Purdue University

West Lafayette, Indiana

ii

To my parents and my wife.

iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisors, Professor Dongyan

Xu, Professor Xiangyu Zhang, and Professor Luo Si. Thank Professor Xu for his

encouragement, and support for my last two years in Purdue University. He always

pushes me to explore new research areas while also gives me the freedom to propose

new ideas. From him, I learned how to initiate an idea and differentiate it from

existing research efforts. More importantly, I learned how to structure a paper and

how to deliver my research ideas to the audience in the most efficient way. Thank

Professor Xiangyu Zhang for broadening my view on the application of program

analysis on the system security with his expertise. His continuous inspirations and

constructive suggestions greatly help me to come up with the innovative research

ideas. I also want to thank Professor Luo Si for introducing me to this exciting

research project and invaluable instructions with his expertise on machine learning.

I would like to extend my thanks to Professor Voicu Popescu and Dr. William

Gorman. Their suggestions on my dissertation and defense are very valuable and

important to me.

I have been fortunate to work with many brilliant people from our research group.

First I would like to thank Lab FRIENDS alumni Zhongshu Gu for his invaluable

advice and suggestions on my research. I would also like to thank Brendan Saltafor-

maggio, Fei Wang, Shiqing Ma, Chunghwan Kim, Yonghwi Kwon, Qifan Wang, Zhiwei

Zhang, Lei Cen and Rohit Bhatia. I will never forget the time we work together at

Purdue.

Finally, I would like to thank my parents, Gang Pei and Bing Li, for their under-

standing, sacrifice, and support for me. I would also like to express my deepest love

to my wife, Xuechunzi Bai. I cannot imagine I could finish this two year hard but

fruitful study without her standing behind me.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . viii

1 INTRODUCTION . 1
1.1 Dissertation Statement . 1
1.2 Contributions . 3
1.3 Dissertation Organization . 4

2 SYSTEM OVERVIEW . 6
2.1 Threat Model . 6
2.2 Workflow of LEAPS . 6

2.2.1 Training Phase . 7
2.2.2 Testing Phase . 9

3 SYSTEM DESIGN . 10
3.1 Data Preprocessing . 10
3.2 Control Flow Graph Inference . 11
3.3 Weight Assessment . 15
3.4 Binary Classification Model . 16

3.4.1 Decision Model Based on System-level Call Graph 16
3.4.2 Weighted Support Vector Machine 17

4 IMPLEMENTATION . 22

5 EVALUATION . 24
5.1 Dataset . 24

5.1.1 Data Source . 24
5.1.2 Data Selection . 25

5.2 Evaluation Procedure and Measurement of Effectiveness 26
5.2.1 Accuracy . 27
5.2.2 Positive Predictive Value . 27
5.2.3 True Positive Rate . 28
5.2.4 True Negative Rate . 28
5.2.5 Negative Predictive Value 28

5.3 Results and Discussion . 29
5.3.1 Case Study I — winscp reverse tcp 30

v

Page
5.3.2 Case Study II — vim codeinject 31
5.3.3 Case Study III — putty reverse https online 32

6 DISCUSSION . 33
6.1 Source-level Trojaned Applications 33
6.2 Future Work in Learning . 34

7 RELATED WORK . 35

8 CONCLUSION . 38

REFERENCES . 39

VITA . 42

vi

LIST OF TABLES

Table Page

5.1 Evaluation result of LEAPS on camouflaged attacks with different attack
method, application and payload type 25

vii

LIST OF FIGURES

Figure Page

2.1 The workflow of the Training Phase of LEAPS, the testing phase is not
included . 7

3.1 The result of conducting hierarchical clustering on a system event . . . 11

3.2 The illustration of the Control Flow Graph inference process 12

3.3 Comparison of (1) Vim benign CFG and (2) Vim mixed CFG 14

3.4 An illustration of the classifiers learned by the original SVM model and
the Weighted SVM model. 19

5.1 Results comparing LEAPS (WSVM) with system-level call graph and
SVM for offline infection detection . 29

5.2 Results comparing LEAPS (WSVM) with system-level call graph and
SVM for online injection detection . 30

viii

ABSTRACT

Pei, Kexin M.S., Purdue University, May 2016. Bridging Statistical Learning and
Formal Reasoning for Cyber Attack Detection. Major Professors: Dongyan Xu,
Xiangyu Zhang and Luo Si.

Current cyber-infrastructures are facing increasingly stealthy attacks that implant

malicious payloads under the cover of benign programs. Current attack detection

approaches based on statistical learning methods may generate misleading decision

boundaries when processing noisy data with such a mixture of benign and malicious

behaviors. On the other hand, attack detection based on formal program analysis

may lack completeness or adaptivity when modeling attack behaviors. In light of

these limitations, we have developed LEAPS, an attack detection system based on

supervised statistical learning to classify benign and malicious system events. Fur-

thermore, we leverage control flow graphs inferred from the system event logs to

enable automatic pruning of the training data, which leads to a more accurate clas-

sification model when applied to the testing data. Our extensive evaluation shows

that, compared with pure statistical learning models, LEAPS achieves consistently

higher accuracy when detecting real-world camouflaged attacks with benign program

cover-up.

1

1 INTRODUCTION

1.1 Dissertation Statement

Enterprise cyberinfrastructures are facing more severe cyber threats powered by

sophisticated attack techniques. Such attacks are driven by financial interests for

divulging privacy records, collecting competitor’s intelligence, or concealing unau-

thorized system accesses. They may exploit system vulnerabilities or leverage social

engineering (i.e., psychological manipulation of innocent people to perform harmful

operations unintentionally) to initiate attacks, leaving only inconspicuous footprints.

More recently, instead of only launching one-time attacks, adversaries tend to implant

stealthy and persistent backdoors — which parasitize in the memory space of some

long-running benign applications or embed in the application’s binaries — to facili-

tate future security penetrations. Based on the cloaking properties of such attacks,

in this paper we call them camouflaged attacks.

Recent research efforts on host-based attack detection can be divided into two

categories: program analysis based methods and statistical learning based methods.

Attack Detection Based on Program Analysis: Some approaches [1–5] perform

static analysis on applications (assuming the availability of source or executable code)

to obtain precise program execution models. But the non-trivial overhead, complex-

ity of accurate binary analysis, and intentional obfuscation limit their applicability

to real-world applications/environments. Other detection systems [6–8] perform dy-

namic analysis in a training phase and build deterministic program behavior models

by profiling application-system interactions.

Attack Detection Based on Statistical Learning Instead of achieving precise pro-

gram models like in the former category, detection systems in this category utilize

statistical learning techniques to build benign/malicious classification models. For

2

example, in the work of [9, 10], association and frequency rules are learned from

training data for future detection. In other systems [11, 12], histogram-based meth-

ods are applied to profiling normal program behavior. A more sophisticated hidden

Markov model (HMM) is adopted in [13, 14] for intrusion detection. More recently,

the works in [15–18] utilize Support Vector Machine (SVM) to build binary classifica-

tion models. One major advantage of these statistical learning based systems is that

they are robust in dealing with incomplete data, and thus can usually achieve better

classification results compared with program analysis based approaches.

We argue that, for the detection of camouflaged attacks, current attack detection

systems may encounter difficulties in effectively discriminating between benign and

malicious behavior. The main reason is that the extraction of pure malicious behavior

in a raw dataset (e.g., system execution logs) is difficult. For trojaned applications

or runtime application exploitations belonging to camouflaged attacks, the malicious

payload no longer executes independently. Instead, it runs concurrently with the

benign code of the application, which generates a training dataset with interleaved

benign and malicious behaviors. Such noisy training datasets may eventually lead to

a biased classification boundary.

In light of the limitation above, we have developed LEAPS1 to integrate the

capabilities of the two camps. LEAPS is inspired by a recently proposed vision

called “Learn-2-Reason” [19], which promotes mutual enhancement between statis-

tical learning and formal analysis methods. Specifically, LEAPS leverages program

execution analysis to refine its statistical learning model, boosting its detection accu-

racy.

Taking a host-based system event log as input, we adopt the supervised statistical

learning model to classify benign and malicious events. The classification model is

built upon system-level features extracted from the log, such as system event, libraries,

and functions. The effectiveness of this approach is based on the key observation that

1LEAPS stands for Learning Enhanced with Analysis of Program Support

3

the system-level behavior of anomalous execution, triggered by the malicious code, is

different from the system-level behavior of benign code.

Then, to address the noisy training dataset problem in detecting camouflaged

attacks, we use the control flow graph (CFG) of each benign application (which may

not be complete) as the oracle to guide the training. From our observation, benign

and malicious instructions by nature cluster separately in the memory space. For

each data point in the noisy training dataset, we measure its distance to the benign

CFG and assign a corresponding weight, which indicates that outlying data points

are more likely to be events triggered by the malicious payload. Although injecting

malicious code near benign code is not impossible (e.g., injecting malicious code in

free alignment areas between procedures), it is usually not used in real-world attacks

because such limited space greatly restricts the functionality of injected code. Typical

attacks choose to allocate extra memory for malicious payloads and then hijack benign

control flows.

Taking the assigned weights into consideration, we build a Weighted Support Vec-

tor Machine (WSVM) classifier to detect benign and malicious behaviors. Deriving

a complete and accurate CFG using static analysis on a binary is a well-known chal-

lenge due to binary obfuscation and software protection mechanism. In LEAPS, we

avoid static program analysis by dynamically inferring the CFG of each application

— based on the stack walk trace in the system event log. We note that such a CFG is

by no means complete, but it presents a general execution pattern of the application,

which is sufficient for our distance approximation.

1.2 Contributions

I model the intrusion anomalies via formal static/dynamic program analysis and

causality reasoning techniques. These techniques tend to perform better in (1) achiev-

ing high accuracy, with low false positive and false negative rates; (2) tracing back

and reasoning about system/program behavior to understand how a detected attack

4

starts and reaches the current state. However, today’s attack strategy and design

of malware evolve to be more stealthy and complex, which produces a huge volume

of data to be analyzed. The efficiency and performance of fine-grained causality

analysis inherently suffer from the Big-Data problem, such as non-trivial overhead,

dependency explosion that results in non-determinism.

My machine learning research aims to leverage and adapt effective learning algo-

rithms with theoretical guarantees to handle different big data analysis problems in

security. The learning-based approach performs better in (1) monitoring and detect-

ing signs of attacks in real time and at the early stage of an attack; (2) detecting zero-

day attacks with no existing signatures. We aim to make statistical learning work

side-by-side with formal reasoning by influencing, interacting and hence improving

each other to achieve the best of the two camps and mitigate their limitations.

This dissertation makes the following contributions:

• A better statistical learning model for detecting camouflaged attacks, guided by

CFGs derived from program trace analysis. This model is especially suitable

for noisy training datasets mixed with benign/malicious events.

• An algorithm for CFG inference only based on the stack walk trace in the system

event log, without requiring static program analysis or program instrumenta-

tion.

• Extensive evaluation of LEAPS for the detection of camouflaged attacks with

diverse combinations of applications, malicious payloads, and attack methods,

demonstrating effectiveness of LEAPS.

1.3 Dissertation Organization

Here we give an outline of this dissertation: Chapter 1 explains the unique ad-

vantages that can be brought by bridging statistical learning and formal reasoning in

intrusion detection. Then we present the main contributions of our framework in de-

5

tecting Trojan malware. Chapter 2 presents the threat model and the overview of the

workflow. Chapter 3 provides the system design of LEAPS and Chapter 4 presents

implementation details. Chapter 5 shows extensive evaluation of LEAPS in different

attack scenarios. Chapter 6 discusses current limitations and proposes future work.

Chapter 7 describes related work and we conclude in Chapter 8.

6

2 SYSTEM OVERVIEW

In this section, we first discuss the threat model and the attacks we target. Then we

present the general workflow of LEAPS and give a brief introduction of the function-

ality of each component.

2.1 Threat Model

We assume that the adversaries have already found a way to infiltrate the system.

They may achieve this through physical access to a target computer, e.g., manually

replacing an application with a trojaned version, or using some social engineering

techniques to trick innocent users to click some malicious web sites or open a disguised

attachment in a phishing email. They may also remotely exploit some unpatched

vulnerabilities and then implant a backdoor into some long-running benign program.

We do not intend to use LEAPS to raise an alarm at the time of intrusion, instead

we aim to detect the anomalous behavior and backtrack to its entry point when

the remote adversary performs malicious actions through the persistent backdoor

implanted in the system.

In this paper we focus on camouflaged attacks, which run under the cover of

some benign program. This is a common technique to make malicious behavior more

difficult to detect. Finally, we require that system event logging function be turned

on so that it can generate program execution traces as input to our analysis.

2.2 Workflow of LEAPS

Similar to traditional anomaly detection systems, we divide the workflow of LEAPS

into two phases: Training Phase and Testing Phase.

7

Raw Log
Parser

Stack Partition
Module

Control Flow Graph
Inference Module

Supervised Statistical
Learning Module

Mixed Raw Log

Benign Raw Log

Benign Stack-Event
Correlated Log

Mixed Stack-Event
Correlated Log

Benign Application
Stack Trace

Mixed Application
Stack Trace

Benign System
Stack Trace

Mixed System
Stack Trace

Data Preprocessing
Module

Benign Dataset

Mixed Dataset Weighted Dataset
Benign/Malicious

Model

Training Phase

Benign CFG Mixed CFG

Figure 2.1. The workflow of the Training Phase of LEAPS, the testing
phase is not included

2.2.1 Training Phase

We illustrate the workflow of the Training Phase in Figure 2.1. Here we give a

brief description of each component and its input data format.

The initial input data consist of raw log files generated by the system event logging

engine. Event logging systems are commonly equipped in modern operating systems

for diagnosing application performance problems, thus they are able to walk the ap-

plication stacks to backtrack execution when system events are captured. These raw

system event log files are recorded in a controlled environment and will be used as

training data. The benign raw log is generated when we execute a clean version of an

application; whereas the mixed raw log is generated when the parasitic malicious pay-

load (embedded in the binary or injected through remote exploitation) and the benign

application code run in the same process context, leading to interleaved execution of

benign and malicious code.

Our Raw Log Parser is similar to the front end of Introperf [20]. We parse the

raw log file, correlate stack walk traces with corresponding system events, and extract

function and library information sliced for each process in both the user and kernel

space. The output, which we term stack-event correlated log, consists of itemized

system events for the application of interest. Moreover, each event is attached with

its stack walk trace annotated with libraries and functions.

The Stack Partition Module is for splitting the stack walk trace of each event

into two parts, application stack trace and system stack trace. Application stack trace

8

consists of the stack walk within the application itself. We use this to infer the ap-

plication’s CFG because it contains both explicit and implicit execution information.

System stack trace consists of stack walk trace in the shared libraries and the op-

erating system (OS) kernel. We note that the differences in system-level behavior

(e.g., system events, shared libraries, and library/kernel functions) are best suited

for distinguishing the benign functionality from the malicious functionality. Thus we

extract features used by the statistical learning model from the system stack trace in

the system event log.

The Data Preprocessing Module extracts features from the system stack trace.

Here we apply hierarchical clustering to group the functions and libraries into clusters.

This generates both the benign dataset and the mixed dataset, which are ready to be

used by the statistical machine learning engine.

The Control Flow Graph Inference Module builds the CFG of the application by

inspecting the application stack trace. We construct two CFGs separately from the

benign application stack trace and the mixed application stack trace. Then we compare

these two CFGs to measure the distance of each execution path in the mixed CFG to

the benign CFG. As we can map each execution path to its affiliated system event, we

assign a weight (computed based on the distances of all execution paths attached to

this event) to each event in the mixed dataset (generated by the Data Preprocessing

Module) and generate a weighted dataset.

Our Supervised Statistical Learning Module is a unified learning system for build-

ing the benign/malicious classifier. We employ a Weighted Support Vector Machine,

which is a binary classification model, to obtain the classifier based on the training

data generated from the Data Preprocessing Module. We treat the data in the benign

dataset as the positive samples in the statistical learning model, while the data in the

weighted mixed dataset are viewed as the negative samples. We can apply the learned

benign/malicious classifier to detect attacks from production system logs.

9

2.2.2 Testing Phase

After the Training Phase, we have generated application-wise binary classifiers

from the training data. In the Testing Phase, first we perform application slicing

on the system event log (same as in the Training Phase) to generate the testing

data. Then we apply the classification models (targeting different application/payload

combinations) to the testing data for detection.

We point out that we use the application-wise binary classifier only for the conve-

nience of evaluation. When applied to attack detection in real situations, LEAPS can

coalesce all application data from the system event log to learn a universal classifier

for testing.

10

3 SYSTEM DESIGN

Following the workflow in the previous section, we now highlight some key techniques

we have developed for LEAPS and describe the algorithms behind them.

3.1 Data Preprocessing

Data preprocessing is the essential step before applying any statistical learning

model. It requires domain knowledge to interpret the raw data, extract distinguish-

ing features for classification, and discretize these features to be ready as the input

to statistical learning. Because the statistical learning model is general and not spe-

cific to our raw data, data preprocessing is critical to the effectiveness of the final

classification model generated.

In LEAPS, we choose to use system events and information in their correlated

system-level stack traces to characterize the program behavior being executed. As

mentioned in Chapter 2, after parsing the raw log file, we are able to correlate the

stack walk traces with their corresponding system events. Stack walk trace entries

contain the function invocations leading to this event from the application. Then we

partition the stack trace and only select the system stack trace and system events as

input to the data preprocessing module.

Each entry in the system stack trace contains both the library and function in-

formation. We aggregate the libraries and functions of each event and generate a

3-tuple entry: {Event Type, Lib, Func}. Event Type stands for the type of this sys-

tem event. Lib and Func stand for the set of libraries and functions in the system

stack trace of this event. Event Type is well defined in the system, and thus can be

naturally mapped to the integer space. For Lib and Func, we leverage hierarchical

11

@107: EventType=SysCallEnter EventDataLength=8 SysCallAddress=0xfffff9600016e138<win32k.sys!NtUserWaitMessage+0x0>
 #0: StackAddress=0xfffff80001a7d3c5 ImageName="ntoskrnl.exe" OffsetToImage=0x713c5<ntoskrnl.exe!KiSystemServiceExit>
 #1: StackAddress=0x757a2dd9 ImageName="wow64cpu.dll" OffsetToImage=0x2dd9<wow64cpu.dll!CpupSyscallStub>
 #2: StackAddress=0x757a2d92 ImageName="wow64cpu.dll" OffsetToImage=0x2d92<wow64cpu.dll!Thunk0Arg>
 #3: StackAddress=0x7581d07e ImageName="wow64.dll" OffsetToImage=0xd07e<wow64.dll!RunCpuSimulation>
 #4: StackAddress=0x7581c549 ImageName="wow64.dll" OffsetToImage=0xc549<wow64.dll!Wow64LdrpInitialize>
 #5: StackAddress=0x77b684c8 ImageName="ntdll.dll" OffsetToImage=0x484c8<ntdll.dll!LdrpInitializeProcess>
 #6: StackAddress=0x77b67623 ImageName="ntdll.dll" OffsetToImage=0x47623<ntdll.dll! ?? ::FNODOBFM::`string'>
 #7: StackAddress=0x77b5308e ImageName="ntdll.dll" OffsetToImage=0x3308e<ntdll.dll!LdrInitializeThunk>
 #8: StackAddress=0x771a438d ImageName="user32.dll" OffsetToImage=0x2438d<user32.dll!NtUserWaitMessage>
 #17: StackAddress=0x77d39d72 ImageName="ntdll.dll" OffsetToImage=0x39d72<ntdll.dll!__RtlUserThreadStart>
 #18: StackAddress=0x77d39d45 ImageName="ntdll.dll" OffsetToImage=0x39d45<ntdll.dll!_RtlUserThreadStart>

Event_Num Event_Type Lib Func
 @107 7 2 40

Hierarchical Clustering

Figure 3.1. The result of conducting hierarchical clustering on a system
event

clustering [21] to group similar library/function sets into one cluster. We use set

dissimilarity as the metric to calculate a pairwise distance matrix, DM , as follows:

DM[i][j] = set dissimilarity(i, j) = 1− ‖seti ∩ setj‖
‖seti ∪ setj‖

(3.1)

We utilize this pairwise distance matrix in the hierarchical clustering model to obtain

optimal clusters. Finally we replace Lib and Func in the 3-tuple entry with its

corresponding cluster number and Event Type with the integer based on its event

type. Figure 3.1 gives a concrete example of preprocessing a SysCallEnter event and

its 3-tuple entry result. We use these discretized 3-tuple entries as the input data to

the statistical learning model.

3.2 Control Flow Graph Inference

In our approach, we need the CFG of the benign application execution as an or-

acle to process the log mixed with the benign and malicious execution. While CFGs

of binary executables can be acquired using static or dynamic analysis, generating

CFGs statically from binaries is challenging due to various difficulties such as identi-

fying function boundaries [22], distinguishing instructions from data entries, dynamic

12

Addr_5

Addr_4

Addr_3

Addr_2

Addr_1

Event 1

Addr_7

Addr_6

Addr_3

Addr_2

Addr_1

Event 2

Implicit Path

Explicit Path

Figure 3.2. The illustration of the Control Flow Graph inference process

loaded libraries, obfuscation, binary packing, and the impracticality of instrumenting

real world binaries to collect fine grained dynamic execution information. Hence,

we decide to derive CFGs only from the application stack trace extracted from the

system event log. While the completeness of the inferred CFG is dependent on the

frequency of the system events and the exercised functionality when logging is en-

abled, it is sufficient to produce an incomplete CFG that can approximately reflect

the general execution structure of the application. As we will show later, we leverage

a heuristic algorithm to predict the missing parts of the benign CFGs and recognize

malicious payloads that do not belong to the original benign graphs. Therefore, a

unique advantage of LEAPS is that it only relies on the system log, without analyzing

the binaries.

We give a concrete example in Figure 3.2. For each individual event, there is an

application stack trace attached to it. There are two events shown in this figure. For

Event 1, the application stack trace starts from Addr 1 to Addr 5. Event 2 is the

subsequent event and its stack trace becomes different from Event 1 after Addr 3,

13

which invokes Addr 6 and Addr 7. We are able to identify two types of control flow

within the application stack trace. We call the first type of control flow an explicit

path, which indicates the function invocations in the stack trace. For example, the

execution path from Addr 1 to Addr 2 is an explicit path. We call the other type

of control flow an implicit path, which we infer from stack traces of two adjacent

events. In Figure 3.2, Addr 3 invokes Addr 4 in Event 1 and Addr 6 in Event 2,

which indicates there is a control flow from Addr 4 to Addr 6 in the program. Based

on these two criteria, we build the CFG incrementally by enumerating all events and

their application stack traces.

Algorithm 1 Control Flow Graph Inference
Input: funcentry ← gen cfg

ast ← stack trace file
cfg ← empty dict

1: procedure addto cfg(cfg, start, end)

2: if cfg.haskey(start) then

3: cfg[start].add(end)

4: else

5: cfg[start] := set([end])

6: procedure branch point(prev stacklist, curr stacklist)

7: index := common prefix len(prev stacklist, curr stacklist)

8: return index

9: procedure gen cfg(ast, cfg)

10: while line do

11: if isEvent(line) then

12: branchidx := branch point(prev stacklist, curr stacklist)

13: addto cfg(cfg, prev stacklist[branchidx], curr stacklist[branchidx])

14: for i ∈ [0, len(stacklist)-1] do

15: addto cfg(cfg, curr stacklist[i], curr stacklist[i+1])

16: prev stacklist := curr stacklist

17: curr stacklist.clear()

18: else if isStack(line) then

19: funcaddr := extract funcaddr(line)

20: curr stacklist.push(funcaddr)

21: line := ast.readline()

We present the detailed algorithm in Algorithm 1. In Line 12, we find the branch

point by comparing two adjacent stack traces and add the implicit path in Line 13.

14

(1) Vim Benign Control Flow Graph

(2) Vim Mixed Control Flow Graph (with Reverse TCP Shell as Payload)

Similar Subgraph

Anomalous Subgraph

Figure 3.3. Comparison of (1) Vim benign CFG and (2) Vim mixed CFG

In Line 15, we add the explicit paths for all the function invocations within one stack

trace.

We apply this CFG inference algorithm on both the benign application stack trace

and the mixed application stack trace. Thus we are able to generate two CFGs.

Figure 3.3-(1) shows the CFG of a benign execution of Vim, whereas Figure 3.3-(2)

shows the CFG of a trojaned Vim that contains the malicious payload of a Reverse

TCP Shell. By comparing these two CFGs (e.g., aligning nodes with the same address

in two graphs), it is not difficult to identify that the left subgraph of the Vim mixed

CFG is similar to the Vim benign CFG because both use the benign functionality of

Vim. But the right subgraph of the Vim mixed CFG is unique, indicating that this

is more likely to be from the anomalous execution caused by the malicious payload.

We point out that, although the CFG alone may be used as a attack signature for

detection, it is not robust enough when encountering polymorphic malware in the real

world. This is the reason we introduce the statistical learning model for a behavior-

based attack detection system.

15

3.3 Weight Assessment

With the inferred benign CFG, we aim to assess the degree of “benignity” for

each event in the mixed dataset. We show the algorithm for the weight assessment in

Algorithm 2.

The input to this algorithm is the benign CFG and the mixed CFG inferred from

the application stack traces. When building the CFG from the mixed application stack

trace, we also create a reverse mapping, named memap in Algorithm 2’s input, from

the program path to the event number.

We start by iterating each program path in the mixed CFG. We check whether the

start and end vertices of this path are also connected in the benign CFG. If they are

connected, we assign 1 to the weight (whose range is [0, 1]) for this path. Otherwise,

it means this path does not exist in the benign CFG.

As mentioned before, the inferred CFG is not complete. It is possible that some

paths in the mixed CFG are benign, but missing in the benign CFG due to its in-

completeness. For example, some additional benign functionality might be executed

and recorded in the mixed system log, but not in the benign system log. In order

to address this problem, we create a density array by inserting all the addresses of

nodes appearing in the benign CFG. For any path that is not in the benign CFG, if

it is in the range of this density array, we estimate its weight based on its normalized

distance to the closest nodes in the benign CFG. For all other paths that exceed the

boundary of the density array, we assign 0 as its weight. This weight assessment

approach is based on the observation that code close to the benign code is more likely

to be benign and code far away from the benign code is more likely to be malicious.

That is also the reason why LEAPS can tolerate the incompleteness of the inferred

CFG.

With the weight for each program path in the mixed CFG, we search the reverse

mapping memap to find its corresponding event number. Each event may have mul-

16

tiple paths mapped. We compute the weight of each event by averaging all its paths’

weights.

3.4 Binary Classification Model

The building of the benign/malicious classification model is a key component in

LEAPS. Given the benign dataset and mixed dataset with assigned weights, our goal

is to learn an accurate binary classifier from these training data. This classifier will

be used to distinguish malicious events from benign ones in the unseen testing data.

We build two binary classification models for comparison. The first is purely based

on the system-level function call graph (with no statistical learning) and the second

uses WSVM. We discuss their strengths and weaknesses separately and compare the

results quantitatively in the evaluation section.

3.4.1 Decision Model Based on System-level Call Graph

System-level behaviors, such as functions from shared libraries and the OS ker-

nel, represent the interactions between applications and their underlying execution

environment. These features are widely adopted in anomaly detection systems to

reveal aberrant execution of the application. Conceptually similar to existing system

behavior based classification systems [23, 24], we build our first classification model

based on the system-level function call graph (built from the system stack trace in

the system event log). From the benign/mixed system stack trace, we extract the

function invocation chain from the stack trace of each event. Thus we can build the

two system-level function call graphs, the benign call graph (BCG) and mixed call

graph (MCG), separately. We use the former as the positive model and the latter

as the negative model. In the Testing Phase, we extract the call relations from the

stack trace in the testing data and check them in both the BCG and MCG. We make

a classification decision for each individual event based on the existence of such call

relations in both call graphs.

17

From the results presented in Chapter 5, we find that the hit rates are low for

classifying benign testing data for all datasets. The first reason for this is that the

system-level call graph model is not able to classify data points that do not appear

in the training set. The second reason is that the stack traces of benign events may

exist in both the BCG and MCG, which make it difficult for the model to accurately

predict their classes.

Furthermore, we find that in some specific datasets (e.g., chrome reverse https

and chrome reverse tcp), the hit rates are also low for classifying malicious testing

data. We manually check the events that lead to this problem. The main cause

is that some outlier points may greatly affect the classification decision. To give a

specific example, consider a kernel function invoked by both benign and malicious

code. Assume the benign code only calls the function once and the malicious code

calls it 1000 times, the corresponding function invocation edges in both call graphs

will be the same. Thus the call graphs cannot yield any information of the invocation

frequency. Further assume that this function invocation appears in the testing data.

From a statistical perspective, this invocation is likely to be from the malicious code,

but it will be classified as “undecidable” by the call graph model.

3.4.2 Weighted Support Vector Machine

Considering the limitations of the call graph model above, we design a more

sophisticated binary classification model based on statistical learning. There are

multiple machine learning techniques for learning binary classifiers, such as Logistic

Regression (LR) [25], SVM [26], and Decision Tree [27]. Due to the discriminative

classification power of SVM and its popularity, we use SVM to build our classification

model. Furthermore, to incorporate the weights assigned to the training data, we

employ a Weighted SVM method in this work to find an optimal classifier by taking

the confidence of each data point into consideration.

18

Suppose there are n training data points from both the benign and mixed datasets,

denoted D = {(xi, yi, ci), i = 1, . . . , n} where xi is the feature generated from data

preprocessing for the i-th data point and yi is its binary label. We treat the benign

data as positive samples, while the mixed data are viewed as negative samples, i.e.,

yi = 1 for the benign data and yi = −1 for the mixed data. ci corresponds to the

weight. Note that the weight ci is a real value between 0 and 1. For the benign data,

the weight is simply 1. For the mixed data, we obtain the weight from the weight

assessment in Section 3.3. The purpose of the Weighted SVM is to learn a classifier

w, which can accurately distinguish benign data from malicious data. We give the

formulation of the Weighted SVM as follows:

min
w,ξ

‖w‖2 + λ
∑
i

ciξi

s.t. yiw
Txi ≥ 1− ξi

ξi ≥ 0

(3.2)

here ξi is the classification error of the i-th data point. wTxi is the prediction score of

xi based on the classifier w, i.e., the larger the value, the more likely xi is benign. The

term
∑

i ciξi in the objective function is the total classification loss/error weighted

by the importance of the data, which we are trying to minimize. The term ‖w‖2 is

the regularizer on the classifier to avoid the overfitting problem [25], which is widely

adopted in statistical machine learning applications. λ is the trade-off parameter

to balance the two terms. The constraint enforces that the prediction of the data

point, wTxi, is consistent with its label yi. For example, for a benign point with label

yi = 1, if the classifier’s output, wTxi, is negative, then the model will incur a large

classification error ξi due to this constraint.

Based on the generalized representer theorem [28], the minimizer to the optimiza-

tion problem in Eqn. 3.2 exists and has a representation of the form:

wTxi =
n∑
j=1

αjyjk(xi, xj) (3.3)

19

Benign Points (+1)

Mixed Points (-1)

Original Decision Boundary

WSVM Decision Boundary

Increase Weight

Decrease Weight

Figure 3.4. An illustration of the classifiers learned by the original SVM
model and the Weighted SVM model.

20

where k(xi, xj) is a kernel function defined on the feature space. We use a Gaussian

Kernel, k(xi, xj) = exp(−‖xi−xj‖
2

σ2), in this work, and σ2 is the radius parameter.

Substituting Eqn. 3.3 into Eqn. 3.2, we can obtain an equivalent problem:

min
α
−
∑
i

αi +
1

2

∑
i,j

αiαjyiyjk(xi, xj)

s.t. 0 ≤ αi ≤ λci

(3.4)

The above optimization problem can be solved efficiently using a quadratic program-

ming solver. By minimizing this objective function, we can achieve an optimal classi-

fier. We illustrate the difference between the original SVM method and the Weighted

SVM method in Figure 3.4. We can see from this figure that the classifier learned

from the original SVM model may misclassify benign points to malicious. The reason

is that a certain amount of mixed data points actually belong to benign events. By

minimizing the classification error on these mislabeled data points, the SVM classifier

does not perform well especially on benign data. On the other hand, by assigning

proper weights via CFG guidance (i.e., decreasing the weights of mislabeled points

and increasing the weights of true malicious points), the classifier learned from the

Weighted SVM distinguishes the benign points from the malicious ones more accu-

rately.

In the Testing Phase, we apply the learned classification model to the testing data

xt to give the prediction as follows:

yt = wTxt =
n∑
i=1

αiyik(xi, xt) (3.5)

where xt is classified as malicious if yt < 0.

21

Algorithm 2 Weight Assessment
Input: funcentry ← compare cfg bcfg ← benign cfg dict

mcfg ← mixed cfg dict memap ← mixed event dict

1: procedure gen cfg density(cfg)

2: for start, endset ∈ cfg.iter() do

3: for end ∈ endset do

4: density array.add(start)

5: density array.add(end)

6: return sort(density array)

7: procedure check cfg(start, end, cfg, level)

8: if start = end ∧ level 6= 0 then

9: return True

10: valueset := cfg.get(start)

11: if valueset.empty() then

12: return False

13: level := level + 1

14: for value ∈ valueset do

15: if check cfg(value, end, cfg, level) then

16: return True

17: return False

18: procedure set weight(eventmap, key, weight, result)

19: if eventmap[key] 6= nil then:

20: for eventnum ∈ eventmap[key] do

21: if result[eventnum] = nil then

22: result[eventnum] := {’weight’:weight, ’number’:1}

23: else

24: number := result[eventnum][’number’]

25: result[eventnum] := {rebalance(weight,number), number+1}

26: procedure estimate weight(addr, density array)

27: addr idx := bisect(density array, addr)

28: mindiff := min(start - density array[addr idx-1], density array[addr idx] - addr)

29: weight := 1 - mindiff/(density array[addr idx] - density array[addr idx-1])

30: return weight

31: procedure compare cfg(bcfg, mcfg, memap)

32: density array := gen cfg density(bcfg)

33: for start, endset ∈ mcfg.iter() do

34: for end ∈ endset do

35: if check cfg(start, end, bcfg) then

36: weight := 1

37: else if within range(start, end, density array) then

38: weight := estimate weight(start, density array)

39: else

40: weight := 0

41: set weight(memap, start+end, weight, result)

22

4 IMPLEMENTATION

We leverage the Event Tracing for Windows (ETW) [29] framework to log system

events and generate stack walk traces. The ETW framework is a general-purpose

tracing engine equipped in the latest Windows operating systems (first introduced in

Windows 2000). It provides a tracing mechanism to log events triggered in multiple

system layers, from user applications to kernel components. ETW has been widely

adopted by third-party management tools for performance diagnostics. The output

of ETW is an Event Tracing Log (ETL) file, which is the raw input to LEAPS. ETW

allows us to enable stack walking for a selection of system events, e.g., system call,

process/thread creation, image load/unload, file operations, registry tracing, etc. We

parse the raw ETL file to generate a stack-event correlated log. We perform all ETW

logging on a machine with an Intel Core i7 3.40 GHz CPU, 12GB RAM, and Windows

Server 2008 R2 64-bit operating system.

We implement the Stack Partition Module, Data Preprocessing Module, and Con-

trol Flow Graph Inference Module in Python. When grouping the library and function

set in the Data Preprocessing Module, we use the hierarchical clustering implementa-

tion in the clustering package of SciPy1 and choose UPGMA method as the linkage

criterion, i.e., the distance between any two clusters is the mean distance between all

elements of each cluster.

We implement the Supervised Statistical Learning Module under the LIBSVM [26]

framework. LIBSVM2 is an integrated system for support vector classification, regres-

sion and distribution estimation with a wide range of machine learning applications.

The input of the Weighted SVM model is the benign and mixed (with weights) train-

ing data. The output of LIBSVM is a binary classification model, which we use for

1http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
2http://www.csie.ntu.edu.tw/~cjlin/libsvm/

23

attack detection in our testing data. In our implementation, we use 10-fold cross

validation [25] to tune the model parameter λ and σ2 on the training set.

24

5 EVALUATION

In this section, we report our evaluation results on the effectiveness of LEAPS. First

we describe the datasets in our experiments, i.e., the source of the data and the

criteria of data selection. Then we discuss the procedure of our experiments and the

measurements of the evaluation. Finally we examine three representative cases in

detail and present the results of all other cases briefly.

5.1 Dataset

5.1.1 Data Source

We use 21 datasets (Table 5.1) of different combinations of applications, malicious

payloads, and attack methods to evaluate our approach. We categorize the attack

methods into two groups: offline infection (malicious payload embedded in a benign

binary) and online injection (malicious payload injected into a benign process at

runtime). Each dataset consists of three subsets: a) pure benign samples, b) mixed

samples, and c) pure malicious samples.

We obtain pure benign samples by exercising the benign application. Mixed sam-

ples are from profiling either trojaned applications (i.e., offline infection) or tampered

processes (i.e., online injection). Thus mixed samples contain both benign and mali-

cious events. Pure benign samples and mixed samples can be naturally collected in

the real environment. We use them as positive/negative samples for training. As we

mentioned before, because mixed samples contain benign events as noise, classifiers

learned by traditional statistical learning methods are not accurate.

Pure malicious samples are difficult to obtain in a real environment because ma-

licious payloads are always attached to benign applications. For this evaluation, we

25

Table 5.1.
Evaluation result of LEAPS on camouflaged attacks with different attack
method, application and payload type

Name Attack Method Application Payload ACC PPV TPR TNR NPV

winscp reverse tcp Offline Infection WinSCP Reverse TCP Shell 0.932 0.999 0.865 0.999 0.881

winscp reverse https Offline Infection WinSCP Reverse HTTPS Shell 0.927 0.991 0.862 0.992 0.878

chrome reverse tcp Offline Infection Chrome Reverse TCP Shell 0.877 0.998 0.755 0.999 0.803

chrome reverse https Offline Infection Chrome Reverse HTTPS Shell 0.907 0.998 0.815 0.999 0.844

notepad++ reverse tcp Offline Infection Notepad++ Reverse TCP Shell 0.846 0.998 0.693 0.998 0.765

notepad++ reverse https Offline Infection Notepad++ Reverse HTTPS Shell 0.866 0.998 0.733 0.998 0.789

putty reverse tcp Offline Infection Putty Reverse TCP Shell 0.886 0.815 0.998 0.774 0.998

putty reverse https Offline Infection Putty Reverse HTTPS Shell 0.869 0.999 0.739 0.999 0.793

vim reverse tcp Offline Infection Vim Reverse TCP Shell 0.914 0.995 0.832 0.996 0.856

vim reverse https Offline Infection Vim Reverse HTTPS Shell 0.919 0.998 0.839 0.999 0.861

vim codeinject Offline Infection Vim Pwddlg 0.852 0.985 0.715 0.989 0.776

notepad++ codeinject Offline Infection Notepad++ Pwddlg 0.802 0.948 0.639 0.965 0.728

putty codeinject Offline Infection Putty Pwddlg 0.802 0.919 0.661 0.942 0.736

putty reverse tcp online Online Injection Putty Reverse TCP Shell 0.894 0.825 0.999 0.789 0.999

putty reverse https online Online Injection Putty Reverse HTTPS Shell 0.869 0.999 0.738 0.999 0.792

notepad++ reverse tcp online Online Injection Notepad++ Reverse TCP Shell 0.927 0.991 0.861 0.992 0.877

notepad++ reverse https online Online Injection Notepad++ Reverse HTTPS Shell 0.845 0.998 0.690 0.999 0.763

vim reverse tcp online Online Injection Vim Reverse TCP Shell 0.963 0.933 0.998 0.928 0.998

vim reverse https online Online Injection Vim Reverse HTTPS Shell 0.919 0.995 0.842 0.996 0.863

winscp reverse tcp online Online Injection WinSCP Reverse TCP Shell 0.950 0.996 0.904 0.996 0.912

winscp reverse https online Online Injection WinSCP Reverse HTTPS Shell 0.921 0.998 0.843 0.998 0.864

manually extract the malicious payloads and recompile them as independent mal-

ware. Here we only use pure malicious samples as the ground truth for testing to

verify the effectiveness of our binary classifier on negative samples. After hierarchical

clustering, each subset contains three features: Event Type, Lib, and Func.

5.1.2 Data Selection

We select the training data for learning a binary classifier from: a) pure benign

samples (positive training samples) and b) mixed samples (negative training samples).

We select the testing data from: a) pure benign samples (positive testing samples)

and c) pure malicious samples (negative testing samples). To avoid training and

testing on the same benign samples, we divide the pure benign samples into two non-

overlapping parts, 50% for training and 50% for testing. Taking the order of adjacent

26

events into account, we increase the dimensions from 3 up to 30 by coalescing each

10 consecutive samples into one 30-dimension data point. Due to the large number

of data samples, we randomly select 20% of the samples from each dataset to form

the training and testing sets. In this way, we can achieve reasonable running time for

the training phase and also near-complete coverage of the behavior in each dataset.

5.2 Evaluation Procedure and Measurement of Effectiveness

We compare our CFG guided Weighted SVM approach (denoted WSVM in Fig-

ure 5.1 and 5.2) with the other two classification approaches, i.e., approaches based

on the system-level call graph (denoted CGraph in Figure 5.1 and 5.2) and tradi-

tional SVM, on all 21 datasets. We set the model parameters λ and σ2 using 10-fold

cross validation on the training set. To eliminate fluctuation caused by the random

selection of the training and testing sets, we average all results over 10 runs.

We measure the performance of the classification results based on: True Positives

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). TP

indicates actual benign samples that are correctly classified as benign. Similarly, TN

represents malicious samples that are correctly classified as malicious. FP indicates

malicious samples that are misclassified as benign. FN represents benign samples

that are misclassified as malicious. Based on these four results, we evaluate the

performance of the different methods by five measurements: 1) Accuracy (ACC),

2) Positive Predictive Value (PPV or Precision), 3) True Positive Rate (TPR or

Recall), 4) True Negative Rate (TNR or Specificity), and 5) Negative Predictive Value

(NPV) [30].

27

5.2.1 Accuracy

By definition, the ACC is the portion of the true results (both TP and TN) in

the total test samples.

ACC =
TP + TN

TP + FP + FN + TN
(5.1)

According to Figure 5.1 and 5.2, the ACCs of all applications elevate by varying

degrees when using WSVM compared to SVM and CGraph. For example, the ACC

of winscp reverse https online increases from 59.9% (CGraph) to 92.1% (WSVM),

which reflects a significant improvement on the overall hit rate of both benign and

malicious prediction.

Though ACC indicates the overall performance of a binary classification, it may

yield misleading results if the data set is unbalanced. Thus, we introduce four other

measurements based on the confusion matrix (TP, TN, FP, FN) to give a more com-

prehensive evaluation of the experimental results.

5.2.2 Positive Predictive Value

Also known as precision, PPV measures the portion of actual benign samples in

all predicted benign samples.

PPV =
TP

FP + TP
(5.2)

As seen from Figure 5.1 and 5.2, WSVM produces the highest PPV values. For

instance, the PPV s of putty reverse tcp online are 71.2% (CGraph), 79.6% (SVM)

and 82.5% (WSVM).

28

5.2.3 True Positive Rate

Also known as recall, TPR measures the number of instances that are correctly

classified as benign out of the total benign instances.

TPR =
TP

TP + FN
(5.3)

The TPR of WSVM has obvious improvement on all 21 cases. For example, in

Figure 5.2, putty reverse https online has a TPR increase from 41.7% (CGraph) to

56.4% (SVM) and reaches 73.8% (WSVM).

5.2.4 True Negative Rate

True Negative Rate is also known as specificity. Similar to TPR, TNR calculates,

out of the instances that are actually malicious, the number of instances that are

correctly classified as malicious.

TNR =
TN

FP + TN
(5.4)

From Figure 5.1, the TNR of vim codeinject increases from 67.9% (CGraph) to

98.9%(WSVM). It can be easily verified that this improvement applies to other 20

cases according to Figure 5.1 and 5.2.

5.2.5 Negative Predictive Value

Similar to PPV, NPV measures the portion of the actually malicious samples out

of the total predicted malicious samples.

NPV =
TN

TN + FN
(5.5)

Again, WSVM ranks the highest in all 21 applications in terms of NPV. For in-

stance, the NPV of putty reverse https online increases from 69.9% (SVM) to 79.2%

(WSVM), as seen in Figure 5.2.

29

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

chrome˙reverse˙https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

chrome˙reverse˙tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++˙reverse˙https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++˙reverse˙tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty˙reverse˙https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty˙reverse˙tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim˙reverse˙https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim˙reverse˙tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

winscp˙reverse˙https

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

winscp˙reverse˙tcp

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim˙codeinject

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty˙codeinject

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++˙codeinject

Figure 5.1. Results comparing LEAPS (WSVM) with system-level call
graph and SVM for offline infection detection

5.3 Results and Discussion

Figure 5.1 and 5.2 show the results of the offline infection and online injection

datasets respectively. We also present the detailed results of all datasets in Table 5.1.

From these figures, we can see that the proposed CFG guided Weighted SVM method

achieves the best results on all measurements in all cases. In the rest of this section,

we discuss three representative cases in detail.

30

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++˙reverse˙https˙online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

notepad++˙reverse˙tcp˙online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty˙reverse˙https˙online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

putty˙reverse˙tcp˙online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim˙reverse˙https˙online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

vim˙reverse˙tcp˙online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

winscp˙reverse˙https˙online

Accuracy Precision Recall Specificity NPV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGraph SVM WSVM

winscp˙reverse˙tcp˙online

Figure 5.2. Results comparing LEAPS (WSVM) with system-level call
graph and SVM for online injection detection

5.3.1 Case Study I — winscp reverse tcp

This attack is in the offline infection category. The adversary can choose an

arbitrary benign application binary and transform it into a trojaned application.

They can implant the malicious payload into the binary and detour the program path

at some specific location to trigger the payload. The payload may create a persistent

backdoor and wait for a command from the remote adversary. After the adversary

31

creates the backdoor, the trojaned program returns back to the normal control flow

of the benign application. Legitimate users cannot detect that the remote hacker has

already controlled their machine when the trojaned application is running.

In this case, we leverage the tools and payloads in the Metasploit Framework [31]

to generate the trojaned application. Metasploit Framework is a widely-adopted

system for developing and executing exploit code to perform penetration testing.

Msfpayload is a command-line tool for generating different types of shellcode in the

Metasploit Framework. We use this tool to generate a Meterpreter, a dynamically

extensible payload that uses in-memory DLL injection stagers. The Meterpreter

communicates with the remote server via a reverse TCP connection. It enables the

remote adversary to perform all kinds of hacking operations on a victim system, e.g.,

keylogging, file uploading, taking screenshots, password hash collection, etc. The

benign host application in this case is WinSCP. We leverage Msfencode to encode the

payload with shikata ga nai (a polymorphic XOR additive feedback encoder) three

times and then embed it into the WinSCP binary.

We can see from the results that all five measurements increase if we use the

WSVM model. Take ACC and TPR for instance, we can see from Figure 5.1 that

these two measurements based on the call graph model are 74.79% and 68.16%.

ACC and TPR increase to 85.81% and 72.08% if we use traditional non-weighted

SVM. Our Weighted SVM approach shows even better classification effectiveness

compared to the SVM method. For example, ACC and TPR increase to 93.2% and

86.5%. These comparisons demonstrate the superior performance of our proposed

CFG guided Weighted SVM approach.

5.3.2 Case Study II — vim codeinject

This case is also in the offline infection category, but the infection technique and

the payload are different. We choose the hacking tool Codeinject [32] to inject a

password dialog into a portable executable, in this case Vim is the host application.

32

When the user starts Vim, a password dialog will be popped up asking for the pass-

word, which is pre-set when the trojaned binary is generated. If the user does not

know the password, Vim exits silently.

From Figure 5.1, we can see that vim codeinject increases in all five measurements

for each classification model. For instance, ACCs for CGraph, SVM and WSVM

are 35.5%, 72.5% and 85.2%. Another measurement, NPVs for CGraph, SVM and

WSVM are 51.8%, 64.6% and 78.2%, respectively.

5.3.3 Case Study III — putty reverse https online

This case is in the online injection category. In the event that there is some

unpatched vulnerability in the target system, an adversary may craft some shellcode

and perform a remote exploitation to run the shellcode. In order to stay persistent

in the system, after taking control of the system, the adversaries can choose a long-

running process and inject a backdoor payload into its memory space. They first

allocate a memory slot for the backdoor payload and then remotely create a thread

to run the code in parallel with the benign code. In this case, we also leverage the

Metasploit Framework to take over the target system. Then the adversary runs the

script of post/windows/manage/payload inject to inject the Meterpreter payload into

the memory of a running Putty. Then the adversary can connect to the Meterpreter

payload in the Putty instance through a reverse HTTPS connection.

We can see from Figure 5.2 that the ACC, PPV, TPR, TNR, and NPV for WSVM

are the highest, which is consistent with our observation in the Case Study I and II.

For example, the corresponding ACCs for the three methods are 69.22%, 78.25% and

86.86%, and their respective TPRs are 41.2%, 56.1% and 73.8%.

33

6 DISCUSSION

In this section, we examine the limitations of LEAPS and propose potential solutions

to address these problems. In addition, we discuss some future research opportunities

in the area of attack detection by bridging program analysis and machine learning

based techniques.

6.1 Source-level Trojaned Applications

LEAPS currently targets camouflaged attacks against binary applications, which

indicates that the relative offsets of the benign code will not change. However, imagine

that the adversary has obtained the source code of this benign application. He or

she could add the source code of the malicious payload into the original code base,

recompile the program, and deliver the trojaned application to the victim.

For closed-source software, only internal developers of the software vendors can

intentionally conduct such trojan implanting attacks. For software in the open-source

community, each line of the committed source code will be open to public inspection,

which makes such attacks more difficult. Assuming there exist such malicious vendors

or negligent maintainers, currently LEAPS is not able to assign correct weights in the

mixed dataset because the CFG itself has been modified.

In order to address this limitation, we need to generalize our CFG comparison

algorithm. For trojaned applications, assuming that the adversaries do not change the

functionality of the original benign software (they just implant the payload’s source

code), the general structure of the benign subgraph in the CFG will not change. In

light of this, instead of conducting exact matching, we could search for isomorphic

subgraphs in both benign/mixed CFGs by identifying and aligning pivotal nodes. We

consider this as our future work to improve LEAPS.

34

6.2 Future Work in Learning

LEAPS employs a Weighted SVM model to distinguish malicious events from

benign ones. As shown in the experimental results, LEAPS achieves reasonably

good performance on camouflaged attack detection, and consistently outperforms ap-

proaches based on system-level call graph and pure SVM. However, LEAPS only takes

the order of adjacent events into account. But in real scenarios, there may exist some

causal relations between multiple events dispersed far away (temporally) in the log.

Therefore, we plan to explore more machine learning techniques, such as conditional

random field model and hidden Markov model, to reveal such hidden relationships

between events.

35

7 RELATED WORK

Host-based anomaly detection and malware classification systems are well-researched

in recent years. The general procedure of these approaches is to extract the execution

abstraction from a subject program, build a model, and use this model to make

decisions on future data.

Some systems are based on the assumption that source code or binary is available

for analysis, thus they are able to derive a precise model to represent the program’s

execution. Wagner et al. [1] define a model of expected application behavior through

static analysis of its source code, and then check the system call trace for compliance

at runtime. Giffin et al. [2,3] introduce the Dyck model, based on static binary anal-

ysis, to include program instrumentation on the binary to facilitate efficient runtime

monitoring. DOME [4] first identifies the locations of system calls within the exe-

cutables using static analysis, and then verify at runtime that each observed system

call is invoked from its legitimate call site. SMIT [33] is a malware indexing system

that leverages an executable’s function-call graphs to cluster malware. Kruegel et

al. [34] propose extracting CFGs from worm executables embedded in the network

stream to identify structural similarities among polymorphic worms. In real-world

scenarios, source code or executables may not always be available for training. Fur-

thermore, obfuscated executables and complexity of binary disassembly render static

analysis difficult to build accurate models. In comparison, LEAPS does not require

static analysis or instrumentation of application source or binary code. We model the

execution of the program only by analyzing the system event log and infer its CFG

to guide statistical learning.

Some researchers also propose black-box or gray-box approaches to infer the execu-

tion model without static analysis. For example, Sekar et al. [6] propose an approach

to generate a deterministic FSA by monitoring the normal program executions at

36

runtime, thus avoiding static analysis on source code. Gao et al. [7] propose a gray-

box approach that builds execution graphs based on system call sequences and does

not require static analysis. Feng et al. [8] propose extracting return addresses from

the call stack to build a model of abstract execution path and use the model to de-

tect exploits. LEAPS shares the methodology of dynamically deriving the program

execution model. Yet it is among the first efforts to leverage the inferred execution

models to refine statistical learning models by pruning noisy training datasets.

Statistical learning techniques are also widely adopted in anomaly detection re-

search. Such techniques have the advantage of being robust in processing incomplete

training data, thus they can usually achieve better classification results. The input of

these systems is based on the interaction between the applications and OS (e.g., sys-

tem call sequence, system state change, and access activities). For example, Hofmeyr

et al. [11] propose to characterize normal behaviors of a program in terms of system

call sequences, thus they can detect an anomalous execution if it produces aberrant

system call sequences. Wespi et al. [12] leverage Teiresias, an algorithm for discov-

ering patterns in unaligned biological sequences, to build a table of variable-length

patterns of audit events. Lee et al. [9, 10] leverage data mining techniques to find

patterns of system features that describe program behavior. Bailey et al. [23] develop

a classification technique that categorizes malware behavior in terms of system state

changes, rather than from system call patterns. Lanzi et al. [35] demonstrate that

malware detectors based on system call sequence may not be effective in real-world

scenarios and build a model based on access activities on files and the registry.

Recently, some researchers introduce more sophisticated machine learning mod-

els, such as HMM and SVM, to assist classification. Warrender et al. [13] compare

four anomaly detection models based on the system call dataset and conclude that

HMM achieves the best accuracy on average, but with high computational costs.

Gao et al. [36] propose the concept of behavioral distance to compare the differences

of process’ behaviors on different platforms based on system calls invoked. In sub-

sequent work [14], they also introduce HMM to measure the behavior distance to

37

better account for system call orderings. Heller et al. [16] use a one-class SVM to

perform training on a dataset of normal registry accesses and then detect anomalous

registry behavior in the testing data. Kolter et al. [37] use n-grams of byte codes

from benign/malicious executables as features and evaluate them on a variety of in-

ductive methods to train the classification model. Rieck et al. [15] extract behavior

of malware in a sandbox environment and use SVM to learn the classification model

for discriminating malware types. Bayer et al. [38] leverage locality sensitive hashing

to perform unsupervised clustering based on the malware’s behavior extracted in a

controlled environment. Khan et al. [17] present a study on using hierarchical clus-

tering analysis for enhancing the training time of SVM, especially for dealing with

large data sets in intrusion detection. Eskin [39] also recognizes the existence of noisy

training datasets. His solution is to first learn a distribution probability over train-

ing data and then apply a statistical test to detect anomalies. LEAPS also adopts

SVM as the statistical learning model. However, different from these efforts that are

purely based on learning, LEAPS leverages the inferred CFGs as guidance to prune

the noisy datasets, thus effectively boosting the accuracy of the learned model for

detecting camouflaged attacks.

38

8 CONCLUSION

Camouflaged attacks implant malicious payloads into benign applications and exe-

cute concurrently under the cover of a legitimate application process. This causes

traditional program analysis based and statistical learning based detection systems

to generate a misleading decision boundary due to noisy training data because of

the interleaving of benign and malicious behavior. In this thesis, we present LEAPS,

a new attack detection system based on a supervised statistical learning model to

classify benign and malicious system events. Different from existing approaches,

LEAPS leverages CFGs inferred from system event logs as guidance to automati-

cally refine noisy training data, leading to a more accurate classification model for

camouflaged attack detection. We have conducted extensive evaluation on a range

of real-world attacks with offline and online camouflaging strategy. Our experimen-

tal results demonstrate that LEAPS can effectively improve classification accuracy

compared to traditional learning and call graph based models. LEAPS shows the fea-

sibility of combating camouflaged attacks by bridging machine learning and program

analysis. However, advanced persistence threats (APT) involves not only camou-

flaged attacks but also other wide spectrum of intrusion strategies and payloads. In

the long term, My research aims at defeating general APT attack, and my current

ongoing work focus on broader range of attack categories.

REFERENCES

39

REFERENCES

[1] David Wagner and Drew Dean. Intrusion detection via static analysis. In Pro-
ceedings of the 2001 IEEE Symposium on Security and Privacy, 2001.

[2] Jonathon T Giffin, Somesh Jha, and Barton P Miller. Efficient context-sensitive
intrusion detection. In Network and Distributed System Security Symposium,
2004.

[3] Jonathon T Giffin, Somesh Jha, and Barton P Miller. Detecting manipulated
remote call streams. In USENIX Security Symposium, 2002.

[4] Jesse C Rabek, Roger I Khazan, Scott M Lewandowski, and Robert K Cunning-
ham. Detection of injected, dynamically generated, and obfuscated malicious
code. In Proceedings of the 2003 ACM Workshop on Rapid Malcode, 2003.

[5] Henry Hanping Feng, Jonathon T Giffin, Yong Huang, Somesh Jha, Wenke Lee,
and Barton P Miller. Formalizing sensitivity in static analysis for intrusion
detection. In Proceedings of the 2004 IEEE Symposium on Security and Privacy,
2004.

[6] R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast
automaton-based method for detecting anomalous program behaviors. In Pro-
ceedings of the 2001 IEEE Symposium on Security and Privacy, 2001.

[7] Debin Gao, Michael K Reiter, and Dawn Song. Gray-box extraction of execution
graphs for anomaly detection. In Proceedings of the 2004 ACM Conference on
Computer and Communications Security, 2004.

[8] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo
Gong. Anomaly detection using call stack information. In Proceedings of the 2003
Symposium on Security and Privacy, 2003.

[9] Wenke Lee, Salvatore J Stolfo, and Philip K Chan. Learning patterns from
unix process execution traces for intrusion detection. In AAAI Workshop on AI
Approaches to Fraud Detection and Risk Management, 1997.

[10] Wenke Lee and Salvatore J Stolfo. Data mining approaches for intrusion detec-
tion. In Usenix Security, 1998.

[11] Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection
using sequences of system calls. Journal of Computer Security, 1998.

[12] Andreas Wespi, Marc Dacier, and Hervé Debar. Intrusion detection using
variable-length audit trail patterns. In Recent Advances in Intrusion Detection,
2000.

40

[13] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting in-
trusions using system calls: Alternative data models. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, 1999.

[14] Debin Gao, Michael K Reiter, and Dawn Song. Behavioral distance measurement
using hidden markov models. In Recent Advances in Intrusion Detection, 2006.

[15] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and classification of malware behavior. In Detection of In-
trusions and Malware, and Vulnerability Assessment. Springer, 2008.

[16] Katherine A. Heller, Krysta M. Svore, Angelos D. Keromytis, and Salvatore J.
Stolfo. One class support vector machines for detecting anomalous windows
registry accesses. In Proceedings of the Workshop on Data Mining for Computer
Security, 2003.

[17] Latifur Khan, Mamoun Awad, and Bhavani Thuraisingham. A new intrusion
detection system using support vector machines and hierarchical clustering. The
International Journal on Very Large Data Bases, 2007.

[18] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao, Rong-Jian
Chen, Jui-Lin Lai, and Citra Dwi Perkasa. A novel intrusion detection system
based on hierarchical clustering and support vector machines. Expert Systems
with Applications, 2011.

[19] J. Sukarno Mertoguno. Human decision making model for automatic cyber sys-
tems. International Journal on Artificial Intelligence Tools.

[20] Chung Hwan Kim, Junghwan Rhee, Hui Zhang, Nipun Arora, Guofei Jiang,
Xiangyu Zhang, and Dongyan Xu. Introperf: Transparent context-sensitive mul-
tilayer performance inference using system stack traces. In The 2014 ACM Inter-
national Conference on Measurement and Modeling of Computer Systems, 2014.

[21] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning. Springer Series in Statistics. Springer New York Inc., 2001.

[22] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brum-
ley. Byteweight: Learning to recognize functions in binary code. Proceedings of
USENIX Security 2014, 2014.

[23] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam Jahanian,
and Jose Nazario. Automated classification and analysis of internet malware. In
Recent Advances in Intrusion Detection, 2007.

[24] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiao-yong Zhou, and XiaoFeng Wang. Effective and efficient malware detection
at the end host. In USENIX Security Symposium, 2009.

[25] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., 2006.

[26] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2(3):27,
2011.

41

[27] Sung hyuk Cha. A genetic algorithm for constructing compact binary decision
trees. Journal of Pattern Recognition Research, 2009.

[28] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer
theorem. In Conference on Learning Theory, 2001.

[29] I Buch and R Park. Improve debugging and performance tuning with etw. MSDN
Magazine, 2007.

[30] Stephen V Stehman. Selecting and interpreting measures of thematic classifica-
tion accuracy. Remote Sensing of Environment, 1997.

[31] Metasploit. http://www.metasploit.com/, 2007.

[32] Portable executable (P.E.) code injection: Injecting an entire C com-
piled application. http://www.codeproject.com/Articles/24417/
Portable-Executable-P-E-Code-Injection-Injecting-a, 2008.

[33] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. Large-scale malware indexing using
function-call graphs. In Proceedings of the 2009 ACM Conference on Computer
and Communications Security, 2009.

[34] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Gio-
vanni Vigna. Polymorphic worm detection using structural information of exe-
cutables. In Recent Advances in Intrusion Detection, 2006.

[35] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu,
and Engin Kirda. Accessminer: using system-centric models for malware protec-
tion. In Proceedings of the 2010 ACM Conference on Computer and Communi-
cations Security, 2010.

[36] Debin Gao, Michael K Reiter, and Dawn Song. Behavioral distance for intrusion
detection. In Recent Advances in Intrusion Detection, 2005.

[37] J Zico Kolter and Marcus A Maloof. Learning to detect and classify malicious
executables in the wild. The Journal of Machine Learning Research, 2006.

[38] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher
Kruegel, and Engin Kirda. Scalable, behavior-based malware clustering. In
Network and Distributed System Security Symposium, 2009.

[39] Eleazar Eskin. Anomaly detection over noisy data using learned probability dis-
tributions. In Proceedings of the International Conference on Machine Learning,
2000.

VITA

42

VITA

Kexin Pei earned his BS degree in computer science from Hong Kong Baptist Uni-

versity in 2014, and MS degree in computer science from Purdue University in 2016.

His research interests lie in the area of security, program analysis, and machine learn-

ing. His recent work focuses on leveraging machine learning techniques (traditional

supervised/unsupervised learning models and graphical learning models), as well as

program analysis (dynamic/static program analysis) to improve the effectiveness of

cyber attack detection. In the fall of 2016, he continued his study in Columbia Uni-

versity, Department of Computer Science as a PhD student.

	Purdue University
	Purdue e-Pubs
	4-2016

	Bridging statistical learning and formal reasoning for cyber attack detection
	Kexin Pei
	Recommended Citation

	Blank Page

