
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

4-2016

Dynamic green split optimization in intersection
signal design for urban street network
Peng Jiao
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Civil Engineering Commons, Transportation Engineering Commons, and the Urban,
Community and Regional Planning Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Jiao, Peng, "Dynamic green split optimization in intersection signal design for urban street network" (2016). Open Access Theses. 781.
https://docs.lib.purdue.edu/open_access_theses/781

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/776?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/776?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/781?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

PENG JIAO

DYNAMIC GREEN SPLIT OPTIMIZATION IN INTERSECTION SIGNAL DESIGN FOR URBAN STREET NETWORK

Master of Science in Civil Engineering

SAMUEL LABI
Chair

KUMARES C. SINHA

KONSTANTINA GKRITZA

SAMUEL LABI

DULCY M. ABRAHAM 4/22/2016

DYNAMIC GREEN SPLIT OPTIMIZATION IN INTERSECTION SIGNAL DESIGN

FOR URBAN STREET NETWORK

A Thesis

Submitted to the Faculty

of

Purdue University

by

Peng Jiao

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Civil Engineering

May 2016

Purdue University

West Lafayette, Indiana

ii

To my Parents.

iii

ACKNOWLEDGEMENTS

First, I am deeply grateful to my major professor, Dr. Samuel Labi, for his insight,

guidance, and involvement in my graduate program and for continually challenging me to

explore and excel in my research endeavors and my studies. Without his guidance and

untiring help, this thesis would not have been possible. I also thank my committee

members, Dr. Kumares Sinha and Dr. Nadia Gkritza, who were supportive in diverse

ways. In addition, I am grateful to my undergraduate study mentor at Illinois Institute of

Technology, Dr. Zongzhi Li, who provided significant help with the model application in

the Chicago TRANSIMS platform, data collection, and processing and model runs. Dr. Li

provided numerous insights into learning the fundamentals of signal timing design

focusing on an isolated intersection, multiple intersections along one or more parallel

corridors, and then extensive intersections within an urban street network, which

eventually led to the methodology documented in this thesis.

I am forever grateful to my parents for their unconditional love, for their support

in all the decisions I made, and for their encouragement when I encountered challenges in

my graduate studies. I also sincerely thank my other family members who were always

there in my time of need and provided emotional support. I am thankful to the faculty and

staff of the School of Civil Engineering at Purdue University for maintaining an open and

iv

conducive intellectual environment and to my classmates and friends for their valuable

friendship and support during my time at Purdue.

v

TABLE OF CONTENTS

Page

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ...x

ABSTRACT .. xi

CHAPTER 1 INTRODUCTION ..1

1.1 Background ..1

1.2 Problem Statement ...2

1.3 Study Objectives and Scope ..2

1.4 Chapter Organization ...3

CHAPTER 2 LITERATURE REVIEW ...4

2.1 Studies on Intersection Vehicle-Delay Modeling ..4

2.2 Studies on Static Signal Timing Optimization ..7

2.3 Studies on Adaptive Signal Timing Optimization ...8

2.4 Limitation of the Existing Methods ...10

CHAPTER 3 PROPOSED METHODOLOGY ..11

3.1 Basic Concepts of Traffic Movements at Signalized Intersections11

3.1.1	Merits	of	the	Proposed	Model	..	11	

3.1.2	Vehicle	Delay	Calculation	Using	the	Proposed	Model	...	12	

3.2 Further Explanation of Traffic Movements at Signalized Intersections18

3.3 Proposed Method for Signal Timing Optimization ...22

3.4 Iterative Solution Process for the Proposed Model ...23

3.5 Integrating the Proposed Model and Computing Process into TRANSIMS26

vi

Page

CHAPTER 4 METHODOLOGY APPLICATION ..29

4.1 The Study Area ..29

4.2 Green Split Optimization Time Period and Interval Considerations29

4.3 Data Collection and Processing ...31

4.3.1	Travel	Demand	..	32	

4.3.2	Intersection	Signal	Timing	Plans	..	32	

4.4 Preliminary Data Analysis before Model Application35

4.5 Model Application Results ..38

4.5.1	Reductions	in	Peak	Period	Vehicle	Delays	...	38	

4.6 Discussions ..48

CHAPTER 5 SUMMARY AND CONCLUSION ..52

5.1 Thesis Summary ..52

5.2 Conclusion ...53

5.3 Future Research Directions ...54

REFERENCES ..57

 APPENDICES

Appendix A Typical Intersection Signal Timing Plans ...62

Appendix B Python Code for the Application ...64

vii

LIST OF TABLES

Table Page

Table 1 Summary of Wave Speed Calculations ... 18

Table 2 Intersection Signal Timing Dial Conversions .. 33

Table 3 Total VHT in Peak Hours before Signal Timing Optimization 38

Table 4 Reductions in AM Peak Vehicle Delays .. 39

Table 5 Reductions in PM Peak Vehicle Delays .. 40

	

viii

LIST OF FIGURES

Figure Page

Figure 1 Time-Space Diagram of Vehicles Traversing Through Intersections under

Undersaturated Traffic Conditions ... 13	

Figure 2 Time-Space Diagram of Vehicles Traversing through Intersections under

Oversaturated Traffic Conditions ... 17	

Figure 3 Fraction of Cycle Used by Two Arrival Volumes .. 20	

Figure 4 Iterative Solution Process for the Proposed Model .. 25	

Figure 5 Computation Process of Green Split Optimization .. 26	

Figure 6 Study Area for Applying the Proposed Dynamic Split Optimization Model 31	

Figure 7 Sample Traffic Signal Timing Sheet for a city of Chicago-maintained

Intersection .. 34	

Figure 8 Total Traffic Demand Using Chicago Loop Street Network in AM Peak before

Green Split Optimization .. 36	

Figure 9 Total Traffic Demand Using Chicago Loop Street Network in PM Peak before

Green Split Optimization .. 37	

Figure 10 Spatial Distribution of Reductions in Vehicle Delays (6:00AM-7:00AM) 41	

Figure 11 Spatial Distribution of Reductions in Vehicle Delays (7:00AM-8:00AM) 42	

Figure 12 Spatial Distribution of Reductions in Vehicle Delays (8:00AM-9:00AM) 43

Figure 13 Spatial Distribution of Reductions in Vehicle Delays (9:00AM-10:00AM) 44

Figure 14 Spatial Distribution of Reductions in Vehicle Delays (15:00PM-16:00PM) ... 45	

Figure 15 Spatial Distribution of Reductions in Vehicle Delays (16:00PM-17:00PM) ... 46

Figure 16 Spatial Distribution of Reductions in Vehicle Delays (17:00PM-18:00PM) ... 47	

Figure 17 Spatial Distribution of Reductions in Vehicle Delays (18:00PM-19:00PM) ... 48

ix

Figure Page

Figure 18 Spatial Distribution of Reductions in AM Peak Vehicle Delays 50	

Figure 19 Spatial Distribution of Reductions in PM Peak Vehicle Delays 51	

x

LIST OF ABBREVIATIONS

Abbreviation Definition

CMAP Chicago Metropolitan Agency for Planning

DS Degree of saturation

HCM Highway Capacity Manual

LWR Lighthill-Whitham-Richards (shockwave theory)

MOSTOP Multi-objective signal timing optimization problem

OPAC Optimization policies for adaptive control

QRNAT Queuing delays and queue rear no-delay time

Sa-PSO Simulated annealing-particle swarm optimization

SCOOT Split cycle and offset optimizing technique

TOD Time-of-day

VHT Vehicle hours of travel

 xi

ABSTRACT

Jiao, Peng, M.S.C.E., Purdue University, May 2016. Dynamic Green Split Optimization
in Intersection Signal Design for Urban Street Network. Major Professor: Samuel Labi.

In the past few decades, auto travel demand in the United States has significantly

increased, but roadway capacity unfortunately has not expanded as quickly, which has led

to severe levels of highway traffic congestion in many areas. In theory, the problem of

congestion addressed through demand management and roadway expansion. However,

system expansion in urban areas is difficult due to the extremely high cost of land;

therefore, maximizing the existing capacity therefore often is considered the most

realistic option. In urban areas, most of the traffic congestion and delays typically occur

at signalized intersections. This thesis aims to prove the hypothesis that it is possible to

increase capacity by establishing traffic signal timing plans that are more effective than

existing plans. A new methodology is introduced in this thesis for dynamic green split

optimization as a part of intersection signal-timing design to achieve maximized

reduction in overall delay at all the intersections within an urban street network. The

measurement of effectiveness in this new method is reduction in the average delay per

vehicle per signal cycle. This thesis used data from 143 signalized intersections and 334

street segments in the Chicago Loop area street network to demonstrate the proposed

methodology.

xii

The results suggest that it is possible to reduce delay by approximately 35% through the

optimization of signal green splits for the four-hour AM and four-hour PM peak periods

of a typical day.

1

CHAPTER 1 INTRODUCTION

1.1 Background

 Transportation systems help facilitate freight shipments and economic activities

in regions and cities in ways that reflect the distribution of these activities, and urban

productivity is closely related to effective usage of transportation systems. Highway

traffic congestion is an issue of great concern in large and dense urban areas. Traffic

congestion causes a waste of approximately seven billion hours of extra time and three

million gallons of additional fuel in urban areas of the United States as reported in the

Urban Mobility Report [TTI, 2015]. In theory, congestion problems can be resolved

through demand management and roadway expansion. However, urban system expansion

is typically difficult due to the extremely high cost of purchasing land in urban areas

(Sinha and Labi, 2007). To address this issue, it is hypothesized that the utilization of

available system capacity can be maximized. One of the most commonly-used palliatives

for traffic mitigation is the design of traffic signal timings that assign time slots in an

efficient manner. Traffic signals, which were first installed in London in 1868, have

played a critical role in urban traffic control since then and have contributed greatly to

urban traffic mobility and safety.

In densely populated cities, traffic congestion continues to grow as travel demand

increases. While projects that increase the capacity of transportation facilities

2

generally resolve the problem of congestion, the reality is that the construction of

additional lanes is not always feasible due to the high cost of land in urban areas.

Therefore, maximizing the utilization of existing capacity in the most efficient manner is

the preferred approach, such as the development of signal timings that minimize delay.

1.2 Problem Statement

 The mitigation of traffic congestion issues, especially related to intersection delays

in dense urban areas with a large number of intersections, needs a new methodology for

signal timing optimization that will dynamically adjust the green splits of individual

phases for individual intersections without changing the existing cycle length and signal

coordination. Minimizing the average vehicular delay per cycle over several consecutive

cycles also should be a priority for this new method.

1.3 Study Objectives and Scope

 Objectives: The general objective of this thesis is to optimize intersection signal

design for urban street network and aims to accomplish the following:

- develop a method to calculate vehicle delays at signalized intersection in consecutive

cycles under different traffic conditions (undersaturated and oversaturated);

3

- formulate a green split optimization model that will achieve minimum vehicle delays

per intersection per cycle averaged over consecutive cycles with vehicle delays

computed using the above method;

- develop an iterative computational process for a large number of intersections in an

urban street network; and

- implement the proposed optimization model using a case study.

 Study Scope: The proposed methodology will interface with and integrate into a

large-scale, high-fidelity simulation-based traffic model to update green split designs

based on dynamically assigned traffic using the intersection over fixed time intervals

during the AM and PM periods. The proposed method will minimize the intersection

delays in terms of the delays per vehicle per cycle averaged over several consecutive

cycles.

1.4 Chapter Organization

 This thesis consists of five chapters. Chapter 1 discusses the traffic congestion

problem in urban areas and a description of the study objectives. Chapter 2 documents

the findings of the review of the literature addressing intersection signal-timing

optimization. Chapter 3 elaborates on the proposed methodology, and Chapter 4 presents

the methodology’s application and the results of the numerical analysis. Chapter 5

summarizes the contributions of this thesis and future research directions.

4

CHAPTER 2 LITERATURE REVIEW

 The initial step of this thesis was a review of the literature pertaining to the

current methodologies for signal timing optimization at urban intersections.

2.1 Studies on Intersection Vehicle-Delay Modeling

 Macroscopic traffic flow models are rooted in mathematical relationships

between traffic flow, density, and speed and are helpful because they provide a

theoretical basis for the planning and design of efficient ways to increase highway

capacity [Robert, 1998; Garber and Hoel, 2001]. With regard to urban intersections, in

the past few decades, the shockwave models developed to better characterize traffic flow

on road segments under various conditions at intersections have helped engineers to

develop appropriate measures of effectiveness to increase the efficiency of intersection

capacity.

Wirasinghe [1978] applied the traffic shockwave theory of Lighthill and Whitham

to model the moving incidents associated with vehicle overtaking, and established a

graphical method to derive the delays for individual or all vehicles and their related costs.

The study also developed a new formulation to measure the upstream total delay arising

from an incident downstream and demonstrated that the new formulation produced the

same results as deterministic queuing theory.

5

Michalopoulo et al. [1981] studied a real-time signal control policy for

minimizing total intersection delay subject to queue length constraints. The authors

concluded that the shockwaves that occurred upstream of the stop lines were caused by

irregular service of traffic at the signal. Based on this conclusion, they developed a new

model and proposed a real-time signal control policy based on the model that managed

the queue lengths of two conflicting streams through a traffic light controlled in time and

space. Using the current pre-timed control policy at an intersection with a high volume of

traffic as a comparison target of the proposed policy, the authors established that the

proposed policy was more efficient, particularly under conditions where demand

exceeded the saturation level.

In order to describe the characteristics of queues in coordinated traffic signal

systems and the traffic wave motion that spreads from link to link, Hisai and Sasaki

[1993] studied shockwaves to formulate a new model. Their work produced a

visualization of the shockwave phenomenon as it spreads under various streets, traffic,

and signal conditions, including both the undersaturated and oversaturated cases. The

optimization of signal control timing can be studied using the Hisai and Sasaki model.

 Dion et al. [2004] compared the delays calculated by the INTEGRATION

microscopic traffic simulation model and the delays produced by analytical delay models

for a one-lane approach to a pre-timed signalized intersection under undersaturated to

oversaturated conditions. The analytical model used for the comparison represented the

steady-state stochastic delay, time-dependent stochastic delay models, deterministic

queuing, and shockwave. To evaluate the consistency of the calculated vehicle delays

6

from the two models, they conducted a comparison over a range of volume-to-capacity

(v/c) ratios extending from 0.1 to 1.4. Over this range, the delay models from the 1981

Australian Capacity Guide [Akçelik, 1980], the 1995 Canadian Capacity Guide for

Signalized Intersections [ITE, 1995], the 1997 Highway Capacity Manual (HCM) [TRB,

1997], and nearly consistent delay estimates were produced from the INTEGRATION

microscopic traffic simulation model. In this manner, the conditions were validated. In

addition, the study recommended evaluation of such consistency for more complex

situations.

A study conducted by Liu et al. [2009] presented a creative approach for

assessing intersection queue lengths with existing detectors; and by using this

methodology; it was possible to assess time-dependent queue lengths on signal links

congested with long queues, which was a key contribution of their study. Moreover, it

was possible to differentiate traffic states at an intersection by applying the Lighthill-

Whitham-Richards (LWR) shockwave theory with high-resolution traffic signal data in

order to assess the queue length under congested conditions. The authors evaluated three

models by comparing the estimated maximum queue lengths with the ground count data

recorded by cameras and human observers and confirmed that the basic model produced

precise outputs (the other two outputs were also acceptable).

Wu et al. [2010] studied a quantifiable measure of oversaturation by addressing

its negative effects in both the temporal and spatial dimensions. The authors

characterized the temporal negative effect by the occurrence of a residual queue, referring

to the negative effect as a spillover from a downstream intersection to upstream. This

7

study proposed two algorithms to diagnose oversaturated signalized intersection: 1) an

algorithm for assessing residual queue length applying shockwave method and 2) an

algorithm for detecting spillover by identifying long detector occupancy times in the

green phase. The authors used the green time caused by a residual queue or a spillover to

explain the oversaturation severity index and confirmed that the proposed algorithm

effectively identified oversaturated conditions.

Ban et al. [2011] proposed a new shockwave methodology for assessing real-time

queue length at signalized intersections and applied it to travel time from mobile traffic

sensors. The authors used travel time as the model input, rather than detailed trajectories,

to avoid the issue of privacy protection. Their methodology consisted of three major

components. The first component consisted of processing raw sample vehicle delays to

queuing delays, and the second component assessed the queuing delay patterns using

sample queuing delays and queue rear no-delay time (QRNAT). The first component was

to calculate maximum or minimum queue lengths and constructing real-time length

curves. The main concept of their proposed method was to relate QRNAT to the non-

smoothness of queuing delay patterns and queue length changes. Compared to regular

methods for traffic modeling using mobile data, the proposed method represented a

reverse-thinking process.

2.2 Studies on Static Signal Timing Optimization

 Lu et al. [2010] developed an intersection traffic signal control model based

on reinforcement learning and proposed an optimization method for signal timing of

single intersection using a SARSA algorithm. Dong et al. [2010] developed a simulated

8

annealing-particle swarm optimization (Sa-PSO) algorithm established from particle

swarm optimization (PSO) and metropolis rule. Chin et al. [2011] studied a Q-learning

approach that could handle a traffic signal timing plan more efficiently by optimizing

traffic flows. In another study to derive initial solutions for the particle swarm

optimization algorithm, Chen and Xu [2006] used the PSO algorithm to resolve the traffic

signal timing optimization problem by installing a local fuzzy-logic controller (FLC) at

each junction. To resolve the multi-objective signal timing optimization problem

(MOSTOP), Sun et al. [2003] applied non-dominated sorting genetic algorithm.

A non-linear optimization model applicable for an individual intersection built up

was tested by Li et al. [2009] using an ant colony algorithm based on mesh strategy

coded in MATLAB. In another study, Mussa and Selekwa [2003] proposed a method of

traffic flow optimization during the transition period using a time-of-day (TOD) timing

plans approach applied in CORSIM. Li et al. [2010] developed a simulation system using

VB code based on the traffic characteristics of China for an isolated signal intersection.

2.3 Studies on Adaptive Signal Timing Optimization

Generally, a traffic demand pattern depends on time and location and

unpredictable factors, such as crashes, special events, or construction activities, that

influence the outcome. Currently, numerous cities are using traffic signal control systems

that can continuously optimize signal-timing plans in response to the detected traffic

demand of each approach, known as adaptive signal control systems. The first functional

deployments appeared in the early 1980s. Since then, propelled by the wide

implementation of Intelligent Transportation System (ITS) devices, adaptive signal

9

control systems have become increasingly popular, particularly for vehicle detection and

classification. First-generation adaptive signal control systems select the proper signal

timing plans in response to the detected traffic demand pattern from the library of pre-

stored signal timing plans prefixed off-line based on historical data. A change in the

traffic conditions, the time of day, and the day of the week triggers a change in the signal-

timing plan. A limitation of this generation of systems is that by the time the system

responds, the registered traffic conditions that triggered the response may have become

obsolete. Second-generation adaptive signal control systems use an on-line library that

implements signal timing plans based on real-time traffic data and predicted values. The

signal-timing optimization process can be updated every five minutes. Generally,

frequent changes in signal timing plans may lead to transition disturbance. Therefore, in

practice, the frequency of changing signal plans cannot be less than ten minutes. The first

two generations are also referred to as responsive/adaptive systems. The third generation

allows the parameters of the signal plans to change continuously in response to real-time

measurement of traffic variables, which allows for acyclic operations.

Some researchers and organizations have dedicated their efforts to the

development of adaptive signal control systems. For example, the Roads and Traffic

Authority of New South Wales, Australia developed the Sydney Coordinated Adaptive

Traffic System (SCATS) in the early 1970s. The optimization algorithm in SCATS uses

the concept of degree of saturation (DS), defined as the ratio of fully used green length to

effective green length, to determine signal details where cycle length is adjusted in every

cycle and splits and offsets are selected from prefixed patterns. Hunt et al. [1981]

developed the Split Cycle and Offset Optimizing Technique (SCOOT), which optimizes

10

the signal on-line by adjusting the three types of elements (splits, offsets, and cycle

lengths) based on the predicted arrival profile and the updated flow information collected

by the upstream detectors. The Optimization Policies for Adaptive Control (OPAC)

developed by Gartner [1983] is a demand-responsive signal control system that uses the

introduced rolling horizon approach to adjust signal parameters in response to the

estimated queue length. Koshi [1972], Koshi [1989], and Asano et al. [2003] developed a

signal control system using the concept of shifting the cumulative diagrams by

investigating whether or not a small advance or delay of the next traffic light phase may

decrease the aggregate delay to the users. Changes in the offset, split, and cycle were

implemented. Lertworawanich [2010] developed a split optimization method for a single

isolated intersection by constructing the space-time diagram that was capable of adjusting

the split in response to different traffic demand patterns even where the queues extend

beyond the detector location. Roshandeh et al. [2014] developed a method for optimizing

intersection signal timing for an entire urban street network based on the shockwave

theory by simultaneously minimizing vehicle and pedestrian delays in each signal cycle

over a 24-hour period.

2.4 Limitation of the Existing Methods

 Most of the existing models focus on isolated intersections or individual

corridors. The lack of a rigorous methodology for addressing the network impacts of

intersection traffic signal timing optimization makes it likely they will produce

ineffective signal timing plans for efficient utilization of the existing capacity of

intersections, corridors, or urban street networks.

11

CHAPTER 3 PROPOSED METHODOLOGY

This chapter discusses the proposed methodology for system-wide signal timing

optimization considering vehicle delays at individual intersection approaches. It begins

with the proposed new dynamic split optimization model for vehicle delay computation

using the shockwave theory and then discusses the computational analysis process for

model execution. It further describes interfacing and integrating the proposed model into

the TRANSIMS toolbox for large-scale urban network applications.

3.1 Basic Concepts of Traffic Movements at Signalized Intersections

3.1.1 Merits of the Proposed Model

 As seen in the shockwave model introduced by Roshandeh et al. [2014], both

undersaturated and oversaturated traffic movements at signalized intersections are

considered. This method was further refined in this thesis to characterize traffic

movements more accurately from the following four aspects:

First, the shockwave model by Roshandeh et al. [2014] considers a fixed time

point between the before-hump and after-hump transition speeds under the oversaturated

traffic condition. The current model allows a flexible point for the transition speeds,

depending on the vehicles entering the intersection approaches during the signal cycle

and the interactions of the entering vehicles with the corresponding

12

green intervals. Second, the model by Roshandeh et al. [2014] assumes that the

oversaturated and undersaturated cases share the same maximum queue length. This

rarely the case in real world circumstances. This thesis assumes that the queue length

accumulates as time goes on, as is the case with vehicular delays. Third, the shockwave

model by Roshandeh et al. [2014] considers that the last vehicles entering the intersection

during the green intervals dissipate precisely at the end of the yellow interval. In fact, this

represents the worst case and that the last vehicle may clear before the end of the yellow

interval. This thesis allows the clearance of the last entering vehicle to occur before or at

the end of the yellow interval. Fourth, all the wave speeds calculated in the shockwave

model by Roshandeh et al. [2014] are based on the critical lane volumes. Conversely, this

thesis uses the total vehicle volumes entering from all intersection approaches for the

computation. The improvements this thesis makes over the earlier model by Roshandeh

et al. [2014] ensure that the proposed model provides a more accurate estimation of

vehicle delays per cycle per intersection. The details of delay calculation are presented in

the next section.

3.1.2 Vehicle Delay Calculation Using the Proposed Model

 Figure 1 depicts how a vehicular queue forms and discharges due to a red signal

when the traffic flow is undersaturated. When the traffic signal turns red, the vehicles

stop and form a queue at wave speed v1 until point A (illustrated by line 1). Then, the

queueing back speed slows down because the traffic demand upstream is not as high as

before. Therefore, the queue forms at slower wave speed v2 (illustrated by line 2). When

the signal turns green, the queue discharges at wave speed v3 (illustrated by line 3). The

queue discharges completely at point B (the intersection of the line 2 and line 3). After

13

point B, the newly arrived vehicles join the discharge flow without any stopping.

Moreover, the forward shockwave speed is v4 (illustrated by line 4). After point C, the

traffic flow of this approach comes back to the original status until the next red signal.

Figure 1 Time-Space Diagram of Vehicles Traversing Through Intersections under
Undersaturated Traffic Conditions

The vehicles arrive at the intersection at different arrival rates, which is simplified

by considering two constant rates. The relatively higher arrival rate is assumed to be

oriented from the critical movement vehicles released by the upstream intersection. Also,

the relatively lower arrival rate is caused by non-critical movement vehicles. In

undersaturated traffic conditions, a triangular flow-density curve is assumed, as

illustrated by the flow-density curve at the corner of Figure 1. The state of higher flow

rate is denoted as point H, and the lower flow rate is denoted as point L in the figure.

14

The delay of each vehicle is measured as the waiting time when its velocity is

zero. As illustrated by the vertical bold lines between line 3 and line 1, and line 2. From

the left-hand side to the right-hand side, the length of each line is the delay of the

corresponding vehicle. Obviously, the delay depends on the vehicle’s location in the

queue. According to the geometric relationship illustrated above, one can safely derive

the following relationship:

𝑛 = !!
!"# !"#$%&'

= 𝑆! ∗ 𝐾! ≈ 𝑆! ∗ 𝐾! (3-1)

where, 𝑛 is the number of vehicles waiting in this queue during one cycle; and 𝐾! is the

jam density.

Also, denote the location of the 𝑖!! vehicle as 𝐿(𝑖), then:

𝐿 𝑖 = 𝐿 𝑖 − 1 + 𝐽𝑎𝑚 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = 𝐿 𝑖 − 1 + !
!!

 (3-2)

𝐿 1 = 0; (3-3)

The general expression for 𝐿(𝑖) according to (3-2) and (3-3) is:

𝐿 𝑖 = !!!
!!

 (3-4a)

𝑑𝐿 = !"
!!

 (3-4b)

In addition, Equation (3-4a) is the total differential expression of Equation (3-4b).

Equation of the three lines:

Line 1 (0 ≤ 𝑆 ≤ 𝑆!): 𝑇! 𝑆 = !
!!

Line 2(𝑆! ≤ 𝑆 ≤ 𝑆!): 𝑇! 𝑆 = !
!!
+ 𝑇! −

!!
!!

15

Line 3(0 ≤ 𝑆 ≤ 𝑆!): 𝑇! 𝑆 = !
!!
+ 𝑇!

Therefore, for 𝐿(𝑖) ≤ 𝑆!:

𝑑𝑒𝑙𝑎𝑦 𝑖 = 𝑇! 𝑖 − 𝑇! 𝑖 = !
!!
− !

!!
∗ 𝐿 𝑖 + 𝑇! (3-5)

For 𝑆! ≤ 𝐿(𝑖) ≤ 𝑆!:

𝑑𝑒𝑙𝑎𝑦 𝑖 = 𝑇! 𝑖 − 𝑇! 𝑖 = !
!!
− !

!!
∗ 𝐿 𝑖 + 𝑇! − 𝑇! +

!!
!!

 (3-6)

In sum:

𝑑𝑒𝑙𝑎𝑦[𝐿 𝑖] =

!
!!
− !

!!
∗ 𝐿 𝑖 + 𝑇! 𝑖𝑓 𝐿(𝑖) ≤ 𝑆!

!
!!
− !

!!
∗ 𝐿 𝑖 + 𝑇! − 𝑇! +

!!
!!

𝑖𝑓 𝑆! ≤ 𝐿(𝑖) ≤ 𝑆!
 (3-7)

In short:

𝑑𝑒𝑙𝑎𝑦[𝐿 𝑖] = 𝐷!(𝐿) 𝑖𝑓 𝐿(𝑖) ≤ 𝑆!
𝐷!(𝐿) 𝑖𝑓 𝑆! ≤ 𝐿(𝑖) ≤ 𝑆!

 (3-8)

 The next step is to compute the total delay of this queue. In the following step,

approximation is made by replacing the summation with the integration in order to

simplify the computation.

𝑑𝑒𝑙𝑎𝑦(𝑖)
!

!!!

≈ 𝑑𝑒𝑙𝑎𝑦 𝑖 ∗ 𝑑𝑖
!

!

!"#$!" !"(!!!)
𝐾! ∗ 𝑑𝑒𝑙𝑎𝑦 𝐿 ∗ 𝑑𝐿

!!

!

 = 𝐾! ∗ 𝐷! 𝐿 ∗ 𝑑𝐿!!
! + 𝐷! 𝐿 ∗ 𝑑𝐿!!

!!
= 𝐾!Ω (3-9)

where, Ω is the area of the quadrangle bounded by the line 1, 2, 3 and the time axle.

 Ω = !!!!! ∗!!!!!!!!(!!!!!)(!!!!!)
!

 (3-10)

Further,

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 = !"#$% !"#$%
!

= !!!
!!∗!!

= !
!!
= !!!!! ∗!!!!!!!!(!!!!!)(!!!!!)

!!!

16

 (3-11)

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 = 𝐾!Ω =
!!!!! ∗!!!!!!!!(!!!!!)(!!!!!)

!
𝐾! (3-12)

 For oversaturated traffic conditions, as illustrated below (Figure 2), the moment

when the signal turns red, the queue forms in three stages, as illustrated by lines 5, 1, and

2. In stage 1 (illustrated by line 5), the queue is formed at wave speed v5 by the vehicles

that queued in the previous cycle. These vehicles have to stop again because the green

time allocated to this approach is not adequate for all the vehicles to pass the intersection

in the previous cycle. In stage 2 (illustrated by line 1), the queue forms at wave speed v1

by the newly arrived vehicles at a high arrival rate, which is similar to line 1 in the

undersaturated case. In stage 3 (illustrated by line 2), the queue forms at speed v2 by the

newly arrived vehicles in a lower volume status, which is similar to line 2 in the

undersaturated case. When the signal turns green, the queue discharges at wave speed v3

(illustrated by line 3). After point B, which is the intersection of line 2 and line 3, the

newly arrived vehicles pass through without stopping (illustrated by line 4). The forward

wave speed is v4.

17

Figure 2 Time-Space Diagram of Vehicles Traversing through Intersections under
Oversaturated Traffic Conditions

By the logic, the average vehicular delay is computed in the following steps:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 =
Ω
𝑆!

= !!!!! ∗!!!!!!!!(!!!!!)(!!!!!)!(!!!!!)(!!!!!)
!!!

 (3-13)

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 =
𝑇! + 𝑇! 𝑆! − 𝑆!𝑇! − (𝑇! + 𝑇!)(𝑆! − 𝑆!)− (𝑇! + 𝑇!)(𝑆! − 𝑆!)

2 𝑘!

 (3-14)

The formulae of average vehicular delays derived in the above differ from those

of the previous studies, particularly those developed by Roshandeh et al. [2014].

The assumed triangular flow-density relationship is shown at the right-top corner

of Figures 1 and 2, where H(kh,qh) represents the high volume status, L(kl,ql) represents

18

the low volume status, and (kmax, qmax) represents the capacity status. Table 1 summarizes

the wave speed calculations.

Table 1 Summary of Wave Speed Calculations

Wave Speed Definition Calculation using Field Measurements
Undersaturation Oversaturation

𝑣!
𝑞!

𝑘! − 𝑘!

𝑆!
𝑇!

𝑆! − 𝑆!
𝑇! − 𝑇!

𝑣!
𝑞!

𝑘! − 𝑘!

𝑆! − 𝑆!
𝑇! − 𝑇!

𝑆! − 𝑆!
𝑇! − 𝑇!

𝑣!
𝑞!"#

𝑘! − 𝑘!"#

𝑆!
𝑇! − 𝑇!

𝑆!
𝑇!

=
𝑆!

𝑇! − 𝑇!

𝑣!
𝑞!"#
𝑘!"#

𝑆!

𝑇! − 𝑇!

𝑆! − 𝑆!
𝑇! − 𝑇!

𝑣!
𝑞!"#

𝑘! − 𝑘!"#
 N/A

𝑆!
𝑇!

=
𝑆!

𝑇! − 𝑇!

3.2 Further Explanation of Traffic Movements at Signalized Intersections

The queuing back pattern discussion above occurs for every movement of each

phase in a signal-timing plan if signals of two successive intersections are not well

coordinate. A well-coordinated intersection releases vehicles in the traffic stream with a

higher flow rate directly at the time they arrive at the intersection; and at the same time a

queue forms during the red signal from vehicles in the traffic stream with a lower flow

rate. Therefore, to some extent, a space-time diagram can be used to illustrate the worst

case of a queueing back pattern caused by a signal. Consequently, the computed delay

may be the maximum delay with the signal timing details and flow details given.

In terms of the data needed for the delay computation, vehicle running speed (v4)

can be collected by sensors or detectors. The capacity of each lane can be computed using

information in the 2010 Highway Capacity Manual (HCM) [TRB, 2010] or other

19

acceptable specifications. Field observations could be used to derive the jam density,

which this thesis assumes as 150 veh/km/lane. The critical inputs of the model are the

two flow rates. Generally, vehicle detectors collect only one value of the average flow

rate, which indicates the general traffic flow demand using this link or the particular lane.

Therefore, in order to achieve these two flow rates based on the given information, two

factors (f1 and f2) are created to estimate qh and ql. The relationship established among

these factors are given by (3-15) and (3-16).

 𝑞! = 𝑓! ∗ 𝑞!"# + 𝑞 (3-15)

𝑞! = 𝑓! ∗ 𝑞 (3-16)

Both f1 and f2 range from 0 to 1. Further regression of the data collected by field

measurements will produce both factors. Formula (3-15) ensures that the higher flow rate

is between the observed average flow rate and the capacity. Similarly, Formula (3-16)

ensures that the lower flow rate is within zero and the observed average flow rate.

However, applying these two formulae requires that the observed average flow rate is

greater than zero and less than capacity. If the approach volume is zero during a certain

period, these two factors also should be zero. When the observed average flow rate

during the period exceeds capacity, the capacity used in this model should be updated

accordingly.

Another critical factor is the time duration of both flow rates in a signal cycle. In

other words, the proportion of time that the intersection experiences a higher flow rate

and the proportion of time that is spent at a lower flow rate if green time is allocated to

20

this approach all the time. Figure 3 illustrates the geometric relationship between this

time proportion factor 𝑓 and other factors.

Figure 3 Fraction of Cycle Used by Two Arrival Volumes

In Figure 3, the dash line is the boundary separating the traffic stream between the

higher flow rate and the lower flow rate conditions. Correspondingly, this line crosses

transition point A. The dotted line is the end of the queue formed during red time

discussed in the previous section. The series of solid parallel lines on the left side of the

dash line indicates the trajectories of the vehicles in the traffic stream with a higher flow

rate. Likewise, the parallel lines on the right side of the dash line are the trajectories of

the vehicles in the traffic stream with a lower flow rate. Based on the conservation law of

traffic volume, Equations (3-17) and (3-18) can be derived as follows:

21

𝑞! ∗ 𝑓 ∗ 𝐶𝑦𝑐 + 𝑞! ∗ 1− 𝑓 ∗ 𝐶𝑦𝑐 = 𝑞 ∗ 𝐶𝑦𝑐 (3-17)

𝑓 = !!!!
!!!!!

 (3-18)

Furthermore, according to the geometric relationship represented by Figure 3.3,

the coordinate of point A can be computed as follows:

𝑇! =
!!∗!∗!"#
!!!!!

 (3-21)

𝑆! = 𝑣!𝑇! =
!!!!∗!∗!"#

!!!!!
 (3-22)

After the coordinates of point A has been found, the locations of point B and point

C can be computed based on the corresponding shockwave speeds. If the time coordinate

of point C is not greater than the cycle length, the traffic condition is undersaturated.

Consequently, the vehicle delays for the undersaturated case can be computed.

With regard to the oversaturated case, the computation of vehicle delays requires

information on the residual queue length left from the previous cycle. Therefore, the

space-time diagram should be drawn from the beginning of the cycle for which the

residual queue length is zero. As illustrated by Figure 2, the queue length of the

oversaturation case accumulates over time. The residual queue length from the last cycle

can be found at point C of the previous cycle and represents point D of the current cycle.

Naturally, the total vehicle delays in the current cycle can be computed by summing up

the delays in the previous cycle and the area of the shaded parallelogram. According to

the geometric relationship, the coordinate of point C for the first cycle in the

oversaturated case can be computed using Equations (3-23) and (3-24).

22

𝑇!! = 𝑇!! =
!!!
!!"

+ 𝑇!! (3-23)

𝑆!! = 𝑆!! =
(!!!!!"#)!!"!!"

!!"!!!"
 (3-24)

Unlike the undersaturated case, the maximum queue length and the total vehicle

delays depend on the number of cycles considered. In practice, considering two to five

cycles is desirable. The average value of delays in multiple cycles can be utilized as the

indicator of delay measurement.

3.3 Proposed Method for Signal Timing Optimization

The current model also refines the optimization of green splits according to the

vehicle volumes expected to enter the intersections approaches in the near future signal

cycles to achieve minimum delays per vehicle per cycle averaged over multiple

consecutive cycles. In addition, the optimization is conducted using fewer constraints to

be more consistent with real world situations.

The optimization formulation is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷𝑒𝑙𝑎𝑦!!∈!!!∈! (3-25)

Where:

𝐷𝑒𝑙𝑎𝑦!" =
!!!!! ∗!!!!!!!!(!!!!!)(!!!!!)

!
𝑘!

𝐷𝑒𝑙𝑎𝑦!" =
𝑇! + 𝑇! 𝑆! − 𝑆!𝑇! − (𝑇! + 𝑇!)(𝑆! − 𝑆!)− (𝑇! + 𝑇!)(𝑆! − 𝑆!)

2 𝑘!

 (3-26)

Subject to:

𝑇!" ≥
!!
!!"#

 (3-27)

23

𝑇!" + 𝑇!" + 𝑇!" = 𝐶𝑦𝑐 (3-28)

 where, 𝑖 and the phase ID and 𝑚 is the movement traffic ID disallowed to move in

phase 𝑖 . 𝑀! is the set containing the IDs of all movements disallowed within phase 𝑖. 𝐼 is

the set containing all the phase IDs of the signal timing plan of a given intersection.

𝑇!" ,𝑇!" ,𝑇!" is the green time, red time, and yellow time for phase 𝑖. 𝐶𝑦𝑐 is the cycle

length of this intersection. 𝑊! is the width of the intersection corresponding to phase 𝑖.

𝑣!"# is the walking speed of pedestrians.

In this signal timing optimization model, objective function (3-25) computes the

sum of the vehicle delays of all the movements in all phases within a signal-timing plan

at a given condition. Formula (3-26) indicates the quantity of total vehicle delays

depending on whether it is possible to discharge the queue formed in the red signal

during the non-red signal fully. Constraint (3-27) sets the lower bound of the green time

equivalent to the minimum pedestrian crossing time. If the signal time plan contains one

or two protected left-turn phases, constraint (3-27) can be relaxed for those protected left-

turn phases. Constraint (3-18) indicates that the cycle length remains unchanged. Unlike

using average vehicle delays on a critical lane for each phase in the objective function

adopted by Roshandeh et al. [2014], the total vehicle delays aggregated for all vehicle

movements in all phases within a signal cycle is used as the mobility performance

measure.

3.4 Iterative Solution Process for the Proposed Model

The above optimization modeling of green splits is applied for the AM and PM

peak periods of a typical day where each peak period is further split into fixed time

24

intervals and, within each time interval, multiple signal cycles are involved. The optimal

green splits are determined using the following iterative computation process:

- Determine the predicted vehicle volumes entering individual intersection approaches

in each signal cycle for the given time interval.

- Calculate the total vehicle delays using the predicted vehicle volumes entering

individual intersection approaches for the given signal timing design for the time

interval.

- Adjust the green splits of the signal timing design to achieve the lowest delays.

- Apply the new green splits of signal timing designs for intersections within an urban

street network to the subsequent signal cycle, which is expected to trigger traffic

redistribution in the urban street network, leading to changes in traffic volumes

entering into intersection approaches in the subsequent signal cycle.

- Repeat Steps 2-4 until the time sequence of the entire AM or PM peak period is

complete.

Figure 4 depicts the iterative process for solving the optimization problem at a

certain intersection, which is the essence of Steps 2 and 3. After optimizing all the

intersections in the network, the updated signal-timing plan should be exported as the

input for a traffic simulation in order to examine the traffic redistribution due to the

change of signal timing plan. As a part of the output data reported by the simulation

system, the simulated traffic data for the next time step will serve as the input of the next

iteration. Figure 5 illustrates the alternated computational process from the given green

splits in a signal-timing plan and the vehicle volume to optimize green splits with

25

minimized delays and a new vehicle volume in response to the new green splits with

signal cycles progressing to the end of the signal optimization period.

Figure 4 Iterative Solution Process for the Proposed Model

26

Figure 5 Computation Process of Green Split Optimization

3.5 Integrating the Proposed Model and Computing Process into TRANSIMS

TRansportation ANalysis and SIMulation System (TRANSIMS) is an integrated

system of travel forecasting models designed to give transportation planners accurate and

complete information on traffic impacts, congestion, and pollution [Li et al., 2012]. It is

one of the very few analytical tools capable of conducting large-scale, high fidelity

simulation-based traffic assignments using the regional daily origin-destination (O-D)

travel demand and signal timing plans for intersections within an urban street network. It

uses supercomputing facilities to obtain the predicted traffic volumes for individual

27

intersection approaches with the traffic assignment results updated on a second-by-

second basis. The platform virtually can handle a regional multimodal transportation

network of any size that may contain a large number of signalized intersections. For this

reason, it is used for the methodology application. The TRANSIMS model calibrated for

Chicago by the Illinois Institute of Technology (IIT) in conjunction with the Argonne

National Laboratory is the largest and most complex TRANSIMS-based model currently

available in the United States as the next generation tool for transportation planning,

traffic operations management, and evacuation planning/emergency management analysis.

It was successfully calibrated and validated using fine-grained field traffic counts and is

applied for a number of real world planning and operations scenarios. For this reason, the

Chicago TRANSIM model was adopted in this thesis and augmented to demonstrate the

proposed model.

First, the traffic signal timing plans for intersections in the study area were

collected. Next, the iterative solution process as described in Section 3.3 was coded using

Python programming language to obtain new signals timing plan. Without changing the

existing cycle lengths and signal coordination, the green splits of all the signal phases of

the existing signal timing plans for the AM peak, PM peak, and remaining periods of the

day were adjusted. This iterative process was repeated until all the possible green splits

were examined to finally achieve minimized vehicle delays per vehicle per cycle as the

objection functions of Equations 3-13 and 3-14. The new signal-timing plan then was

used as an input set of data in the TRANSIMS platform to iteratively estimate traffic

volumes on each intersection approach by the time interval employed for vehicle volume

aggregation. This iterative process stopped when the aggregated traffic volumes in the

28

iterative computation process became stable. Finally, the differences in the vehicle travel

times, delays per cycle, number of vehicles stopped in queues, and average speeds before

and after green split optimization were used as measures to assess the effectiveness of the

proposed model.

29

CHAPTER 4 METHODOLOGY APPLICATION

This chapter focuses on applying the proposed model along with the iterative

computation process integrated into the TRANSIMS platform to obtain the optimal green

splits for all phases of a signal timing design for a specific intersection without changing

the cycle length of the original signal timing design and coordination for multiple

intersections. The model output results before and after optimizing the green splits of

intersection signal timing plans are used for model assessment.

4.1 The Study Area

With respect to the Chicago metropolitan area, the central business district (CBD)

network contains a large number of signalized intersections, making it an ideal study area

to apply the proposed model. Further, significant delays at intersections in the Chicago

CBD area occur within its core area of the Chicago Loop bounded by Wacker Drive

along the Chicago River, Roosevelt Road, and Lakeshore Drive (Figure 6). Therefore, the

Chicago Loop was selected as the study area, which contains 143 major signalized

intersections.

4.2 Green Split Optimization Time Period and Interval Considerations

 For the intersections located in the Chicago Loop street network, the most severe

delays occur during the AM and PM peak periods. As such, the model application

focused on signal timing adjustments through green split optimization for the 143

30

intersections within the Loop area for the AM and PM periods. In considering the long

duration of each peak period, a four-hour duration was considered to ensure the peak and

the adjacent to peak time slots were all inclusive in the analysis. In order to capture the

traffic dynamics, four 15-minute time intervals were considered for each hour. Within

each 15-minute time interval, multiple signal cycles were involved.

Without altering the cycle length of a specific intersection and signal coordination

of multiple intersections, the green splits of each intersection were adjusted according to

the vehicle volumes traversing the intersection to ensure achieving the lowest extent of

vehicle delays per vehicle per cycle averaged over consecutive cycles.

31

Figure 6 Study Area for Applying the Proposed Dynamic Split Optimization Model
Source: Chicago City Map Loop Area

4.3 Data Collection and Processing

 Data details of travel demand, geometric designs, and traffic controls including

signal-timing plans associated with the highway network in the Chicago metropolitan

32

area were assembled for applying the proposed model for green split optimization

integrated into the Chicago TRANSIMS platform. The primary data categories are

discussed below.

4.3.1 Travel Demand

 Travel demand data were obtained from the Chicago Metropolitan Agency for

Planning (CMAP), which contained information on 28.5 million trips for a typical day in

the current year classified by trip purpose and hour of the day that were generated from

1,961 traffic analysis zones (TAZs) in the entire Chicago metropolitan area. The Chicago

model uses two types of traffic demand inputs for regional traffic assignments:

1) Inter-zonal, intra-zonal, and external trips and diurnal distributions by hour of the day

for a 24-hour period, which were separately established for ten different trip purposes,

which mainly included home-based work (HBW), home-based other (HBO), and non-

home-based (NHB) auto and transit trips, airport trips, and external trips.

2) Departure time of each trip during the 24-hour period.

4.3.2 Intersection Signal Timing Plans

The intersection traffic signal timing dial during each day may be split into

multiple dials to accommodate AM peak, PM peak, and all other time period conditions.

- Monday - Friday: 6AM-10AM

- Monday - Friday: 3PM-7PM

- All other periods

Therefore, as a part of intersection traffic signal timing updating, new Python

scripts were added to accommodate the option of three dials per day as follows:

33

Time_Period_Breaks 0:00, 6:00, 10:00, 15:00, 19:00

As shown in Table 2, five time slots were created for a given 24-hour period

within the three timing dials.

Table 2 Intersection Signal Timing Dial Conversions

TRANSIMS Dial TRANSIMS Start Time Real Time Dial

1 0:00 Dial 1

2 6:00 Dial 2

3 10:00 Dial 1

4 15:00 Dial 3

5 19:00 Dial 1

34

Figure 7 Sample Traffic Signal Timing Sheet for a city of Chicago-maintained
Intersection. Source: Chicago Department of Transportation

35

4.3.3 Travel Time, Speed, Traffic Volume, and Intersection-Related Vehicle Delays

 The TRANSIMS model produced the average travel time, travel speed, and traffic

volume by the hour of the day for each highway segment or intersection approach before

and after optimization of green splits in the signal timing design for each intersection and

constituted the data to be analyzed. As the Chicago Loop area was selected as the study

area for the model application, the trips with O-D paths falling within the Loop area were

relevant. Hence, the average travel time, speed, and traffic volume, as well as the vehicle

delays at intersections in the Loop area before and after optimizing the green splits were

computed and then used to assess the effectiveness of signal optimization.

With respect to the calculation of the reduction in vehicle delays per vehicle per

signal cycle in green split optimization, it was assumed that the queued vehicles in a

specific signal cycle could be potentially dissipated within two consecutive signal cycles.

As such, the reduction in vehicle delays after green split optimization was computed as

the average over the reductions in vehicle delays in two consecutive signal cycles.

4.4 Preliminary Data Analysis before Model Application

 Prior to executing the proposed model within the Chicago TRANSISM platform,

the total traffic demand using the Chicago Loop street network in the AM peak period

from 6:00AM to 10:00AM was evaluated. As shown in Figure 8, a steady increasing

trend in traffic demand aggregated in 15-minute time intervals was observed from

6:00AM to 9:00AM and began to drop from 9:00AM to 10:00AM. This seems to suggest

that the AM peak period is from 8:00AM to 10:00AM. For the four-hour time duration,

the minimum, maximum, and average number of vehicles using the Loop street network

36

were approximately 20,000, 55,000, and 39,500 vehicles per 15-minute time period,

respectively.

The traffic demand for the Chicago Loop street network in the afternoon peak is

presented in Figure 9. The traffic demand slightly fluctuates around 50,000 vehicles from

3 PM to 6 PM. After 6 PM, the traffic demand suddenly dropped to 39,000 at 5:30 PM

and remained steady until the end of the afternoon peak. Similarly, it is reasonable to

believe the afternoon peak period spanned three hours, ranging from 3:00 to 6:00 PM.

Generally, the maximum quarterly volume was 56,615 vehicles and was experienced in

the fourth quarter of 4 PM. The minimum quarterly volume was 37,520 vehicles in the

third quarter of 6 PM, and the average quarterly volume was 49,869 vehicles.

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

Total Traffic Demand Using Chicago Loop Street Network in AM
Peak before Green Split Optimization

Figure 8 Total Traffic Demand Using Chicago Loop Street Network in AM
Peak before Green Split Optimization

37

Figure 9 Total Traffic Demand Using Chicago Loop Street Network in PM Peak before
Green Split Optimization

Compared with the flow pattern during the AM peak, the flow pattern in the PM

peak exhibited greater fluctuation, particularly from 3:00 PM to 6:00 PM. The reason for

this complex flow pattern is that some employers have adopted the so-called staggered

rush-hour policy. Therefore, the increasing trends that appear at 3:00 PM, 4:00 PM, and

5:00 PM were caused by the corresponding end-of-office hours. The slightly increasing

trend in the last 30 minutes may be attributable to travelers driving for recreational

purposes after work. Table 3 summarizes the total vehicle hours of travel (VHT) in the

Chicago Loop street network before the green split optimization. The total VHT over the

eight-hour peak period was 2,017.09 vehicle hours.

0

10,000

20,000

30,000

40,000

50,000

60,000

Total Traffic Demand Using Chicago Loop Street Network in PM
peak before Green Split Optimization

38

Table 3 Total VHT in Peak Hours before Signal Timing Optimization

AM Peak 6:00-7:00 7:00-8:00 8:00-9:00 9:00-10:00

VHT (Veh-hr) 40.62 157.16 128.95 239.04

PM Peak 15:00-16:00 16:00-17.00 17:00-18:00 18:00-19:00

VHT (Veh-hr) 322.37 567.20 567.20 281.95

4.5 Model Application Results

4.5.1 Reductions in Peak Period Vehicle Delays

 Tables 4 and 5 summarize the reductions in vehicle delays for 15-minute time

intervals of one-hour duration in the AM peak and PM peak periods. The tables indicate

that the delay reductions increased gradually from the beginning of the AM peak period

and became stable at approximately 39% by the end of the AM peak period. The trend of

delay reductions in the PM peak period increased in the beginning and reaches the zenith

in the second quarter of 17:00 PM. After reaching the maximum, the delay reductions

dropped until the end of the PM peak period. Generally, the delay reductions did not vary

significantly over time. Therefore, the proposed model appears to be effective in delay

reductions in the time domain.

39

Table 4 Reductions in AM Peak Vehicle Delays

Time
Interval

Before Optimization After Optimization

Average Delay
(sec/cyc) Volume

Average Delay
(sec/cyc) Volume

Reduction
in

Percentage

6:00-6:15 7.72 19845 5.58 21840 23.6%

6:15-6:30 10.43 24360 5.95 25515 28.5%

6:30-6:45 13.07 26355 7.10 30345 32.6%

6:45-7:00 14.36 26355 7.77 28770 33.8%

6:00-7:00 11.40 24228.8 6.60 26617.5 29.6%

7:00-7:15 15.16 31707 7.83 33462 35.4%

7:15-7:30 14.79 36580 6.97 38350 36.8%

7:30-7:45 14.13 39120 7.31 42120 34.3%

7:45-8:00 15.67 42185 8.51 44902 34.9%

7:00-8:00 14.86 37398 7.65 39708.5 35.4%

8:00-8:15 14.58 41850 7.97 49500 31.0%

8:15-8:30 15.17 45724 8.54 50876 35.3%

8:30-8:45 14.60 46953 7.79 51465 33.9%

8:45-9:00 16.63 48900 8.40 53400 38.7%

8:00-9:00 15.25 45856.7 8.18 51310.3 34.7%

9:00-9:15 15.47 48400 7.98 48400 35.4%

9:15-9:30 16.28 48184 8.70 51680 37.1%

9:30-9:45 17.71 51528 9.11 44840 39.2%

9:45-10:00 17.62 45900 8.74 49800 39.0%

9:00-10:00 16.77 48503 8.63 48680 37.6%

40

Table 5 Reductions in PM Peak Vehicle Delays

Time
Interval

Before Optimization After Optimization Reduction
in

Percentage Average Delay
(sec/cyc) Volume

Average Delay
(sec/cyc)

Volume

15:00-15:15 12.54 47880 8.83 48020 29.6%

15:15-15:30 16.58 51150 9.05 52950 31.1%

15:30-15:45 15.75 52624 8.55 55384 33.1%

15:45-16:00 14.88 55680 8.52 54462 32.6%

15:00-16:00 14.94 51833.5 8.74 52704 31.6%

16:00-16:15 14.71 51504 8.36 54984 33.6%

16:15-16:30 15.35 54646 9.22 55180 31.6%

16:30-16:45 16.17 55536 8.82 56960 35.9%

16:45-17:00 17.51 56108 8.99 56446 38.9%

16:00-17:00 15.94 54448.5 8.85 55892.5 35.0%

17:00-17:15 16.69 50400 7.99 53928 39.9%

17:15-17:30 18.56 51012 9.30 53508 42.0%

17:30-17:45 16.79 53694 8.52 51810 37.5%

17:45-18:00 16.83 52390 9.19 49755 35.4%

17:00-18:00 17.22 51874 8.75 52250.3 38.7%

18:00-18:15 15.61 47724 7.92 46084 36.5%

18:15-18:30 14.98 38038 7.83 44044 34.2%

18:30-18:45 13.84 37386 7.77 37654 31.1%

18:45-19:00 14.70 38412 8.06 38544 32.4%

18:00-19:00 14.78 40390 7.89 41581.5 33.5%

41

Spatial Distribution of Reductions in Vehicle Delays. Figures 10 through17 present the

spatial distribution of average delay reductions within each hour in the AM and PM peak

periods. As shown in this the series of visualization plots, the vehicle delay reductions

appear to be stable for most of the intersections within the Chicago Loop street network.

Therefore, the proposed model appears to be effective in triggering reductions in vehicle

delays across the various intersections.

Figure 10 Spatial Distribution of Reductions in Vehicle Delays (6:00AM-7:00AM)

42

Figure 11 Spatial Distribution of Reductions in Vehicle Delays (7:00AM-8:00AM)

43

Figure 12 Spatial Distribution of Reductions in Vehicle Delays (8:00AM-9:00AM)

44

Figure 13 Spatial Distribution of Reductions in Vehicle Delays (9:00AM-10:00AM)

45

Figure 14 Spatial Distribution of Reductions in Vehicle Delays (15:00PM-16:00PM)

46

Figure 15 Spatial Distribution of Reductions in Vehicle Delays (16:00PM-17:00PM)

47

Figure 16 Spatial Distribution of Reductions in Vehicle Delays (17:00PM-18:00PM)

48

Figure 17 Spatial Distribution of Reductions in Vehicle Delays (18:00PM-19:00PM)

4.6 Discussions

 In comparing the spatial distributions of delay reductions over time, it was shown

that the intersections located at the outskirts of the Chicago Loop area had relatively

lower delay reductions, as shown in Figures 18 and 19. The likely reason is that most of

the vehicles in the boundary area prefer driving on Lakeshore Drive or Wacker Drive,

which are urban expressways with greater capacities and fewer signalized intersections.

Consequently, lower vehicle volumes on the boundary area streets resulted in lower

49

levels of vehicle delays before green split optimization. As a result, the potential for delay

reductions was relatively limited.

For all corridors, including North-South (Lakeshore, Columbus, Michigan, State,

and Clark) and East-West (Randolph, Monroe, Jackson, and Congress) corridors within

the Chicago Loop area, the delay reductions were stable over different time intervals and

peak periods. The only expressway in this area, Lakeshore Drive, had the most stable

delay reductions, which was unexpected because the signalized intersections on

Lakeshore Drive maintain large spacing. Traffic disruptions between two successive

intersections were virtually quite low and the traffic volumes on Lakeshore Drive were

quite stable over time. The low traffic disruptions, coupled with the stable traffic

conditions led to stable delay reductions after green split optimization.

50

Figure 18 Spatial Distribution of Reductions in AM Peak Vehicle Delays

51

Figure 19 Spatial Distribution of Reductions in PM Peak Vehicle Delays

52

CHAPTER 5 SUMMARY AND CONCLUSION

5.1 Thesis Summary

 This thesis first conducted a review of the existing literature on the modeling of

traffic movements at signalized intersections and the optimization of intersection signal-

timing plans designed to achieve the lowest extent of vehicle delays at intersections.

Based on the limitations of the existing models dealing with traffic movements and signal

timing optimization identified, this thesis proposed a dynamic green split optimization

model. The proposed model iteratively adjusts the green splits in a signal timing design

to reach the lowest level of vehicle delays per vehicle per cycle, averaged over

consecutive cycles without changing the cycle length and multi-intersection signal

coordination. A refined delay calculation method for vehicle delay computation and an

iterative model execution process also were introduced. In addition, the iterative

computation process between the pair of original green splits and the entering vehicle

volumes and the new pair of green splits and updated vehicle volumes were demonstrated.

The dynamic split optimization model and the iterative solution process were integrated

into the TRANSIMS platform to facilitate the model’s execution to derive the optimal

green splits for given traffic demand conditions.

The Chicago TRANSIMS model was utilized in this thesis. The Chicago Loop

street network which consists of one hundred and forty three intersections was selected as

53

 the study area for the application of the model. The traffic dynamics were captured for

each given hour, by segmenting the hourly time duration into four 15-minute time

intervals. Multiple rounds of green split optimization aimed to minimize the vehicle

delays per vehicle per cycle averaged over consecutive cycles were performed for each

15-minute time interval in accordance with the number of signal cycles involved. The

computational experiments revealed that the average vehicle delays per vehicle per cycle

after green split optimization were reduced by approximately 34.5 percent.

5.2 Conclusion

Based on the above outcomes, this thesis concluded that the vehicular delays at

most intersections with existing signal timing plans still have the potential for

improvement. However, the extent of the delay reductions using the proposed model

depends on the traffic demand at a specific intersection or the number of entering

vehicles. If the demand is rather low, the delays are likely to be low, meaning that the

potential for further delay reductions is low. In this respect, the proposed model may not

be suitable to handle the low demand traffic conditions.

 On the other hand, if the traffic demand is relatively high and all the traffic flow is

oversaturated, the limited time resources will not be sufficient for reallocation to the

intersection approaches demanding additional green time to reduce vehicle delays. If the

intersections are independent of each other and the traffic flow is uninterrupted, the

proposed model may provide a much better result in the reduction of delays because the

situation was consistent with the two assumptions of ignoring the coordination of signals

and maintaining relatively stable arrival rates.

54

5.3 Future Research Directions

The proposed model in this thesis considered only the worst case, in which a queue

forms behind a stop bar caused by a red signal, and then designed a signal timing plan to

minimize the overall delay. In this worst case, the vehicles traveling at a higher flow rate

were assumed to arrive at the intersection by the time the red signal starts. However, in

reality, that may not happen, Particularly when the signals of successive intersections are

well coordinated. Therefore, purely considering the delay in the worst case as the normal

delay is slightly conservative. Future research could include combining the proposed

methodology with signal coordination.

The proposed model does not take into consideration special events and bus transit

systems. In the model application, the predicted volumes were determined using

historical data and prediction techniques, including time series and Bayesian inference.

However, these techniques have some limitations with regard to addressing uncertainties

such as special events. Bus transit systems play an important role in the urban

transportation network, but a bus in the traffic stream may cause additional automobile

delays on links, and consequently, affect the arrival rate in the intersection and lead to

unintended queuing back patterns. The effect of these two factors also could be studied in

future research.

 In the proposed model, specific assumed flow rates were used instead of the

conventional unique flow rate. Future research could focus on estimation techniques

based on the conventional flow rates and other field measurements such as the left-turn,

right-turn, and through-movement volumes in the upstream intersection.

55

 The proposed model oversimplifies the shared lane capacity. For example, the

model regards one shared lane (one lane shared by right-turn movement and through

movement) as two separate lanes (one right-turn lane and one through-movement lane).

In other words, the capacity for each movement is overestimated, which may result in

underestimated delay for these two approaches in particular.

 The proposed model only contains two phase-movement relationships: allowed-

to-move and not-allowed-to-move. Therefore, every phase-movement relationship is

categorized as one of these two types: Protected and permitted movements belong to the

allowed-to-move type. In terms of the permitted left-turn vehicles, they are allowed to

move in the green time but, in reality, will need to yield to the through-movement

vehicles and pedestrians. However, the proposed model allows these vehicles to move

right at the start of the green time. Therefore, the delays for these permitted left-turn

vehicles are underestimated. With regard to the right-turn vehicles, they are permitted to

make turns yielding to the perpendicular movement vehicles in their red signal. In

addition, they are protected to make turns on the green. The computed delay for the right-

turn vehicles may be overestimated in some locations. However, in downtown Chicago,

the high pedestrian volume forces the right-turn vehicles to wait for their protected phase

(often posted as “No Turn on Red” signs in their permitted phase). Therefore, it is

expected that the right-turn delay will not be affected unduly in the Chicago model.

 The developed model does not consider the turning bay length limitations and

link length constraints. If the left-turn queue length exceeds the length of the turning bay,

the newly-arriving left-turn vehicles will continue to wait at the end of the left-turn queue

and will use the through movement lane; in this case, the capacity of the through

56

movement lanes certainly will be affected. Therefore, future research should allocate

space as well as time for all movements.

REFERENCES

57

REFERENCES

Airault, Vincent ; Stéphane Espié ; Claude Lattaud and Jean-Michel Auberlet [2004].
 "Interaction between pedestrians and their environment when road-crossing: a
 behavioural approach." Proceedings of the 24th Urban Data Management
 Symposium. In E. Fendel, & M. Rumor, Italy. N.p.: n.p. N. pag. Print.

Akcelik, Rahmi [1981]. Traffic Signals: Capacity and Timing Analysis. Rep.
 Melbourne, Australia: Australian Road Research Board. Print. Ser. 123.

Asano, Miho, et al. [2003]. "Traffic signal control algorithm based on queuing model
 using ITS sensing technologies." Proceedings of the 10th World Congress and
 Exhibition on Intelligent Transport Systems and Services, CD-ROM.

Antonini, Gianluca; Michel Bierlaire; and Mats Weber [2006]. "Discrete choice models
 of pedestrian walking behavior." Transportation Research Part B:
 Methodological 40.8: 667-87. Print.

Ban, Xuegang; Peng Hao; and Zhanbo Sun [2011]. "Real time queue length estimation
 for signalized intersections using travel times from mobile
 sensors." Transportation Research Part C: Emerging Technologies 19.6: 1133-
 156. Print.

Banks, Robert [2013] Towing Icebergs, Falling Dominoes, and Other Adventures in
 Applied Mathematics. Princeton, NJ: Princeton University Press.

Chen, Juan and Lihong Xu [2006]. "Road-junction traffic signal timing optimization by
 an adaptive particle swarm algorithm." Control, Automation, Robotics and
 Vision,2006. ICARCV'06. 9th International Conference on. IEEE.

Chin, Yit Kwong, et al. [2011]. "Exploring Q-learning optimization in traffic signal
 timing plan management." Computational Intelligence, Communication Systems
 and Networks (CICSyN), 2011 Third International Conference on. IEEE.

Curio, Cristobal; Johann Edelbrunner; Thomas Kalinke; Christos Tzomakas; and
 Werner Von Seelen [2000]. "Walking pedestrian recognition." IEEE Transactions
 On Intelligent Transportation 1.3: 155-63. Print.

58

Desyllas, Jake; Elspeth Duxbury; John Ward; and Andrew Smith [2003]. Pedestrian
 Demand Modelling of Large Cities: An Applied Example from London. Rep.
 London, UK: Centre for Advanced Spatial Analysis University College London.
 Print.

Dijkstra, Jan, and Harry Timmermans [2002]. "Towards a Multi-agent Model for
 Visualizing Simulated User Behavior to Support the Assessment of Design
 Performance." Automation in Construction 11.2: 135-45. Print.

Dion, Francois; Hesham Rakha; and Youn-Soo Kang [2004]. "Comparison of delay
 estimates at undersaturated and oversaturated pre-timed signalized
 intersections." Transportation Research Part B: Methodological 38.2: 99-122.
 Print.

Dong, Chaojun; Shiqing Huang; and Xiankun Liu [2010]. "Urban area traffic signal
 timing optimization based on Sa-PSO." Proc. of 2010 International Conference
 on Artificial Intelligence and Computational Intelligence. Vol. 3. N.p.: IEEE.
 80-84. Print.

Gartner, Nathan [1983]. OPAC: A demand-responsive strategy for traffic signal control.
 No. 906.

Garber, Nicholas and Lester Hoel [2002]. Traffic and Highway Engineering. Pacific
 Grove, CA: Brooks/Cole Publishing. Print.

Garber, Nicholas, and Lester Hoel [2014]. Traffic and Highway Engineering, 5th
 Edition. Boston, MA: Cengage Learning.

Hisai, Mamoru and Satoshi Sasaki [1993]. Shock Wave Propagation Analysis in
 Coordinated Signal Systems by Kinematic Wave Theory. Rep. 2nd ed. Vol. 5.
 N.p.: Technology Reports of the Yamaguchi University. Print.

Hoogendoorn, Serge [2004]. "Pedestrian flow modeling by adaptive control." Proc. Of
 TRB 2004 Annual Meeting, Washington DC. N.p.: n.p. N. pag. Print.

Hoogendoorn, Serge and Piet Bovy [2004]. "Pedestrian route-choice and activity
 scheduling theory and models." Transportation Research Part B:
 Methodological 38.2: 169-90. Print.

59

Hughes, Ronald G., and Nagui M. Rouphail [2002]. Evaluation and Application of
 Pedestrian Modeling Capabilities Using Computer Simulation. Rep. N.p.:
 WesternMichigan University. Print.

Hunt, P. B., et al. [1981]. SCOOT- A traffic responsive method of coordinating signals.
 No. LR 1014 Monograph.

King, Michael; Jon Carnegie; and Reid Ewing [2003]. "Pedestrian safety through a
 raised median and redesigned intersection." Transportation Research
 Record 1828.1: 56-66. Print.

Kitazawa, Kay and Michal Batty [2004]. "Pedestrian behaviour modelling: an
 Application to retail movements using a genetic algorithm." Proc. of 7th
 International Conference on Design and Decision Support Systems in
 Architecture and Urban Planning. N.p.: n.p. N. pag. Print.

Koshi, Masaki [1972]. "On-line feedback control of offsets for area control of traffic."
 Traffic Flow and Transportation.

Koshi, Masaki [1989]. "Cycle time optimization in traffic signal coordination."
 Transportation Research Part A: General 23.1: 29-34.

Kukla, Robert, Jon Kerridge, Alex Willis, and Julian Hine [2001]. "PEDFLOW:
 Development of an autonomous agent model of pedestrian flow." Transportation
 Research Record 1774.1: 11-17. Print.

Lave, Charles [1969]. “A behavioral approach to modal split forecasting.”
 Transportation Research 3, 463-480.

Lertworawanich, Ponlathep [2010]. "A traffic signal split optimization using time-space
 diagrams." European Transport Conference, 2010.

Li, Meiling; Jian Rong; Zhenhua Mou; and Jin Ran [2010]. "A simulation optimization
 system of signalized intersections based on knowledge." Proceedings of the 10th
 International Conference of Chinese Transportation Professionals. N.p.: n.p.. N.
 pag. Print

Li, Zongzhi; David Zavattero; Kermit Wies; Young-Jun Son and Herbert Levinson
 [2012]. “Development and Application of the TRANSIMS Toolbox for
 Transportation Operations Management in and around Chicago Central Area.”
 Phase I Final Report. Washington, DC: Federal Highway Administration, U.S.
 Department of Transportation, Print.

60

Liu, Henry; ., Xinkai Wu; Wenteng Ma; and Heng Hu [2009]. "Real-time queue length
 estimation for congested signalized intersections." Transportation Research Part
 C: Emerging Technologies 17.4: 412-27. Print.

Lum, Kelvin and Harun Halim [2006]. "A before-and-after study on green signal
 countdown device installation." Transportation Research Part F: Traffic
 Psychology and Behaviour 9.1: 29-41. Print.

Michalopoulos, Panos; Gregory Stephanopoulos; and George Stephanopoulos [1981].
 "An application of shock wave theory to traffic signal control." Transportation
 Research Part B: Methodological 15.1: 35-51. Print.

Montella, Alfonso [2005]. "Safety reviews of existing roads: quantitative safety
 assessment methodology." Transportation Research Record 1922.1: 62-72. Print.

Mussa, Renatus and Majura Selekwa [2003]. "Proposed methodology of optimizing
 transitioning between time-of-day timing plans." Journal of Transportation
 Engineering 129.4: 392. Print.

Okazaki, Shigeyuki and Satoshi Matsushita [1993]. "A study of simulation model for
 pedestrian movement with evacuation and queuing." Engineering for Crowd
 Safety 1: 271-80. Print.

Osaragi, Toshihiro [2004]. "Modeling of pedestrian behavior and its applications to
 spatial evaluation." Proceedings of the 3rd International Joint Conference on
 Autonomous Agents and multi-agent Systems. N.p.: n.p. N. pag. Print.

Pant, Prahlad; Cheng Yizong; and Naharaju Kashayi [2005]. “Field Testing and
 Implementation of Dilemma Zone Protection and Signal Coordination at
 Closely-Spaced High-Speed Intersections.” Rep. Cincinnati: Univ. of Cincinnati.
 Print. FHWA/OH-2005/006.

Qin, Xiao and John Ivan [2001]. "Estimating pedestrian exposure prediction model in
 rural areas." Transportation Research Record 1773.1: 89-96. Print.

Roshandeh, Arash; Herbert Levinson; Zongzhi Li; Harshingar Patel; and Bei Zhou
 [2014]. “A new methodology for intersection signal timing optimization to
 simultaneously minimize vehicle and pedestrian delays.” ASCE Journal of
 Transportation Engineering, 140(5), 04014009.

Schrank, David; Bill Eisele; Tim Lomax; and Jim Bak [2015]. “Urban Mobility
 Scorecard.” Technical Report August, Texas A&M Transportation Institute and
 INRIX, Inc.

61

Sun, Dazhi; Rahim Benekohal; and S. Travis Waller [2003]. "Multiobjective traffic
 signal timing optimization using non-dominated sorting genetic algorithm."
 Proceedings of Intelligent Vehicles Symposium, 2003.. IEEE.

Teknomo, Kardi [2006]. "Application of microscopic pedestrian simulation
 model." Transportation Research Part F: Traffic Psychology and Behaviour 9.1:
 15-27. Print.

Teknomo, Kardi [2006]. "Application of microscopic pedestrian simulation
 model." Transportation Research Part F: Traffic Psychology and Behaviour 9.1:
 15-27. Print.

TranSystems and TransInfo LLC. [2008]. Pedestrian Activity in Chicago’s Downtown.
 Rep. Chicago: Prepared for Chicago Dept. of Transportation. Print.

TRB[2008]. Highway Capacity Manual. Transportation Research Board, Washington
 DC. Print.

TRB [2000]. Highway Capacity Manual. Transportation Research Board, Washington,
 DC. Print.

Wirasinghe, S. Chandana [1978]. "Determination of traffic delays from shock-wave
 analysis." Transportation Research 12.5: 343-348.

Wu, Xinkai; Henry Liu; and Douglas Gettman [2010]. "Identification of oversaturated
 intersections using high-resolution traffic signal data." Transportation Research
 Part C: Emerging Technologies 18.4: 626-38. Print.

Xiao-feng, Chen and Shi Zhong-ke [2009]. "A hybrid optimization method and
 application in traffic signal timings optimization." Proc. of Computational
 Intelligence and Software Engineering. N.p.: n.p. 1-4. Print.

Zegeer, Charles [1978]. "Green-extension systems at high speed intersections." Institute
 of Transportation Engineers 11: 19-24. Print.

APPENDICES

62

Appendix A Typical Intersection Signal Timing Plans

Subarea_signal: the file recording for each intersection within the network, the

effective time of each signal timing plan.

Subarea_timing: the file recording the phase configuration of each timing plan

Subarea_phasing: the file recording the movement-phase relationship for each timing

NODE START TIMING TYPE RINGS OFFSET COORDINATOR NOTES
14521 0:00 27006 T S 0 27006 4 Phase Timed
14521 6:00 27007 T S 0 27007 4 Phase Timed
14521 10:00 27008 T S 0 27008 4 Phase Timed
14521 15:00 27009 T S 0 27009 4 Phase Timed
14521 19:00 27010 T S 0 27010 4 Phase Timed
14532 0:00 27056 T S 0 27056 4 Phase Timed
14532 6:00 27057 T S 0 27057 4 Phase Timed
14532 10:00 27058 T S 0 27058 4 Phase Timed
14532 15:00 27059 T S 0 27059 4 Phase Timed
14532 19:00 27060 T S 0 27060 4 Phase Timed
14533 0:00 27061 T S 0 27061 4 Phase Timed
14533 6:00 27062 T S 0 27062 4 Phase Timed
14533 10:00 27063 T S 0 27063 4 Phase Timed
14533 15:00 27064 T S 0 27064 4 Phase Timed
14533 19:00 27065 T S 0 27065 4 Phase Timed
14535 0:00 27071 T S 0 27071 4 Phase Timed

TIMING PHASENEXT_PHASEMIN_GREEN MAX_GREENEXT_GREEN YELLOW RED_CLEARRING BARRIER NOTES

27006 1 2 8 0 0 0 0 1 0 NODE 14521

27006 2 3 22 0 0 3 1 0 0 NODE 14521

27006 3 4 15 0 0 0 0 0 0 NODE 14521

27006 4 1 22 0 0 3 1 0 0 NODE 14521

27007 1 2 8 0 0 0 0 1 0 NODE 14521

27007 2 3 22 0 0 3 1 0 0 NODE 14521

27007 3 4 15 0 0 0 0 0 0 NODE 14521

27007 4 1 22 0 0 3 1 0 0 NODE 14521

27008 1 2 8 0 0 0 0 1 0 NODE 14521

63

NODE TIMING PHASE IN_LINK OUT_LINK PROTECTION DETECTORS NOTES
14521 27006 1 15302 15301 P 0 Protected Left
14521 27006 2 15302 15301 U 0 Unprotected Left
14521 27006 2 15302 15084 P 0 Protected Thru
14521 27006 2 15302 15074 P 0 Protected Right
14521 27006 4 15302 15074 S 0 Right on Red
14521 27006 3 15301 15084 P 0 Protected Left
14521 27006 4 15301 15084 U 0 Unprotected Left
14521 27006 4 15301 15074 P 0 Protected Thru
14521 27006 4 15301 15302 P 0 Protected Right
14521 27006 2 15301 15302 S 0 Right on Red
14521 27006 1 15084 15074 P 0 Protected Left
14521 27006 2 15084 15074 U 0 Unprotected Left
14521 27006 2 15084 15302 P 0 Protected Thru
14521 27006 2 15084 15301 P 0 Protected Right
14521 27006 4 15084 15301 S 0 Right on Red
14521 27006 3 15074 15302 P 0 Protected Left
14521 27006 4 15074 15302 U 0 Unprotected Left
14521 27006 4 15074 15301 P 0 Protected Thru
14521 27006 4 15074 15084 P 0 Protected Right
14521 27006 2 15074 15084 S 0 Right on Red
14521 27007 1 15302 15301 P 0 Protected Left

64

Appendix B Python Code for the Application

class Node:

 def __init__(self, id):

 self.id = id

 self.timing_map = {}

 ss_file = open('initial/subarea_signal', 'rb')

 timing2hour = {}

 time_bound = []

 for row in ss_file:

 r = row.split('\t') # split signal in rows

 if r[0] == self.id: #

r=[Node,Start,Timing,Type,Rings,Offset,Coordinator,Notes]

 time_bound.append(int(r[1][:-3])) # r[1]=0:00 or 19:00

 timing2hour[r[2]] = int(r[1][:-3]) # timing ID ->hour

 start_end = {} # Timing plan start time-> timing effective hour list

 tmp = []

 for i in time_bound: # Achieve start_end, timing start hour-> timing effective

hour list

 starttime = i

 add = True

 tmp.append(i)

 small = [i]

 while add:

65

 i += 1

 if i in time_bound or i in tmp or i == 24:

 add = False

 start_end[starttime] = small

 else:

 tmp.append(i)

 small.append(i)

 for i in timing2hour.keys(): # i is timing

 self.timing_map[i] = Timing(i, min(start_end[timing2hour[i]]) * 60,

 60 * max(start_end[timing2hour[i]]) + 60) # timing ->

Timing object

 sp_file = open('initial/subarea_phasing', 'rb')

 for row in sp_file:

 r = row.split('\t') # r=[Node,Timing, Phase, In_link,Out_link, protected,..]

 if r[0] == self.id and (r[3], r[4]) not in

self.timing_map[r[1]].phase_map[r[2]].link_pair:

 self.timing_map[r[1]].phase_map[r[2]].link_pair.append((r[3], r[4]))

 # To record all (In_link, Out_link) of node.timing.phase to

node.timing.phase.link_pair

class Timing:

 def __init__(self, id, start_min, end_min): # hours is a list contains the time this

timing plan works

66

 self.id = id

 self.start_time = start_min

 self.end_time = end_min

 self.phase_map = {}

 self.cycle_time = 0

 self.offset = 0

 st_file = open('initial/subarea_timing', 'rb')

 for row in st_file:

 r = row[:-1].split('\t')

 if r[0] == self.id: # r=['TIMING', 'PHASE', 'NEXT_PHASE', 'MIN_GREEN',

 # 'MAX_GREEN', 'EXT_GREEN', 'YELLOW', 'RED_CLEAR', 'RING',

'BARRIER', 'NOTES']

 self.phase_map[r[1]] = Phase(r[1], r[2], int(r[3]), int(r[4]), int(r[5]), int(r[6]),

int(r[7]),

 int(r[8]), int(r[9]))

 self.cycle_time += int(r[3]) + int(r[6]) + int(r[7])

 def delay(self, time_slot):

 total = 0 # total delay

 nv = 0 # number of vehicles

 for phase in self.phase_map.values(): # (self, qmax, qvc,v,lane ,TR,cyc)

 TR = self.cycle_time - phase.green - phase.yellow

 for ll in phase.vol[time_slot]: # ([qmax,qvc,v,ln])

67

 if ll != []:

 l = ll

 result = delay_function(l[0] * 100, l[1] * 100, l[2], l[3], TR,

self.cycle_time)

 total += result['delay']

 nv += result['number of veh']

 if total == 0:

 return 0.0

 else:

 return total / nv/5.0

class Phase:

 def __init__(self, id, next, green, maxgreen, extgreen, yellow, red_clear, ring,

barrier):

 self.id = id

 self.next = next

 self.green = green

 self.maxgreen = maxgreen

 self.extgreen = extgreen

 self.yellow = yellow

 self.red_clear = red_clear

 self.ring = ring

68

 self.barrier = barrier

 self.delay = 99999.0

 self.link_pair = []

 self.vol = {}

 self.check1 = False

 self.status = 'None'

 self.check2 = False

 self.check3 = False

def delay_function(qmax, qvc, v, lane, TR, cyc): # Compute the delay

 kj = 150 # veh/km/lane

 v = v*3.6 # km/h

 kmax = float(qmax / v) # veh/km/lane

 qh = 0.5 * (qvc + qmax) # veh/h/lane

 ql = qvc / 3.0 # veh/h/lane

 kh = float(qh / v) # veh/km/lane

 kl = float(ql / v) # veh/km/lane

 f = float((qvc - ql) / (qh - ql))

 v1 = qh / (kj - kh)/3.6 # in m/s

 v2 = ql / (kj - kl)/3.6 # in m/s

 v3 = qmax / (kj - kmax)/3.6 # in m/s

 v4 = v/3.6 # in m/s

69

 ta = float(v4 * f * cyc / (v1 + v4)) # in sec

 sa = float(ta * v1) # in meter

 tb = float((sa + v3 * TR - v2 * ta) / (v3 - v2)) # in sec

 sb = v3 * (tb - TR) # in meter

 tc = float(sb / v4) + tb # in sec

 area = 0.5 * kj * ((TR + tb) * sb - sa * ta - (ta + tb) * (sb - sa))/1000 # in veh*sec

 if tc <= cyc:

 Delay = 2 * area * lane

 return {'delay': Delay, 'number of veh': (sb * kj / 1000 * lane * 2),

 'status': 'Undersaturation'} # Total delay within 10 cycles

 else:

 sc = float((tc - cyc) * v3 * v4 / (v3 + v4))

 Delay = (2 * area + 1 * sc * TR) * lane

 return {'delay': Delay, 'number of veh': (sb * kj / 1000 * lane * 2 + sc * kj / 1000

* 1 * lane),

 'status': 'Oversaturation'}

class Network:

 def __init__(self, nodes):

 # type: (object) -> object

 print 'Initializing network..'

 self.nodes = nodes

70

 self.node_map = {}

 for n in nodes:

 self.node_map[n] = Node(n) # node->Node object

 self.link_map = {}

 turn = {} # (NODE,IN_LINK,OUT_LINK,START_minutes)->VOLUME

 link = {} # linkID-

>[ANODE,BNODE,LENGTH,LANES_AB,LEFT_AB,RIGHT_AB,LANES_BA,LEFT_

BA,RIGHT_BA]

 lane = {} # number of lanes of (node,In link ,Out link)

 cap = {} # (lINK,BNODE)->capcity of link going to B

 spd = {} # (lINK,BNODE)->free flow speed of link going to B

 tv_file = open('initial/subarea_turn', 'rb')

 lk_file = open('initial/link', 'rb')

 lane_file = open('initial/subarea_connectivity', 'rb')

 link_file = open('initial/subarea_link', 'rb')

 for row in link_file:

 r = row[:-2].split('\t')

 if r[10] == '0' or r[15] == 'CAP_AB':

 cap[(r[0], r[3])] = 0

 else:

 cap[(r[0], r[3])] = int(r[15]) / float(r[10])

 if r[16] == '0' or r[21] == 'CAP_BA':

 cap[(r[0], r[2])] = 0

71

 else:

 cap[(r[0], r[2])] = int(r[21]) / float(r[16])

 if not r[14] == 'FSPD_AB':

 spd[(r[0], r[3])] = float(r[14])

 spd[(r[0], r[2])] = float(r[20])

 for row in lane_file:

 r = row[:-2].split('\t')

 if r[0] not in self.nodes: continue

 if (r[0], r[1], r[2]) in lane.keys():

 lane[(r[0], r[1], r[2])] += 1

 else:

 lane[(r[0], r[1], r[2])] = 1

 for row in lk_file:

 r = row[:-2].split('\t')

 link[r[0]] = [r[1:]]

 for row in tv_file:

 r = row[:-2].split(',')

 if r[0] in self.nodes: turn[(r[0], r[1], r[2], int(r[3]) / 60)] = int(r[-1]) * 4 #

equivalent hourly rate

 for node in self.node_map.values(): # For all node objects

 for time in node.timing_map.values(): # For all timing objects

 for phase in time.phase_map.values(): # For all phase objects

 for h in range(360, 600, 15) + range(900, 1140, 15):

72

 temp = [] # Contain the input to calculate the delay

 for l in phase.link_pair:

 if (node.id, l[0], l[1], h) not in turn.keys(): continue

 qmax = cap[(l[0], node.id)]

 v = spd[(l[0], node.id)]

 if v == 0:

 v = 11.4

 ln = lane[(node.id, l[0], l[1])]

 ii=turn[(node.id, l[0], l[1], h)]

 qvc = float(ii) / ln

 if qvc>qmax:

 qmax=qvc+1.25

 temp.append([qmax, qvc, v, ln])

 phase.vol[h] = temp

 # self.__delay()

 # self.__update()

 # self.connection_table=[]

 def CreatNewTimingID(self):

 Original_TimingID = []

 ss_file = open('initial/subarea_signal', 'rb')

 for row in ss_file:

 r = row.split('\t') # split signal in cells

73

 Original_TimingID.append(r[2])

 NewTimingID = 10000

 time_step1 = [0, 360] # 00:00 to 6:00 in minutes

 time_step2 = range(370, 540, 15) # 6:00 to 9:00 every 10 minutes (in minutes)

 time_step3 = [540, 960] # 09:00 to 16:00 in minutes

 time_step4 = range(970, 1140, 15) # 16:00 to 19:00 every 10 minutes (in

minutes)

 time_step5 = [1140, 1440] # 19:00 to 24:00 in minutes

 t = time_step1 + time_step2 + time_step3 + time_step4 + time_step5

 time_step = []

 for i in range(len(t) - 1):

 time_step.append([t[i], t[i + 1]])

 st_file = open('initial/subarea_timing', 'rb')

 sp_file = open('initial/subarea_phasing', 'rb')

 new_ss_file = 'subarea_signal_new'

 my_ss_writer = open(new_ss_file, "wb")

 new_st_file = 'subarea_timing_new'

 my_st_writer = open(new_st_file, "wb")

 new_sp_file = 'subarea_phase_new'

 my_sp_writer = open(new_sp_file, "wb")

 # update subarea_signal

 ss_file = open('initial/subarea_signal', 'rb')

 for row in ss_file:

74

 r = row.split('\t') # split signal in cells

 if r[0] in self.nodes:

 for ts in time_step: # Crack the original interval into pieces and assign new

Timing ID

 while NewTimingID in Original_TimingID: NewTimingID += 1

 Original_TimingID.append(NewTimingID)

 if ts[0] >= 0 and ts[1] <= 360:

 for s in self.node_map[r[0]].timing_map.values():

 if s.start_time == 0: break

 self.node_map[r[0]].timing_map[NewTimingID] = s

 self.node_map[r[0]].timing_map[NewTimingID].start_time = ts[0]

 self.node_map[r[0]].timing_map[NewTimingID].end_time = ts[1]

 # Update subarea_signal

 cell = range(8)

 cell[0] = str(r[0])

 stt = self.node_map[r[0]].timing_map[NewTimingID].start_time

 if len(str(stt % 60)) == 1:

 cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)])

 else:

 cell[1] = ':'.join([str(stt / 60), str(stt % 60)])

 cell[2] = str(NewTimingID)

 cell[3] = r[3]

 cell[4] = r[4]

75

 cell[5] = r[5]

 cell[6] = cell[2]

 cell[7] = r[7]

 newrow = '\t'.join(cell)

 my_ss_writer.write(newrow)

 # Update subarea_timing

 st_file = open('initial/subarea_timing', 'rb')

 find = False

 for row1 in st_file:

 r1 = row1.split('\t')

 if r1[0] == str(s.id):

 r1[0] = str(NewTimingID)

 my_st_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[0] != str(s.id): break

 # Update subarea_phasing

 sp_file = open('initial/subarea_phasing', 'rb')

 find = False

 for row1 in sp_file:

 r1 = row1.split('\t')

 if r1[1] == str(s.id):

 r1[1] = str(NewTimingID)

76

 my_sp_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[1] != str(s.id): break

 elif ts[0] >= 360 and ts[1] <= 600:

 for s in self.node_map[r[0]].timing_map.values():

 if s.start_time == 360: break

 self.node_map[r[0]].timing_map[NewTimingID] = s

 self.node_map[r[0]].timing_map[NewTimingID].start_time = ts[0]

 self.node_map[r[0]].timing_map[NewTimingID].end_time = ts[1]

 cell = range(8)

 cell[0] = str(r[0])

 stt = self.node_map[r[0]].timing_map[NewTimingID].start_time

 if len(str(stt % 60)) == 1:

 cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)])

 else:

 cell[1] = ':'.join([str(stt / 60), str(stt % 60)])

 cell[2] = str(NewTimingID)

 cell[3] = r[3]

 cell[4] = r[4]

77

 cell[5] = r[5]

 cell[6] = cell[2]

 cell[7] = r[7]

 newrow = '\t'.join(cell)

 my_ss_writer.write(newrow)

 # Update subarea_timing

 st_file = open('initial/subarea_timing', 'rb')

 find = False

 for row1 in st_file:

 r1 = row1.split('\t')

 if r1[0] == str(s.id):

 r1[0] = str(NewTimingID)

 my_st_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[0] != str(s.id): break

 # Update subarea_phasing

 find = False

 sp_file = open('initial/subarea_phasing', 'rb')

 for row1 in sp_file:

 r1 = row1.split('\t')

 if r1[1] == str(s.id):

78

 r1[1] = str(NewTimingID)

 my_sp_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[1] != str(s.id): break

 elif ts[0] == 540 and ts[1] == 960:

 for s in self.node_map[r[0]].timing_map.values(): # Break the interval

into [540,600]

 if s.start_time == 360: break

 self.node_map[r[0]].timing_map[NewTimingID] = s

 self.node_map[r[0]].timing_map[NewTimingID].start_time = 540

 self.node_map[r[0]].timing_map[NewTimingID].end_time = 600

 cell = range(8)

 cell[0] = str(r[0])

 stt = self.node_map[r[0]].timing_map[NewTimingID].start_time

 if len(str(stt % 60)) == 1:

 cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)])

 else:

 cell[1] = ':'.join([str(stt / 60), str(stt % 60)])

 cell[2] = str(NewTimingID)

 cell[3] = r[3]

79

 cell[4] = r[4]

 cell[5] = r[5]

 cell[6] = cell[2]

 cell[7] = r[7]

 newrow = '\t'.join(cell)

 my_ss_writer.write(newrow)

 # Update subarea_timing

 st_file = open('initial/subarea_timing', 'rb')

 find = False

 for row1 in st_file:

 r1 = row1.split('\t')

 if r1[0] == str(s.id):

 r1[0] = str(NewTimingID)

 my_st_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[0] != str(s.id): break

 # Update subarea_phasing

 find = False

 sp_file = open('initial/subarea_phasing', 'rb')

 for row1 in sp_file:

 r1 = row1.split('\t')

80

 if r1[1] == str(s.id):

 r1[1] = str(NewTimingID)

 my_sp_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[1] != str(s.id): break

 while NewTimingID in Original_TimingID: NewTimingID += 1

 Original_TimingID.append(NewTimingID)

 for s in self.node_map[r[0]].timing_map.values(): # Break the interval

into [600,900]

 if s.start_time == 600: break

 self.node_map[r[0]].timing_map[NewTimingID] = s

 self.node_map[r[0]].timing_map[NewTimingID].start_time = 600

 self.node_map[r[0]].timing_map[NewTimingID].end_time = 900

 cell = range(8)

 cell[0] = str(r[0])

 stt = self.node_map[r[0]].timing_map[NewTimingID].start_time

 if len(str(stt % 60)) == 1:

 cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)])

 else:

 cell[1] = ':'.join([str(stt / 60), str(stt % 60)])

81

 cell[2] = str(NewTimingID)

 cell[3] = r[3]

 cell[4] = r[4]

 cell[5] = r[5]

 cell[6] = cell[2]

 cell[7] = r[7]

 newrow = '\t'.join(cell)

 my_ss_writer.write(newrow)

 # Update subarea_timing

 find = False

 st_file = open('initial/subarea_timing', 'rb')

 for row1 in st_file:

 r1 = row1.split('\t')

 if r1[0] == str(s.id):

 r1[0] = str(NewTimingID)

 my_st_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[0] != str(s.id): break

 # Update subarea_phasing

 sp_file = open('initial/subarea_phasing', 'rb')

 find = False

82

 for row1 in sp_file:

 r1 = row1.split('\t')

 if r1[1] == str(s.id):

 r1[1] = str(NewTimingID)

 my_sp_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[1] != str(s.id): break

 while NewTimingID in Original_TimingID: NewTimingID += 1

 Original_TimingID.append(NewTimingID)

 for s in self.node_map[r[0]].timing_map.values(): # Break the interval

into [900,960]

 if s.start_time == 900: break

 self.node_map[r[0]].timing_map[NewTimingID] = s

 self.node_map[r[0]].timing_map[NewTimingID].start_time = 900

 self.node_map[r[0]].timing_map[NewTimingID].end_time = 960

 cell = range(8)

 cell[0] = str(r[0])

 stt = self.node_map[r[0]].timing_map[NewTimingID].start_time

 if len(str(stt % 60)) == 1:

 cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)])

 else:

83

 cell[1] = ':'.join([str(stt / 60), str(stt % 60)])

 cell[2] = str(NewTimingID)

 cell[3] = r[3]

 cell[4] = r[4]

 cell[5] = r[5]

 cell[6] = cell[2]

 cell[7] = r[7]

 newrow = '\t'.join(cell)

 my_ss_writer.write(newrow)

 # Update subarea_timing

 st_file = open('initial/subarea_timing', 'rb')

 find = False

 for row1 in st_file:

 r1 = row1.split('\t')

 if r1[0] == str(s.id):

 r1[0] = str(NewTimingID)

 my_st_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[0] != str(s.id): break

 # Update subarea_phasing

84

 sp_file = open('initial/subarea_phasing', 'rb')

 find = False

 for row1 in sp_file:

 r1 = row1.split('\t')

 if r1[1] == str(s.id):

 r1[1] = str(NewTimingID)

 my_sp_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[1] != str(s.id): break

 elif ts[0] >= 960 and ts[1] <= 1140:

 for s in self.node_map[r[0]].timing_map.values():

 if s.start_time == 900: break

 self.node_map[r[0]].timing_map[NewTimingID] = s

 self.node_map[r[0]].timing_map[NewTimingID].start_time = ts[0]

 self.node_map[r[0]].timing_map[NewTimingID].end_time = ts[1]

 cell = range(8)

 cell[0] = str(r[0])

 stt = self.node_map[r[0]].timing_map[NewTimingID].start_time

 if len(str(stt % 60)) == 1:

 cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)])

 else:

85

 cell[1] = ':'.join([str(stt / 60), str(stt % 60)])

 cell[2] = str(NewTimingID)

 cell[3] = r[3]

 cell[4] = r[4]

 cell[5] = r[5]

 cell[6] = cell[2]

 cell[7] = r[7]

 newrow = '\t'.join(cell)

 my_ss_writer.write(newrow)

 # Update subarea_timing

 find = False

 st_file = open('initial/subarea_timing', 'rb')

 for row1 in st_file:

 r1 = row1.split('\t')

 if r1[0] == str(s.id):

 r1[0] = str(NewTimingID)

 my_st_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[0] != str(s.id): break

 # Update subarea_phasing

86

 sp_file = open('initial/subarea_phasing', 'rb')

 find = False

 for row1 in sp_file:

 r1 = row1.split('\t')

 if r1[1] == str(s.id):

 r1[1] = str(NewTimingID)

 my_sp_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[1] != str(s.id): break

 elif ts[0] >= 1140:

 for s in self.node_map[r[0]].timing_map.values():

 if s.start_time == 1140: break

 self.node_map[r[0]].timing_map[NewTimingID] = s

 self.node_map[r[0]].timing_map[NewTimingID].start_time = ts[0]

 self.node_map[r[0]].timing_map[NewTimingID].end_time = ts[1]

 cell = range(8)

 cell[0] = str(r[0])

 stt = self.node_map[r[0]].timing_map[NewTimingID].start_time

 if len(str(stt % 60)) == 1:

 cell[1] = ':'.join([str(stt / 60), '0' + str(stt % 60)])

 else:

87

 cell[1] = ':'.join([str(stt / 60), str(stt % 60)])

 cell[2] = str(NewTimingID)

 cell[3] = r[3]

 cell[4] = r[4]

 cell[5] = r[5]

 cell[6] = cell[2]

 cell[7] = r[7]

 newrow = '\t'.join(cell)

 my_ss_writer.write(newrow)

 # Update subarea_timing

 st_file = open('initial/subarea_timing', 'rb')

 find = False

 for row1 in st_file:

 r1 = row1.split('\t')

 if r1[0] == str(s.id):

 r1[0] = str(NewTimingID)

 my_st_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[0] != str(s.id): break

 # Update subarea_phasing

88

 find = False

 sp_file = open('initial/subarea_phasing', 'rb')

 for row1 in sp_file:

 r1 = row1.split('\t')

 if r1[1] == str(s.id):

 r1[1] = str(NewTimingID)

 my_sp_writer.write('\t'.join(r1))

 find = True

 r1 = row1.split('\t')

 if find and r1[1] != str(s.id): break

 else:

 my_ss_writer.write(row) # Nothing changes for other nodes in

subarea_signal

 # Update subarea_timing

 st_file = open('initial/subarea_timing', 'rb')

 find = False

 for row1 in st_file:

 r1 = row1.split('\t')

 if r1[0] == r[2]:

 my_st_writer.write(row1)

 find = True

 if find and r1[0] != r[2]: break

89

 # Update subarea_phasing

 sp_file = open('initial/subarea_phasing', 'rb')

 find = False

 for row1 in sp_file:

 r1 = row1.split('\t')

 if r1[1] == r[2]:

 my_sp_writer.write(row1)

 find = True

 if find and r1[1] != r[2]: break

 def creatNewCoordinator(self):

 new_sc_file = 'subarea_coordinator_new'

 my_sc_writer = open(new_sc_file, "wb")

 new_ss_file = open('subarea_signal_new', 'rb')

 first_row = True

 for row in new_ss_file:

 r = row.split('\t')

 if first_row:

 my_sc_writer.write('\t'.join(['ID', 'NOTES']))

 first_row = False

 else:

 my_sc_writer.write('\t'.join([r[2], 'IntControl Generated']))

90

 def __update(self): # Update the cycle length

 for node in self.node_map.values():

 for time in node.timing_map.values():

 new_cycle_time = 0

 for phase in time.phase_map.values():

 new_cycle_time += phase.green + phase.yellow + phase.red_clear

 time.cycle_time = new_cycle_time

 def optimize_delay(self, time_slot):

 write1 = []

 write=[]

 mynodes=self.node_map.values()

 mynodes.sort()

 for node in mynodes:

 for time in node.timing_map.values():

 if time.start_time <= time_slot and time.end_time >= time_slot + 15:

 old_ave_delay = time.delay(time_slot)

 min_ave_delay = old_ave_delay

 optimal = time.phase_map.values()

 total_green = 0

 if min_ave_delay != 0:

 for phase in time.phase_map.values():

 total_green += phase.green

91

 if len(time.phase_map.keys()) == 2:

 for g1 in range(8, total_green - 7):

 g2 = total_green - g1

 time.phase_map['1'].green = g1

 time.phase_map['2'].green = g2

 newdelay = time.delay(time_slot)

 print 'newdelay = ' + str(newdelay)

 print 'min_ave_delay = ' + str(min_ave_delay)

 if newdelay < min_ave_delay:

 min_ave_delay = newdelay

 optimal = time.phase_map.values()

 if len(time.phase_map.keys()) == 3:

 for g1 in range(5, total_green - 9):

 for g2 in range(5, total_green - 9):

 for g3 in range(5, total_green - 9):

 if g1 + g2 + g3 == total_green:

 time.phase_map['1'].green = g1

 time.phase_map['2'].green = g2

 time.phase_map['3'].green = g3

 if time.delay(time_slot) <= min_ave_delay:

 min_ave_delay = time.delay(time_slot)

 optimal = time.phase_map.values()

 if len(time.phase_map.keys()) == 4:

92

 for g1 in range(5, total_green - 20):

 for g2 in range(8, total_green - 17):

 for g3 in range(5, total_green - 20):

 for g4 in range(8, total_green - 17):

 if g1 + g2 + g3 + g4 == total_green:

 time.phase_map['1'].green = g1

 time.phase_map['2'].green = g2

 time.phase_map['3'].green = g3

 time.phase_map['4'].green = g4

 if time.delay(time_slot) < min_ave_delay:

 min_ave_delay = time.delay(time_slot)

 optimal = time.phase_map.values()

 # record

 ttss = ':'.join([str(time_slot / 60), str(time_slot % 60)]) + '-' + ':'.join(

 [str((time_slot + 15) / 60), str((time_slot + 15) % 60)])

 write1.append('\t'.join([str(node.id), ttss, str(old_ave_delay),

str(min_ave_delay)]))

 write1.append(chr(10))

 for phase in optimal:

 cell = range(11)

 cell[0] = time.id

 cell[1] = str(phase.id)

93

 cell[2] = str(phase.next)

 cell[3] = str(phase.green)

 cell[4] = str(phase.maxgreen)

 cell[5] = str(phase.extgreen)

 cell[6] = str(phase.yellow)

 cell[7] = str(phase.red_clear)

 cell[8] = str(phase.ring)

 cell[9] = str(phase.barrier)

 cell[10] = 'NODE ' + str(node.id)

 newrow = '\t'.join(cell)

 write.append(newrow)

 break

 # report

 if len(str(time_slot % 60)) == 1:

 cel = '-'.join([str(time_slot / 60), '0' + str(time_slot % 60)])

 else:

 cel = '-'.join([str(time_slot / 60), str(time_slot % 60)])

 filename = 'subarea_timing_new_' + cel

 my_writer = open(filename, "wb")

 st_file = open('initial/subarea_timing', 'rb')

 for row in st_file:

 my_writer.write(row)

 break

94

 for newrows in write:

 my_writer.write(newrows)

 my_writer.write(chr(10))

 filename1 = 'Delay_record' + cel

 my_writer1 = open(filename1, "wb")

 my_writer1.write('\t'.join(['Node', 'Time_Slot', 'Before', 'After']))

 my_writer1.write(chr(10))

 for newrows in write1:

 my_writer1.write(newrows)

 def __timedelay(self, node, timing):

 totalgreen = 0

 totalvol = 0

 for phase in self.node_map[node].timing_map[timing].phase_map.values():

 totalgreen += phase.green

 totalvol += phase.vol

 Max_green = totalgreen * 2

 print Max_green

 Best = [0, 999999]

 for g in range(1, Max_green):

 r = g * 1.4

 ct = g + r

95

 delay = self.__delay_function(g, 3, ct, totalvol)['delay']

 if delay < Best[1]:

 Best[0] = g

 Best[1] = delay

 print g, delay, ct, totalvol

 for phase in self.node_map[node].timing_map[timing].phase_map.values():

 phase.green = float(phase.green /

self.node_map[node].timing_map[timing].cycle_time) * float(Best[0])

 def __delayRatio(self, node, timing):

 totalgreen = 0

 totalvol = 0

 totaldelay = 0

 for phase in self.node_map[node].timing_map[timing].phase_map.values():

 totalgreen += phase.green

 totalvol += float(phase.vol)

 totaldelay += phase.delay

 for phase in self.node_map[node].timing_map[timing].phase_map.values():

 phase.green = int(float(phase.vol / totalvol) * totalgreen)

 def optimize_delayRatio(self):

 for node in self.node_map.values():

 for time in node.timing_map.values():

96

 self.__delayRatio(node.id, time.id)

 self.__update()

 self.__delay()

 def report(self, node, time, phase):

 return [self.node_map[node].timing_map[time].phase_map[phase].delay,

 self.node_map[node].timing_map[time].phase_map[phase].check1,

 self.node_map[node].timing_map[time].phase_map[phase].check2,

 self.node_map[node].timing_map[time].phase_map[phase].check3,

 self.node_map[node].timing_map[time].phase_map[phase].status]

import time

import random

start = time.time()

import random

nodefile = open('initial/node', "rb")

nodes = []

for row in nodefile:

 nodes.append(row[:-2])

print str(len(nodes)) + ' nodes in the network to be optimized'

mynetwork = Network(nodes)

97

elapsed = (time.time() - start) / 60.0

print 'initial cost %s' % elapsed

for h in range(360, 600, 15) + range(900, 1140, 15):

if True:

 mynetwork.optimize_delay(h)

 print h

 elapsed = (time.time() - start) / 60.0

 print 'time cost %s' % elapsed

h = 1125

mynetwork.optimize_delay(h)

print h

print 'time cost %s' % elapsed

print 'ready'

mynetwork.CreatNewTimingID()

mynetwork.creatNewCoordinator()

print 'new Timing has been assigned'

mynetwork.optimize4()

elapsed = time.time() - start

print 'optimize4 cost %s' % elapsed

98

mynetwork.optimize4()

mynetwork.optimize4()

elapsed = time.time() - start

print 'total cost %s' % elapsed

mynetwork.new_timing_file()

	Purdue University
	Purdue e-Pubs
	4-2016

	Dynamic green split optimization in intersection signal design for urban street network
	Peng Jiao
	Recommended Citation

	Blank Page

