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Equations’ Derivations In The Three-Dimensional
Super-Voxel Calculations
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Fig. 1: (a) Shows a 3DSV of size 3 × 3 × 2. Measurements
for the 3DSV follow a sinusoidal band in the sinogram. (b)
A super-voxel buffer. Notice that measurements for the red
voxel-line trace curves up and down in the super-voxel buffer
with a small amplitude.

Abstract—Model-Based Iterative Reconstruction (MBIR) is a
widely-explored fully 3D Computed Tomography (CT) image
reconstruction technique that has a large impact on the image re-
construction community. The slow computation speed for MBIR,
however, is a bottleneck for scientific advancements in fields that
use imaging, such as materials. A recently proposed algorithm,
Non-Uniform Parallel Super-Voxel (NU-PSV), utilizes the concept
of Three-Dimensional Super-Voxel (3DSV) and Block-Transposed
Buffer (BTB) [1]. Experiments in the past show that the NU-
PSV algorithm significantly improves the computation speed
for MBIR by regularizing data access pattern, reducing cache
misses, enabling more parallelism and speeding up algorithmic
convergence. This technical report serves as an auxiliary appendix
to publication [1]. In this technical report, we demonstrate the
theoretical calculations related to a BTB.

I. INTRODUCTION

This section provides definitions for Three-Dimensional
Super-Voxel (3DSV), block, chunk and Block Transposed
Buffer (BTB). Most content of this section has appeared in [1].

We define a 3DSV as a group of voxels in the shape of a
rectangular cuboid in the volume. Figure 1(a) shows a 3DSV
of size 3 × 3 × 2, where the width and height are 3 and the
depth is 2.

Figure 1(a) also illustrates the parallel-beam Computed
Tomography (CT) measurements associated with a 3DSV as
a yellow sinusoidal band in the sinogram. The measurements
for a single voxel-line within the 3DSV are shown as a red
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Fig. 2: block4 of the super-voxel buffer with padded zeros and
chunk design.

trace within the sinusoidal band. Notice that both the sinusoidal
band and the red voxel-line trace are three-dimensional with
depth 2.

To further improve cache locality and enable hardware
prefetching, the 3DSV’s measurements can be copied from
the sinusoidal band to a memory buffer, called the super-
voxel buffer. Figure 1(b) shows the layout of a super-voxel
buffer for the 3DSV in Figure 1(a). Since the sinusoidal band
is three-dimensional, the super-voxel buffer also has three
dimensions (channel, view, and depth), with measurements
stored in memory in the order of channel, view and depth,
i.e., adjacent channel entries are adjacent in memory.

Within the super-voxel buffer, all measurements for a voxel-
line, shaded in red in Figure 1(b), are accessed along a
sinusoidal trace with depth 2, and with a much smaller
amplitude than in the sinogram. Nevertheless, the combination
of remaining trace amplitude, varying trace and super-voxel
buffer width (as in Figure 1(b)) still lead to irregular data
access.

Before we present the technical solution, we start by defin-
ing a series of data structures. We define a block to be a
fixed number of contiguous views within a super-voxel buffer,
and denote the ith block by block i . Figure 1(b) shows a
super-voxel buffer consisting of 8 blocks, with each block
composed of 4 views. In addition, we define a chunk as a
rectangular cuboid, circumscribing the sinusoidal voxel-line
trace in a block. Figure 2 illustrates block4 of the super-
voxel buffer, and the chunk contained within block4 is outlined
with a bold blue line. To have a constant trace width, all
the measurements in a chunk are accessed when processing a
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Fig. 3: Demonstrates the dimensions of a chunk. The voxel-
line trace is colored in red and the redundant measurements
are colored in yellow.

voxel line, even though only a portion of them are needed. For
convenience, we call the measurements required for a voxel-
line update essential measurements, shown in red in Figure 2.
The unneeded measurements for the voxel-line update are
called redundant measurements, shown in yellow in Figure 2.

In addition to the chunk design, each block is padded
with zeros so that the buffer width, namely the number of
channels of a block, is constant. Since the voxel trace and the
buffer widths are both constant, measurements in a chunk have
completely regular data access.

To further improve SIMD performance, we define the Block
Transposed Buffer (BTB) as a block-wise (i.e., block-by-block)
counter-clockwise rotation of 90° about the depth direction
of the super-voxel buffer, i.e. a concatenation of transposed
blocks. After transposition, the axes of channel and view are
swapped. All measurements within the block are laid out along
the view direction in memory.

II. EQUATIONS’ DERIVATIONS

In this section, we show the theoretical calculation for the
average number of regular memory accesses in a chunk.

Figure 3 is a simplified figure that shows a chunk in a BTB,
where the voxel-line trace (essential measurements) is colored
in red and redundant measurements are colored in yellow. The
chunk length, HG, equals to Nb∆β , where Nb is the block
size, β is the view angle, ranging from 0 to π, and ∆β is the
view angle spacing; the chunk width, GK, is Nd∆x, where
Nd is the depth of the 3DSV and ∆x is the voxel width;
the chunk height, EG, is Lpw + m(φ)Nb∆β , where Lpw is
the average voxel trace width, φ is the angle between the
voxel trace and the view direction, m(φ) is the average voxel
trace absolute slope. Relating to Figure 3, Lpw equals to the
length of EF, m(φ)Nb∆β equals to the length of FG, Then,
Lpw + m(φ)Nb∆β equals to the chunk height, EG. With the

Δ":	voxel width
𝛽:		view angle
r:	detector displacement
𝛿% 𝛽 :	length of projection on the detector
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Fig. 4: Shows a voxel modeled as a square. The length of
projection, δ1(β), is shown as the green bar.

dimensions of the chunk, the volume of the chunk, denoted as
Vc, can be computed as:

Vc = Nb∆βNd∆x (Lpw +m(φ)Nb∆β) (1)

Then, the average number of regular memory accesses in a
chunk, denoted as Nrun, can then be computed as:

Nrun =
Vc

∆β∆x∆d
(2)

where ∆d is the detector channel spacing, ∆β∆x∆d is the
size of a single entry in the BTB, and Vc

∆β∆x∆d
represents

the number of element entries in a chunk. By plugging the
expression of Vc to Equation (2), we can then get:

Nrun =
NdNb (Lpw +m(φ)Nb∆β)

∆d
. (3)

In this equation, Nd and Nb are known constants, chosen
to optimize computing performance. ∆β and ∆d are also
known constants about the dataset. Lpw and m(φ), however,
are unknown parameters. To compute Equation (3), we must
first compute these two parameters.

Computing parameter Lpw To compute Lpw, we model
a voxel to be a square with voxel width ∆x, as shown in
Figure 4. In addition, we denote δ1(β), shown as a green bar
in Figure 4, as the length of projection on the X-ray detector
at view angle β. δ1(β) can be computed as in [2]:

δ1(β) =

{√
2∆x cos(π4 − β), if β ∈ [0, π2 )√
2∆x sin(β − π

4 ), if β ∈ [π2 , π)
(4)

Unfortunately, Equation (4) is not ideal because δ1(β) must
be approximated to be a multiple of ∆d in real applications.
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Fig. 5: (a) The red square in the slice is the jth voxel, whose coordinate is (xj , yj). (b) The red trace is the measurements for
the jth voxel. The yellow bar rj represents the voxel trace amplitude in the sinogram space.

To offset this error, a constant term ∆d is added to Equa-
tion (4) and the new equation becomes:

δ1(β) ≈
{√

2∆x cos(π4 − β) + ∆d, if β ∈ [0, π2 )√
2∆x sin(β − π

4 ) + ∆d, if β ∈ [π2 , π)
(5)

With Equation (5), Lpw can then be computed to be the
average value for δ1(β), shown as:

Lpw =

∫ π
0
δ1(β) dβ

π
≈ 4∆x

π
+ ∆d

(6)

Computing parameter m(φ) For the jth voxel in a slice,
illustrated as a red square in Figure 5(a), we denote its
coordinate as (xj , yj). In addition, we denote its voxel trace
amplitude in the sinogram at view angle β as rj(β), shown as a
yellow bar in Figure 5(b). Analytically, rj(β) can be expressed
as [2]:

rj(β) = yj cosβ − xj sinβ (7)

and the voxel trace slope in the sinogram at view angle β
is then:

r
′

j(β) = −yj sinβ − xj cosβ (8)

Therefore, the average absolute slope for a voxel trace in
the sinogram space, denoted as m̃, can be computed as:

m̃ =

∫ Nx
2
−Nx

2

∫ Nx
2
−Nx

2

∫ π
0
|r′j(β)| dβ dxj dyj

NxNxπ
(9)

Where Nx is the slice dimension. To simplify Equation (9),
we use polar coordinate and we let xj = −γ cosβ, yj =

−γ sinβ and γ =
√
x2
j + y2

j . Therefore,

m̃ =
8
∫ π

4

0

∫ Nx
2 cos β

0 2γ2 dγ dβ

NxNxπ

=
Nx
3π

(√
2 + ln(1 +

√
2)
) (10)

Similar as before, Equation (10) must compensate for errors.
Therefore, a constant term is added to Equation (10) and m̃ is
approximated to be:

m̃ ≈ Nx
3π

(
1 +
√

2 + ln(1 +
√

2)
)

(11)

After measurements are copied from the sinogram space
to a BTB, all voxel traces are flattened with a much smaller
amplitude and slope. To calculate the voxel trace average
absolute slope in the BTB, m(φ), a 3DSV can be viewed
as a slice, whose length and height is Nwh∆x, where Nwh
is the number of voxels along the width and height of the
3DSV. Therefore, m(φ) can be calculated by replacing Nx
with Nwh∆x in Equation (11):

m(φ) ≈ Nwh∆x

3π

(
1 +
√

2 + ln(1 +
√

2)
)

(12)

After plugging Equations (6) and (12) into Equation (3), we
can then get:
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Nrun =

(
Nwh∆xNb∆β

3π∆d

(
1 +
√

2 + ln(1 +
√

2)
)

+
4∆x

π∆d
+ 1

)
NdNb

(13)
Since ∆β can also be computed as π

Nv
[2], the full analytical

expression for Nrun becomes:

Nrun =

(
Nwh∆xNb

3∆dNv

(
1 +
√

2 + ln(1 +
√

2)
)

+
4∆x

π∆d
+ 1

)
NdNb

(14)
If we let constant C1 = ∆x

3∆dNv

(
1 +
√

2 + ln(1 +
√

2)
)

and
constant C2 = 4∆x

π∆d
+ 1, then Nrun can be simply stated as

follows:
Nrun = (NwhC1N

2
b + C2Nb)Nd (15)

where NwhC1N
2
bNd is the number of regular memory ac-

cess for redundant measurements and C2NbNd is the number
of regular memory access for essential measurements. In this
equation, we can note that Nrun is proportional to Nwh and
Nd, and is proportional to the square of Nb.

The percentage of essential measurements, Ec, can then
be computed as the ratio of essential measurement entries to
Nrun:

Ec =
C2NbNd
Nrun

=
C2

NwhC1Nb + C2
(16)

In this equation, we can note that Ec is inversely proportional
to Nwh and Nb.

III. CONCLUSIONS

This technical report shows the theoretical calculation for
the average number of regular memory accesses in a chunk, as
well as the percentage of essential measurements. In addition,
this technical report also shows what factors contribute to the
efficiency of calculations. Therefore, scientists can gain in-
sights on how to optimize NU-PSV’s algorithmic performance
through optimizing its parameters.
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