
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

4-2016

User-centric workload analytics: Towards better
cluster management
Suhas Raveesh Javagal
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Statistics
and Probability Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Javagal, Suhas Raveesh, "User-centric workload analytics: Towards better cluster management" (2016). Open Access Theses. 780.
https://docs.lib.purdue.edu/open_access_theses/780

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/780?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
Head of the Departmental Graduate Program Date

Suhas Raveesh Javagal

User-Centric Workload Analytics: Towards Better Cluster Management

Master of Science

Dr. Saurabh Bagchi
Chair

Dr. Jennifer Neville

Dr. Xiangyu Zhang

Dr. Saurabh Bagchi

Dr. William J Gorman, III 4/14/2016

USER-CENTRIC WORKLOAD ANALYTICS: TOWARDS BETTER CLUSTER

MANAGEMENT

A Thesis

Submitted to the Faculty

of

Purdue University

by

Suhas Raveesh Javagal

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2016

Purdue University

West Lafayette, Indiana

ii

Dedicated to my parents

and

all my sisters for their love, support and inspiration.

iii

ACKNOWLEDGMENTS

This dissertation has been possible because of contribution of many people at Purdue.

I thank every one who has made this possible and because of whom I have had a

memorable graduate research experience.

I would like to express my gratitude to my advisor Prof. Saurabh Bagchi for giving me

this opportunity to work on the research project and the freedom to experiment new

ideas and explore new possibilities. His constant support and guidance has helped

me recover when I faltered and tackle crisis situations.

My earnest thanks to Subrata Mitra, my colleague whose contributions to this project

has been indispensable. His knowledge about distributed systems domain was very

useful to get the necessary kick-start for the project. During this project, I have

learnt a lot from him starting understanding distributed system behavior to LaTeX

tips and tricks.

I would like to thank Prof. Jennifer Neville and Prof. Kihong Park, for taking time

to clarify my doubts and questions that arose at various times during the project

execution.

My earnest gratitude to Chuck Schwarz and Stephen Harrell, from Information Tech-

nology at Purdue (ITaP), for helping us get access to the various data sets in spite of

their busy schedules.

I thank Todd Gamblin and Adam Moody, from Lawrence Livermore National labo-

ratory, for giving us the data to perform a comparative study.

I would like to thank Michael Shuey and Dr. Phil Cheeseman, from ITaP for their

insightful comments and responses for the questions we posed. I would also like to

iv

thank Preston Smith, Dr. Carol Song for providing us the clearance to access and

release the data sets.

I am also grateful to the staff at Computer science and Electrical and Computer En-

gineering department of Purdue University, for their various forms of support during

my graduate study.

I am very thankful to my friends, Varun Vasudevan and Yudong Cao, and my col-

leagues at Dependable Computing Systems Lab (DCSL) for their support and invalu-

able comments that has contributed for improvement in various dimensions.

Finally, I appreciate the financial support from NSF that funded the project discussed

in this dissertation.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 INTRODUCTION . 1

2 DETAILS OF CLUSTER HARDWARE 8

3 DATA SOURCES AND COLLECTION METHODOLOGY 11

4 A TECHNIQUE TO CLASSIFY SIMILAR APPLICATIONS 14

5 USE OF PROACTIVE ANALYTICS . 16

5.1 Where to Focus Attention? . 16

5.2 Why Jobs Fail? . 19

5.3 Whom to Blame: Finding Buginess of a Library 21

6 WHAT ARE THE PATTERNS OF RESOURCE REQUEST? 25

6.1 Runtimes of Jobs . 26

6.2 Is the Current Resource Provisioning Good Enough? 30

7 ANALYSIS OF MEMORY USAGE: THE ETERNAL PAIN 33

8 CASE STUDIES . 38

9 THREATS OF VALIDITY . 41

10 RELATED WORK . 44

vi

Page

11 CONCLUSION . 46

REFERENCES . 47

vii

LIST OF TABLES

Table Page

1.1 Key observations, possible implications and recommendations 3

1.2 Summary of workload data analyzed 5

5.1 Top 10 applications used in Conte . 18

5.2 Few major types of job failures . 20

5.3 Example instance where buginess fails 23

viii

LIST OF FIGURES

Figure Page

1.1 CPU hours consumed by jobs of different scales 6

3.1 Example of an accounting log for Conte 11

3.2 Example of PBS job submission script 12

5.1 Histogram of top 500 libraries used by unique users Conte 17

5.2 Histogram of top 500 libraries used by the jobs in Conte. 17

5.3 FScore distribution in Conte . 22

6.1 CDF of requested walltime . 25

6.2 CDF of requested memory. 25

6.3 CDF of queue time for walltime ranges 26

6.4 Correlation of major page fault with requested time 26

6.5 Infiniband read rate for app groups. 26

6.6 Lustre read rate for app groups. 26

6.7 Avg. memory used by app groups. 26

6.8 Sorted histogram of jobs w.r.t number of nodes requested in Conte . . 27

6.9 Percentage of the requested time used by the jobs 28

6.10 Percentage of the requested time used by jobs in Sierra 28

7.1 CDF of peak major page fault . 34

ix

Figure Page

7.2 Percentage of jobs > threshold peak major page fault 34

7.3 App groups with jobs > threshold peak major page fault 34

7.4 Sorted histogram of jobs w.r.t number of cores requested in Conte . . . 35

7.5 Top 50 users sorted based on number of jobs submitted in Conte . . . 35

7.6 Effect of ppn in non-shared environment 36

7.7 Effect of ppn in shared environment . 36

9.1 Library distinctiveness score . 42

x

ABSTRACT

Javagal, Suhas Raveesh MS, Purdue University, May 2016. User-Centric Work-
load Analytics: Towards Better Cluster Management. Major Professor: Saurabh
Bagchi.

Effective management of computing clusters and providing high quality customer

support is not a trivial task. Due to the rise of community clusters there is an increase

in the diversity of workloads and the user demographic. Owing to this and privacy

concerns of the user, it is difficult to identify performance issues, reduce resource

wastage and understand implicit user demands. In this thesis, we perform in-depth

analysis of user behavior, performance issues, resource usage patterns and failures in

the workloads collected from a university-wide community cluster, Conte, and two

clusters maintained by a government laboratory. We also introduce a set of novel

analysis techniques that can be used to identify many hidden patterns and diagnose

performance issues. Based on our analysis, we provide concrete suggestions for the

cluster administrator and present case studies highlighting how such information can

be used to proactively solve many user issues, ultimately leading to better quality of

service.

1

1 INTRODUCTION

Large-scale high performance computing (HPC) clusters have become common in

academic, industrial, and government for compute-intensive scientific and big-data .

These clusters solve problems that would take millennia on personal computers, but

managing such large shared resources can be very complex. Managing a large cluster

requires administrators to balance requirements form a diverse set of users.

Supercomputers have been used by government laboratories for decades, and in the

late 1990’s clusters became the predominant architecture for these machines. Typ-

ically, they are paid for by national programs and managed and maintained by a

central HPC center. Time on the machines is allocated through a competitive pro-

posal process. Users with accepted proposals share the machine and can run jobs

until they use up their allocated time. This model has been adopted in majority of

the government sponsored research labs (e.g., LLNL, LANL, Oak Ridge, NASA etc.

in the US) and industry.

Large, focused organizations can afford to buy centralized resources, but in many

universities, sub-organizations (e.g., research groups) are mostly independent in terms

of deciding their spending budget. Often, no single research group can maintain its

own cluster—the hardware and administrative costs would be too high. Universities

have begun to widely adopt a community cluster model. In this model, sub-groups

buy assets (nodes and other hardware), and these are then assembled and managed

by a central IT organization. These clusters have flexible usage policies, such that

partners in a community cluster have ready access to the capacity they purchase

(much like government cluster allocations), but they can use more resources when

other groups’ nodes are unused. This allows for opportunistic use for the end users and

2

higher resource utilization for the cluster managers. System administrators take care

of security patches, software installation, operating system upgrades, and hardware

repair. Centralizing this expertise cuts costs and allows disparate groups to buy large

machines with competitive prices for volume purchases. Most importantly, researchers

can focus on their research.

Managing large clusters is challenging for many reasons.

Diversity of users. In the community-style clusters the user base is composed of

students, professors and research scholars coming from a diverse set of backgrounds

such as computer science, biology, physics, linguistics, having skills and understanding

of computer systems ranging from novice to experts. Likewise, at government labs,

there are many different research scientists, as well as university guests and even

student interns. These users execute many different types of parallel applications.

Some run a large number of short single-core jobs (such as, parameter sweep for a

short simulation), and others who execute long-running jobs using many hundreds

of cores (such as constructing the spatial configuration of proteins that is the most

stable, that is to have the lowest energy state). Thus the jobs span the spectrum of

resource usage. This is a consequence of many organizational sub-units.

Diversity of execution environments. It is challenging to create execution envi-

ronments that are optimized for this wide diversity of users and applications. The ex-

ecution environment encompasses the totality of hardware configurations (e.g., num-

ber of cores on a node, amount of memory on a node, the network backplane, etc.)

and software configurations. Pre-installing applications and associated libraries is the

only viable solution as the OS versions of packages are often very out of date, and

not usable for the bleeding-edge apps. HPC codes depend on particular versions of

libraries, sometimes patch them, require special builds, etc. However, pre-installing

implies recurring work for the cluster administrators in updating these software pack-

ages and ensuring that dependencies between them are considered during any update

process. In reality, most HPC centers are understaffed, and installing software in

3

Table 1.1.
Key observations, possible implications and recommendations from our
analysis.

Observations Possible implications Recommendations Ref.

O1: Some non-preinstalled li-

braries and applications are

highly popular.

Users are installing the

libraries on their own

and risk using a non-

optimized or buggy ver-

sion.

R1: Such hot applications

and libraries should be pre-

installed, and on fast storage,

to improve user experience and

avoid job failures.

Sec. 5.1

O2: Use of 17 libraries almost

always lead to job failures due

to memory exhaustion.

These libraries might

have internal memory

bugs.

R2: We provide a technique

by which source of a failure can

be localized.

Sec. 5.2,

Fig. 5.3

O3: 63% of the jobs use less

than 1% of the requested time.

Long queue time, sched-

uler cannot perform effi-

ciently.

R3: Educate users about

queuing and scheduling.

Sec. 6,

Sec. 8

O4: 70% of the jobs use

less than 50% of the requested

memory and a few users used

more than requested memory.

Wastage of resources,

long queue time, other

jobs may suffer.

R4: Train users about mem-

ory profiling and scheduling.

Enforce memory throttling.

Sec. 6,

Fig. 6.2

O5: Memory thrashing was

found in 20% of the total jobs,

which were submitted by 75%

of the users.

Extreme slowdown and

jobs exceed time limit.

R5: Train users about soft-

ware design and use of more

number of nodes to avoid

memory thrashing.

Sec. 7

O6: For shared and non-

shared environment, memory

thrashing behavior is exactly

opposite w.r.t processor per

node value.

Jobs fail or performance

degrades in a seemingly

arbitrary manner for non-

expert users.

R6: Training should cover the

difference of behavior between

shared and non-shared envi-

ronment.

Fig. 7.6,

Fig. 7.7

O7: The top I/O and network

resource demands are orders of

magnitude higher than the me-

dian.

Over provisioning of these

resources in the large ho-

mogeneous cluster.

R7: Better capacity planning

can multiple sub-clusters tai-

lored toward these high de-

mand jobs.

Sec. 6.2

4

all the configurations takes a lot of bandwidth. User support team at TACC@UT

Austin has only ∼20–25 people supporting 10k users. LC@LLNL has 2.5k users and

a similar size support team, but dedicated mainly to a few mission-critical codes.

RCAC@Purdue has ∼20 technical staff supporting multiple clusters and ∼1.2k users

and NERSC has 6k users and a smaller support team. Thus, the user support sys-

tem must embrace more automation and heavily use workload analytics to increase

management efficiency. In recent works, Gamblin et al. [1] introduced an automated

way to manage complex installations, Agrawal et al. [2] introduced monitoring tool

for tracking finer details of a build-system and the environment.

Human factors. Users of large clusters typically create and submit their own job

scripts that wrap applications within each script. The scripts allow customization of

the execution in a wide variety of ways. Due to the complexity of some scripts and

the lack of any standard, parsable template, it is often difficult to identify what are

the core applications that are being invoked from a script. From the command line

too, the user may specify various parameters, such as the memory and the maximum

wall clock requirement of the application. Understandably, with the wide diversity

of users, such settings may not be optimal. For example, if the user specifies too

small a maximum wall clock time for her script to run and the script reaches that

limit, then the job is killed. The system admins may want to monitor sub-optimal

configurations, understand the source of inefficiency on a per-application basis and

finally work with users to correct them. All this has to be done in a manner that

the user feels comfortable with, i.e., does not feel her privacy is being intruded or

that her expertise is being questioned. Besides, for this approach to be scalable to

the large number of applications and users considering a limited number of system

admins, there is a need for significant automation in this aspect.

Here we introduce new ways to analyze the workload data that is being regularly

collected in major compute clusters, with the focus on easing systems management in

such community clusters. The analysis is meant to give insight into the characteris-

5

tics of the applications that are run on the clusters and the connection between users,

applications and their resource usage patterns. The characteristics that we are par-

ticularly interested in are those that are often implicated in performance anomalies

or inefficient resource usage. For example, analysis of major page faults in the appli-

cations. Our user-centric analysis helps us close the loop by contacting a limited set

of users and focus on a limited set of applications for manual debugging. The analysis

is done in a scalable manner by use of clustering for applications and users.

Table 1.2.
Summary of workload data analyzed analysed on Conte, Cab and Sierra.

Details University community cluster Govt. Lab clusters

Duration Oct 2014 – Mar 2015 May 2015 – Nov 2015

Total number of jobs 489,971 247,888 and 227,684

Number of unique users 306 374 and 207

No. of unique application behaviors 3,373 -NA-

Getting into the specifics, we analyze the workload traces for 489, 971 jobs from one

of the largest university-wide community clusters with wide variety of user base and

475, 572 jobs from two supercomputing clusters hosted by a government lab working

on multiple domains of cutting edge science, as highlighted in Table 1.2. We also

make all the workload data from our community cluster available for the researchers

through an open repository [3].

Some of our key observations and their implications are as follows — the more detailed

list is in Table 1.1.

1. The most visible contrast in the nature of workloads between university and

government clusters is evident in the total CPU hours consumed by jobs running

at different scales (Fig.1.1). Most of the resources in university cluster are used

by small jobs (less than 64 cores) while the government laboratory resource

consumption is dominated by very large jobs.

6

Figure 1.1. CPU hours consumed by jobs of different scales (Conte vs
Cab). Figure on left: Conte, Figure on right: Cab

2. Some libraries are overwhelmingly popular across applications and users. These

can be hand-optimized, replicated and placed in local storage, and pre-installed

on these systems. We found that out of 3080 unique application libraries that

all jobs use, the top 10 libraries are used by 40% of the users.

3. A few users contribute a disproportionately high number of major page faults.

We found that the top 10 users of the system contribute to 50% of the jobs with

high page faults. After having brief individual discussions with some of these

users, we identified the likely causes of these page faults. In the later sections,

we identify what configurations of the applications lead to such performance

anomalies, e.g., using large number of cores across machines by an application

(as opposed to packing these cores on a few machines).

4. Our analysis sheds light to influence capacity planning and future cluster ac-

quisitions. For example, from the university cluster workload, we found that

few applications use extremely high network and I/O (4% and 2% respectively).

This implies a need for sub-cluster with high bandwidth backplane and close-by

storage. This need is also acknowledged by our partners at University’s central

7

IT organization managing the cluster and our observation will figure in their

future acquisition decision.

There have been quite a few works on workload characterization in general [4–6] and

failure analysis [7–9], but none of those tried to understand user behavior in order to

provide better customer support and improve resource planning and overall quality

of cluster management. Moreover, one of our workloads gathered from a community

cluster has a unique diversity of users not found in many other type of workloads.

Concretely, this work makes the following contributions:

1. Analysis of usage trends and workloads on large clusters;

2. A novel set of techniques for analyzing cluster workloads:

(a) Classifying applications without violating user privacy,

(b) Statistically tracing failure root causes to libraries,

(c) Predicting reasons for job failures using exit codes and syslog messages,

and

(d) Detecting anomalies in memory usage and other resources;

3. Validation of the utility of our techniques through discussions with users; and

4. A set of recommendations for system managers to proactively provide service to

users based on the results of our analysis.

8

2 DETAILS OF CLUSTER HARDWARE

Node hardware, network and filesystem:

University community cluster (Conte): University community cluster has 580

nodes each with two 16 core Intel Xeon E5-2670 processors, two Xeon Phi accelerator

cards and 64GB of memory. Nodes are connected through a 40GB/s Infiniband (IB)

network. Home directories and pre-compiled application directories are available from

each node via NFS and sustain approximately 2GB/s. These filesystems are used

university wide and are accessed through the IP over IB egress. The scratch filesystem

used by the jobs for this cluster is a Lustre 2.4 installation that can sustain upto

23GB/s and is connected via the above-mentioned IB network. The total capacity is

1.4PB with current utilization being 49%. Every node has a local filesystem too but

that is only usable by the operating system and not by user applications.

Government lab clusters (Cab and Sierra): The first government lab cluster

(Cab) has 1,296 nodes each with a 16 core Intel Xeon E5-2670 processor and 32GB of

memory. The second government lab cluster (Sierra) has 1,944 nodes each with a 12

core Intel Xeon EP X5660 processor and 24GB of memory. In both clusters, nodes

are connected through a QDR Infiniband network.

Our dataset and corresponding analyses are more complete for Conte than for the

government lab clusters Cab and Sierra. For any plot, if no designation is given, it

is to be understood that the plot pertains to Conte; otherwise, we make it explicit in

the figure caption.

Software and Scheduling:

University community cluster (Conte): Each node runs RHEL 6.6 OS. The

nodes are administrated using the Kickstart installers and Puppet configuration man-

9

agement software. Along with default RHEL libraries, the environment also pro-

vides many other important pre-installed libraries and applications which can be

used through command: module load <name>. The scheduling is done by TORQUE

4, which is an open source implementation of Portable Batch System (PBS) and

with Moab as the resources manager. At submission time, each job requests for a

certain time duration of execution (a wall clock time), number of nodes and, option-

ally, amount of memory needed. These are specified through PBS submission scripts.

When a job exceeds the specified time limit, it is killed. A job is also killed by an

out-of-memory (OOM) killer, a kernel level memory manager, if it exhausts available

physical memory and swap space. Job scheduling uses a community cluster alloca-

tion method in which, some research groups purchase nodes and get semi-dedicated

access to the nodes that they purchase through their own queue and can also access

a far greater number of nodes from the general pool through a shared queue (called

standby queue), on demand and opportunistically. For the purchased nodes, research

groups get a service level agreement (SLA) of maximum 4 hours wait time for the job

at the head of their group-specific queue. When those nodes are not in use, jobs from

the standby queue are scheduled on those nodes with a maximum walltime limit of 4

hours. By default, only a single job is scheduled on an entire node giving dedicated

access to all the resources. However, sharing can be enabled using a configuration

parameter in the job submission scripts. We found it intriguing to know, and discuss

in Section 6, why a user would submit a job in a shared environment while they can

get dedicated nodes by changing one configuration parameter in the script.

Government lab clusters (Cab and Sierra): In both the clusters, each node

runs TOSS 2.2 OS. Moab is used as a workload manager with SLURM as the native

scheduler. Nodes do not have a disk hence memory paging is not supported and jobs

would be killed when they run out of time or memory. Typically a job is allowed

to use maximum of 258 nodes. However under special circumstances, it is possible

to use larger number of nodes or even get a dedicated access to the cluster. There

are Moab accounts associated with every project and these accounts are assigned a

10

target share of the machine. Every submitted job must specify a Moab account so

that resource usage (typically processor minutes) can be tracked and charged to the

associated account. The fair-share scheduling scheme is used [10].

11

3 DATA SOURCES AND COLLECTION METHODOLOGY

Our data collection uses five major components, namely, accounting logs for submit-

ted jobs collected from TORQUE, performance metrics for each node (compute or

storage) collected through TACC Stats, syslog messages at all the compute nodes,

list of shared libraries (*.so) used by the jobs, and job scripts written by the users to

submit the job.

Accounting logs: The accounting logs provides job scheduling related details such

as the job id, queue name, submission time, start and end timestamps, user’s id,

requested resources such as: number of nodes, processors per node, walltime limit

and memory limit. It also contains on which nodes job was actually run, aggregated

resources consumed by the job and an exit status (denoting, whether job ended suc-

cessfully, crashed, or exited due to configuration error or time limit etc.). A snapshot

10/01/2014 00:05:55;E;1660509.machineIP.uni.edu;user=U

group=G jobname=test1 queue=Q ctime=1412131890 qtime=1412131890

etime=1412131890 start=1412136353 end=1412136475

owner=user1@machineIP exec_host=node19/core0/core1/core2/core3

Resource_List.naccesspolicy=shared Resource_List.ncpus=1

Resource_List.neednodes=1:ppn=4 Resource_List.nodect=1

Resource_List.nodes=1:ppn=4 Resource_List.walltime=00:10:00

Exit_status=0 resources_used.cput=00:01:13 resources_used.mem=20mb

resources_used.vmem=25mb resources_used.walltime=00:02:02

Figure 3.1. Example of an accounting log for Conte

of the raw accounting logs is provided in Fig. 3.1.

TACC Stats: TACC stats [11] data provides more fine-grained resource usage pro-

12

file on all the nodes used by the job. For each node, TACC Stats data have periodic

snapshots of various system metrics which include: usage metrics for the local disk

and the Lustre filesystem, Infiniband and IP network traffic, and process and memory

statistics.

Syslog: The Syslog data comprises of kernel and system messages of all nodes. It

contains memory errors, OOM killer messages, filesystem status, etc.

Library lists: The library list data captures the periodic snapshots of the shared

libraries accessed by the jobs in each computing node. Consequently, many such

snapshots will be created corresponding to a long running job. Moreover, a job using

multiple nodes will have files corresponding to libraries loaded in each node. We ag-

gregate this information for a job and use a novel technique to group the applications

based on their libraries used. This is elaborated in Sec. 4.

Job script: A user writes shell scripts to layout the tasks a job would perform.

Depending on the expertise of the user, the complexity of a job script varies greatly,

from a simple task specified through a single command line to a pipeline of tasks

with complex setup for each. However, all scripts must have a set of PBS directives

specifying the resource requirements of the job to the scheduler. An example is shown

in Fig. 3.2.

For our analysis, we align all the data points using the synchronized time on all the

nodes within each cluster.

#PBS job submission script

#PBS -q standby # Use standby queue

#PBS -l nodes=8:ppn=16 # Request 8 nodes & 16 cores per node

#PBS -l walltime=04:00:00 # Will timeout and be killed after 4 hrs

#PBS -l pmem=2gb # Needs maximum 2GB physical memory

Figure 3.2. Example of resources requested through PBS job submission
script

13

Data collection methodology: The data collection is done in its own distinct way

for each types of data. The users’ job scripts are taken from the jobs spool directory

by a cron job and put into a mysql database using pbsacct [12]. Then specific job

scripts indexed by the job-id are pulled from the database. The accounting logs for

the specific time periods are used to find the job-ids and extract those specific job

scripts. The accounting logs corresponding to each job are collected from TORQUE.

The performance statistics are collected by TACC Stats at regular intervals of 10 min-

utes. Increasing this frequency was found to cause occasional disruptions to running

jobs and was therefore not possible. The library lists are collected every 10 mins for

each job using the lsof tool [13]. lsof reports list of shared libraries being used indi-

vidually for each process of the job. Thoroughly anonymized version of the workload

data from Conte were made available to the research community for further analysis

through an open repository, with the first release being in November 2015 [3].

14

4 A TECHNIQUE TO CLASSIFY SIMILAR APPLICATIONS

In this section, we discuss how we classified “similar” applications for the purposes

of further analyses1. Our classification relies on collecting which libraries are being

used at runtime by an application and using the library list for classification. A

reader may wonder if we could simply extract the application names from the job

scripts and cluster the jobs that use the same application together. This simple

strategy runs into two main problems. First, the job scripts are often difficult to

obtain due to privacy reasons. For example, for Conte, we only obtained this after

a lengthy negotiation, long after we had obtained other systems-related data and for

Cab and Sierra, we cannot access the job scripts. Second, job scripts are free form

and there is no foolproof way to extract the application name for it. Even if one

could extract application name, that may not be the granularity at which we want

to cluster for resource analysis. For example, an application like MATLAB may have

completely different (resource usage) behavior depending on which toolbox is being

executed.

There have been prior works, which try to classify applications based on their resource

usage and communication patterns [4, 14]. But typically, the clustering is done in a

more fuzzy manner, e.g.,, either creating clusters according to a specific resource

usage (such as, memory) or loose clusters that combine a diversity of applications.

With our approach, it is possible to map back from the cluster to specific applications

and is thus a less fuzzy approach which relies on using the names of libraries gathered

through runtime data collection.

1Technically, we classify a job where a user script runs one or more jobs on the cluster. A job invokes
one or more applications, though typically it is a single application.

15

Details of the classification technique: We first merge all the libraries cor-

responding to a job-id, remove the path information, and keep the unique library

names. Due to address space randomization, the order of such libraries may vary. So

we further normalize the list by alphabetically sorting the library names. Then we

generate a hash based on this normalized list of library names for each job. We create

the hash using just the base name of the libraries and ignore the version number for

our purpose as we do not want to distinguish between two instances of an application

using two different versions of a library. Once the hash for each job is generated based

on the library list, we group together all the jobs which have exact same hash-value.

We call each such cluster an app group. These app groups are used in Sec 6.2 for

analyzing cluster resource usage.

Evaluation of classification technique: To evaluate the accuracy of our tech-

nique described in the Section 4 we performed a controlled experiment using 30 pop-

ular distinct applications chosen from the domain of scientific computing, image pro-

cessing, video streaming, and numerical computing. We found, our technique was

able to identify distinct applications with an accuracy of 86.7%, i.e., 26 of the 30

applications were classified into their distinct cluster based on the shared libraries

used by them. It was interesting to observe, in many cases the presence of only a few

libraries are enough to distinguish between two otherwise similar looking library list

of two different applications. We discuss further in Sec. 9 the possible shortcoming

due to not including static libraries.

16

5 USE OF PROACTIVE ANALYTICS

In Sec. 5.1 we discuss how to improve customer service by proactively understanding

their salient need. In Sec. 5.2 we analyze job failures and in Sec. 5.3 suggest how

root-cause of many of these failures can be identified, debugged and fixed using the

power of large volumes of data available at cluster administrator’s disposal.

5.1 Where to Focus Attention?

Large clusters usually have a diverse user base running various applications which uses

a large variations of libraries. However, not all applications or libraries are equally

popular. Similarly, there are some users who use the cluster much more frequently

than the rest. In order to provide a more effective customer support with limited

personnel resources (ratio of IT administrators to users served varies between 1:100

and 1:1000 at large universities and government labs), cluster management must

prioritize their efforts. We now discuss how analysis of workloads can help in such

decision making.

Hot libraries: When running their applications, users link with various libraries,

some of which come with the OS distribution, some are pre-installed1 in the environ-

ment, and rest are downloaded and installed by individual users. In this section we

characterize usage patterns of these libraries in Conte across all the jobs and all the

unique users.

We identify unique libraries from all the jobs and discard the libraries that come with

1For example, in Conte, using the module load command, user can access to pre-installed libraries.

17

default OS distribution, libraries from /usr/lib64 and /lib64 — these would falsely

skew our results.

As a result we got 3,080 unique libraries from which we create sorted histograms

by counting how many times each one was used by a job or by an unique user, as

shown in Fig. 5.2 and Fig. 5.1 respectively 2. We also highlight the top 10 most

frequently used libraries. Clearly some libraries are used much more often. e.g., in

Fig. 5.2, the top-most library is used 4X more frequently than the 50-th most used

one. Similarly, in Fig. 5.1, out of 3,080 libraries, each of the top 10 libraries are used

by approximately 40% of the users. We recommend, this information about frequently

invoked libraries can be used to implement better software caching mechanisms which

can improve performance. For example, optimized versions of these libraries for the

specific execution environment can be pre-cached in memory or installed on SSDs for

faster access. This will not only relieve many users from going through a complex

installation process, it will also minimize the risk of using a buggy or unoptimized

version leading to performance problems.

Figure 5.1. Histogram of top
500 libraries used by unique
users Conte

Figure 5.2. Histogram of top
500 libraries used by the jobs
in Conte.

2For subsequent figure captions, if no cluster is explicitly mentioned, it is to be understood that the
result pertains to Conte.

18

Reality vs. speculation: We did a reality check to see what percentage of these

popular libraries identified by our analysis were actually pre-installed on Conte. We

first loaded all the available 117 unique modules (i.e., applications) in the environ-

ment and extracted 950 unique pre-installed libraries from all the paths appended to

LD LIBRARY PATH. We found only 10 out of top 50 and 188 out of top 500 most pop-

ular libraries were pre-installed. This is probably because the currently pre-installed

libraries were chosen based on intuitions and a quantitative analysis such as ours can

inform library installation decisions.

Hot applications: We also tried to identify what applications are most commonly

used, among those which are pre-installed in the environment. In Table 5.1 [15], we

show the top 10 most heavily used out of 117 pre-installed applications in Conte.

By analyzing job script where users explicitly load these modules, we discovered that

many of these pre-installed applications were rarely used and can be replaced by other

applications identified by our suggested analysis technique. Fig. 7.5 shows the sorted

Table 5.1.
Top 10 applications used in Conte. This is obtained by analysing the user
scripts and extracting applications used via module load.

R Devel Matlab NEMO5 LAMMPS NCL SRA-Toolkit Gromacs BWA TopHat

histogram of jobs submitted by top 50 unique users in Conte. It is evident, first

few users contribute most of the jobs. These premium users should enjoy increased

priority from the customer support while resolving any issues. Surprisingly, we found

the top most user also suffers from significant major page faults (we will discuss this in

detail in Sec. 7), highlighting the need for proactive customer support system.

19

5.2 Why Jobs Fail?

Failed jobs translate into wastage of resources in a cluster and therefore understanding

why jobs fail in a cluster is important for the cluster management team as they can

proactively use this information to either provide support to the user if the problem

is at the user’s end or identify any problems in the cluster’s hardware or software

stack. Each submitted job completes with an exit code which can interpreted to

get an indication of the reason for a job’s failure. Usually these exit codes are set

by the job scheduling system or by the kernel but users can also set their own exit

status. However after analyzing job scripts and discussing with cluster administrators

of various supercomputing centers, we identified a general exit code convention as

follows. Exit code 0 denotes a successful run. Negative error codes usually indicate a

failure of the scheduler or the nodes. In the absence of user specified code, exit code

from the last executed command in the job script is reported. Exit code ≥ 128 or

≥ 256 can be decomposed as 128 (or 256) + a system signal where the system

signal can be of various kinds such as SIGTERM/SIGKILL (memory exhaustion),

SIGSEGV (segment violation), SIGBUS (file system error), SIGILL/SIGFPE (bad

operation), etc., indicating the root case of an unsuccessful job termination. However,

in TORQUE, exit code 1 indicates a generic error and cannot be classified to any

particular category.

What exit codes do users usually provide? We further analyze what are the

exit codes that are usually provided by the users, so that we can disambiguate and

interpret the final job exit codes. We first identified all the 84,163 unique job scripts

submitted to Conte using hashing. We found 22,665 of those unique scripts had user

specified exit code for error handling. Further, we found that the most common user

provided error code is 1 (26%). Users also used various positive exit codes in the

range [2-99] to specify error conditions. We found only 5 explicitly specified negative

exit codes [-1,-2,-3,-20,-30]. 44 scripts explicitly used exit code 0 at the end to mark

success.

20

Classification of failures with the help of exit codes: An analysis of the

job’s exit codes revealed in Conte 16.2%, in Cab 4.4% and in Sierra 3.8% of the

jobs had failed (exit code not equal to 0). The lower failure rate in Cab and Sierra

may be due to lower resource usage, more experienced users, or better management.

After analyzing exit codes along with other information such as the job runtime and

resource usage information, we classify the failed jobs along with the reason that

resulted in the job failure3 in Table 5.2. We found in Conte, about a fifth of the

failed jobs were killed due to exceeding the requested wall clock time and the next

most significant factor was due to memory getting exhausted4. Surprisingly, we found

in all 3 clusters, time limits are often not very strictly enforced and we found many

instances where jobs were not killed even after exceeding requested times. This is

also reflected in the statistic in Table 5.2 where number jobs failed due to timeout is

much less than the number of jobs exceeded the time limit (Fig. 6.9 and Fig. 6.10).

In Sec. 9 we further discuss the validity of these interpretations by analyzing syslog

messages.

Table 5.2.
Few major types of job failures (Time expired, memory, Seg. fault, File
path problem, etc.) showing % of failed jobs.

Reason % of failed jobs in

Conte

% of failed jobs in

Cab

% of failed jobs in

Sierra

Time expired (timeout) 20.3 59.8 63.2

Memory exhaustion 15.2 5.6 6.4

Segmentation Fault 9.3 4.0 1.9

Quit/keyboard interrupt 5.3 5.8 10.1

File system/path problem 3.7 6.7 3

Self abort/assert failure 0.6 1.3 1.5

3These are not root causes, rather the manifestation of the problem
4Failure reasons for many jobs (upto 6.2%in Conte) could not be classified as they exited with
generic code 1.

21

5.3 Whom to Blame: Finding Buginess of a Library

Almost all the jobs executed on a cluster use a host of libraries, some of which are

third party, some are common libraries provided by the environment, and some are

written by the users. If certain kind of job failure occurs significant number of times

and affects multiple users, it is worthwhile to consider if such a failure is caused by a

particular library or due to interaction from a set of libraries. We now illustrate how

the source of a certain kind of failure can be narrowed down to few libraries using

statistical analysis. We introduce a metric called buginess of a library as follows.

Definition: Buginess of a library L for a given job failure type F denotes the

likelihood that a job failed as F due to a bug in L.

Buginess can be expressed as a value ∈ [0, 1] according to our proposed Bayesian

formula:

Buginess of L|F = Pr(L|F)
Pr(L|F)+Pr(L|job succeeded)

Where Pr(L|F) and Pr(L|job succeeded) denotes the probability that a job using

library L failed with type F and succeeded respectively. It should be noted that

Pr(L|F) and Pr(L|job succeeded) are not complementary to each other because li-

brary L might be also be associated with other type of failures. There are two reasons

why buginess value should be tied to a particular type of failure. First, a library can

have different strength of association with different types of failures and most likely

cluster administrators might only be interested in few of these types while ignoring

others (e.g., killed by user, config error). Thus a general buginess value does not help.

Second, a detailed analysis for each failure type calls for different diagnosis methods.

For example, for time expired (also referred as timeout) failures, detailed analysis

must profile time taken by each function call to that library whereas debugging for

memory errors are more difficult requiring guard codes, hardware watch points and

memory leak detection mechanism.

22

Figure 5.3. Distribution of FScore values w.r.t failures due to memory
problems in Conte.

How to interpret a buginess value ? Buginess value considers both successful

jobs and failed jobs associated with a library. If a library was never associated with a

failed job, its buginess value is 0. On the other hand, if that library was always asso-

ciated with a failed job and never used by any jobs that succeeded, its buginess value

is 1. Thus, libraries with buginess value > 0.5 should be suspicious and the ones with

a value closer to 1 should be carefully inspected by the cluster administrator.

Identify most suspicious libraries: However, buginess value alone is not good

enough. For example, in Fig. 5.3, both L1 and L2 have same buginess value (i.e., 1),

but L1 is more likely to contain the bug leading to the failure as it appeared more

frequently in failed jobs. A naive frequency analysis would not help either as it would

disregard how a library was also associated with successful jobs. For example, even

though L2 and L3 both appeared twice within failed jobs, L3 was also associated with

a successful job and hence should be less suspicious.

Hence, we calculate an FScore (final score) by multiplying the buginess value by the

frequency of a library corresponding to a type of failure as outlined in Algorithm 1.

Suspicious libraries can be identified for detailed investigation by choosing the top

K, ordered by the FScore.

23

Table 5.3.
Example: L1 is more suspicious than L2 as it affects more jobs eventhough
they have same buginess value. L3 has lower buginess than L2 as L3 is
associated with a sucessful job.

Libraries used Job failed ?

L1,L2,L3,L4 Yes

L1,L2,L3,L5 Yes

L1,L5,L6 Yes

L1,L7,L8 Yes

L3,L4,L9 No

Algorithm 1 Identify top K most suspicious libraries for detailed analysis

Input: LibList ← List of libraries

Input: F ← The failure type being investigated

Input: JobList← List of all jobs with corresponding failure types and used libraries

1: FScore ← []

2: for all L in LibList do

3: buginess← calculateBuginess(L, F, JobList)

4: failFrequency ← getLibraryFrequency(L,F ,JobList)

5: FScore[L] ← buginess * failFrequency

6: end for

7: sortedLibs ← sortLibrariesBasedOnFScore(LibList,FScore)

8: return getTopK(sortedLibs)

Fig. 5.3 shows the FScore distribution for jobs failed due to memory problems in

Conte. As can be seen, only a very small set of 17 libraries can be isolated with really

high FScores (they also had buginess > 0.95). We suggested to the admins of Conte to

perform an in-depth analysis of these 17 libraries by re-executing jobs using a memory

profiling tool such Valgrind. Our current scoring formula has one disadvantage that

it may miss out some of the rarely used yet buggy libraries because we multiply the

24

buginess value by the number of times that library was associated with a failed job.

For example, jobs using libMCEAucdDatabase.so always failed (buginess =1.0) due

to a memory error. Since number of such jobs were really small, the FScore for this

library was low and as a result, this library did not show up in our final list of 17.

However, this is merely a policy decision for ranking the libraries, as we wanted focus

on the frequently used libraries which might have a bug. Different scoring functions

can be used to explore other type of ranking.

25

6 WHAT ARE THE PATTERNS OF RESOURCE REQUEST?

In the job submission script, users can request the number of nodes, number of cores

per node (ppn), a time duration the job needs to run, and the maximum amount of

memory that any process of the job would use, as shown in Fig. 3.2. Generally, these

limits are chosen based on the users’ intuition or some prediction. In this section

we study, how good are the intuitions (or predictions), based on which the users

specify these limits. And later, we discuss the consequences of really bad prediction

for parameters like maximum runtime and memory. For our analysis involving actual

runtimes, we filtered out the jobs that run for less than 30 seconds because many jobs

fail early due to configuration errors and thus should not contribute towards general

behavior [4].

Figure 6.1. CDF of requested
walltime

Figure 6.2. CDF of requested
memory.

26

Figure 6.3. CDF of queue time
for various requested walltime
ranges in Conte. As requested
time increases, probability of
waiting longer in the queue in-
creases.

Figure 6.4. Major
page faults is corre-
lated with percentage
of requested time used
by a job (beyond 75%
of requested time).

Figure 6.5.
Infiniband
read rate for
app groups.

Figure 6.6.
Lustre read
rate for app
groups.

Figure 6.7.
Avg. memory
used by app
groups.

6.1 Runtimes of Jobs

Fig. 6.1 shows the CDF of requested runtime (walltime for Conte. We found 80% of

the jobs were submitted with a walltime limit of 10 hours or less. However, 5 users

always requested for extremely long runtime (upto 720 hrs). We contacted them to

understand what prompted them to specify such long runtime limits and found their

jobs were hanging due to memory thrashing as detailed in Sec. 8.

27

Figure 6.8. Sorted histogram of jobs w.r.t number of nodes requested in
Conte

Wastage of resources: We further investigated what percent of requested time

are actually used by the jobs. To our surprise, we found almost 45% of jobs actually

used less than 10% of the requested times in Conte (Fig. 6.9) and 15% used less than

just 1% in Sierra (Fig. 6.10).

From our experience, in most of the large production clusters, when the cluster is

busy, the job scheduler gives higher priority to the jobs which request shorter runtime.

Hence requesting for a long runtime would mean a long wait in the queue. This is not

only frustrating for users but also leads to sub-optimal allocation by the scheduler

of jobs to nodes. To validate our argument, in Fig. 6.3 we show how the probability

of longer wait in a queue increases with the requested runtime limit of the job in a

shared queue in Conte. We see that until a requested runtime of 30 minutes there is

no significant effect, but beyond that queue time increases significantly. Of course, if

certain groups have a dedicated queue and have dedicated resources (in Conte) or a

high priority account (in Cab and Sierra) then the behavior will be different. Also

we found that around 5.7% of the jobs exceeded the requested time and as a result

3.3% (according to exit code based analysis in Sec. 5.2) were ultimately killed. This

again highlights the wasteful impact of poor runtime prediction by the user.

28

Figure 6.9. Percentage of the
requested time used by the
jobs. ≈6% jobs terminate
due to exceeding time limit.

Figure 6.10. Percentage of
the requested time used by
jobs in Sierra. 15% jobs used
less than 1% of the requested
time and 2.9% exceeded time
limit.

We conclude that overestimation of runtime during job submission is a serious prob-

lem and severely affects resource usage in both the university cluster and the govern-

ment lab clusters.

Why do jobs run out of time? As many of the users come from different domains,

not everyone is well-versed in scheduling and managing their jobs efficiently in a

supercomputing cluster. Hence it is understandable that memory related issues are

frequently faced by users. Here, we characterize what percentage of the jobs that run

out of their requested walltime experienced massive memory thrashing in Conte, most

likely resulting in slowdown or exceeding the allotted time limit. In Fig. 6.4, we plot

percentage of jobs experiencing severe page faults (peak page fault was more than

40,000 in any 10 minute interval) against the percentage of requested time actually

used. We find that the percentage of jobs facing such massive major page faults

which used up > 95% of requested time is almost 5X higher than jobs which used

only ≤ 75% of the requested time. Thus, statistically, major page fault is highly

correlated with percentage of requested time used, for the jobs which exceed the 75%

mark.

29

Memory limit: In Conte, user can provide a maximum memory limit (pmem) in

PBS script. We found only 14.8% of the jobs specified it. As shown in Fig. 6.2 CDF,

almost 70% of the jobs ultimately use less than 50% of the requested peak memory.

On the other end, we identified 0.6% of the jobs violated the requested maximum

memory limit as memory throttling is not enforced in this cluster. Further analysis

revealed that these jobs were submitted by only 7 users. We reported this to the

cluster staff but since the percentage is low enough not to cause any major disruption

we decided not to follow it up with the users. Neither Cab nor Sierra allows users to

specify a maximum memory limit.

Number of nodes and cores: Fig. 6.8 summarizes the request pattern of the jobs

for number of nodes in Conte. 80% of the jobs request for only 1 node while 2, 4

and 8 are also popular choices for number of nodes. Very few jobs requested upto

256 nodes. One explanation can be: the average number of nodes owned by research

groups is 9 and users like to stay within their allocation.

Similarly, in Fig. 7.4, we plot percentage of jobs w.r.t total number of cores requested

in Conte. Total number of cores is number of nodes multiplied by ppn. Around 40%

of the jobs are run on single core. We hypothesize, a large fraction of jobs in Conte

corresponds to non-parallel applications and small scale test jobs — typically used

for functionality testing before submitting larger scale parallel applications.

CPU-Hours is a better way to understand resource usage pattern: The

distribution of CPU-Hours used by a job on a cluster often gives a better view of

resource usage pattern than the size of the job in terms of the number of processes.

For example, in Fig 1.1, for both Conte and Cab, we show CPU-hour distribution of

the jobs of different scales (i.e., how many process they use). As expected, Cab being

a high churn national lab, a large fraction of resources are used by large scale jobs

(with processes 512, 2048, 4096, etc.). However, a mere counting of number of jobs

would show only one node and 16 cores are the dominant request patterns, which, as

explained before, is skewed by the large number of small-sized jobs.

30

Sharing of resources: By default, in Conte a node is not shared between jobs.

However, a user can enable sharing by setting naccesspolicy=shared in her job

script. After analyzing the accounting logs, we found 23.6% jobs had the shared

setting. We contacted the users to know why would one prefer to share the nodes

when they can get dedicated access to a node by default. We found the following

are the key reasons behind that decision: a) users often perceive that a partial node

job will start faster than a whole node one - and within certain limits this is true, b)

some research groups own limited number of nodes and try to maximize the usage

within the limitation of their assets before requesting from the general pool, c) legacy

scripts which had that configuration, and d) good old altruism.

6.2 Is the Current Resource Provisioning Good Enough?

For effective cluster management, it is also necessary to understand whether other

resources such as network, filesystem, and memory are being utilized well. Trends

for such resources can also help in improving the provisioning strategy or future

acquisition decisions. In this section we present Infiniband, Lustre, memory usage

patterns across the app groups in Conte. We explore how the various resources of the

system, specifically, Lustre file system and Infiniband network are used by the jobs.

The data necessary for this analysis is extracted from the TACC Stats for each jobs.

As the TACC Stats provides information at intervals of every 10 mins we extract the

values and calculate the differences between consecutive elements and obtain the peak

among the difference. Further we obtain corresponding rate (divide it by 600 seconds).

Using this peak rate for each metric for all the jobs we plot a cumulative distribution

function (CDF) for each metric. The results and the respective observations are

provided in the respective sections.

31

Infiniband (Network) usage: For Conte, we calculated the average of the peak

Infiniband data rates experienced by jobs in the same app group1. The CDF is in

Fig. 6.5. The Infiniband data rate includes the communication between different

processes of a job. We see a stark contrast in the resource demand across different

app groups. The plot is split to emphasize the order of magnitude difference in

IO usage across different app groups. Almost 90% of the app groups use less than

0.8MBps while a few app groups go upto 20GBps. Such information regarding the

huge difference in Infiniband usage can be used during capacity planning for future

clusters. Clearly, scheduling both types of jobs on the same cluster would mean under-

utilization of the resources. Instead of over-provisioning all the networks, there can

be a virtual sub-cluster with higher performance characteristics. The cluster nodes

connected through a high-end interconnect can be kept exclusively for jobs with such

extreme resource demands. In fact, for the next acquisition cycle at our university

(after our analysis period), precisely such a decision was made driven in part by the

results of the analysis and a separate cluster is provisioned for high resource demand

applications. A cursory examination of the jobs running on that cluster indicate a

preponderance of bioinformatics applications which cause high memory usage and

inter-process communication.

Lustre (IO) usage: For Conte, we extract IO usage from the Lustre filesystem

metrics present in TACC Stats and plot the CDF of average peak data rate for jobs

of same app group. We choose the peak value per job to understand maximum

resource demands for the jobs. Similar to Infiniband usage, we found 90% of the app

groups’ IO usage is less than 1GBps and a few app groups use IO at a rate close to

the rated 20GBps. Thus it is possible to partition the cluster into sub-clusters with

different IO performance specs.

Memory usage: In the same spirit, we calculate average memory usage by the jobs

belonging to the same app group in Conte. The CDF is in Fig. 6.7. We see that

1Peak usage is calculated across all the processes of a job and all monitoring intervals. Then an
average was taken over all the jobs in the app group.

32

unlike Infiniband or Lustre usage, memory usage by different app groups does not

show any large discontinuity. Thus, scheduling jobs on different partitions of a cluster

with available physical memories would not be substantially useful for improving the

memory utilization.

Strong scaling vs weak scaling intent: Certain cluster usage patterns are not

obvious from the accounting logs or from the raw numbers of resource usages. For

example, strong scaling and weak scaling are two standard ways in which scientific

applications are usually studied to suit different purposes. In a strong scaling run,

user would run the application with more number of nodes while keeping the problem

size the same. Thus resource usage per node would decrease proportionally. For a

weak scaling run, user would use more number of nodes while increasing the problem

size as well. However, looking at the system logs, there is no easy way to know if

certain applications are being investigated for strong or weak scaling. We wanted

to find out how such statistics can be indirectly inferred from the existing workload

data that we had already gathered. The cluster administrators were also keen to

know such results as it helps them in better cluster management. For example, if a

user is using weak scaling and if resource demands per node were high at small scales,

then they would continue to be high at the larger scales and the user may be better

advised to switch to a higher-provisioned cluster. Since it is difficult to understand

the input size from the script, we further assume, IO usage, i.e., the amount of data

read from the Lustre filesystem, is a good indicator of input size. We found that only

71 app groups, out of 3,373 (2.1%), had enough data to infer statistically valid scaling

trends, i.e., there were application runs on more than 3 different scales and also had

at least 100 job data points at each scale. We found, out of the 71 app groups, 14

of those app groups were subjected to strong scaling (19.7%), 26 were subjected to

weak scaling (36.7%) and for the rest, neither trends was observed.

33

7 ANALYSIS OF MEMORY USAGE: THE ETERNAL PAIN

Memory usage related issues are in general a big reason for unsatisfactory application

performance. The most severe impact of memory issues shows up as memory thrash-

ing, which is when applications exhaust the available physical memory on the node

and start swapping pages from the disk (also called major page faults). On Conte, we

have seen that when an application experiences memory thrashing, its runtime may

increase from 10’s of minutes to long hours. At the extreme, after exhausting even

the swap space, the application would be killed by an out-of-memory (OOM) killer to

save the node from crashing. In this section, we characterize the impact of memory

thrashing by analyzing the workloads from Conte 1. TACC stats periodically reports

snapshots of the number of major page faults experienced by a job in the last 10

minutes time window, based on which we classify thrashing behavior into two types:

a) Chronic thrashing: The job experiences major page faults throughout its run, but

the absolute numbers per window of reporting are not significant enough to raise any

alarm. We ignore this type of thrashing for our analysis.

b) Severe thrashing: The number of major faults within the time window goes beyond

a certain threshold indicating a severe memory thrashing experienced by the job. Our

analysis targets only these type of thrashing cases.

Since an application may experience high page faults initially, due to the overhead

during start up, we exclude first 10 minutes of its run-time from our analysis.

We define peak major page fault of a job as the maximum page faults experienced

by a job within any reporting time interval across all the nodes on which the job

was running. In general, such maximum numbers are noisy, but for our analysis we

1There are no disks in Cab and Sierra, hence no paging

34

Figure 7.1. CDF of peak major page fault of all jobs, threshold set at 90th

percent value

wanted to be conservative in identifying such cases as we did not have the ground

truth. We first identify a threshold for peak major page fault by calculating the CDF

across all the jobs (Fig. 7.1). It can be seen that 90% of the jobs experience less

than 500 major page faults within any 10-minute time window, therefore we chose

500 major page fault per 10 min time window as our threshold and use this for all

subsequent analysis.

Figure 7.2. Percentage num-
bers of user’s jobs crossing
the threshold peak major page
fault in Conte

Figure 7.3. Sorted histogram
of app groups w.r.t number of
jobs crossing peak major page
fault threshold in Conte.

35

Fig 7.5 show what percentage of jobs submitted by top 50 most active users suffered

from severe page faults (i.e., peak page fault was more than the computed threshold

value). The yellow bar denotes all the jobs submitted by the user and the red bar

denotes the jobs that suffered severe major page faults. While for most of them it

was not very significant, certainly the jobs belonging to the top user were affected

significantly. Further in Fig. 7.2 we show the histogram of jobs for unique users sorted

based on the percentage of jobs that suffered major page fault. For this analysis, we

filter out users who have submitted less than 100 jobs. Clearly, most of the jobs from

top few users suffered from major page faults and they definitely need assistance from

cluster support staff. In fact, we contacted few such users to understand the issues.

This is discussed in Sec 8.

Figure 7.4. Sorted histogram
of jobs w.r.t number of cores
requested in Conte

Figure 7.5. Top 50 users
sorted based on number of
jobs submitted in Conte

We also analyzed what percentage of the jobs in the most popular app groups (sorted

based on number of jobs) suffer from major page faults. This is presented in Fig. 7.3.

To our surprise, we found that top two app-groups suffer from major page fault quite

severely. To provide a better quality of service, the cluster administrators should

understand why these applications suffer from memory exhaustion and educate the

users who use these apps about techniques to reduce the memory pressure. The

support staff might also pre-install a properly optimized and memory leak free version

36

Figure 7.6. Non-shared env:
effect of ppn on major page
faults in Conte

Figure 7.7. Shared env: effect
of ppn on major page faults in
Conte

of these applications, if not already available. In Fig. 6.8 and 7.4, we show the relation

between the percentage of major page faults with the number of cores and the number

of nodes that a job runs on.

Effect of process placement on memory issues: As discussed earlier, user

can set the number of cores per node to be used through the parameter ppn in

the PBS job script. Since each node has 16 cores in Conte, ppn can take a value

from 1 to 16. Besides, the user can also specify if the job can be run in a shared

environment where the remaining cores of the nodes will be used by other jobs. We

analyzed how the choice of ppn affects the memory usage issues for both non-shared

and shared environments as summarized in Fig. 7.6 and 7.7. The observations are

quite fascinating as we found that the value of ppn affects major page fault in exactly

opposite directions between non-shared and shared environment. In a non-shared

environment, as ppn increases, the page fault increases. This happens because the

more processes on a node imposes greater memory pressure on the node. On the

other hand, in a shared environment, as ppn increases, the page fault decreases. This

happens because the level of interference from other co-located applications decreases.

There are some other production clusters where in shared mode, the memory allocated

to a job is made proportional to the requested ppn and memory throttling is used

37

based on that. It would be an interesting future-work to analyze whether workloads

on those clusters would also exhibit similar behavior.

38

8 CASE STUDIES

We now present a few case studies through which we verified that our analysis accu-

rately identified the users who were suffering from performance problems or wasting

cluster resources. We also summarize the cause of the problem and the remedies

suggested by us or cluster support staff.

On the university community cluster:

We contacted the top 10 users of Conte who were experiencing severe memory thrash-

ing as identified by Fig. 7.2. Eight of them responded, but one of them did not share

the details due to privacy reasons. Another user claimed that he saw no performance

degradation; we hypothesize, that the user may not have observed a change in per-

formance, or the application was suffering all along. The rest of the users confirmed

a significant performance slowdown with their jobs and through our interactions, we

unearthed the root causes. Our interactions involved interviewing the users, review

of job scripts, and in few cases, analyzing the application code.

Too many processes per node: Three users faced similar problems which arose

because of using too many processes per node, leading to exhaustion of physical mem-

ory and increase in page faults. For example, one inexperienced user started seeing

out-of-memory errors when he moved from a third party application to his own code,

mimicking the same functionality but at a larger scale. He did increase the number

of processes but could not increase number of nodes as he was using his group’s ded-

icated queues. The issue was alleviated when we suggested him to use shared queue

and decrease the ppn but increase the number of nodes.

File append: User started experiencing extreme slowdown (run-time of ∼10hrs

instead of ∼40mins) when she modified a self-written bioinformatics python applica-

tion. Instead of writing to a large number of output files, she was appending to one

39

existing file. She was running many instances of a serial application in parallel, each

one operating on certain parts of the input data. Our analysis also detected a huge

incidence of major page faults corresponding to her jobs, during the same time pe-

riod. After debugging the code, we noticed the use of file seek in a loop. Ultimately,

we found that the combined effect of appending to a growing file and file seek to

arbitrary locations in a loop caused a manyfold increase in memory pressure.

Effect of precision: While running a nano-electronic modeling tool the user ex-

perienced extremely long runtime and frequent crashes due to out-of-memory. After

some analysis, it was found out that a parameter, coulomb-cutoff-radius which

controls the precision by limiting the radius of calculation, was set to a very high

value leading to high memory consumption. There are two ways to resolve this issue,

either to decrease ppn or to reduce the radius of the calculation.

Unoptimized MPI communication: A Weather Forecasting application was

hanging and ultimately exceeding its time limit almost 15% of the time. Our analysis

also detected huge page faults corresponding to those jobs. However, this user proac-

tively contacted cluster support staff, who after analyzing the jobs, suggested the use

of I MPI DAPL UD directive for Intel MPI library. This ensures a many-to-one con-

nection (instead of the standard one-to-one connection) between the MPI processes

which reduces the memory consumption. After making this change, the user reported

that only 1% of her jobs experienced memory thrashing.

On the government lab cluster:

Since Cab and Sierra belong to a privacy-sensitive national lab, we only had access to

anonymized user data which prohibited us from making direct contacts with the users.

However, we still identified a particular user ID (anonyimized) in Sierra whose jobs

were using only a small fraction of the requested walltime. When we first calculated

the distribution showing percentage of requested time used for Sierra (as discussed

in Sec. 6), we found a staggering 63% jobs used less than 1% of the requested time,

which we found suspicious. Further analysis revealed the statistic was skewed by a

particular user who runs a lot of tiny jobs which are likely part of larger computational

40

studies. We found that this user accounts for only 5K CPU-hours despite having the

largest number of jobs on that cluster. After a detailed investigation, the cluster

administrator found that indeed this user was doing parameter studies of solvers but

had vastly overestimated the running time of each individual job. More discussions

revealed that jobs related to parameter studies and uncertainty quantification in

general tend to have such problems and schedulers should be more intelligent while

dealing with such jobs. This is an exemplar of the kind of insight that comes out of

customer centric data analytics.

41

9 THREATS OF VALIDITY

We now discuss the validity of the assumptions we made in our analysis, highlight

the weaknesses, if any and suggest future improvements.

General applicability of library based classification technique: Proposed

library usage based application classification technique (Sec. 4) currently depends

on the use of shared libraries as lsof cannot collect static library usage information.

However, as discussed in Sec. 4, existence of only few distinctive libraries are enough

for the classification. For a further reality check, we calculated the DScore(distinctive

score) of a library. To calculate this, we identify all the unique job scripts by hashing

and treat them as representing a set of unique jobs (J). Let the size of set J be N .

We merge the libraries used by all jobs in J and discard the default OS libraries to

get the set Slibs. For each L ∈ Slibs we calculate, DScoreL = 1 − nL

N
, where nL is

the number of jobs in J that use library L. From the plot in Fig. 9.1, it can be seen

92.6% libraries does not appear in other 90% jobs. In fact, 68% libraries only appear

in 1% jobs, making these libraries distinct, and thus a perfect classifier.

Further, we investigated what are the actual statistics of static and shared libraries

in production clusters. We kept our analysis limited to pre-installed apps and tools

(including MPI, visualization tools, etc.) as we had no access to users’ home di-

rectories. On Conte, 2283 out of 2675 were shared libraries. On Cab, 1810 out of

3432 were shared libraries for pre-installed applications and for tools, 1870 out of

2821 were shared libraries, indicating abundant use of shared libraries in production

clusters. Although, static libraries can be tracked using advanced tools like XALT [2]

to provide better classification accuracy, the our low-cost technique supported by the

reality check makes it widely applicable.

42

Figure 9.1. How distinctive are the libraries corresponding to unique jobs
in Conte. Higher score is better.

Inferring failure reasons from exit codes: In Sec. 5.2 we classified the reasons

for job failures by analyzing exit codes, consulting sysadmins, and various documents.

We further validated some of those categories by analyzing the syslog messages. Con-

cretely, we identified out of memory (OOM) and file path or permission related mes-

sages in the syslog and calculated how strongly those messages can be associated with

jobs failing with corresponding exit code. We found, for 92% of the jobs that failed

with exit codes representing memory exhaustion, was also preceded by syslog with

OOM related messages. Calculating the reverse association, we found 77% of the

jobs that output the related message, ultimately exited with exit codes for memory

exhaustion. Similarly, exit codes denoting file path or permission problem were pre-

ceded by relevant error messages 41% of the time. A drawback of the exit code based

or scheduler dependent failure analysis is that more fine-grained failure classification

cannot be achieved. A thorough analysis of syslog might unravel more nuanced causes

of failure and we leave this as future work.

Further, we also present a scoring mechanism (FScore), using which we show that few

(17) libraries have high scores with respect to memory failure. At this point, we also

acknowledge that due to unavailability of the ground truth in the analyzed data set,

43

it is probable that some high scoring libraries are bug-free and the ones that get lesser

score actually need attention. And this concern exists with any other scoring method

as well until a reality check is performed. Therefore, the key takeaway we have from

FScore scheme is that such a scoring mechanism could be designed and validated

(or appropriately modified) by cluster support team by investigating the suspicious

libraries. And by doing so pro-actively, a better quality of service is possible and

consequently, a lesser job failures.

44

10 RELATED WORK

We classify related works into following major categories.

Modeling and benchmarks: Modeling application workload is important for ef-

ficient resource usage and scheduling. In the context of supercomputers, [17–19]

presents modeling techniques for scientific applications. [20,21] discuss modeling work-

loads for mainstream commercial systems where the application characteristics is con-

siderably different from scientific applications. These are orthogonal to our work as

we focus on how workload analytics can help in cluster management by identifying

hidden trends in resource usage and user behavior.

Performance characteristics: Large body of work, such as [22–25] study work-

load characteristics in order to optimize performance on different architectures. [6,26]

study performance characteristics in the context of energy and other resource usage

prediction. [4] presents techniques to classify tasks based on the analysis of per-

formance metrics, and its application in capacity planning and job scheduling. [5]

presents a characterization of MapReduce cluster running Hadoop workloads. Our

study involves large community cluster workloads generated by a much more diverse

set of applications from multiple domains. Moreover, we present library usage based

application classification technique which is simple, yet powerful, especially when pri-

vacy and security is a prime concern.

Failures: Several studies, [27–29] evaluated failures in large scale systems. [7,8] an-

alyzed failures in HPC clusters. [9] further characterizes application resilience related

to system errors. The customer support centric focus of our work is unique as we

show how systematic analysis of performance issues and job failures can be used to

proactively help and educate users. We also attempt to understand user behavior,

45

resource wastage or bottlenecks. The recommendations we provide based on these

analysis can help in better cluster management and resource planning.

46

11 CONCLUSION

We demonstrate how cluster management, job performance and user experience can

be improved through a user centric analysis of workloads collected from a university

wide community cluster and a large supercomputing center in a government lab. We

show how our analysis unraveled some hidden issues regularly faced by the users. We

identify a need for special user-training on resource allocation, scheduling policies and

better memory management techniques. We also propose data analysis techniques

that can be used by a proactive user support system to improve service quality by

pre-installing popular applications and libraries, giving attention the premium users,

and helping users who have jobs with memory-related issues. Some of our techniques

and results are also useful in capacity planning for future systems. Moreover, after

proper anonymization, we have made the workload data available for the community

through an open repository to help further research.

REFERENCES

47

REFERENCES

[1] Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam
Moody, Bronis R de Supinski, and Scott Futral. The spack package manager:
bringing order to HPC software chaos. In Supercomputing (SC), 2015.

[2] Kapil Agrawal, Mark R Fahey, Robert McLay, and Doug James. User environ-
ment tracking and problem detection with XALT. In Workshop on HPC User
Support Tools (HUST), 2014.

[3] A open repository for cluster workload data.
https://diagrid.org/resources/247.

[4] Asit K Mishra, Joseph L Hellerstein, Walfredo Cirne, and Chita R Das. Towards
characterizing cloud backend workloads: insights from google compute clusters.
SIGMETRICS Performance Evaluation Review, 2010.

[5] Zujie Ren, Xianghua Xu, Jian Wan, Weisong Shi, and Min Zhou. Workload
characterization on a production hadoop cluster: A case study on taobao. In
IEEE International Symposium on Workload Characterization (IISWC), 2012.

[6] S Huang and W Feng. Energy-efficient cluster computing via accurate work-
load characterization. In International Symposium on Cluster, Cloud, and Grid
Computing (CCGrid), 2009.

[7] Bianca Schroeder and Garth A Gibson. A large-scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and Secure
Computing (TDSC), 2010.

[8] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio Baccanico,
Joseph Fullop, and William Kramer. Lessons learned from the analysis of sys-
tem failures at petascale: The case of blue waters. In Dependable Systems and
Networks (DSN), 2014.

[9] Catello Di Martino, William Kramer, Zbigniew Kalbarczyk, and Ravishankar
Iyer. Measuring and understanding extreme-scale application resilience: A field
study of 5,000,000 HPC application runs. In Dependable Systems and Networks
(DSN), 2015.

[10] Moab: Administrators Guide.
http://docs.adaptivecomputing.com/mwm/archive/6-0/MWMAdminGuide.
pdf.

[11] Todd Evans, William L. Barth, James C. Browne, Robert L. DeLeon, Thomas R.
Furlani, Steven M. Gallo, Mathew D. Jones, and Abani K. Patra. Comprehensive
resource use monitoring for HPC systems with tacc stats. In HPC User Support
Tools (HUST), 2014.

https://diagrid.org/resources/247
http://docs.adaptivecomputing.com/mwm/archive/6-0/MWMAdminGuide.pdf
http://docs.adaptivecomputing.com/mwm/archive/6-0/MWMAdminGuide.pdf

48

[12] Troy Baer and Doug Johnson. pbsacct: A workload analysis system for pbs-
based HPC systems. In Annual Conference on Extreme Science and Engineering
Discovery Environment(XSEDE), 2014.

[13] Linux tool: List of Open Files.
https://people.freebsd.org/~abe/.

[14] Deniz Ersoz, Mazin S Yousif, and Chita R Das. Characterizing network traf-
fic in a cluster-based, multi-tier data center. In International Conference on
Distributed Computing Systems (ICDCS), 2007.

[15] Top applications.
R: http://www.r-project.org,
Devel: https://www.drupal.org/project/devel,
Matlab: http://www.mathworks.com/products/matlab,
NEMO5: https://nanohub.org/groups/nemo5distribution,
LAMMPS: http://lammps.sandia.gov,
NCL: http://www.ncl.ucar.edu,
SRA-Toolkit: http://www.ncbi.nlm.nih.gov/Traces/sra/,
Gromacs: http://www.gromacs.org,
BWA: http://bio-bwa.sourceforge.net,
TopHat: http://ccb.jhu.edu/software/tophat.

[16] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, et al. Introduction to data
mining, volume 1. Pearson Addison Wesley Boston, 2006.

[17] Walfredo Cirne and Francine Berman. A comprehensive model of the supercom-
puter workload. In IEEE International Symposium on Workload Characteriza-
tion (IISWC), 2001.

[18] Hui Li, David Groep, and Lex Wolters. Workload characteristics of a multi-
cluster supercomputer. In Job Scheduling Strategies for Parallel Processing.
Springer, 2005.

[19] Mustafa M Tikir, Laura Carrington, Erich Strohmaier, and Allan Snavely. A ge-
netic algorithms approach to modeling the performance of memory-bound com-
putations. In Supercomputing (SC), 2007.

[20] Paul Barford and Mark Crovella. Generating representative web workloads for
network and server performance evaluation. In SIGMETRICS Performance Eval-
uation Review, 1998.

[21] Ludmila Cherkasova and Peter Phaal. Session-based admission control: A mech-
anism for peak load management of commercial web sites. IEEE Transactions
on Computers, 2002.

[22] Laura C Carrington, Michael Laurenzano, Allan Snavely, Roy L Campbell, and
Larry P Davis. How well can simple metrics represent the performance of HPC
applications? In Supercomputing (SC), 2005.

[23] Richard Murphy. On the effects of memory latency and bandwidth on supercom-
puter application performance. In IEEE International Symposium on Workload
Characterization (IISWC), 2007.

https://people.freebsd.org/~abe/
http://www.r-project.org
https://www.drupal.org/project/devel
http://www.mathworks.com/products/matlab
https://nanohub.org/groups/nemo5distribution
http://lammps.sandia.gov
http://www.ncl.ucar.edu
http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.gromacs.org
http://bio-bwa.sourceforge.net
http://ccb.jhu.edu/software/tophat

49

[24] Lei Chai, Qi Gao, and Dhabaleswar K Panda. Understanding the impact of
multi-core architecture in cluster computing: A case study with intel dual-core
system. In International Symposium on Cluster, Cloud, and Grid Computing
(CCGrid), 2007.

[25] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant Patel,
Trevor Mudge, and Steven Reinhardt. Understanding and designing new server
architectures for emerging warehouse-computing environments. In International
Society for Computers and Their Applications (ISCA), 2008.

[26] Rubing Duan, Radu Prodan, and Thomas Fahringer. Performance and cost op-
timization for multiple large-scale grid workflow applications. In Supercomputing
(SC), 2007.

[27] Ramendra K Sahoo, Mark S Squillante, Anand Sivasubramaniam, and Yanyong
Zhang. Failure data analysis of a large-scale heterogeneous server environment.
In Dependable Systems and Networks (DSN), 2004.

[28] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An analysis
of traces from a production mapreduce cluster. In International Symposium on
Cluster, Cloud, and Grid Computing (CCGrid), 2010.

[29] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick Epema. The failure
trace archive: Enabling comparative analysis of failures in diverse distributed
systems. In International Symposium on Cluster, Cloud, and Grid Computing
(CCGrid), 2010.

	Purdue University
	Purdue e-Pubs
	4-2016

	User-centric workload analytics: Towards better cluster management
	Suhas Raveesh Javagal
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	DETAILS OF CLUSTER HARDWARE
	DATA SOURCES AND COLLECTION METHODOLOGY
	A TECHNIQUE TO CLASSIFY SIMILAR APPLICATIONS
	USE OF PROACTIVE ANALYTICS
	Where to Focus Attention?
	Why Jobs Fail?
	Whom to Blame: Finding Buginess of a Library

	WHAT ARE THE PATTERNS OF RESOURCE REQUEST?
	Runtimes of Jobs
	Is the Current Resource Provisioning Good Enough?

	ANALYSIS OF MEMORY USAGE: THE ETERNAL PAIN
	CASE STUDIES
	THREATS OF VALIDITY
	RELATED WORK
	CONCLUSION
	REFERENCES
	Blank Page

