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ABSTRACT

Cho, Hyejin. M.S.I.E., Purdue University, May 2016, The Casualty Transportation of Ebola

Outbreak in Liberia: A Simulation Study. Major Professors: Seokcheon Lee and Yuehwern

Yih.

In this paper, we have solved the unique problem of casualty transportation problem under

Ebola by developing dynamic policies for vehicle routing to provide practical decision sup-

port. The objective of the proposed model is to minimize the total transmission risk. We

describe the problem with real-constraints based on the empirical data of the 2014 Ebola

outbreak in Liberia. The casualty transportation problem is a variant of Dynamic Pick-up

and Delivery Problems, in which a vehicle is dispatched to demand location in real time

and it then transports the demands to the destination. DPDP integrates various sources of

dynamic events as well as real-world aspects. All decision made in dynamic vehicle routing

problems are taken in real-time. In same light, the casualty transportation problem is solved

in real-time under infectious disease environment. Particularly in case of Ebola, the prompt

burial or cremation of deceased Ebola victims would is critical in reducing the transmission

of the virus thus casualty transportation problem should be considered mandatory to stop

transmission. To solve the casualty transportation problem, our approach involves devel-

oping adequate policies for vehicle routing construction under Ebola situation, to evaluate

those policies performance through simulations, and to recommend the best policy resulted

from experimental results that can reduce the total transmission risk a lot.

Key words: Humanitarian logistics, Dynamic casualty transportation problem, Dynamic

pickup and delivery problem, Ebola transmission rate, Real-time decision making
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1. INTRODUCTION

1.1 Background

The worst-known Ebola epidemic in history infected 28,603 people and killed 11,301

people in 2014 to 2015 mostly in Liberia, Guinea, and Sierra Leone. Ebola is transmitted

via physical contact with bodily fluids, secretions, tissues, or semen from infected individu-

als. Infected patients present flu-like symptoms which rapidly progress to extensive bleed-

ing, and death frequently occurs within 10 days of initial infection (Chowell et al., 2004;

Camacho et al., 2014; Chowell & Nishiura, 2014). World Health Organization (WHO)

reports that the body is very contagious briefly after the person dies from Ebola (WHO,

2015). This is when the virus is overtaking the whole body and all bodily fluids come out

the remains. Therefore, in order to stop the Ebola virus from spreading, rapid burial or

cremation of the Ebola victims is one of the important intervention strategies to control the

spread of Ebola.

In addition, under infectious disease environment, government and healthcare organi-

zations try to reduce transmission by putting several strategies, say intervention, into the

affected region. The intervention strategies to stop Ebola virus from spreading include

surveillance, placement of suspected cases in quarantine for 3 weeks (the maximum esti-

mated length of the incubation period), education of strict barrier nursing techniques (i.e.

protective clothing and equipment and hygienic kits, patient management), and the rapid

burial or cremation of infected remains. Among these, we focus on the distribution of pro-

tective clothing and equipment and hygienic kits and rapid burial. Through our research,

we designed the casualty transportation problem under twelve scenarios in which either

burial processes or education strategy or both of them exist and we developed six policies

for solving the suggested problem so as to minimize the total transmission risk.
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Currently there is little literature that considers the transmission rate of affected remains

from Ebola. This is the motivation to examine the casualty transportation problem under

Ebola environment. After reviewing previous literature, few researchers studied the trans-

mission chain from remains and effect of the rapid burial and other intervention. Hence we

studied the transmission model of Ebola affected remains and casualty logistics considering

the significance of the rapid burial and the risk of Ebola affected remains.

In this research, we model the burial process under the community setting which is

where the death occurs in the non-hospital setting. In the hospital setting burial process

is undertaken in healthcare center environment, which minimizes improper handling and

exposure to family members. On the other hand, the community burial process includes

a burial team retrieving the body, disinfecting a whole place where the infected death lies

on, packing the body, transporting it to a burial site, and burying it. This process is more

complicated than the hospital one, because burial teams must be trained to follow the WHO

burial process guideline, which takes a long time and the team members also have a risk of

infection.

Throughout the research, we described the casualty transportation problem, constructed

dynamic vehicle routing policies, and evaluated those policies using the vehicle routing

simulation to minimize the transmission risk based on the empirical data from 2014 Ebola

outbreak in Liberia.

1.2 West Africa Ebola Outbreak Case

The 2014 Ebola outbreak in West Africa mostly in Guinea, Liberia, and Sierra Leone

(Figure 1.1) is recorded as the twenty-sixth known Ebola virus disease outbreak (Gray

et al., 2015) and the worst Ebola outbreak in history (Eisenberg et al., 2015). The out-

break started in Guinea in December 2013. As of 25 September 2015, total Ebola cases of

Guinea, Sierra Leone, and Liberia are 3804, 14124, and 10675 respectively (Figure 1.2).

Figure 1.3 shows the infected cases and the accumulated deaths in Liberia as of 25 Septem-
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ber 2015 (CDC, 2015; WHO, 2014a). During more than a year, Ebola virus swept across

the countries.

-World Health Organization, 2016, Ebola response roadmap

Figure 1.1. Affected West Africa regions

One of the reason for this extraordinary crisis is the Zaire strain which is one of Ebola

virus strains. It is one of the most fatal species which lead to the 2014 outbreak in West

Africa (WHO, 2016). The other reason is West African funeral custom, that is to wash and

kiss the body of person who died. Under chaotic epidemic situation, inadequate healthcare

systems and lack of resources contributed to the delay in responding the outbreak and

worsened the crisis (Gray et al., 2015).

Consequently, the case fatality ratio, which is the proportion of the number of deaths

among the total number of Ebola cases, of the 2014 outbreak was estimated as 70.8%

(Chowell & Nishiura, 2014). Furthermore, healthcare workers were at risk of transmission

due to their frequent contact with patients and body fluid, and burial rituals (Eisenberg et

al., 2015). To mitigate the outbreak, intervention efforts were undertaken in West Africa.

The efforts included restriction of individual mobility and border crossings, distribution of
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home health kits containing gloves, gowns, disinfectants, and other supplies (Eisenberg et

al., 2015). Eventually WHO declared Ebola free in Liberia, Guinea, and Sierra Leone on

September 3, December 29, and November 7 2015 respectively.

Figure 1.2. The total Ebola cases in West Africa

Figure 1.3. The total Ebola cases and death tolls in Liberia



5

1.3 Burial Process

The casualty transportation problem indicates how to determine the priority of deceased

people from Ebola to retrieve and bury them. This problem considers not only burial pro-

cess time but also other realistic parameters such as trucks travel time. We clarify, however,

the burial processes step by step and the time of each step is recorded in Table 1.1 (Roselim,

2014) because these processes are the core logic to define the problem.

By analyzing the burial processes based on the 2014 outbreak, we partition the burial

processes into two stages: retrieval process and burial process. The retrieval process starts

after the truck arrives at the affected site and it includes disinfection and pickup activity.

After the retrieval process, the truck travels to the burial region and the burial process begins

after the truck arrives at the destination. The burial process comprises digging the ground

and burying the body. The process time of the retrieval and burial process are obtained

based on articles (Helene, 2015; Nielsen et al., 2015; Roselim, 2014). Throughout the

paper, when we use the term, burial process, it encompasses the retrieval process as well as

burial process.

Step 1: A death occurs

When an infected death occurs in a community, the death is notified to the healthcare center

immediately and placed in the waiting list, called Request Truck Queue, to be assigned by

a burial team if there are no available vehicles. If there are available vehicles, one of them

will be chosen and dispatched to the Ebola remains’ location. Initially, trucks are located

at different healthcare centers, which are uniformly distributed across the country.

Step 2: Dispatch a vehicle to the death

Once a vehicle becomes available, a healthcare worker allocates it to the infected remains

by following a rule (e.g., chronological order, nearest distance). Then the truck is dis-

patched to the location of the infected remains. The vehicle carries a burial team, which

comprises five workers.
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Step 3: Retrieval Process

Once the vehicle reaches the affected area, the disinfection activity starts. The burial team

members are in their protective suits and then the team leader, who carries the sterilizer

sprayer, begins disinfecting the entry door

Next, the burial team gets into the place and lay two double strength body bags on the

ground near the infected remain. The team lifts the body into the bag safely and zips it up.

Before leaving, the team leader disinfects the entire area thoroughly and the other members

pack anything that can be contaminated, for instance, a blanket and pillows, into the other

body bag. The burial team members excluding the leader carry the bags with great care to

the waiting truck.

Finally, the bags are safely loaded into the truck and the leader disinfects the truck thus

completing the retrieval process. This whole retrieval process, which takes about 40 to 50

minutes (Xinhua, 2014).

In some cases, the truck heads to the Ebola center to test if the virus was in fact the cause

of the death. Once this is confirmed, the body is transported to the burial or cremation

site. Otherwise, the body is returned to their families for burial. We do not consider this

procedure in the model because we assume all bodies are contaminated by the Ebola virus.

Step 4: Burial process

After retrieving the the body of the infected deceased, the vehicle departs to the burial site.

Once the vehicle arrives at the aimed place, team members prepare the burial process. First

they carry body bags to a grave, dig the ground about 2m deep to prevent body fluids from

coming out of ground, and have a brief ritual with the surrounding people before burying

the bags. Eventually the team buries the bags and the burial process is completed. The

burial process takes about 1 hour on average
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Step 5: Heading back to depot

After finishing retrieval and burial process, the vehicle heads back to any healthcare center.

The vehicle needs not to head back the same depot where it departed from at the Step 1.

Table 1.1.
Burial Processes Time (hours)

Process Retrieval process Burial process
Time Normal (0.75, 0.1) Normal (1, 0.2)

(Roselim, 2014; World Health Organization, 2014)

1.4 Organization

The remainder of this paper is organized as follows. Section 2 reviews related liter-

ature. Section 3 describes the proposed Ebola casualty transportation problem including

its characteristics. Section 4 presents six policies which construct vehicle routing for col-

lecting casualties and simulation study which consists of twelve scenarios to examine the

performance of suggested policies. In Section 5, generated test instances and simulations

results are presented. The paper closes with a conclusion and an outlook on future work in

Section 6.
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2. LITERATURE REVIEW

2.1 Humanitarian Logistics

Disaster logistics is usually referred as humanitarian logistics. It includes preposition-

ing relief supplies stocks, rescuing victims from disaster, and providing the relief supplies

to victims affected by disasters so as to minimize human suffering and death and to maxi-

mize the number of survivors (Balcik et al., 2008).

As the term humanitarian implies, the objective of the logistics differs drastically from

commercial logistics (Beamon & Fernandes, 2004; Beamon & Kotleba, 2006; Van Wassen-

hove, 2006; Holguı́n-Veras et al., 2007). Commercial logistics usually deals with a prede-

termined suppliers, manufacturing sites, and a predictable and stable demand, whereas,

humanitarian logistics do not obtain even predict suppliers, demands, and sites (Jahre et

al., 2007).

Furthermore, since the key objective of commercial logistics to either minimize the cost

of transportation or logistics, most methodologies and operational management have been

developed to lower the cost.

Whereas, humanitarian logistics objective does not simply focus on the cost but fo-

cusses on the response time, the socioeconomic cost, the served affected area. Also since

humanitarian logistics include a wide range of operations under great uncertainty, it may

fail in applying pre-developed mathematical model that helps decision process of regular

commercial logistics to humanitarian logistics. Alternatively, methodologies for humani-

tarian logistics should incorporate externalities such as human suffering level.

Logistics has always been a chief element in humanitarian aid operations, which re-

sults in the logistics efforts account for 80 percent of disaster relief (Jahre et al., 2007).

Notwithstanding researchers have viewed humanitarian logistics as the strikingly different
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from commercial logistics, they acknowledge similarity between humanitarian and com-

mercial logistics (Glenn Richey Jr et al., 2009; Balcik et al., 2008).

Although the environments where humanitarian logistics operate are different from

the commercial setting, the basic activities within humanitarian supply chains are not ex-

tremely different from commercial logistics (Glenn Richey Jr et al., 2009). Similar to

commercial supply chains, stocks flow through the relief chain via a series of long-haul

and short-haul shipments (Balcik et al., 2008). This suggests that analyzing the supply

chain actors and activities in the commercial situation might enable humanitarian logistics

problems to have proper methodologies.

There are four phases of disaster management: mitigation, preparedness, response, and

recovery. Some literature combines mitigation and preparedness stage into one (Özdamar

& Ertem, 2015).

Mitigation and preparedness activities, for instance, building re-enforcement, inventory

and equipment pre-positioning, are operated before the disaster to amplify safety and to

weaken the potential impact on population and infrastructure (Özdamar & Ertem, 2015;

Holguı́n-Veras et al., 2012)(FEMA IS-1, 2010).

Whereas, post disaster activities include response and recovery operations, for example,

the transportation of supplies to affected area and of equipment for repairs to rebuild the

infrastructure, and rescue activities (Holguı́n-Veras et al., 2012).

Furthermore, the recovery process is categorized into two sub-phases, which are short-

term and long-term recovery. Short-term recovery practices consist of the distribution of

medicines, the transportation of victims and search aids. On the other hand, long term

operations involve restoring the infrastructure and treating human mental illness affected

by disaster. Thus the main operational decisions in short-term recovery activities are relief

supply allocation, vehicle delivery scheduling, and vehicle routing (Balcik et al., 2008).

Short-term recovery practices occur under chaotic and arduous environments, however

long-term recovery operations occur in more calm circumstances. Considering the urgency

and the high uncertainty, short-term recovery processes have further priority and dynamics

than the other one (Holguı́n-Veras et al., 2012). Balcik et. al., 2008 referred the short-
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term recovery activity as last mile distribution (Balcik et al., 2008). The authors defined

the last mile distribution as to delivery of relief supplies from local or temporary distribu-

tion centers to the victims. They also realized the most compelling logistical problems in

the short-term recovery rise from the deficiency of transportation resources and emergency

supplies, damaged transportation infrastructure, and lack of coordination among relief ac-

tors (Balcik et al., 2008).

Although the characteristics of importance and necessity of humanitarian logistics, re-

search in this area has not been performed much (Liberatore et al., 2014) and methodolo-

gies for short-term recovery has been developed little as well. Furthermore, the transporta-

tion of casualty under infectious disease problem has been also barely studied (Caunhye

et al., 2012). The term of casualty transportation problem was devised by Caunhye et.

al., 2012 (Figure 2.1) (Caunhye et al., 2012). Therefore, our suggested problem has both

uniqueness and significance.

We will propose six dynamic policies for vehicle routing for infected remains from

Ebola with the empirical data of the 2014 outbreak in Liberia thereby we expect the pro-

posed route construction policies to enable post-disaster operations to be more effective

and fast.

2.2 Dynamic Pickup and Delivery Problem

To understand related studies and methodologies for the suggested problem, we re-

viewed traditional vehicle routing problems (VRP). In general, vehicle routing problems

can be classified into four types (Table 2.1) (Pillac et al., 2013). General features related

to demand or input data, such as single or multi-period (static/dynamic) and deterministic

versus stochastic are factors in VRP category.

A routing problem is said to be static when all the input data of the problem are known

before routes are constructed. Whereas, in a dynamic routing problem, some of the input

data are revealed or updated during the execution of routing.
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(Caunhye et al., 2012)

Figure 2.1. Humanitarian logistics research areas

Usually dynamic modeling can adjust to frequent information updates and to vehicle

re-routing and re-allocation of service capacities (Yi & Özdamar, 2007). Thus real-time

communication between the vehicles are required so as to reveal routing information dy-

namically during the execution of the routes.

Different from the dynamic information, stochastic input data partially known as ran-

dom variables which realizations are only revealed during the execution of the routes, which

means that we do not know demand at the beginning because of its highly probabilistic na-

ture. Stochastic property also needs real-time communication but we can apply probabilis-

tic distribution to the routing problem so as to generate the routing for the time window.

In general, input data in dynamic problems is estimated by analyzing historical data and

assumed to follow proper probabilistic distribution.

Researchers have concentrated on solving dynamic problems by developing heuristic

algorithms such as insertion heuristics, deletion heuristics, and interchange moves, and

Tabu search. Even though dynamic problems are solved by rigorous mathematical pro-

gramming or even heuristics with lots of assumptions, the solution does not guarantee
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to solve real-world problem because of uncertainty properties of practical environment.

Therefore, dynamic vehicle routing problem should be researched more and it is one of the

important and necessary research area in vehicle routing problem category.

Table 2.1.
Classification of Vehicle Routing Problems

Deterministic Stochastic

Static All input is known beforehand Input data partially known as
random variable which realiza-
tions are only revealed during
the execution of the routes

Routes do not change
Dynamic Part or all input is unknown re-

vealed dynamically during the
execution of the routes

Same to the dynamic determin-
istic problem

Input is unknown Stochastic knowledge is avail-
able on the dynamically re-
vealed information

Whenever making a solution,
new input occurs

Need to update real-time data
and to communicate between
vehicles

Regarding the retrieval and burial processes for the infected deceased under Ebola cir-

cumstances, the suggested problem can be considered as the application of dynamic pickup

and delivery problem (DPDP). DPDP is a well-studied class of the Vehicle Routing Prob-

lem (VRP), which consists in finding a set of routes for the vehicles which satisfies a va-

riety of constraints and so as to achieve the goal (Toth & Vigo, 2002; Ferrucci & Bock,

2014). A key property of DPDP is that dynamically arriving demands must be transported

from pickup locations (origin) to delivery locations (destination) within given time win-

dows (Berbeglia et al., 2010).
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The term dynamic implies the input data such as the information of the arrival of new

demands is not known beforehand, instead it is released during the execution of the routing.

With respect to the dynamic characteristic, the problem consists of designing the vehicle

routes in an online fashion, communicating to the vehicle which customer to serve next

as soon as it becomes available (Pillac et al., 2013; Novoa & Storer, 2009; Secomandi &

Margot, 2009; Secomandi, 2001).

The objective varies in different DPDP applications, for example, it can be to minimize

the total cost and to minimize the response time. In our problem, it is to minimize the total

transmission risk of remains.

The response time is the total time the customers spend waiting to be served (Bertsimas

& Van Ryzin, 1991). In the same light, the response time can be interpreted as the duration

from the time an emergency call arrives at the station to the time an emergency vehicle

arrives at the affected site under disaster environment (S. Yang et al., 2005) in which the

response time plays a critical role.

In a DPDP, the input data which are generally user requests are revealed over time. In

contrast to a static problem, the planning horizon of a dynamic problem may be unbounded.

Therefore, a solution to a dynamic problem cannot be a static output, but rather a solution

strategy which using the revealed information, specifies which actions must be performed

as time increases.

From this perspective, we suggest proper policies for vehicle routing construction so

that healthcare workers can achieve rapid burial with the lowest total transmission risk.

Table 2.2 summarizes the comparison between the casualty transportation problem and a

typical DPDP.

The DPDP differs from the dynamic traveling repairman problem (DTRP) which is

another application of VRPs in term of the chance of changing vehicle location. In the

DPDP the vehicle changes location in the model during service, whereas, in the DTRP the

vehicle spends time at the service location of each demand to complete serving the demand

and does not transport the demand to the designated site. That is, in the DPDP, the vehicle
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changes location, on the other hand, in the DTRP the vehicle does not change location

while servicing a demand.

One of variants of the DPDP is the stacker crane problem (SCP), which encompasses

our problem. When vehicles go to a pick-up location, it must immediately go to the delivery

location for that demand. This is an asymmetric TSP by considering each pick-up and

delivery pair as a single point. Since the stacker crane problem is a NP-hard problem, the

method to solve this problem include simulation study (Swihart & Papastavrou, 1999).

Thus, the casualty transportation problem is the application of the DPDP as the stacker

crane problem because a vehicle should retrieve Ebola infected remains and transport them

to the burial site immediately.

2.3 Ebola

Ebola hemorrhagic fever is a severe viral disease of which fatality rate of 20 to 90%,

depending on the virus species (Baize, et al., 2014). There are five species of Ebola virus:

Sudan ebolavirus, Zaire ebolavirus, Tai Forest ebolavirus, Bundibugyo ebolavirus, and Re-

ston ebolavirus (Beeching et al., 2014). Among ebolaviruses, Zaire and Sudan strain has

been discovered as the most fatal to human. These Zaire and Sudan ebolavirus’ case-fatality

rate ranges from 60% to 90% and the rest has a case-fatality rate of 40 to 60% (De Wit et

al., 2011).

By tracking Ebola outbreaks in history, Zaire ebolavirus infected Democratic Republic

of Congo in 1976 and concurrently but unrelated outbreak that occurred in Sudan was

caused by Sudan ebolavirus (De Wit et al., 2011). Reston ebolavirus was discovered in

1989 originated from Philippines. It caused outbreaks in US and Italy in 1990, 1992,

and 1996 but Reston virus has caused disease in nonhuman primates, but not in humans.

Tai Forest ebolavirus is also referred as Cote Divoire ebolavirus and the name implies the

location of outbreak in 1994. Tai Forest virus causes non-fatal human case, which is similar

to Reston virus. Bundibugyo ebolavirus was identified in Uganda in 2007 to 2008 (De Wit

et al., 2011).
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Ebola viral disease (Ebola) symptoms are the sudden onset of fever and malaise, ac-

companied by myalgia, headache, vomiting, and diarrhea. The initial symptoms are non-

specific, which makes early clinical diagnosis difficult (Dixon et al., 2014; Beeching et al.,

2014). In calamitous forms, referred as the second stage, multi-organ dysfunction, includ-

ing hepatic damage, renal failure, and central nervous system involvement occur, leading

to shock and death (Dixon et al., 2014). Recovery is more likely from the initial stage,

with much higher fatality rates in the second stage (Eisenberg et al., 2015).

The natural reservoir of Ebola and mode of transmission to humans has not been as-

certained, however, laboratory testing of reservoir competence supports that three species

of fruit bats can be possible Ebola virus reservoir (Leroy et al., 2005). The virus which is

transmitted from Animal to human is thought to occur during hunting and consumption of

the reservoir species or infected non-human primates (Beeching et al., 2014) and when the

human population contacts with infected wildlife (Dixon et al., 2014).

On the other hand, human to human transmission results from direct contact with body

fluids, for instance, blood, vomit, saliva, urine, sweat, semen, and breast milk (Breman et

al., 1978; Beeching et al., 2014; Dixon et al., 2014) of infected individuals during the stages

of illness or after death (Nielsen et al., 2015; Dowell et al., 1999). Infection through inhala-

tion is possible in non-human primates, but there is no evidence for airborne transmission

in humans (Beeching et al., 2014).

The 2014 Ebola outbreak in west Africa was affected by Zaire ebolavirus, which his-

torically has demonstrated the highest case-fatality rate (up to 90%) since the virus was

discovered in 1976 (Beeching et al., 2014; Baize et al., 2014; Dixon et al., 2014). Two

vaccine candidates have been developed and demonstrated completely in studies in nonhu-

man primates, however, it remains still unknown that both vaccine candidates will translate

to human population (Kanapathipillai et al., 2014; Stanley et al., 2014; Geisbert et al.,

2009).

Besides Ebola vaccines, several control measures (e.g., isolation of patients, safe patient

and body transfer systems, safe and rapid burial, environmental and household decontami-

nation, quarantines and cordons sanitizes, travel restrictions, distribution of protective kits,
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education for community members, and so on) are put in the affected region to curtail the

outbreak (Gray et al., 2015).

To understand the Ebola transmission dynamics and to develop proper intervention

strategies to mitigate the disease, it is crucial to construct the transmission model of Ebola.

By using a compartmental model of infection, which is SEIR, Camacho et al., unearthed

the temporal dynamics of Ebola. Furthermore, the authors suggested person-to-person

transmission model from different sources, which are an infectious host in the commu-

nity, at rate βi(t) and a deceased but not buried patient at rate βd(t) (Camacho et al.,

2014). The transmission rate follows time-dependent smooth decreasing functions (Equa-

tion (3.1)) (Camacho et al., 2014; Lekone & Finkenstädt, 2006; Ndanguza et al., 2013):

βd(t) = βd(1−δppσ(t,αpp,τpp)) (2.1)

where σ is the following sigmoid function:

σ(t,α,τ) =
1

1+ exp(−α(t− τ))

Based on the 2014 reported cases of Ebola in West Africa, Lewnard et al., 2014 esti-

mated the effectiveness of protective kit allocation. The authors simulated the transmission

model with protective kit allocated under different scenarios, which had different start date

of allocating kits (Lewnard et al., 2014).

Pandey et al., 2014 also access the effectiveness of several strategies for curtailing Ebola

with a stochastic model of Ebola disease transmission that takes into account different

environment (e.g. community, hospitals, and funerals) (Pandey et al., 2014). The authors

emphasized non-pharmaceutical interventions such as quarantine, case isolation, contact

precautions, and rapid and safe burial (Pandey et al., 2014).

Moreover, Pandey et al., 2014 calculated R0 for Ebola in partitioned transmission routes

of which results for R0 imply that reducing transmission in hospitals and the community is

insufficient to stem the exponentially growing epidemic. Since West African funeral cus-

tom has touching and kissing to deceased person, it is imperative to simultaneously restrict
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traditional burials to hinder Ebola transmission in West Africa (Pandey et al., 2014). Also,

the author claims that rapid burial is one of the required factor to stop Ebola transmission.

Accordingly, we solve the casualty transportation problem by showing how rapid burial

can be achieved by establishing dynamic policies and demonstrating the effectiveness of the

suggested policies through simulation under different intervention strategies.
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Table 2.2.
Comparison of casualty transportation problem and DPDP

The casualty transportation
problem

Dynamic pickup and delivery
problem

Common proper-
ties

Some of the input data which are generally the user requests are
revealed or updated during the period of time in which opera-
tions take place
The planning horizon of a dynamic problem may be unbounded
A solution to a dynamic problem cannot be a static output but
rather a solution strategy which, using the revealed information,
specifies which actions must be performed a time goes by
Some information about future requests is known as a probabil-
ity distribution
Because of the problem complexity, the exact probability distri-
bution of future events is not always known but can be approxi-
mated through the use of historical data is known as a probabil-
ity distribution.

Problem classes dynamic stacker crane problem
dynamic vehicle routing prob-
lem with pickups and deliveries
(D-VRPPD)
dynamic stacker crane problem
(D-SCP)
dynamic dial-a-ride problem
(D-DARP)

Related research
in D-SCP

N/A

Approach Suggest adequate policies for
vehicle routing construction

Adapt a static algorithm that
solves the static version of the
problem
The static algorithm is applied
only once at the beginning of
the planning horizon. Then up-
date the current solution with
heuristic methods (e.g., inser-
tion heuristics, deletion heuris-
tics, interchange moves, and a
local search algorithm)
Agent-based simulation
Tabu search

Algorithmic per-
formance assess-
ment

simulation competitive analysis, less strict
analysis (i.e., analyzed the per-
formance of a dynamic algo-
rithm over a fixed (and finite)
set of instances

(Berbeglia et al., 2010; Hentenryck & Bent, 2009; Hvattum et al., 2006, 2007; Roselim, 2014; World Health Or-
ganization, 2014; Powell et al., 2003; J. Yang et al., 1999, 2004; Mes et al., 2007; Gutenschwager et al., 2004;
Mitrović-Minić et al., 2004; Mitrović-Minić & Laporte, 2004)



19

3. PROBLEM DESCRIPTION

3.1 Problem Definition

The casualty transportation problem is the variation of the DPDP with multiple vehicles

with unit capacity which is classified in the one-to-one pick-up and delivery problem. Also

the suggested problem is referred as a casualty logistics problem. We define the problem

with unit capacity vehicles because of the Ebola transmission characteristic. The burial

team takes just one Ebola remains to the designated area at the same time (Nielsen et al.,

2015) in order to disinfect the vehicles as well as healthcare workers. Thus in this problem

the vehicles capacity is considered to be one.

Furthermore, there are two decision types in this problem. The first one is that there are

more waiting Ebola remains than the number of available vehicles. In this case, the vehicle

decides which demand should be served first. The second one is when more vehicles than

the number of waiting Ebola remains are available. In this case, the closest vehicle to the

remains is sent to that body. The former case is more usual under emergency situation due

to the resource deficiency. Therefore we suggest six policies for the former situation and

for the latter condition, we just fix the nearest neighbor policy.

Our contribution is to solve the variant of the DPDP with the unique objective function

referred to the total transmission risk function, which has not been handled before. The

total transmission risk function consists of not only the total response time (which is usually

the traditional objective in the previous DPDP problems) but also the transmission rate of

infected remains of Ebola.

Camacho et al, 2004 suggested the person-to-person transmission rate function βd(t)

from the unburied infected remains. The authors used the time-dependent smooth decreas-

ing function for βd(t) (Equation (3.1)) (Chowell & Nishiura, 2014; Chowell et al., 2004;

Lekone & Finkenstädt, 2006; Ndanguza et al., 2013). We use parameter estimates done



20

in literature (Chowell & Nishiura, 2014; Lewnard et al., 2014; Althaus, 2014)(Equation

(3.2)).The transmission routine from infected remains occurs only during the time between

after death and before burial.

βd(t) = βd1(t<τ)+βde−α(t−τ)
1(t≥τ) (3.1)

βd(t) = 0.781(t<τ)+0.78e−0.015(t−τ)
1(t≥τ) (3.2)

where τ is the time at which intervention put in, t is the time when the bodies are buried

completely.

We assume τ is the time when burial team arrives at the place where body of died person

lies. From the transmission rate function, we can get the transmission risk function at time

t per body (Equation (3.3)). It is achieved by integrating βd(t) over the time that an infected

patient deceases to the time that the body is buried comprehensively.

Transmission risk o f the in f ected remains over time t =
∫

t
βd(t)dt (3.3)

To get the total transmission risk, we sum the person to person transmission risk among

the total remains. We call it as the total transmission risk function, B(t) (Equation (3.4)).

B(t) = ∑
D

∫
t
βd(t)dt (3.4)

where D represents the total number of the infected deceased.

The objective of the casualty transportation problem is to minimize the total transmis-

sion risk, B(t) to minimize the number of infected population, to maximize the number of

survivors, and to minimize Ebola lasting period.

We make an assumption on some of the parameters. Arrival rates and the number of

vehicles (denoted as v and the value of v is from 27 to 53 in the 2014 outbreak in Liberia)

are attained from CDC and articles connected to the 2014 Ebola outbreak (CDC, 2015;

Al-Varney, 2015).
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3.2 Assumptions

- We assume bodies of the deceased people from Ebola occur in the community setting and

not in the hospital setting

- Person to person contact behavior changes once intervention strategies (e.g., retrieve and

bury processes, education) starts

-Traffic condition (heavy/low) is not considered. (i.e. ignore traffic jams and their resulting

delays)



22

4. METHODOLOGIES

To solve the casualty transportation problem, we suggest six policies for vehicle routing,

which enables real-time decision making to minimize the total transmission risk. An avail-

able vehicle is dispatched to the Ebola remains which contains the highest priority resulted

from the determined policy among the suggested policies.

The six policies that affect the decision of vehicle routing to the Ebola deceased victims

are: 1) nearest neighbor (NN), 2) first come first served (FCFS), 3) last come first served

(LCFS), 4) lowest transmission risk (LTR), 5) highest transmission risk (HTR), and 6)

the highest transmission rate combined with nearest neighbor (HRATE). The suggested

policies are summarized in Table 4.1.

Table 4.1.
Six Policies

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6
NN FCFS LCFS LTR HTR HRATE

As explained in Table 4.2, the suggested policies determine the priority of remains to be

served when the number of requests exceeds the number of available vehicles exist. If there

are no available vehicles to transport the arrived request, the request is put in the waiting

list, called Request Truck Queue. Then the healthcare worker allocates the truck once

available to the remains which has the highest priority by the policy. If multiple remains

are waiting and multiple vehicles are available, the decision maker picks the remains with

the highest priority which is decided by the policy and then dispatch the closest truck to

that remains. In case when higher number of vehicles than the number of demands are

waiting, simply the closest truck to the demand is dispatched.
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In general, there are limited number of vehicles in disaster. Considering this aspect,

the suggested policies guide healthcare workers to determine the priority of demands to

be served rather than the priority of vehicles. Vehicles are always picked by the closest

distance between them and demands.

Since the first three policies would be familiar to all readers we will not explain them

thoroughly. The fourth and the fifth policy consider the transmission rate with the response

time. Among arrived demands we will find one that has the minimum or the maximum

transmission risk at the time when truck arrives at the place then dispatch the nearest vehicle

to it. Basically those two policies consider the waiting time of demands at Request Truck

queue, transmission risk, and the distance between demands and available vehicles. The

sixth policy considers the transmission rate and the distance.

Table 4.2.
Decision Types and Policies

XXXXXXXXXXXXdemands
vehicles

1 N

1 Closest vehicle
M Closest demand

First come demand served first
Last come demand served first Combine
Lowest transmission risk of demand
Highest transmission risk of demand
Highest transmission rate divided by vehicle’s traveling time of demand

4.1 Policy 1 - Nearest Neighbor

All infected remains will be retrieved and buried by a burial team depending on the

distance between a body and a truck. No matter when a death occurs, at the time when a

vehicle becomes available, the closest demand to the vehicle among waiting bodies at the

Request Truck Queue will be served first.

The nearest neighbor policy overlaps with the decision type which is there are higher

number of available vehicles than the number of demands in which the closest truck will

be dispatched to the demand. Hence, the nearest neighbor policy implies that there is only
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the shortest distance rule exists in the system thereby the total transmission risk function

relies on only distance. Although this rule is simple, it is intuitively adopted by healthcare

workers in real world.

When looking at the transmission risk function closer, it can be interpreted as the func-

tion of the response time. Thus, if the nearest neighbor policy reduce the response time

strikingly, the total risk would be much lowered under this policy.

We randomly generated distances between demands and trucks in the range of 60 to

180 miles. This range is achieved by calculating the Euclidean distance among the centers

of the Liberian counties.

4.2 Policy 2 - First Come First Served

All requests arrived at the healthcare center are recorded in chronological order. Ac-

cording to the first come and first served (FCFS) policy, once a vehicle is available, it is

dispatched to the first arrived demand no matter how the distance between the available

vehicle and the fist come demand is.

When we look at the transmission risk function, it increases logarithmically (at rate

0.0125 or 0.025 dependent on the scenarios) as time increases, which means that the initial

stage of responding is critical to lower the transmission risk. That is to say, through the

FCFS policy, the risk of the first come remains would reaches almost the convergent point

of the transmission risk function if the remains waits for being retrieved for a long time.

4.3 Policy 3 - Last Come First Served

The last come first served policy (LCFS) is the reverse case of the first come and first

served policy. All the arrived notifications of occurrence of infected remains are recorded in

decreasing chronological order. Similar to the FCFS policy, the last come first served policy

does not rely on the distance when there are more number of remains than the number of

available trucks.
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It, however, differs significantly from FCFS policy despite of the fact that it does not

involve the distance like the FCFS policy does. By the last come first served rule, the last

come remains will be retrieved first and has the lowest transmission risk among waiting

bodies at that moment. Then the reducibility of the total transmission risk is greater than

that of the first come first served policy because the risk of the first served remains is much

lower than the convergent value of the transmission risk function. Again, this aspect is

obtained from the logarithmic property of the transmission risk function.

4.4 Policy 4 - Lowest Transmission Risk

remains

Among waiting requests, we can find one which has the expected lowest transmission

risk. Expected lowest transmission risk states the transmission risk in the future when

the burial team will arrive at the location of deceased victim. In other words, the lowest

transmission risk policy includes the notion of the nearest neighbor and last come first serve

policy.

However, in some cases where the distance between the last come demand and the

available vehicle is very large, the LTR rule guides another demand which arrived earlier

than the last come demand. Since the burial processes begin after the truck arrives at the

location of the infected remains, the starting time of person to person contact behavior

change is exactly when the truck arrives at the affected place. As a result, the transmission

risk of waiting demands at the Request Truck Queue is not same with the risk at the time

when the burial team starts burial processes.

With the transmission risk function for each remains at time t when a truck becomes

available, we can find the remains that has the minimum transmission risk at time t +

α , where α implies the expected travel time of truck to the remains’ place. Thus the

lowest transmission risk policy includes distance concept, which improves the last come

first served approach.
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All distances between the waiting demands and the available vehicle are different to

each other, which is reflected in the simulation models by using the triangular distribution

in range of 60 to 180 miles.

Basically we compare all transmission risk among arrived demands, find one with the

expected minimum transmission risk at Request Truck Queue, and dispatch the nearest

vehicle to it. Once the vehicle arrives at the demand, the increasing rate of the transmission

risk starts to decrease because the intervention affects the person to person contact behavior.

After retrieval process, the vehicle heads toward the burial site and after completion burial,

eventually transmission rate becomes zero and the transmission risk stops increasing.

4.5 Policy 5 - Highest Transmission Risk

The highest transmission risk (HTR) policy is opposite to the LTR policy. It picks

the demand which possesses the highest expected transmission risk among the waiting

requests. The highest transmission risk policy is the combination of LCFS, FCFS, and far-

thest distance rule. Suppose there are three waiting demands at the Request Truck Queue,

say D1, D2, and D3 in chronological order. A vehicle becomes available and the distances

between the vehicle and D1, D2, and D3 are 50mi, 80mi, and 100mi respectively. It can

be expected that the vehicle will be dispatched to D1 and D3 under the FCFS policy and

LCFS rule respectively. Whereas, under the HTR policy, we can not simply predict the

routing result. The expected transmission risk of D3 can be higher than that of the rest

and vice versa because we do not know how long the waiting time of each demand is and

how far the demand from the vehicle is before executing the vehicle routing. Hence, the

highest transmission risk mixes up the LCFS, FCFS, and the furthest distance rule and the

consequent priority of demands would count on the given situation.

4.6 Policy 6 - Highest Transmission Rate Combined with Nearest Neighbor

The highest transmission rate combined with nearest neighbor (HRATE) policy can be

achieved by dividing the transmission rate by the trucks travel time to the place where the
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remains lies. While this policy looks analogous to the HTR policy, under this policy, a

truck is dispatched to a demand with the highest value of transmission rate and the closest

distance between the available truck.

Next, considering the form of the total transmission risk function, the HRATE policy

looks similar to the LTR rule. However, the transmission rate is instantaneous thus it does

not provide the information about the risk. That is to say, the highest transmission rate can

not be considered as the highest transmission risk.
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5. EXPERIMENTAL DESIGN

Through simulation, the best policy which reduces the total transmission risk further across

the scenarios will be selected among the proposed six policies and all experiment results

are statistically analyzed. To develop simulation models, we design the experiments with

real data, which is resulted from the 2014 Ebola outbreak studies.

5.1 Input Data

Our model is designed to address the realistic aspects as many as possible. Based on the

empirical data from the 2014 Ebola outbreak, we can obtain arrival rates, the approximated

number of burial teams, and the approximated number of operated vehicles. To design the

simulations, we assume that Ebola victims’ arrival follows the exponential distribution, and

the number of resources is constant within the scenarios.

Arrival rates

The arrival rates are obtained from the empirical data of the 2014 Ebola outbreak in Liberia

(Appendix A). Since daily death rates vary over time (WHO, 2014a; CDC, 2015; Caitlin,

2015), we designed the model to have different arrival rates of demands along with the sim-

ulation time horizon. We sectored the epidemic time horizon into three phases and obtained

arrival rates respective to each phase as described in Table 5.1.

Burial teams

According to the safe burial guideline, the number of burial teams should be operated as

minimum to avoid the secondary transmission (CDC, 2014). Red Cross declared the burial

team started with three teams with seven members each and later increased to five. Later,

the team increased to twelve with 150 burial team members as Ebola remains increased.
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Table 5.1.
Ebola Remains Arrival Rates

XXXXXXXXXXXXContents
Phase

Phase 1 Phase 2 Phase 3

Period 3/25 - 8/28 2014 8/29 2014 - 3/18 2015 3/19/2015 -
Arrival Rates 0.2468 0.9000 0.2124

- arrival rates per hour in each Ebola outbreak phase

From April 27, 2014 to April 29, 2015 it is reported that the teams collected 3,684

deceased victims from Montserrado and its surroundings (Massa, 2015; Anita et al., 2015).

In addition, based on the WHO report, US established and operated about 50 teams in

Liberia as of February 2015 (Office of the Press Secretary, 2015). Integrating all articles

related to the burial teams, we assume 40 to 50 burial teams on average were managed in

the 2014 Ebola outbreak in Liberia (Xinhua, 2014).

Vehicles

Logisticians have managed a fleet of about 100 vehicles and countless motorcycles and

bikes, which have been critical in surveillance, contact tracing, response, and burial activi-

ties in Liberia (WHO, 2014b; Anita et al., 2015) in the 2014 outbreak. The actual number

of vehicles, however, are less than the reported number due to technical issues (Al-Varney,

2015; Frontieres, 2014; Russell & Seble, 2014; Antoinette, 2015; Automotive Fleet, 2015).

Since the number of available vehicles is up to the number of burial teams, we consider

only forty to fifty trucks were available in the 2014 Ebola outbreak in Liberia. Yet, we

define the scenarios to have different number of vehicles to explore the effect of policies

under various setting.

5.2 Scenarios

We developed continuous simulation models that is, the change of the system is smooth

in time (Wang & Wang, 2013) and the developed models continuously track system re-
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sponse according to the total transmission risk function. The starting time of simulations is

March 25, 2014 when the initial Ebola remains occurred and each scenario was simulated

for a hundred replications. We have twelve scenarios (Table 5.2) to delve into the suggested

policies’ performance. Different types of intervention is included in each scenario in which

the number of trucks is set as different as well.

5.2.1 Scenario 1 - burial without intervention

There is no intervention strategy in the scenario 1. Only burial team’s retrieving and

burying action enables the Ebola remains’ transmission rate to decrease. Once a deceased

victim is picked up, the transmission rate function starts decreasing exponentially at the

rate of 0.0125 per hours (Equation (5.1)) (Camacho et al., 2014).

βd(t) = 0.781t<τb +0.78e−0.0125(t−τb)1t≥τb (5.1)

where t implies the simulation system time at which the deceased victim in the system and

τb implies the time when the burial team arrives at the remains’ place.

As long as the body is safely buried, the transmission rate becomes zero and transmis-

sion risk does not increase any longer. We set the different number of vehicles in burial

without intervention environment.

5.2.2 Scenario 2 - burial with global intervention - March 25 2014

The global intervention includes distribution of flyers, personal protective equipment

(PPE), and sterilizer, and campaign to a whole affected region at the same time. In the

2014 Ebola outbreak, protective kits were provided to households in an attempt to reduce

the household transmission. These kits include soap, bleach, PPE including gloves and

masks, and sanitary containers for disposal of contaminated materials. In reality, Liberian

government and international healthcare organizations strove to distribute protective kits to
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all Liberian counties on September 15 to October 3, 2014 by researching various articles

and papers (Crowe et al., 2014; Frontieres, 2014). We call it as the global intervention.

As the term of global implies, the global intervention put in the system at the same time,

which affects the all community members’ person to person contact behavior simultane-

ously. Within scenario 2, the global intervention is put in the system on March 24. 2014 at

which the simulation starts. This is the extreme case of the scenario 3 because the global

intervention begins in a whole affected region right after the infectious decease outbreaks.

Considering the transmission rate function, the control level of the global intervention

is 0.0125 per hour (Equation (5.2)) (Camacho et al., 2014).

βd(t) = 0.78e−0.0125t
1t<τb (5.2)

where t implies the simulation time at which the request is in the system and τb is the arrival

time of truck at the demand.

All arrived requests follow the Equation (5.2) before being retrieved. Once an available

vehicle arrives at the requested location, the burial processes start. Then the transmission

rate of the remains changes to Equation (5.3).

βd(t) = 0.78e−0.025(t−τb)1t≥τb (5.3)

where t implies the simulation system time at which the demand is in the system and τb is

the burial team’s arrival time at the affected place.

The value of control level is 0.025 once the burial processes begin. This value is ob-

tained by multiplying the effects of the burial and the global intervention. Under this set-

tings, Scenario21, Scenario22, and Scenario23 have 27, 40, and 53 trucks respectively.
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5.2.3 Scenario 3 - burial with global intervention - September 24 2014

Since Liberian relief teams distributed protective kits on September 15 to October 3,

we estimated the mid time of that period, which is September 24, 2014 (Crowe et al., 2014;

Frontieres, 2014). Therefore, the scenario 3 reflects the 2014 outbreak well.

Before September 24, only the burial activity is operated as in scenario 1 (Equation

(5.4))and on September 24 (the time interval between the simulation starting time and

September 24 is 183 days, which is 4392 hours) the global intervention begins and the

transmission rate starts decreasing at value of 0.0125 per hour. And the transmission rate

is once again decreased after the truck arrives at the deceased victim(Equation (5.5)).

βd(t) = 0.781(t<τb<τg)+0.78e−0.0125(t−τb)1(t≥τb, t<τg) (5.4)

βd(t) = 0.781(t<τg<τb)+0.78e−0.0125(t−τg)1(t≥τg, t<τb)+0.78e−0.025(t−τb)1t≥τb (5.5)

where t is the simulation system time at which the remains is in the system, τb is the

starting time of the burial processes and τg is the starting time of the global intervention,

which is 4392. Let us refer this environment with different number of trucks as: Scenario31,

Scenario32, and Scenario33 with 27, 40, and 53 trucks respectively.

5.2.4 Scenario 4 - burial with local intervention

The local intervention is derived from the fact that some people of the affected region

can not obtain protective supplies due to the deficiency of supplies. Alternatively, when a

call that notices a remains occurs arrives at the healthcare office, healthcare workers inform

the caller about how to prevent from being transmitted by the body, for instance, warning

for direct touch to the deceased victim’s body. We consider this type of intervention as the

local education intervention.

Since an emergency call arrives individually and dynamically, the local education strat-

egy starts depending on the arrival time of requests. We assume once the request call arrives

at the healthcare center, the worker immediately notify the prevention strategy to the caller,
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which is considered as the local intervention starts. Therefore, the starting time of the local

intervention is exactly the time when the request arrives at the healthcare center.

Since we assume the local intervention strategy has the same effect with the global

intervention, the control level is also same at value 0.0125 per hour. After the burial team

arrives at the affected place, the transmission rate is decreasing exponentially at the rate of

0.025 (Equation (5.6)). This environment with different number of trucks are referred as:

Scenario41, Scenario42, and Scenario43 with 27, 40, and 53 trucks respectively.

βd(t) = 0.781(t<τl<τb)+0.78e−0.0125(t−τl)1(t≥τl , t<τb)+0.78e−0.025(t−τb)1(t≥τb,) (5.6)

where t is the simulation system time at which the remains is in the system, τb is the

starting time of the burial processes and τl is the starting time of the local intervention,

which is dependent on the request’s arrival time.

Table 5.2.
Scenarios

Without intervention Global intervention - Mar 25 2014 Global intervention Sep 24 2014 Local intervention
v = 27 Scenario11 Scenario21 Scenario31 Scenario41
v = 40 Scenario12 Scenario22 Scenario32 Scenario42
v = 53 Scenario13 Scenario23 Scenario33 Scenario43

- Scenarioi j
- i: different interventions, i={1, 2, 3, 4} = {without intervention, global - Mar 25, global - Sep 24, local}
- j: different number of trucks, j={1, 2, 3} = {27, 40, 53} trucks
- v: the number of trucks

5.3 Simulation Logic

Simulations logic is developed based on the burial processes of the 2014 Ebola epi-

demic. The basic operational processes are same even though the specific conditions differ

from each scenario model.

Once Ebola patient deceases, the notification call arrives at the healthcare offices. Then

the officer records the time of the body occurrence with its location. If a truck is available,
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- Our methodologies will solve the red box

Figure 5.1. Simulation logic

an officer allocates it to the request following the determined policy. Otherwise, officer puts

the request in waiting list, referred to as the Request Truck Queue, until a vehicle becomes

available, then he assigns the available vehicle to the highest priority remains’ location,

which is resulted from the policy.

The truck departs to the affected place then as soon as it arrives, the burial team starts

disinfect their bodies as well as the surrounding environment where the body is located.

Then team members safely pack the body into the body bag, carry it to the waiting truck,

and finally complete the retrieving process.

The truck heads to the burial site, which is available and the closest region among possi-

ble burial sites. Upon the truck arrives at the designated site, the body is buried completely.

Then the truck and the burial team head back to the closest healthcare office. Even though

the frame of the simulation is same across the different scenarios, the way of dispatching

available trucks to the affected remains are different according to the policies.The simula-

tion logic is visualized in Figure 5.1.
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6. RESULTS

We have developed continuous simulation models for the casualty transportation problem

with ARENA. The starting time of simulations is March 25, 2014 when the 2014 Ebola

outbreak occurred. Each scenario is simulated for a hundred replications. The maximum

number of created entities (Ebola remains) is 4808 obtained from the Centers for Disease

Control and Prevention report (CDC, 2015).

6.1 Experiments Results

After running different simulation models, we achieved the total transmission risk value

under six policies for twelve scenarios (Table 6.1). Also, we have visualized the experi-

ments results in Figure 6.1 and Figure 6.2. The simulation parameters are same across

twelve scenarios.

Table 6.1.
Total Transmission Risk

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6
Scenario 1 Burial without intervention

(1) v = 27 235,926 248,768 245,153 247,319 259,349 235,926
(2) v = 40 166,895 161,186 166,354 161,951 166,554 166,895
(3) v = 53 166,060 166,509 174,890 163,499 171,084 166,059

Scenario 2 Burial with global intervention - March 25 2014
(1) v = 27 51,539 150,298 45,018 49,605 122,621 139,967
(2) v = 40 41,999 106,253 33,985 37,092 94,540 98,976
(3) v = 53 40,368 105,169 34,187 36,141 95,024 97,095

Scenario 3 Burial with global intervention - September 24 2014
(1) v = 27 88,223 172,184 96,882 88,479 95,342 164,768
(2) v = 40 68,121 144,284 71,365 66,557 69,059 134,634
(3) v = 53 65,430 142,212 65,711 65,527 67,766 134,848

Scenario 4 Burial with local intervention
(1) v = 27 60,458 155,198 54,034 69,553 65,077 64,697
(2) v = 40 56,790 116,802 49,067 61,087 57,244 59,725
(3) v = 53 61,045 119,986 55,269 65,657 64,025 64,908

- v: the number of trucks
- Policy 1: NN, Policy 2: FCFS, Policy 3: LCFS, Policy 4: LTR, Policy 5: HTR, Policy 6: HRATE
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-sij: scenario ij
-colored bar: each policy

Figure 6.1. Experiment results - total transmission risk (all scenarios)
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-Total transmission risk within each scenario
-colored bar: each policy
-v: the number of trucks

Figure 6.2. Experiment results - total transmission risk (each scenario)

6.2 Scenarios Analysis

Before analyzing the suggested policies’ performance, we analyze the output within

each scenario to compare the effect of intervention.

6.2.1 Scenarios 1 - burial without intervention

As seen in the Table 6.1, as the number of trucks increases, the total transmission risk

decreases because healthcare organizations can respond fast with more trucks. Within the

scenario 11, 12, and 13, say 1’s, the total transmission risk is around 274% greater on

average than the results from the other scenarios. Particularly, the total transmission risk

under the policy 1, 3, and 4 significantly differs from the value under same policies in other
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scenarios (the risk under policy 1, 3, and 4 in the scenario s11, 12, and 13 is 332%, 379%,

and 337% greater than the values from other scenarios respectively).

To be specific, the average value of the total transmission risk function under the sce-

nario 1’s is 250%, 189%, and 263% greater than on average under the scenario 2’s, 3’s and

4’s respectively. It means that without any intervention, burial activity would not be able to

reduce the total transmission risk further even with the adequate policy.

The high transmission risk within the scenario 11, 12, and 13 is predictable because

there is no intervention strategy that can reduce the total transmission risk. In these sce-

narios, since the transmission rate of a remains is constant at value 0.78 before burial team

retrieves and buries the body, the total transmission risk function depends on the truck’s

traveling time and burial processing time.

Also, when looking closer at the scenario 13, the total transmission risk is higher than

that from the scenario 12. The main factor is the deficiency of burial team.

6.2.2 Scenarios 2 - burial with global intervention - March 25 2014

Next, within the Scenario 21, 22, and 23 (the global intervention starts right after Ebola

outbreak occurs), the total transmission risk is discovered as low compared to other sce-

narios even though the risk under policy 5 and 6 within the scenario 2’s can not be said

lower than that in other scenarios. Since the global intervention begins concurrently when

the disease outbreaks, we can expect that the transmission would be much lower than be-

fore when it swept the area. This result assures that the faster the intervention strategy is

conducted, the lesser the transmission risk is.

Compared with the Scenario 31, 32, and 33, say 3’s, in which the global intervention

starts 183 days after the outbreak occurs, the total transmission risk within the Scenario 2

is reduced by 32% on average than the risk under the Scenario 3’s.

Also, the risk under policy 1, 2, 3, and 4 within the scenario 2’s is lowered by 25% on

average compared to the local intervention strategy (scenario 41, 42 and 43).
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However, the total transmission risk resulted from policy 5 and 6 within the scenario

2’s is 72% greater than that within the scenario 4’s. We will analyze the experiment results

from policies’ perspective in Section 6.3 but the former interpretation leads us to the fact

that both policy 5 and 6 are not adequate under the scenario 2’s but under the scenario 4’s.

6.2.3 Scenarios 3 - burial with global intervention - September 24 2014

In the scenario 3’s, the total transmission risk is about 24% and 25% greater than aver-

age results from the scenario 2’s and 4’s respectively, although the risk under the scenario

3’s is reduced by 53% compared to the scenario 1’s.

Within the scenario 3’s, the transmission risk reaches high values before the global

intervention begins due to the fact that the strategy is put into the affected regions about 200

days after Ebola virus attacked the region. Thus, the transmission risk within the scenario

3’s is observed as high, which is resulted from the late intervention strategy. Also, it takes

time to reduce the transmission rate despite the fact that the global intervention just begins.

This fact shows when Liberian government distributed the protective kits around September

24, it seemed too late to control the outbreak, consequent leading to more infectious cases

and deaths. Therefore, it assures that fast response is critical under Ebola situation as shown

in the scenario 2’s.

In addition, the late intervention strategy would be less favorable than the local inter-

vention. In the scenario 4’s, the total transmission risk is about 80% of the risk from the

scenario 3’s. This fact supports that if there is not enough relief supplies such as hygienic

kits, it would be recommended that local intervention such as education for the community

members should be operated.

6.2.4 Scenarios 4 - burial with local intervention

Lastly, based on the experiment results from the scenario 41, 42, and 43, the local

intervention can reduce the transmission risk more than the global intervention if the global
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strategy is conducted late. This fact is supported by the fact that the total transmission risk

is lowered by 25% in the scenario 4’s when compared to the results from the scenario 3’s.

When looking closer at the experiment results under each policy, the total transmission

risk under policy 1, 2, 3, and 4 in the scenario 4’s is about 33%, 8%, 29%, and 38% greater

than risk from policy 1, 2, 3, and 4 within the scenario 2’s respectively. This observation

can be interpreted as the evidence that the fast global intervention would surpass the local

intervention strategy with competent policies.

However, the total transmission risk is reduced by 41% on average under policy 5 and

6 within the scenario 4’s compared to the results under same policies in the scenario 2’s.

It means that even though global intervention is conducted in the very beginning of Ebola

outbreak, inappropriate policies for burial activity would hinder the effect of the global

intervention.

Considering all these aspects, the local intervention is proven to one of the signicant

action to reduce the total transmission risk. Also, if there is no global intervention due to

the limitation of supplies, it is highly recommended to start the local intervention strategy.

Furthermore, local intervention will beat the global intervention if the global strategy starts

later. Finally, policies for the burial determine the influence of the global intervention, even

though the global intervention begins early.

6.3 Policies Analysis

The experiment results shows that the nearest neighbor, last come first served, and

the lowest transmission risk policy tend to reduce the total transmission risk across the

scenarios, although in some scenarios those polices can not be considered as the best.

All analysis is based on the experiments results (Table 6.1) with using the average total

transmission risk value as well as analyzing the statistical variances among the suggested

six policies. Likewise, with the results from simulation, we performed Analysis of Variance

(ANOVA) and pairwise comparison among policies under each scenario. Except scenario

12, all policies can not be considered the same based on ANOVA results (Table 6.2).
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Table 6.2.
ANOVA Results

F-value p-value
Scenario 11 10.39 0.00
Scenario 12 0.93 0.46
Scenario 13 2.30 0.04
Scenario 21 3159.30 0.00
Scenario 22 857.16 0.00
Scenario 23 959.73 0.00
Scenario 31 1036.20 0.00
Scenario 32 936.61 0.00
Scenario 33 865.38 0.00
Scenario 41 3659.70 0.00
Scenario 42 1008.70 0.00
Scenario 43 1349.40 0.00
- H0: all six policies have the same effect on the total transmission risk
- Confidence interval: 95%
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To analyze how six policies differ from each other, we performed the pairwise compar-

ison (Figure 6.3, Figure 6.4, Figure 6.5, Figure 6.6) then classified them into 1) Best, 2)

Good, 3) Poor, and 4) Worst group (Table 6.3, Table 6.4). The best and good groups are

colored by blue and light blue respectively. The poor and the worst are colored by yellow

and red respectively. The length of bar in the pairwise comparison represents the variance

of the total transmission risk.

- The Figure 6.3 indicates how the six policies differ from each other in each scenario
- blue: best, light blue: good, yellow: poor, red: worst
- P1, P2, ... ,P6 represent Policy 1, Policy 2, ..., Policy 6
- y-axis: sij (scenario ij)
- x-axis: total transmission risk

Figure 6.3. The pairwise comparison results

We summarize the pairwise comparison results in Table 6.3 and Table 6.4.
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- The Figure 6.4 indicates when the number of trucks are 27, how the six policies differ from each
other within each scenario
- blue: best, light blue: good, yellow: poor, red: worst
- y-axis: P1, P2, ... ,P6 represent Policy 1, Policy 2, ..., Policy 6
- x-axis: total transmission risk
- v: the number of trucks

Figure 6.4. The pairwise comparison results (v=27)
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- The Figure 6.5 indicates when the number of trucks are 40, how the six policies differ from each
other within each scenario
- blue: best, light blue: good, yellow: poor, red: worst
- y-axis: P1, P2, ... ,P6 represent Policy 1, Policy 2, ..., Policy 6
- x-axis: total transmission risk
- v: the number of trucks

Figure 6.5. The pairwise comparison results (v=40)
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- The Figure 6.6 indicates when the number of trucks are 53, how the six policies differ from each
other within each scenario
- blue: best, light blue: good, yellow: poor, red: worst
- y-axis: P1, P2, ... ,P6 represent Policy 1, Policy 2, ..., Policy 6
- x-axis: total transmission risk
- v: the number of trucks

Figure 6.6. The pairwise comparison results (v=53)
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Table 6.3.
Grouping the Pairwise Comparison Results

11 12 13 21 22 23 31 32 33 41 42 43
Policy 1 B B B B G B B B B B B B
Policy 2 G B B W W W W W W W W W
Policy 3 G B G B B B G B P B B B
Policy 4 G B B B B B B B B G G G
Policy 5 W B B P P P B B B G G G
Policy 6 B B B P P P W P W G G G

- 11, 12, 13, ,,, , 42, 43 denote the scenario
- Best (B), Good (G), Poor (P), Worst (W)

Table 6.4.
Results of Grouping

Best Good Poor Worst
Policy 1 11 1 0 0
Policy 2 2 2 1 9
Policy 3 8 3 1 0
Policy 4 8 4 0 0
Policy 5 5 3 3 1
Policy 6 3 3 4 2

6.3.1 Policy 1 - nearest neighbor

As we expected, the response time is further reduced by following the nearest neigh-

bor policy than the rest of policies, which is consequent on the lowest total transmission

risk in almost every scenarios. Actually policy 1 turns out as the best rule among the sug-

gested policies. This is because the transmission risk comprises the response time and the

transmission rate and the response time mainly depends on the distance in the suggested

problem. That is to say, the distance is the most dominant factor for the response time. Ac-

cordingly, if the distance between an infected body and a vehicle is smaller, the response
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time can be lowered. Hence, the response time is lowered under the policy 1 consequent

on the low total transmission risk.

Within the scenario 1’s, the nearest neighbor policy has the exact same risk value with

the highest transmission rate policy due to the fact that the transmission rate is constant

before the burial processes are operated because there is no intervention strategy in the

scenario 1’s. Thus, we can consider the nearest neighbor and the highest transmission rate

combined with the closest distance as the same.

6.3.2 Policy 2 - first come first served

The first come first served policy is noted as the remarkably worst policy in the scenar-

ios 2, 3, and 4 despite the fact that the FCFS rule has the second lowest total transmission

risk in the scenario 12.

The reason why the first come first served policy fails under Ebola environment is that

the FCFS does not consider distance between the remains and the truck, which would

increase the response time.

When examining both the simulation logic and the total transmission risk function,

an available vehicle is dispatched to the remains, that has the highest transmission risk

among the waiting remains at the Request Truck Queue under the first come first served

rule. Although FCFS policy looks similar to the highest transmission risk policy (policy 5),

FCFS policy cannot reduce the total transmission risk mainly because FCFS policy does

not include the concept of distance which policy 5 considers.

The other reason that makes the FCFS to be undesirable is the logarithmic form of the

total transmission risk function. Since the increasing rate of the risk function decreases

logarithmically at rate 0.0125 or 0.025 per hour depending on the given situation, if the

system is operated under the first come first served policy, the remains’ transmission risk

would reach at almost the convergent point of the function. Therefore the first come first

served policy is not the best approach for the casualty transportation problem.
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Notwithstanding that policy 2 has the best results within the scenario 1, the other poli-

cies also have good results within that scenario. In the scenario 1, as mentioned in section

6.3.1, since the transmission rate of a demand is constant at value 0.78 before retrieving the

demand. As a consequence, the objective function value wholly depends on the response

time, which results in there are no big differences among the policies, although the average

values of the total transmission risk under each policy are not the same.

6.3.3 Policy 3 - last come first served

The last come first served policy that is the reverse form of the first come first served is

observed as one of the competent rule among the suggested policies. Indeed, the policy 3 is

resulted as the third best rule along with the scenarios excluding the scenario 33. However,

in consideration of the fact that the scenario 33 reflects the real world well, the poor result

in this setting can be a critical issue to the practical world. Notwithstanding, it has the

lowest total transmission risk in the scenario 21, 22, 23, 41, 42, and 43.

Compared to the first come and first served policy, albeit the last come first served

policy also does not consider the distance, it yields much lower transmission risk than the

FCFS policy for the sake of, again, the shape of transmission risk function. Considering

the form of the transmission risk function, it increases more steeply at the beginning and

later it increases slowly due to the reduction rate of the transmission rate function. Under

the LCFS policy, the system remove the remains that has the lowest total transmission risk

among waiting deceased victims at Request Truck Queue before the total transmission risk

converges to the higher value. That is if the remains’ waiting time for a truck is reduced,

the future transmission risk can be lowered as well. Again this aspect stems from the

logarithmic property of the total transmission risk function and exponentially decreasing

form of the transmission rate function. Therefore, LCFS rule outperforms the FCFS.
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6.3.4 Policy 4 - lowest transmission risk

The lowest transmission risk policy is discovered as the second best one among the

proposed policies. This policy has the lowest total transmission risk within the scenario

13 and scenario 32 and the second lowest in the scenario 12, 21, 22, 23, 31, and scenario

32. It does not have either poor or worst result across the scenarios. Therefore the lowest

transmission risk policy is one of the best policies for the casualty transportation problem.

This policy uses the expected transmission risk at time when the burial team arrives

at the remains’ place. The expected risk is achieved by containing the notion of distance

between the waiting request and the available vehicle. As we explored that the nearest

neighbor policy can reduce the risk strikingly, the LTR policy also has low total transmis-

sion risk across the scenarios because it includes the distance component like the NN.

As the convergence of the total transmission risk function, the lowest transmission risk

finds the demand that has the minimum expected risk value among the waiting demands

and serve it before the risk increases to the convergent point. Reflecting this aspect, the

policy 4 can be interpreted as the combination of the policy 1 and policy 3. Hence, the

policy 4 takes advantage of both policies, which results in the second best policy.

6.3.5 Policy 5 - highest transmission risk

As the opposed to the lowest transmission risk, the highest transmission risk policy

cannot be said whether it is favorable or unfavorable. This policy indeed depends on the

given scenarios. Albeit it is shown as an undesirable rule within the scenarios 11, 21, 22,

23, it works well in the rest of scenarios.

Taking a closer look at the policy 5, it would take the demand which is located furthest

from a vehicle. Suppose that the body 1 occurred at t1 before the body 2 occurs at t2. One

of the vehicles becomes available. Let’s assume that the distance between the vehicle and

the body 1 and the body 2 is 60mi and 100mi respectively. After evaluating the expected

total transmission risk, the body 2 possesses the higher risk thus the vehicle is dispatched

to it. In this situation, the policy 5 comprises the LCFS and the furthest distance strategy.
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In the reverse situation, it includes the FCFS and the furthest distance strategy. Hence, con-

sidering the experiment results under the FCFS and LCFS policy, the highest transmission

risk policy really depends on the scenarios and conditions at each time.

6.3.6 Policy 6 - highest transmission rate combined with nearest neighbor

Despite the fact that the highest transmission rate combined with nearest neighbor and

NN policy can be considered same in the scenario 11, 12, and 13, the policy 6 is shown as

the second worst rule. Other than the scenarios 11, 12, 13, 41, 42, and 43, the policy 6 is

examined as the poor strategy because it considers only instantaneous rate. Even though it

includes the nearest neighbor principle, the rate does not give an intuition about the future

total transmission risk.

To sum up, we recommend favorable policies in the order of the policy 1 (NN), policy

4 (LTR), policy 3 (LCFS), policy 5 (HTR), policy 6 (HRATE), and policy 2 (FCFS).

6.4 Vehicles Analysis

Based on the pairwise comparisons, we explored the effect of the number of vehicles

on the total transmission risk under best two policies. Since real world is depicted in the

scenario 3’s, which is the global intervention begins on September 24 2014, we analyzed

the sensitivity within the scenario 3. Thereby we will suggest the guideline for Ebola eet

management by proposing the minimum number of trucks required to be maintained under

outbreak.

By changing the number of trucks, we plotted the total transmission risk value under the

nearest neighbor policy and lowest transmission risk policy when the global intervention

put in the system on September 24 2014, which is the scenario 3 (Figure 6.7). To show the

graph accurately, the number of trucks is from twenty in Figure 6.8.

When looking at both policies’ total transmission risk values, they converge to 60,000

approximately. The reason is because of the limitation number of the burial teams. Once
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- x-axis: the number of trucks
- y-axis: total transmission risk
- dark blue: nearest neighbor policy, red: lowest transmission risk policy
- environment: scenario 3 (global intervention - September 24 2014)

Figure 6.7. The total transmission risk according to the number of trucks
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- x-axis: the number of trucks (≥ 20)
- y-axis: total transmission risk
- dark blue: nearest neighbor policy, red: lowest transmission risk policy
- environment: scenario 3 (global intervention - September 24 2014)

Figure 6.8. The total transmission risk according to the number of trucks (≥
20)
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we fix the maximum number of burial team at specific value, even though the number of

trucks increases over that value, the system is affected a little.

Before operating about eighteen trucks, under the NN policy, the total transmission risk

is almost twice to six times greater than the LTR policy. From near the number of trucks

is eighteen, however, the NN policy can lower the transmission risk more than the LTR

policy. This observation advocate that if there are very limited number of trucks under

Ebola situation, LTR policy would be superior to the NN policy. Nonetheless, if healthcare

organizations have more vehicles than that limited number of trucks, the NN policy is

recommendable.

- The total transmission risk under each policy
- Left: under the nearest neighbor policy
- Right: under the lowest transmission risk policy

Figure 6.9. The total transmission risk under the NN and the LTR (≥ 20)

Under the NN policy, the total transmission risk decreases exponentially as the number

of trucks increases. If the number of trucks is sixty approximately, the differential of the

risk function becomes close to zero but still positive (Figure 6.9). That is to say, even

though healthcare organizations get more trucks than sixty and try to lower the risk, the

reducible total transmission risk value is small unless the organizations employ more burial

workers.

On the other hand, under the LTR policy, the transmission risk also decreases expo-

nentially but considering the initial risk value, which is about a third to a half of the initial

risk value of the NN policy, the decreasing rate of the total transmission risk function is
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less than the NN policy. Then also with around sixty trucks, the total risk function starts

decreasing slowly (Figure 6.9). This suggests the approximated lower bound of the number

of trucks in the Ebola epidemic case.

Furthermore, the policy 1 is affected more by the number of eet than the policy 4 due

to the characteristic of policy 1. Since the policy 1 considers only distance, as the number

of vehicles increases the distance between the truck and the demand is more likely closer,

which results in the higher exponential reduction rate than that of the policy 4. This ob-

servation supports that, LTR policy will have the lowest or lower total transmission risk

among the suggest policies whenever the resource is not sufficient.

Based on the plotted graphs, we analyzed the sensitivity of total transmission risk

caused by different number of trucks.With this analysis, the LTR policy is recommended

when there are very limited number of trucks, that is less than about eighteen trucks in

Ebola environment. If the number of available vehicles increases the NN policy is better

than LTR policy. Then once the number of available trucks reaches around sixty, more

trucks would be redundant in terms of reducing the total transmission risk function.
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7. CONCLUSION

7.1 Summary

Logistics under the disaster and epidemic environment is referred as humanitarian lo-

gistics, which comprehends the preposition of the emergency stocks, to build infrastructure,

to aid victims, and to provide relief supplies. Humanitarian logistics is the most signicant

operation in emergency situation because it is directly connected to relief victims.

Especially, in the 2014 Ebola outbreak in West Africa humanitarian logistics was crit-

ical since the high transmission risk of Ebola remains can be curtailed by the rapid burial.

We defined the casualty transportation problem to minimize the transmission risk of de-

ceased victims under Ebola environment. The casualty transportation problem is the variant

of dynamic pick-up and delivery problems. Since during execution of routing, a truck de-

termines the next demand, pick up the demand, and transport it to the aimed burial site, the

rapid burial problem can be considered as the application of dynamic pick-up and delivery

problems.

The casualty transportation problem of the 2014 Ebola was deciding the next demand

to be served. Also, there were too many infected deceased victims to be retrieved fast due

to the resource deciency. In addition, adequate guideline for Ebola casualty transportation

was insufficient and the decision making rule to route vehicles were unknown. Also, lit-

tle literature has handled casualty transportation problems and the transmission model of

affected corpses.

Considering this aspect, we define the casualty transportation problem. Also, we de-

fine the total transmission risk function under Ebola situation. The total transmission risk

function (Bd(t)) that we developed is the updated version of the transmission rate function

(βd(t)), which is available in the literature. Bd(t) encompasses the response time, transmis-

sion rate of each infectious remains, and the total number of remains. Minimizing Bd(t)
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is the objective of our problem. Hence, minimization of the total transmission risk implies

shorter response time and less risk caused by corpses. This functions is updated when the

routing is executed thus our problem is dynamic.

To solve the casualty transportation problem, we established six policies to minimize

total transmission risk. The policies are nearest neighbor, first come first served, last come

first served, lowest transmission risk, highest transmission risk, and highest transmission

rate combined with the nearest neighbor policy. With the total transmission function, we

evaluated the six policies and found the best performing ones, which reduces the total

transmission risk in different scenarios.

To examine the effectiveness of the suggested policies, we developed the simulation

models which renders the 2014 Ebola outbreak in Liberia thoroughly. By defining twelve

scenarios, we described the 2014 Ebola outbreak in Liberia. All the experiment settings

were based on the empirical data from the actual articles and literature.

After running the models with different scenarios, we concluded that the nearest neigh-

bor policy and the lowest transmission risk policy outperform rest of the policies. Next,

the last come first served policy is also discovered as one of the competent rules among the

suggested policies. To support this fact, we analyzed the experiment results by analyzing

the variance and comparing those policies statistically.

Furthermore, to propose the minimum number of fleet we changed the number of trucks

within the best policies then plotted the total transmission risk along with the different

number of trucks. The graphs showed that if around sixty trucks are available within the

nearest neighbor policy and the lowest transmission risk policy, the rapid burial process

can be operated well thus burial teams can retrieve infectious remains fast and the total

transmission risk is reduced.

7.2 Future Work

The future work might be to elaborate the total transmission risk function integrating the

susceptible population around infected remains. The proposition for the minimum number



57

of vehicle can be formulated mathematically, optimized and generalized to entire infectious

disease environments and not only to Ebola condition. From this perspective, although the

suggested simulation models are for the 2014 Ebola outbreak in Liberia, it can be improved

and generalized for the entire infectious disease considering the number of susceptible

population and the total transmission risk function of different infectious diseases.
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WHO report date Total 
Cases 

Total 
Deaths 

3/25/2014 0 0 
3/26/2014 0 0 
3/27/2014 8 6 
3/31/2014 8 6 
4/1/2014 8 2 
4/2/2014 8 5 
4/7/2014 18 7 
4/10/2014 22 14 
4/17/2014 27 13 
4/21/2014 27 13 
4/23/2014 34 11 
4/30/2014 13 11 
5/5/2014 13 11 
5/14/2014 12 11 
5/23/2014 12 9 
5/27/2014 12 9 
5/28/2014 12 9 
6/2/2014 13 9 
6/5/2014 13 9 
6/10/2014 15 10 
6/11/2014 15 10 
6/18/2014 33 24 
6/24/2014 51 34 
7/2/2014 107 65 
7/7/2014 115 75 
7/8/2014 131 84 
7/14/2014 142 88 
7/16/2014 172 105 
7/21/2014 196 116 

7/24/2014 224 127 
7/28/2014 249 129 
7/31/2014 329 156 
8/3/2014 391 227 
8/4/2014 486 255 
8/8/2014 554 294 

8/12/2014 599 323 
8/13/2014 670 355 
8/15/2014 786 348 
8/19/2014 834 466 
8/21/2014 972 576 
8/22/2014 1082 624 
8/28/2014 1378 694 
9/6/2014 1871 1089 
9/8/2014 2046 1224 

9/12/2014 2081 1137 
9/16/2014 2407 1296 
9/18/2014 2710 1459 
9/22/2014 3022 1578 
9/24/2014 3280 1677 
9/26/2014 3458 1830 
10/1/2014 3696 1998 
10/3/2014 3834 2069 
10/8/2014 3924 2210 
10/10/2014 4076 2316 
10/15/2014 4249 2458 
10/17/2014 4262 2484 
10/22/2014 4665 2705 
10/25/2014 4665 2705 
10/29/2014 6535 2413 
10/31/2014 6535 2413 

The data of confirmed Ebola cases and deaths in Liberia is recorded in the following
pages. This data is obtained from Centers for Disease Control and Prevention (CDC,
2015).

Appendix A: Ebola Case Counts
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11/5/2014 6525 2697 
11/7/2014 6619 2766 
11/12/2014 6822 2836 
11/14/2014 6878 2812 
11/19/2014 7069 2964 
11/21/2014 7082 2963 
11/26/2014 7168 3016 
11/28/2014 7635 3145 
12/3/2014 7635 3145 
12/10/2014 7719 3177 
12/17/2014 7797 3290 
12/24/2014 7862 3384 
12/31/2014 8018 3423 
1/7/2015 8157 3496 

1/14/2015 8331 3538 
1/21/2015 8478 3605 
1/28/2015 8622 3686 
2/4/2015 8745 3746 
2/11/2015 8881 3826 
2/18/2015 9007 3900 
2/25/2015 9238 4037 
3/4/2015 9249 4117 
3/11/2015 9343 4162 
3/18/2015 9526 4264 
3/25/2015 9602 4301 
3/26/2015 9602 4301 
3/27/2015 9602 4301 
3/30/2015 9602 4301 
3/31/2015 9712 4332 
4/1/2015 9712 4332 
4/2/2015 9712 4332 

4/7/2015 9862 4408 
4/8/2015 9862 4408 
4/9/2015 9862 4408 
4/10/2015 9862 4408 
4/13/2015 9862 4408 
4/14/2015 9862 4408 
4/15/2015 10042 4486 
4/16/2015 10042 4486 
4/17/2015 10042 4486 
4/18/2015 10042 4486 
4/19/2015 10212 4573 
4/19/2015 10042 4486 
4/21/2015 10212 4573 
4/22/2015 10212 4573 
4/24/2015 10212 4573 
4/26/2015 10322 4608 
4/28/2015 10322 4608 
4/29/2015 10322 4608 
5/2/2015 10322 4608 
5/3/2015 10564 4716 
5/3/2015 10507 4691 
5/5/2015 10564 4716 
5/6/2015 10564 4716 
5/9/2015 10604 4769 
5/10/2015 10604 4769 
5/12/2015 10604 4769 
5/13/2015 10604 4769 
5/16/2015 10666 4806 
5/19/2015 10666 4806 
5/20/2015 10666 4806 
5/24/2015 10666 4806 
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5/26/2015 10666 4806 
5/27/2015 10666 4806 
5/30/2015 10666 4806 
5/31/2015 10666 4806 
6/4/2015 10666 4806 
6/5/2015 10666 4806 
6/6/2015 10666 4806 

  6/7/2015 10666 4806 
6/9/2015 10666 4806 

6/10/2015 10666 4806 
6/13/2015 10666 4806 
6/14/2015 10666 4806 
6/16/2015 10666 4806 
6/17/2015 10666 4806 
6/21/2015 10666 4806 
6/23/2015 10666 4806 
6/24/2015 10666 4806 
6/29/2015 10666 4806 
6/30/2015 10666 4806 
6/30/2015 10666 4806 
7/3/2015 10706 4811 
7/4/2015 10670 4807 
7/5/2015 10670 4807 
7/8/2015 10670 4807 
7/9/2015 10672 4807 
7/10/2015 10672 4807 
7/13/2015 10672 4807 
7/14/2015 10673 4808 
7/15/2015 10673 4808 
7/16/2015 10672 4808 
7/17/2015 10673 4808 

7/20/2015 10673 4808 
7/21/2015 10673 4808 
7/22/2015 10672 4808 
7/23/2015 10673 4808 
7/24/2015 10673 4808 
7/27/2015 10673 4808 
7/28/2015 10673 4808 
7/29/2015 10672 4808 
7/30/2015 10672 4808 
7/31/2015 10672 4808 
8/3/2015 10672 4808 
8/4/2015 10672 4808 
8/5/2015 10672 4808 
8/6/2015 10672 4808 
8/7/2015 10672 4808 
8/10/2015 10672 4808 
8/11/2015 10672 4808 
8/13/2015 10672 4808 

 (Centers for Disease Control and Prevention, 
http://www.cdc.gov/vhf/ebola/outbreaks/201
4-west-africa/previous-case-counts.html) 
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On the unique features of post-disaster humanitarian logistics. Journal of Operations

Management, 30(7), 494–506.
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Özdamar, L., & Ertem, M. A. (2015). Models, solutions and enabling technologies in

humanitarian logistics. European Journal of Operational Research, 244(1), 55–65.



67

Pandey, A., Atkins, K. E., Medlock, J., Wenzel, N., Townsend, J. P., Childs, J. E., &

Nyenswah. (2014). Strategies for containing ebola in west africa. Science, 346(6212),

991–995.
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