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ABSTRACT 

Nyre, Megan M. MSIE, Purdue University, May 2016. Developing Agent-Based 
Simulation Models of Task Performance of Cognitively Diverse Teams. Major Professor: 
Barrett S. Caldwell. 
 
 

Team-oriented work dominates industry, government, and academic areas with the goal 

of solving increasingly complex problems. However, the scope and external validity of 

traditional human factors research is inherently limited by the time and resources required 

to conduct laboratory studies. The model described in this thesis integrates simulation 

with human factors by providing an operationalized model that incorporates cognitive 

diversity and domain expertise. Convergence and functionality of the model have been 

established through a series of analyses, and a clear path for future research has been 

identified. By integrating simulation methods into human factors subject areas, 

researchers may be able to gain understanding of a more diverse set of teams, team 

dynamics, and group performance in a fraction of the time and resources required for 

traditional methods.
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CHAPTER 1. INTRODUCTION 

Work in organizations is often team-oriented. Simply put, a team is a group of 

people working towards the same goal, not merely a collection of individuals working on 

the same task or project. Teams are often formed to complete large, complex projects that 

require the effort and expertise of more than one individual. Successful completion of 

these tasks requires the team members working together and managing interpersonal 

dynamics, often called teamwork (as opposed to taskwork, or activities to complete the 

task). Team-oriented work is extremely common in a wide range of industries, such as 

academic, medical, and industrial (Bowers, Salas, & Jentsch, 2006).  

Team-oriented work is gaining popularity and, thanks to the Digital Age, is now 

commonly distributed across technology channels. This poses some challenges for 

productivity, as it is now a network of individuals trying to work towards a single goal, 

sometimes from different locations, in different time zones, with different resources and 

technologies. As this distribution of resources continues to expand in terms of knowledge, 

time, and space, information alignment becomes increasingly critical to maintain 

performance and safety (Caldwell, Palmer, & Cuevas, 2008). 

Information alignment has been identified by industry sources as a key 

component to success, especially in industries like healthcare (Ruhstaller, Roe, 
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Thurlimann, & Nicoll, 2006). In relation to communication, Caldwell and colleagues 

(Caldwell, 1994) adopt the three levels of communication problems originally defined by 

Shannon & Weaver (1949). These levels include technical problems, semantic problems, 

and effectiveness problems (Shannon & Weaver, 1949). Technical problems refer to 

message transmission with respect to accuracy and noise. Shannon & Weaver (1949) 

studied technical problems in the context of the telephone, modeling a pairwise 

interaction between a sender and receiver, with noise affecting the amount of information 

received. Semantic problems describe those caused by message interpretation; such as if 

the message sent was the same as how it was received. Effectiveness problems connect 

the technical problem of transmission and the semantic problem of interpretation to 

desired outcomes. Essentially, effectiveness problems examine if the message resulted in 

the desired behavior. Wiener (1948) explores effectiveness problems in depth within the 

field of cybernetics, and describes message content and complexity with respect to sender, 

receiver, and result of the intercommunication between the two (Wiener, 1948). 

Information alignment incorporates all three levels of communication problems. 

As defined in this thesis, information alignment is the activity of coordinating flows of 

information between people in a team. One factor of information alignment explored in 

this thesis is described by semantic problems, and represents how individuals receive and 

process information.  

Cognitive diversity can be defined as “differences in the cognitive processes that 

people employ to accomplish their tasks” (Kurtzberg, 2005, p. 53; Mello & Rentsch, 

2015). Research supports the idea that a range of backgrounds and perspectives positively 
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affects team performance (Martins, Schilpzand, Kirkman, Ivanaj, & Ivanaj, 2013). 

However, while cognitive diversity represents potential for more organizational 

innovation, it can also pose challenges for information alignment.  

Communication can be affected by a number of factors, including environmental 

factors and personality (Duggan, 2016). Differences in thinking associated with 

disciplinary training can obstruct communication with people from different disciplinary 

backgrounds (Deering, Johnston, & Colacchio, 2016). Furthermore, the language used in 

diverse disciplines is often a barrier in multidisciplinary communication (Haymaker, 

2006; Sheehan, Robertson, & Ormond, 2007). These aspects have the potential to 

exacerbate information uncertainty or coordination losses, creating opportunity for 

incomplete, inefficient, or inadequate communication between members of a team. 

One aspect of information alignment is communication effectiveness. How well 

do members of the team (human or automated) communicate with each other? 

Communication effectiveness attempts to measure this not in the form of “how often” or 

“which channel”, but in the message itself and how it is communicated. Information 

sharing literature proposes explicit, implicit and tacit modes of communication and 

coordination (Caldwell, 1997; Guinery, 2011). Situations that draw upon communication 

effectiveness as a key factor might include a lawyer meeting with a client from another 

country, a taxpayer using filing software, or a child interacting with an autistic family 

member (Grandin & Scariano, 1986).  

Every year, billions of dollars are lost due to poor communication in areas such as 

productivity, sales, and even safety (Grossman, 2011; Leonard, Graham, & Bonacum, 
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2004; SIS International Research, 2009; Solari Communication, 2014). Moreover, this 

problem is not isolated to a specific business, culture or industry (Groysberg & Slind, 

2012). 

Articles and media commonly highlight the impact of information alignment in 

various industries and organizations. Areas such as law, teaching and academic advising 

have stressed the importance of understanding “cognitive diversity” and its role in 

collaboration with clients and mentoring of students (Collier, 2014; Uhlik, 2014). 

Business development and other types of consulting firms recognize the power of 

understanding differences in communication between members of a team, and commonly 

offer workshops or assessments in all industries to help businesses overcome information 

alignment problems (Leimbach, 2016). NASA even goes as far as building teams based 

on individual communication preferences to help increase cognitive diversity on project 

teams (Pellerin, 2009). Harvard Business Publishing and the Association for 

Psychological Science have both published videos and articles in this field to educate 

readers on the background and consequences of cognitive differences (Bonchek & Steele, 

2015; Kozhevnikov, 2014). 

This problem, if not solved, can cost time, productivity, and satisfaction. 

Furthermore, failures in communication can pose high risk to safety critical areas, such as 

healthcare (Leonard et al., 2004). Based on the number of consulting firms, articles, and 

educational materials available in this area, the problem is far-reaching and non-

discriminatory.  
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The concept of a “hybrid human (or system)”, which consists of a collaborative 

communication relationship between humans or between humans and technology, draw 

attention to the need and powerful implications of expanding general understanding of 

the information alignment process (Bradshaw, 2015; Reijers, 2015). Multi-agent learning 

takes this a step further into a realm where agents in a system are omnipresent through 

each other, working in sync with constant real-time shared situation awareness and 

knowledge (Panait & Luke, 2005).  

However, the reality of human performance in any system, with or without 

technology, is that humans are inherently different from each other and from any system 

with which they interact. Thus, assuming perfect information exchange or knowledge 

coordination via communication of a human with another entity or being is an unrealistic 

assumption.  

The research in this thesis takes a step in the direction of modeling information 

alignment between humans (or agents with humanistic attributes, such as a mode of 

thinking). With the development of technology and increased speed in simulation, digital 

modeling and simulation provide ample opportunity to expand the range and magnitude 

of what can be learned about teams without some of the time and resource constraints of 

traditional laboratory settings. However, to be a successful and useful contribution, the 

attributes of modeled agents must be developed and run in a realistic way. 

This thesis provides a different approach to addressing gaps in analysis of team 

communication processes and methods of improvement. The goal is to increase 

understanding of team dynamics, especially the link between communication and 
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performance, by creating a new way to study it. More specifically, this thesis provides a 

proof of concept of a new method of simulation-based human factors research in team 

coordination. If this method can reduce the amount of time, cost and pain involved with 

improving team performance, organizations may be able to increase utilization of human 

assets, productivity and satisfaction of individuals. Additionally, teams may find 

alternative methods for drawing on and maximizing the strengths of cognitive diversity. 
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CHAPTER 2.  BACKGROUND 

This paper approaches the scientific study of teamwork by taking previous research 

and expanding upon the original framework to include mechanisms and processes under 

individual components. This section delivers a brief overview of literature that touches on 

group dynamics research. 

 

2.1 Teams and Systems 

 

2.1.1 Definition of “Team” 

A more complete definition of a team is “a distinguishable set of two or more 

people who interact dynamically, interdependently, and adaptively toward a common and 

valued goal/objective/mission, who have each been assigned specific roles or functions to 

perform, and who have a limited life-span membership” (Paris, Salas, & Cannon-Bowers, 

2000; Salas, Dickinson, Converse, & Tannenbaum, 1992, p. 4). To support the amount, 

scope, and complexity of work, teams are assembled to perform the needed tasks in an 

environment in which members can share knowledge and task load through 

communication and coordination, resulting in teamwork.  

Examples of team-oriented work are in nearly every industry. Indeed, the 

teamwork emphasis exists as a large body of literature that extends from interdisciplinary
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to cross-cultural focus, from leadership to membership, and so on. Research and industry 

alike have identified the need to study teamwork in industries and environments in which 

the team functions are highly critical in terms of safety and performance, such as 

healthcare and space exploration (Baker, Day, & Salas, 2006; Onken & Caldwell, 2011; 

Orchard, Curran, & Kabene, 2009). Harnessing salient aspects of successful teams has 

become a main initiative for competitive businesses, which want to understand not only 

how to form successful teams, but also how to balance the team components, determine 

effective work methods, and lead them towards increased performance (Ferrazzi, 2012; 

Slocum, 2014).  

 

2.1.2 Teams as Systems 

The dictionary defines a system as “a group of components that move or work 

together”(“System,” 2015). Though many definitions can be found for the word ‘system’, 

the main theme is that there are two or more components that are coordinated toward a 

purpose, that are more than the sum of the parts (DeGreene, 1970; Meadows, 2008). This 

nicely parallels the definition of team. 

An easily recognizable example of a team is a group of undergraduate students 

working on a course project. Inputs are tasks within the scope of the project, proposed 

problems, course objectives, or the semester project in general. These inputs are fed to 

the process, which is the problem-solving activity performed by the student team. The 

team then produces outputs, such as deliverables, presentations, or solutions. Feedback 

may include performance measurement and information alignment. In the case of the 
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undergraduate team, the students might receive incremental feedback from teaching 

assistants or instructors, and receive a final grade at the end of the term. The goal of this 

system is to complete the project with acceptable performance in meeting the team’s (and 

the instructor’s) objectives: finishing a project on time, within budget, and with a finite 

and feasible solution. Figure 1 depicts the conceptual team-system model, which was 

created as part of this study. 

Some other real-world examples of this type of system may include 

interdisciplinary research at university, NASA Mission Control Centers, or even an 

academic team completing a capstone project. In each of these cases, a team of 

individuals receives inputs of tasks (which can also be individual), executes the task, and 

produces corresponding deliverables. The feedback provided to the teams above would, 

respectively, include peer or ‘customer' responses to addressing gaps in a research area, 

resolved or unresolved problems during NASA missions, or grades and comments from 

instructors. 

 

Figure 1. Team-System Conceptual Model 

Teamwork 
Taskwork  
Pathwork 

Achievement 
Task Completion 

Goals Met 

Team Members 
Project (of Tasks) 

Goals  

Performance 
Measurement 

 

Information 
Alignment 

 

Work Environment 
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2.2 Teamwork, Taskwork and Pathwork 

Teamwork, defined above, is distinctly different from taskwork and pathwork. 

Where teamwork is managing the process of interaction in order to support the work 

being performed, taskwork is the coordination of knowledge and information toward task 

execution (Crawford & Lepine, 2013; Kozlowski, Watola, Jensen, Kim, & Botero, 2009; 

Salas, Cannon-Bowers, & Johnston, 1997). Pathwork refers to how information is passed 

among team members, which is relevant especially in geographically and temporally 

distributed teams (Caldwell, 2005b). These aspects of group dynamics provide the 

structural basis for this thesis. 

 

2.2.1 Teamwork Research 

There are different levels of analysis with which to study team performance. 

Many sources focus on tangible outputs, frequency of communication, information 

exchange, success versus failure, and more (Paris et al., 2000). Additional levels rooted in 

psychology promote shared mental models and team situation awareness as key factors in 

team performance measurement (Cohen & Levesque, 1991). Bales (1950) even went so 

far as to break down interactions into categorical elements, such as “shows tension” or 

“shows solidarity” to assist in analysis of such interactions (Bales, 1950). However, it is 

generally agreed that factors of team performance are not easily measured (Paris et al., 

2000). 

Besides the technical challenges of distributed teamwork, there are the social 

differences between team members that affect on an individual level how a person thinks 

and communicates. There are also differences in how well he or she can communicate 
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with other people who may think differently. In relation to Garrett & Caldwell’s six 

dimensions of expertise, flexibility in modes of communication can be categorized as 

communication expertise (Garrett, Caldwell, Harris, & Gonzalez, 2009). Communication 

expertise, like other types of expertise, can develop over time with education, exposure, 

and practice (Campbell, Maglio, Cozzi, & Dom, 2003; Scardamalia & Bereiter, 1991). 

 

2.2.2 Taskwork Distinctions 

Taskwork encompasses methods of carrying out teamwork, and includes 

strategies and technologies needed to complete a set of tasks (J. E. Mathieu, Heffner, 

Goodwin, Salas, & Cannon-Bowers, 2000). Consequently, taskwork is affected by the 

distribution of domain knowledge expertise on a team, as the amount of achievement the 

team can gain is dependent upon how well available information is shared between 

members on a team (Caldwell, 1997; Martins et al., 2013). Thus, taskwork has a strong 

relationship with expertise and knowledge sharing. 

Tasks performed by a group, also called group tasks, can require different types 

of inputs from team members for different kinds of tasks. Steiner (1972) proposes three 

(3) types of tasks that utilize team members differently (Shaw, 1971; Steiner, 1972). 

Additive tasks produce results through a summation of constituents, or adding the inputs 

of each team member to product an output. Disjunctive tasks require only one constituent 

to have the necessary skills. Conjunctive tasks require every team member to have the 

necessary skills. These task types provide mathematical operations for rules and 

performance measurement. 
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2.2.3 Pathwork 

Teams can work in a variety of environments, and can also be geographically, 

technologically and temporally distributed, which affects how the team members interact. 

Asynchronous communication through different channels describes how pathwork could 

be impacted. Thus, the goal of improving pathwork is understanding available 

communication paths to minimize negative effects on teamwork and taskwork. Pathwork 

describes constraints and possible future considerations for additional factors affecting 

team performance. 

 

2.3 Expertise 

Expertise is a topic of scientific research that has been pursued with several 

approaches, ranging from correlating intelligence to performance to analyzing specific 

abilities (Ericsson & Smith, 1991). All approaches similarly seek to assess expertise in 

controlled laboratory settings using standardized tasks. One approach defined by Ericsson 

& Smith (1991) with strong connection to this thesis is the analysis of task performance, 

which evaluates domain- or task-specific knowledge. While individual expertise is not 

assessed within the scope of this research, constructs that support future collection of 

input data should be considered. Ericsson & Smith (1991) present an expertise approach, 

capable of collecting expertise data compatible with the assumptions of this thesis. 

There are a variety of domains or dimensions of expertise to consider in this system. 

Garrett et al. (2009) describe expertise using a multi-dimensional model to combine 

different concepts of expertise to integrate with the analysis of group performance in 

more complex task environments (Garrett et al., 2009). The six dimensions include 
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subject matter, situational context, interface tools, expert identification, communication 

skills, and information flow path expertise, none of which is mutually exclusive with 

another.  

Skills in teamwork are different dimensions of expertise than those in taskwork. 

However, most teams need to be adept on both areas because of the relationship between 

teamwork and taskwork (Fisher, 2014). Communication effectiveness, or the measure of 

how well communication is understood with respect to both sender (message sent) and 

receiver (message interpreted) ultimately will impact teamwork. Previous efforts in 

modeling these interactions portray these particular aspects as black box processes in how 

information is shared (Onken, 2012). The scope of this thesis encompasses the 

communication element of teamwork, under the term information alignment, and its 

relationship with taskwork.  

With respect to task performance, expertise plays a pivotal role in a team’s ability 

to complete a task. For instance, if a team is assigned a task that requires more expertise 

than available on the team, the task will not be completed to an ideal level, if at all. 

Another possibility is that the team has a single expert in a given area around which a 

task is focused. This person becomes the fulcrum between success and failure. 

As demonstrated in the above scenarios, representation of domain expertise is a 

relevant and necessary aspect of studying taskwork and teamwork in group environments. 

Consequently, the model presented in this thesis includes distributions of domain 

expertise, implications of task attributes on expertise evaluation, and the effects on task 

performance. Domain expertise is represented as abstract areas, with the respective 
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amount of expertise in each domain on an ordinal scale. In addition to expertise, Caldwell 

(2009) identifies other factors that relate to task performance, which could be 

incorporated into future expansion of this research (Caldwell, 2009). 

 

2.4 Information Sharing and Knowledge Sharing 

Coordinated information flow represents the consequences of taskwork. 

Information and knowledge sharing is a vast area of literature that discusses everything 

from shared mental models between team members to environmental factors that affect 

motivations and opportunities to share information between team members (Wang & Noe, 

2010). Some studies of information sharing even use a cybernetics approach by 

operationalizing communication transactions between team members in complex 

mathematical models (Rothenburg, 2015; Wiener, 1948). Others use probabilistic 

approaches to accommodate for social aspects of information alignment (Ghosh & 

Caldwell, 2006). 

The approach used in this thesis focuses mainly on flow of information with the 

understanding that knowledge can be shared along the channels that information 

normally flows within a given organization. Using this framing, similar factors and 

constraints can be considered while maintaining a ‘systems’ perspective on the team 

coordination (Caldwell, 1997). Within the framework proposed by Caldwell (2005a), 

there are four possible modules for simulating information alignment in teams, which 

include asking, sharing, solving, and learning (Caldwell, 2005a). Attempts have been 

made to focus specifically on the sharing module simulation, using data collected from 

knowledge sharing domains, such as chat rooms, to supplement research in this area 
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(Ghosh & Caldwell, 2006).  More limited attention has been devoted to development of 

solving modules, which focus on models of teams addressing particular task challenges 

with an eye to an engineering solution (Onken & Caldwell, 2011; Onken, 2012). 

McInerney & Koenig (2011) describe three types of information as it relates to 

flow. Implicit information is that which is implied, but not clearly stated. Explicit 

information is in tangible form, overcoming the possibility of confusion. Tacit 

information is that which is very difficult to transform into a tangible form, such as 

kinesthetic information (McInerney & Koenig, 2011, p. 45). A relevant metaphor 

proposed by Caldwell, Palmer and Cuevas (2008) describes an ‘information clutch’, 

which is used to control information flow between team members to adjust for relevance, 

priority and availability of each person (Caldwell et al., 2008). The ‘information clutch’ 

is then an important tool used by experts, managers, and leaders in organizations to 

improve team performance, though it may not be an actively studied process.  

This thesis recognizes the importance of the ‘information clutch’, which draws on 

an individual’s ability to gauge other team members, their availability, needs and 

strengths. Though there is no specific mechanism or equation in the model at this stage of 

development, information clutch could be represented in the same variable that quantifies 

efficiency of communication. Future versions of the model should further develop this 

aspect of information alignment, and could be incorporated into efficiency of expertise, 

environmental factors, and pathwork. 
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2.5 Cognitive Diversity and Thinking Modes 

 

2.5.1 Origins of Style Differences in Cognition and Communication 

Formal theories surrounding differences in behavior and communication style 

have been around since ancient Greece (Chapman, 2009; Wille, 2004). Most of these 

theories use terms associated with personality such as thinking style, learning style, and 

communication style (Coffield, Moseley, Hall, & Ecclestone, 2004). These terms have 

common roots in that a person’s character is defined by their temperament, disposition, 

attributes, which are all factors in how that person thinks, organizes information, and 

expresses himself or herself (Wille, 2004).  

This thesis emphasizes the aspects of the prioritization, organization, and 

presentation or communication of information between team members, as a combination 

of context, individual difference, and expertise factors.  Thus, while some of the 

conceptual organization of terminology refers to personality and style, the focus of this 

thesis is on the effects of ranges of individual variations and capabilities on information 

alignment to support effective acquisition, sharing, and use of information in team 

performance settings.  

 

2.5.2 Style versus Mode 

Relevant literature presents two main terms for defining the differences in how 

people think: style and mode. While both are commonly used, sometimes 

interchangeably, the term ‘mode’ was adopted for this research.  ‘Style’ suggests unique 

individual expression or personality, and is used with terms like ‘assertive’, ‘aggressive’, 
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or ‘passive’.  ‘Mode’ connects to a method to thinking, organizing, prioritizing and 

presenting information, which could be shared or common. Thus, this research 

distinguishes that between the two terms, ‘mode’ more accurately reflects the variable of 

interest regarding information alignment. 

Consistent with modern models, many of the older theories regarding cognitive 

styles or modes propose that different types of behaviors align with a specific mode of 

thinking and communicating. While each model has its own taxonomy, there is a clear 

trend in that they propose four or more distinct behavior modes, which can be assigned to 

a person based on results of a binary response assessment of preferences and avoidances. 

Two commonly used instruments that assess preferred thinking modes, based on classic 

theories of communication and interpersonal interactions, include the DISC® Model and 

the Herrmann Brain Dominance Instrument (HBDI™) (Herrmann, 1991; Keirsey & 

Bates, 1984; Sugerman, 2009). Factor analysis of the HBDI™ instrument determined 

four factors, representing the four behavior modes (Coffield et al., 2004; Sundstrom, de 

Meuse, & Futrell, 1990). 

The purpose of distinguishing between thinking modes is not to label or limit 

individuals. On the contrary, some models, including Herrmann’s, generally accept that 

these modes are flexible, and that tools such as HBDI™ should be used to encourage 

growth (Coffield et al., 2004). Some organizational psychologists have found that this 

concept of cognitive style is a central aspect of organizational behavior (Kozhevnikov, 

2007). Cognitive diversity, or a difference in problem-solving style, is referenced in 

recent business articles as a typical challenge in teams, but also beneficial if understood 
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by leaders and team members (Browning, 2013; Collier, 2014; Siverson, 2013). One 

article even stressed the importance of this particular aspect of teamwork for the next 

generation of professionals (Dishman, 2015). 

Instruments that determine communication mode are used commercially in 

business, management, education, and coaching to help bridge gaps in understanding 

differences in preferred modes of thinking and communicating to increase effectiveness. 

Effectiveness here is loosely defined, and is dependent upon the process that is being 

analyzed and measured. Examples of successful education and use of these tools provide 

a large pool of anecdotal evidence that support the validity of the underlying theories. 

From increased sales, to higher student performance, users of these tools claim that the 

knowledge gained from the theories not only increase effectiveness in the respective 

domains, but also general satisfaction of communication in team environments 

(Herrmann International, n.d.; PeopleKeys, n.d.).  Formal studies in psychology also 

contribute to the pool of evidence from the education domain (Bawaneh et al, 2011; 

Lumsdaine & Lumsdaine, 1995).  

In general, the author accepts the general theory that there are different thinking 

modes, and that these thinking modes affect communication interactions; the purpose of 

this thesis is not to specifically test or validate these models (singularly or in direct 

comparison to each other). Though thinking mode tools are commonly used in business, 

studies that support and build on the impacts of their use are largely missing from the 

research community. Additionally, communication continues to be a critical and 

expensive problem in general areas of human-human or human-systems interactions. 
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Every year, billions of dollars are lost due to poor communication in areas such as 

productivity, sales, and even safety (Grossman, 2011; Leonard et al, 2004; SIS 

International Research, 2009; Solari Communication, 2014). Moreover, this problem is 

not isolated to a specific business, culture or industry (Groysberg & Slind, 2012). 

Though some data are available, scientific support of the benefits of instruments 

such as HBDI™ is generally absent (Coffield et al., 2004). Lack of quantitative evidence 

and systematic study contribute to this gap, despite indications that thinking mode tools 

may be beneficial in other applications. Traditional research in team performance focuses 

on observed behaviors and subjective data to include relationships and dynamics in teams. 

Examples of studies that explore the effects of cognitive styles or modes range include 

effects on visual and verbal information processing (Sojka & Giese, 2001; Thomas, 1987)  

and education (McCloughlin, 1999). 

However, a more recent review of literature in team effectiveness recommends 

considering different, more dynamic research approaches to reflect the complex team 

environments of the modern world (Mathieu et al, 2008). To address the identified gap, 

this paper will take this recommendation by using simulation to assess the impact of 

differences in thinking modes on productivity and emergent behavior in expert teams. 

 

2.6 Team Performance Measurement 

Group performance research suggests many different methods of measuring and 

understanding how well a team is performing. Many studies resort to quantitative 

methods, such as surveys, questionnaires, lab experiments with measurable outcomes 
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(Eden, 1985; Srivastava, Bartol, & Locke, 2006). Other qualitative methods, such as 

interviews and conceptual methods, can also be used to gain general understanding 

(Cooke, Salas, Cannon-Bowers, & Stout, 2000), but are difficult to translate into 

measurement.  

 

2.6.1 Linking Outputs to Inputs 

Many organizations interested in improving team performance want to see 

measurable improvement, starting with a baseline and comparing to an after-treatment 

value. Some areas of research, including industrial engineering, adopt this approach, 

using key performance indicators appropriate for the process or industry to measure 

productivity (Lynn & Reilly, 2000; National Research Council Staff & Harris, 1994). 

While quantitative approaches are widely used, certain aspects of team performance can 

be lost in the process of simplifying factors into measurable variables. Some common 

issues with performance measurement using productivity are the adequacy of the 

measures themselves, the intrusiveness of the measurement process, and complexity of 

linkages between individual and organizational productivity (National Research Council 

Staff & Harris, 1994; Zigon, 1998).  

2.6.2 Measuring Communication 

Shannon and Weaver (1949) devised a mathematical approach based in 

information theory to describe communication as signals passed between nodes (Shannon 

& Weaver, 1949). The model includes concepts such as feedback and noise, which are 

relevant beyond the scope of Shannon & Weaver’s original research: the telephone.  

Bales (1950) had a similar view of communication. Instead of electrical signal 
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transmissions, he focused on social cues as feedback to verify if a message was 

understood and accepted (Bales, 1950). His research breaks down communication 

transactions into visible responses for analysis. Wiener (1948) incorporated 

communication in terms of consequential observable behaviors within the field of 

cybernetics, connecting the original goal of message to the outcomes associated with it 

(Wiener, 1948). 

All of these approaches can provide insight regarding how well communication is 

happening between two or more people. However, the gap between the methods is in the 

verification that a message was received and understood based on the content and the 

person sending and the person receiving. The first two approaches are transactional in 

nature, and do not include other socio-technical factors, such as how the information is 

presented and how the receiver interprets it.  While the grain sizes of these analyses are 

too small for the system described here, the connection of messages sent, received and 

decoded between two or more entities is central to how communication is described in 

this model. 

 

2.7 Methods for Researching Teamwork 

 

2.7.1 Human Subjects Experiments 

Traditional experimentation using human subjects is the most prominent method 

in collecting data regarding group dynamics. Research designs commonly employ a 

variety of methods that rely on direct access to real teams, such as objective testing, 
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laboratory and field experiments, longitudinal studies, and interviews (Kerlinger & Lee, 

2000).  

These methods, while supporting validity of the research, require large amounts 

of time and money, as well as wide ranges of available participants. Research designs 

associated with these methods also introduce purposeful controls and inadvertent 

confounds, such as demographics of participants (Colquitt, Hollenbeck, Ilgen, LePine, & 

Sheppard, 2002). These design implications can reduce the amount of data that can be 

collected (Joshi & Roh, 2009) as well as the generalizability of the experiment (Acuna, 

Gomez, & Juristo, 2009; Day et al., 2004). In summary, inherent limitations exist in 

traditional group research methods. 

 

2.7.2 Observation and Survey Research 

Much of the work done in team research has been based on methods such as 

observation and surveys. Some authors focus their social science efforts on how to design 

surveys to collect information from organizations (Bauer & Bauer, 2005). Though both 

observational and survey methods provide data and insight regarding team performance, 

both leave large gaps in quantifying and understanding the communication between team 

members and how this relates to the team’s performance, especially considering the 

subjective nature of each. Surveys are subjective, using only the participant’s perspective, 

and represents a single viewpoint on the team and its performance. Observation studies 

do not provide visibility or access to internal factors, such as thinking mode or 

information alignment. Neither method provides opportunity for both holistic and 

individual levels of analysis. 
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2.7.3 Simulation 

Simulation and computational modeling have recently gained popularity in social 

sciences, including areas such as team effectiveness. Advances in technology and 

computational resources now allow researchers to develop models quickly and at low 

cost, greatly increasing the incentive to engage in this method. Simulation, in comparison 

to traditional methods, is inexpensive and may take a fraction of the time to obtain 

potentially useful information. Researchers also have the ability to change treatments and 

increase trial numbers on identical teams with minimal time and cost implications. 

McGrath (1984) presents a variety of simulation possibilities for studying “concocted 

groups” doing tasks, wherein the groups can be manipulated in addition to the tasks 

(McGrath, 1984). For these reasons, simulation is growing in popularity within human 

factors and social science research (Gaylord & D’Andria, 1998; Ghosh & Caldwell, 

2006).  

Agent-based modeling is especially fitting for research in human systems, as it 

allows for the individual, non-linear behavior observed in humans (Bonabeau, 2002). 

Studies range from actual neurological modeling of thought, to full-scale team dynamics 

and knowledge sharing (Acquisti et al, 2002; Marsell et al, 2004; Wang & Noe, 2010).  

The goal of agent-based models in this context is prediction of real-world behavior as 

well as theory development (Gilbert & Terna, 2000), with the focus of this thesis on the 

latter.  

One simulation study that concerns team problem-solving in Mission Control at 

NASA provides solid contextual basis for this work by presenting a team with diverse 
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skill sets that is required to resolve anomalies in different problem domains (Onken & 

Caldwell, 2011). Onken’s model accounts for communication, though in a simplified 

manner, using a ‘black box’ description of how communication happens, and how 

different levels of communication expertise affects team-level communication.  

Operationalizing thinking modes, demonstrated in this thesis, provides a more 

robust module to discern team communication dynamics, but also quantifies the 

traditionally subjective results of using a thinking mode tool. The goal of this addition is 

to reveal significant effects or emergent behavior of team productivity based on 

differences in thinking modes within a diverse team of individuals, such as those experts 

in NASA Mission Control. 

This thesis presents a revised model, which may be able to assist in forming 

hypotheses surrounding team effectiveness and revealing the mechanisms that drive 

specific behaviors. Further research using human subjects can be done to test the 

hypotheses and validate specific scenarios. Knowledge gained from this research could 

help leaders, team members, and researchers devise new approaches to improvement of 

team formation, management, and performance measurement. 
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CHAPTER 3. METHODOLOGY 

3.1 Framework 

The model described in this thesis is a proof of concept for exploring how different 

sizes of teams may or may not complete a set of tasks (called here a “project”) based on 

diversity of thinking modes and expertise available on the team. An example of this can 

be found in the NASA Systems Engineering Handbook (2007), which describes the role 

of systems engineers in a diverse team of experts who need to complete a complex set of 

tasks. Tools for scheduling, tracking task performance, and reporting (communication) 

are all discussed as core components of a project (NASA Systems Engineering Handbook, 

2007). The team is comprised of agents, which each have attributes, such as a thinking 

mode and expertise. The team is then assigned tasks, which have types that define how 

expertise needs to be applied to complete the task. Achievement of each task is 

determined by measuring how well the team was able to communicate, if the team had 

the expertise required by the task, and a roll for performance. These will all be defined 

below.  

A helpful analogy in describing this model is in relation to team sports. Team 

sports require the contributions of each member to succeed. Some team sports, such as 

golf, add individual scores to get the team score, requiring each individual to perform 
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well during his round. Track teams doing relay races rely not only on individual 

performance, but also the handoff from one player to the next. This setting builds upon 

the first, with the addition of the crossover from one player to the next during the handoff. 

Volleyball teams rely on all specialized positions, each with distinct skills, to perform 

well as individuals and together during a game in order to succeed.  

 

Figure 2. Model Framework 
 

In the last sports example, communication between team members is especially 

important in coordinating offense and defense, as well as overcoming mistakes and 

rallying. Many team sports now recognize the importance of choosing team members not 

only for their skills, but also their ability to act in a team setting in a way that benefits the 

whole (May, 2014). A key aspect of this analogy is the importance of communication in 

teams, no matter if these teams are in industry, academia, or sports. 
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3.1.1 Agent-Based Modeling 

Agent-based modeling (ABM) is a modeling and simulation paradigm that defines 

individual components, called agents, that can act independently in an environment 

(Macal & North, 2010). Salient aspects of the agents include individual attributes, such as 

memory and goals, which interact with the environment and other agents during the 

simulation. Thus, ABM is appropriate for organizational simulation in that it can provide 

qualitative insights into complex systems, including human systems (Bonabeau, 2002; 

Macal & North, 2005, 2010). ABM techniques are acknowledged in social sciences as 

relevant ways to study emergent behavior and develop theories (Gilbert & Terna, 2000).  

 

3.1.2 Teams and Agents 

The model described in this thesis includes a team composed of some predetermined 

number of agents. This number can easily be changed to reflect a specific team, but was 

largely determined by estimating the range of people on a productive team (Fried, 1991). 

The assumptions governing agent behavior in this simulation include aspects of real-

world team assembly and functioning.  

• The team is assigned a series of work-related tasks to complete. 

• Team members do not choose their teammates. 

• Team members have different roles with different associated skills. 

• The team is working towards a common goal. 
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Consistent with ABM, the members of the team each have a set of attributes that 

influence how each member is able to collaborate with other members to achieve the goal. 

These attributes include thinking mode and expertise.  

To represent communication, this model employs example results from a popular 

four-mode model as one possible way to help categorize different thinking modes in a 

population (Herrmann, 1996).This study does not assume the nature of the modes or the 

underlying theory of the four-mode model to be correct, only that there are multiple 

modes representing different ways of thinking.  

Within the model, agents each have a thinking mode profile comprised of four (4) 

values that represent different modes of thinking, denoted by l. To simplify what these 

modes may represent, they will be called S, R, Y, and U, which denote four distinct ways 

people think. To add context, these modes might be thought of as social, structural, 

analytical and conceptual.  

Each agent A has a magnitude of strength in each of the modes, resulting in a vector 

of values. It should be noted that an agent could have a high magnitude in all modes, 

consistent with some thinking mode models (Herrmann, 1996). The magnitude, denoted 

by m, represents the strength of the individual’s preferences in employing that particular 

mode, which is an important distinction when understanding how a person might prefer 

to work in certain environments. For instance, how an individual prefers to operate at 

home may be different than what mode she prefers to work in while at her place of 

employment. The key point here is that these magnitudes are preferences that are flexible 

based on the time, environment, task context, and the individual himself. 
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Additionally, agents have expertise profiles, represented by e. These profiles are 

meant to represent the different domains in which an individual may have expertise, such 

as a subject area. For the purpose of this research, a profile consists of five (5) values, 

each a descriptor of a person’s expertise in the particular area. This number can easily be 

changed for future applications of this model, but is meant to include a reasonable variety 

of areas that a team might need to draw on in order to complete a diverse set of tasks.  

Each agent has a certain amount of expertise in each of those areas, ranging from 1 to 

10. A simple video game analogy for this is a level of a particular skill in a domain of 

performance (known as ‘player stats) (Caldwell, 2009). The dimensions are like different 

skill areas, such as strength or magic. The level, denoted by k, represents how much 

experience the individual has in that particular skill. A magnitude of 1 reflects absolutely 

no expertise in a particular area, such as a novice introduced to a system for the first time. 

A magnitude of 10 reflects immense experience and knowledge in a particular area, and 

can be thought of as representing a mastery of a trade. 

The j-th agent assigned to a team is thus defined by a 9-tuple indicating the agent’s 

strengths in each communication mode and domain of expertise: 

!! = !! ,!! !!!! = !, !, !,!, !!!!"#!! = !,!,!,! 

!! ∈ 0, 10  where e is an integer 

!! ∈ 1, 150  where m is an integer 

The model randomly selects team members for a group G from a pool, which can 

be thought of as an organization. The selection process employs a Fisher-Yates shuffle, 
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which produces results that are uniformly distributed. The agent pool is then rearranged 

based on the shuffle, and the first n elements of the array are then selected as the new 

team. The number of agents, n, needed for the experiment is defined in code by the 

researcher. 

! = ! !! ! ∈ 1, 2,… ,!  

where n is the number of members needed for the group 

The model defines the size of the pool as twice the size of the largest team in the 

experimental design, allowing for the possibility of two distinct teams to be selected for 

an identical project. Additionally, the pool is static, and members within the pool 

maintain their respective attributes. Each time a project is run, a team is selected 

randomly from the pool. Thus, the team members change, but the individuals’ attributes 

and the organization do not. 

Expertise is distributed throughout the organization such that no one person is an 

expert in everything, and each person has at least some expertise in at least one area. 

Team expertise was generated from a discretized triangular distribution in each 

dimension, with N = 24, a = 0, b = 10, and k = 3 to represent the mathematical mode 

expertise in a given subject area. The resulting profiles for agent expertise are shown in 

Table 2. The expertise data used in the simulation was not adopted from actual profiles of 

humans. Should the distribution of expertise be determined in a particular organization 

through skills assessments or other tools, the model can be easily and quickly modified to 

reflect this.  
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Thinking mode represents cognitive diversity in the organization. Thinking mode 

profiles for each member of the organization were generated in the same manner as 

expertise. This method used a discretized triangular distribution in each thinking mode 

with N = 24, a = 1, b = 155, and k = 45, representing a mathematical mode preference 

that is ranked neutral in the magnitude scale. Thinking mode profiles of the organization 

are shown in Table 3. 

 

3.1.3 Projects and Tasks 

The team of agents is assigned a project, comprised of some number of tasks. 

While this is an arbitrary number of tasks, it is meant to represent the range of 

subdivisions of work within a single project.  

Each task has an expertise profile, much like the agents. However, this expertise 

profile represents how much expertise is required in any given dimension for the team to 

perform the task. For instance, the task might require a minimum of level 8 expertise in 

dimension b, level 2 expertise in dimension c, level 5 expertise in a and e, and no 

expertise required in d.  

!! = ! !!  

Tasks also have a type assigned. Recalling the conjunctive, disjunctive, and 

additive task types defined in Chapter 2, the task type assigned dictates how much 

expertise is need based on the rules of the task. Does everyone need to have this expertise? 

Can the combined expertise of the team meet the requirements? Or is this a one-expert-

required task? The output of this comparison is the efficiency of expertise, It(G, Ti), which 
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is a binary variable indicating whether or not the team can complete the task based on the 

expertise available on the team, the expertise required by the task, and the task type. The 

three equations below define the efficiency of expertise by task type. 

!!""#$#%&(!,!!) = !
1!!!!!"! !!

!∈!
!≥ !! !!!!!!∀!

0!!!!!"#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 

!!"#$%#&'()*(!,!!) = !
1!!!!!"min

!∈!
!! !≥ !! !!!!!!∀!!!!!!!!

0!!!!!"#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!! 

!!"#$%&'(")*(!,!!) = !
1!!!!!"!max

!∈!
!! !≥ !! !!!!!!∀!

0!!!!!"#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 

Other attributes defining a project include the number of allowed iterations and 

measures of task and project progress. Iterations are attempts at completing a task. Each 

iteration has an associated probability of success, or roll for performance, that can be 

thought of as a roll of a die. The roll for performance mimics a die roll, and is based on a 

discrete uniform distribution between 1 and 6. Each iteration results in achievement, or 

‘how much’ the team accomplished during the attempt. This measurement was purposely 

kept ambiguous, as teams measure achievement, success, and progress in many different 

ways. Achievement is meant to represent forward movement, such as places on a board in 

a board game. 

Achievement is cumulative during a project. That is, each iteration produces 

incremental achievement, which is added over the course of the project. A task is 

complete when the cumulative achievement of a task is greater than or equal to the 

minimum achievement defined by the task. After a task is ‘complete’, it is removed from 
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the list of tasks the team can work on within the project. Minimum achievement values 

can be found in Table 4, listed with the respective task. 

 

3.2 Research Questions 

The research questions for this thesis are meant to answer the underlying question 

of whether or not this type of method is feasible for studying group dynamics.  

i. Do any distinctive patterns arise regarding performance using different methods 

for quantifying cognitive diversity? 

ii. How does the interaction of distribution of expertise and task type affect 

productivity of a team?  

iii. How does the team size affect the group dynamics and performance? 

 

3.3 Actions to Gather Research Data 

 

3.3.1 Simulation Program using Java 

The method used for this study was a simulation programmed in the Java 

language. Java was an attractive choice for several reasons. First, Java is a free program 

with many resources and few restrictions (costs). Second, Java is compatible with other 

simulation programs that might build on this framework, such as AnyLogic. Lastly, Java 

is an Object-Oriented (OO) language, which suits agent-based models (Macal & North, 

2010). The OO class structure allows for simple construction of teams of agents and 

projects with tasks. 
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3.3.2 Simulation Program using Java 

The model described above attempts to operationalize certain aspects of team 

behavior, such as thinking mode and efficiency of communication, in order to quantify 

probability of success. 

Each agent has a thinking mode profile, which is compared to other team 

members to understand differences in thinking mode. In reality, a large difference 

between two profiles typically manifests itself as conflict, as the two modes represent 

high preference for very different approaches. An example of this would be a meeting in 

which two individuals need to come to consensus. One individual strongly prefers the 

structural thinking mode, wanting structured information, schedules, and controlled 

movement in a project. The other individual strongly prefers the conceptual thinking 

mode, using creativity and abstraction to produce big ideas.  

These two modes naturally conflict. The person dominant in the structural mode 

will naturally push for details and structure, and the person dominant in the conceptual 

mode will naturally avoid it. This situation will be represented in this model as efficiency 

of communication (effcom), which is a measure of how well a team of individuals is able 

to communicate based on differences in thinking modes.  

Each thinking mode can be described as a dimension. Thus, each agent’s profile, 

comprised of four numbers, can be considered a point in four-dimensional space. This 

point can be compared to another point in space. Multiple points, representing a team of 

agents can be averaged, resulting in a centroid that represents the mean profile of the 
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team. This point, like a singular profile, can be compared to another point (centroid or 

individual) using two mathematical methods: Euclidean distance and angle. 

Previous research has used both correlation and Euclidean distance to determine 

different kinds aspects of similarity within a group (Aldenderfer & Blashfield, 1984; 

Skinner, 1978). In this research, efficiency of communication is calculated in three (3) 

different ways. The first is based on the Euclidean distance between the centroid of the 

thinking mode profiles of a team of agents and the centroid of the thinking mode profiles 

of every team member except the member farthest from the total team centroid. The 

second method uses the angle θ between the centroid of all member profiles and the 

centroid of all member profiles except the outlier member. The last is similar to the first, 

but instead of comparing just centroids, it measures the Euclidean distance between the 

centroid of the thinking mode profiles of every team member except the farthest member 

and the point represented by the thinking mode profile of the individual member. 

The scale per thinking mode dimension was assumed to be between 0 and 150, 

which is just an example of the range that could be used to quantify strength of 

preference in a particular mode. This scale could be adjusted based on the scale of the 

instrument used to measure thinking mode preference.  

 

Algorithm 1: effcom is determined by Euclidean distance between the centroid of the team 

profiles and the centroid of the team profile without the farthest member. 

!"#$!!"#$%&'(! !" = (!,!,!,!) 

!"#$!!"#$%&'(!!"#ℎ!"#!!"#$%&'! !"# = (!,!,!,!) 
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Assuming a scale of [0,150] in four (4) dimensions, the maximum distance between these 

points can be determined as follows: 

max !"#$%&'( = (150)! + !(150)! + (150)!+!(150)! = 300 

!"#$%&'(

= (!" ! − !"# ! )! + !(!" ! − !"# ! )! + !(!" ! − !"# ! )! + !(!" ! − !"# ! )! 

!""!"## = 1 − ! !"#$%&'(
max !"#$%&'( 

Algorithm 2: effcom is determined by angle between the vector from (0,0,0,0) to centroid 

!,!,!,! !of the team profiles and vector from (0,0,0,0) to the centroid of the team 

profile without the farthest member! !,!,!,! . 

!"#$!!"#$%&'(! !" = (!,!,!,!) 

!"#$!!"#$%&'(!!"#ℎ!"#!!"#$%&'! !"# = (!,!,!,!) 

Assuming a scale of [0,150] in four (4) dimensions, the angle can be determined using 

the cosine formula:  

 

 

cos ! = ! ! ∙ !
! !  

 

!"! ∙ !!"#! = !" ! ∗ !"# ! !+ !" ! ∗ !"# ! + !! !" ! ∗ !"# ! + ! !" ! ∗ !"# !  

!" = !" ! ! + !!" ! ! + !!" ! ! + !!" ! ! 

!"# = !"# ! ! + !!"# ! ! + !!"# ! ! + !!"# ! ! 
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!""!"## = cos!! !"! ∙ !!"#!
!" !"#

∗ !180!  

Algorithm 3: effcom is determined by Euclidean distance between the centroid of the team 

profiles and the singular profile of the farthest member. 

!"#$!!"#$%&'(! !" = (!,!,!,!) 

!"#$%&'!!"#$%&! !" = (!,!,!,!) 

 

Assuming a scale of [0,150] in four (4) dimensions, the maximum distance between these 

points can be determined as follows: 

max !"#$%&'( = (150)! + !(150)! + (150)!+!(150)! = 300 

!"#$%&'( = (!" ! − !" ! )! + !(!" ! − !" ! )! + !(!" ! − !" ! )! + !(!" ! − !" ! )! 

!""!"## = 1 − ! !"#$%&'(
max !"#$%&'( 

 

3.3.3 Experimental Design 

As this model is a proof of concept, the experimental design is meant to test 

different levels of independent variables to see if there are distinguishable differences in 

the dependent variables. The design is not meant to be exhaustive in determining the 

response surfaces of all possible inputs or combinations.  

However, the design does aim to allow for enough trials to reach distributional 

convergence for a particular combination of parameters. With an average run time of 59.0 

seconds for 200 trials of a single project configuration, data collection time is 

insignificant and allows for a reasonable amount of trials to establish convergence. Each 
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trial has a unique output per project run, as well as play-by-play output for each task 

iteration. 

Table 1. Experimental Design 
  Projects 

  
3 Task 
Project 

6 Task  
Project 

9 Task  
Project 

Agents AAD ACA ACCCAA DCACAD CDAADCCAA AADCAAADD 

3 Agents 
Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 
Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 
Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 

6 Agents 
Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 
Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 
Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 

9 Agents 
Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 
Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 
Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 

12 
Agents 

Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 
Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 
Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 

 

The full experimental design, shown in Table 1, denotes all treatments explored 

during the preliminary testing phase. This includes multiple levels of team size, project 

size, project configuration, and algorithm for calculating effcomm.  

The independent variables include team size, project size (number of tasks), and 

task type. The experimenter controls team size, though the team is randomly selected 

from a pool. Task type and project size are both integrated into the code as separate 

projects with a designated set of tasks. Task order is not controlled once the project is 

initiated.  
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Table 2. Expertise Profiles of 
Organization 

Table 3. Thinking Mode Profiles of 
Organization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Much like the team data, task data inputs were determined using a random number 

generator based on a discretized triangular distribution. However, instead of distributing 

required expertise over each expertise dimension, the task requirements were determined 

by task. Thus, the distribution can be described as N = 5, a = 0, b = 10, and k = 4. The 

task type was determined using a random number generator that selects a number 

  Thinking Mode Profile 
Agent S R Y U 

1 54 69 126 24 
2 4 78 63 32 
3 55 66 90 136 
4 72 79 62 55 
5 61 17 101 112 
6 22 74 61 75 
7 34 110 127 55 
8 38 102 87 67 
9 61 88 42 68 

10 120 16 62 47 
11 108 22 129 42 
12 116 22 45 92 
13 20 97 58 74 
14 67 122 29 78 
15 91 29 94 58 
16 42 60 47 79 
17 41 60 130 91 
18 99 82 75 129 
19 68 33 43 11 
20 97 27 47 67 
21 104 141 44 25 
22 71 80 25 102 
23 64 11 113 58 

24 113 103 43 118 

  Expertise Area 

Agent a b c d e 

1 2 2 3 9 3 
2 1 4 2 5 2 
3 1 4 3 3 7 
4 3 5 1 4 4 
5 9 2 2 6 3 
6 7 1 2 2 4 
7 3 6 2 7 1 
8 4 9 3 4 5 
9 8 5 5 5 6 

10 2 1 2 3 2 
11 5 8 2 2 4 
12 3 4 1 3 2 
13 5 8 2 3 2 
14 3 7 3 4 4 
15 4 9 6 6 5 
16 5 3 6 2 5 
17 6 2 8 8 7 
18 5 3 6 4 3 
19 9 3 6 6 4 
20 2 4 3 8 5 
21 4 0 4 7 4 
22 7 5 5 3 4 
23 6 2 2 5 4 
24 9 3 2 5 2 
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between 1 and 3, with each number corresponding to a task type (additive, conjunctive, 

and disjunctive). Task types and requirements for each project are shown in Table 4. 

 
 

Table 4. Task Profiles by Project 
Project 1: 3 Tasks             

                

Min Ach Task Number 
Expertise Required Task Type 

a b c d e P1.1 P1.2 
1 2 4 4 9 5 A A 10 
2 7 7 3 5 2 A C 30 
3 6 8 9 7 6 D A 30 

                  
Project 2: 6 Tasks             
                

Min Ach Task Number 
Expertise Required Task Type 

a b c d e P2.1 P2.2 
1 4 6 5 6 5 A D 10 
2 5 7 6 6 7 C C 30 
3 4 4 4 3 2 C A 30 
4 4 4 4 6 2 C C 50 
5 4 7 7 2 7 A A 10 
6 2 3 0 6 9 A D 15 
                  

Project 3: 9 Tasks             
                

Min Ach Task Number 
Expertise Required Task Type 

a b c d e P3.1 P3.2 
1 5 2 4 4 7 C A 10 
2 4 2 8 3 6 D A 30 
3 5 3 2 8 8 A D 30 
4 7 5 4 3 5 A C 50 
5 6 7 7 4 7 D A 10 
6 3 3 4 7 2 C A 15 
7 4 2 4 5 9 C A 20 
8 8 1 5 4 2 A D 40 
9 9 2 1 5 3 A D 5 
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Dependent variables include achievement and iterations to solution. Both are 

cumulative for an entire project. These represent variables not directly controlled by the 

experimenter for these studies, but can be empirically and quantitatively assessed for any 

given set of projects. Other variables include team cognitive diversity, task complexity, 

and project integration demand (relative requirements for conjunctive vs. additive or 

disjunctive tasks).  It is intended that future research can investigate any of these 

variables separately or in combination. 

 

3.4 Testing Phases 

Three (3) separate phases of testing were completed as part of this research. The 

purpose of the preliminary phase was to test the functionality of the model by exercising 

all treatment combinations at n = 600 trials. The intent was to flush out any bugs or 

discrepancies in the code itself, as well as to do some preliminary data analysis. This 

number of trials was chosen for two reasons. First, the Strong Law of Large Numbers 

states that a large n improves the likelihood that the data will converge (Graham & Talay, 

2013). Second, the time and resources required to run 600 trials was manageable. 

The purpose of the intermediate phase was to test convergence of the model, testing 

whether or not the variance reaches a finite range as the number of trials increases. While 

there is no specific number of trials required to established convergence, the acceptable 

range for evaluating starts in the 100’s and extends upwards. Experiments using n = 

10,000 have shown acceptable precision and consistent outputs (Farrance & Frenkel, 
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2014), providing a starting point for this study. Thus, the convergence phase ran to n = 

10,000 trials. 

The final (or secondary) phase was to produce data for hypothesis testing, using 

the convergence data as an estimate for number of trials needed. The final testing phase 

used n = 3,000, which was the first point of approximated convergence in the 

intermediate test results. Fewer scenarios were run for hypothesis testing, but the number 

of trials increased by a factor of 5. This will be further discussed in Chapter 4. 

 

3.5 Limitations and Implications 

The limitations of this research include a variety of areas, which were expected 

considering the goal as a feasibility project. First, this model is not prescriptive or 

exhaustive, but meant to provide descriptive and exploratory insight into how some of the 

included factors might affect overall group performance. This model is a proof of concept 

for a method that could help reduce the time, money and resources for group performance 

research, but it is still a partial product. Thus, the model proposed is merely a 

demonstration of feasibility. 

Another limitation is that the thinking mode profile data for individuals are 

synthetic. In other words, the team in the model is not based on a real team in which 

thinking modes were measured. Additionally, the underlying theories of thinking modes, 

and the instruments considered to be consistent with these theories, were not the focus of 

the research. However, the model could easily be adapted for different instruments with 

different numerical outputs. 
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Next, expertise and task requirements are simplified, and assume a known amount 

of expertise per individual on a team, as well as a known amount of area expertise 

required per task. Individual expertise might be realistically estimated in organizations 

through skills assessments, but was not determined this way in the proposed model.  

Furthermore, the model does not yet account for other social dynamics and 

environmental pressures or factors, such as deadlines, roles or hierarchies, and 

organizational strategy. However, the model can be adopted if these can be appropriately 

quantified. Additionally, the model does not include adaptive behaviors at this point in 

development. These adaptive behaviors would allow agents to change over time, 

increasing the rate of unexpected interactions or developments within agent teams or 

between teams and environments. Adaptive agent attributes allow for emergent behavior, 

one of the key outcomes of agent-based modeling. Future stages of development for this 

model will introduce some of these adaptive attributes, justifying the need to produce an 

agent-based model for this particular system. 

Agent-based modeling introduces additional limitations. According to Macal & 

North (2010), one limitation is the idea that there is not a single correct way to build or 

execute a model. This includes methods, tools, and modeling attributes, such as 

population size, agent attributes, or agent interactions. Agent-based modeling usually 

involves a portfolio of tools that are developed over time (Macal & North, 2010).  Thus, 

this research represents demonstration of feasibility and functionality, not optimality, of a 

particular agent-based approach to investigate realistic team coordination and task 

performance processes in a software simulation (in silica) environment.
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CHAPTER 4. RESULTS 

 
The model itself allows for variation in several dimensions. The independent 

variables include the size of the team and the tasks in a project (including the expertise 

requirements, achievement level, and task type). The researcher can also control the pool 

of agents from which the team is selected. The model introduces probability in the 

selection of team members, the order of the tasks in a project and the performance roll for 

each attempt at completing a task. 

The primary dependent variable of interest is iterations to solution, or the number of 

attempts needed by a team to complete a set of tasks. The discussions below compare 

iterations to solution for different areas of the experimental design. Efficiency of 

communication is also a dependent variable determined by the random selection of team 

members from a known pool of agents and calculated by one of three methods. This 

dependent variable strongly influences iterations to solution, as it is a main input for 

determining incremental achievement. Thus, this variable is only explored to compare the 

three methods used for calculating it. 
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4.1 Functionality Test (600-trial run) 

The simulation explored the full experimental design during the preliminary phase of data 

collection. Each scenario was run for 600 trials, (n = 600) in which a different team 

assembled from the pool of agents for every trial. Project independent variables, such as 

how many tasks and which tasks of a particular type, were held constant for each scenario, 

with a total of 72 scenarios explored during this phase. Findings from the 600-trial runs, 

discussed in this section, informed the secondary phase of data collection. 

Each project (3-, 6-, and 9-task) is depicted in the following sections, which 

compare average iterations to solution for each configuration of team and communication 

algorithm. One major finding consistent in all experimental configurations was the 

probability of success for conjunctive tasks. Recalling the definition of conjunctive, this 

type of task would require every agent on the team to have the level of expertise required 

by the task in each dimension. 

 

4.1.1 3-Task Project 

The preliminary phase included two task type configurations for all project sizes. 

Results from the 600-trial of Additive-Conjunctive-Additive (ACA) and Additive-

Additive-Disjunctive (AAD) projects are shown in Figure 3, which shows the average 

number of iterations to solution by task type, communication efficiency algorithm, and 

team size. Note the secondary vertical axis (additive tasks) is scaled differently than the 

primary axis (disjunctive and conjunctive tasks).  

One finding from this set of experiments is that no team (in any size) was able to 

complete the conjunctive or disjunctive tasks from the 3-task project. Zero achievement 
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is the result of efficiency of expertise = 0, or a lack of required expertise available on the 

selected team. Referring to the expertise required by the tasks in the 3-task project, the 

expertise required by both the conjunctive and disjunctive tasks were very high compared 

to the expertise of the organization. Thus, any team configuration for this project may 

have difficulty gaining achievement, as the likelihood of randomly selecting a team of 

capable agents is low. Additionally, based on the high average of iterations to solution, 

the 3-agent team had difficulty finishing even additive tasks. Finally, there are visible 

differences in the effects of the algorithm used to calculate efficiency of communication 

of a team, likely due to the differences in scale that each algorithm produces. 

 
Figure 3. 600-trial Results for 3-Task Project 
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4.1.2 6-Task Project 

The two task type configurations used for the 6-task project experiments were 

ACCCAA and DCACAD. Figure 4 below depicts the average iterations to solution for 

each task type by communication efficiency algorithm and team size, and the vertical 

axes employ different scales to adjust for differences in range per task type.  

Despite this scale difference, the same pattern is seen between additive and 

disjunctive tasks based on a 3-agent team size and the second algorithm used to calculate 

efficiency of communication. A similar pattern is also seen in the 12-agent team size 

using the third algorithm. According to the following chart, 6-agent teams were still 

unable to complete conjunctive tasks because none of the teams modeled satisfied the 

tasks’ expertise requirements.  

 

Figure 4. 600-trial Results for 6-Task Project 
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4.1.3 9-Task Project 

The 9-task project was run using the two task type configurations CDAADCCAA 

and AADCAAADD. Consistent with the previous figures, Figure 5 depicts the average 

iterations to solution for each task type by communication efficiency algorithm and team 

size, and the vertical axes employ different scales to adjust for differences in range per 

task type.  

The data show a noticeable parallel trend between disjunctive and additive tasks. 

Results of conjunctive tasks are consistent with the previous experiments, showing that 

these tasks were not able to be completed by any team configuration over 600 different 

project runs with different teams. This result is somewhat expected. As team size grows, 

the probability that the team can produce any achievement for a conjunctive task 

decreases. The likelihood of randomly drawing a large team with high minimum 

expertise in any given area decreases as team size increases. Conversely, the likelihood of 

a larger team producing achievement against a disjunctive task increases as team size 

increases due to the increase in likelihood of drawing at least one person with adequate 

expertise. 
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Figure 5. 600-trial Results for 9-Task Project 
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controlled set of six (6) agents completing six (6) additive tasks with different expertise 

requirements and equal minimum achievement, the simulation was run for 10,000 trials. 

The model outputs end achievement per task per project run, as well as the number of 

task iterations to reach the end achievement. Figure 6 below depicts the variance of 

iterations to solution for each task over 10,000 trials. 

 

Figure 6. Convergence of Model 
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collection to eliminate certain treatment configurations but preserve the diversity of data 

to be collected. Resulting test configurations are highlighted in Table 5. 

Due to the lack of achievement for any conjunctive task in the functionality tests, 

treatments high in number of conjunctive tasks were removed from the pool for 

hypothesis testing. Additionally, differences between the first and second algorithms (Alg 

1 and Alg 2 in table below) were less apparent in the preliminary results, leading to a 

decision of removing at least one algorithm within the same treatment block (e.g. for 6-

task 12-agent block in DCACAD project, only one of the algorithms would be retested 

for hypothesis testing). This process continued until the experiments were reduced to at 

least one per team size, project size and algorithm used. Treatments that were not retested 

in the secondary phase are filled in with grey in Table 5, while the remaining treatments 

(shown in white with bold lettering) were rerun for 3,000 trials. 

This secondary phase of data collection introduced variation in the same way as the 

preliminary phase: random dice roll, team randomization, and task order randomization. 

The probability of success is driven by the team member selection, the expertise of the 

selected team members, and the comparison of the team’s expertise to the requirement of 

the tasks. 
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Table 5. Plan for Additional Data Collection 

  Projects 

  
3 Task 
Project 6 Task Project 9 Task Project 

Agents AAD ACA ACCCAA DCACAD CDAADCCAA AADCAAADD 

3 Agents 
Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 
Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 
Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 

6 Agents 
Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 
Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 
Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 

9 Agents 
Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 
Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 
Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 

12 
Agents 

Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 Alg 1 
Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 Alg 2 
Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 Alg 3 

 

 

4.3.1 Probability of Success 

After the initial analysis of average iterations to solution for each project size, 

probability of success became a point of interest. Table 6 shows the probability of 

completing a task based on task type and team size. Although there are some general 

trends regarding team size and probability of success, it is also apparent that expertise 

required by the task (the differences between each line item in the table) is a significant 

factor in determining whether or not a team will complete a task. For example, 

conjunctive tasks consistently have a probability of success of 0.00 for all tested team 

sizes and task expertise configurations. However, disjunctive tasks are less consistent, 

with probabilities of success ranging from 0.00 to 0.99 depending on the expertise 

required and the expertise available on the team. 
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Table 6. Probability of Success by Task Type and Team Size 

Team 
Size 

Task Type   Team 
Size 

Task Type 
A C D   A C D 

3 0.97 0.00 0.24   6 1.00 0.00 0.00 
3 0.59 0.00 0.00   6 1.00   0.65 
3 1.00 0.00     6 1.00   0.60 
3 0.80       6 1.00     

          6 1.00     
                  
Team 
Size 

Task Type   Team 
Size 

Task Type 
A C D   A C D 

9 1.00 0.00 0.00   12 1.00 0.00 0.99 
9 1.00   0.86   12 1.00 0.00 0.00 
9 1.00   0.76           
9 1.00               
9 1.00               

 

 

4.3.2 Efficiency of Communication: Algorithm Comparison 

As described in Chapter 3, three (3) different algorithms were developed to 

determine the measure of communication efficiency based on thinking mode profiles of 

each team member. The secondary phase of data collection spanned all three algorithms, 

with 3,000 trials for each condition. To test the differences between these algorithms, a 

Mood’s Median test was performed against two different independent variables: 

algorithm and team size. 

Preliminary results were tested for normality using an Anderson-Darling test, 

which resulted in a p-value < 0.001. Accordingly, nonparametric methods, executed in 

Minitab 17, were used for hypothesis testing of secondary results, specifically the 

efficiency of communication for each team assembled. The Mood’s Median test resulted 

in p-values of 0.000 and very high Chi-Square values, indicating that the samples are 
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from different populations based on both team size and algorithm used. Minitab output is 

included below. 

 

Mood Median Test: TeamEffComm versus Agent/Team  
 
Mood median test for TeamEffComm 
Chi-Square = 9792.14    DF = 3    P = 0.000 
 
                                       Individual 95.0% CIs 
Agent/Team    N≤    N>  Median  Q3-Q1  ---------+---------+---------+------- 
 3          1624  4376   0.829  0.101                   *) 
 6          2881   119   0.728  0.042     * 
 9          2996     3   0.711  0.039  (* 
12             0  3000   0.950  0.004                                     * 
                                       ---------+---------+---------+------- 
                                              0.770     0.840     0.910 
 
Overall median = 0.781 
 
  
Mood Median Test: TeamEffComm versus CommAlg  
 
Mood median test for TeamEffComm 
Chi-Square = 9904.82    DF = 2    P = 0.000 
 
                                    Individual 95.0% CIs 
CommAlg    N≤    N>  Median  Q3-Q1  --------+---------+---------+-------- 

1    0  3000   0.950  0.004                                      * 
2   15  2985   0.875  0.056                         (* 
3 7486  1513   0.733  0.056  * 
                            --------+---------+---------+-------- 
                                  0.780     0.840     0.900 
 
Overall median = 0.781 

 

4.4 Differences in Task Performance by Team Size, Project Size and Algorithm 

The dependent variable ‘iterations to solution’ was tested using a Mood’s Median 

Test with a 95% confidence level. The goal was to understand potential differences in 

task performance based on team size. The dependent variable was separated by task type 

given the observable differences in preliminary testing.  Tasks of the same type within 

the same project were then averaged per project trial. Results of Mood’s Median tests on 

task performance (iterations to solution) are found in Table 7. 
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Table 7. Mood's Median Tests of Task Performance by Task Type 
  Additive Disjunctive Conjunctive 

 Chi-Square p-value Chi-Square p-value Chi-Square p-value 

Team Size 1960.66 0.000 3169.56 0.000 N/A N/A 

Project 1880.66 0.000 243.68 0.000 N/A N/A 

Algorithm 1007.13 0.000 2891.52 0.000 N/A N/A 

 

 Team size, evaluated at 3, 6, 9, and 12 agents resulted in a p-value of 0.000 for 

additive tasks and a p-value of 0.000 for disjunctive tasks, as well as high Chi-square 

values, indicating significant differences and distance between the medians. Project 

design for 3, 6, and 9 task projects resulted in a p-value of 0.000 for additive tasks and a 

p-value of 0.000 for disjunctive tasks. The Chi-square values were also high for project 

design, indicating large distances between sample medians. Algorithms used for 

calculating effcomm, called algorithm 1, 2 and 3, resulted in p-value of 0.000 for additive 

tasks and 0.000 for disjunctive tasks, again with high Chi-square values. These values 

indicate significant differences in the sample medians, as well as large distances between 

the medians.
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CHAPTER 5. DISCUSSION 

5.1 Effects of Task Type 

Task type was a significant factor in a team’s ability to complete a project. 

Specifically, conjunctive tasks were not completed in any team configuration, even in 

small teams. Recalling the definition of conjunctive, in order for the team to complete the 

task, each team member must have a minimum expertise greater than or equal to the 

expertise requirement of the task in each dimension.  

Disjunctive tasks displayed high variance in iterations to solution, presumably due 

to the high variation in probability of success between tasks of the same type. That is, 

each task has different expertise requirements, which significantly impacts the team’s 

probability of success, especially if the randomly selected team does not include an agent 

with sufficient expertise. Generalizing this point, if a task requires greater expertise than 

what is available in the organization, the efficiency of expertise will be 0, and the task 

will not be completed within the organization. When evaluated by task type, if the task 

requirements are less than or equal to the availability on the team, the probability of 

making progress is 1, and achievement will be gained. Additionally, tasks of the same 

type (additive, disjunctive and conjunctive) can have very different requirements. Thus, 

task type alone may not be an appropriate predictor of success, as it is completely 

dependent upon the expertise requirements of the task itself
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An interesting point of discussion regarding expertise requirements is that, in real 

world settings, the level of expertise required by a task may not be what is actually 

delivered by the team. If the task is essential and achievement is forced, yet the team is 

not truly capable, then the level of performance, while not acceptable based on ideal 

standards, would be accepted. In other words, the standard of performance would be 

effectively lowered if the incapable team tried to perform a task above its expertise level, 

and the resulting performance was in some way labeled ‘acceptable’. An extreme 

example of this would be the Hyatt Regency walkways collapse in 1981 (“The Hyatt 

Regency Walkway Collapse,” 2007). The fabricator of the walkway apparatus simplified 

the design to meet his own capabilities, but he did not fully understand the consequences 

of the design change regarding load distribution. This modification resulted in an 

overloaded connector, the collapse of the system, and the deaths of 114 people.  

 

5.2 Effects of Team Size & Selection 

Team size was especially a factor, seen in the scenario of a 3-agent team 

performing additive tasks. The results show that the more agents on a team, the more 

likely the team will have the expertise to complete tasks that require some amount of 

expertise in a given set of dimensions. This finding has high ecological validity 

considering the probability of eventually finding the expertise needed by continually 

adding members to a team. 

An additional finding related to additive tasks and team size, evident between 

Figure 5 and Figure 6 from Chapter 4, is that disjunctive tasks are harder to complete as 

the team size decreases. The smaller the team, the more important it is to have team 
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members with high levels of expertise in multiple dimensions. This team recipe would 

ensure that a small group of individuals could complete a broad range of tasks. 

Essentially, the smaller the team, the more critical individual expertise becomes. The 

alternative scenario is when a small team (such as a small business) does not have the 

expertise needed to organize and manage information systems, so the task is contracted 

out to a consulting expert, who then fills the expertise gap (Premkumar, 2003). 

 

5.3  Effects of Efficiency Algorithm 

Three different algorithms, described in Chapter 3, were developed to 

operationalize the interaction of thinking modes in teams. All three algorithms were used 

for the functionality testing (600-trial) phase of data collection, and show differences in 

the dependent variable ‘iterations to solution’. Based on the mathematical equations used 

to develop these algorithms, differences were expected as each algorithm results in a 

different range of values. Though each algorithm produces a number between 0 and 1, 

none of them produce a value that could span the entire range, and the ranges of each are 

not the same. This is clearly shown in the figure below. Due to the inherent differences in 

range of values based on the calculation method, future model exploration should include 

normalizing the algorithms’ outcomes. 
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Figure 7. Iterations to Solution vs. Efficiency of Communication by Algorithm 

 

Figure 7 above shows some of the differences observed in the data, focusing only 

on one type of task within a 3-agent team performing a 3-task project. Based on the 

figure above, Algorithm 3 increases the average iterations to solution for at least this size 

team and project. With respect to thinking mode, the model was successful in showing 

differences in task performance based on different individual thinking mode profiles and 

different algorithms to assess cognitive diversity.  

 

5.4 Generating Questions 

The model not only shows that it is functional as an agent-based simulation, but 

also that the model is capable of prompting research questions based on observed results. 

For instance, the model has the potential to directly output data in an analyzable format 

that would allow for studies of cognitive diversity and task performance. Additionally, 
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other modifications, such as manipulating desired task achievement, task type, and team 

size, would allow for the study of what combinations of agents perform which projects 

best. The possibilities are extensive, and have the potential to grow the use and 

understanding of simulation methods within the field of human factors. 

Learning and flexibility are two characteristics that could be incorporated into a 

simulation regarding group dynamics. Flexibility corresponds with the thinking mode 

profile of each agent, and refers to the individual’s ability to adjust to other team 

members with different preferred modes of thinking. Learning speed corresponds with 

the expertise profile of each agent, and refers to how fast the individual gains expertise in 

a given area. These attributes would reflect individual changes in behavior and expertise 

seen in team activity. However, more information and measurement data are needed to 

adequately represent these in a simulation.  

Further exploration of effects of thinking mode is possible using the simulation 

program created in this thesis. The independent variable flexibility, or communication 

expertise defined by Garrett et al (2008), was proposed but not used in this version of the 

model. Flexibility represents how well an individual is able to adjust to another 

individual’s dominant thinking mode. This attribute may be of interest to researchers 

wanting to explore or understand the effects of flexible agents on the efficiency of 

communication and task performance of a team. For instance, should one agent on a team 

have a high amount of thinking mode flexibility, the centroid used to compare with an 

outlier agent may be able to move closer to the outlier, reducing the distance (and angle) 

between them, thus increasing the efficiency of communication. Alternatively, 
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interactions between small (or zero) amounts of flexibility within a team may still 

increase efficiency of communication, but by a smaller margin that does not significantly 

impact the task performance. 

In addition to flexibility, dynamic learning could be incorporated into future 

studies to understand how growth of expertise affects a team’s ability to perform tasks 

over time.  If teams are capable of gaining some amount of expertise during the course of 

taskwork, how could this change the overall results? Literature and current studies within 

human factors could supplement the framework of this variable to help support 

integration into the simulation. Learning is likely to significantly impact the probability 

of success over time, as agent teams can start with insufficient expertise to complete a 

task, but gain enough cumulative expertise over a number of attempts at a task to produce 

an acceptable outcome. Additionally, knowledge and information sharing literature 

introduces the idea of non-expert members of a team gaining expertise faster from an 

actual expert member of the team than simply trying to learn from the past attempts. 

Despite the fact that this model was constructed as agent-based, the design and 

results of the presented design produced no emergent behavior. This was likely due to the 

fact that most agent-based models include adaptive behaviors on the part of the agents, 

allowing for unexpected interactions to occur between agents, or between agents and the 

environment. The phase of the model represented by this thesis was exploring feasibility 

of using simulation, thus it did not include the two adaptive attributes learning and 

flexibility. However, additional development of team systems executing taskwork in 

simulation environments will include these variables. For this reason, the model was 
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developed as an ABM, as an agent-based platform will be necessary for further 

exploration of this area. 

 

5.5 Improvements to the Model and Analysis Methods 

While the model is capable of producing analyzable outputs, some modifications 

could be made to increase the efficiency of analysis in future studies. Additionally, 

further development of the framework, especially task types and expertise dimensions, 

may increase understanding, and exercise additional aspects of task performance. Lastly, 

some lessons learned from this process include the appropriate tools for statistical 

analysis to properly accommodate data format. 

In order to be able to align efficiency of communication with the task performance 

more directly, some slight changes should be made to the code to print the efficiency on 

the same line as the final project achievement per task. Currently, the code produces three 

files per execution: one with final achievement data, one with incremental achievement 

data, and one with team data. Alignment of the dependent variables was tedious and 

difficult because of this separation. Additional formatting changes in data output may 

depend on what particular outputs are of value to the researchers performing the study, 

and should be carefully considered before running any additional testing.  

One factor that greatly influenced the results was the task type for each task defined 

in a project. Mathematically, the task type dictated the way team expertise was evaluated, 

and assumed the same rules applied to each dimension of expertise. Considering this 

variable directly influenced the probability of success, additional research and 
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development of task type and the connection to multi-dimensional expertise is highly 

encouraged. Further exploration of this area is recommended in future research to 

determine whether or not this is a valid and appropriate assumption. 

Another challenge faced during this research was the statistical analysis of the data 

produced by the simulation. Though this point may seem trivial, the advantages of one 

analysis package over other will benefit and streamline the analysis phases in subsequent 

studies using this model, or other simulations used in human factors. Based on the 

volume and format of the output produced by the simulation, Minitab 17 is not an optimal 

package for analysis. Viable alternatives for statistical analysis and graphing include SAS 

or R. MATLAB is also capable of the visualization outputs used for analysis.  MATLAB 

also has established protocols and code available specifically for Monte Carlo models, 

such as calculating convergence rate and error bounds. Thus, these packages should be 

considered for future data analysis. 

 

5.6 Future Research  

Some areas for future research that may add to the functionality and usefulness of 

this model include further development of existing variables, environmental factors, 

organizational factors, measurement or quantification of the aforementioned factors, and 

validation and verification of the model against real-world team performance. With a 

functional model on how teams perform tasks, researchers may be able to observe 

emergent behavior of projects, teams, or interactions during the problem-solving process. 
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Further development of learning and flexibility would allow for the agents in the 

model to be adaptive to the tasks and to the rest of the members of a team. The addition 

of these variables may provide additional insight and observable behaviors that would 

increase the ecological validity of the model. Methods for measuring these variables 

would need to be developed, and may possibly increase interest of other fields of research, 

such and human resources or management, by contributing methods to be used in actual 

team management. 

Quantification, through measurement or estimation, is a key aspect of 

operationalizing the theory into executable scientific experiments. Though this thesis 

attempts to connect some measurement of an instrument into a simulation model, further 

quantification of factors is required should this product be transformed into a tool for 

analysis of living teams. The intent of building this model was not to guide predictive 

projects, but rather insight regarding task performance as a direct consequence of a 

team’s attributes, including some that have not yet been used in simulation studies, such 

as thinking mode. Future research may include adding factors to the model to increase 

robustness of understanding of team dynamics, as well as methods for quantifying those 

factors. 

Some of these factors may include environmental influences in team performance, 

such as culture or time pressures. Existing literature and simulations that attempt to 

quantify these may be of use to future development of the model and may provide 

groundwork that could be expanded upon in relation to taskwork. Organizational factors, 

such as management structures and hierarchies, may also be important to consider when 
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modeling group dynamics. Leadership and roles have been identified in literature as 

influential in team performance and would be helpful in understanding emergent 

behavior. 

Socio-technical factors in general could help integrate technology constraints that 

affect pathwork, and social factors that affect teamwork. For example, communication 

channels (email, phone, text message, or live chat) and the effects on message 

transmission rate are relevant considering the distributed nature of teams in modern 

settings. Overall, this model is not meant to be complete or comprehensive at the current 

stage, but it could help drive understanding of current gaps in research through simulation 

studies. 

Validation and verification (V&V) are two important aspects of modeling and 

simulation that should be included in future research to help solidify the usefulness and 

validity of the model, as well as to provide merit and trust in the results. The functionality 

test described in Chapter 4 provides some verification for this model. Within the 

modeling and simulation community, V&V are considered requirements in order for 

models to be published and used. Though there is no universal approach to V&V, some 

literature exists that may help guide this process for the proposed model (Xiang, Kennedy, 

& Madey, 2005).  

One way this model could be validated is to collect case studies of teams 

performing task work. The case studies should include some measures of performance, 

some information about the team, and some information about the tasks, such as what 

expertise might be required to perform them. The case study data could then be input into 
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the model, and the outputs of the model could be compared to the actual outputs 

produced by the teams. 

Some information about the team, such as thinking mode profiles, might be 

approximated using known connections between career paths and stereotypical thinking 

modes aligned with particular occupations. For instance, many engineers prefer to engage 

in structural thinking, employing strict organization and specification within daily tasks 

or projects. Conversely, a person who works in development might prefer conceptual 

thinking, using creativity and lack of structure to produce alternative solutions to a 

problem. While these generalizations about certain populations may not produce 

individual profiles with multiple preferred modes, the process may allow for some 

interactions between types of occupations. 

Information about the tasks may also be generalized based on how the organization 

structures a project and assembles a team. For instance, tasks that are divided amongst 

individuals may be considered disjunctive, requiring only one individual to execute a task 

and report out results. Others, such a collaborative tasks, may require all team members 

to contribute for the task to be completed, which could be additive or conjunctive 

depending on the expertise requirements and task objectives. 

With the above information, a comparison between model outputs and real-world 

task performance is possible. Differences between these can then be explored, explained 

or addressed to incorporate additional factors or calibrate the model accordingly
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CHAPTER 6. CONCLUSION 

Team-oriented work dominates industry, government, and academic areas with the 

goal of solving increasingly complex problems. Research seeks to understand the effects 

of interactions of factors within team, as well as the effects of new factors, such as 

technology. Deeper understanding of team dynamics through comprehensive and 

multidisciplinary research could positively influence organizational management, 

operations, and performance of teams worldwide.  

Socio-technical factors affecting the performance and dynamics of teams are 

included in a deep and diverse set of literature that spans from psychology to engineering 

disciplines. Though the amount of research in this topic is vast, integration of research, 

methods and tools is limited. Traditional human factors methods have sought to study 

group dynamics in laboratory or field settings. However, the scope and external validity 

of this type of research is inherently limited based upon the time and resources required 

to conduct team-oriented laboratory studies.  

The model described in this thesis provides a human factors simulation that 

incorporates at least two factors: cognitive diversity and domain expertise. The 

framework described allows for additional factors to be incorporated into existing code 

with relative ease. The model provides task performance data of teams of agents, selected 

from a defined organization of agents, performing a defined set of tasks. Based on 
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domain expertise, cognitive diversity, and achievement probability, the model computes 

attempts (or task iterations) needed for a team to complete a task with known type and 

expertise requirements. The dependent variable of interest (iterations to solution) is 

compared based on task type, team size, project size, and method of calculating cognitive 

diversity. 

Based on the outputs presented in Chapter 4, the model is functional and capable 

of producing testable results. Though only a limited number of treatments were collected 

in the secondary phase, the results suggest that additional work with this model could aid 

in mapping the surface of performance based on multiple factor dimensions, which can 

be expanded through additional development of the model. Additional focus on model 

convergence is recommended if additional factors or factor levels are incorporated, as the 

convergence analysis done in this thesis was both informal and limited based on the 

number of particular independent variable values. 

Potential areas of future research include the addition of other relevant factors in 

task performance, such as roles within a team, work environment, and technological 

factors. Each of these has been known to affect a team’s ability to perform, and would 

increase the merit and usefulness of this model. For those factors that cannot yet be 

assessed quantitatively, there is opportunity to develop measurement methods. Additional 

work in validation and verification of the model is recommended. With a functional 

model that shows effects of certain factors on task performance, researchers are able to 

generate research questions, which can then be tested using human factors methods, 

including the model itself.  
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This thesis expands the methods currently employed in human factors and 

incorporates an interdisciplinary approach to researching teams and task performance. 

Though limited in scope, this model is able to show some effects of team-task 

interactions, which are verified against real-world scenarios. Future research could 

expand this connection, allowing for scientists and organizations to gain a better 

understanding of how teams might operate in varying conditions, and what treatments 

might have a positive or negative impact on their performance. By integrating simulation 

methods into human factors subject areas, researchers may be able to gain understanding 

of a more diverse set of teams, team dynamics, and group performance in a fraction of the 

time and resources required for traditional methods.  
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Appendix A Code Sample 

 
Project Class: Task Assignment 
The following is a sample of code from the program that assigns the tasks to be 
completed in within the project. This includes the expertise requirements in each task, as 
well as a task type, a maximum number of iterations allowed for a team to attempt 
achievement, and the minimum achievement for each task. 
 
{ 
… 
// Populate Task List - TASK CONTEXT 
// **TODO** User to change project list here to design 
tasks in the project 
 Expertise tmpTaskExp; 
 tmpTaskExp = new Expertise(4, 6, 5, 6, 5); 
 project.taskList[0] = new Task(tmpTaskExp, 1000, 
TaskType.Disjunctive, 10); 
 tmpTaskExp = new Expertise(5, 7, 6, 6, 7); 
 project.taskList[1] = new Task(tmpTaskExp, 1, 
TaskType.Conjunctive, 30); 
 tmpTaskExp = new Expertise(4, 4, 4, 3, 2); 
 project.taskList[2] = new Task(tmpTaskExp, 100, 
TaskType.Additive, 30); 
 tmpTaskExp = new Expertise(4, 4, 4, 6, 2); 
 project.taskList[3] = new Task(tmpTaskExp, 1000, 
TaskType.Conjunctive, 50); 
 tmpTaskExp = new Expertise(4, 7, 7, 2, 7); 
 project.taskList[4] = new Task(tmpTaskExp, 100, 
TaskType.Additive, 10); 
 tmpTaskExp = new Expertise(2, 3, 0, 6, 9); 
 project.taskList[5] = new Task(tmpTaskExp, 1000, 
TaskType.Disjunctive, 15); 
   
 
 int numAgents = 12; 
 // **TODO** This is a user input for # of agents 
… 
} 
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Task Class: Task Construction 
The following is a sample of code from the program that dictates the component variables 
of a “task” within the program. This includes some of the variables that are assigned in 
the previous code. well as a task type and a max number of iterations allowed for a team 
to attempt achievement. 
Task Class: Components of a Task 
 
public class Task { 
 public Expertise taskExp; 
 public String taskStatus; 
 public int iterationsCompleted; 
 public int iterationsAllowed; 
 public double taskAchievement; 
 public double minAchievement; 
 public TaskType taskType; 
 
 public Task(Expertise taskExpInput, int 
iterationsInput, TaskType taskTypeInput, double 
minAchievementInput) { 
 taskExp = taskExpInput; // Expertise required by the 
Task 
 iterationsCompleted = 0; // How many attempts it took 
for the team to complete the task 

taskAchievement = 0; // How much the team has achieved 
toward the task's  completion 
 taskStatus = "Not Started"; 
 iterationsAllowed = iterationsInput; // Attempt 
pressure 
 taskType = taskTypeInput; // Additive, Conjunctive, 
Disjunctive  
 minAchievement = minAchievementInput; // How much 
achievement is required for the task to be considered 
"Complete" 
… 
} 
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Appendix B Profile Determination 

Table 8. Example of Team Expertise Distribution 

Agent! a! b! c! d! e! MAX! MIN!

Each!agent!has!an!
expertise!that!is!randomly!
selected!from!a!triangular!
distribution!for!each!area!
of!expertise!

1! 2! 2! 3! 9! 3! 9! 2!
2! 1! 4! 2! 5! 2! 5! 1!
3! 1! 4 3! 3! 7! 7! 1!
4! 3! 5 1! 4! 4! 5! 1!
5! 9! 2! 2! 6! 3! 9! 2!
6! 7! 1! 2! 2! 4! 7! 1! N! 24!

!7! 3! 6! 2! 7! 1! 7! 1! a! 0!
!8! 4! 9! 3! 4! 5! 9! 3! b! 10!
!9! 8! 5! 5! 5! 6! 8! 5! k! 3!
!10! 2! 1! 2! 3! 2! 3! 1! a+b/2! 5!
!11! 5! 8! 2! 2! 4! 8! 2! mean! 4.33!
!12! 3! 4! 1! 3! 2! 4! 1! mode! 3!
!13! 5! 8! 2! 3! 2! 8! 2! median! 4.08!
!14! 3! 7! 3! 4! 4! 7! 3! variance! 4.39!
!15! 4! 9! 6! 6! 5! 9! 4!

!

! !16! 5! 3! 6! 2! 5! 6! 2!
! ! !17! 6! 2! 8! 8! 7! 8! 2!
! ! !18! 5! 3! 6! 4! 3! 6! 3!
! ! !19! 9! 3! 6! 6! 4! 9! 3!
! ! !20! 2! 4! 3! 8! 5! 8! 2!
! ! !21! 4! 0! 4! 7! 4! 7! 0!
! ! !22! 7! 5! 5! 3! 4! 7! 3!
! ! !23! 6! 2! 2! 5! 4! 6! 2!
! ! !24! 9! 3! 2! 5! 2! 9! 2!
! ! ! 

 

 
 

 

 



 

 

87 

87 

Table 9. Example of Task Expertise Distribution 
PROJECTS!

!! REQUIRED!EXP! TASK!TYPE!
Task! a! b! c! d! e! TYPE1! TYPE2!

1! 2! 4! 4! 9! 5! A! A!
2! 7! 7! 3! 5! 2! A! C!
3! 6! 8! 9! 7! 6! D! A!

Task! a! b! c! d! e! TYPE1! TYPE2!
1! 4! 6! 5! 6! 5! A! D!
2! 5! 7! 6! 6! 7! C! C!
3! 4! 4! 4! 3! 2! C! A!
4! 4! 4! 4! 6! 2! C! C!
5! 4! 7! 7! 2! 7! A! A!
6! 2! 3! 0! 6! 9! A! D!

Task! a! b! c! d! e! TYPE1! TYPE2!
1! 5! 2! 4! 4! 7! C! A!
2! 4! 2! 8! 3! 6! D! A!
3! 5! 3! 2! 8! 8! A! D!
4! 7! 5! 4! 3! 5! A! C!
5! 6! 7! 7! 4! 7! D! A!
6! 3! 3! 4! 7! 2! C! A!
7! 4! 2! 4! 5! 9! C! A!
8! 8! 1! 5! 4! 2! A! D!
9! 9! 2! 1! 5! 3! A! D!

Each!task!is!randomly!generated!based!on!
triangular!distribution!across!different!areas!
of!expertise!
N! !! 5! Random!Numbers:!Type!
a! !! 0!

!
1! A!

! !b! !! 10!
!

3! D!
! !k! !! 4!

!
2! C!

! !a+b/2! 5!
!

2! C!
! !mean! 4.67!

!
1! A!

! !mode! 4!
!

3! D!
! !median! 4.52!

!
3! D!

! !variance! 4.22!
!

1! A!
! !

! ! ! !
2! C!

! ! 
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