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ABSTRACT 

  
  

Jiao, Peng, M.S.C.E., Purdue University, May 2016. Dynamic Green Split Optimization 
in Intersection Signal Design for Urban Street Network. Major Professor: Samuel Labi. 

 

In the past few decades, auto travel demand in the United States has significantly 

increased, but roadway capacity unfortunately has not expanded as quickly, which has led 

to severe levels of highway traffic congestion in many areas. In theory, the problem of 

congestion addressed through demand management and roadway expansion. However, 

system expansion in urban areas is difficult due to the extremely high cost of land; 

therefore, maximizing the existing capacity therefore often is considered the most 

realistic option. In urban areas, most of the traffic congestion and delays typically occur 

at signalized intersections. This thesis aims to prove the hypothesis that it is possible to 

increase capacity by establishing traffic signal timing plans that are more effective than 

existing plans. A new methodology is introduced in this thesis for dynamic green split 

optimization as a part of intersection signal-timing design to achieve maximized 

reduction in overall delay at all the intersections within an urban street network. The 

measurement of effectiveness in this new method is reduction in the average delay per 

vehicle per signal cycle. This thesis used data from 143 signalized intersections and 334 

street segments in the Chicago Loop area street network to demonstrate the proposed 

methodology. 
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The results suggest that it is possible to reduce delay by approximately 35% through the 

optimization of signal green splits for the four-hour AM and four-hour PM peak periods 

of a typical day. 
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CHAPTER 1 INTRODUCTION 

 
 

1.1 Background 

              Transportation systems help facilitate freight shipments and economic activities 

in regions and cities in ways that reflect the distribution of these activities, and urban 

productivity is closely related to effective usage of transportation systems. Highway 

traffic congestion is an issue of great concern in large and dense urban areas. Traffic 

congestion causes a waste of approximately seven billion hours of extra time and three 

million gallons of additional fuel in urban areas of the United States as reported in the 

Urban Mobility Report [TTI, 2015]. In theory, congestion problems can be resolved 

through demand management and roadway expansion. However, urban system expansion 

is typically difficult due to the extremely high cost of purchasing land in urban areas 

(Sinha and Labi, 2007). To address this issue, it is hypothesized that the utilization of 

available system capacity can be maximized. One of the most commonly-used palliatives 

for traffic mitigation is the design of traffic signal timings that assign time slots in an 

efficient manner. Traffic signals, which were first installed in London in 1868, have 

played a critical role in urban traffic control since then and have contributed greatly to 

urban traffic mobility and safety.  

In densely populated cities, traffic congestion continues to grow as travel demand 

increases. While projects that increase the capacity of transportation facilities 
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generally resolve the problem of congestion, the reality is that  the construction of 

additional lanes is not always feasible due to the high cost of land in urban areas. 

Therefore, maximizing the utilization of existing capacity in the most efficient manner is 

the preferred approach, such as the development of signal timings that minimize delay.  

1.2 Problem Statement 

           The mitigation of traffic congestion issues, especially related to intersection delays 

in dense urban areas with a large number of intersections, needs a new methodology for 

signal timing optimization that will dynamically adjust the green splits of individual 

phases for individual intersections without changing the existing cycle length and signal 

coordination.  Minimizing the average vehicular delay per cycle over several consecutive 

cycles also should be a priority for this new method.    

1.3 Study Objectives and Scope 

           Objectives: The general objective of this thesis is to optimize intersection signal 

design for urban street network and aims to accomplish the following:  

-  develop a method to calculate vehicle delays at signalized intersection in consecutive 

cycles under different traffic conditions (undersaturated and oversaturated);  
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- formulate a green split optimization model that will achieve minimum vehicle delays 

per intersection per cycle averaged over consecutive cycles with vehicle delays 

computed using the above method; 

- develop an iterative computational process for a large number of intersections in an 

urban street network; and 

- implement the proposed optimization model using a case study.  

         Study Scope: The proposed methodology will interface with and integrate into a 

large-scale, high-fidelity simulation-based traffic model to update green split designs 

based on dynamically assigned traffic using the intersection over fixed time intervals 

during the AM and PM periods. The proposed method will minimize the intersection 

delays in terms of the delays per vehicle per cycle averaged over several consecutive 

cycles.  

1.4 Chapter Organization 

             This thesis consists of five chapters. Chapter 1 discusses the traffic congestion 

problem in urban areas and a description of the study objectives. Chapter 2 documents 

the findings of the review of the literature addressing intersection signal-timing 

optimization. Chapter 3 elaborates on the proposed methodology, and Chapter 4 presents 

the methodology’s application and the results of the numerical analysis. Chapter 5 

summarizes the contributions of this thesis and future research directions.
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CHAPTER 2 LITERATURE REVIEW 

 
 

            The initial step of this thesis was a review of the literature pertaining to the 

current methodologies for signal timing optimization at urban intersections.  

2.1 Studies on Intersection Vehicle-Delay Modeling  

              Macroscopic traffic flow models are rooted in mathematical relationships 

between traffic flow, density, and speed and are helpful because they provide a 

theoretical basis for the planning and design of efficient ways to increase highway 

capacity [Robert, 1998; Garber and Hoel, 2001]. With regard to urban intersections, in 

the past few decades, the shockwave models developed to better characterize traffic flow 

on road segments under various conditions at intersections have helped engineers to 

develop appropriate measures of effectiveness to increase the efficiency of intersection 

capacity.  

Wirasinghe [1978] applied the traffic shockwave theory of Lighthill and Whitham 

to model the moving incidents associated with vehicle overtaking, and established a 

graphical method to derive the delays for individual or all vehicles and their related costs. 

The study also developed a new formulation to measure the upstream total delay arising 

from an incident downstream and demonstrated that the new formulation produced the 

same results as deterministic queuing theory. 
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Michalopoulo et al. [1981] studied a real-time signal control policy for 

minimizing total intersection delay subject to queue length constraints. The authors 

concluded that the shockwaves that occurred upstream of the stop lines were caused by 

irregular service of traffic at the signal.  Based on this conclusion, they developed a new 

model and proposed a real-time signal control policy based on the model that managed 

the queue lengths of two conflicting streams through a traffic light controlled in time and 

space. Using the current pre-timed control policy at an intersection with a high volume of 

traffic as a comparison target of the proposed policy, the authors established that the 

proposed policy was more efficient, particularly under conditions where demand 

exceeded the saturation level. 

In order to describe the characteristics of queues in coordinated traffic signal 

systems and the traffic wave motion that spreads from link to link, Hisai and Sasaki 

[1993] studied shockwaves to formulate a new model. Their work produced  a 

visualization of the shockwave phenomenon as it spreads under various streets, traffic, 

and signal conditions, including both the undersaturated and oversaturated cases. The 

optimization of signal control timing can be studied using the Hisai and Sasaki model. 

   Dion et al. [2004] compared the delays calculated by the INTEGRATION 

microscopic traffic simulation model and the delays produced by analytical delay models 

for a one-lane approach to a pre-timed signalized intersection under undersaturated to 

oversaturated conditions. The analytical model used for the comparison represented the 

steady-state stochastic delay, time-dependent stochastic delay models, deterministic 

queuing, and shockwave. To evaluate the consistency of the calculated vehicle delays 
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from the two models, they conducted a comparison over a range of volume-to-capacity 

(v/c) ratios extending from 0.1 to 1.4. Over this range, the delay models from the 1981 

Australian Capacity Guide [Akçelik, 1980], the 1995 Canadian Capacity Guide for 

Signalized Intersections [ITE, 1995], the 1997 Highway Capacity Manual (HCM) [TRB, 

1997], and nearly consistent delay estimates were produced from the INTEGRATION 

microscopic traffic simulation model. In this manner, the conditions were validated. In 

addition, the study recommended evaluation of such consistency for more complex 

situations. 

A study conducted by Liu et al. [2009] presented a creative approach for 

assessing intersection queue lengths with existing detectors; and by using this 

methodology; it was possible to assess time-dependent queue lengths on signal links 

congested with long queues, which was a key contribution of their study.  Moreover, it 

was possible to differentiate traffic states at an intersection by applying the Lighthill-

Whitham-Richards (LWR) shockwave theory with high-resolution traffic signal data in 

order to assess the queue length under congested conditions. The authors evaluated three 

models by comparing the estimated maximum queue lengths with the ground count data 

recorded by cameras and human observers and confirmed that the basic model produced 

precise outputs (the other two outputs were also acceptable). 

Wu et al. [2010] studied a quantifiable measure of oversaturation by addressing 

its negative effects in both the temporal and spatial dimensions. The authors 

characterized the temporal negative effect by the occurrence of a residual queue, referring 

to the negative effect as a spillover from a downstream intersection to upstream. This 
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study proposed two algorithms to diagnose oversaturated signalized intersection: 1) an 

algorithm for assessing residual queue length applying shockwave method and 2) an 

algorithm for detecting spillover by identifying long detector occupancy times in the 

green phase. The authors used the green time caused by a residual queue or a spillover to 

explain the oversaturation severity index and confirmed that the proposed algorithm 

effectively identified oversaturated conditions. 

Ban et al. [2011] proposed a new shockwave methodology for assessing real-time 

queue length at signalized intersections and applied it to travel time from mobile traffic 

sensors. The authors used travel time as the model input, rather than detailed trajectories, 

to avoid the issue of privacy protection. Their methodology consisted of three major 

components. The first component consisted of processing raw sample vehicle delays to 

queuing delays, and the second component assessed the queuing delay patterns using 

sample queuing delays and queue rear no-delay time (QRNAT). The first component was 

to calculate maximum or minimum queue lengths and constructing real-time length 

curves. The main concept of their proposed method was to relate QRNAT to the non-

smoothness of queuing delay patterns and queue length changes. Compared to regular 

methods for traffic modeling using mobile data, the proposed method represented a 

reverse-thinking process. 

2.2 Studies on Static Signal Timing Optimization 

                  Lu et al. [2010] developed an intersection traffic signal control model based 

on reinforcement learning and proposed an optimization method for signal timing of 

single intersection using a SARSA algorithm. Dong et al. [2010] developed a simulated 
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annealing-particle swarm optimization (Sa-PSO) algorithm established from particle 

swarm optimization (PSO) and metropolis rule. Chin et al. [2011] studied a Q-learning 

approach that could handle a traffic signal timing plan more efficiently by optimizing 

traffic flows. In another study to derive initial solutions for the particle swarm 

optimization algorithm, Chen and Xu [2006] used the PSO algorithm to resolve the traffic 

signal timing optimization problem by installing a local fuzzy-logic controller (FLC) at 

each junction. To resolve the multi-objective signal timing optimization problem 

(MOSTOP), Sun et al. [2003] applied non-dominated sorting genetic algorithm.  

A non-linear optimization model applicable for an individual intersection built up 

was tested by Li et al. [2009] using an ant colony algorithm based on mesh strategy 

coded in MATLAB. In another study, Mussa and Selekwa [2003] proposed a method of 

traffic flow optimization during the transition period using a time-of-day (TOD) timing 

plans approach applied in CORSIM. Li et al. [2010] developed a simulation system using 

VB code based on the traffic characteristics of  China for an isolated signal intersection. 

2.3 Studies on Adaptive Signal Timing Optimization 

Generally, a traffic demand pattern depends on time and location and 

unpredictable factors, such as crashes, special events, or construction activities, that 

influence the outcome.  Currently, numerous cities are using traffic signal control systems 

that can continuously optimize signal-timing plans in response to the detected traffic 

demand of each approach, known as adaptive signal control systems. The first functional 

deployments appeared in the early 1980s. Since then, propelled by the wide 

implementation of Intelligent Transportation System (ITS) devices, adaptive signal 
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control systems have become increasingly popular, particularly for vehicle detection and 

classification. First-generation adaptive signal control systems select the proper signal 

timing plans in response to the detected traffic demand pattern from the library of pre-

stored signal timing plans prefixed off-line based on historical data. A change in the 

traffic conditions, the time of day, and the day of the week triggers a change in the signal-

timing plan. A limitation of this generation of systems is that by the time the system 

responds, the registered traffic conditions that triggered the response may have become 

obsolete. Second-generation adaptive signal control systems use an on-line library that 

implements signal timing plans based on real-time traffic data and predicted values. The 

signal-timing optimization process can be updated every five minutes. Generally, 

frequent changes in signal timing plans may lead to transition disturbance. Therefore, in 

practice, the frequency of changing signal plans cannot be less than ten minutes. The first 

two generations are also referred to as responsive/adaptive systems. The third generation 

allows the parameters of the signal plans to change continuously in response to real-time 

measurement of traffic variables, which allows for acyclic operations.  

Some researchers and organizations have dedicated their efforts to the 

development of adaptive signal control systems.  For example, the Roads and Traffic 

Authority of New South Wales, Australia developed the Sydney Coordinated Adaptive 

Traffic System (SCATS) in the early 1970s. The optimization algorithm in SCATS uses 

the concept of degree of saturation (DS), defined as the ratio of fully used green length to 

effective green length, to determine signal details where cycle length is adjusted in every 

cycle and splits and offsets are selected from prefixed patterns. Hunt et al. [1981] 

developed the Split Cycle and Offset Optimizing Technique (SCOOT), which optimizes 
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the signal on-line by adjusting the three types of elements (splits, offsets, and cycle 

lengths) based on the predicted arrival profile and the updated flow information collected 

by the upstream detectors. The Optimization Policies for Adaptive Control (OPAC) 

developed by Gartner [1983] is a demand-responsive signal control system that uses the 

introduced rolling horizon approach to adjust signal parameters in response to the 

estimated queue length. Koshi [1972], Koshi [1989], and Asano et al. [2003] developed a 

signal control system using the concept of shifting the cumulative diagrams by 

investigating whether or not a small advance or delay of the next traffic light phase may 

decrease the aggregate delay to the users. Changes in the offset, split, and cycle were 

implemented. Lertworawanich [2010] developed a split optimization method for a single 

isolated intersection by constructing the space-time diagram that was capable of adjusting 

the split in response to different traffic demand patterns even where the queues extend 

beyond the detector location. Roshandeh et al. [2014] developed a method for optimizing 

intersection signal timing for an entire urban street network based on the shockwave 

theory by simultaneously minimizing vehicle and pedestrian delays in each signal cycle 

over a 24-hour period. 

2.4 Limitation of the Existing Methods 

                Most of the existing models focus on isolated intersections or individual 

corridors. The lack of a rigorous methodology for addressing the network impacts of 

intersection traffic signal timing optimization makes it likely they will produce 

ineffective signal timing plans for efficient utilization of the existing capacity of 

intersections, corridors, or urban street networks.  
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CHAPTER 3 PROPOSED METHODOLOGY 

 
 

This chapter discusses the proposed methodology for system-wide signal timing 

optimization considering vehicle delays at individual intersection approaches. It begins 

with the proposed new dynamic split optimization model for vehicle delay computation 

using the shockwave theory and then discusses the computational analysis process for 

model execution. It further describes interfacing and integrating the proposed model into 

the TRANSIMS toolbox for large-scale urban network applications. 

3.1 Basic Concepts of Traffic Movements at Signalized Intersections 

3.1.1 Merits of the Proposed Model 

                  As seen in the shockwave model introduced by Roshandeh et al. [2014], both 

undersaturated and oversaturated traffic movements at signalized intersections are 

considered. This method was further refined in this thesis to characterize traffic 

movements more accurately from the following four aspects:  

First, the shockwave model by Roshandeh et al. [2014] considers a fixed time 

point between the before-hump and after-hump transition speeds under the oversaturated 

traffic condition. The current model allows a flexible point for the transition speeds, 

depending on the vehicles entering the intersection approaches during the signal cycle 

and the interactions of the entering vehicles with the corresponding
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green intervals. Second, the model by Roshandeh et al. [2014] assumes that the 

oversaturated and undersaturated cases share the same maximum queue length. This 

rarely the case in real world circumstances. This thesis assumes that the queue length 

accumulates as time goes on, as is the case with vehicular delays. Third, the shockwave 

model by Roshandeh et al. [2014] considers that the last vehicles entering the intersection 

during the green intervals dissipate precisely at the end of the yellow interval. In fact, this 

represents the worst case and that the last vehicle may clear before the end of the yellow 

interval. This thesis allows the clearance of the last entering vehicle to occur before or at 

the end of the yellow interval. Fourth, all the wave speeds calculated in the shockwave 

model by Roshandeh et al. [2014] are based on the critical lane volumes. Conversely, this 

thesis uses the total vehicle volumes entering from all intersection approaches for the 

computation. The improvements this thesis makes over the earlier model by Roshandeh 

et al. [2014] ensure that the proposed model provides a more accurate estimation of 

vehicle delays per cycle per intersection. The details of delay calculation are presented in 

the next section. 

3.1.2 Vehicle Delay Calculation Using the Proposed Model 

            Figure 1 depicts how a vehicular queue forms and discharges due to a red signal 

when the traffic flow is undersaturated.  When the traffic signal turns red, the vehicles 

stop and form a queue at wave speed v1 until point A (illustrated by line 1). Then, the 

queueing back speed slows down because the traffic demand upstream is not as high as 

before. Therefore, the queue forms at slower wave speed v2 (illustrated by line 2). When 

the signal turns green, the queue discharges at wave speed v3 (illustrated by line 3). The 

queue discharges completely at point B (the intersection of the line 2 and line 3). After 
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point B, the newly arrived vehicles join the discharge flow without any stopping. 

Moreover, the forward shockwave speed is v4 (illustrated by line 4). After point C, the 

traffic flow of this approach comes back to the original status until the next red signal.  

 

Figure 1 Time-Space Diagram of Vehicles Traversing Through Intersections under 
Undersaturated Traffic Conditions 

The vehicles arrive at the intersection at different arrival rates, which is simplified 

by considering two constant rates. The relatively higher arrival rate is assumed to be 

oriented from the critical movement vehicles released by the upstream intersection. Also, 

the relatively lower arrival rate is caused by non-critical movement vehicles. In 

undersaturated traffic conditions, a triangular flow-density curve is assumed, as 

illustrated by the flow-density curve at the corner of Figure 1. The state of higher flow 

rate is denoted as point H, and the lower flow rate is denoted as point L in the figure. 
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The delay of each vehicle is measured as the waiting time when its velocity is 

zero.  As illustrated by the vertical bold lines between line 3 and line 1, and line 2. From 

the left-hand side to the right-hand side, the length of each line is the delay of the 

corresponding vehicle. Obviously, the delay depends on the vehicle’s location in the 

queue. According to the geometric relationship illustrated above, one can safely derive 

the following relationship: 

𝑛 = !!
!"# !"#$%&'

= 𝑆! ∗ 𝐾! ≈ 𝑆! ∗ 𝐾!             (3-1) 

where, 𝑛 is the number of vehicles waiting in this queue during one cycle; and 𝐾! is the 

jam density. 

Also, denote the location of the 𝑖!! vehicle as 𝐿(𝑖), then: 

𝐿 𝑖 = 𝐿 𝑖 − 1 + 𝐽𝑎𝑚 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = 𝐿 𝑖 − 1 + !
!!

    (3-2)  

𝐿 1 = 0;          (3-3) 

The general expression for 𝐿(𝑖) according to (3-2) and (3-3) is: 

𝐿 𝑖 = !!!
!!

          (3-4a) 

𝑑𝐿 = !"
!!

         (3-4b) 

In addition, Equation (3-4a) is the total differential expression of Equation (3-4b). 

Equation of the three lines: 

Line 1 (0 ≤ 𝑆 ≤ 𝑆!): 𝑇! 𝑆 = !
!!

 

Line 2(𝑆! ≤ 𝑆 ≤ 𝑆!): 𝑇! 𝑆 = !
!!
+ 𝑇! −

!!
!!
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Line 3(0 ≤ 𝑆 ≤ 𝑆!): 𝑇! 𝑆 = !
!!
+ 𝑇! 

Therefore, for 𝐿(𝑖) ≤ 𝑆!: 

𝑑𝑒𝑙𝑎𝑦 𝑖 = 𝑇! 𝑖 − 𝑇! 𝑖 = !
!!
− !

!!
∗ 𝐿 𝑖 + 𝑇!    (3-5) 

For 𝑆! ≤ 𝐿(𝑖) ≤ 𝑆!: 

𝑑𝑒𝑙𝑎𝑦 𝑖 = 𝑇! 𝑖 − 𝑇! 𝑖 = !
!!
− !

!!
∗ 𝐿 𝑖 + 𝑇! − 𝑇! +

!!
!!

  (3-6) 

In sum: 

𝑑𝑒𝑙𝑎𝑦[𝐿 𝑖 ] =

!
!!
− !

!!
∗ 𝐿 𝑖 + 𝑇! 𝑖𝑓 𝐿(𝑖) ≤ 𝑆!

!
!!
− !

!!
∗ 𝐿 𝑖 + 𝑇! − 𝑇! +

!!
!!

𝑖𝑓 𝑆! ≤ 𝐿(𝑖) ≤ 𝑆!
 (3-7) 

In short: 

𝑑𝑒𝑙𝑎𝑦[𝐿 𝑖 ] = 𝐷!(𝐿) 𝑖𝑓 𝐿(𝑖) ≤ 𝑆!
𝐷!(𝐿) 𝑖𝑓 𝑆! ≤ 𝐿(𝑖) ≤ 𝑆!

     (3-8) 

  The next step is to compute the total delay of this queue. In the following step, 

approximation is made by replacing the summation with the integration in order to 

simplify the computation. 

𝑑𝑒𝑙𝑎𝑦(𝑖)
!

!!!

≈ 𝑑𝑒𝑙𝑎𝑦 𝑖 ∗ 𝑑𝑖
!

!

!"#$ !" !"(!!!)
𝐾! ∗ 𝑑𝑒𝑙𝑎𝑦 𝐿 ∗ 𝑑𝐿

!!

!
 

                = 𝐾! ∗ 𝐷! 𝐿 ∗ 𝑑𝐿!!
! + 𝐷! 𝐿 ∗ 𝑑𝐿!!

!!
= 𝐾!Ω  (3-9) 

where, Ω is the area of the quadrangle bounded by the line 1, 2, 3 and the time axle. 

 Ω = !!!!! ∗!!!!!!!!(!!!!!)(!!!!!)
!

                (3-10) 

Further, 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 = !"#$% !"#$%
!

= !!!
!!∗!!

= !
!!
= !!!!! ∗!!!!!!!!(!!!!!)(!!!!!)

!!!
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                                                                                                                         (3-11) 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 = 𝐾!Ω =
!!!!! ∗!!!!!!!!(!!!!!)(!!!!!)

!
𝐾!    (3-12) 

        For oversaturated traffic conditions, as illustrated below (Figure 2), the moment 

when the signal turns red, the queue forms in three stages, as illustrated by lines 5, 1, and 

2. In stage 1 (illustrated by line 5), the queue is formed at wave speed v5 by the vehicles 

that queued in the previous cycle. These vehicles have to stop again because the green 

time allocated to this approach is not adequate for all the vehicles to pass the intersection 

in the previous cycle. In stage 2 (illustrated by line 1), the queue forms at wave speed v1 

by the newly arrived vehicles at a high arrival rate, which is similar to line 1 in the 

undersaturated case. In stage 3 (illustrated by line 2), the queue forms at speed v2 by the 

newly arrived vehicles in a lower volume status, which is similar to line 2 in the 

undersaturated case. When the signal turns green, the queue discharges at wave speed v3 

(illustrated by line 3). After point B, which is the intersection of line 2 and line 3, the 

newly arrived vehicles pass through without stopping (illustrated by line 4). The forward 

wave speed is v4.  
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Figure 2 Time-Space Diagram of Vehicles Traversing through Intersections under 
Oversaturated Traffic Conditions 

By the logic, the average vehicular delay is computed in the following steps: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 =
Ω
𝑆!

 

= !!!!! ∗!!!!!!!!(!!!!!)(!!!!!)!(!!!!!)(!!!!!)
!!!

    (3-13) 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 =
𝑇! + 𝑇! 𝑆! − 𝑆!𝑇! − (𝑇! + 𝑇!)(𝑆! − 𝑆!)− (𝑇! + 𝑇!)(𝑆! − 𝑆!)

2 𝑘! 

          (3-14) 

The formulae of average vehicular delays derived in the above differ from those 

of  the previous studies, particularly those developed by Roshandeh et al. [2014]. 

The assumed triangular flow-density relationship is shown at the right-top corner 

of Figures 1 and 2, where H(kh,qh) represents the high volume status, L(kl,ql) represents 
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the low volume status, and (kmax, qmax) represents the capacity status. Table 1 summarizes 

the wave speed calculations. 

Table 1 Summary of Wave Speed Calculations 

Wave Speed Definition Calculation using Field Measurements 
Undersaturation Oversaturation 

𝑣! 
𝑞!

𝑘! − 𝑘!
 

𝑆!
𝑇!

 
𝑆! − 𝑆!
𝑇! − 𝑇!

 

𝑣! 
𝑞!

𝑘! − 𝑘!
 

𝑆! − 𝑆!
𝑇! − 𝑇!

 
𝑆! − 𝑆!
𝑇! − 𝑇!

 

𝑣! 
𝑞!"#

𝑘! − 𝑘!"#
 

𝑆!
𝑇! − 𝑇!

 
𝑆!
𝑇!

=
𝑆!

𝑇! − 𝑇!
 

𝑣! 
𝑞!"#
𝑘!"#

 
𝑆!

𝑇! − 𝑇!
 

𝑆! − 𝑆!
𝑇! − 𝑇!

 

𝑣! 
𝑞!"#

𝑘! − 𝑘!"#
 N/A 

𝑆!
𝑇!

=
𝑆!

𝑇! − 𝑇!
 

 

3.2 Further Explanation of Traffic Movements at Signalized Intersections 

The queuing back pattern discussion above occurs for every movement of each 

phase in a signal-timing plan if signals of two successive intersections are not well 

coordinate. A well-coordinated intersection releases vehicles in the traffic stream with a 

higher flow rate directly at the time they arrive at the intersection; and at the same time a 

queue forms during the red signal from vehicles in the traffic stream with a lower flow 

rate. Therefore, to some extent, a space-time diagram can be used to illustrate the worst 

case of a queueing back pattern caused by a signal. Consequently, the computed delay 

may be the maximum delay with the signal timing details and flow details given. 

In terms of the data needed for the delay computation, vehicle running speed (v4) 

can be collected by sensors or detectors. The capacity of each lane can be computed using 

information in the 2010 Highway Capacity Manual (HCM) [TRB, 2010] or other 
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acceptable specifications.  Field observations could be used to derive the jam density, 

which this thesis assumes as 150 veh/km/lane. The critical inputs of the model are the 

two flow rates. Generally, vehicle detectors collect only one value of the average flow 

rate, which indicates the general traffic flow demand using this link or the particular lane. 

Therefore, in order to achieve these two flow rates based on the given information, two 

factors (f1 and f2) are created to estimate qh and ql. The relationship established among 

these factors are given by (3-15) and (3-16). 

 𝑞! = 𝑓! ∗ 𝑞!"# + 𝑞  (3-15) 

𝑞! = 𝑓! ∗ 𝑞 (3-16) 

Both f1 and f2 range from 0 to 1. Further regression of the data collected by field 

measurements will produce both factors. Formula (3-15) ensures that the higher flow rate 

is between the observed average flow rate and the capacity. Similarly, Formula (3-16) 

ensures that the lower flow rate is within zero and the observed average flow rate. 

However, applying these two formulae requires that the observed average flow rate is 

greater than zero and less than capacity. If the approach volume is zero during a certain 

period, these two factors also should be zero. When the observed average flow rate 

during the period exceeds capacity, the capacity used in this model should be updated 

accordingly. 

Another critical factor is the time duration of both flow rates in a signal cycle. In 

other words, the proportion of time that the intersection experiences a higher flow rate 

and the proportion of time that is spent at a lower flow rate if green time is allocated to 
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this approach all the time. Figure 3 illustrates the geometric relationship between this 

time proportion factor 𝑓 and other factors. 

 

Figure 3 Fraction of Cycle Used by Two Arrival Volumes 
 

In Figure 3, the dash line is the boundary separating the traffic stream between the 

higher flow rate and the lower flow rate conditions. Correspondingly, this line crosses 

transition point A. The dotted line is the end of the queue formed during red time 

discussed in the previous section. The series of solid parallel lines on the left side of the 

dash line indicates the trajectories of the vehicles in the traffic stream with a higher flow 

rate. Likewise, the parallel lines on the right side of the dash line are the trajectories of 

the vehicles in the traffic stream with a lower flow rate. Based on the conservation law of 

traffic volume, Equations (3-17) and (3-18) can be derived as follows: 
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𝑞! ∗ 𝑓 ∗ 𝐶𝑦𝑐 + 𝑞! ∗ 1− 𝑓 ∗ 𝐶𝑦𝑐 = 𝑞 ∗ 𝐶𝑦𝑐 (3-17) 

𝑓 = !!!!
!!!!!

 (3-18) 

Furthermore, according to the geometric relationship represented by Figure 3.3, 

the coordinate of point A can be computed as follows: 

𝑇! =
!!∗!∗!"#
!!!!!

 (3-21) 

𝑆! = 𝑣!𝑇! =
!!!!∗!∗!"#

!!!!!
 (3-22) 

After the coordinates of point A has been found, the locations of point B and point 

C can be computed based on the corresponding shockwave speeds. If the time coordinate 

of point C is not greater than the cycle length, the traffic condition is undersaturated. 

Consequently, the vehicle delays for the undersaturated case can be computed.  

With regard to the oversaturated case, the computation of vehicle delays requires 

information on the residual queue length left from the previous cycle. Therefore, the 

space-time diagram should be drawn from the beginning of the cycle for which the 

residual queue length is zero. As illustrated by Figure 2, the queue length of the 

oversaturation case accumulates over time. The residual queue length from the last cycle 

can be found at point C of the previous cycle and represents point D of the current cycle. 

Naturally, the total vehicle delays in the current cycle can be computed by summing up 

the delays in the previous cycle and the area of the shaded parallelogram. According to 

the geometric relationship, the coordinate of point C for the first cycle in the 

oversaturated case can be computed using  Equations (3-23) and (3-24). 
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𝑇!! = 𝑇!! =
!!!
!!"

+ 𝑇!! (3-23) 

𝑆!! = 𝑆!! =
(!!!!!"#)!!"!!"

!!"!!!"
 (3-24) 

Unlike the undersaturated case, the maximum queue length and the total vehicle 

delays depend on the number of cycles considered. In practice, considering two to five 

cycles is desirable. The average value of delays in multiple cycles can be utilized as the 

indicator of delay measurement. 

3.3 Proposed Method for Signal Timing Optimization  

The current model also refines the optimization of green splits according to the 

vehicle volumes expected to enter the intersections approaches in the near future signal 

cycles to achieve minimum delays per vehicle per cycle averaged over multiple 

consecutive cycles. In addition, the optimization is conducted using fewer constraints to 

be more consistent with real world situations. 

The optimization formulation is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷𝑒𝑙𝑎𝑦!!∈!!!∈!       (3-25) 

Where: 

𝐷𝑒𝑙𝑎𝑦!" =
!!!!! ∗!!!!!!!!(!!!!!)(!!!!!)

!
𝑘!     

𝐷𝑒𝑙𝑎𝑦!" =
𝑇! + 𝑇! 𝑆! − 𝑆!𝑇! − (𝑇! + 𝑇!)(𝑆! − 𝑆!)− (𝑇! + 𝑇!)(𝑆! − 𝑆!)

2 𝑘! 

          (3-26) 

Subject to:  

𝑇!" ≥
!!
!!"#

         (3-27) 
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𝑇!" + 𝑇!" + 𝑇!" = 𝐶𝑦𝑐       (3-28) 

   where, 𝑖 and the phase ID and 𝑚 is the movement traffic ID disallowed to move in 

phase 𝑖 . 𝑀! is the set containing the IDs of all movements disallowed within phase 𝑖. 𝐼 is 

the set containing all the phase IDs of the signal timing plan of a given intersection. 

𝑇!" ,𝑇!" ,𝑇!" is the green time, red time, and yellow time for phase 𝑖. 𝐶𝑦𝑐 is the cycle 

length of this intersection. 𝑊! is the width of the intersection corresponding to phase  𝑖. 

𝑣!"# is the walking speed of pedestrians.  

In this signal timing optimization model, objective function (3-25) computes the 

sum of the vehicle delays of all the movements in all phases within a signal-timing plan 

at a given condition. Formula (3-26) indicates the quantity of total vehicle delays 

depending on whether it is possible to discharge the queue formed in the red signal 

during the non-red signal fully. Constraint (3-27) sets the lower bound of the green time 

equivalent to the minimum pedestrian crossing time. If the signal time plan contains one 

or two protected left-turn phases, constraint (3-27) can be relaxed for those protected left-

turn phases. Constraint (3-18) indicates that the cycle length remains unchanged. Unlike 

using average vehicle delays on a critical lane for each phase in the objective function 

adopted by Roshandeh et al. [2014], the total vehicle delays aggregated for all vehicle 

movements in all phases within a signal cycle is used as the mobility performance 

measure.  

3.4 Iterative Solution Process for the Proposed Model 

The above optimization modeling of green splits is applied for the AM and PM 

peak periods of a typical day where each peak period is further split into fixed time 
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intervals and, within each time interval, multiple signal cycles are involved. The optimal 

green splits are determined using the following iterative computation process:  

- Determine the predicted vehicle volumes entering individual intersection approaches 

in each signal cycle for the given time interval.  

- Calculate the total vehicle delays using the predicted vehicle volumes entering 

individual intersection approaches for the given signal timing design for the time 

interval.  

- Adjust the green splits of the signal timing design to achieve the lowest delays.  

- Apply the new green splits of signal timing designs for intersections within an urban 

street network to the subsequent signal cycle, which is expected to trigger traffic 

redistribution in the urban street network, leading to changes in traffic volumes 

entering into intersection approaches in the subsequent signal cycle.  

-  Repeat Steps 2-4 until the time sequence of the entire AM or PM peak period is 

complete.  

Figure 4 depicts the iterative process for solving the optimization problem at a 

certain intersection, which is the essence of Steps 2 and 3. After optimizing all the 

intersections in the network, the updated signal-timing plan should be exported as the 

input for a traffic simulation in order to examine the traffic redistribution due to the 

change of signal timing plan. As a part of the output data reported by the simulation 

system, the simulated traffic data for the next time step will serve as the input of the next 

iteration. Figure 5 illustrates the alternated computational process from the given green 

splits in a signal-timing plan and the vehicle volume to optimize green splits with 
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minimized delays and a new vehicle volume in response to the new green splits with 

signal cycles progressing to the end of the signal optimization period. 

 

Figure 4 Iterative Solution Process for the Proposed Model 
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Figure 5 Computation Process of Green Split Optimization 

 

3.5 Integrating the Proposed Model and Computing Process into TRANSIMS 

TRansportation ANalysis and SIMulation System (TRANSIMS) is an integrated 

system of travel forecasting models designed to give transportation planners accurate and 

complete information on traffic impacts, congestion, and pollution [Li et al., 2012]. It is 

one of the very few analytical tools capable of conducting large-scale, high fidelity 

simulation-based traffic assignments using the regional daily origin-destination (O-D) 

travel demand and signal timing plans for intersections within an urban street network. It 

uses supercomputing facilities to obtain the predicted traffic volumes for individual 
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intersection approaches with the traffic assignment results updated on a second-by-

second basis. The platform virtually can handle a regional multimodal transportation 

network of any size that may contain a large number of signalized intersections. For this 

reason, it is used for the methodology application. The TRANSIMS model calibrated for 

Chicago by the Illinois Institute of Technology (IIT) in conjunction with the Argonne 

National Laboratory is the largest and most complex TRANSIMS-based model currently 

available in the United States as the next generation tool for transportation planning, 

traffic operations management, and evacuation planning/emergency management analysis. 

It was successfully calibrated and validated using fine-grained field traffic counts and is 

applied for a number of real world planning and operations scenarios. For this reason, the 

Chicago TRANSIM model was adopted in this thesis and augmented to demonstrate the 

proposed model.  

First, the traffic signal timing plans for intersections in the study area were 

collected. Next, the iterative solution process as described in Section 3.3 was coded using 

Python programming language to obtain new signals timing plan. Without changing the 

existing cycle lengths and signal coordination, the green splits of all the signal phases of 

the existing signal timing plans for the AM peak, PM peak, and remaining periods of the 

day were adjusted. This iterative process was repeated until all the possible green splits 

were examined to finally achieve minimized vehicle delays per vehicle per cycle as the 

objection functions of Equations 3-13 and 3-14. The new signal-timing plan then was 

used as an input set of data in the TRANSIMS platform to iteratively estimate traffic 

volumes on each intersection approach by the time interval employed for vehicle volume 

aggregation. This iterative process stopped when the aggregated traffic volumes in the 
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iterative computation process became stable. Finally, the differences in the vehicle travel 

times, delays per cycle, number of vehicles stopped in queues, and average speeds before 

and after green split optimization were used as measures to assess the effectiveness of the 

proposed model.
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CHAPTER 4 METHODOLOGY APPLICATION 

 
 

This chapter focuses on applying the proposed model along with the iterative 

computation process integrated into the TRANSIMS platform to obtain the optimal green 

splits for all phases of a signal timing design for a specific intersection without changing 

the cycle length of the original signal timing design and coordination for multiple 

intersections. The model output results before and after optimizing the green splits of  

intersection signal timing plans are used for model assessment. 

4.1 The Study Area  

With respect to the Chicago metropolitan area, the central business district (CBD) 

network contains a large number of signalized intersections, making it an ideal study area 

to apply the proposed model. Further, significant delays at intersections in the Chicago 

CBD area occur within its core area of the Chicago Loop bounded by Wacker Drive 

along the Chicago River, Roosevelt Road, and Lakeshore Drive (Figure 6). Therefore, the 

Chicago Loop was selected as the study area, which contains 143 major signalized 

intersections. 

4.2 Green Split Optimization Time Period and Interval Considerations  

            For the intersections located in the Chicago Loop street network, the most severe 

delays occur during the AM and PM peak periods. As such, the model application 

focused on signal timing adjustments through green split optimization for the 143 
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intersections within the Loop area for the AM and PM periods. In considering the long 

duration of each peak period, a four-hour duration was considered to ensure the peak and 

the adjacent to peak time slots were all inclusive in the analysis. In order to capture the 

traffic dynamics, four 15-minute time intervals were considered for each hour. Within 

each 15-minute time interval, multiple signal cycles were involved.  

Without altering the cycle length of a specific intersection and signal coordination 

of multiple intersections, the green splits of each intersection were adjusted according to 

the vehicle volumes traversing the intersection to ensure achieving the lowest extent of 

vehicle delays per vehicle per cycle averaged over consecutive cycles.   
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Figure 6 Study Area for Applying the Proposed Dynamic Split Optimization Model 
Source: Chicago City Map Loop Area 

 

4.3 Data Collection and Processing 

           Data details of travel demand, geometric designs, and traffic controls including 

signal-timing plans associated with the highway network in the Chicago metropolitan 
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area were assembled for applying the proposed model for green split optimization 

integrated into the Chicago TRANSIMS platform. The primary data categories are 

discussed below.  

4.3.1 Travel Demand  

            Travel demand data were obtained from the Chicago Metropolitan Agency for 

Planning (CMAP), which contained information on 28.5 million trips for a typical day in 

the current year classified by trip purpose and hour of the day that were generated from 

1,961 traffic analysis zones (TAZs) in the entire Chicago metropolitan area. The Chicago 

model uses two types of traffic demand inputs for regional traffic assignments:  

1) Inter-zonal, intra-zonal, and external trips and diurnal distributions by hour of the day 

for a 24-hour period, which were separately established for ten different trip purposes, 

which mainly included home-based work (HBW), home-based other (HBO), and non-

home-based (NHB) auto and transit trips, airport trips, and external trips.   

2) Departure time of each trip during the 24-hour period. 

4.3.2 Intersection Signal Timing Plans 

The intersection traffic signal timing dial during each day may be split into 

multiple dials to accommodate AM peak, PM peak, and all other time period conditions. 

- Monday - Friday: 6AM-10AM 

- Monday - Friday: 3PM-7PM 

- All other periods 

Therefore, as a part of intersection traffic signal timing updating, new Python 

scripts were added to accommodate the option of three dials per day as follows: 
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Time_Period_Breaks 0:00, 6:00, 10:00, 15:00, 19:00 

As shown in Table 2, five time slots were created for a given 24-hour period 

within the three timing dials.  

Table 2 Intersection Signal Timing Dial Conversions 

TRANSIMS Dial TRANSIMS Start Time Real Time Dial 

1 0:00 Dial 1 

2 6:00 Dial 2 

3 10:00 Dial 1 

4 15:00 Dial 3 

5 19:00 Dial 1 
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Figure 7 Sample Traffic Signal Timing Sheet for a city of Chicago-maintained 
Intersection. Source: Chicago Department of Transportation  
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4.3.3 Travel Time, Speed, Traffic Volume, and Intersection-Related Vehicle Delays 

            The TRANSIMS model produced the average travel time, travel speed, and traffic 

volume by the hour of the day for each highway segment or intersection approach before 

and after optimization of green splits in the signal timing design for each intersection and 

constituted the data to be analyzed. As the Chicago Loop area was selected as the study 

area for the model application, the trips with O-D paths falling within the Loop area were 

relevant. Hence, the average travel time, speed, and traffic volume, as well as the vehicle 

delays at intersections in the Loop area before and after optimizing the green splits were 

computed and then used to assess the effectiveness of signal optimization.  

With respect to the calculation of the reduction in vehicle delays per vehicle per 

signal cycle in green split optimization, it was assumed that the queued vehicles in a 

specific signal cycle could be potentially dissipated within two consecutive signal cycles. 

As such, the reduction in vehicle delays after green split optimization was computed as 

the average over the reductions in vehicle delays in two consecutive signal cycles. 

4.4 Preliminary Data Analysis before Model Application 

            Prior to executing the proposed model within the Chicago TRANSISM platform, 

the total traffic demand using the Chicago Loop street network in the AM peak period 

from 6:00AM to 10:00AM was evaluated. As shown in Figure 8, a steady increasing 

trend in traffic demand aggregated in 15-minute time intervals was observed from 

6:00AM to 9:00AM and began to drop from 9:00AM to 10:00AM. This seems to suggest 

that the AM peak period is from 8:00AM to 10:00AM. For the four-hour time duration, 

the minimum, maximum, and average number of vehicles using the Loop street network 



36 

 

were approximately 20,000, 55,000, and 39,500 vehicles per 15-minute time period, 

respectively.  

 

The traffic demand for the Chicago Loop street network in the afternoon peak is 

presented in Figure 9. The traffic demand slightly fluctuates around 50,000 vehicles from 

3 PM to 6 PM. After 6 PM, the traffic demand suddenly dropped to 39,000 at 5:30 PM 

and remained steady until the end of the afternoon peak. Similarly, it is reasonable to 

believe the afternoon peak period spanned three hours, ranging from 3:00 to 6:00 PM. 

Generally, the maximum quarterly volume was 56,615 vehicles and was experienced in 

the fourth quarter of 4 PM. The minimum quarterly volume was 37,520 vehicles in the 

third quarter of 6 PM, and the average quarterly volume was 49,869 vehicles.  
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Figure 8 Total Traffic Demand Using Chicago Loop Street Network in AM 
Peak before Green Split Optimization 
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Figure 9 Total Traffic Demand Using Chicago Loop Street Network in PM Peak before 
Green Split Optimization 

 

Compared with the flow pattern during the AM peak, the flow pattern in the PM 

peak exhibited greater fluctuation, particularly from 3:00 PM to 6:00 PM. The reason for 

this complex flow pattern is that some employers have adopted the so-called staggered 

rush-hour policy. Therefore, the increasing trends that appear at 3:00 PM, 4:00 PM, and 

5:00 PM were caused by the corresponding end-of-office hours. The slightly increasing 

trend in the last 30 minutes may be attributable to travelers driving for recreational 

purposes after work. Table 3 summarizes the total vehicle hours of travel (VHT) in the 

Chicago Loop street network before the green split optimization. The total VHT over the 

eight-hour peak period was 2,017.09 vehicle hours. 
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Table 3 Total VHT in Peak Hours before Signal Timing Optimization 

AM Peak 6:00-7:00 7:00-8:00  8:00-9:00 9:00-10:00  

VHT (Veh-hr) 40.62 157.16 128.95 239.04 

PM Peak 15:00-16:00 16:00-17.00 17:00-18:00 18:00-19:00 

VHT (Veh-hr) 322.37 567.20 567.20 281.95 

 

4.5 Model Application Results 

4.5.1 Reductions in Peak Period Vehicle Delays 

            Tables 4 and 5 summarize the reductions in vehicle delays for 15-minute time 

intervals of one-hour duration in the AM peak and PM peak periods. The tables indicate 

that the delay reductions increased gradually from the beginning of the AM peak period 

and became stable at approximately 39% by the end of the AM peak period. The trend of 

delay reductions in the PM peak period increased in the beginning and reaches the zenith 

in the second quarter of 17:00 PM. After reaching the maximum, the delay reductions 

dropped until the end of the PM peak period. Generally, the delay reductions did not vary 

significantly over time. Therefore, the proposed model appears to be effective in delay 

reductions in the time domain. 
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Table 4 Reductions in AM Peak Vehicle Delays 

Time 
Interval 

Before Optimization After Optimization  

Average Delay 
(sec/cyc) Volume 

Average Delay 
(sec/cyc) Volume 

Reduction 
in 

Percentage 

6:00-6:15 7.72 19845 5.58 21840 23.6% 

6:15-6:30 10.43 24360 5.95 25515 28.5% 

6:30-6:45 13.07 26355 7.10 30345 32.6% 

6:45-7:00 14.36 26355 7.77 28770 33.8% 

6:00-7:00 11.40 24228.8 6.60 26617.5 29.6% 

7:00-7:15 15.16 31707 7.83 33462 35.4% 

7:15-7:30 14.79 36580 6.97 38350 36.8% 

7:30-7:45 14.13 39120 7.31 42120 34.3% 

7:45-8:00 15.67 42185 8.51 44902 34.9% 

7:00-8:00 14.86 37398 7.65 39708.5 35.4% 

8:00-8:15 14.58 41850 7.97 49500 31.0% 

8:15-8:30 15.17 45724 8.54 50876 35.3% 

8:30-8:45 14.60 46953 7.79 51465 33.9% 

8:45-9:00 16.63 48900 8.40 53400 38.7% 

8:00-9:00 15.25 45856.7 8.18 51310.3 34.7% 

9:00-9:15 15.47 48400 7.98 48400 35.4% 

9:15-9:30 16.28 48184 8.70 51680 37.1% 

9:30-9:45 17.71 51528 9.11 44840 39.2% 

9:45-10:00 17.62 45900 8.74 49800 39.0% 

9:00-10:00 16.77 48503 8.63 48680 37.6% 
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Table 5 Reductions in PM Peak Vehicle Delays 

Time 
Interval 

Before Optimization After Optimization Reduction 
in 

Percentage Average Delay 
(sec/cyc) Volume 

Average Delay 
(sec/cyc) 

Volume 

15:00-15:15 12.54 47880 8.83 48020 29.6% 

15:15-15:30 16.58 51150 9.05 52950 31.1% 

15:30-15:45 15.75 52624 8.55 55384 33.1% 

15:45-16:00 14.88 55680 8.52 54462 32.6% 

15:00-16:00 14.94 51833.5 8.74 52704 31.6% 

16:00-16:15 14.71 51504 8.36 54984 33.6% 

16:15-16:30 15.35 54646 9.22 55180 31.6% 

16:30-16:45 16.17 55536 8.82 56960 35.9% 

16:45-17:00 17.51 56108 8.99 56446 38.9% 

16:00-17:00 15.94 54448.5 8.85 55892.5 35.0% 

17:00-17:15 16.69 50400 7.99 53928 39.9% 

17:15-17:30 18.56 51012 9.30 53508 42.0% 

17:30-17:45 16.79 53694 8.52 51810 37.5% 

17:45-18:00 16.83 52390 9.19 49755 35.4% 

17:00-18:00 17.22 51874 8.75 52250.3 38.7% 

18:00-18:15 15.61 47724 7.92 46084 36.5% 

18:15-18:30 14.98 38038 7.83 44044 34.2% 

18:30-18:45 13.84 37386 7.77 37654 31.1% 

18:45-19:00 14.70 38412 8.06 38544 32.4% 

18:00-19:00 14.78 40390 7.89 41581.5 33.5% 

 
 
  



41 

 

Spatial Distribution of Reductions in Vehicle Delays. Figures 10 through17 present the 

spatial distribution of average delay reductions within each hour in the AM and PM peak 

periods. As shown in this the series of visualization plots, the vehicle delay reductions 

appear to be stable for  most of the intersections within the Chicago Loop street network. 

Therefore, the proposed model appears to be effective in triggering reductions in vehicle 

delays across the various intersections.  

 

Figure 10 Spatial Distribution of Reductions in Vehicle Delays (6:00AM-7:00AM) 
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Figure 11 Spatial Distribution of Reductions in Vehicle Delays (7:00AM-8:00AM) 
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Figure 12 Spatial Distribution of Reductions in Vehicle Delays (8:00AM-9:00AM) 
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Figure 13 Spatial Distribution of Reductions in Vehicle Delays (9:00AM-10:00AM) 
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Figure 14 Spatial Distribution of Reductions in Vehicle Delays (15:00PM-16:00PM) 



46 

 

 

Figure 15 Spatial Distribution of Reductions in Vehicle Delays (16:00PM-17:00PM) 
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Figure 16 Spatial Distribution of Reductions in Vehicle Delays (17:00PM-18:00PM) 
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Figure 17 Spatial Distribution of Reductions in Vehicle Delays (18:00PM-19:00PM) 
 

4.6 Discussions 

          In comparing the spatial distributions of delay reductions over time, it was shown 

that the intersections located at the outskirts of the Chicago Loop area had relatively 

lower delay reductions, as shown in Figures 18 and 19. The likely reason is that most of 

the vehicles in the boundary area prefer driving on Lakeshore Drive or Wacker Drive, 

which are urban expressways with greater capacities and fewer signalized intersections. 

Consequently, lower vehicle volumes on the boundary area streets resulted in lower 
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levels of vehicle delays before green split optimization. As a result, the potential for delay 

reductions was relatively limited. 

For all corridors, including North-South (Lakeshore, Columbus, Michigan, State, 

and Clark) and East-West (Randolph, Monroe, Jackson, and Congress) corridors within 

the Chicago Loop area, the delay reductions were stable over different time intervals and 

peak periods. The only expressway in this area, Lakeshore Drive, had the most stable 

delay reductions, which was unexpected because the signalized intersections on 

Lakeshore Drive maintain large spacing. Traffic disruptions between two successive 

intersections were virtually quite low and the traffic volumes on Lakeshore Drive were 

quite stable over time. The low traffic disruptions, coupled with the stable traffic 

conditions led to stable delay reductions after green split optimization. 
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Figure 18 Spatial Distribution of Reductions in AM Peak Vehicle Delays 
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Figure 19 Spatial Distribution of Reductions in PM Peak Vehicle Delays 

 
 

 



   

 

 

52 

CHAPTER 5 SUMMARY AND CONCLUSION 

 
 

5.1 Thesis Summary  

               This thesis first conducted a review of the existing literature on the modeling of 

traffic movements at signalized intersections and the optimization of intersection signal-

timing plans designed to achieve the lowest extent of vehicle delays at intersections.  

Based on the limitations of the existing models dealing with traffic movements and signal 

timing optimization identified, this thesis proposed a dynamic green split optimization 

model.   The proposed model iteratively adjusts the green splits in a signal timing design 

to reach the lowest level of vehicle delays per vehicle per cycle, averaged over 

consecutive cycles without changing the cycle length and multi-intersection signal 

coordination. A refined delay calculation method for vehicle delay computation and an 

iterative model execution process also were introduced. In addition, the iterative 

computation process between the pair of original green splits and the entering vehicle 

volumes and the new pair of green splits and updated vehicle volumes were demonstrated. 

The dynamic split optimization model and the iterative solution process were integrated 

into the TRANSIMS platform to facilitate the model’s execution to derive the optimal 

green splits for given traffic demand conditions.  

The Chicago TRANSIMS model was utilized in this thesis. The Chicago Loop 

street network which consists of one hundred and forty three intersections was selected as
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 the study area for the application of the model. The traffic dynamics were captured for 

each given hour, by segmenting the hourly time duration into four 15-minute time 

intervals. Multiple rounds of green split optimization aimed to minimize the vehicle 

delays per vehicle per cycle averaged over consecutive cycles were performed for each 

15-minute time interval in accordance with the number of signal cycles involved. The 

computational experiments revealed that the average vehicle delays per vehicle per cycle 

after green split optimization were reduced by approximately 34.5 percent.  

5.2 Conclusion 

Based on the above outcomes, this thesis concluded that the vehicular delays at 

most intersections with existing signal timing plans still have the potential for 

improvement. However, the extent of the delay reductions using the proposed model 

depends on the traffic demand at a specific intersection or the number of entering 

vehicles. If the demand is rather low, the delays are likely to be low, meaning that the 

potential for further delay reductions is low. In this respect, the proposed model may not 

be suitable to handle the low demand traffic conditions.  

      On the other hand, if the traffic demand is relatively high and all the traffic flow is 

oversaturated, the limited time resources will not be sufficient for reallocation to the 

intersection approaches demanding additional green time to reduce vehicle delays. If the 

intersections are independent of each other and the traffic flow is uninterrupted, the 

proposed model may provide a much better result in the reduction of delays because the 

situation was consistent with the two assumptions of ignoring the coordination of signals 

and maintaining relatively stable arrival rates.  
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5.3 Future Research Directions 

The proposed model in this thesis considered only the worst case, in which a queue 

forms behind a stop bar caused by a red signal, and then designed a signal timing plan to 

minimize the overall delay. In this worst case, the vehicles traveling at a higher flow rate 

were assumed to arrive at the intersection by the time the red signal starts. However, in 

reality, that may not happen, Particularly when the signals of successive intersections are 

well coordinated. Therefore, purely considering the delay in the worst case as the normal 

delay is slightly conservative. Future research could include combining the proposed 

methodology with signal coordination. 

The proposed model does not take into consideration special events and bus transit 

systems. In the model application, the predicted volumes were determined using 

historical data and prediction techniques, including time series and Bayesian inference. 

However, these techniques have some limitations with regard to addressing uncertainties 

such as special events. Bus transit systems play an important role in the urban 

transportation network, but a bus in the traffic stream may cause additional automobile 

delays on links, and consequently, affect the arrival rate in the intersection and lead to 

unintended queuing back patterns. The effect of these two factors also could be studied in 

future research. 

      In the proposed model, specific assumed flow rates were used instead of the 

conventional unique flow rate. Future research could focus on estimation techniques 

based on the conventional flow rates and other field measurements such as the left-turn, 

right-turn, and through-movement volumes in the upstream intersection. 
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    The proposed model oversimplifies the shared lane capacity. For example, the 

model regards one shared lane (one lane shared by right-turn movement and through 

movement) as two separate lanes (one right-turn lane and one through-movement lane). 

In other words, the capacity for each movement is overestimated, which may result in 

underestimated delay for these two approaches in particular. 

      The proposed model only contains two phase-movement relationships:  allowed-

to-move and not-allowed-to-move. Therefore, every phase-movement relationship is 

categorized as one of these two types: Protected and permitted movements belong to the 

allowed-to-move type. In terms of the permitted left-turn vehicles, they are allowed to 

move in the green time but, in reality, will need to yield to the through-movement 

vehicles and pedestrians. However, the proposed model allows these vehicles to move 

right at the start of the green time. Therefore, the delays for these permitted left-turn 

vehicles are underestimated. With regard to the right-turn vehicles, they are permitted to 

make turns yielding to the perpendicular movement vehicles in their red signal. In 

addition, they are protected to make turns on the green. The computed delay for the right-

turn vehicles may be overestimated in some locations. However, in downtown Chicago, 

the high pedestrian volume forces the right-turn vehicles to wait for their protected phase 

(often posted as “No Turn on Red” signs in their permitted phase). Therefore, it is 

expected that the right-turn delay will not be affected unduly in the Chicago model. 

       The developed model does not consider the turning bay length limitations and 

link length constraints. If the left-turn queue length exceeds the length of the turning bay, 

the newly-arriving left-turn vehicles will continue to wait at the end of the left-turn queue 

and will use the through movement lane; in this case, the capacity of the through 
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movement lanes  certainly will be affected. Therefore, future research should allocate 

space as well as time for all movements. 
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Appendix A Typical Intersection Signal Timing Plans 

Subarea_signal: the file recording for each intersection within the network, the 

effective time of each signal timing plan.  

 

Subarea_timing: the file recording the phase configuration of each timing plan 

 

Subarea_phasing: the file recording the movement-phase relationship for each timing 

NODE START TIMING TYPE RINGS OFFSET COORDINATOR NOTES
14521 0:00 27006 T S 0 27006 4 Phase Timed
14521 6:00 27007 T S 0 27007 4 Phase Timed
14521 10:00 27008 T S 0 27008 4 Phase Timed
14521 15:00 27009 T S 0 27009 4 Phase Timed
14521 19:00 27010 T S 0 27010 4 Phase Timed
14532 0:00 27056 T S 0 27056 4 Phase Timed
14532 6:00 27057 T S 0 27057 4 Phase Timed
14532 10:00 27058 T S 0 27058 4 Phase Timed
14532 15:00 27059 T S 0 27059 4 Phase Timed
14532 19:00 27060 T S 0 27060 4 Phase Timed
14533 0:00 27061 T S 0 27061 4 Phase Timed
14533 6:00 27062 T S 0 27062 4 Phase Timed
14533 10:00 27063 T S 0 27063 4 Phase Timed
14533 15:00 27064 T S 0 27064 4 Phase Timed
14533 19:00 27065 T S 0 27065 4 Phase Timed
14535 0:00 27071 T S 0 27071 4 Phase Timed

TIMING PHASENEXT_PHASEMIN_GREEN MAX_GREENEXT_GREEN YELLOW RED_CLEARRING BARRIER NOTES

27006 1 2 8 0 0 0 0 1 0 NODE 14521

27006 2 3 22 0 0 3 1 0 0 NODE 14521

27006 3 4 15 0 0 0 0 0 0 NODE 14521

27006 4 1 22 0 0 3 1 0 0 NODE 14521

27007 1 2 8 0 0 0 0 1 0 NODE 14521

27007 2 3 22 0 0 3 1 0 0 NODE 14521

27007 3 4 15 0 0 0 0 0 0 NODE 14521

27007 4 1 22 0 0 3 1 0 0 NODE 14521

27008 1 2 8 0 0 0 0 1 0 NODE 14521
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NODE TIMING PHASE IN_LINK OUT_LINK PROTECTION DETECTORS NOTES
14521 27006 1 15302 15301 P 0 Protected Left
14521 27006 2 15302 15301 U 0 Unprotected Left
14521 27006 2 15302 15084 P 0 Protected Thru
14521 27006 2 15302 15074 P 0 Protected Right
14521 27006 4 15302 15074 S 0 Right on Red
14521 27006 3 15301 15084 P 0 Protected Left
14521 27006 4 15301 15084 U 0 Unprotected Left
14521 27006 4 15301 15074 P 0 Protected Thru
14521 27006 4 15301 15302 P 0 Protected Right
14521 27006 2 15301 15302 S 0 Right on Red
14521 27006 1 15084 15074 P 0 Protected Left
14521 27006 2 15084 15074 U 0 Unprotected Left
14521 27006 2 15084 15302 P 0 Protected Thru
14521 27006 2 15084 15301 P 0 Protected Right
14521 27006 4 15084 15301 S 0 Right on Red
14521 27006 3 15074 15302 P 0 Protected Left
14521 27006 4 15074 15302 U 0 Unprotected Left
14521 27006 4 15074 15301 P 0 Protected Thru
14521 27006 4 15074 15084 P 0 Protected Right
14521 27006 2 15074 15084 S 0 Right on Red
14521 27007 1 15302 15301 P 0 Protected Left
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Appendix B Python Code for the Application 

class Node: 

    def __init__(self, id): 

        self.id = id 

        self.timing_map = {} 

        ss_file = open('initial/subarea_signal', 'rb') 

        timing2hour = {} 

        time_bound = [] 

        for row in ss_file: 

            r = row.split('\t')  # split signal in rows 

            if r[0] == self.id:  # 

r=[Node,Start,Timing,Type,Rings,Offset,Coordinator,Notes] 

                time_bound.append(int(r[1][:-3]))  # r[1]=0:00 or 19:00 

                timing2hour[r[2]] = int(r[1][:-3])  # timing ID ->hour 

        start_end = {}  # Timing plan start time-> timing effective hour list 

        tmp = [] 

        for i in time_bound:  # Achieve start_end, timing start hour-> timing effective 

hour list 

            starttime = i 

            add = True 

            tmp.append(i) 

            small = [i] 

            while add: 
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                i += 1 

                if i in time_bound or i in tmp or i == 24: 

                    add = False 

                    start_end[starttime] = small 

                else: 

                    tmp.append(i) 

                    small.append(i) 

        for i in timing2hour.keys():  # i is timing 

            self.timing_map[i] = Timing(i, min(start_end[timing2hour[i]]) * 60, 

                                        60 * max(start_end[timing2hour[i]]) + 60)  # timing -> 

Timing object 

        sp_file = open('initial/subarea_phasing', 'rb') 

        for row in sp_file: 

            r = row.split('\t')  # r=[Node,Timing, Phase, In_link,Out_link, protected,..] 

            if r[0] == self.id and (r[3], r[4]) not in 

self.timing_map[r[1]].phase_map[r[2]].link_pair: 

                self.timing_map[r[1]].phase_map[r[2]].link_pair.append((r[3], r[4])) 

                # To record all (In_link, Out_link) of node.timing.phase to 

node.timing.phase.link_pair 

 

class Timing: 

    def __init__(self, id, start_min, end_min):  # hours is a list contains the time this 

timing plan works 
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        self.id = id 

        self.start_time = start_min 

        self.end_time = end_min 

        self.phase_map = {} 

        self.cycle_time = 0 

        self.offset = 0 

        st_file = open('initial/subarea_timing', 'rb') 

        for row in st_file: 

            r = row[:-1].split('\t') 

            if r[0] == self.id:  # r=['TIMING', 'PHASE', 'NEXT_PHASE', 'MIN_GREEN', 

                #  'MAX_GREEN', 'EXT_GREEN', 'YELLOW', 'RED_CLEAR', 'RING', 

'BARRIER', 'NOTES'] 

                self.phase_map[r[1]] = Phase(r[1], r[2], int(r[3]), int(r[4]), int(r[5]), int(r[6]), 

int(r[7]), 

                                             int(r[8]), int(r[9])) 

                self.cycle_time += int(r[3]) + int(r[6]) + int(r[7]) 

 

    def delay(self, time_slot): 

        total = 0  # total delay 

        nv = 0  # number of vehicles 

        for phase in self.phase_map.values():  # (self, qmax, qvc,v,lane ,TR,cyc) 

            TR = self.cycle_time - phase.green - phase.yellow 

            for ll in phase.vol[time_slot]:  # ([qmax,qvc,v,ln]) 
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                if ll != []: 

                    l = ll 

                    result = delay_function(l[0] * 100, l[1] * 100, l[2], l[3], TR, 

self.cycle_time) 

                    total += result['delay'] 

                    nv += result['number of veh'] 

        if total == 0: 

            return 0.0 

        else: 

            return total / nv/5.0 

 

 

class Phase: 

    def __init__(self, id, next, green, maxgreen, extgreen, yellow, red_clear, ring, 

barrier): 

        self.id = id 

        self.next = next 

        self.green = green 

        self.maxgreen = maxgreen 

        self.extgreen = extgreen 

        self.yellow = yellow 

        self.red_clear = red_clear 

        self.ring = ring 
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        self.barrier = barrier 

        self.delay = 99999.0 

        self.link_pair = [] 

        self.vol = {} 

        self.check1 = False 

        self.status = 'None' 

        self.check2 = False 

        self.check3 = False 

 

 

def delay_function(qmax, qvc, v, lane, TR, cyc):  # Compute the delay 

    kj = 150  # veh/km/lane 

    v = v*3.6 # km/h 

    kmax = float(qmax / v)  # veh/km/lane 

    qh = 0.5 * (qvc + qmax) # veh/h/lane 

    ql = qvc / 3.0  # veh/h/lane 

    kh = float(qh / v)  # veh/km/lane 

    kl = float(ql / v)  # veh/km/lane 

    f = float((qvc - ql) / (qh - ql)) 

    v1 = qh / (kj - kh)/3.6  # in m/s 

    v2 = ql / (kj - kl)/3.6  # in m/s 

    v3 = qmax / (kj - kmax)/3.6  # in m/s 

    v4 = v/3.6  # in m/s 
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    ta = float(v4 * f * cyc / (v1 + v4))  # in sec 

    sa = float(ta * v1)  # in meter 

    tb = float((sa + v3 * TR - v2 * ta) / (v3 - v2))  # in sec 

    sb = v3 * (tb - TR)  # in meter 

    tc = float(sb / v4) + tb  # in sec 

    area = 0.5 * kj * ((TR + tb) * sb - sa * ta - (ta + tb) * (sb - sa))/1000  # in veh*sec 

    if tc <= cyc: 

        Delay = 2 * area * lane 

        return {'delay': Delay, 'number of veh': (sb * kj / 1000 * lane * 2), 

                'status': 'Undersaturation'}  # Total delay within 10 cycles 

    else: 

        sc = float((tc - cyc) * v3 * v4 / (v3 + v4)) 

        Delay = (2 * area + 1 * sc * TR) * lane 

        return {'delay': Delay, 'number of veh': (sb * kj / 1000 * lane * 2 + sc * kj / 1000 

* 1 * lane), 

                'status': 'Oversaturation'} 

 

 

class Network: 

    def __init__(self, nodes): 

        # type: (object) -> object 

        print 'Initializing network..' 

        self.nodes = nodes 
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        self.node_map = {} 

        for n in nodes: 

            self.node_map[n] = Node(n)  # node->Node object 

        self.link_map = {} 

        turn = {}  # (NODE,IN_LINK,OUT_LINK,START_minutes)->VOLUME 

        link = {}  # linkID-

>[ANODE,BNODE,LENGTH,LANES_AB,LEFT_AB,RIGHT_AB,LANES_BA,LEFT_

BA,RIGHT_BA] 

        lane = {}  # number of lanes of (node,In link ,Out link) 

        cap = {}  # (lINK,BNODE)->capcity of link going to B 

        spd = {}  # (lINK,BNODE)->free flow speed of link going to B 

        tv_file = open('initial/subarea_turn', 'rb') 

        lk_file = open('initial/link', 'rb') 

        lane_file = open('initial/subarea_connectivity', 'rb') 

        link_file = open('initial/subarea_link', 'rb') 

        for row in link_file: 

            r = row[:-2].split('\t') 

            if r[10] == '0' or r[15] == 'CAP_AB': 

                cap[(r[0], r[3])] = 0 

            else: 

                cap[(r[0], r[3])] = int(r[15]) / float(r[10]) 

            if r[16] == '0' or r[21] == 'CAP_BA': 

                cap[(r[0], r[2])] = 0 
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            else: 

                cap[(r[0], r[2])] = int(r[21]) / float(r[16]) 

            if not r[14] == 'FSPD_AB': 

                spd[(r[0], r[3])] = float(r[14]) 

                spd[(r[0], r[2])] = float(r[20]) 

        for row in lane_file: 

            r = row[:-2].split('\t') 

            if r[0] not in self.nodes: continue 

            if (r[0], r[1], r[2]) in lane.keys(): 

                lane[(r[0], r[1], r[2])] += 1 

            else: 

                lane[(r[0], r[1], r[2])] = 1 

        for row in lk_file: 

            r = row[:-2].split('\t') 

            link[r[0]] = [r[1:]] 

        for row in tv_file: 

            r = row[:-2].split(',') 

            if r[0] in self.nodes: turn[(r[0], r[1], r[2], int(r[3]) / 60)] = int(r[-1]) * 4  # 

equivalent hourly rate 

        for node in self.node_map.values():  # For all node objects 

            for time in node.timing_map.values():  # For all timing objects 

                for phase in time.phase_map.values():  # For all phase objects 

                    for h in range(360, 600, 15) + range(900, 1140, 15): 
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                        temp = []  # Contain the input to calculate the delay 

                        for l in phase.link_pair: 

                            if (node.id, l[0], l[1], h) not in turn.keys(): continue 

                            qmax = cap[(l[0], node.id)] 

                            v = spd[(l[0], node.id)] 

                            if v == 0: 

                                v = 11.4 

                            ln = lane[(node.id, l[0], l[1])] 

                            ii=turn[(node.id, l[0], l[1], h)] 

                            qvc = float(ii) / ln 

                            if qvc>qmax: 

                                qmax=qvc+1.25 

                            temp.append([qmax, qvc, v, ln]) 

                        phase.vol[h] = temp 

                        # self.__delay() 

                        # self.__update() 

 

    # self.connection_table=[] 

    def CreatNewTimingID(self): 

        Original_TimingID = [] 

        ss_file = open('initial/subarea_signal', 'rb') 

        for row in ss_file: 

            r = row.split('\t')  # split signal in cells 
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            Original_TimingID.append(r[2]) 

        NewTimingID = 10000 

        time_step1 = [0, 360]  # 00:00 to 6:00 in minutes 

        time_step2 = range(370, 540, 15)  # 6:00 to 9:00 every 10 minutes (in minutes) 

        time_step3 = [540, 960]  # 09:00 to 16:00 in minutes 

        time_step4 = range(970, 1140, 15)  # 16:00 to 19:00 every 10 minutes (in 

minutes) 

        time_step5 = [1140, 1440]  # 19:00 to 24:00 in minutes 

        t = time_step1 + time_step2 + time_step3 + time_step4 + time_step5 

        time_step = [] 

        for i in range(len(t) - 1): 

            time_step.append([t[i], t[i + 1]]) 

        st_file = open('initial/subarea_timing', 'rb') 

        sp_file = open('initial/subarea_phasing', 'rb') 

        new_ss_file = 'subarea_signal_new' 

        my_ss_writer = open(new_ss_file, "wb") 

        new_st_file = 'subarea_timing_new' 

        my_st_writer = open(new_st_file, "wb") 

        new_sp_file = 'subarea_phase_new' 

        my_sp_writer = open(new_sp_file, "wb") 

        # update subarea_signal 

        ss_file = open('initial/subarea_signal', 'rb') 

        for row in ss_file: 



74 

 

            r = row.split('\t')  # split signal in cells 

            if r[0] in self.nodes: 

                for ts in time_step:  # Crack the original interval into pieces and assign new 

Timing ID 

                    while NewTimingID in Original_TimingID: NewTimingID += 1 

                    Original_TimingID.append(NewTimingID) 

                    if ts[0] >= 0 and ts[1] <= 360: 

                        for s in self.node_map[r[0]].timing_map.values(): 

                            if s.start_time == 0: break 

                        self.node_map[r[0]].timing_map[NewTimingID] = s 

                        self.node_map[r[0]].timing_map[NewTimingID].start_time = ts[0] 

                        self.node_map[r[0]].timing_map[NewTimingID].end_time = ts[1] 

                        #  Update subarea_signal 

                        cell = range(8) 

                        cell[0] = str(r[0]) 

                        stt = self.node_map[r[0]].timing_map[NewTimingID].start_time 

                        if len(str(stt % 60)) == 1: 

                            cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)]) 

                        else: 

                            cell[1] = ':'.join([str(stt / 60), str(stt % 60)]) 

                        cell[2] = str(NewTimingID) 

                        cell[3] = r[3] 

                        cell[4] = r[4] 
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                        cell[5] = r[5] 

                        cell[6] = cell[2] 

                        cell[7] = r[7] 

                        newrow = '\t'.join(cell) 

                        my_ss_writer.write(newrow) 

                        #  Update subarea_timing 

                        st_file = open('initial/subarea_timing', 'rb') 

                        find = False 

                        for row1 in st_file: 

                            r1 = row1.split('\t') 

                            if r1[0] == str(s.id): 

                                r1[0] = str(NewTimingID) 

                                my_st_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[0] != str(s.id): break 

                        # Update subarea_phasing 

                        sp_file = open('initial/subarea_phasing', 'rb') 

                        find = False 

                        for row1 in sp_file: 

                            r1 = row1.split('\t') 

                            if r1[1] == str(s.id): 

                                r1[1] = str(NewTimingID) 
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                                my_sp_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[1] != str(s.id): break 

 

                    elif ts[0] >= 360 and ts[1] <= 600: 

                        for s in self.node_map[r[0]].timing_map.values(): 

                            if s.start_time == 360: break 

                        self.node_map[r[0]].timing_map[NewTimingID] = s 

                        self.node_map[r[0]].timing_map[NewTimingID].start_time = ts[0] 

                        self.node_map[r[0]].timing_map[NewTimingID].end_time = ts[1] 

 

                        cell = range(8) 

                        cell[0] = str(r[0]) 

                        stt = self.node_map[r[0]].timing_map[NewTimingID].start_time 

                        if len(str(stt % 60)) == 1: 

                            cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)]) 

                        else: 

                            cell[1] = ':'.join([str(stt / 60), str(stt % 60)]) 

 

                        cell[2] = str(NewTimingID) 

                        cell[3] = r[3] 

                        cell[4] = r[4] 
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                        cell[5] = r[5] 

                        cell[6] = cell[2] 

                        cell[7] = r[7] 

 

                        newrow = '\t'.join(cell) 

                        my_ss_writer.write(newrow) 

                        #  Update subarea_timing 

                        st_file = open('initial/subarea_timing', 'rb') 

                        find = False 

                        for row1 in st_file: 

                            r1 = row1.split('\t') 

                            if r1[0] == str(s.id): 

                                r1[0] = str(NewTimingID) 

                                my_st_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[0] != str(s.id): break 

                        # Update subarea_phasing 

                        find = False 

                        sp_file = open('initial/subarea_phasing', 'rb') 

                        for row1 in sp_file: 

                            r1 = row1.split('\t') 

                            if r1[1] == str(s.id): 
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                                r1[1] = str(NewTimingID) 

                                my_sp_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[1] != str(s.id): break 

 

                    elif ts[0] == 540 and ts[1] == 960: 

                        for s in self.node_map[r[0]].timing_map.values():  # Break the interval 

into [540,600] 

                            if s.start_time == 360: break 

                        self.node_map[r[0]].timing_map[NewTimingID] = s 

                        self.node_map[r[0]].timing_map[NewTimingID].start_time = 540 

                        self.node_map[r[0]].timing_map[NewTimingID].end_time = 600 

                        cell = range(8) 

                        cell[0] = str(r[0]) 

                        stt = self.node_map[r[0]].timing_map[NewTimingID].start_time 

                        if len(str(stt % 60)) == 1: 

                            cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)]) 

                        else: 

                            cell[1] = ':'.join([str(stt / 60), str(stt % 60)]) 

 

                        cell[2] = str(NewTimingID) 

                        cell[3] = r[3] 
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                        cell[4] = r[4] 

                        cell[5] = r[5] 

                        cell[6] = cell[2] 

                        cell[7] = r[7] 

 

                        newrow = '\t'.join(cell) 

                        my_ss_writer.write(newrow) 

                        #  Update subarea_timing 

                        st_file = open('initial/subarea_timing', 'rb') 

                        find = False 

                        for row1 in st_file: 

                            r1 = row1.split('\t') 

                            if r1[0] == str(s.id): 

                                r1[0] = str(NewTimingID) 

                                my_st_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[0] != str(s.id): break 

                        # Update subarea_phasing 

                        find = False 

                        sp_file = open('initial/subarea_phasing', 'rb') 

                        for row1 in sp_file: 

                            r1 = row1.split('\t') 
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                            if r1[1] == str(s.id): 

                                r1[1] = str(NewTimingID) 

                                my_sp_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[1] != str(s.id): break 

 

                        while NewTimingID in Original_TimingID: NewTimingID += 1 

                        Original_TimingID.append(NewTimingID) 

                        for s in self.node_map[r[0]].timing_map.values():  # Break the interval 

into [600,900] 

                            if s.start_time == 600: break 

                        self.node_map[r[0]].timing_map[NewTimingID] = s 

                        self.node_map[r[0]].timing_map[NewTimingID].start_time = 600 

                        self.node_map[r[0]].timing_map[NewTimingID].end_time = 900 

                        cell = range(8) 

                        cell[0] = str(r[0]) 

                        stt = self.node_map[r[0]].timing_map[NewTimingID].start_time 

                        if len(str(stt % 60)) == 1: 

                            cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)]) 

                        else: 

                            cell[1] = ':'.join([str(stt / 60), str(stt % 60)]) 
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                        cell[2] = str(NewTimingID) 

                        cell[3] = r[3] 

                        cell[4] = r[4] 

                        cell[5] = r[5] 

                        cell[6] = cell[2] 

                        cell[7] = r[7] 

 

                        newrow = '\t'.join(cell) 

                        my_ss_writer.write(newrow) 

                        #  Update subarea_timing 

                        find = False 

                        st_file = open('initial/subarea_timing', 'rb') 

                        for row1 in st_file: 

                            r1 = row1.split('\t') 

                            if r1[0] == str(s.id): 

                                r1[0] = str(NewTimingID) 

                                my_st_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[0] != str(s.id): break 

                        # Update subarea_phasing 

                        sp_file = open('initial/subarea_phasing', 'rb') 

                        find = False 
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                        for row1 in sp_file: 

                            r1 = row1.split('\t') 

                            if r1[1] == str(s.id): 

                                r1[1] = str(NewTimingID) 

                                my_sp_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[1] != str(s.id): break 

 

                        while NewTimingID in Original_TimingID: NewTimingID += 1 

                        Original_TimingID.append(NewTimingID) 

                        for s in self.node_map[r[0]].timing_map.values():  # Break the interval 

into [900,960] 

                            if s.start_time == 900: break 

                        self.node_map[r[0]].timing_map[NewTimingID] = s 

                        self.node_map[r[0]].timing_map[NewTimingID].start_time = 900 

                        self.node_map[r[0]].timing_map[NewTimingID].end_time = 960 

                        cell = range(8) 

                        cell[0] = str(r[0]) 

                        stt = self.node_map[r[0]].timing_map[NewTimingID].start_time 

                        if len(str(stt % 60)) == 1: 

                            cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)]) 

                        else: 
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                            cell[1] = ':'.join([str(stt / 60), str(stt % 60)]) 

 

                        cell[2] = str(NewTimingID) 

                        cell[3] = r[3] 

                        cell[4] = r[4] 

                        cell[5] = r[5] 

                        cell[6] = cell[2] 

                        cell[7] = r[7] 

 

                        newrow = '\t'.join(cell) 

                        my_ss_writer.write(newrow) 

                        #  Update subarea_timing 

                        st_file = open('initial/subarea_timing', 'rb') 

                        find = False 

                        for row1 in st_file: 

                            r1 = row1.split('\t') 

                            if r1[0] == str(s.id): 

                                r1[0] = str(NewTimingID) 

                                my_st_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[0] != str(s.id): break 

                        # Update subarea_phasing 
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                        sp_file = open('initial/subarea_phasing', 'rb') 

                        find = False 

                        for row1 in sp_file: 

                            r1 = row1.split('\t') 

                            if r1[1] == str(s.id): 

                                r1[1] = str(NewTimingID) 

                                my_sp_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[1] != str(s.id): break 

 

                    elif ts[0] >= 960 and ts[1] <= 1140: 

                        for s in self.node_map[r[0]].timing_map.values(): 

                            if s.start_time == 900: break 

                        self.node_map[r[0]].timing_map[NewTimingID] = s 

                        self.node_map[r[0]].timing_map[NewTimingID].start_time = ts[0] 

                        self.node_map[r[0]].timing_map[NewTimingID].end_time = ts[1] 

                        cell = range(8) 

                        cell[0] = str(r[0]) 

                        stt = self.node_map[r[0]].timing_map[NewTimingID].start_time 

                        if len(str(stt % 60)) == 1: 

                            cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)]) 

                        else: 
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                            cell[1] = ':'.join([str(stt / 60), str(stt % 60)]) 

 

                        cell[2] = str(NewTimingID) 

                        cell[3] = r[3] 

                        cell[4] = r[4] 

                        cell[5] = r[5] 

                        cell[6] = cell[2] 

                        cell[7] = r[7] 

 

                        newrow = '\t'.join(cell) 

                        my_ss_writer.write(newrow) 

                        #  Update subarea_timing 

                        find = False 

                        st_file = open('initial/subarea_timing', 'rb') 

                        for row1 in st_file: 

                            r1 = row1.split('\t') 

                            if r1[0] == str(s.id): 

                                r1[0] = str(NewTimingID) 

                                my_st_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[0] != str(s.id): break 

                        # Update subarea_phasing 
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                        sp_file = open('initial/subarea_phasing', 'rb') 

                        find = False 

                        for row1 in sp_file: 

                            r1 = row1.split('\t') 

                            if r1[1] == str(s.id): 

                                r1[1] = str(NewTimingID) 

                                my_sp_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[1] != str(s.id): break 

 

                    elif ts[0] >= 1140: 

                        for s in self.node_map[r[0]].timing_map.values(): 

                            if s.start_time == 1140: break 

                        self.node_map[r[0]].timing_map[NewTimingID] = s 

                        self.node_map[r[0]].timing_map[NewTimingID].start_time = ts[0] 

                        self.node_map[r[0]].timing_map[NewTimingID].end_time = ts[1] 

                        cell = range(8) 

                        cell[0] = str(r[0]) 

                        stt = self.node_map[r[0]].timing_map[NewTimingID].start_time 

                        if len(str(stt % 60)) == 1: 

                            cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)]) 

                        else: 
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                            cell[1] = ':'.join([str(stt / 60), str(stt % 60)]) 

 

                        cell[2] = str(NewTimingID) 

                        cell[3] = r[3] 

                        cell[4] = r[4] 

                        cell[5] = r[5] 

                        cell[6] = cell[2] 

                        cell[7] = r[7] 

 

                        newrow = '\t'.join(cell) 

                        my_ss_writer.write(newrow) 

                        #  Update subarea_timing 

                        st_file = open('initial/subarea_timing', 'rb') 

                        find = False 

                        for row1 in st_file: 

                            r1 = row1.split('\t') 

                            if r1[0] == str(s.id): 

                                r1[0] = str(NewTimingID) 

                                my_st_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[0] != str(s.id): break 

                        # Update subarea_phasing 
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                        find = False 

                        sp_file = open('initial/subarea_phasing', 'rb') 

                        for row1 in sp_file: 

                            r1 = row1.split('\t') 

                            if r1[1] == str(s.id): 

                                r1[1] = str(NewTimingID) 

                                my_sp_writer.write('\t'.join(r1)) 

                                find = True 

                            r1 = row1.split('\t') 

                            if find and r1[1] != str(s.id): break 

 

            else: 

                my_ss_writer.write(row)  # Nothing changes for other nodes in 

subarea_signal 

                #  Update subarea_timing 

                st_file = open('initial/subarea_timing', 'rb') 

                find = False 

                for row1 in st_file: 

                    r1 = row1.split('\t') 

                    if r1[0] == r[2]: 

                        my_st_writer.write(row1) 

                        find = True 

                    if find and r1[0] != r[2]: break 
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                # Update subarea_phasing 

                sp_file = open('initial/subarea_phasing', 'rb') 

                find = False 

                for row1 in sp_file: 

                    r1 = row1.split('\t') 

                    if r1[1] == r[2]: 

                        my_sp_writer.write(row1) 

                        find = True 

                    if find and r1[1] != r[2]: break 

 

    def creatNewCoordinator(self): 

        new_sc_file = 'subarea_coordinator_new' 

        my_sc_writer = open(new_sc_file, "wb") 

        new_ss_file = open('subarea_signal_new', 'rb') 

        first_row = True 

        for row in new_ss_file: 

            r = row.split('\t') 

            if first_row: 

                my_sc_writer.write('\t'.join(['ID', 'NOTES'])) 

                first_row = False 

            else: 

                my_sc_writer.write('\t'.join([r[2], 'IntControl Generated'])) 
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    def __update(self):  # Update the cycle length 

        for node in self.node_map.values(): 

            for time in node.timing_map.values(): 

                new_cycle_time = 0 

                for phase in time.phase_map.values(): 

                    new_cycle_time += phase.green + phase.yellow + phase.red_clear 

                time.cycle_time = new_cycle_time 

 

    def optimize_delay(self, time_slot): 

        write1 = [] 

        write=[] 

        mynodes=self.node_map.values() 

        mynodes.sort() 

        for node in mynodes: 

            for time in node.timing_map.values(): 

                if time.start_time <= time_slot and time.end_time >= time_slot + 15: 

                    old_ave_delay = time.delay(time_slot) 

                    min_ave_delay = old_ave_delay 

                    optimal = time.phase_map.values() 

                    total_green = 0 

                    if min_ave_delay != 0: 

                        for phase in time.phase_map.values(): 

                            total_green += phase.green 
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                        if len(time.phase_map.keys()) == 2: 

                            for g1 in range(8, total_green - 7): 

                                g2 = total_green - g1 

                                time.phase_map['1'].green = g1 

                                time.phase_map['2'].green = g2 

                                newdelay = time.delay(time_slot) 

                                print 'newdelay = ' + str(newdelay) 

                                print 'min_ave_delay = ' + str(min_ave_delay) 

                                if newdelay < min_ave_delay: 

                                    min_ave_delay = newdelay 

                                    optimal = time.phase_map.values() 

                        if len(time.phase_map.keys()) == 3: 

                            for g1 in range(5, total_green - 9): 

                                for g2 in range(5, total_green - 9): 

                                    for g3 in range(5, total_green - 9): 

                                        if g1 + g2 + g3 == total_green: 

                                            time.phase_map['1'].green = g1 

                                            time.phase_map['2'].green = g2 

                                            time.phase_map['3'].green = g3 

                                            if time.delay(time_slot) <= min_ave_delay: 

                                                min_ave_delay = time.delay(time_slot) 

                                                optimal = time.phase_map.values() 

                        if len(time.phase_map.keys()) == 4: 
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                            for g1 in range(5, total_green - 20): 

                                for g2 in range(8, total_green - 17): 

                                    for g3 in range(5, total_green - 20): 

                                        for g4 in range(8, total_green - 17): 

                                            if g1 + g2 + g3 + g4 == total_green: 

                                                time.phase_map['1'].green = g1 

                                                time.phase_map['2'].green = g2 

                                                time.phase_map['3'].green = g3 

                                                time.phase_map['4'].green = g4 

                                                if time.delay(time_slot) < min_ave_delay: 

                                                    min_ave_delay = time.delay(time_slot) 

                                                    optimal = time.phase_map.values() 

                    # record 

                    ttss = ':'.join([str(time_slot / 60), str(time_slot % 60)]) + '-' + ':'.join( 

                        [str((time_slot + 15) / 60), str((time_slot + 15) % 60)]) 

                    write1.append('\t'.join([str(node.id), ttss, str(old_ave_delay), 

str(min_ave_delay)])) 

                    write1.append(chr(10)) 

 

                    for phase in optimal: 

                        cell = range(11) 

                        cell[0] = time.id 

                        cell[1] = str(phase.id) 
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                        cell[2] = str(phase.next) 

                        cell[3] = str(phase.green) 

                        cell[4] = str(phase.maxgreen) 

                        cell[5] = str(phase.extgreen) 

                        cell[6] = str(phase.yellow) 

                        cell[7] = str(phase.red_clear) 

                        cell[8] = str(phase.ring) 

                        cell[9] = str(phase.barrier) 

                        cell[10] = 'NODE ' + str(node.id) 

                        newrow = '\t'.join(cell) 

                        write.append(newrow) 

                    break 

        # report 

        if len(str(time_slot % 60)) == 1: 

            cel = '-'.join([str(time_slot / 60), '0' + str(time_slot % 60)]) 

        else: 

            cel = '-'.join([str(time_slot / 60), str(time_slot % 60)]) 

        filename = 'subarea_timing_new_' + cel 

        my_writer = open(filename, "wb") 

        st_file = open('initial/subarea_timing', 'rb') 

        for row in st_file: 

            my_writer.write(row) 

            break 
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        for newrows in write: 

            my_writer.write(newrows) 

            my_writer.write(chr(10)) 

 

        filename1 = 'Delay_record' + cel 

        my_writer1 = open(filename1, "wb") 

        my_writer1.write('\t'.join(['Node', 'Time_Slot', 'Before', 'After'])) 

        my_writer1.write(chr(10)) 

        for newrows in write1: 

            my_writer1.write(newrows) 

 

    def __timedelay(self, node, timing): 

        totalgreen = 0 

        totalvol = 0 

        for phase in self.node_map[node].timing_map[timing].phase_map.values(): 

            totalgreen += phase.green 

            totalvol += phase.vol 

        Max_green = totalgreen * 2 

        print Max_green 

        Best = [0, 999999] 

        for g in range(1, Max_green): 

            r = g * 1.4 

            ct = g + r 
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            delay = self.__delay_function(g, 3, ct, totalvol)['delay'] 

            if delay < Best[1]: 

                Best[0] = g 

                Best[1] = delay 

            print g, delay, ct, totalvol 

        for phase in self.node_map[node].timing_map[timing].phase_map.values(): 

            phase.green = float(phase.green / 

self.node_map[node].timing_map[timing].cycle_time) * float(Best[0]) 

 

    def __delayRatio(self, node, timing): 

        totalgreen = 0 

        totalvol = 0 

        totaldelay = 0 

        for phase in self.node_map[node].timing_map[timing].phase_map.values(): 

            totalgreen += phase.green 

            totalvol += float(phase.vol) 

            totaldelay += phase.delay 

        for phase in self.node_map[node].timing_map[timing].phase_map.values(): 

            phase.green = int(float(phase.vol / totalvol) * totalgreen) 

 

    def optimize_delayRatio(self): 

        for node in self.node_map.values(): 

            for time in node.timing_map.values(): 
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                self.__delayRatio(node.id, time.id) 

        self.__update() 

        self.__delay() 

 

    def report(self, node, time, phase): 

        return [self.node_map[node].timing_map[time].phase_map[phase].delay, 

                self.node_map[node].timing_map[time].phase_map[phase].check1, 

                self.node_map[node].timing_map[time].phase_map[phase].check2, 

                self.node_map[node].timing_map[time].phase_map[phase].check3, 

                self.node_map[node].timing_map[time].phase_map[phase].status] 

 

 

import time 

#  import random 

start = time.time() 

import random 

 

nodefile = open('initial/node', "rb") 

nodes = [] 

for row in nodefile: 

    nodes.append(row[:-2]) 

print str(len(nodes)) + ' nodes in the network to be optimized' 

mynetwork = Network(nodes) 
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elapsed = (time.time() - start) / 60.0 

print 'initial cost %s' % elapsed 

 

for h in range(360, 600, 15) + range(900, 1140, 15): 

# if True: 

    mynetwork.optimize_delay(h) 

    print h 

    elapsed = (time.time() - start) / 60.0 

    print 'time cost %s' % elapsed 

#     h = 1125 

#     mynetwork.optimize_delay(h) 

#     print h 

#     print 'time cost %s' % elapsed 

# print 'ready' 

 

# mynetwork.CreatNewTimingID() 

# mynetwork.creatNewCoordinator() 

# print 'new Timing has been assigned' 

# 

# 

# mynetwork.optimize4() 

# elapsed = time.time() - start 

# print 'optimize4 cost %s' % elapsed 
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# mynetwork.optimize4() 

# mynetwork.optimize4() 

# elapsed = time.time() - start 

# print 'total cost %s' % elapsed 

# mynetwork.new_timing_file() 
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