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ABSTRACT

Binarandi, Ghazi MSCE, Purdue University, May 2016. Artificial Neural Networks
for Wireless Structural Control. Major Professor: Shirley J. Dyke.

We live in an age when people desire taller buildings and longer bridges. These

increasing demands of more flexible structures challenge civil engineers to ensure

structural safety in the state where they are more prone to extreme dynamic load-

ing, such as earthquakes. Extensive wiring required in traditional structural control

applications may be expensive and inconvenient, especially for large scale structures.

To improve the scalability, wireless sensors offer a promising alternative. However,

the presence of time delay and data loss in a wireless sensor network can potentially

reduce the performance of the control system. Here an artificial neural network is pro-

posed to improve the performance of a wireless sensor network based control system.

The proposed technique is named as Neural Network Wireless Correction Function

(NNWCF). By applying this strategy, a wireless structural control can be utilized

without experiencing major performance degradation due to the wireless characteris-

tics.

Keywords: structural control, artificial neural network, wireless sensor network
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1. INTRODUCTION

Keeping structures safe during their lifetime becomes more challenging as demands for

more flexible civil structures (taller buildings and longer bridges) increase with societal

expectations. Flexible structures tend to be prone to extreme dynamic loading, such

as earthquakes, due to the relatively small amount of inherent damping present in the

structures [1]. In the last decades, control techniques have been employed in numerous

applications to protect structures from extreme loading. However, extensive wiring

is required in traditional applications of the structural control systems. The cabling

and installation demands are expensive and inconvenient, especially for large scale

structures.

To improve the scalability of structural control systems, wireless sensors offer

a promising alternative. Nevertheless, some challenges presented in wireless sensor

networks including the presence of time delay and data loss in data transmission.

The presence of time delay and data loss can potentially reduce the performance of

a control system.

Here an artificial neural network is proposed to improve the performance of a

wireless sensor network based control system. The proposed technique is named

as Neural Network Wireless Correction Function (NNWCF). One example where

NNWCF can be employed is in structural control systems, in which NNWCF can

improve the performance of a wireless structural control. By applying this strategy,

a wireless structural control can be utilized without experiencing major performance

degradation due to the wireless characteristics.
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1.1 Control System to Mitigate Seismic Hazards in Civil Structures

We live in an age when people desire taller buildings and longer bridges. These

tendencies are often seen in big cities where land is inadequate to provide sufficient

capacity for the growing population.

In traditional structural engineering, structures are designed based on static loads

applied to them. Although, in most cases, dynamic loading also plays a significant

role in the structures’ performance. Large vibrations in a structure can be caused by

severe environmental loading (e.g. earthquakes or strong winds) and may endanger

safety to its occupants and damage nonstructural components, equipment, or valuable

building content.

There are several ways to control structural vibrations due to dynamic loading.

The traditional approach is by modifying the structural properties, such as stiffness,

mass, or damping properties. Other approach is by employing a control technique

to the structure. This technique can be implemented by generating a force to the

structure that will counter the excitation experienced by the structure. This counter

force can be produced by a passive or an active system. This strategy will allow the

system to adapt its dynamic behavior regarding to a particular dynamic excitation

due to the external loading.

The control system attributes its roots to concept in aerospace engineering due

to necessity in aerospace engineering to problems like tracking or pointing. The civil

engineering profession is gaining greater acceptance of this technology. One main

difference between the application of the systems in the two different fields is the en-

vironment at conditions. In most aerospace engineering problems, the object under

control is intended to float in open space. Meanwhile, most civil engineering objects,

such as buildings and bridges, are anchored to a fixed boundary condition. There-

fore, it is stable from the start. Additionally, civil engineering design is replete with

uncertainties that arise from variable load [2] that may introduce another challenge

in adopting the control system to civil engineering applications.
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Early in the development of control systems, researchers classified them into two

groups: passive and active. The difference between those two control systems is in

the presence of an energy supply, feedback, and control computer to run the system.

In the passive system, the control device does not require any external power,

sensors, or computer. The system itself has been tuned or designed so that it can

respond by itself to any dynamic excitation that shakes the structure. However, the

passive control system is usually only suitable for one (or a few) dominant frequency

of external dynamic loading. Therefore, in the case where a random dynamic force

is applied to the structure, it may not always yield a desirable performance. Also,

the responses in a poorly designed system might get worse with the application of

the passive damper since the control system fundamentally changes the dynamic

properties of the structure (mass, stiffness, or damping).

The idea of making the control system adaptable to any dynamic loading that

the structure might be subjected to led to the development of active control system.

Three principal components in active control systems that are not found in passive

control are sensors, an energy supply, and a control computer. The energy supply

provides a mean to generate force to change the dynamic properties of the structures

depending on the loading. To determine the forces to apply that are appropriate for

the dynamic responses of the structure, the control computer is there to perform the

computational tasks. Sensors are used to determine the responses and compute the

control action. A suitable algorithm must be designed to provide the control force

for the desired performance. By connecting all these, an active controller can be

implemented.

The rapid development of new technologies in the control world led to many other

types of control strategies. Since the requirement of external power in the active

controller during natural hazards sometimes results in cost issue, semi-active control

is being explored. The semi-active approach can adapt the properties of the control

device due to the loading nature, but not by inserting mechanical energy to the

system, as an active system controls the structural motion. The semi-active control
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has mechanical properties which have the ability to vary dynamically based on the

dynamic responses and control inputs.

Another control approach is developed by combining the use of passive and active

control systems. This implementation is named a hybrid control strategy. This

strategy has been gaining interest from either industry and academics.

Some writings document the first suggestions for using control techniques in struc-

tural engineering applications in the 1960s [3]. Since then, researchers and engineers

in the structural engineering community have employed this technology in differ-

ent approaches, though all those aim for one common goal: to reduce the dynamic

excitation experienced by civil structures. As control systems have become a very

useful tool for structural engineers, this field is still developing with new research and

implementations being considered frequently.

1.2 Wireless Sensor Networks to Improve Scalability of Structural Con-

trol Systems

In structural control systems, communication must take place to provide a link

between sensors, actuators, and controllers. While wires have been a popular choice

to connect those three components of the structural control system, the cost and

the complexity of installation of the system increases as larger control systems are

examined. For instance, in an actual building, the deployment of cables may cre-

ate conflicts with the building’s architectural or mechanical components. Moreover,

physical damage may also occur to wires during its operation.

On the other hand, wireless sensor network offers flexibility in installation and it

also avoids a significant increment in the cost when larger structure is investigated [4–

6]. Also, they are relatively free from the risk of mechanical damage during its service

time, as long as all electrical components can be guaranteed to work. Nevertheless,

the presence of time-delay [7–9], data loss [10,11], and sensor failure [12,13] during the

data transmission are potential drawbacks of this system, and thus appropriate design
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choices need to be made. A benchmark model was initiated to provide a standard

system that would enable study of such issues [14].

Figure 1.1. Wires may cause inconvenience for installation and maintenance

Various studies have been conducted to address these concerns and even integrate

them using co-design approaches. The purpose of this research is to consider the

use of intelligent systems, specifically artificial neural network, to accommodate the

presence of time delay, data loss, and sensor failure in the system.

1.3 Introduction to Artificial Neural Networks

1.3.1 Nature-Inspired Design

Humans are curious creatures. We, perhaps, are the only animals that make

efforts to understand the question: how does nature work? This existential thought

inspires us to gain an understanding of the complex operation of nature.

As we understand how nature works, it inspires us to mimic nature’s functions

to make our life easier. Humans, perhaps, have had a desire to fly since we saw
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birds for the first time. Many of our tales also are filled with the characters of avian

humanoids, such as Hermes or the Garuda. Thus, no surprise if the invention of the

airplane in the early 20th century by the Wright brothers was actually an attempt to

gather a biological function (flying) by replicating biological structures in the birds

(wings, tails, and so on).

1.3.2 The Rise of Artificial Intelligence

Thinking machines and artificial intelligence have been depicted in mythologies

and popular culture, from the tales of Talos to HAL9000 of 2001: A Space Odyssey.

The desire to create an artificial intelligence has probably arisen from the necessity

to ease human’s tasks.

In recent news, Google DeepMind developed an artificial intelligence named Al-

phaGo that was able to defeat professional human players [15]. This is viewed as an

important milestone for the field of artificial intelligence due to the complex nature

of the game of Go. Artificial intelligence has been successfully defeated humans in

chess (1994, IBM’s Deep Blue v. Garry Kasparov) [16] and even Jeopardy! (2011,

IBM’s Watson v. Brad Rutter and Ken Jennings) [17]. However, Go is considered to

be different.

The complexity of a game of Go, particularly to be mastered by a computer

program, had been well recognized since 1960s when mathematician Irving Good

pointed out the challenges in making a computer program that is able to master Go.

“In order to programme a computer to play a reasonable game of Go,

rather than merely a legal game--it is necessary to formalise the principles

of good strategy, or to design a learning programme. The principles are

more qualitative and mysterious than in chess, and depend more on judg-

ment. So I think it will be even more difficult to programme a computer

to play a reasonable game of Go than of chess.” —I. J. Good, 1965 [18]
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Good compared the complex nature of the Go game with chess, the more well

known board game in the Western culture. In a Go game, there are about 250 possible

moves in each step (compared to 35 in chess). Also, a typical Go game usually lasts

longer (about 150 moves in Go, compared to 80 in chess). Lastly, the number of

possible board configuration at the end of a Go game is higher than the number of

atoms in the universe. Considering these, Go is viewed as the most challenging classic

game for artificial intelligence [15].

Due to the abundant possibilities in a Go game, some experts claim that moves in

a Go game are decided more intuitively rather than just a purely logical decision—this

is why Go is hard to be programmed. Giving intuition to a computer is something

that was beyond human’s imagination in the decades before the rise of the artificial

intelligence.

1.3.3 Neural Network: A Technique That Gives a Computer Intuition

The key to how Google DeepMind was able to develop a successful algorithm that

can master Go is by giving AlphaGo an ability to learn from previous Go games

played by humans. To give a learning ability to a computer, they combine deep

neural networks and Monte Carlo tree search [15]. Two artificial neural networks

are employed: “value network” to evaluate board positions and “policy network” to

select moves. Then a search algorithm that combines these networks and the Monte

Carlo tree search are introduced, and demonstrates strong performance in Go games.

The artificial neural networks embedded in the algorithm inside the AlphaGo are

trained by numerous Go games, and they are taught to reinforce its understanding of

the moves that can provide a higher winning chance. By these procedures, AlphaGo

gains its “intuition,” which is made possible by the technique of artificial neural

network.

But, what is artificial neural network? The artificial neural network is a computa-

tional model that is philosophically inspired by a biological neural network. Artificial
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neural network is humans’ attempt to replicate biological function of neural structure

in animals’ brains (like when Wright brothers replicated biological functions in birds

to mimic their ability to fly). In the next discussions, the artificial neural network will

often be shortened as simply “neural network,” while the biological neural network

will always be referred as “biological neural network.”

1.3.4 Biological and Artificial Neural Networks

The human brain is believed to be the home of our mind. In the brain, information

is transferred and processed by a network of nerve cells called a neural network. A

biological neural network is created by a big number of neurons. A neuron consists of

a cell body and two types of branches: axons (transmitters) and dendrites (receivers).

An illustration of a biological neural network is shown in Figure 1.2.

Figure 1.2. Biological neuron

Neurons are linked together in a neural network. Each neuron meets at a contact

point called a synapse. Each synapse has a gap called a synaptic space which mea-

sures about 0.1 micrometers where chemical and electrical signals are passed from
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one neuron to another. A diagram of a synapse is illustrated in Figure 1.3. When

the neuro-transmitter diffuses across the synaptic gap, it activates the receptor in the

receiving cell. An electrically positive transmission fron the neuro-transmitter will

stimulate the receptor to process an excitation while an electrically negative trans-

mission will be processed as an inhibitation. These provide a basic understanding of

how information is transferred in a brain.

Figure 1.3. Synapse

This procedure has been adopted by computer scientists to develop the artificial

neural network. The architecture of an artificial neural network can be categorized

into three groups: input, target, and hidden layer(s). The last is optional to be

present in an artificial neural network. Each neuron contains a number that will be

computed by a simple numerical operation.

The fundamental neural network is the feedforward neural network. This network

only allows the information to be transferred forward and hierarchically. Neurons

are connected to each other through synapses. Every synapse contains a weighting

parameter that will multiply the value transmitted from the previous neuron to the

next one. The simplest neural network consists of one input neuron, one target

neuron, and no hidden layer. The next simplest neural network contains two input

neurons and one target neuron (again, no hidden layer). Another parameter that can
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enhance the performance of a neural network is a bias term that is included in every

neuron in hidden and target layers. Through several “training” processes, a set of

input and target data are mapped by adjusting the weighting parameter and the bias

term that determines the performance of the network.

1.3.5 Neural Network Procedure

The artificial neural network is powerful mainly because of its ability to “learn”

through “training.” By the training procedure, the neural network is able to map

between a set of data that are consisted of “inputs” and “targets.” The network

generates some iterations to find the best parameters that can provide the best repre-

sentation of the input-output relationship. The parameters involved in this network

include hidden layers, some weighting values and bias terms, and the number of neu-

rons in each layer.

Even though the neural network offers a powerful tool to model a complex sys-

tem, many people argue its validity since there is no general mathematical framework

presented in this technique. In general, a neural network is designed for a particular

problem, so then it might not be suitable as a general solution. However, there are

advantages of the technique, including modeling non-linearity in a structure, compen-

sating for time delay, dealing with external noise disturbances in the environment,

and so on.

Along with arguments regarding employing neural network as a “black box,” some

more detailed questions may need to be considered. In Machine Learning course (CS

156) at California Institute of Technology, Professor Yaser Abu-Mostafa explained a

situation in which he was doing a consulting job for a bank and was asked to make

a neural network model to help the decision-making process of credit approval [19].

After the network has been designed, the bank asked the professor to explain the

function of the hidden layers. It turned out that the question had nothing to do

with the performance of the model. In fact, the question was asked based on a legal
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issue. Professor Abu-Mostafa ended his story with half-joking, “If you deny credit

for someone, you have to tell them why. You cannot send a letter to someone [that]

says, ‘Sorry, we deny your credit because lambda is less than 0.5.’ ”

From the story, it is important to understand that the neural network is a black

box but also that it is crucial for us to be able to interpret its results and take

any responsibilities that might come from the network results. As a black box, the

mathematical parameters in a neural network do not all have a physical interpretation.

Another question that may arise is about the topology of the neural network: how

are the nodes or neurons connected? The most basic form of neural network is the

feedforward neural network. The key operation of this type of neural network is that

the flow only moves forward (there is no feedback included) and it cannot jump so it

has to flow hierarchically. This type of neural network is also commonly referred as a

concurrent neural network or a static neural network [20]. The opposite of this type

of neural network is a recurrent neural network or a dynamic neural network [20]. In

general, a dynamic neural network can provide better performance, yet it is also more

difficult to train this type of neural network. The dynamic neural network offers a

more powerful tool that is less prevalent than the static neural network. The strongest

advantage of the dynamic neural network compared to the static one is the time series

“memory” presented in the network that allows the hidden nodes to consider inputs

from a previous time.

1.4 Intuitive Wireless Sensor Network

If an adult human sees Leonardo da Vinci’s Mona Lisa, perhaps the most famous

painting in the world, they most probably can recognize in a second that it is a paint-

ing of a lady. Humans will do it almost effortlessly. However, to perform this simple

operation on a computer is a very complicated task to do. First, the computer has to

process the millions of pixels of the image and distinguish each of its characteristics:

color, texture, shape, and so on. Then, these properties must be compared with the
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information of known objects in nature such as mountains, guitars, or a pair of denim.

Even these may not be sufficient for the computer to be able to successfully recognize

the Mona Lisa as a painting of a lady because unique characteristics of each woman’s

physical appearance can create complexity that might fail an image-recognition algo-

rithm.

Google DeepMind’s AlphaGo, an artificial intelligence system designed to play

Go, an ancient Eastern Asia’s board game, defeated the Go’s world champion, Lee

Sedol of South Korea [21]. This victory of AlphaGo against Lee Sedol demonstrated

a machine that can beat human world champion for the first time. The reason it took

so long to build a machine that can beat a human in a professional Go game is the

nature of complexity found in the game. Go is usually played more intuitively rather

than based solely on logical decisions. AlphaGo, the latest milestone achievement in

the field of artificial intelligence, has once again proven that a computer with intuition

is no longer beyond our imagination.

In the measurement of structural responses using a wireless sensor network, time

delay and data loss commonly occurring can potentially degrade the performance of

the control system if they are not carefully compensated. However, wireless time delay

is typically found to be constant and data loss can be addressed by learning patterns

in previous wireless measurements. If a neural network is deployed in the wireless

sensor network, and it is trained by several past measurements, it can be expected

that the neural network will be able to compensate for the presence of time delay and

data loss in future measurements. If the training of the neural network is successful,

then a wireless sensor network with intuition (based on previous measurement data)

can be manifested.

1.5 Goal of the Study

It is discussed in the previous sections that wireless communication can poten-

tially degrade the performance of a structural control system if it is not carefully
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compensated in sensors. Therefore, in this study, the use of artificial neural net-

works is proposed to deal with these challenges present in a wireless sensor network.

Then, the neural network will be deployed in a wireless control system to improve

the structural control performance.

To achieve this goal, the neural network is trained with several wireless measure-

ment records. This training is intended to allow the network to learn about the time

delay and data loss patterns in wireless measurements. An effective neural network

is achieved when the network can compensate for these effects when applied to new

situations and excitations.

1.6 Thesis Organization

This thesis is divided into six chapters. The first chapter provides an introduc-

tion to the goals of the study that involves three main keywords: structural control,

wireless sensor networks, and artificial neural networks. Chapter 2 mainly explores

the theoretical background of the study. Mathematical equations and corresponding

theories from previous research are explained in this chapter. Methodology is dis-

cussed in Chapter 3. The specific case study used and the strategy proposed in the

thesis is discussed here. Results and discussions of the study are given in Chapter 4

and Chapter 5. Chapter 4 explains the numerical simulation; Chapter 5 discusses the

laboratory experiment. Finally, conclusions and future work are summarized in the

final chapter, Chapter 6.



14

2. BACKGROUND

Wires are commonly used as the traditional approach for providing communication

between components in a control system, i.e. sensor, control device, and computer

control. For control systems applied to small-scale structures, this choice may be

appropriate, but this may lead to challenges when larger structures are examined.

To keep costs low and provide convenience in installation or maintenance, a wireless

system is considered as an alternative to its wired counterpart. A major advantage of

this system is it improves scalability of the system because the cost and the installation

flexibility do not vary significantly in larger scale structures [4].

Wireless communication introduces significantly more time delay compared to the

wired system and also has a potential to create data loss in the system [22, 23]. The

presence of time delay and data loss may significantly reduce the performance of the

control system that is not designed specifically to accommodate these parameters in

its control strategy [24].

The objective of this research is to offer an artificial intelligence system that can

incorporate the presence of time delay and data loss in the system, so that a robust

performance can be achieved. In this chapter, extensive discussion on the performance

reduction in the system due to wireless time delay and data loss is presented.

2.1 Wireless Sensor Network

Application of wireless sensor network for structural control purposes has attracted

attention due to its flexible and rapid installation, and the low cost of the system for

large scale structures compared to its wired counterpart [4]. Numerous advances have

been achieved through the various research in the field of wireless sensor networks.

This research has led to successful implementations of wireless sensing systems for
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sensor-centric computing [25], damage detection [26], mode shape estimation [27], and

even “active” sensing applications, where the sensors have the ability to influence its

environment to eliminate dependency on ambient vibrations for excitation [28]. These

achievements have supported the realization of wireless sensors that can perform

feedback control function [4].

Traditional approaches conducted in many research do not accommodate time

delay and data loss occurred in the wireless sensor network deployed on large struc-

tures [14]. Previous studies show that the presence of time delay and data loss due

to wireless communication could potentially reduce the performance of a wireless

structural control system [29]. The difficulty to represent the cyber-physical environ-

ment of a wireless structural control is mainly caused by the lack of realistic tools

to determine the wireless and structural part of the wireless structural control sys-

tem. Research proposing a realistic cyber-physical case study of wireless structural

control systems has been conducted [30]. To undertake the issue of time delay in a

wireless system, many techniques have been proposed, such as using an integrated

simulator [31] and intelligent sink placement [7].

Following a series of well-received benchmark problems for structural controls to

offer a universal evaluation of the performance of structural systems, a new benchmark

problem considering a wireless structural control using an active mass damper has

been developed and available to be utilized for research purposes. This benchmark

problem is considered to be useful to help researchers to investigate the presence of

time delay and data loss in a wireless structural control system [14].

Since sensor failure also appears as one of the major issues in a wireless sensor

network, detection of intermittent faults in sensor nodes play significant role. An

efficient fault detection method with low detection latency, low energy overhead, and

high detection accuracy has been demonstrated [12].

Another promising feature of a wireless structural control system is its possibility

to be integrated with a structural health monitoring system. The possibility of a

wireless sensing unit to be deployed in a wireless structural control system challenges
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the classical control design approaches with range, latencies, and data losses stand as

major objectives in the system [32].

2.1.1 Wireless Control Strategy

Wireless control strategies are often categorized into four different groups: (1)

centralized control; (2) decentralized control; (3) partially decentralized control; and

(4) hierarchically decentralized control. In a centralized control system, measurements

from each subsystem are sent to a central control unit to make a control decision for

the whole system. Then, after the control decision has been made, control commands

are sent back to each subsystem or control device. The drawback of this system is

its high dependency on the central control unit; a single point failure in a centralized

controller may mean the whole system must stop working.

In a decentralized control, each subsystem has its own local controller and there

is no data sharing among different subsystems. The system’s architecture allows the

system to be more reliable than the centralized control system and also minimizes the

wireless communication delay in the system. However, the performance of each local

control unit may be different from one to another, and its impact on the stability and

performance of the global system is not well understood.

In a partially decentralized control system, the architecture is similar to that of the

decentralized control system, yet it allows data sharing between each subsystem con-

troller. Therefore, it has the benefits of decentralized control system, but it also takes

on some features of the centralized control unit due to the increased communication

among the subsystem controllers.

The final type of the wireless control strategy is the hierarchically decentralized

control system. In this system, it employs supervisory controllers to coordinate the

behavior of local controllers to improve the global performance and stability of the

system.
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2.1.2 Applications and Devices

There are several alternatives of wireless protocols that can be chosen for structural

controls. Table 2.1 compares the specifications among the most popular wireless

devices that are available on the market, i.e. ZigBee, Wi-Fi, and Bluetooth. ZigBee

and Wi-Fi are preferred due to their ability to cover a wider range (up to about 100

m) compared to Bluetooth (that only reaches about 10 m radius). Wi-Fi provides the

fastest transmission rate among these three. However, for wireless sensor networks

with small package size, ZigBee is preferable due to its low power requirements.

Network topologies that can be employed for wireless sensor network using ZigBee

protocol are illustrated in Figure 2.1. Each topology has a single coordinator. The

coordinator typically performs various tasks, including arranging the network and

distributing address to the other nodes. Either a router or an end-device could be

attached to the coordinator. An end-device could be connected to either a coordinator

or router.

Coordinator

Router

End Device

Star

Peer-to-Peer

Mesh

Figure 2.1. Topologies of wireless sensor networks

Multiple access method must be provided when multiple devices communicate

through a coordinator. Multiple access method is a protocol that allows several

terminals to be sent into the same transmission medium and share its capacity. Several

common types of multiple access methods are multiple access with collision avoidance
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Table 2.1 Specification of some wireless protocols

Standard ZigBee Wi-Fi Bluetooth

IEEE specification 802.15.4 802.11 a/b/g/n 802.15.1

Frequency band
868/915 MHz;

2.4 GHz
2.4 GHz; 5 GHz 2.4 GHz

Max signal rate 250 kB/s 54 MB/s 0.72 MB/s

Bit time (µs) 4 0.0185 1.39

Max data payload (bytes) 102 2312 339

Max overhead (bytes) 31 58 158

Nominal TX/RX power −25 – 0 dBm 15 – 20 dBm 0 – 10 dBm

Nominal range 100 m 100 m 10 m

Number of RF channels 16 14 79

Channel bandwidth 2 MHz 22 MHz 1 MHz

Network topology

Ad-hoc,

peer-to-peer,

star, or mesh

Point to hub
Ad-hoc, very

small networks

Power consumption Very low High Medium

Applications

Remote control,

battery-

operated

product

Internet

connection, file

transfer

Wireless USB,

headset

(CSMA/CA), time division multiple access (TDMA), and frequency division multiple

access (FDMA).

The study in this thesis is based on the implementation of an Arduino based

wireless sensing platform discovered in previous study [33]. The platform uses Arduino

Due. This platform has 54 digital I/O pins which allow the system to be amenable for
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various types of applications. It has 12 analog inputs and the programming language

is based on C/C++ language. For the sensing module, a tri-axial accelerometer

ADXL 345 by Analog Device is utilized. An analog to digital conversion (ADC)

board is used to provide force measurements from force transducer as demonstrated

in previous studies [34].

2.2 Artificial Neural Networks

Classical control algorithms (optimal control, pole assignment, independent modal

space, bounded state control method, etc.) provide a variety of tools for implementing

robust control solutions to address vibration control in a linear or non-linear environ-

ment. However, structures do not behave precisely as represented by their mathemat-

ical models. Many sources of non-linearity, uncertainty, and noise in measurement

may limit the performance of the control system due to a lack of understanding in

the control system. The emergence of artificial neural network offers a promising

alternative to address this problem. As method to develop an input-output relation-

ship without requiring a precise mathematical representation, this technique offers a

possibility to tackle uncertainties appearing in these control problems.

Efforts have been made to document the applications of neural network in civil

engineering [35]. Studies of implementation of neural networks in structural control

problems start with active control systems [36, 37]. Satisfying results are achieved

in those studies. An attempt to take the advantage of these results for a wireless

structural control system is made in this study. It is expected that by utilizing neural

network features, issues appearing in a wireless structural control system, such as time

delay and data loss, can be counteracted. Previous studies have shown that neural

network can be beneficial in dealing with time delay [38] and sensor failures [39],

although it is not performed using a wireless sensor network.

Artificial neural networks, often shortened as neural networks, are initially an

attempt from some researchers to replicate a living organisms’ brain functionality.
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The initial development was based on the idealization of how the biological neurons

work [40]. The objective of neural networks is to develop an input-output relationship

mapping of a system that is not mathematically well-defined. It offers an easy pro-

cedure to model a system without requiring to determine the precise mathematical

relationships involved. However, the absence of the mathematical representation is

also often viewed as a flaw that may lead to false interpretation of results if one fails

to define a good neural network model.

A neural network is generated by a set of “neurons.” These neurons are actually

a set of processors that has an ability to perform a simple calculation. Each neuron is

connected to the other neurons, so together all neurons create a highly interconnected

network. One bias parameter is also set for every single neuron. Then an incoming

signal is transmitted to the first neuron, and a simple operation of the sums of the

weighted incoming signals and the bias term is generated, and fed into a transfer

function. Then, the result is transmitted from neuron to neuron until it reaches the

last neuron and produces the ultimate output.

One of the most promising features of the neural network is its ability to learn.

Neural networks should not be viewed as an algorithm since users of the system do not

program the equation with the prescribed outputs corresponded to certain inputs. On

the other hand, a neural network creates its architecture by being trained with several

input-output data set. The network then organizes itself to map the input-output

relationship that can capture the correlation between those two states.

2.2.1 Neuron Model

A neural network is created to map a mathematically-unknown, input-output re-

lationship. These networks consist of a number of neurons, here a term for processors.

In a neural network, the neurons are connected to each other based on “training” to

develop the most optimum solutions the particular problem.



21

Each neuron has the ability to perform a simple calculation (limited to simple

summation operations). In each connection, neurons exchange information. A signal

is received from the former neuron to the next one that is connected to each other.

When the information is transmitted, simple calculation is performed, i.e. summation

of the weighted incoming signal value and a bias parameter. The result of this calcu-

lation then will be fed into a function. Finally, the ultimate product is transmitted to

the next connected neuron until it reaches the last neuron to produce the final result.

2.2.2 Network Architecture

A neural network consists of a number of interconnected neurons. Each neuron is

one part of a particular layer. A signal is transmitted from the input to the output of

the neural network through these hidden layers. The number of neurons and layers

included in a neural network is determined by the architect or the designer of the

neural network. More neurons and layers often yield a better capability in modeling

a complex relationship, yet too many result in overfitting issues for a simple model.

Perhaps the simplest type of neural network is the feedforward neural network

shown in Figure 2.2. In this type of neural network, the procedure is only allowed to

move forward hierarchically.

In each neuron of neural networks, a transfer function is embedded to allow the

network to achieve certain level of performance. This transfer function is shown as θ

in Figure 2.2. Various types of transfer function can be used in the neuron, such as

logarithmic-sigmoid, hyperbolic tangent sigmoid, and linear function. In this study,

generally logarithmic-sigmoid transfer function is employed in the neurons to allow

the network to be able to deal with non-linearity.

2.2.3 Learning and Training

Training plays a critical role in the success of a neural network system. The

network is created based on the pattern that is learned during the training process.
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Figure 2.2. Architecture of a feedforward neural network

After selecting the number of layers and neurons, setting the architecture of the

neural network, the weighting and bias parameter of each neuron connection need to

be adjusted in the process called training.

In general, neural network training can be categorized into three kinds: supervised,

unsupervised, and self-supervised. The objective of the neural network training is to

find the optimal arrangement of the network parameters for the particular problem.

In this study, the training algorithm that is used is called the Levenberg-Marquardt

algorithm. This algorithm is generally a modified version of Newton’s method that is

designed for minimizing a function of sum of squares of non-linear functions. The ad-

vantage of this algorithm is its fast running time and its great degree of convergence.

Nevertheless, this algorithm requires relatively demanding computational cost. Fur-

thermore, fast processor and big capacity of memory are needed to run this algorithm

efficiently.

Another important step in designing the neural network is choosing the training

set. The training set includes corresponding inputs and outputs. The training set
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needs to be selected properly, so that a reasonable solution can be achieved as a result

of the trained neural network system.

Generally, larger training sets mean better representation of the solution space, but

it also means more training time is required. Moreover, too much training set might

also result in overtraining issue. Overtraining appears when the neural network losses

its ability to provide reasonable solutions due to training sets that lead the neural

network to a model that does not represent the investigated problem.

2.2.4 Design Workflow

The workflow of the design of the neural network is presented as follows:

1. Collecting data. After the data have been collected, it is important to under-

stand the nature of the data to ensure that a high quality data are used for the

neural network training. Richness of the range of data is also required to cover

the required network because, basically, neural networks do not have the ability

to accurately extrapolate beyond this range. Pre-processing the data before

feeding them into the network training can produce a more efficient training.

2. Creating the network. The key of neural network object are inputs, outputs,

hidden layers, biases, input weights, and layer weights.

3. Configuring the network. In the configuration, we choose the settings for pro-

cessing inputs and outputs that will yield best network performance.

4. Initializing the weights and biases. Although the weights and biases will be

updated during the training, different choices of initial values of weighting and

bias parameters may yield a different performance. Therefore, an appropriate

value of the initial weighting and bias parameter may want to be considered in

designing a neural network.

5. Training the network. There are two basic types of neural network training:

incremental training and batch training. In incremental training, the network
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updates the weights and biases each time an input is presented. In batch train-

ing, the network updates the weights and biases only after all the inputs are

presented. In general, the incremental training yields better performance, but

the batch training operates more efficient computational procedures.

6. Validating the network. One of the major problems that wants to be avoided in a

neural network training is overfitting. Overfitting appears when more training

yields worse performance. To avoid this issue, validation procedure is set to

provide an early-stopping procedure when an overfitting issue is discovered. One

solution to prevent overfitting is by using a small size of neural network [20].

7. Using the network.

2.2.5 Pre-Training

One of the most basic questions in designing a good neural network is to decide

the number of hidden layers to be used. There is a great debate on deciding how

many layers to be used for neural network; some say more than two hidden layers are

not necessary for a neural network [41], although other might say that using three or

more hidden layers can give better performance on the network [42].

One strong statement was expressed explicitly in the title of a conference paper

“Why Two Hidden Layers Are Better Than One.” [43] Other advise on how do we

choose number of layers is articulated in a paper by Hayashi, Sakata, and Gallant [44].

It is said in the paper, “Never try a multilayer model for fitting data until you have

first tried a single-layer model.”

Clearly, it is challenging to determine which topology is better. Since there is no

“absolute truth” in the field of neural networks, any approach may be effective de-

pending on the problem that is being investigated. However, it should be remembered

that the simplest rule-of-thumb that can be used in implementing neural network is

by choosing single-layer first, and then adding layers if good performance has not

been achieved yet.
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2.2.6 Implementation

As mentioned before, the training algorithm used for this study is the Levenberg-

Marquardt algorithm, which sometimes also often referred as the damped least-

squares method. This algorithm’s basic principle is to find the optimum solution

that minimizes the sum of the squares of the errors made in the results of every single

equation. It is a regression approach used for non-linear systems.

The type of neural network utilized in this study is the feedforward neural net-

work. It was the first and is the simplest type of artificial neural network. In a

feedforward network information always moves one direction (forward, from the in-

put nodes through the hidden layers to the output nodes); it never goes backwards.

Because of its behavior in moving only in one direction, this type of neural network

is usually referred to as static. Since in this model node is not allowed to make a

cyclic loop, the learning process in this model is usually slow to achieve convergence.

Therefore, dynamic neural networks are also considered in this study. In dynamic

neural network, feedback from both the hidden layer and the output layer to the

input layer is allowed to occur.

Dynamic neural networks are typically more powerful than static neural networks.

However, dynamic networks are also more difficult to train. Another useful feature in

dynamic neural networks is memory, so that it allows the network to learn patterns in

time series. Due to its features, this type of neural network has been utilized in diverse

areas, such as forecasting inflation [45] and modeling rainfall-runoff phenomena [46].

In this study, the performance of both static and dynamic neural network are com-

pared in terms of their ability to compensate the wireless structural control problems.

The main focus of this study is to tackle the presence of time delay and data loss

which exists as one of the characteristics of the wireless sensor network. Parameters

set in the neural network training (bias and weighting parameter, number of layers,

neurons, etc.) are investigated using a trial and error process. The reliability of the

training result is verified by looking at the regression of the results, auto-correlation
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of the inputs and outputs, and the histogram of the mean squared error values of the

training results.

2.3 Control Algorithm

As discussed previously, the type of the wireless control strategy chosen for the

system will play role in the performance and efficiency of the control system. Each

alternative of the wireless control strategies (decentralized control, partially decen-

tralized control, and centralized control) is considered in this study.

2.3.1 State-Space System Model

Formulation and solution of a modern control problem lies in the state-space

representation of the system [47]. The equation of motion to model a lumped mass

shear structure with n-degree-of-freedom (DOF) in elastic manner is given by the

following equation:

Mẍ (t) + Cdẋ (t) + Kx (t) = −M`ẍg (t) + Lu (t) , (2.1)

where M, Cd, and K correspond to the mass, damping, and stiffness matrices, respec-

tively. The structural responses (absolute acceleration, relative velocity, and relative

displacement) are represented by ẍ, ẋ, and x (also in respective manner) which are

relative to the base of the structure and ẍ, ẋ,x ∈ Rn×1. The absolute ground accel-

eration input is ẍg, and ` ∈ Rn×1 is a vector in which each term is unitary. Control

forces u ∈ Rm×1 are applied to the structure in the location described by the matrix

L ∈ Rn×m. The variable t represents the continuous time variable.

To put the equation of motion into an input-output model, Equation 2.1 is refor-

mulated in its state-space representation as

ż (t) = Az (t) + Bu (t) + Eẍg (t) , (2.2)
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where the state is zT = {xT ẋT} ∈ R2n×1 and

A =

 0 I

−M−1K −M−1Cd

 ∈ R2n×2n,

B =

 0

M−1L

 , E =

 0

−`

 .
The system output, y ∈ Rp×1, can be measured from sensors installed on the

structure and is represented by a linear sum of the state of the system and the

applied control forces,

y (t) = Cz (t) + Du (t) + Fẍg (t) , (2.3)

with C ∈ Rp×2n, D ∈ Rp×m, and F ∈ Rp×1. The details of the state-space system

model of a shear structure can be found in various textbooks [47,48].

2.3.2 Digitization Procedure

Most control systems today use digital computers for the controllers, therefore

digitization procedure is required [49]. In digital control system environment, the

continuous-time state-space model needs to be converted into the discrete-time do-

main with time step Ts using the discretization described as follows

z (k + 1) = Φz (k) + Γu (k) + Λẍg (k) , (2.4)

where

Φ = eATs ∈ R2n×2n ,

Γ =

(∫ Ts

0

eATsdτ

)
B ∈ R2n×m , Λ =

(∫ Ts

0

eATsdτ

)
E ∈ R2n×1,
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where eATs ≈
(
I + 1

2
ATs

) (
I− 1

2
ATs

)−1
is used in Tustin’s method or bilinear ap-

proximation. More discussions on digitization procedures can be found in Franklin,

et al. (1990) [49].

2.3.3 Optimal Linear Quadratic Regulator (LQR) Control

The linear quadratic regulator (LQR) is one of the most discussed control al-

gorithm in control textbooks [50]. LQR is very attractive because of it allows the

control designer to minimize the response of the structure, y, and the control effort,

u, together [51]. The trajectory of the control force, u, is determined in the LQR

control algorithm by minimizing the scalar function, J , provided as follows

J (u) =
∞∑
k=1

(
zT (k) Q1z (k) + uT (k) Q2u (k)

)
, (2.5)

The matrices Q1 and Q2 are often referred as the state cost matrix and input

state matrix, respectively. They are defined as Q1 = CLQR
TCLQR and Q2 ∈ Rp×p

with CLQR representing a linear mapping between the state vector and the response

vector to be regulated. In the mathematical form, this can be written as ỹ = CLQRz.

The equation of the optimal control trajectory is given as follows:

u (k) =
[[

Q2 + ΓTPΓ
]−1

ΓTPΦ
]

z (k) = Gz (k) , (2.6)

with the linear gain matrix, G ∈ Rm×2n, and the Riccati matrix, P ∈ R2n×2n,

obtained by solving the algebraic Riccati equation as follows

P = ΦT
[
P−PΓ

[
Q2 + ΓTPΓ

]−1
ΓTP

]
Φ + Q1, (2.7)

Franklin, et al. (1994) [52] provides a detailed discussion on the optimal LQR

technique.
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2.3.4 Kalman State Estimation

In most structural control systems, only absolute acceleration is measured in each

time step due to practicality and economical issue [4]. To enable the use of output

feedback, the Kalman filtering technique is utilized to provide an estimation of the

state, ẑ, by using the measured output vector of the structure, y (k).

The Kalman estimator presumes the structure is disturbed at its base by the scalar

excitation w (k) with a covariance Rw. Based on the state equation

ż (k + 1) = Φz (k) + Γu (k) + Λw (k) (2.8)

and the output measurement of the system corrupted by white noise, v (k) ∈ Rp×1

with covariance Rv ∈ Rp×p is given by

y (k) = Cz (k) + Du (k) + Hw (k) + v (k) . (2.9)

The goal of the estimation function is to minimize the steady state error covariance

of E [‖z(k)− ẑ(k)‖2] with the observer gain matrix, L (k) ∈ R2n×p, that is given by

the following equation

L (k) = PeC
TRv

−1. (2.10)

Finally, the estimation gives

ˆ̇z (k) = (Φ− L (k) C) ẑ (k) + L (k) y (k) + (Γ− L (k) D) u (k) (2.11)

where the desired control force u (k) is given by

u (k) = −Kz (k) (2.12)

and Pe can be obtained by solving the algebraic Riccati equation

ΦPe + PeΦ
T −PeC

TRv
−1CPe + ΛRwΛT . (2.13)



30

In the previous equation, the estimator gain matrix, L (k) ∈ R2n×p, is intended

to minimize the estimation error by considering the error in the measurement.

Discussion on Kalman filter can be found in Franklin, et al. (1994) [52].

2.4 Wireless Control System Limitations

Wireless sensor networks offer some major advantages to be exploited in struc-

tural control applications. However, some limitations may prevent the system from

performing in the same level of performance as in its wired counterparts.

One challenge that is encountered in the wireless communications is time delay.

Adding latency to the system also reduces the overall effectiveness of the controller.

Data loss is the second challenge that appears in wireless communications. Some

studies show that data loss may degrade the performance of wireless control systems.

Self-acknowledging protocols for data transmission (TCP/IP) ensure data transmis-

sion, yet introduce time delay. Typical data packet loss occurred in wireless commu-

nication is commonly attributed to radio interference—either human-made or natu-

ral [53]. This radio interference might cause data errors. For small time rate problems,

such as seismic applications, these errors might cause significant issue on the system.

Lastly, wireless communication does require a large amount of power relative to

the power available on the wireless platform. Especially for battery powered wire-

less sensors, wireless radios demand greater power needs than any other hardware

component. Thus, communication should be minimized to extent sensor lifetime.

2.5 Summary

This chapter discusses the background of this study. The study focuses to over-

come the presence of time delay and data loss existed in wireless sensor networks.

Artificial neural networks are utilized to deal with these problems. Discussions on

the control algorithm used in this study are also presented, including the state-space
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system model, the LQR control, and the Kalman state estimation. At last, limitations

presented in wireless sensor network system are reviewed.



32

3. METHODOLOGY

As discussed in the earlier chapters, the presence of time delay and data loss in wireless

communication could potentially reduce the performance of the control system. This

chapter is conducted to verify and assess that statement. After demonstrating this

in parts of these influences, the implementation of neural networks to improve the

wireless structural control system is discussed. This chapter provides a description of

on the approaches that are used in the study.

In general, this study can be categorized into two parts: (1) the study of time

delay, data loss, and sensor failure significance in the wireless control system; (2)

the study of artificial neural network application to improve the performance of the

wireless control system.

3.1 Experimental Structure

A three-story steel frame structure is utilized in this study (Figure 3.1). There

are four columns at each floor; each column has dimension of 1.25 in by 1/8 in and

is made of steel with a Young’s modulus of 3× 107 psi. The height of each floor is 12

in.

For sensing system of the experimental structure, three wired sensors are located

at each floor. The reading from these sensors are acquired in real-time by a dSPACE

control unit (dSPACE GmbH, Paderborn, Germany) that can perform a data acqui-

sition and control decision making using dSPACE real-time system that is connected

to MATLAB/Simulink.

For control device, an MR damper is attached to the first story of the structure.

The MR device is connected to a “wonder box” that will send a control signal to the
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Figure 3.1. Experimental structure: (1) lumped mass steel plates; (2)
shaking table; (3) actuator; (4) structural column; (5) accelerometers

control device during the experiment. The wonder box obtains the command from

the control computer that is connected to the dSPACE unit.

Other data acquisition system, a VibPilot system, is also utilized in the exper-

iment. The purpose of the use of VibPilot is to provide a better data acquisition

procedure than the dSPACE (VibPilot has greater range of sampling frequency in

the data acquisition, compared to the dSPACE). Moreover, the results acquired from

the VibPilot can also be compared to the ones from the dSPACE, thus a crosscheck
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can be performed in order to avoid a false data interpretation or wrong measurement

(due to errors in calibration or other reasons).

The experimental structure is placed on top of a six degree-of-freedom shaking

table. The shaking table is attached to four actuators that could provide the exci-

tation of the shaking table. The test specimens are the property of the Intelligent

Infrastructure Systems Laboratory at Bowen Laboratory, Purdue University.

3.2 Numerical Model

A numerical model of the experimental structure is developed to perform the nu-

merical simulations of the system (Figure 3.2). The structure is modeled as a lumped

mass system with 50 lb of mass on each floor. Based on the physical behavior of the

structure, the damping ratio of the structure is modeled to be 0.5%. The structure

is excited by a one-dimensional ground acceleration in the numerical simulations.

One wireless sensor is deployed on each story; all the sensors collect the absolute

acceleration data from each floor.

Wireless 

sensor

Lumped 

mass

Foundation

Ground

Active 

Bracing

Actuator

Figure 3.2. Numerical model of 3-story shear building
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Time delay in a wireless system is mostly determined by the sensor network

setup. To build a realistic wireless model, time division multiple access (TDMA)

wireless network model is adopted. TDMA gives 10 ms time slot to each sensor in

the model [31,54]. Therefore, here the values of time delay presented in this numerical

simulation is varied from 0 ms to 40 ms (with an increment of 10 ms). Data loss in

the system is generated using a Bernoulli distribution for the simulations conducted.

The probability of data loss is varied from 0% to 100%. The case in which sensor

failure occurs is thus represented by the 100% loss case. Each combination of time

delay and data loss in each sensor is studied. Therefore the most important sensor in

the structure, in terms of the one that is most influential to the control performance,

can be determined.

3.3 Ground Acceleration Input

Two signals are used as the base disturbance of the structure: a band-limited

white noise and simulated Kanai-Tajimi earthquake. The band-limited white noise

signal is intended to train the neural network for a range of amplitudes, while the

Kanai-Tajimi earthquake is utilized to enable the network to learn about the change

of amplitude and dynamic characteristics of a an excitation similar to an earthquake.

The synthetic earthquake records are produced a band-limited white noise that

is processed by the Kanai-Tajimi filter. The Kanai-Tajimi filter is defined by the

equations below,

Sẍg ,ωg (w) =
S0

(
4ζg

2ωg
2w + ωg

4
)

(w2 − ωg2)2 + 4ζg
2ωg2w2

, (3.1)

S0 =
0.03ζgg

2

πωg
(
4ζg

2 + 1
) (1s) , (3.2)

where ωg is chosen to be 37.3 rad/s and ζg is 0.3 [33].

A band-limited white noise is generated using sampling frequency of 1000 Hz and

noise power of 3× 10−3 for 60-second duration.
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3.4 Nominal Active Controller Design and Performance

3.4.1 Evaluation Criteria

To evaluate the controller performance, four evaluation criteria are chosen based

on the peak and RMS response quantities of the structure. These evaluation criteria

are obtained from the benchmark problem for an active bracing system [55]. In

general, smaller values indicate a more superior controller.

The first two criteria examine the ratio of the peak of the response history between

the controlled structure and the uncontrolled structure. J1 investigates the interstory

drift, while J2 evaluates the absolute acceleration of the structure. The equations are

J1 = max

{
max
t

{
‖d1 (t)‖
d10

,
‖d2 (t)‖
d10

,
‖d3 (t)‖
d10

}}
, (3.3)

J2 = max

{
max
t

{
‖ẍ1 (t)‖
ẍ10

,
‖ẍ2 (t)‖
ẍ10

,
‖ẍ3 (t)‖
ẍ10

}}
. (3.4)

The next criterion (J3) is based on the maximum RMS value of the interstory

drift due to all admissible ground motions. The formula of the third criterion is given

by

J3 = max
ωg ,ζg

{
σd1
σx3o

,
σd2
σx3o

,
σd3
σx3o

}
(3.5)

where σdi is the RMS interstory drift for the i-th floor, and σx3o is the RMS relative

displacement of the third floor of the uncontrolled structure over all types of ground

motions considered. The interstory drifts are given by d1 (t) = x1 (t), d2 (t) = x2 (t)−

x1 (t), and d3 (t) = x3 (t)− x2 (t).

The fourth criterion (J4) is based on the maximum RMS value of the absolute

acceleration in all the earthquakes considered. The equation is

J4 = max
ωg ,ζg

{
σẍa1
σẍa3o

,
σẍa2
σẍa3o

,
σẍa3
σẍa3o

}
(3.6)
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where σẍai is the RMS absolute acceleration for the i-th floor, and σẍa3o is the RMS

absolute acceleration of the third floor of the uncontrolled structure.

3.5 Neural Network Design Methodologies

Artificial neural networks are implemented to compensate time delay, data loss,

and sensor failure in the wireless control system. Two schemes for artificial neural

network implementation are demonstrated. In both implementations, measured ab-

solute acceleration are employed as the input for the neural network training. As the

target (or output) of the training, control force is used for the first scheme while the

other scheme uses the computed “ideal” responses as the target. Therefore, in the

first scheme, the neural network is utilized as a controller of the system while the

second scheme it is used as the estimator of the system (by still using the nominal

control algorithm for the controller).

To generate training data for the neural network, a simulation of the system is

performed using the scheme that is illustrated in Figure 3.3. Two ground disturbances

are used to produce training input sets. These two base disturbances are generated

using a Kanai-Tajimi spectrum [56,57] with ωg of 37.3 and ζg of 0.3 and a band-limited

white noise with noise power of 0.03 and a sampling frequency of 1000 Hz.

As depicted in Figure 3.3, the excitation due to the base disturbance on the struc-

ture produces simulated structural responses. Absolute acceleration of the structure

is recorded at each time step using the simulated wireless accelerometer placed at

each floor of the structure. Due to the wireless characteristics, time delay and data

loss are simulated in this acceleration measurement.

For design, a neural network setup is prepared to map the relationship between

the measured absolute acceleration and the “ideal” absolute acceleration (i.e. the

value of absolute acceleration with no time delay and data loss). Note that in the

experiment or real application, the “ideal” value represents the measurement from
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Figure 3.3. Schematics of training of neural network

the wired sensors, although realistically speaking, wired sensors will have noise and

may have some time delay as well.

After the neural network architecture is produced from the training, the resulting

network is tested (evaluated) with historical earthquake record. Specifically, the 1940

El Centro earthquake is used here to demonstrate the control strategy’s ability to

perform under any type of ground excitation.

The schematic of the wireless control system scheme in operation is presented

in Figure 3.4. Different ground disturbance is generated to excite the three story

building model. The structural responses are collected by the wireless accelerometer,

and labeled here as measured absolute acceleration, ẍm. Then, ẍm is corrected using

the neural network that has been previously trained using the approach shown in

Figure 3.3 to produce the corrected absolute acceleration, ẍc. The corrected absolute

acceleration ẍc is then fed into the Linear-quadratic-Gaussian (LQG) control strategy,

which is the combination of a Kalman filter (or often referred as the linear-quadratic

estimator, LQE) and a linear-quadratic regulator (LQR). Using the control algorithm,

a control force is computed and applied to the structure to control the building’s
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motion. The duration of the numerical simulation is 60 sec for each excitation case

in both training and operation.
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f LQG Control Algorithm

cx

Figure 3.4. Schematics of trained neural network in operation

As mentioned before, a strong motive for using the neural network technique

for control purposes is to take advantage of its feature to represent an input-output

relationship without requiring a precise mathematical model. This technique offers

several benefits for structural control, such as in randomness environment of structural

loads (like winds or earthquakes), non-linearity in structural materials, time delay,

and unknown data loss pattern in the wireless system unit.

Various studies have been conducted to successfully perform neurocontroller sys-

tems [36–38,58]. In this study, a neural network is deployed to mimic the performance

of LQG by compensating for the presence of time delay in the wireless sensor network.
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Also, other neural network approach that is conducted in this study is by taking ad-

vantage of neural network to minimize the effects of the not-so-well-known behavior

of the data loss in data transmission.

For this particular neural network strategy, a nonlinear autoregressive (NAR) neu-

ral network is used and the Levenberg-Marquardt algorithm is chosen as the training

method. The architecture of NAR neural network is illustrated in Figure 3.5.
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Figure 3.5. Architecture of nonlinear autoregressive neural network

In the NAR neural network, the network is intended to predict the future value

using its past values as the inputs. In the illustration in Figure 3.5, the target

y (t+ 1) is forecasted using y (t) as the input. As can be found as well in the other

types of neural networks, the NAR can also have multilayers and multineurons in its

architecture. Each input may have some delay parameters to provide a time delay

in assisting the new input value into the system (this delay could later be removed

during the implementation of the network in operation). Each input is connected
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through a network that has its own weighting parameter. The weighting parameter

is adjusted during the training to give the best model for the system. Then, this

network is connected to a neuron that contain a nonlinear function with each own

bias parameter. After the last layer is computed, the network is merged into one

linear function (that has its own bias parameter as well) to provide the final influence

to the result before it computes the output.

3.5.1 Time Delay Compensation

Time delay in control feedback strategies could be very consequential if it is not

deliberately considered during control designs [59]. Figure 3.6 shows how time delay

is exhibited in active control systems.

Measurements 

(Sensors, Filters)

Computer/

Controller
Actuator

Control Force on 

the Structure

Time β is required

Figure 3.6. Time delay in active control systems

As illustrated in Figure 3.6, pure time delays occur because [59]:

1. time taken in real-time data acquisition from digital sensors attached at various

locations on the structure;

2. time taken in data processing (filtering) for feeding the inputs to the control

algorithm that produces the corresponding control signal to the actuator;

3. time taken by the digital controller to compute the appropriate control force to

be assigned into the structure.

Note that these are also tire lags due to the dynamics of the active control de-

vice [47]. The time delay presented in the control application may introduce an
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unsynchronized application of the control force in the structure, which could poten-

tially degrade the performance of the control system or may even induce instabilities.

Because of that, it is essential to design a control system that can compensate for the

presence of time delay. In this particular problem, the time delay that is specifically

observed here is the pure time delay which occurs due to the features of wireless

communications. Therefore, the time delay here can be defined as the difference of

the time that the wireless sensors could provide compared to the measurements that

could be obtained from the systems using wired sensors.

Hiratsuka et al. [60] proposed an one strategy to deal with the time delay issue

with a captivating analogy of the pipeline model illustrated in Figure 3.7.

u(t-β)Control signal flow q(v,t)

Pipeline

Length = 1, Velocity of flow = 1/β 
z = 0 z = 1

Figure 3.7. Pipeline analogy

Figure 3.7 shows that a pipeline analogy may be used to model a control strategy

to compensate the occurrence of time delay in control systems. In the pipeline with

the unit length z, the control signal u flows with a rate of q (v, t). At the start of the

pipeline, where the delay is 0, the control signal corresponds to u (t). As the control

signal goes through the pipeline and reaches the end of the pipe (at z = 1 or β time

delay), the control signal becomes u (t− β).

Without considering the neural network application, the best scenario for the

LQR control scheme presented in Figure 3.4 is when no time delay and data loss are

presented in the system. If time delay is 0 ms and data loss in the system is 0%,

then the optimal performance of the LQG scheme can be achieved because the actual

responses are very close to the “ideal” responses (there will be some differences due

to sensor noise).
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To realize a scheme close to this scheme, a neural network strategy is developed.

Since measured accelerations are obtained from the wireless sensor, a neural net-

work can be used to map the relationship between the measured acceleration (input)

and the “ideal” acceleration (output). This “ideal” acceleration in the actual system

refers to the case in which no time delay or data loss occur. Thus, this procedure

can reasonably be implemented in the real world. For instance, to obtain the “ideal”

accelerations in a laboratory experiment, a set of wired sensors can be used to obtain

training data. After successfully applying the neural network training, then the neu-

ral network can be embedded into the system thus an LQG control scheme can be

implemented more effectively.

Figure 3.8 illustrates how any delay present in wireless communications might

affect the reading error. In Figure 3.8, if a measurement is intended at a particular

time step, say at the time corresponding to the vertical dashed line, the value “A”

is obtained from the wireless sensor at the structure. However that value does not

correspond to the true value at this time, which is illustrated by “B,” the value at

the intersection of the vertical dashed line on the dotted ideal curve.

Time Delay

Figure 3.8. Time delay illustration in a wireless sensor measurement
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To compensate for the time delay, an imaginary horizontal dashed line “C” is

projected to intersect with the solid measured curve to give “C,” which represents the

future value of “A” that is approximately close to “B.” The “C” value is, essentially,

predicted using the neural network that has been trained to achieve this action,

compensating the wireless sensor delays.

3.5.2 Data Loss Estimation

Data loss occurs in wireless sensor measurement as depicted in Figure 3.9. As

shown in the figure, 19 data points are collected and create a perfect sinusoidal func-

tion in the ideal data. However, the measurement fails to transmit at two particular

time step in this example, thus those two data are lost from the total of 19 data

samples (around 10% data loss). Here, the data loss occurs at points 5 and 9.

Figure 3.9. Data loss illustration in a wireless sensor measurement

During real-time structural control implementation, missing or false measurements

may degrade the performance of the structural control system. From Figure 3.9, it
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is understood that the data loss gives the measurement with the value of 0, resulting

the measurement to provide false output.

To compensate for the lost data, a neural network scheme is proposed as depicted

in Figure 3.10. In the figure, the measured acceleration ẍm is corrected to the extent

possible, if its value is equal to 0, using the neural network that would predict the

future value using the previous values (several time steps behind) as the input. If the

measured value is not equal to 0, then the value is taken as it is (no neural network

is used).

( 1)mx t 

Wireless Sensors

0?mx 
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( )cx t

. . . . .

. . . . .

. . . . .
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Figure 3.10. Schematics of neural network for data loss compensation

Although, this strategy offers a logical way to deal with data loss, it should be

acknowledged that measurement of 0 does not always portray a false measurement.

As shown in Figure 3.9, in data point 1, both ideal and measured values indicate

the value of 0. Therefore, using the scheme, this situation would also be considered

as a false measurement. Thus, the neural network would also be implemented for

this case, although it was unnecessary. However, in a real measurement, it is quite

unlikely to have any measurement that gives an exact value of 0. In addition, even

though the measurement yields an exact 0 value, a good performance has already

been demonstrated by the neural network. Therefore, unnecessary neural network

implementation will still also produce an acceptable result that corresponds to the

real value.
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3.6 Summary

A three degree-of-freedom shear structure is utilized in the experimental test and

numerical study. An MR damper is employed as the control device for the experimen-

tal structure, while an active bracing system is used in the numerical model. Four

criteria are used to evaluate the performance of the control systems. The schematics

of neural networks are also discussed in this chapter for both training and operation

to compensate for the presence of time delay and data loss in wireless sensor networks.
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4. NUMERICAL SIMULATION

Numerical simulation is performed using the shear model that has been previously

discussed in Chapter 3. To perform this simulation, MATLAB and Simulink are

utilized. This study focuses on investigating the techniques discussed in Chapter 3 to

compensate for the presence of time delay and data loss in wireless structural control

systems. First, they are investigated separately. Then, both systems are combined to

produce the neural network-embedded control system that can compensate for both

time delay and data loss. An active control strategy is demonstrated in this numerical

simulation. An active bracing system is used as the control device of the system.

4.1 Neural Network Design

In this study, neural networks are designed to compensate for the time delay and

data loss present in wireless structural control systems. Different neural network

strategies need to be applied in the two cases. Therefore, separate neural network

implementations are demonstrated first. In the end, these two neural network imple-

mentations are integrated to work together in the same system. The schematic of the

neural network training is shown in Figure 3.3.

The most important part in the training of a neural network is to understand

the nature of the training data sets for both input and target data sets. Because

the training scheme is to employ an NAR neural network, only the input data set is

required for this neural network training.

Figure 4.1 provides a scatter plot of the measurement results with time delay in

the sensor reading. Here a linear curve fit is determined for the data using regression

analysis with the ideal and measured values. All points should be located on the linear

regression line if no time delay is present. Because the response of the structure can
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be approached as a periodic function, it explains why some scatter distribution is

placed at the top of the regression line while the others are located at the bottom of

the regression line and the compositions of both groups have an approximately equal

number.

Figure 4.1. Scatter plot of the data with time delay in measurement
from numerical simulations

When data loss occurs in the measurement, the measured value will have some

discrepancies with the ideal value. Figure 4.2 depicts the scatter plot of the case where

data loss occurs in the measurement. Two cases are presented in the figure, i.e. the

5% and 25% data loss cases. Although not shown, it is obvious that no data loss case

should give a y = x relationship here. As data loss is introduced into the system, the

data will become more disperse and a linear regression coefficient can be found. It is

discovered in the figure that the 25% data loss case has a more steep inclination in the

regression line compared to the 5% data loss case, which is supposed to have closer

distribution with the 0% data loss case. It is also worth noticing that the gradient

of the regression line is greater than 1 for the case where data loss is introduced,

which explains that for the ideal value (the y axes) has a greater amplitude than the
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measured value (the x axes). This observation confirms that the presence of data loss

in the measurement reduces the maximum amplitude of the response, which can lead

to an undesirable outcome in the system.

Figure 4.2. Scatter plot of the data with data loss in measurement
from numerical simulations

Another useful approach to help understand the data is by creating a histogram

plot of the data. A histogram of sample measurements which could potentially induce

some data loss is shown in Figure 4.3. Both cases, the one without data loss and the

one with 25% data loss, demonstrate a normal distribution with the same mean.

Nevertheless, the histogram with data loss has more density at the mean. This is

caused by the failure of the sensor to capture the high amplitude measurements and

production of more measurements with values of 0 whenever data loss occurs (recall,

the mean is about 0).

The first neural network training conducted is to deal with data loss problem.

Separate neural networks are designed to process each acceleration of each story. For

this case, six sets of time series of inputs are prepared with the same output. These

six inputs are obtained from the same data loss value of 10% generated to follow a
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Figure 4.3. Histogram plot of the data with data loss in measurement

Bernoulli distribution with different initial seeds. The target of the neural network

is the ideal corresponding floor acceleration record, which also can be represented by

the case where data loss is equal to 0%. An illustration of how erroneous reading may

be given by the wireless sensor due to data loss is shown in Figure 4.4.

For each neural network, the network is independently trained ten times. The

normalized mean square error value of each training is recorded to help determining

the best neural network.

For the neural network training, the data set on hand is randomly divided into

three groups randomly using a proportion of 70% for training, 15% for validation, and

15% for testing. The training data set is used to generalize the network architecture.

The validation data set is needed to avoid overfitting. The network validates each

time the degree of accuracy is reduced in each validation step, and the network stops

its training if six validation failures are reached consecutively. The testing data set

is required to confirm the performance of the neural network. After the training,
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Figure 4.4. Erroneous measurement due to data loss

the performance of the trained neural network is tested using responses from several

historical earthquakes.

4.2 Neural Network Performance

In this study, neural networks are proposed to compensate for the occurrence of

time delay and data loss in the system. Thus, the performance must be evaluated in

terms of these goals.

The performance of the wireless sensing are evaluated while measuring structural

responses of an excitation of the three-story shear building due to earthquakes. Time

delay and data loss is added to the system to simulate the wireless characteristics.

The “ideal” measurement values, the one that is not interfered with time delay and

data loss, are still kept to be later utilized as a reference. A NNWCF is utilized

to correct the measurement from the wireless sensing system. The performance of

the NNWCF is evaluated by comparing its NRMS (normalized root mean square)

error to the NRMS error of the measurements from wireless sensors. The equation of
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NRMS used to compute error between two arbitrary signals, an evaluated signal and

a reference signal, is given as follows

ENRMS =

√√√√√√√
n∑
i=1

(xri − xi)2

n∑
i=1

(xri − x̄r)2
(4.1)

where xri is the reference signal, x̄ri is the mean of the reference signal, and xi is the

evaluated signal.

Table 4.1 and Table 4.2 show the calculated NRMS errors between the ideal sig-

nals, as the reference signals, and both the measured signals and the corrected signals

(using the NNWCF). Results from four earthquakes are shown. The NNWCF is

demonstrated to show a superior performance in improving the measurements of a

wireless sensor network for both pure time delay problem and pure data loss problem.

In the pure time delay problem (Table 4.1), the results shown use a NNWCF that

is designed to compensate for wireless delay of 10 ms. However, it is still shown that

the NNWCF still can improve the measurement of a wireless sensing system when

wireless delay of 20 ms is incorporated. Therefore, it is reasonable when the results

show a more superior performance of the NNWCF in dealing with the time delay of

10 ms (it improves the performance from an error of 16–23% to 2–7%), compared to

the one with time delay of 20 ms (from an error of 32–46% to 16–27%).

In the pure data loss problem (Table 4.2), five data loss cases are examined, i.e.

5%, 10%, 15%, 20%, and 25%. The NNWCF is designed to deal with any amount

of data loss. Here, a superior NNWCF performance is shown up to data loss of 25%

with error values after the NNWCF corrects the measurement range from 0.1% to

0.4% (meanwhile, the error values of the wireless sensors range from 22% to 51%).

Figure 4.5 and Figure 4.6 are shown to illustrate of the comparison between cases

evaluated in Table 4.1 and Table 4.2. It is observed in both figures the ability of the

NNWCF to correct the measurement of a wireless sensor network that is very similar

to the ideal value, the case that is not able to obtained in the real practice.
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Table 4.1 NRMS errors before and after the implementation of the
NNWCF for pure time delay problems

Earthquake Floor
10 ms Time Delay 20 ms Time Delay

Measured NN-Corrected Measured NN-Corrected

El Centro

1 23% 7% 46% 27%

2 17% 3% 33% 18%

3 17% 3% 34% 18%

Northridge

1 18% 4% 36% 20%

2 16% 3% 32% 17%

3 16% 3% 33% 17%

Loma Prieta

1 16% 3% 33% 17%

2 16% 2% 32% 16%

3 16% 2% 32% 16%

Kocaeli

1 16% 3% 32% 17%

2 16% 2% 32% 16%

3 16% 2% 32% 16%

Figure 4.5. Neural network performance for 10 ms time delay compensation
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The strategy to employ neural network to deal with data loss seems to accomplish

the desired performance as well (as shown in Figure 4.6). The sudden jumps (to

0 value) due to data loss create erroneous measurements that could have serious

impacts on the control system. The neural network proposed here corrects these

measurements each time the measurement delivers a value of 0. (In this study, the

undefined values occurred due to data loss is defined as 0, although other approaches

may also be pursued, such as using the previous value, etc.)

Figure 4.6. Neural network performance for 1% data loss compensation

In Figure 4.6, the case of data loss of 1% is shown (although the case is not

investigated in Table 4.2) for an illustrative purpose. The time history responses of a

higher data loss case will be more difficult to look at due to high numbers of sudden

jumps in the measured signals.

4.3 Active Control Design

The LQG controller is employed for this particular control strategy. An active

bracing system placed at the first floor of the structure is utilized as the control device.

As discussed previously in Chapter 2, the LQG control strategy uses a weighting

parameter, q, to determine the “aggressiveness” of control to the system. Usually,
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better control performance in terms of response reductions requires more “cost,”

which in this case, is represented by the control force provided by the active mass

driver, although this tendency is not always found in all control problems.

As stated previously, four evaluation criteria are used in this study. However, for

the controller design stage, only RMS evaluation criteria are used. The reason for

this is to simplify the decision-making process and to avoid the evaluation that is only

based on single value. The RMS considers the entire responses, thus it represents the

general system performance better. Therefore, only J3 and J4 are used in this design

process.

Figure 4.7. Control design options with various values of the weighting
parameter q evaluated using the El Centro earthquake

Several simulations with various values of the weighting parameter q are conducted

and the results are shown in Figure 4.7. The range of q values used in this simulation

ranges from 1× 102 to 2× 103. As shown in Figure 4.7, lower J3 and J4 are achieved

with higher values of q. However, the peak control force also increases, requiring

more force from the actuator, which might be limited in real world problems and add

expense to the system. To design a reasonable controller, the best control performance
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needs to be achieve while also considering a reasonable peak control force value. For

this case, a q of 1×103 is used since it provides a reasonable peak control force value, 24

N. Also, the control performance of that particular q value shows a superior response

reduction, about 57% reduction in both RMS value of the interstory drift and absolute

acceleration. The details of the designed control performance and requirement is

presented in Table 4.3.

Table 4.3 Detail of the designed active control performance and re-
quirement evaluated using the El Centro earthquake

Criteria Value

Peak control

force
23.65 N

J1 81.51%

J2 77.59%

J3 56.76%

J4 56.57%

4.4 Influence of Time Delay and Data Loss on Nominal Controller

This study is motivated by presence of time delay, data loss, and sensor failure in

a wireless structural control system. Simulations are conducted here to demonstrate

how the performance of the control system is reduced due to time delay, data loss, and

sensor failures. The study is focused on the implementation of an active control system

with an active bracing system as the control device. The LQG control algorithm is

adopted.
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4.4.1 Simulation Procedure

Numerical simulations are performed with various wireless time delay and data

loss values to determine how those features affect the performance of the control

system in both applications. Sensor failure is also considered in this study which

is represented by the case where data loss probability is equal to 100%. An active

control strategy is examined (Figure 3.2).

In a wireless sensor network, time delay is mostly determined by the sensor network

setup. The modeling of the time delay is determined based on data transmission time

per step, and is determined in this study to be 10 ms. Since three sensors are used

in this case study, the largest transmission delay is four steps, therefore the value of

time delay is varied from 0 ms to 40 ms.

Data loss in transmission in the wireless sensor network is modeled as a Bernoulli

distribution. The data loss is modeled in each sensor independently, representing the

actual situation where loss is independent in each sensor. The range of loss probability

modeled in the study is from 0% (no loss, 100% data transmission) to 100% (sensor

failure).

Time delay is model to occur in all sensors. Alternatively, data loss is modeled

in three separate cases: (1) all three sensors have the same loss probability; (2) two

of three sensors have the same loss probability; and (3) one of three sensors has the

same loss probability.

4.4.2 Simulation Results

The active control system and the three-story building response is simulated with

the 1940 El Centro earthquake excitation. Various time delay and data loss values

described in Subsection 4.4.1 considered to assess the impact of data loss and time

delay on this control system performance. The performance of the control system is

evaluated based on four criteria: peak of story drift (J1), peak of absolute acceleration

(J2), RMS of story drift (J3), and RMS of absolute acceleration (J4)—all represent
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the ratio of the controlled system with the uncontrolled system. The various control

performance values, measured using all evaluation criteria when data loss occur in

all three sensors deployed on the structure, evaluated using band-limited white noise

as base disturbance with noise power of 0.01 and sampling frequency of 1000 Hz is

illustrated in Figure 4.8.

Figure 4.8. Control performance when time delay or data loss oc-
curs in all sensors evaluated using band-limited white noise as base
disturbance

An important conclusion is reached from Figure 4.8: time delay or data loss does,

indeed, degrade the performance of the control system, for this particular system.

These tendencies are clearly observed from all evaluation criteria. From the simu-
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lation, the best performance is found when zero time delay and zero data loss are

considered in the system.

Another noteworthy finding is noticed when data loss is only assumed in the third

floor sensor (see Figure 4.9). This specific case yields instabilities in the system that

were not discovered in the previous case, in which data loss occurs in all sensors. These

instabilities exist with extreme delay values (30 and 40 ms) with extreme data loss

(more than 40% data loss). Although such extreme time delay and data loss would be

preferably avoided before employing the system on a real structural implementation,

the results demonstrate that the third floor sensor—or the sensor on the top floor,

in general—is often the sensor with the highest degree of importance in the wireless

sensor network for a shear building type of structure. In this regards, this study

confirms a previous conclusion [31].

Figure 4.9. Control performance using band-limited white noise as
base disturbance when time delay or data loss occurs in wireless sensor
on the third floor
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4.5 Wireless Control Performance with Neural Network

The aim of this work is to avoid the undesired performance degradation in the

structural control system by compensating for the presence of time delay and data

loss in the system. Neural networks are employed to achieve this goal. As discussed in

Section 3.3, the network is trained using several base disturbances on the structure,

i.e. band-limited white noise (to train the network about certain amplitudes) and

synthetic earthquake (to train the network about the time-varying characteristic of

an earthquake response). After a satisfactory training has been attained, the perfor-

mance of the neural network is tested using several historical earthquakes, such as the

1940 El Centro earthquake, the 1989 Loma Prieta earthquake, the 1994 Northridge

earthquake, and the 1999 Kocaeli earthquake.

The objective of the control system in structural application is obviously to re-

duce the structural motion during the excitation of the dynamic loading. Therefore,

the goal to have the building experiences as little motion as possible. To reach this

goal, the structural responses with the neural network need to be compared with

those of the uncontrolled structure using the evaluation criteria that have been pro-

posed (shown in Subsection 3.4.1). In general, lower results indicate a more superior

controller performance.

In this numerical simulations, two cases are examined. In the first case, 10 ms

time delay parameter is incorporated to the sensor measurement, while two data

loss cases—the 10% and 25% data loss—are generated in the second case. In both

cases, comparison with the ideal case is also given to demonstrate the idea of how

the system should perform in wired-control systems. It is expected for the neural

network to improve the performance of the control system after some degradation is

shown due to the wireless features of time delay and data loss.
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4.5.1 Time Delay Compensation

In this part, only time delay is included in the study (no data loss given in the sys-

tem). As mentioned previously, four criteria are used to evaluate the performance of

the control system. Four recorded earthquakes are subjected as the base disturbance

of the system, thus fair evaluation can be made based on various and significant true

historical events. The four earthquakes that are chosen in this study are the 1940

El Centro earthquake, the 1994 Northridge earthquake, the 1989 Loma Prieta earth-

quake, and the 1999 Kocaeli earthquake. All studied earthquakes were located in the

United States, except for the Kocaeli earthquake which hit Turkey. The evaluations

are summarized in Table 4.4.

Since four evaluation criteria (J1, J2, J3, and J4), four earthquakes (El Centro,

Northridge, Loma Prieta, and Kocaeli), and two delay cases (10 ms and 20 ms time

delay) are used in this study, therefore this produces 24 performance comparisons

to decided the neural network’s legitimacy to be adopted for improving the control

performance. Although two time delay cases are presented here, only one neural

network function is designed, i.e. to compensate for 10 ms time delay. Therefore

when the network shows a superior control performance in the 20 ms time delay case,

that demonstrates that the network’s ability to improve the performance even though

the time delay value is found to be in a higher number.

The results shown in Table 4.4 are illustrated in bar charts in Figure 4.10.

The deeper look on how the neural network could improve the control performance

can be figured by looking on its control forces produced due to the base disturbances

(see Figure 4.11).

Basically, both the systems without and with neural network administers a more

or less same performance. However, if the comparison is looked more closely, there

is a certain gap of time delay between the control force produced by the system

without neural network compensator and the system with neural network. This gap

is most likely corresponds to the time delay induced in the system measurement.
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Table 4.4 Performance of pure time delay cases without and with the NNWCF

Earthquake Time Delay (ms) Strategy J1 J2 J3 J4

El Centro

10
w/o NN 0.84 0.79 0.58 0.60

w/ NN 0.82 0.79 0.57 0.58

20
w/o NN 0.86 0.80 0.60 0.63

w/ NN 0.83 0.78 0.58 0.59

Northridge

10
w/o NN 0.83 0.80 0.55 0.57

w/ NN 0.83 0.79 0.55 0.56

20
w/o NN 0.83 0.81 0.56 0.58

w/ NN 0.83 0.80 0.55 0.56

Loma Prieta

10
w/o NN 0.85 0.90 0.58 0.58

w/ NN 0.86 0.90 0.57 0.56

20
w/o NN 0.83 0.90 0.59 0.59

w/ NN 0.84 0.90 0.57 0.57

Kocaeli

10
w/o NN 0.88 0.89 0.54 0.55

w/ NN 0.87 0.88 0.54 0.54

20
w/o NN 0.88 0.90 0.55 0.57

w/ NN 0.87 0.88 0.54 0.55

Therefore, by looking at this figure, it could be concluded that the neural network

has been successfully compensated the issue of time delay presented in the wireless

sensor network. Moreover, this compensator scenario has also been proven to work

by these numerical simulations.

4.5.2 Data Loss Estimation

The results for data loss cases with the El Centro earthquake are summarized in

Table 4.5. As shown in these two tables, the system with a neural network embedded



64

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

J1 J2 J3 J4

(a) El Centro

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

J1 J2 J3 J4

(b) Northridge

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

J1 J2 J3 J4

(c) Loma Prieta

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

J1 J2 J3 J4

(d) Kocaeli

50%

55%

60%

65%

70%

75%

80%

85%

90%

J1 J2 J3 J4

El Centro

10 ms - no NN 10 ms - NNWCF 20 ms - no NN 20 ms - NNWCF

Figure 4.10. Performance of pure time delay cases without and with the NNWCF

(b) Northridge

(a) El Centro (c) Loma Prieta

(d) Kocaeli

Figure 4.11. Control forces produced from control schemes without
and with neural network for time delay compensation due to four eval-
uated earthquakes: (a) El Centro; (b) Northridge; (c) Loma Prieta;
(d) Kocaeli
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Figure 4.12. Deeper look of control forces produced from control
schemes without and with neural network for time delay compensation
due to the El Centro earthquake

always performs better than the corresponding case without the neural network in all

evaluation criteria.

It is obvious that when no data loss is introduced into the system, the system

produces the same performance. This verifies the implementation because in the

neural network system, the strategy ignores unnecessary compensation which might

happen when the actual measurement value is equal to 0. This approach accounts for

the very small possibility that an exact value of 0 will appear in the real measurement.

Also, even if an exact zero value appears, the performance of the neural network has

shown to produce good results. Therefore, any unnecessary compensation will still

produce a good result and performance degradation is not significant.

It is also observed that the control performance improvement provided by the

neural network is larger as the value of data loss increases. This demonstrates that

the neural network could deal with a significant amount of data loss as high as 25%

is considered here.

Table 4.5 shows the performance of the systems without and with the NNWCF

when subjected to the El Centro earthquake. Six data loss cases are given: 0%, 5%,
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10%, 15%, 20%, and 25% data loss. In all case presented here, the system with the

NNWCF always outperforms the performance of the system without the NNWCF,

except for the case where no data loss are presented. For the case where no data loss

occurs, the system with the NNWCF still shows a similar level of performance with

the system without the NNWCF. This means that the NNWCF does not degrade the

performance of the controller, even when the parameters desired to be compensated

for are not presented.

Table 4.5 Performance of pure data loss cases without and with the NNWCF

Data Loss Scenario

Evaluation

Criteria

J1 J2 J3 J4

0%
w/o NN 0.82 0.78 0.57 0.57

w/ NN 0.82 0.78 0.57 0.57

5%
w/o NN 0.83 0.82 0.61 0.60

w/ NN 0.82 0.82 0.60 0.59

10%
w/o NN 0.91 0.83 0.65 0.65

w/ NN 0.89 0.82 0.63 0.63

15%
w/o NN 1.0 0.91 0.70 0.70

w/ NN 0.97 0.89 0.67 0.67

20%
w/o NN 1.0 0.95 0.76 0.76

w/ NN 0.99 0.92 0.71 0.71

25%
w/o NN 1.1 1.0 0.82 0.82

w/ NN 1.1 1.0 0.76 0.75

Results of El Centro earthquake shown in Table 4.5 are illustrated in bar charts

in Figure 4.13.

Other interesting finding in Table 4.5 is shown when 25% data loss occurs in the

system. In both evaluations of peak responses, interstory drift (J1) and absolute
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Figure 4.13. Performance of pure data loss cases without and with the NNWCF

acceleration (J2), the responses of the controlled structure, in both with and without

the NNWCF, exceed the responses of the uncontrolled structure. This demonstrates

how the data loss occurred may degrade the controller performance to the level where

it performs worse than the system without the controller. However, it is important to

be noticed that the peak value often occurs in only one place (exactly what happens

in this case). Usually this occurs in the start of the peak of the ground excitation. At

this stage, the control algorithm probably has not gained a sufficient information to

control that high increment occurs in the earthquake. Therefore, it fails to reduce the

responses of the structure. However, this only occurs in a very short period of time

before the control procedure has finally been able to figure out the appropriate control

force required for the structure when the ground disturbance has been gradually

become more stable. Therefore, extra attention needs to be paid when looking at the

evaluation criterion of the peak value of responses since it may only represent one

particular point during the whole responses.

Similar tendencies are found with the Northridge earthquake (Table 4.6). The sys-

tem with the NNWCF shows a more superior performance than the system without
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Figure 4.14. Peak responses of the controlled structure exceeds the re-
sponses of the uncontrolled structure during the El Centro earthquake
when 25% data loss occurs

the NNWCF. The same observation of the peak interstory drift and absolute accelera-

tion in the controlled systems that exceed the peak of the responses in the uncontrolled

structure is also found in the Northridge earthquake. This finding strengthens the

theory that suggests how the data loss may cause a serious problem in the structural

control system when it is not handled carefully.

Results from the Loma Prieta earthquake and the Kocaeli earthquake are also

shown (Table 4.7 and Table 4.8).

The evaluation criteria may give a quantitative portrayal of the performance of

control system. However, the criteria make some generalization as well. For instance,

the peak value of the interstory drift may only occur at a single floor at a single time.

The evaluation criteria alone does not provide a complete picture. Several evaluation

criteria might need to be evaluated together. To get a deeper look into the system’s

performance, both the peak and the RMS values of the interstory drifts and absolute
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Table 4.6 Evaluation criteria values between cases without and with
neural network for the Northridge earthquake

Data

Loss
Scenario

Evaluation

Criteria

J1 J2 J3 J4

0%
w/o NN 0.87 0.79 0.56 0.56

w/ NN 0.87 0.79 0.56 0.56

5%
w/o NN 0.93 0.83 0.60 0.60

w/ NN 0.92 0.82 0.59 0.59

10%
w/o NN 0.94 0.87 0.64 0.64

w/ NN 0.93 0.86 0.62 0.62

15%
w/o NN 0.98 0.94 0.69 0.69

w/ NN 0.96 0.93 0.65 0.65

20%
w/o NN 1.0 0.97 0.76 0.76

w/ NN 1.0 0.95 0.70 0.70

25%
w/o NN 1.1 1.1 0.82 0.82

w/ NN 1.1 1.0 0.74 0.74
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Table 4.7 Evaluation criteria values between cases without and with
neural network for the Loma Prieta earthquake

Data Loss Scenario
Evaluation Criteria

J1 J2 J3 J4

0%
w/o NN 0.90 0.90 0.58 0.56

w/ NN 0.90 0.90 0.58 0.56

5%
w/o NN 0.94 0.95 0.62 0.60

w/ NN 0.94 0.95 0.61 0.59

10%
w/o NN 0.97 1.0 0.66 0.65

w/ NN 0.96 1.0 0.64 0.63

15%
w/o NN 1.1 1.1 0.72 0.71

w/ NN 1.1 1.1 0.68 0.67

20%
w/o NN 1.1 1.1 0.77 0.76

w/ NN 1.0 1.0 0.71 0.70

25%
w/o NN 1.2 1.2 0.84 0.83

w/ NN 1.2 1.2 0.77 0.75
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Table 4.8 Evaluation criteria values between cases without and with
neural network for the Kocaeli earthquake

Data Loss Scenario
Evaluation Criteria

J1 J2 J3 J4

0%
w/o NN 0.88 0.87 0.54 0.54

w/ NN 0.88 0.87 0.54 0.54

5%
w/o NN 0.90 0.90 0.58 0.58

w/ NN 0.90 0.90 0.57 0.57

10%
w/o NN 0.97 0.98 0.62 0.62

w/ NN 0.96 0.98 0.60 0.60

15%
w/o NN 0.99 0.97 0.67 0.67

w/ NN 0.98 0.97 0.64 0.63

20%
w/o NN 1.1 1.1 0.73 0.72

w/ NN 1.1 1.1 0.68 0.67

25%
w/o NN 1.1 1.1 0.80 0.79

w/ NN 1.1 1.1 0.73 0.72
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accelerations of each floor are computed (see Figure 4.15). The results shown here

are obtained from the simulation using the distributed 25% data loss.

It is found that the systems with neural network consistently show better perfor-

mance demonstration in the RMS values of the interstory drift and absolute accelera-

tion. However, in some cases, the performance of a system without a neural network

overcomes those of the case with the neural network embedded into the system in

terms of the peak values (for both interstory drift and absolute acceleration). This

may happen randomly because a single point has more extreme value, although it

may not represent the system’s general response. In this case, RMS surely becomes a

better view of the system’s entire response. In addition, the evaluation criteria results

also show a consistent better demonstration of the systems with neural network in

all evaluated criteria.

Lastly, it is always necessary to discuss the “cost” function of the control system.

In this case, the cost of the control system can be represented as the required control

force to achieve the results. Figure 4.16 shows a comparison of the external force

required to control the system due to the El Centro, Northridge, Loma Prieta, and

Kocaeli earthquake.

The first 20 seconds of the control force is shown in the figure. The control force

required by the system with a neural network has a higher amplitude and is more

smooth. Lower amplitude shown in the system without a neural network is most

likely occurred due to the occurrence of zero response points in the measurement

when data loss occurs. In response to those zero values, there is no need to control

the structure, and a smaller control force is produced. Also, when data loss occurs,

sudden jumps do appear in the measurement time history. This makes the response

becomes less continuous and introduces high frequency dynamics. Although Kalman

estimator can provide a smoother response, it does not guarantee an insensitivity

of the control system to this effect. This issue may cause chattering in the control

force that is undesirable, especially with an active control system. This chattering

external force acts like an impulsive force and yields high frequency responses at
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times. Fortunately, chattering is not observed in the required control forces with the

neural network. Therefore, the neural network can prevent this complication.

4.6 Performance of the NNWCF

The NNWCF (Neural Network Wireless Correction Function) is created by com-

bining both neural network functions that are specifically designed to compensate for

time delay and data loss. The result shown in this section (Figure 4.17) demonstrates

the performance of the NNWCF with the time delay of 10 ms and data loss of 25%

presented in the wireless sensors.

Figure 4.17 shows the time history of the structural responses due to the El Centro

earthquake in two time frames, the first ten seconds and from 20 to 30 seconds of the

earthquake. It can be seen that the performance of the controller with the NNWCF

in it shows a more superior performance. A reduction of the overall response, the

main objective of the use of the control system, is also achieved.

Moreover, since the NNWCF is used to achieve the ideal case of the control system

without time delay and data loss, another evaluation of the system with the ideal case

(where no time delay and data loss presents) is also demonstrated (see Figure 4.18).

Again, the result shown in this figure utilized time delay of 10 ms and data loss of 25%.

The ideal case has no time delay and data loss in the system. It can be obviously

observed that the NNWCF improves the performance of the control system in a

superior performance. The NNWCF assists the control performance to approach the

performance of the ideal system, which is unachievable in the world of wireless sensor

network. Therefore, it can be concluded that the performance of a wireless structural

control system can be improved to approach the performance of the traditional wired

structural control system, and the degradation of the control performance that could

potentially occur can be avoided by utilizing the NNWCF.
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4.7 Summary

Numerical simulations are demonstrated in this chapter. To compensate for the

presence of time delay and data loss, a neural network is designed. Before it is

implemented to the system, the network is tested to ensure that it produces a fine

result. An active controller is designed to be implemented in the three-story shear

structure. Using the wireless structural control, the performance of the system with

the neural network is compared with those of the case without the neural network. It

is shown that the NNWCF is able to compensate for the presence of time delay and

data loss in wireless structural control problems.
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(d) Kocaeli

(c) Loma Prieta

(b) Northridge

(a) El Centro

Figure 4.16. Control force due to: (a) El Centro earthquake; (b)
Northridge earthquake; (c) Loma Prieta earthquake; (d) Kocaeli
earthquake
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Figure 4.17. Responses from various cases due to El Centro earthquake
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Figure 4.18. Comparison between the ideal case and the result of
NNWCF-LGQ control system with time delay and data loss
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5. LABORATORY EXPERIMENT

A laboratory experiment is performed to verify the performance of the NNWCF

shown in the numerical simulation. Two experiments are considered to demonstrate

the performance of the NNWCF: an excitation of a bare structure (without any

control strategy) and an excitation of a controlled structure. Both experiments use

the three-story shear building structure (discussed in Chapter 3). The building is

placed on a six degree-of-freedom shake table that will generate a ground excitation

to the building. For the controlled case, an MR damper is utilized on the first floor

as the control device. The MR damper is attached to the first floor of the structure

to administer the control forces required for the desirable performance.

Although the study focuses on the application of wireless sensor network in struc-

tures, no wireless sensors are employed in this experiment. Data from the wired sen-

sors used in the experiment is used and realistic wireless characteristics are digitally

simulated, i.e. time delay and data loss to enable control of the various parameters

to examine their effects. Thus, the values of time delay and data loss in the system

are adjusted to the actual time delay and data loss values usually observed in wireless

sensor network application in structures.

Final control experiment has not been performed.

5.1 System Identification

Before the control system is employed to the structure, system identification is

performed to determine the dynamic characteristics of the experimental structure and

build a model for the control design purpose. System identification is performed by

giving the structure a band-limited white noise as base acceleration. Wired sensors

(PCB piezotronics accelerometers) are attached on each floor and at the base of the
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structure (attached to the shake table). All data are acquired using the VibPilot

DAQ system. A sampling frequency of 1024 Hz is used for this system identification

and anti-aliasing filters are built into the VibPilot DAQ system.

The following procedures need to be performed for system identification. First,

sensors need to be placed in the accordance direction to the one-dimensional ground

excitation. Then, the sensors are connected to the VibPilot DAQ. To operate the

VibPilot, the M+P software is used so the parameters must be set in the software.

Then, a band-limited white noise signals is generated as the base disturbance to the

structure. While the base disturbance runs, data are acquired using the VibPilot

system. After the data are collected, data processing is performed to obtain the

transfer functions. The sets of transfer functions represent the input-output behavior

of the system.

After the experimental transfer functions are obtained, the values of the experi-

mental mass, stiffness, and damping matrices can be determined using the method

developed by Ozdagli, et al. (2012) [61]. The mass matrix is initially set to the

niminal values from the geometry and materials. Then, we update the model of the

structure based on the newly determined parameters. The updated mass, damping,

and stiffness in this study are determined to be

Me =


22.73 −1.22 −3.99

−1.22 22.05 −0.90

−3.99 −0.90 21.56

 kg,

Ce =


10.06 4.64 −3.33

4.64 8.18 0.04

−3.33 0.04 9.62

Ns/m,

Ke =


5.75 3.96 −2.07

3.96 4.26 −0.18

−2.07 −0.18 4.41

× 104N/m.
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Using the updated structural properties, a numerical transfer function is obtained

for verification. The comparison of the magnitude of the transfer function of the

experimental and the numerical model is provided in Figure 5.1, while the comparison

of the phase of the transfer functions is illustrated in Figure 5.2.

Figure 5.1. Magnitude of transfer function from ground acceleration
to third floor acceleration

Natural frequencies from both numerical and experimental models are given in

Table 5.1. From the natural frequency comparisons between the experimental and

numerical models, it is found that there is about 0.25 to 0.35 Hz frequency difference

between the natural frequencies obtained from the experimental and the numerical

model.

5.2 Performance of NNWCF in Wireless Sensor Measurements

The Neural Network Wireless Correction Function (NNWCF) is designed to com-

pensate for the presence of time delay and data loss in a wireless sensor network.

The function’s goal is to provide a better sensor measurement for the purpose of data

acquisition or feeding-back the inputs for a control strategy.
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Figure 5.2. Phase of transfer function from ground acceleration to
third floor acceleration

Table 5.1 Natural frequencies of the numerical and experimental model

Mode Numerical (Hz)
Experimental

(Hz)

1 2.56 2.31

2 7.19 6.88

3 10.38 10.19

In this section, an experiment with a three-story shear structure is conducted to

demonstrat the NNWCF’s performance shown in Chapter 4 using real data. For this

experiment, data is acquired with wired sensors, but wireless characteristics, in terms

of time delay and data loss, are induced to the measurement so that it resembles the

nature of wireless sensor network.

Four historical earthquake records are used for this experiment: the 1940 El Centro

earthquake, the 1994 Northridge earthquake, the 1995 Kobe earthquake, and the 1999

Chichi earthquake. Some scaling factors are used to adjust the magnitude of the
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earthquake to ensure an appropriate excitation is subjected to the structure to avoid

yielding in the material or equipment damage. Scaling of 20% is used for Northridge;

35% for Chichi; 25% and 40% for El Centro; no scaling factor (factor of one) is used

for Kobe. Results from various earthquakes are shown in Table 5.2. Table 5.3 shows

the result of the experiments from El Centro earthquake using two different scalings:

40% and 25%. Both Table 5.2 and Table 5.3 are performed with 10 ms time delay

for every case presented.

Values shown in Table 5.2 and Table 5.3 are the normalized root mean square

error values computed with the Equation 4.1.

Figure 5.3 shows the responses of the structure in the experiment using 40%-

magnitude El Centro earthquake with data loss of 5% that have been filtered using

Kalman estimator. From Table 5.2, it can be seen that the systems with NNWCF out-

perform the results from systems without NNWCF. The effectiveness of the NNWCF

is observed to be declining as more data loss is found in the system.

During this evaluation of the performance of NNWCF, some interesting observa-

tions were found and resulted in some improvements in the system that enhances the

applicability for real world applications. These findings include the findings on noise

and the strategy to consider the applied sampling rate.

5.2.1 Richness of Amplitude in Training Data

The training of the neural network used in this experiment uses the same training

strategy discussed in Chapter 4. Therefore, in that chapter, it is discussed that one

earthquake record that is used for evaluation is the El Centro earthquake with 100%

magnitude. However, for this experiment, the earthquake must be scaled down so

that the response of the structure reduced to avoid damage. However, the neural

network is trained more to high amplitude responses. This conclusion is confirmed

by looking at Table 5.3. From two El Centro earthquakes used here, the neural

network performs better with the one with higher amplitude (40%, the closest one to
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Figure 5.3. Structural responses in the experiment using El Centro
earthquake with data loss of 5%
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the full magnitude El Centro record). This explains, in part, why the neural network

performs in a superior manner in the numerical simulation but the performance is

degraded in the experiment. Therefore, in designing a proper neural network, it is

important to consider the appropriate richness of the amplitude of the training data

so that the neural network will be able to compensate for any type of structural

responses due to future unknown earthquakes.

5.2.2 Presence of Noise

Noise in the sensors can originate from many sources: motions from living things,

machine vibrations, or electronic noise. This noise makes it impossible to obtain a

noise-free measurements in a real world experiment. Therefore, a strategy to handle

the presence of noise is needed to ensure that the NNWCF is performing well into

the presence of noise.

An illustration of typical noisy data is depicted in Figure 5.4. These data are

taken from a real measurement of structural response due to El Centro earthquake.

It can be seen that the noise might be substantial. Also, realistic issues such as offsets

need to be considered in the neural network implementation.

To deal with noise, the neural network training strategy is modified. In the neural

network strategy to compensate for the presence of data loss, the network is trained

with noisy data. Therefore, it will have a better ability to cope with the presence of

noise in the system.

5.2.3 Strategy in Determining Sampling Rate

Sampling is the discretization of a continuous signal. Because we are working

with digital control and equipment, sampling becomes an important parameter to

be considered in the system’s strategy. To avoid aliasing, first and foremost, the

Nyquist frequncy must be considered. However, the capability of the performance of
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Figure 5.4. Illustration of noisy data

the equipment used in this experiment is far beyond the Nyquist frequency, therefore

a limitation in data acquisition or data processing should not be an issue.

Nevertheless, it is important to remember that equipment operated of different

sampling frequencies. For examples, in this experiment, the dSPACE system works at

a frequency of 1000 Hz while the VibPilot DAQ works at a sampling frequency of 1024

Hz. Sampling rate conversion may not be applicable because most data-processing

methods require that the sampling rate conversion be done using an integer number

(which, in this case, does not work to convert 1024 Hz to 1000 Hz since 1024/1000, vice

versa, does not give us an integer) to ensure deterministic data transfer (for instance,

the default setting in MATLAB). Allowing non-deterministic data transfer may solve

the issue, although the performance of the results may experience degradation.

An understanding of the sampling rate issue is needed when designing the neural

network because the network is generated to work at a specific sampling rate. For

this experiment, the neural network is chosen to have a sampling frequency of 1000

Hz, the lowest sampling frequency of the equipment used in the experiment, and the

network is generated using this sampling rate.
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5.2.4 Instability Issue

Neural network is a black box, therefore there is no way to ensure the stability of

a control system that employs a neural network. To avoid the stability issue, a semi-

active system can be proposed as a substitute of the active system because stability

is guaranteed in semi-active systems.

One of the semi-active methods that can be proposed is by employing an MR

damper as the semi-active control device. MR fluids contained in the device give a

semi-active behavior due to a controllable nature of the material due to some magnetic

or electric signals [62]. This feature characterizes a unique nonlinear behavior of the

device that can be employed for a seismic protection purpose [63]. Setup of the

semi-active control device is shown in Figure 5.5.

Figure 5.5. MR damper used in the laboratory experiment: (1) MR
damper as the semiactive control device; (2) MR damper attached
to the first floor of the structure; (3) the closed-up view of the MR
damper
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5.3 Summary

Laboratory experiment is discussed in this chapter. The experimental structure

is modeled based on the same structure used in the numerical simulation. System

identification is performed to determine the dynamic characteristics of the structure

and build a model for the control design purpose. Then, the base of the structure

is excited by various earthquake and the performance of the system without and

with the NNWCF are evaluated. Four findings are concluded from the study on the

effect of richness of amplitude in training data, noise, determined sampling rate, and

stability of the system.
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6. CONCLUSIONS

Wireless sensors offer an alternative to traditional wired options in structural control.

However, the presence of time delay and data loss in a wireless sensor network will

potentially degrade the performance of the control system.

The goal of this study is to develop a technique to improve the performance of a

wireless structural control that compensates for time delay and data loss in a wireless

sensor network. Artificial neural networks are used to achieve this goal.

The structural model studied in this thesis is a 3-story steel-frame shear building

model. Wireless sensor networks are employed on each floor of the structure to

collect the acceleration measurements of the building. Simple numerical simulations

are performed to verify that this is a loss in performance if the wireless sensors are

not accounted for in the design. After the verification is conducted, it is concluded

that compensating for the presence of time delay and data loss is crucial for wireless

structural control performance.

Artificial neural networks are already popular in many engineering applications

for dealing with time delay and data loss issues. However, almost none of the current

research proposes the use of the method to deal with both challenges in the same

integrated system. By combining the compensators for both subjects together in

the same system, this could provide an advantage as these parameters almost always

come along together in any wireless sensor network problem. However, the approach

to utilize the neural network to correct both the time delay and data loss is needed,

and it is expected that this technique may be further improved to a more advanced

stage.

The neural network is trained by using “ideal” structural response data obtained

from the measurement without any time delay and data loss occurred in the wireless

data transmission procedure. The unsupervised training procedure is conducted, and
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the neural network is generated. The neural network is employed to predict its future

value. When data loss occurs, the neural network strategy can determine where there

is a loss by either evaluating when the measurement gives a value of 0 or the same

measurement with the previous one. In the proposed neural network, an “if” function

is utilized to distinct between a “lost” data and an acquired measurement. When the

recorded data is lost, the neural network is used to provide the associated predicted

value using past values of the corrected data.

In the following sections, the conclusions of the study are divided into two groups:

numerical simulation and laboratory experiment conclusions.

6.1 Numerical Simulation Conclusions

Some key findings from the numerical simulation are summarized as:

• Time delay and data loss may degrade the performance of wireless structural

control systems. The presence of time delay and data loss has been viewed as

one of the key challenges in employing wireless sensor network for structural

control applications. It is demonstrated herein that the higher time delay and

data loss present in the system, the more likely it is to get less efficient controller

performance.

• Training plays an important role to produce a good neural network function.

This one is an obvious statement since a neural network is generated from a set

of training. Therefore, in designing a good neural network training, providing

appropriate input data is crucial. For instance, it is learned from the laboratory

experiment that noise may affect the neural network performance thus that the

training should include data with noise present. Moreover, especially for seismic

applications, the richness of frequency and amplitude contained in the training

data is also important since there is no information about the characteristics of

the future earthquakes that may strike our buildings.
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• Strategy of treating data loss may vary with the neural network application.

When data loss occurs, digital measurement usually yields no actual transmis-

sion but a numeric value is needed for calculations. The common approaches

are to employ a value of 0 or use the previous measurement value for the “lost”

data. The “if” function used in the proposed neural network depends on this

strategy. However, this “if” function may induce some unnecessary neural net-

work concerns in certain applications since measurements of 0 or repetitive

measurements do not always infer a false measurement.

• Data manipulation techniques may be implemented to enable more efficient neu-

ral network training. Although computer capacities in the modern days are gen-

erally sufficient to perform simple neural network training, a more demanding

training may be found in a more complex systems. In this case, some data ma-

nipulation techniques could be considered before training the neural network,

such as decimation of the data or standardizing the data to some mean of 0 and

standard deviation of 1.

• Neural networks have demonstrated the ability to compensate for the presence of

time delay and data loss in wireless sensor networks in the numerical simulation.

• A neural network is designed for a particular system, thus the network has to be

adjusted for different problems. The process of adjustment of the strategy in-

cludes determining the network architecture (number of hidden layers, neurons,

etc.), re-training of the network, initializing the network parameters (weighting

and bias parameter), and so on.

6.2 Laboratory Experiment Conclusions

Some key findings from the laboratory experiment are summarized as:

• Training of the neural network should cover a sufficient amplitude to deal with

future earthquakes. The neural network is trained to a specific range of ampli-
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tude. If the trained amplitude of the neural network training does not provide

a sufficient coverage of amplitude, significant performance degradation may be

found.

• Presence of noise may affect the performance of neural network. Noise is un-

avoidable in the real world data acquisition and may be substantial to be con-

sidered in our system. Therefore, the neural network needs to be trained ac-

cordingly so that it has an ability to cope with the presence of noise.

• Sampling rate should be considered since active and semi-active control systems

operate with digital signals. Neural network works with a specific sampling rate.

In a strategy in which the neural network compensates for the presence of time

delay, the convenience to operate a neural network to work with any corre-

spondence sampling rate is taken into advantage to predict the future value by

adjusting the sampling rate of the neural network in accordance to the constant

delay value found in the wireless sensor network. However, some equipment uses

a different sampling rate so that this situation may be taken into consideration

when deciding the sampling rate of the neural network.

• It is more appropriate to apply neural network for semi-active control systems

rather than active control systems due to stability. Instability must be avoided

in structural control systems. Due to the nature of neural networks as black

box, stability of the resulting controller with the neural network cannot be

guaranteed. Therefore, the application of this technique in a semi-active control

strategy may be preferred since the stability is guaranteed in semi-active control

systems.

• Neural networks have demonstrated the ability to compensate for the presence

of time delay and data loss in wireless sensor networks in the laboratory exper-

iment.
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6.3 Future Work

The ideas proposed in this thesis provide a nice concept that may be considered

for future research opportunities. These are discussed below:

• Explore a different type of neural network. In this study, NAR is used. However,

this is not the only strategy that can be employed to compensate for the presence

of time delay and data loss in a wireless sensor network. Other possible neural

network types that can be used for this particular problem are a feedforward

neural network or a nonlinear autoregressive output (NARX) neural network.

An illustration of the architecture of the feedforward neural network is shown

in Figure 2.2. Unlike Figure 3.5, the input and target in Figure 2.2 come

from a different function. Also, no feedback layer occurs in the feedforward

neural network. This makes the feedforward neural network the simplest and

purest form of neural network: only allowing hierarchical operations that move

forward. Here, the feedforward neural network is not preferred in this study

due to the absence of dynamic properties that the network can allow in the

model. Since the problem here needs to accommodate challenges that occur in

dynamic time series, this type of neural network may not be the best for this

particular problem. In the NARX neural network, feedback loop is allowed and

the network has memory that allows for the execution at a particular time step

to be influenced by the value occurring in the previous or the next time step.

The difference between the NARX and NAR neural network is only in the nature

of the input and target. While in the NARX, the input and target comes from

different natures, the NAR uses the input from the past value of the target

(thus, the target is technically prediction of the future values of the input).

However, mapping the input to target relationship is impractical when time

delay presents in the original input sets of data. In employing this type of neural

network to this kind of problem, the neural network is not specifically designed

to predict the future. Therefore, whenever an input (which is delayed form of
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the target) is fed into the network, which has previously been trained with the

data specified earlier, the best approximation that the network may provide is

the same as the input, which would make the network pointless. The network

in this case acts similar to regression function, although it could accommodate

some nonlinearities with multi-layer features with a lot of random weighting

parameters included. It could describe the relationship between both NAR and

NARX functions. However, it will not be able to capture the predictions in

responses, which is needed in this particular problem. Thus, all these reasoning

lead to the utilization of the NAR neural network in the system.

• Employ neural networks to substitute the system’s controller. The application

of neuro-controller (usage of neural network as control system) has been used in

several research and it would be interesting to see the implementation for this

particular problem. Nevertheless, this approach is not adopted due to the same

reasoning in the use of the system using NAR. It is an arduous task to model the

system to model an input-target relationship without telling the system that it

is actually expected to predict the future.

• Conduct an experiment of the proposed neural network in a semi-active control

system. The experiment is required to verify the results shown in Chapter 4.

A semi-active strategy is proposed to avoid the instability issue that may occur

in an active control strategy.

• Use an updating neural network. In this study, Neural Network Wireless Correc-

tion Function (NNWCF) is proposed to improve wireless sensing measurements.

However, the function is intended to be used for a specific system. When apply-

ing the system to different structures, redesign of the neural network is required,

although it is not practical. To improve the practicality of the system, an up-

dating neural network technique can be used. In this approach, the neural

network will be trained during the operation of the system. Since the system

is employed to provide measurements from a wireless sensor network, the data
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obtained from the measurements will be used as the training data to update the

network. In other words, the network will experience a continuous training that

will improve (and adjust) the network to a particular structural system. One

issue that may appear from this approach is an overfitting. To avoid overfitting,

a validation technique should be employed to ensure that the performance of

the network does not degrade due to the continuous training. Other benefit

of the system, it may be suitable to accommodate parameters in the structure

that have so many uncertainties, such as mass in the building (an office can be

at its full capacity during the day but has no people in it during the night).

• Integrate the control system with a structural health monitoring. Although a

structural health monitoring and a structural control system do not come to-

gether, they both employ similar equipment and require a similar procedure

in acquiring data of the structural responses. Therefore, integrating a wire-

less sensor network for both systems might be an efficient innovation for civil

structures.
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