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ABSTRACT 
 
 
 
Abbott, Chelsi P. M.S., Purdue University, May 2016. The Effect of Adjuvants on Apple 
Disease Management. Major Professor: Janna Beckerman. 
 
 
 
 The management of common apple diseases such as apple scab (Venturia 

inaequalis) and bitter rot (Colletotrichum spp.) relies heavily on effective fungicide 

applications. However, the development of fungicide resistance to newer fungicides has 

resulted in management failures and significant economic losses. This has led to a greater 

reliance on captan, an older fungicide, because there is a low risk of pathogens 

developing resistance. Label restrictions limit growers to 18 kg of captan per season, 

which may not provide sufficient control of both apple scab and bitter rot in wet years. 

Consequently, apple growers are faced with two equally difficult scenarios, inadequate 

management of diseases due to resistant pathogen strains from the use of newer 

fungicides or insufficient management due to restrictions on captan.  

 The goal of this research was to identify new approaches to reduce the amount of 

captan needed throughout the growing season without decreasing disease control. One 

potential tactic is to incorporate adjuvants into management strategies. Adjuvants are tank 

additives that increase the coverage and retention of sprays and correct issues with the 

tank water by affecting the pH. The incorporation of adjuvants into current apple disease 

management strategies has the potential to improve disease control by increasing the 

efficacy of captan sprays at reduced rates and reducing initial inoculum by enhancing 

urea-driven leaf litter decomposition. 



 

 

xii 

 To assess the improvement of captan sprays, adjuvants were combined with the 

lowest rate of captan and applied to apple trees every 10-14 days from bloom to harvest. 

Disease and phytotoxicity incidence and severity were observed on apple fruit to measure 

the effectiveness of the treatments. Results showed that Li700 plus captan and Bond Max 

plus captan consistently reduced disease incidence in high-pressure years by increasing 

the coverage and retention of captan and lowering the pH of the tank water. Based on the 

data found in this study, a grower could potentially save up to $3,481-$4,667 ha-1 due to 

reduction of disease incidence.  

 In order to examine if adjuvants improved urea-driven decomposition of scab-

infected leaves, adjuvants were combined with urea and applied to infected leaves. These 

leaves were then left to overwinter on the orchard floor. Leaf area decomposition and 

pseudothecia and ascospore reduction were observed to measure the effectiveness of the 

treatments. Results showed that Li700 plus urea and Wet Betty plus urea improved urea-

driven leaf decomposition and pseudothecia and ascospore reduction by increasing the 

nitrogen content in the leaves. Based on this study, the addition of these adjuvants to urea 

could delay an apple scab epidemic, saving fungicide applications and postponing initial 

infection past the point when apples are most susceptible to V. inaequalis.  

 The addition of adjuvants to captan or urea has the potential to improve disease 

management by reducing fungicide rates and reducing overwintering inoculum. Together 

these factors may reduce the number and dose of fungicide sprays required for apple scab 

and bitter rot management throughout the growing season and ultimately increase a 

grower’s net return in apple production.   
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CHAPTER 1. INTRODUCTION 
 
 
 
 Fresh market apples are the most important fruit crop in the North Central region 

of the United States, with sales exceeding $635 million (ERS USDA, 2012). However, 

even the smallest of blemishes caused by diseases can make apples unacceptable for sale, 

resulting in significant economic loss (Lewis and Hickey, 1972). There are many diseases 

that threaten the profitability of apple production, and among the most important are 

apple scab and bitter rot (Hickey, 1991; Jones, 1994). Apple growers can experience up 

to 100% yield loss from apple scab (Hickey, 1991; Jones, 1994), and 90% yield loss from 

bitter rot if orchards are unmanaged (Hickey, 1991; Sutton, 1990b). 

 Management of these diseases relies on a combination of cultural and chemical 

practices (Sutton, 1990a,b). One important cultural practice growers may employ is 

sanitation (Meszka and Bielenin, 2006). Sanitation practices focus on the removal of 

overwintering inoculum, which reduces the initial disease pressure and the amount of 

chemicals needed for control during the growing season (Sutton et al. 2000; Meszka and 

Bielenin, 2006). Although, full benefits of sanitation are rarely attained in orchards due to 

variable topography and time restrictions (Vincent et al. 2004). Furthermore, due to high 

disease pressure, sanitation alone is an insufficient method of disease management 

(Sutton et al. 2000). 

 Another important cultural practice used to decrease fungicide applications in 

commercial orchards is planting resistant cultivars (Ellis et al. 1998; Meszka and Bielenin, 

2006). Despite their benefits certain resistant cultivars are not commercially grown due to 

consumer unfamiliarity (Gianessi and Reigner, 2005; Beckerman et al. 2015).  

 In the United States, 93% of the acreage designated for apple orchards is treated 

with fungicide applications to control diseases (Gianessi and Reigner, 2005). Apple 
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growers in the United States may use up to 7 million pounds of fungicides per season, 

costing almost 70 million dollars annually (Gianessi and Reigner, 2005). This is because 

management of common apple diseases is heavily reliant on fungicides, requiring 

multiple applications per season for optimal control (Jones, 1994; MacHardy et al. 2001; 

Turechek, 2004). 

 Unfortunately for growers that rely on fungicides, there are issues with them 

regarding fungicide resistance and use limitations (Rosenberger, 2009). Fungicides that 

manage common apple diseases include dodine (now known as Syllit), methyl 

benzimidazole carbamates (MBC), demethylation inhibitors (DMI), quinone outside 

inhibitors (QoI), and succinate dehydrogenase inhibitors (SDHI) (Szkolnik and Gilpatrick, 

1969; Köller, 1997; Köller et al. 2005; McKay et al. 2011). But through the extended use 

of these fungicides many growers now deal with resistant pathogen strains (Rosenberger, 

2009). This had led to a reliance on older fungicides such as captan and ethylene 

bisdithiocarbamates (EBDC’s), as they have low risk of developing resistance 

(Rosenberger, 2013). Unfortunately, both captan and EBDC’s have been restricted due to 

their possible carcinogenicity to humans (USEPA, 2006). Only 18 kilograms of captan 

can be applied per growing season, restricting growers to 10 applications of captan at a 

1.8 kilograms rate or less (Rosenberger, 2009). In wet years, more applications or higher 

rates of captan are typically needed to manage both apple scab and bitter rot throughout 

the entire season (Rosenberger, 2009). Mancozeb has a pre-harvest interval (PHI) of 77 

days, leaving apples unprotected for two and a half months up to harvest. These factors 

reveal the need for methods that provide protection throughout the growing season 

without violating fungicide restrictions or developing resistant pathogens (Sutton, 1996; 

Rosenberger, 2009). 

 

1.1 Apple scab 

 

 Apple scab, caused by the fungal pathogen Venturia inaequalis (Cooke) Winter, 

is one of the most devastating diseases on apples in regions that experience cool, wet 

springs (Sutton, 1990a; MacHardy et al. 2001). V. inaequalis infects the leaves, flowers, 
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and fruit (Sutton, 1990a). Early infection can be observed on the underside of developing 

leaves as small indistinct brown to olive green velvety lesions (Sutton, 1990a). As the 

disease progresses the margins of the lesions become more distinctive and the leaf tissue 

infected begins to deform, usually curling or distorting (Fig. 1.1A) (Sutton, 1990a). 

Severe infections can lead to defoliation of the tree (Sutton, 1990a). Initial infections on 

the fruit look similar to the early lesions observed on leaves, that is; small indistinct 

lesions that are near the calyx of the apple (Fig. 1.1B) (Sutton, 1990a). As the fruit and 

pathogen both develop the lesion becomes brown and corky, eventually forming cracks 

on the surface, resembling scabs (Fig. 1.1C) (Sutton, 1990a).  

           

 

Figure 1.1: Apple scab symptoms on apple leaves and fruit. Symptoms appear as A, 

distinctive dark lesions that eventually deform the leaf, B, indistinct olive lesions near the 

calex of the fruit, and C, brown and corky resembling scabs. 

 

1.1.1 Lifecycle 

 

 V. inaequalis is a fungal pathogen that has both a saprophytic and parasitic stage 

(MacHardy et al. 2001). The saprophytic stage occurs over the winter in dead fallen 

leaves on the orchard floor (Sutton, 1990a; MacHardy et al. 2001). After the leaves die, 

hyphae penetrate into the plant cells and develop into stromatic spheres where 

fertilization between compatible mating types produces pseudothecia (MacHardy et al. 

2001). Pseudothecia are the sexual structures of the fungus in which haploid (n) 

A B C 
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ascospores are produced (Alexopoulos et al. 1996). Pseudothecia develop in the dead 

leaves over the winter and are forcibly ejected in the spring when the dead leaves become 

wet (Sutton, 1990a; MacHardy et al. 2001; Holb et al. 2004; Gianessi and Reigner, 2005). 

Ascospores are disseminated by wind and rain (Sutton, 1990a; MacHardy et al. 2001). 

The potential for infection by V. inaequalis is proportional to the number of pseudothecia 

and mature ascospores produced (Gadoury and MacHardy, 1986). 

 Infection occurs when the ascospores land and adheres to the emerging plant 

tissue in the spring (Sutton, 1990a; MacHardy et al. 2001). After the ascospore attaches 

to the surface the spore germinates and an appressorium develops (MacHardy et al. 2001). 

This is followed by the development of a penetration peg that allows the fungus to 

penetrate the plant cuticle and colonize the area between the epidermis and cuticle, 

initiating primary infection (Sutton, 1990a; MacHardy et al. 2001). After about 14 days, 

the fungus reproduces asexual spores called conidia that can be observed dark green 

lesions on the leaf surface (Sutton, 1990a; MacHardy et al. 2001). Conidia initiate 

secondary infections, which can continue to infect for the rest of the season (Sutton, 

1990a; MacHardy et al. 2001). 
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Figure 1.2: Life cycle of Venturia inaequalis (Agrios, 2005). 

 

1.1.2 Management 

 

 Management of V. inaequalis focuses on preventing primary infection by 

reducing the leaf litter using sanitation and minimizing primary infection (Sutton 1990a). 

Sanitation practices can include leaf litter shredding, urea treatments, flaming, removal, 

or any combination of these (Holb et al. 2004). These methods focus on reducing initial 

inoculum and lowering the reliance on fungicides during the growing season by removing 

primary disease pressure (Holb et al. 2004; Agrios, 2005; Mac an tSaoir et al. 2010). 

 Cultural practices alone are not sufficient for complete disease control, resulting 

in reliance upon protective fungicides (Sutton et al. 2000). Protection of the fruit 

throughout the growing season often relies on protective fungicides applied every 10-14 

days (Sutton 1990a). Historically, there have been many fungicides effective in managing 

apple scab, including ethylene bisdithiocarbamates (EBDC’s), captan, dodine (now 

known as Syllit), methyl benzimidazole carbamates (MBC), demethylation inhibitors 
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(DMI), quinone outside inhibitors (QoI), and succinate dehydrogenase inhibitors (SDHI) 

(Szkolnik and Gilpatrick, 1969; Köller, 1997; Köller et al. 2005; McKay et al. 2011). 

Through the extended and exclusive use, V. inaequalis has developed resistance to the 

majority of these fungicides and most no longer exhibit good control (Köller et al. 2005). 

Apple scab can still be managed using captan and EBDC’s, but label restrictions limit the 

applications allowed per season, which can lead to inadequate control (Rosenberger, 

2009).  

 

1.2 Bitter rot 

 

 Bitter rot is a fungal disease caused by several species of Colletotrichum 

including C. acutatum J.H. Simmonds, C. gloeosporioides, and its teleomorph 

Glomerella cingulata (Stoneman) Spauld. & H. Schrenk, and C. fioriniae (Marcelino & 

Gouli) R.G. Shivas & Y.P. Tan (González & Sutton, 2004; Kou et al. 2014). These 

pathogens mainly affect the fruit near harvest and have the potential to cause major yield 

loss, particularly in areas that have hot and wet summer weather (Sutton, 1990b). These 

pathogens cause dark brown lesions surrounded by red halos on young fruit (Sutton, 

1990b). As the apple grows, the lesions become sunken and the acervuli (asexual 

structures containing asexual spores) are either concentrically dispersed or scattered on 

the lesion (Fig. 1.3A) (Sutton, 1990b). The asexual spore masses of the fungus are 

generally creamy and salmon in appearance (Fig. 1.3A) (Sutton, 1990b). The lesion 

creates a v-shaped rot to the core of the apple, distinguishing bitter rot from white rot, 

which creates a cylindrical shaped rot to the core (Fig. 1.3B) (Sutton, 1990b). Fruit 

infected with Colletotrichum spp. either drop to the ground or remain on the tree as 

mummified fruit (Fig. 1.3C) (Sutton, 1990b). A leaf spot phase has been documented, but 

it is only common if the environment is very warm and humid (Sutton, 1990b). 
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Figure 1.3: Bitter rot symptoms on apples. Symptoms appear as A, sunken lesions with 

rings of creamy salmon spores, B, v-shaped rot to the core of the apple, and C, 

mummified fruit that remains on the tree. 

 

1.2.1 Lifecycle 

 

 The perithecia and the acervuli of Colletotrichum spp. can overwinter in 

mummified fruit left in the orchard or in cankers in the wood (Sutton, 1990b). 

Ascospores are formed inside the perithecia, and asexual conidia are borne from the 

acervuli (Sutton, 1990b). In rain events during the growing season, both ascospores and 

conidia are released (Sutton, 1990b). Both spores germinate and form appressoria that 

penetrate directly into the epidermal tissue of the plant (Sutton, 1990b).  

 After penetration, the appressorium can melanize and enter quiescence or a latent 

infection period (Wharton and Diéguez-Uribeondo, 2004). During this period of time the 

fungus exists in a brief biotrophic phase (Wharton and Diéguez-Uribeondo, 2004). The 

necrotrophic stage of the fungus is initiated as the fruit ripens (Wharton and Diéguez-

Uribeondo, 2004). In this stage the fungus produces enzymes that degrade plant cell walls, 

causing the plant cells to collapse and die (Wharton and Diéguez-Uribeondo, 2004). The 

fungus then invades host cells beneath the initial infection site resulting in sunken brown 

lesions (Wharton and Diéguez-Uribeondo, 2004). Acervuli arise from these sunken 

lesions and produce masses of conidia that initiate the secondary lifecycle of this 

A B C 
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pathogen, which can continually re-infect the fruit throughout the entire growing season 

(Agrios, 2005). 

 

    

Figure 1.4: Life cycle of Colletotrichum spp. (Agrios, 2005). 

 

1.2.2 Management 

 

 Major epidemics of bitter rot can occur when primary infections are extensive and 

produce large amounts of secondary inoculum (Sutton, 1990b). Current management of 

this disease is a combination of sanitation (removal of mummified fruit) and the use of 

fungicides on a 10-14 day schedule (Sutton, 1990b). Reliance on fungicides can be 

problematic as many fungicides that manage bitter rot are restricted due to public concern 

of pesticide residues on food (Biggs, 1999). Another form of bitter rot management is the 

use of resistant cultivars (Wharton and Diéguez-Uribeondo, 2004). Despite the benefits 

of using resistant cultivars, growers generally tend to prefer highly susceptible cultivars 
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like Honeycrisp and Ginger Gold because consumers are more familiar with them (Biggs 

and Miller, 2001). As a result, the cultivation of highly susceptible apple cultivars 

requires more intensive management (Sutton 1996) in the form of additional fungicide 

sprays and thorough sanitation. It is also important to note that severe bitter rot infections 

are more of an issue in southern states due to the consistently warmer climate (Turechek, 

2004). As northern states have warmer summers there can be a potential for increasingly 

severe disease epidemics (Hirshi et al. 2012).   

 

1.3 Fungicides and their importance in apple production 

 

 Both apple scab and bitter rot have the potential to reduce the economical value of 

apple crops (Hickey, 1991; Jones et al. 1996). While the management of both diseases 

relies on a multi-faceted approach, fungicides are heavily relied upon in disease 

management strategies in apple orchards (Bower et al. 1993; Penrose, 1994). In 2006, 

93% of orchards in the United States used fungicides in their apple production and those 

orchards experienced an 86% increase in yield compared to orchards that did not 

(Gianessi and Reigner, 2006). It is estimated that apple growers in the United States 

experience a $1.22 billion profit gain from using fungicides in their orchards compared to 

orchards that do not use fungicides (Gianessi and Reigner, 2006), with the majority of 

fungicide used for the control apple scab (Merwin et al. 1994).  

 

1.3.1 Fungicide restrictions 

 

  The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) was first 

passed in 1947 and concentrated on the registration and labeling of pesticides, but did not 

regulate their use (EPA, 2012). Since then it has been amended multiple times but 

currently mandates that the Environmental Protection Agency (EPA) is to regulate 

pesticides to protect human and environmental health (EPA, 2012). When setting 

regulations of pesticides, the EPA considers the adverse effects the pesticide has on 
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human, animal, and environment (Gullino, 1994). Due there potential to cause harmful 

effects, fungicides are restricted due to issues of toxicity, leaching, persistence, or 

bioaccumulation (Gullino, 1994). The consequences of these issues can be limitations in 

application rates and frequency, reductions in number of treatments allowed, pre-harvest 

intervals, and restrictions to certain areas or crops (Gullino, 1994).  

 Fungicide restrictions have had negative effects in disease management in 

orchards (Gullino, 1994; Sutton, 1996; Rosenberger, 2009). Captan and mancozeb are 

fungicides that are effective at controlling apple scab and bitter rot (Biggs 1999; 

Rosenberger, 2009). Unfortunately, both are classified as potential human carcinogens 

after prolonged, high-exposure (USEPA, 2006; Beckerman et al. 2015). Consequently, 

there are restrictions on captan and mancozeb applications in orchards (Rosenberger, 

2009; Beckerman et al. 2015). Only 18 kilograms of captan can be applied per growing 

season, restricting growers to 10 applications of captan at a 1.8 kilograms rate or less. In 

wet years, more applications or higher rates of captan are typically needed to manage 

both apple scab and bitter rot throughout the entire season (Rosenberger, 2009). Secondly, 

mancozeb has a pre-harvest interval (PHI) of 77 days, leaving apples unprotected when 

apples are most susceptible to bitter rot.  

 These restrictions have made captan and mancozeb less suitable for use in disease 

management and thus were eventually replaced by environmentally benign fungicides 

that were more effective at managing diseases (Gullino, 1994; Beckerman et al. 2015). 

These newer fungicides were safer and had curative qualities, allowing growers to make 

applications up to 72 hours after infection occurred resulting in better disease control 

with fewer applications (Beckerman et al. 2015). But shortly after their release, these 

newer fungicides were found to be high risk for pathogens developing resistance 

(Rosenberger, 2009; Beckerman et al. 2015). The development of fungicide resistance in 

orchards led to new obstacles in disease management programs. 
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1.3.2 Fungicide resistance 

 

 There have been many fungicides that are classified to control apple scab and 

bitter rot, including dodine (now known as Syllit), methyl benzimidazole carbamates 

(MBC), demethylation inhibitors (DMI), quinone outside inhibitors (QoI), and succinate 

dehydrogenase inhibitors (SDHI) (Szkolnik and Gilpatrick, 1969; Köller, 1997; McKay 

et al. 2011). However, the extended use of these fungicides has resulted in resistant 

strains of V. inaequalis (Jones and Walker, 1976; Kuck et al. 1995; Russell, 1995; 

Bartlett et al. 2002; Köller et al. 2005) and Colletotrichum spp. (Jones et al. 1996) within 

a couple years of their respective release. While there are factors that make pathogens 

high risk for developing resistance, such as a shorter lifecycle and abundant sporulation, 

there are also qualities fungicides have that increase the risk for resistance development 

(Brent and Hollomon, 2007). 

 Fungicides can be classified as single site or multi-site, which affects their 

specificity and resistance risk (McGrath, 2004). The MBC, DMI, QoI, and SDHI 

fungicides have a single-site or specific targeted function (Damicone and Smith, EPP-

7663; FRAC, 2015). This means that they target one critical enzyme or protein required 

by the fungus (McGrath, 2004; Brent and Hollomon, 2007). For example, MBC 

fungicides target β-tubulin assembly in mitosis, which disrupts microtubule synthesis in 

fungal cells and arrests cell division (Mueller and Bradley, 2008; FRAC, 2015). While 

DMI fungicides obstruct the enzyme C14-demethylase from producing sterols that are 

essential to fungal cell walls, resulting in irregular cell walls and cell death (Mueller and 

Bradley, 2008; FRAC, 2015). QoI fungicides target the quinol outer binding site of the 

cytochrome bc1 complex, which halts energy production resulting in cellular death 

(Mueller and Bradley, 2008; FRAC, 2015). Finally, SDHI fungicides obstruct the 

ubiquinone binding sites in the mitochondrial complex II, distrupting cellular respiration 

in the fungus (Avenot and Michailides, 2010). 

 While these fungicides can be more specific in toxicity, they can also have higher 

risk of pathogens developing resistance, as only a single gene mutation that alters the 

target site is needed to overcome the function of the fungicide (Dekker, 1985; Sisler, 
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1988; McGrath, 2004; Brent and Hollomon, 2007). If this mutation occurs, the resistant 

individual survives and continues to reproduce, so the proportion of the population that is 

resistant steadily increases until the fungicide is no longer effective (Fig. 1.5) (Brent and 

Hollomon, 2007).  

 Once a pathogen becomes resistant to a specific mode of action, that fungicide 

group is no longer reliable method of disease control (Brent and Hollomon, 2007). 

Furthermore, improper use of these fungicides or reduction of their rates may actually 

increase resistance incidence in the field (Beckerman et al. 2015). These factors have left 

growers with limited management options (Rosenberger, 2009; Beckerman et al. 2015). 

As a solution, alternative management strategies including sanitation, scouting, and the 

use of resistance cultivars have been developed or reintroduced (De Waard et al. 1993; 

Beckerman et al. 2015). These methods are primarily based on the notion of reducing 

reliance on fungicides that are high risk for developing resistance and focusing on more 

sustainable management strategies (De Waard et al. 1993; Cooley and Autio; 1997; 

Beckerman et al. 2015).    

 Despite these multiple tactics available for apple disease management, none are as 

effective as fungicides, so apple scab and bitter rot are still heavily reliant on fungicides, 

requiring multiple applications per season for optimal control (Jones, 1994; MacHardy et 

al. 2001; Turechek, 2004). Therefore, it is imperative to explore effective fungicides that 

are at low risk for pathogen-developed resistance without violating their label restrictions 

(De Waard et al. 1993; Knoche, 1994; Penrose, 1994; Rosenberger, 2009; Rosenberger 

and Cox, 2012). 
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Figure 1.5: Shift in the sensitivity of pathogen populations over time from sensitive to 

resistant as the number of fungicide applications increase. Each bell curve represents a 

successive pathogen population (Brent and Hollomon, 2007). 

 

1.3.3 Captan  

 

 The evolution of fungicide resistance in V. inaequalis and Colletotrichum spp. to 

newer fungicides has left growers with few options for disease control (De Waard et al. 

1993; Brent and Hollomon, 2007). This has forced growers to rely on fungicides such as 

captan (N-Trichloromethylthio-4-cyclohexene-1,2-dicarboximide), a chloroalkyl thio 

fungicide which disrupts multiple cellular division pathways of the fungus (Richmond et 

al. 1967; Turechek, 2004; Rosenberger, 2013). In order for a fungus to become resistant 

to captan, it would have to simultaneously develop multiple mutations for all blocked 

pathways, which is unlikely (Brent and Hollomon, 2007; Rosenberger, 2013). 

Furthermore, captan is effective at controlling apple scab and bitter rot at a lower 

application rate than other fungicides such as the EBDC, mancozeb (Xu et al. 2008; 

Turechek, 2004; Rosenberger, 2013). High disease control coupled with its low risk of 

fungal resistance, makes captan one of the most effective fungicides to manage many 

apple diseases including scab, leaf spots, blights, and rots (Lewis and Hickey, 1972; 

Frank et al. 1985; Turechek, 2004). 

 Though there are benefits of using captan in apple disease management, there are 

several drawbacks (Rosenberger, 2013). When suspended in alkaline conditions, captan 
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has a half-life of 20 minutes, meaning it could degrade significantly before applications 

are made (Gradis and Sutton, 1981; Frank et al. 1985). Captan also cannot persist if one 

inch or more of rain occurs within 24 hours after application, leaving the plant surface 

unprotected against fungal infection (Smith and MacHardy, 1984). Furthermore, the EPA 

has classified captan as a group B2 carcinogen, or a potential human carcinogen (EPA, 

1999). This classification means that while captan has shown sufficient evidence for 

carcinogenicity in animal subjects, little to no data on carcinogenicity of humans has been 

recorded (EPA, 1999). Although not confirmed, based on studies performed with animals, 

captan is likely to be carcinogenic after prolonged, high-exposure, but unlikely if 

exposure is at low dosage (USEPA, 2006). Lastly, there are restrictions on captan 

applications that limit growers to 40 pounds per season, which may be inadequate to 

provide sufficient disease control throughout the entire season (Rosenberger, 2009).  

 While this information addresses the negative consequences and limitations of 

using captan, it also highlights a potential area of research that focuses on improving 

captan’s efficacy at reduced rates without decreasing disease control. Research in this 

area should address lowering the pH of tank water to prevent degradation of captan and 

increasing the retention and coverage to improve efficacy of captan. These enhancements 

would improve captan’s disease control and allow growers to apply captan at lower rates 

or extended intervals so control can be obtained the entire season (Knoche, 1994). 

Reducing the rate of fungicides needed to control disease would be an economic benefit 

to the growers while also lowering the amount of chemicals introduced into the 

environment and to food products (Knoche, 1994). The latter has increasingly become the 

focus of research because of the growing public concerns surrounding chemical residue 

on food (Knoche, 1994; Penrose, 1994; Berrie and Xu, 2003; Flint et al. 2003; 

Ahouangninou et al. 2012).  

 

1.4 Sanitation in apple production 

 

 Fungicides are the primary tools used to manage apple diseases (Bower et al. 

1993; Penrose, 1994; Jones, 1994; MacHardy, 1996; Turechek, 2004; Meszka and 
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Bielenin, 2006). But fungicides have limitations that may reduce their efficacy, requiring 

the addition of other strategies such as sanitation for more complete disease control 

(Rosenberger, 2009). Sanitation practices remove the overwintering stage of the pathogen 

and thereby decrease the primary inoculum, which ultimately reduces fungicide 

applications required during the growing season (Scribner, 1888; Sutton 1990a,b; Sutton 

et al. 2000; Meszka and Bielenin, 2006). This may be especially beneficial in seasons 

where disease pressure is so high that fungicides alone are not effective.  

  There have been several studies exploring the reduction of initial inoculum of V. 

inaequalis by implementing sanitation practices (Sutton et al. 2000). Since the pathogen 

overwinters in leaves on the orchard floor, these practices focus on eradicating the leaf 

litter by removal, shredding, chemical treatments, or urea applications (Sutton et al. 2000; 

Vincent et al. 2004). Shredding the leaf litter can reduce scab incidence by 90% in a 

controlled environment (Sutton et al. 2000). Though in actuality, the reduction of 

inoculum from shredding or removal of the leaf litter may range from 50-65% due the 

variable topography and obstructions in true orchards (Vincent et al. 2004). In addition to 

reducing the efficacy of shredding the obstacles in true orchards make this practice time 

consuming and difficult (Vincent et al. 2004).  

 Alternatively spray applications to eradicate leaf litter may be an effective 

substitute to shredding and removal (Vincent et al. 2004). Chemical compounds such as 

mercury, in the past have shown promise in reducing primary inoculum and the number 

of fungicide treatments needed during the growing season (Keitt, 1930; Kadow and 

Hopperstead, 1941; Goldsworthy et al. 1949; Burchill, 1968). But due to their harmful 

effects to the environment and other organisms, many of the chemicals used in these 

studies have been taken off the market (Sutton et al. 2000). This led to research of other 

treatments using compounds that are more acceptable by today’s safety standards (Sutton 

et al. 2000). From this research, urea spray applications were found to be the most 

effective at reducing overwintering inoculum (Sutton et al. 2000). 
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1.4.1 Urea 

 

 Urea is a synthetic crystalline solid containing 46% nitrogen (Overdahl et al. 

1991). The high nitrogen content, low price, and ease of handling and storage has made 

urea an ideal source of nitrogen for agriculture over other dry nitrogen sources (Overdahl 

et al. 1991). However, because urea is synthesized it is not approved for organic 

agriculture, so the benefits of using urea can only be realized in conventional agriculture. 

In conventional orchards, one use of urea in agriculture is to apply it to apple 

leaves to enhance litter decomposition by promoting growth of saprophytic 

microorganisms in the soil (Crosse et al. 1968; Beresford et al. 2000; Sutton et al. 2000). 

Enhanced decomposition of the leaves decreases substrate availabile to V. inaequalis 

needed to develop overwintering inoculum in the spring (Burchill, 1968). The high 

nitrogen content in urea also directly inhibits pseudothecia, or fruiting body, development 

of V. inaequalis (Crosse et al. 1968; Beresford et al. 2000). V. inaequalis requires 

depletion of all nitrogen before pseudothecia development can occur and excess nitrogen 

can delay or prevent this next step in the lifecycle (Ross, 1961). Urea applications have 

also been found to inhibit pseudothecia development by stimulating bacteria that is 

antagonistic to V. inaequalis (Crosse et al. 1968; Ross and Burchill, 1968; Meszka and 

Bielenin, 2006). 

 Urea is applied post-harvest before or after leaf-fall in early autumn, preventing 

the overwintering stage of V. inaequalis (Burchill, 1968; Vincent et al. 2004). Urea 

treatments made before leaf-fall can have adverse effects to the health of the tree 

(Rosenberger, 1996). Additional nitrogen may prolong the growth period of the tree, 

which delays the hardening of the tissues (Schupp et al. 2001). Prolonged growth exposes 

the plant tissue to lower temperatures, which can increase the cold damage to the buds 

and consequently affect the following season’s yield (Wood and Beresford, 2000; Schupp 

et al. 2001). Alternatively, urea can be applied to the orchard floor after leaves have 

abscised from the tree (Rosenberger, 1996). Issues with post leaf-fall applications include 

inadequate coverage of the leaf surfaces and reduced treatment efficacy (Rosenberger, 

1996). Furthermore, ground applications may also be insufficient in reducing inoculum if 
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the ground freezes soon after the urea treatment is made (Ciecierski et al. 1995). This is 

because low temperatures slow the urea-driven decomposition rate of the leaf litter 

(Ciecierski et al. 1995; Rosenberger, 1996; Sutton et al. 2000; Mac an tSoir et al. 2010).  

 These facts outline the limitations of urea applications, but they also reveal a 

potential area of research. Too few studies have looked at remedying the limitations of 

the ground applications, as they are safer regarding tree health. Furthermore, to date there 

has been no research to explore compounds that increase the coverage and penetration of 

urea from a sanitation standpoint. Such improvements would enhance urea-driven leaf 

litter decomposition and thus further reduce initial inoculum of V. inaequalis. Lastly, few 

studies have research alternative compounds to substitute urea applications in organic 

orchards. Increasing urea treatment efficacy or exploring different compounds may result 

in a lower amount of primary inoculum in conventional and organic orchards, which may 

potentially reduce the amount of fungicides needed to control apple scab during the 

growing season (Sutton et al. 2000; Meszka and Bielenin, 2006).  

 

1.5 Adjuvants 

 

 The efficacy of spray applications is dependent on even deposition of the active 

ingredient on the plant surface (Holloway, 1993; Wagner et al. 2003; Brink et al. 2004; 

Hunche et al. 2006; Balardin et al. 2010). But because of the hydrophobic nature of plant 

surfaces, spray deposits are generally inconsistent leading to varying levels of protection 

(Holloway, 1970; Steurbaut, 1993; Tang et al. 2008). Plant species with thick cuticles or 

hairy surfaces, like apples, can be difficult to wet resulting in a decrease the amount of 

active ingredient present on the surface (Holloway, 1970; Steurbaut, 1993; Gaskin et al. 

2005). Spray efficacy can be improved by modifying the chemical and physical 

properties of the spray solution to better cover and adhere to hydrophobic surfaces 

(Abbott and Van Dyk 1990; Green, 2000; Gent et al. 2003; Ryckaert et al. 2007).  

 Adjuvants are “materials that are added to a tank mix to aid or modify the action 

of an agrichemical, or physical characteristics of the mixture” (American Society for 

Testing and Materials ASTM, 1999). Adjuvants have been found to increase the spread, 
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retention, penetration, and spray efficiency of materials being applied to plant surfaces 

(Percich and Nickelson, 1982; Steurbaut, 1993; Thompson et al. 1996; Gent et al. 2003). 

Improvement of these qualities can lower the rate of chemicals applied and extend the 

period between applications, without decreasing yield (Gent et al. 2003; Ryckaert et al. 

2007; Rosenberger and Cox, 2012). This benefits the environment by reducing the 

chemical load and benefits the growers as it may decrease costs (Knoche, 1994; Gent et 

al. 2003; Gaskin et al. 2004; Balardin et al. 2010; Baseeth and Sebree, 2010).  Adjuvants 

are typically priced at 3% of the cost of chemicals used in agriculture making the initial 

financial expense relatively low (Green, 2000; Hazen, 2000). The issue is there are many 

types of adjuvants available to growers and choosing the correct one can present a 

challenge, as different adjuvants can have distinctive effects on sprays.  

 

1.5.1 Wetter-Spreaders 

  

 Wetter-spreaders are adjuvants that are classified as surfactants, or surface acting 

agents (Hazen, 2000). All surfactants such as wetter spreaders are considered adjuvants, 

but not all adjuvants can be considered surfactants. Surfactants are specific adjuvants that 

reduce the surface tension and lower the contact angle of water droplets, making the 

droplet lay flat (Hazen, 2000; Rosen and Kunjappu, 2012). This increases the spreading 

and coverage of chemicals on hard-to-wet surfaces (Hazen, 2000). Improved coverage 

and spread on a hard to wet surfaces by wetter-spreaders are due to the amphiphilic 

nature of surfactants (Cserháti, 1995; Hazen, 2000; Adamczak, 2013). Wetter-spreaders 

consist of molecules with a hydrophilic head and a hydrophobic tail, much like the 

phospholipid membrane of the cell (Adamczak, 2013). The hydrophobic portion interacts 

with the water molecules by breaking the intermolecular hydrogen bonds (Adamczak, 

2013). Ultimately this reduces the surface tension of the water droplet and allows the 

droplet to flatten and cover more surface area (Fig. 1.6) (Hazen, 2000). The amphiphilic 

structure has a similar effect on the contact angle of the water droplet (Lee et al. 2008). 

On hydrophobic surfaces, like waxy leaves, the hydrophobic tails of the surfactant are 
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absorbed and a hydrophilic bilayer is created, which causes the water droplet’s contact 

angle to decrease, increasing the spread over the waxy surface (Fig. 1.6) (Lee et al. 2008). 

The addition of wetter-spreaders to spray mixtures is important as many leaves 

have waxy cuticles making leaf surfaces hydrophobic which reduces the coverage of 

water droplets (Wagner et al. 2003). This is because hydrophobic surfaces strengthen 

water molecules cohesive nature (Wagner et al. 2003). Strong cohesive properties and 

high surface tension due to intermolecular forces between the hydrogen and oxygen 

molecules of water causes the formation distinct water droplets (Ehlers and Goss, 2003; 

Wagner et al. 2003). Furthermore, water molecules also have a strong affinity for each 

other because of the partial positive charge on hydrogen and the partial negative charge 

on oxygen, creating a strong “pulling effect”, which causes additional beading (Ehlers 

and Goss, 2003). Like cohesion and intermolecular forces, “pulling effects” can be 

influenced by the nature of the surface water is upon, depending on if the surface is 

highly hydrophobic or rough (Vogler, 1998). In the case of apple leaves, their surface is 

not classified as a difficult to wet species, but trichomes that exist on apple leaves can 

greatly reduce spreading of the water droplet (Yu et al. 2009). The waxy cuticle of apple 

fruit has been classified as a difficult to wet surface (Gaskin et al. 2005). The overall 

combination of hairy leaves and waxy fruit can become obstacles in protective sprays that 

need optimal coverage to be effective (Wagner et al. 2003; Yu et al. 2009; Gaskin et al. 

2005). 
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Figure 1.6: Effect of wetter-spreader adjuvants on water droplets. By reducing the surface 

tension and contact angle, adjuvants allow water droplets to flatten on waxy and hairy 

leaves (Whitford et al. 2014).  

 

1.5.2 Stickers 

 

 The waxy cuticle of the leaf and fruit on the apple tree is an obstacle not only for 

coverage as previously mentioned, but can also cause other issues such as droplet run-off, 

bounce, or shatter off (Wagner et al. 2003). Stickers are adjuvants that help adhere 

droplets to the target surface and attempt to resist removal by rain and wind (Hazen, 

2000). Adhesive qualities of this type of adjuvant are due to its viscous nature (Hazen, 

2000). Stickers act like oils or thickening agents, containing anionic materials such as 

fatty acids or synthetic polymer latexes (Wasan et al. 1988). These substances alter the 

nature of the spray mixture and allow it to adhere to the leaf surface and resist wash-off, 

run-off, or evaporation and consequently may improve the performance of fungicides 

(Hazen, 2000). 

 Stickers can have multiple effects when coupled with fungicides such as an 

increased retention of the fungicide on the surface (Hazen, 2000), extension of the 

chemical activity (van Zyl, 2009), and decrease drift of the fungicide (Wasan et al. 1988). 

An addition of sticking agents to a tank mixes aids in deposition as well (Green and 

Beestman, 2007). Ultimately, the addition of sticker adjuvants can decrease fungicide 

runoff or fungicide displacement by wind or rain (Fig. 1.7) (Hazen, 2000; Balardin et al. 
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2010). This increases fungicide efficacy, while reducing residue accumulation in the soil 

(Reddy and Locke, 1996).  

  

                      

Figure 1.7: Effect of sticker adjuvants on spray applications. By increasing the viscosity 

of the water droplet these adjuvants can reduce the bounce, shatter and run-off of spray 

applications (Whitford et al. 2014). 

 

1.5.3 Acidifiers 

 

 In some cases, it is not the plant that acts as the main deterrent to pesticide 

efficacy. In many cases it is the tank water, specifically water that is too alkaline 

(Whitford et al. 2012). Alkaline water degrades select pesticides making them less 

soluble or eliminating their treatment efficacy (Whitford et al. 2012). Acidifiers are 

adjuvants composed of weak acids that lower the pH of alkaline solutions (Baseeth and 

Sebree, 2010). This can reduce chemical degradation from alkaline hydrolysis (Bakke, 

2007). Acidifiers can also increase the solubility of pesticides and induce penetration by 

neutralizing weakly acidic pesticides (Green and Beestman, 2007). Acidifying adjuvants 

would be especially useful to use with captan to prevent degradation by alkaline water 

(Gradis and Sutton, 1981; Frank et al. 1985).  
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1.5.4 Penetrants 

 

 The cuticle of leaves and fruit act as a barrier to help protect the plant from the 

environment (Whitford et al. 2012). While important to plant health waxy cuticles can 

decrease the efficacy of pesticide applications by reducing pesticide solubility and 

penetration (Whitford et al. 2012). Penetrant adjuvants induce the movement of 

chemicals into the plant tissue by disrupting or dissolving the waxy cuticle on the surface 

of the leaf (Manthey and Nalewaja, 1992) or inducing uptake through the stomata (Fig. 

1.8) (Stevens et al. 1991; Gaskin, 1995; Gottwald et al. 1997; Hazen, 2000). 

Unfortunately, by increasing uptake of chemicals, some penetrants combined with certain 

fungicides could produce undesirable results such as phytotoxicity or increased disease 

severity (Tomlinson and Faithfull, 1979; Cowgill et al. 2013; Rosenberger, 2013). 

Phytotoxicity is the localized burning of cells resulting from inappropriate mixtures of 

adjuvants and agrichemicals (Steurbaut, 1993; Stock and Holloway, 1993; Cowgill et al. 

2013). Phytotoxicity damage can cause major decreases in yield by blemishing fruit 

finish (Rosenberger, 2014).  

 In regards to apple disease management there are some chemicals such as captan, 

sulfur, and copper that are prone to phytotoxicity (Rosenberger, 2013). These products 

are biocidal, meaning they kill any cell upon uptake (Cowgill et al. 2013). If combined 

with adjuvants that have penetrant qualities, damage from phytotoxicity may be severe 

(Rosenberger, 2013). There are thousands of adjuvants available to growers and few 

experiments testing the combinations of penetrants with fungicides. This can lead to 

inappropriate combinations of fungicides and penetrants, resulting in yield loss due to 

adverse effects. 
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Figure 1.8: Effect of penetrating adjuvants on pesticides. Penetrants increase the fluidity 

of the cell membrane and induce movement of the chemical into the plant cells (Whitford 

et al. 2014). 

 

1.6 Adjuvants and fungicides 

 

 The majority of research concerning adjuvant efficacy in field environments has 

concentrated on the improvement of herbicides (Foy, 1993; Steurbaut, 1993; Gent et al. 

2003). Unlike herbicides, very few publications relate to combinations of fungicides and 

adjuvants and even fewer of these experiments are conducted in field environments 

(Steurbaut, 1993; Gent et al. 2003). In addition, the few field experiments that have been 

performed show inconsistent results of adjuvant combinations with fungicides, making 

practical use a risky endeavor for growers (Steurbaut, 1993). 

 The addition of nonionic alcohol-based surfactant, a nonionic polymer-based 

surfactant, and an experimental hard resin-based adjuvant were found to enhanced the 

over all efficacy of mancozeb after two applications in the field by increasing the control 

of brown spot of wild rice (Percich and Nickelson, 1982). Adjuvants, particularly a non-

ionic alcohol-based surfactant, a nonionic oil-based surfactant, and an anionic oil-based 

surfactant alone were comparable to the fungicide azoxystrobin in managing white rust 

on spinach (Irish et al. 2002). Furthermore, when combined with azoxystrobin, these 

adjuvants plus a cationic glyceride-based adjuvant and another nonionic alcohol-based 
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surfactant enhanced coverage of the fungicide and further decreased disease incidence 

(Irish et al. 2002). The authors noted that more research on adjuvants was needed to 

determine the volumes and frequency of application needed for adequate disease control 

and the economic risk/benefit of using adjuvants (Irish et al. 2002). A polymer-based 

nonionic and anionic surfactants have shown the potential to decrease foliar fungal 

diseases by increasing the retention of fungicides such as propaconizole (Ryckaert et al. 

2007). Lastly, a nonionic alcohol-based surfactant with penetrant qualities enhanced the 

control of Phytophthora collar rot on apple trees by increasing the penetration of the 

fungicide Ridomil Gold 4EC (47.6% mefenoxam) into the bark (Beckerman and Deford, 

2007).  

 These studies confirmed that the conceptual claims of adjuvants had practical 

merit, but other studies were performed that showed contrary results. The management of 

coffee rust with the fungicide parazate was not enhanced by the addition of several resin 

or latex-based surfactants with sticker qualities (Valdez et al. 1959). While another study 

found that neither alcohol or oil-based sticker adjuvants significantly improved fungicide 

retention after rainfall (Ogawa et al. 1977). To further demonstrate the contrast in 

adjuvant performance between controlled and field studies, Gent et al. (2003) directly 

compared adjuvants in and out of the laboratory. In controlled conditions, two 

organosilicone adjuvants significantly increased the coverage and absorption of water 

droplets, while a nonionic latex-based surfactant and an oil-based adjuvant only increased 

absorption (Gent et al. 2003). All other adjuvants, including a nonionic resin-based 

surfactant did not significantly increase either measure (Gent et al. 2003). In the field 

study using the same adjuvants, it was found that only the nonionic resin-based surfactant, 

the nonionic latex-based surfactant, and one of the organosilicone adjuvants increased 

disease control, and only when disease pressure was high. The authors hypothesized that 

these varied results in disease management were highly dependent on the plant species, 

pathogen biology, and disease pressure (Gent et al. 2003).  

  The inconsistent results of adjuvants improvement of fungicides in field studies 

could be attributed to factors that also affect the productivity of other agrichemicals in the 

field (Steurbaut, 1993; Gent et al. 2003). These factors include harsher environments 
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such as wind and rain that can increase wash-off (Ragsdale, 1991), increased canopy 

density that can decrease deposition (Ellis et al. 2004), low disease pressures, and 

increased complexity of plant-pathogen-environment interactions (Steurbaut, 1993; Gent 

et al. 2003). So thorough knowledge of the activity of the fungicide and how it interacts 

with the fungus is needed to understand how the addition of adjuvants would affect the 

efficiency of fungicides (Steurbaut, 1993).  

 

1.6.1 Phytotoxicity 

 

 Appropriate combinations of adjuvants and fungicides may improve disease 

management by reducing the rate used (Steurbaut, 1993; Gent et al. 2003; Beckerman 

and Deford, 2007). Alternatively, if inappropriate mixtures are used, growers can run the 

risk of yield reduction due to disease or phytotoxicity (Steurbaut, 1993; Cowgill et al. 

2013). Phytotoxicity is the localized burning of plant tissues resulting in cellular death 

(Stock and Holloway, 1993). It can cause blemishes that affect the fruit and the leaf, 

decreasing the quality and value of the apple (Fig. 1.9) (Cowgill et al. 2013). 

Phytotoxicity can also negatively affect the activity of the fungicide and increase the 

plant’s vulnerability to further infection (Steurbaut, 1993; Stock and Holloway, 1993). 

Environmental factors including temperature and humidity can affect phytotoxicity 

(Cowgill et al. 2013). For example, if temperatures exceed 85°F and humidity is higher 

than 70%, the cuticle permeability increases and there is a greater likelihood of burning 

resulting from sprays (Crassweller, 2011; Cowgill et al. 2013). Alternatively, cool 

temperatures can be just as damaging by increasing the solubility of chemicals like 

copper, resulting in phytotoxicity (Crassweller, 2011). Cooler temperatures can also slow 

the drying time of fungicides on the plant surface, which increases uptake and can cause 

phytotoxicity (Zabkiewicz et al. 1988). Therefore, growers should be cautious in applying 

sprays during cloud cover as the lower temperature and increased relative humidity could 

result in an environment conducive to phytotoxicity.  

 In general, most adjuvants have been found to be chemically inert (Parr and 

Norman, 1965), though some have been observed to cause phytotoxicity in certain cases 
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due to inducing movement of fungicides into the plant (Furmidge, 1959; Gottwald et al. 

1997). In addition to penetrants, wetter-spreaders comprised of carbon-chained alcohols 

of 7-10 carbons in length have been found to induce movement of chemicals into the leaf 

by increasing the fluidity of the cuticle (Schonherr, 1993; Stock and Holloway, 1993; 

Hess and Foy, 2000).  

 The potential risk caused by the uncertainty of adjuvant and fungicide 

combinations can pose problems for growers in selecting combinations to use in field 

applications (Steurbaut, 1993). This issue was discussed by Rosenberger (2013) in a 

publication that highlighted captan’s potential for phytotoxicity. As described above 

captan is a very effective fungicide in regards to apple scab and bitter rot control 

(Rosenberger, 2013). But if captan penetrates a cell wall it is very toxic to the cell and 

will cause cell death (Rosenberger, 2013). This could be an issue if the fungicide was 

paired with adjuvants or with other fungicides that have adjuvants or oils in their 

formulations that promote cell penetration (Rosenberger, 2013). For example, when 

captan is combined with the fungicide Fontelis, which has oils in its formulation that 

induce penetration, this results in phytotoxicity (Rosenberger, 2013). Phytotoxicity can 

have drastic economic impacts, as the effects are not observed until after the application 

is made, so a grower could spray an entire field without realizing the damage until too 

late (Gent et al. 2003).  

 

       

Figure 1.9: Phytotoxicity burns on apple leaves and fruit (photos courtesy of Dr. Janna 

Beckerman). 
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1.7 Adjuvants and sanitation 

 

 There have been several studies addressing the significance of sanitation in apple 

production (Beresford et al. 2000; Sutton et al. 2000; Mac an tSoir et al. 2010), but few 

publications have studied the combination of adjuvants and urea to improve leaf litter 

decomposition. The addition of adjuvants has the potential increase the coverage, 

retention, and penetration of urea applications. An organosilicone-based surfactant 

improved the coverage of urea and induced stomatal infiltration, increasing the nitrogen 

content in the leaves by 15% (Leece and Dirou, 1977). From a sanitation standpoint, the 

increased nitrogen in the leaves could increase leaf decomposition, reduce inoculum 

development, and thereby reduce disease. In another study, anionic, ionic and cationic 

surfactants reduced V. inaequalis ascospore dose by 95% (Burchill and Swait, 1977). In 

this study, urea was not used in conjunction with the surfactants, so their reduction of 

inoculum may be attributed to the increase in leaf decomposition (Burchill and Swait, 

1977).  

 These studies suggest that the addition of certain adjuvants can work 

synergistically to increase urea-driven decomposition of the leaves (Burchill and Swait, 

1977). This is important as urea alone may have insufficient coverage and penetration 

into leaves (Rosenberger, 1996). Therefore, the incorporation of adjuvants with urea can 

increase the efficacy of sprays in which and thus further reduce the leaf litter and primary 

inoculum. Decreasing the inoculum further may effectively reduce the amount of 

fungicide sprays needed for sufficient control during the growing season.  

 

1.8 Research objectives 

 

 The objective of this research was to test the effect of various adjuvants when 

combined with captan and urea in order to improve the management of V. inaequalis and 

Colletotrichum spp.. We examine how the addition of adjuvants to captan during season 

and to urea post-harvest could improve management of common apple diseases. We 
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hypothesize that the incorporation adjuvants may reduce the rate of fungicides, such as 

captan, needed throughout the growing season without affecting yield. 
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CHAPTER 2. INCORPORATING ADJUVANTS WITH CAPTAN TO MANAGE 
COMMON APPLE DISEASES 

 
 
 

2.1 Introduction 

 

  Apple scab, caused by the fungus Venturia inaequalis and bitter rot, caused by 

the fungi Colletotrichum spp. are economically important diseases of apple trees (Malus 

domestica) in regions that experience cool, wet springs and warm, wet summers (Sutton, 

1990a,b). Fungicides are currently the most heavily relied upon method of disease 

management (Gianessi and Reigner, 2005). Beginning in the 1940’s, the most effective 

fungicides used in apple disease management were captan and mancozeb (Brandes, 1953; 

McHardy et al. 2001; Gianessi and Reigner, 2005). These fungicides are classified as 

protectants that must be applied prior spore germination, as they are only active on plant 

surfaces (Köller et al. 2005). Later, in the 1960’s, fungicides were introduced that 

provided enhanced disease management (Köller et al. 2005; Beckerman et al. 2015). 

These included dodine (now known as Syllit), methyl benzimidazole carbamates (MBC), 

demethylation inhibitors (DMI), quinone outside inhibitors (QoI), and succinate 

dehydrogenase inhibitors (SDHI) (Szkolnik and Gilpatrick, 1969; Köller, 1997; McKay 

et al. 2011). Many of these products had curative qualities that allowed growers to apply 

fungicides post-infection (Köller et al. 2005: Beckerman et al. 2015). This “kick back” or 

ability to limit pathogen growth after penetration of the leaves or fruit differentiated the 

newer fungicides from the protectants (Köller et al. 2005). These newer fungicides also 

differed from certain protectants in their ability to control other important apple diseases 
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such as rust and powdery mildew (Köller et al. 2005). Ultimately these factors improved 

disease management and reduced the number of applications needed to control apple scab 

and bitter rot to grower satisfaction (Köller et al. 2005; Beckerman et al. 2015). 

 Although modern fungicides contribute to more effective disease management, 

their site-specific mode of action coupled with the extended and exclusive use of these 

fungicides resulted in the evolution of resistant strains of V. inaequalis (Kuck et al. 1995; 

Russell, 1995; Bartlett et al. 2002; Köller et al. 2005) and Colletotrichum spp. (Jones et 

al. 1996) within a couple years of their respective release. Inadequate control due to 

fungicide resistance led to the greater reliance on older protectant fungicides, such as 

captan (Richmond et al. 1967; Turechek, 2004).  

Captan is a chloroalkyl thio fungicide, which disrupts multiple cellular division 

pathways of sensitive fungal strains (Richmond et al. 1967; Turechek, 2004; 

Rosenberger, 2013). Because of its multi-site inhibitor, a pathogen would have had to 

simultaneously develop multiple mutations for all blocked pathways to become resistant 

to captan, which is unlikely to occur (Brent and Hollomon, 2007; Rosenberger, 2013).  

This is why captan remains an important option in apple disease management.  

Unfortunately, there are several drawbacks that reduce captan efficacy. When 

suspended in alkaline tank water (pH>7), captan has a half-life of 20 minutes, meaning it 

could degrade significantly before applications are made (Gradis and Sutton, 1981; Frank 

et al. 1985). Captan also cannot persist on plant surfaces if greater than one inch of rain 

occurs within 24 hours after application, leaving the leaves and fruit unprotected during 

high infection periods (Smith and MacHardy, 1984). Lastly, the U.S. Environmental 

Protect Agency (U.S. EPA) has classified captan as a group B2 carcinogen, or a potential 

human carcinogen (EPA, 1999). Consequently, there are restrictions on captan 

applications that limit growers to 18 kg per season. Since the management of apple scab 

and bitter rot in high disease pressure years may require up to 14 applications, this limits 

growers to either lower rates of captan or fewer sprays. This often results in unacceptable 

levels of apple scab and bitter rot and can lead to significant yield loss (Rosenberger, 

2009). 
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 As such, captan is low-risk for development of resistant strains and remains a 

dependable product for control of common apple diseases (Köller et al. 2005). Therefore, 

research that focuses on improving the performance of captan applications is necessary. 

One potential solution for improving captan efficacy is utilizing adjuvants. Adjuvants are 

“materials that are added to a tank mix to aid or modify the action of an agrichemical, or 

physical characteristics of the mixture” (American Society for Testing and Materials 

ASTM, 1999). Adjuvants have been found to increase the spread, retention, penetration, 

and spray efficiency of materials being applied to plant surfaces (Percich and Nickelson, 

1982; Steurbaut, 1993; Thompson et al. 1996; Gent et al. 2003). Additionally, adjuvants 

may also correct issues with mixing and application by affecting spray drift, the pH, or 

the foaming of the tank water (Bakke, 2007). 

 The majority of research concerning adjuvants in field environments has 

concentrated on the improvement of herbicide activity (Foy, 1993; Steurbaut, 1993; Gent 

et al. 2003). Very few publications relate to combinations of fungicides and adjuvants, 

and even fewer published works involve experiments conducted in field environments 

(Steurbaut, 1993; Gent et al. 2003). This is problematic because inappropriate mixtures of 

fungicides and adjuvants could result in yield reduction due to phytotoxicity (Steurbaut, 

1993; Cowgill et al. 2013). Phytotoxicity is the localized burning of plant tissues 

resulting in blemishes that decrease the quality and value of the apple (Cowgill et al. 

2013). Phytotoxicity occurs when certain adjuvants, such as penetrants and some 

surfactants, cause the uptake of toxic chemicals into the plant (Coupland et al., 1989; 

Gaskin, 1995; Cowgill et al. 2013). Captan is biocidal or toxic to any cell it enters, if 

combined with adjuvants that increase uptake there is a high potential for phytotoxicity 

(Cowgill et al. 2013). 

 Although there are many adjuvants available, growers are reluctant to use them in 

conjunction with captan, as their impact on efficacy and risk of phytotoxicity remains 

uncertain. Identification of compatible adjuvant and captan combinations may contribute 

to improved management of apple scab and bitter rot, providing more options for growers 

confronted with fungicide resistance issues. 
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2.2 Materials and Methods 

 

 Adjuvants were tested for their ability to improve captan’s control of apple scab 

and bitter rot throughout the growing season (Table 2.1). Concentrations of all adjuvants 

were based on recommended rates taken from the commercial label. The concentration of 

captan (Captan 80WDG; Arysta LifeScience, Cary, NC) used was based on the lowest 

recommended label rate (2.8 kg/ha).  

 

2.2.1 Field tests 

 

 In the summers of 2013, 2014, and 2015, studies were conducted to evaluate the 

effect of adjuvants when combined with captan to manage apple scab and bitter rot 

throughout the growing season. These experiments were executed in field plots at Meig’s 

Farm, at the Throckmorton Purdue Agricultural Center in Lafayette, IN. The treatment 

blocks were set up in a randomized complete block design in 16-yr-old plots of Golden 

Delicious and Honeycrisp apple trees on M.7 rootstocks planted in Toronto-Millbrook 

complex soil. Golden Delicious trees were planted 6.1-m apart with 6.1-m between each 

row in a 0.5-ha field containing 130 trees. Honeycrisp trees were planted 3-m apart with 

3.7-m between each row in a 0.2-ha field containing 104 trees. All trees were infected 

with naturally occurring inoculum of each disease. 

 

2.2.2 Experimental design 

 

 In 2013 the design in the Honeycrisp plot was set up in a completely randomized 

design of 10 treatments containing uneven replications of 4 trees. In 2014 and 2015 the 

trees in the Honeycrisp plot design were set up as a randomized complete block design of 

10 treatments containing 3 replications of 3 trees. In 2013, 2014, and 2015 the design of 

the trees in the Golden Delicious plot was a randomized complete block design of 10 

treatments containing 3 replications of 4 trees.  
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2.2.3 Treatment applications 

 

 All adjuvants were used in combination with captan and applied to trees with an 

air blast sprayer (John Bean DP10P 50P) with John Bean nozzles with ceramic whirl 

plates and discs on flip over bodies that produced a solid cone spray pattern. Treatments 

were applied at 8.9 kph and 1,724-2,068 kPa (935.2 l/ha rate) every 10-14 days beginning 

at 24 May in 2013, 30 April in 2014, 23 April in 2015, and ending at harvest. In 2013, 

Honeycrisp trees received 8 applications made on 24 May; 4, 17, 28 June; 11, 23 July; 6, 

and 16 August. Golden Delicious trees received 11 applications made on 24 May; 4, 17, 

28 June; 11, 23 July; 6, 16, 30 August; 13, and 25 September. In 2014, Honeycrisp trees 

received 10 applications made on 30 April; 12, 22 May; 5, 18 June; 2, 14, 25 July; 8, and 

19 August. Golden Delicious trees received 12 applications made on 30 April; 12, 22 

May; 5, 18 June; 2, 14, 25 July; 8, 19 August; 2 and 16 September. In 2015, Honeycrisp 

and Golden Delicious trees both received 11 applications made on 23 April; 6, 19, 29 

May; 9, 23 June; 2, 16, 30 July; 11, 24 August. After 24 August 2015, no further 

applications were made to Golden Delicious because the trees did not produce apples. In 

2015, water sensitive spray cards (Syngenta, Greensboro, NC) were placed in a single 

tree for each treatment approximately 1.5-m from the ground before treatment 

applications were made to assess adjuvant effect on water droplets. 

 

2.2.4 Sampling and disease rating 

 

 For all years, apples from only the inner trees of each replicate were scored to 

avoid fruit that may have been exposed to overlapping spray of treatments that could 

result in possible biased phytotoxicity scoring. In all years, fruit of each cultivar were 

scored for incidence and severity of apple scab, bitter rot, and phytotoxicity.  

 In 2013, Honeycrisp trees were scored on 22 August by arbitrarily selecting five 

branches from the two inner trees in each replicate. Disease and phytotoxicity incidence 
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were recorded by counting the total number of infected apples. Golden Delicious trees 

were scored on 30 September by arbitrarily selecting 5 branches from the two inner trees 

in each replicate. Disease and phytotoxicity incidence was scored by recording the 

number of infected/blemished apples out of the total number of fruit on the branch.  

 In 2014 and 2015, Honeycrisp trees were scored on 24 August and 8 September 

respectively, by arbitrarily selecting 10 branches from the inner tree in each replicate. In 

2014, Golden Delicious trees were scored on 23 September, by arbitrarily selecting 5 

branches from the two inner trees in each replicate. Incidence was scored by recording 

the number of infected/blemished apples out of the total number of fruit on the branch. 

Severity was measured the same between all the years by estimating the surface area of 

the infection/blemish using the template published by Croxall et al. 1952. In 2015, no 

scores for Golden Delicious apples were recorded as no apples were produced due to 

biennial bearing. 

 

2.2.5 Statistical analysis 

 

 For all years, disease and phytotoxicity incidence and severity scores were 

averaged within treatments, subject to arcsin transformation and analyzed with a one-way 

ANOVA using a generalized linear model procedure (PROC GLM) of SAS v9.3 (SAS 

Institute). Means were then separated according to Fisher’s protected LSD test at P=0.05, 

using SAS v9.3 (SAS Institute). In 2014, apple scab severity data for Honeycrisp were 

not included in statistical analysis due to an abundance of zero variances. Additionally, 

for all years there was no phytotoxicity for “captan only” and “no treatment” treatments 

in either cultivar, so they were not included in statistical analysis in order for data to meet 

the homogeneity of variance assumption.  
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2.3 Results 

 

 Disease incidence varied among all three experimental seasons. In all years, 

conditions were favorable for apple scab infection. However, in 2013, a timely 

application of dodine in the early season fungicide regimen resulted in low apple scab 

incidence. Also, in 2015, due to biennial bearing, no Golden Delicious apples were 

produced. Environmental conditions were less conducive for bitter rot infection in 2013 

than in 2014 and 2015. Cultivar susceptibility to each disease differed as well. Golden 

Delicious apples were more susceptible to apple scab infection and less susceptible to 

bitter rot infection, while Honeycrisp apples were more susceptible to bitter rot and less 

susceptible to apple scab. Temperature and rainfall among the years of the experiment 

varied as well, the highest temperatures and lowest amount of rainfall occurred in 2013 

(Fig. 2.1A) and the lowest temperatures and highest amount of rainfall occurred in 2015 

(Fig. 2.1C). 

 

2.3.1 2013 trial results 

 

 For Golden Delicious no adjuvants combined with captan reduced apple scab 

incidence (Fig. 2.2A). In terms of scab severity, most treatments had no effect compared 

to the untreated control but adjuvants Bond Max and Latron B-1956 when combined with 

captan had significantly higher scab severity (Fig. 2.2B). No adjuvants combined with 

captan reduced the incidence of bitter rot compared to captan alone (Fig. 2.2C). Bond 

Max plus captan and Latron B-1956 plus captan decreased severity of bitter rot compared 

to captan alone (Fig 2.2D). Furthermore, Attach alone, Attach plus captan, and Latron B-

1965 plus captan had significantly higher incidences of phytotoxicity (Fig. 2.2). For 

Honeycrisp apples, there was no reduction in scab incidence or severity or bitter rot 

incidence among the captan and adjuvant plus captan treatments (Fig. 2.3A,B,C). Attach 

alone and Bond Max plus captan sustained increased levels of bitter rot severity (Fig. 
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2.3D). Bond Max plus captan, Attach plus captan, and Latron B-1956 plus captan had 

significantly higher severity of phytotoxicity (Table A1, see appendix).  

 

2.3.2 2014 trial results 

 

 For Golden Delicious, Li700 plus captan, Bond Max plus captan, and Latron B-

1956 plus captan reduced incidence and severity of apple scab (Fig. 2.4A,B). No addition 

of adjuvants to captan reduced bitter rot incidence or severity compared to captan alone 

(Fig. 2.4C,D). Li700 plus captan, Bond Max plus captan, and Latron B-1956 plus captan 

had significantly higher incidence and severity of phytotoxicity (Fig. 2.4; Table A2, see 

appendix). For Honeycrisp, no adjuvant and captan combinations significantly reduced 

apple scab or bitter rot incidence or severity compared to captan alone (Fig. 2.5). Bond 

Max plus captan significantly increased the incidence and severity of phytotoxicity, and 

Latron B-1956 plus captan had significantly higher incidence of phytotoxicity (Fig. 2.5; 

Table A2, see appendix). 

 

2.3.3 2015 trial results 

 

 In Honeycrisp apples, there was no significant reduction of apple scab incidence 

or severity in any adjuvant and captan combinations (Fig. 2.6A,B). Li700 plus captan and 

Bond Max plus captan significantly reduced the incidence of bitter rot compared to 

captan alone (Fig. 2.6C). All adjuvant and captan combinations significantly reduced the 

severity of bitter rot compared to captan alone (Fig. 2.6D). Attach plus captan had a 

significantly higher incidence of phytotoxicity while Bond Max plus captan had a 

significantly higher severity of phytotoxicity (Fig. 2.6; Table A3, see appendix).  
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2.4 Discussion 

 

 In this study we identified that certain adjuvants have the potential to improve 

captan management of apple scab and bitter rot when environmental conditions were 

favorable for disease and the host cultivar was susceptible. Adjuvants applied alone were 

not comparable to captan, suggesting that the enhanced captan performance was 

potentially due incorporation of adjuvants with the fungicide.  

 Visual inspection of water sensitive spray cards suggests that Li700 and Latron B-

1956 increased the coverage of the water droplet (Fig. 2.7). Using ASSESS 2.0 (Lamari, 

2008), we found that a spray containing only captan covered 27% of the the water 

sensitive card surface, where Li700 plus captan covered 92% and Latron B-1956 plus 

captan covered 71% of the card surface (Fig. 2.7). Both adjuvants are composed of 

chemical components that increase the spread of water droplets by reducing the surface 

tension, which resulted in increased coverage of captan (Hazen, 2000). An even 

deposition of the active ingredients on plant surfaces is among the most important factors 

determining the efficacy of fungicide applications (Holloway, 1993; Wagner et al. 2003; 

Balardin et al. 2010). But even or complete deposition of sprays rarely occurs on apple 

fruit as they are moderately difficult to wet because of their waxy cuticles (Gaskin et al. 

2005). This becomes an issue as thorough coverage is especially important when 

applying captan, as it is a protectant, requiring nearly complete coverage of the plant 

surface in order to obtain suitable disease management (Köller et al. 2005). Both Li700 

and Latron B-1956 improved captan coverage but only the addition of Li700 consistently 

resulted in less disease. This may be due to the differences in the chemical composition 

of Li700 and Latron B-1956. Where the polyoxyethylene in Li700 reduces surface 

tension much like many surfactants that have long chain of hydrophobic carbons (Hazen, 

2000), the modified phthalic molecules in Latron B-1956 due to their compacted 

hydrophobic portion may act more like organosilicone surfactants, or super-spreaders 

(Ananthapadmanabhan et al. 1990). This means that the addition of Latron B-1956 may 

cause excessive spreading, resulting in unexpected run-off of fungicides resulting in 

decreased efficacy (Holloway, 1994; Hess, 1999). Another factor that could have resulted 
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in differences between Latron B-1956 and Li700 is that the latter is an acidifier. The 

addition of Li700 would reduce the pH of the basic tank water and possibly prevent 

alkaline hydrolysis of captan which could prevent the breakdown of the active ingredient 

into less efficacious compounds (Wofle et al. 1976; Somervaille et al. 2012). The 

addition of Li700 to captan could have implications to growers in places like Indiana, 

where water has a pH of 8 and higher. 

 Bond Max moderately increased the coverage of captan, covering 47% of the 

water sensitive spray card and Attach did not increase the coverage of the water droplet, 

covering 27% of the spray card (Fig. 2.7). Both adjuvants have surfactant qualities, likely 

due to the alcohol ethoxylated and oxyethylene present in their chemistry (Hazen, 2000). 

These adjuvants also have sticking qualities due to the latex (Bond Max) and pinene 

(Attach) found in their chemistry (Hazen, 2000). These compounds may counteract the 

spreading caused by the surfactants and result in reduced droplet coverage. Alternatively, 

increased “stickiness” of the water droplets could have improved disease management by 

increasing the retention of captan (Hazen, 2000; Gaskin et al. 2014). Improved retention 

of captan is important as apple fruit retain less fungicides due to run-off and because a 

certain amount of captan residue is required to remain on the plant surface to ensure good 

disease management for the entire interval between applications (Frank et al. 1985; 

Gaskin et al. 2005). Though both adjuvants may have improved the retention of captan, 

only Bond Max improved disease management likely because latex-based stickers 

improve retention significantly better than pinene-based stickers (Gaskin and Steele, 

2009; Gaskin et al. 2014). 

 While the addition of certain adjuvants improved disease management on 

susceptible cultivars in years with high disease incidence, there were large differences 

among years in this study. Adjuvant effects on incidence of apple scab and bitter rot were 

highly dependent upon conducive environment conditions for infection and susceptibility 

of the cultivar. A favorable environment and susceptible host may have attributed to a 

high disease incidence, which allowed for more detectable separation of the treatments. 

This result supports a previous study where the differences between adjuvant efficacy in 

laboratory and field experiments showed that there were differences in adjuvants between 
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controlled and field environments, with the latter showing fewer adjuvant effects (Gent et 

al. 2003). The authors hypothesized that lack of significance in the field experiments was 

due to a low disease incidence (Gent et al. 2003). Furthermore, there are also several 

other factors that could reduce the efficacy of adjuvants in the field including harsher 

environments caused by wind and rain that can increase wash-off and increased canopy 

density that can decrease deposition (Steurbaut, 1993). Since in this study adjuvants that 

increased the retention and deposition of captan improved disease management the most, 

these are very important factors to consider when using adjuvants in field environments. 

 The variation in adjuvant effects on disease management among the years 

highlights the difficulty in making practical interpretations from this research. In many 

cases, growers are reluctant to use adjuvants because they are unaware of how they will 

contribute to disease management or if the addition of adjuvants will result in 

phytotoxicity. Significant incidence phytotoxicity was observed when Li700 or Bond 

Max was combined with captan. This result was expected as Li700 is classified as a 

penetrant, increasing penetration of spray chemicals into the plant cell (Hazen, 2000). 

Furthermore, studies have shown that Bond Max improves pesticide absorption in some 

plant species, potentially due to the long carbon-chained alcohols (Hess and Foy, 2000; 

Gent et al. 2003). Allowing captan to enter the plant cell and result in phytotoxicity. 

 To demonstrate the potential value of incorporating certain adjuvants with captan, 

we quantified the hypothetical benefits and costs of managing apple scab and bitter rot. 

We assumed that the potential gross value of fresh market apples in Indiana is $22,163 

ha-1 (NASS USDA, 2014). That is, if an orchard had 0% incidence of disease the grower 

would earn $22,163 ha-1 for their apples. However, growers could lose up to 100% of 

yield due to apple scab and bitter rot infection, resulting in $0. Using this concept, 

applying captan to manage apple scab on Golden Delicious in 2014 resulted in 36.9% 

disease incidence. This means that the grower would still have the potential to earn 

63.1% of $22,163 ha-1 or $13,983 ha-1 (Fig 2.8). In 2015, captan alone resulted in 24.5% 

bitter rot incidence in Honeycrisp. This means the grower could potentially earn 75.5% of 

$22,163 ha-1 or $16,733 ha-1. Since this research addresses the improvement of captan 
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with adjuvants, the potential earnings of using adjuvants were compared with the 

potential earnings of using captan in that year.  

 Using this, we were able to calculate the theoretical savings and losses a grower 

could experience if certain adjuvants were combined with captan in management 

strategies. In 2014, the addition of Li700 or Bond Max to captan resulted in 11% or 

18.2% incidence of scab in Golden Delicious. This corresponds to 89% or 81.8% of 

$22,163 ha-1 or potential earnings of $19,726 ha-1 or $18,128 ha-1. Compared to the 

potential earnings of using captan alone in 2014 ($13,983 ha-1) the addition of Li700 or 

Bond Max to captan could potentially have saved up to $5,743 ha-1 ($19,726 - $13,983) 

or $4,146 ha-1 ($18,128 - $13,983). In 2015, the addition of Li700 or Bond Max to captan 

resulted in 4% or 3.3%. This corresponds to 96% or 96.7% of $22,163 ha-1 or potential 

earnings of $21,277 ha-1 or $21,432 ha-1. Compared to the potential earning of applying 

captan alone in 2015 ($16,733 ha-1), the addition of Li700 or Bond Max to captan could 

potentially have saved a grower up to $4,543 ha-1 ($21,277 - $16,733) or $4,699 ha-1 

($21,432 - $16,733). 

Though phytotoxicity incidence in our study was statistically significant in some 

years, the incidence of phytotoxicity overall may not be economically significant. In 2014, 

on Golden Delicious apples, the addition of Li700 or Bond Max to captan resulted in 

4.8% or 4.7% incidence of phytotoxicity. This corresponds to potentially losing 4.8% or 

4.7% of $22,163 ha-1 or $1,064 or $1,042 ha-1 respectively. While in 2015 on Honeycrisp 

apples, the addition of Li700 or Bond Max to captan resulted in 0.4% or 1.4% incidence 

of phytotoxicity. Therefore, a grower could potentially lose 0.4% or 1.4% of of $22,163 

ha-1 or $89 or $311 ha-1 respectively. 

Taking into account losses due to phytotoxicity and the costs of applying Li700 or 

Bond Max ($12 or $20 ha-1, respectively), the overall benefit of using Li700 or Bond 

Max could potentially have been up to $4,442-$4,667 or $3,481-$4,388 ha-1 depending 

on the susceptibility of the cultivar, environmental favorability, and the target pathogen. 

These values assumed that all apples were equally valued, which is not the case as certain 

cultivars are more highly valued than others and may have higher impacts on the benefit 

of adjuvants. 
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 Overall results showed that certain adjuvants have the potential to improve captan 

disease management compared to captan alone when conditions are favourable for 

disease and the host is susceptible. With the addition of these adjuvants this study 

achieved good management of diseases at reduced rates of captan on favourable disease 

years by increasing the coverage and retention of the water droplet, and lowering the pH 

of the tank water. Although the results varied yearly, this study highlights the potential of 

adjuvants to improve disease management, while emphasizing the need for more practical 

studies like this one to better understand the role of adjuvants and fungicides in field 

environments. 
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2.5 Tables and Figures 
 

Table 2.1: List of materials used in this study to manage apple scab and bitter rot. 

Trade 
Name 

Active Ingredients Concentration 
per 379 L 

Manufacturer Classification 

Captan 
80WDG 

Captan: N-
Trichloromethylthio-4-
cyclohexene-1,2-
dicarboximide  

1.1 kg Arysta 
LifeScience 

Multi-site 
fungicide 

Li700 Phosphatidylcholine, 
methylacetic acid, and 
alkyl polyoxyethylene 
ether 

0.30 L Loveland 
Industries 

Adjuvant: 
Acidifier, 
penetrant, 
drift reduction 

Bond 
Max 

Alcohol ethoxylate, 1,2-
propanediol, and 
synthetic latex 

0.44 L Loveland 
Industries 

Adjuvant: 
Spreader-
sticker, 
deposition aid 

Attach Pinene (terpene) 
polymers, petrolatum, 
(p-Dodecylphenyl), 
omega-hydroxypoly 
(oxyethylene) 

0.30 L Loveland 
Industries 

Adjuvant: 
Spreader-
sticker 

Latron 
B-1956 

Modified phthalic 
glycerol alkyd resin 

0.30 L Simplot Grower 
Solutions LLC 

Adjuvant: 
Spreader-
sticker 
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Figure 2.1: Average monthly high, mean, and low temperatures (˚C) and total monthly 

precipitation (cm) throughout the experiments conducted in A, 2013, B, 2014, and C, 

2015. Weather data was collected by the Meig’s Weather Station at the Throckmorton-

Purdue Agricultural Center.  
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Figure 2.2: Effect of adjuvants on captan management of apple scab (V. inaequalis) A, 

incidence and B, severity and bitter rot (Colletotrichum spp.) C, incidence and D, 

severity on Golden Delicious apples at Meig’s Farm, at the Throckmorton Purdue 

Agricultural Center in Lafayette, IN, 20131. “Captan” refers to Captan 80WDG. 

*Treatment had significant incidence of phytotoxicity. 
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Figure 2.3: Effect of adjuvants on captan management of apple scab (V. inaequalis) A, 

incidence and B, severity and bitter rot (Colletotrichum spp.) C, incidence and D, 

severity on Honeycrisp apples at Meig’s Farm, at the Throckmorton Purdue Agricultural 

Center in Lafayette, IN, 20131. “Captan” refers to Captan 80WDG. *Treatment had 

significant incidence of phytotoxicity. 
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Figure 2.4: Effect of adjuvants on captan management of apple scab (V. inaequalis) A, 

incidence and B, severity and bitter rot (Colletotrichum spp.) C, incidence and D, 

severity on Golden Delicious apples at Meig’s Farm, at the Throckmorton Purdue 

Agricultural Center in Lafayette, IN, 20141. “Captan” refers to Captan 80WDG. 

*Treatment had significant incidence of phytotoxicity. 
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Figure 2.5: Effect of adjuvants on captan management of apple scab (V. inaequalis) A, 

incidence and B, severity and bitter rot (Colletotrichum spp.) C, incidence and D, 

severity on Honeycrisp apples at Meig’s Farm, at the Throckmorton Purdue Agricultural 

Center in Lafayette, IN, 20141. “Captan” refers to Captan 80WDG. *Treatment had 

significant incidence of phytotoxicity. ** Due an abundance of zero’s data was not 

statistically analyzed.  
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Figure 2.6: Effect of adjuvants on captan management of apple scab (V. inaequalis) A, 

incidence and B, severity and bitter rot (Colletotrichum spp.) C, incidence and D, 

severity on Honeycrisp apples at Meig’s Farm, at the Throckmorton Purdue Agricultural 

Center in Lafayette, IN, 20151. “Captan” refers to Captan 80WDG. *Treatment had 

significant incidence of phytotoxicity. 
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Figure 2.7: Water sensitive spray cards showing the effect of adjuvants on water droplets 

after various treatments were applied using an air blast sprayer. The blue colouration 

indicates water coming into contact with the card. Treatments are A, Control (H2O) = 

13% coverage; B, Li700 = 68% coverage; C, Bond Max = 27% coverage; D, Attach = 

16% coverage; E, Latron B-1956 = 74% coverage; E, captan = 27% coverage; G, Li700 

+ captan = 92% coverage; H, Bond Max + captan = 47% coverage; I, Attach + captan = 

27% coverage; J, Latron B-1956 + captan = 71% coverage. Droplet coverage was 

computed using image analysis software APS Assess (Lamari, 2008). 
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CHAPTER 3. INCORPORATING ADJUVANTS WITH UREA TO REDUCE THE 
INOCULUM OF VENTURIA INAEQUALIS. 

 
 
 

3.1 Introduction 

 

  Apple scab, caused by the fungus Venturia inaequalis (Cke.) Wint., is one of the 

most important apple (Malus domestica) diseases in regions that experience cool, wet 

springs (Sutton, 1990a; MacHardy et al. 2001). Growers rely heavily on fungicides for 

disease management, often applying as many as 14 sprays per season (Sutton, 1990a; 

MacHardy, 1996; Beresford et al. 2000). Fungicides within several classes are registered 

for controlling apple scab, including dodine (now known as Syllit), methyl benzimidazole 

carbamates (MBC), demethylation inhibitors (DMI), quinone outside inhibitors (QoI), 

and succinate dehydrogenase inhibitors (SDHI) (Szkolnik and Gilpatrick, 1969; Köller, 

1997; Köller et al. 2005; McKay et al. 2011). However, extended use of these fungicides 

has resulted in the development of resistant strains of V. inaequalis within a couple years 

of their respective releases (Köller et al. 2004). Inadequate control led to the greater 

reliance on older protectant fungicides, such as captan, that have low risk of developing 

pathogen resistance (Nicholson and Beckerman, 2008). Unfortunately, growers are 

restricted to ten applications of captan at a 4.5 kg/ha rate per season due to environmental 

and human health concerns related to captan use (Rosenberger, 2009). In wet years this 

provides insufficient management of apple scab, and can result in significant yield loss 

(Rosenberger, 2009).  

 Failures in disease management due to increasing fungicide resistance and 

restrictions has made the addition of cultural practices like sanitation necessary 
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(Beckerman et al. 2015). Sanitation focuses on removing the overwintering inoculum of 

V. inaequalis and has been shown to reduce the initial disease pressure and thereby the 

amount of chemicals needed for control during the growing season (Sutton et al. 2000; 

Meszka and Bielenin, 2006). A 20% reduction of disease incidence present in the spring 

could significantly limit inoculum present in the orchard (Rosenberger and Cox, 2012). 

This reduction could delay the epidemic of apple scab and potentially result in fewer 

sprays to control disease (Gadoury and MacHardy, 1986).  

 There have been many studies exploring the reduction of initial inoculum of V. 

inaequalis by implementing sanitation practices (Sutton et al. 2000). Since the pathogen 

overwinters in leaves on the orchard floor, practices removing the leaf litter by removal, 

shredding, chemical treatments, or urea applications are essential (Sutton et al. 2000; 

Vincent et al. 2004). Shredding the leaf litter can reduce scab incidence by 90% in a 

controlled environment (Sutton et al. 2000). Though in actuality, reduction of inoculum 

from shredding or removal of the leaf litter may range from 50-65% due the variable 

topography and obstructions in orchards, making this practice time consuming and 

difficult (Vincent et al. 2004).  

 Alternatively, spray applications to decrease the leaf litter may be an effective 

substitute to shredding and removal (Vincent et al. 2004). Previously used chemical 

compounds, such as mercury, have shown promise in reducing primary inoculum and the 

number of fungicide treatments needed during the growing season (Keitt, 1930; Kadow 

and Hopperstead, 1941; Goldsworthy et al. 1949; Burchill, 1968). But due to their 

harmful effects to the environment and other organisms, many of the chemicals used in 

these studies have been taken off the market (Sutton et al. 2000). This led to research of 

other methods such as the use of urea or biological control (Sutton et al. 2000; 

Rosenberger, 2003). Biological control using fungi that are antagonistic to ascospore 

production has shown promise, but field efficacy, registration, commercialization, and 

costs have been major obstacles in the practicality of these products (Rosenberger, 2003). 

Thus urea, with its relatively low application costs and accessibility to growers, is a more 

suitable product (Vincent et al. 2004). 
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 Urea is a synthetic nitrogen fertilizer that promotes litter decomposition and 

inhibits V. inaequalis pseudothecia development by maintaining high nitrogen content in 

the leaves (Beresford et al. 2000; Sutton et al. 2000). Unfortunately, as urea is a 

synthesized compound, organic growers are not permitted to use it in their management 

programs. This reduces apple scab management options exclusively removal or shredding 

the leaf litter (Gomez et al. 2007). As described above, these methods are often time 

consuming and difficult to implement (Vincent et al. 2004). And as a consequence, 

organic orchards often have poor primary scab management, resulting in epidemics (Holb 

et al. 2005). This high disease pressure may ultimately reduce the efficacy of summer 

management techniques, leading to management failures and consequently causing major 

economic loss (Jamar, 2011). 

In conventional orchards, where urea is permitted, treatments may be applied 

before or after leaf-fall after harvest (Beresford et al. 2000). It is important when applying 

urea to understand that applications made before leaf-fall can have adverse effects to the 

health of the tree as additional nitrogen may prolong the growth period of the tree, 

ultimately delaying the hardening of the tissues (Rosenberger, 1996; Schupp et al. 2001). 

This exposes the plant tissue to lower temperatures, which can increase the cold damage 

to the buds and consequently affects the following season’s yield (Wood and Beresford, 

2000; Schupp et al. 2001). Alternatively, urea can be applied to the orchard floor after 

leaves have abscised from the tree (Beresford et al. 2000). Issues with ground 

applications include inadequate coverage and reduced efficacy if the ground freezes soon 

after the treatment is applied (Ciecierski et al. 1995; Rosenberger, 1996; Mac an tSoir et 

al. 2010).   

 These factors highlight limitations in primary inoculum management of apple 

scab in both organic and conventionally managed orchards. Therefore, research that 

explores new compounds that can be used in organic orchards and research that focuses 

on improving the limitations of ground applications of urea is necessary. Specifically 

compounds that increase the coverage and penetration of urea from a sanitation 

standpoint are necessary. One potential solution for improving or potentially substituting 

for urea applications involves utilizing adjuvants. Adjuvants are “materials that are added 
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to a tank mix to aid or modify the action of an agrichemical, or physical characteristics of 

the mixture” (American Society for Testing and Materials ASTM, 1999). Adjuvants have 

been found to increase the spread, retention, penetration, and over all spray efficiency of 

materials being applied to plant surfaces (Percich and Nickelson, 1982; Steurbaut, 1993; 

Thompson et al. 1996; Gent et al. 2003).  

 The addition of adjuvants may work synergistically with urea to increase urea-

driven decomposition of the leaves and reduce primary inoculum of V. inaequalis 

(Burchill and Swait, 1977). To date, no studies have explored the effect of adjuvants in 

combination with urea on urea-driven leaf litter decomposition and inoculum reduction. 

Additionally, it has yet to be explored if organic adjuvants may be comparable 

alternatives to urea for use in organic orchards. This demonstrates the need to identify if 

the incorporation of adjuvants with urea or adjuvants alone could reduce leaf litter and 

primary inoculum of V. inaequalis.  

 

3.2 Materials and Methods 

 

 Adjuvants were tested for their ability to improve urea-driven leaf litter 

decomposition of scab-infected leaves and pseudothecia reduction of V. inaequalis (Table 

3.1). Scab-infected leaves were collected from apple trees then placed on the orchard 

floor to overwinter after treatments were made. Concentrations of all adjuvants were 

based on recommended rates on commercial product labels. In congruence with the 

literature, a 5% urea (Urea, Granular 46-0-0) solution was used (Sutton et al. 2000). 

 

3.2.1 Field tests 

 

 In the fall of 2013, a preliminary study was conducted to test the effect of 

adjuvants when combined with urea to reduce the primary inoculum of V. inaequalis. 

This study was performed in field plots at Meig’s Farm, at the Throckmorton Purdue 

Agricultural Center in Lafayette, IN. Treatment blocks were set up in a randomized 
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complete block design in a 5-yr-old block of McIntosh (Malus domestica ‘McIntosh’) 

apple trees on B9 rootstocks planted in Toronto-Millbrook soil (soil pH: 6.7). McIntosh 

trees were planted 3-m apart with 5-m between each row in a 0.2-ha field containing 80 

trees. Naturally infected McIntosh leaves were used for this study. Data from this study 

were acquired and analyzed in the spring of 2014 and henceforth will be referred to as the 

2014 trial. In the fall of 2014, a larger study was conducted in the same field plot. The 

treatment blocks were expanded to include two rows of the 5-yr-old McIntosh apple trees 

containing B9 and Elma 26 rootstocks. Naturally-infected McIntosh leaves and Gala 

(Malus domestica ‘Gala’) leaves were used for this study. Data from this study were 

aquired and analyzed in the spring of 2015 and henceforth will be referred to as the 2015 

trial. 

  

3.2.2 Experimental design 

 

 The 2014 trial the treatment blocks were arranged in a randomized complete 

block design of 10 treatments with 4 replications containing 10 leaves each, with a total 

of 400 leaves. The 2015 trial the treatment blocks were arranged in a randomized 

complete block design of 10 treatments with 4 replications each containing 50 leaves. 

This design was applied to both McIntosh and Gala leaves, with a total of 2,000 

McIntosh leaves and 2,000 Gala leaves.  

 

3.2.3 Sanitation treatments 

 

 In the 2014 trial, 400 scab-infected McIntosh leaves were collected after harvest. 

On 13 October 2013, all scab-infected leaves were immersed in their respective 

treatments for 10 seconds and then placed under wire mesh for overwintering on the 

orchard floor. At the time of treatment application, the temperature was 20˚C and after 

the trial began, no precipitation was recorded until 24 October (0.28 cm). In the 2015 trial, 

2,000 scab-infected McIntosh leaves and 2,000 scab-infected Gala leaves were collected 
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after harvest. On 23 October 2014, all scab-infected leaves were immersed in their 

respective treatments for 10 seconds and then placed under wire mesh for overwintering 

on the orchard floor. At the time of treatment application, the temperature was 17˚C and 

after the trial began, rain was recorded on 24 October (0.05 cm), 28 October (0.84 cm), 

and 31 October (0.51 cm). For both years, an additional 100 untreated leaves were 

overwintered similarly to serve as a check group.  

 

3.2.4 Quantifying the leaf litter 

 

 For both years, all overwintered leaves were collected in the spring (April to May) 

and scanned on a flat bed scanner connected to a PC. A digital image assessment program 

(Image J, Rasband 1997-2014) was used to quantify leaf litter area associated with each 

replication of each treatment. In the 2014 trial, the degradation of leaf litter was 

determined by comparing the area of all leaves recovered from the wire mesh after 

overwintering. In the 2015 trial, leaves were scanned before and after overwintering on 

the orchard floor to analyze total leaf percent area lost. 

 

3.2.5 Assessing pseudothecia and ascospore development 

 

 For the 2014 trial, assessment of pseudothecia and ascospore development began 

when the first ascospore discharge was microscopically observed from untreated check 

leaves. Total amount of pseudothecia present on leaves in all treatments were counted 

and recorded from each replicate. Throughout May of 2014, eight randomly selected 

pseudothecia from each replicate, totaling 32 pseudothecia per treatment, were removed, 

crushed on glass microscope slides, and inspected for ascospore development. The 

number of pseudothecia selected per treatment was chosen to eliminate possible 

treatment bias as one treatment only had 32 pseudothecia present. Asci and ascospore 

development were assessed using a modified version of the rating system published by 

Gadoury and MacHardy (1982). The modified version of asci and ascospore development 
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involved a 1-5 scale where 1= no asci; 2= asci with no developed ascospores; 3= asci 

with 1-50% developed ascospores; 4= asci with more than 50% developed ascospores; 

and 5= mature ascospores. Rankings were then used to determine the percentage of fertile 

pseudothecia per treatment by counting the number of pseudothecia with a rank of 3 or 

higher and dividing that value by the total number of pseudothecia assessed per treatment. 

For the 2015 trial, when 50% of pseudothecia in the untreated check group were 

producing mature ascospores (9 April), all leaves were collected and stored at 4°C. 

Collection differed from the 2014 trial due to the larger number of sampled leaves in the 

2015 trial. In the 2015 trial 25 pseudothecia from each of the four replicates were 

arbitrarily selected for the asci/ascospore development ratings. Total number of 

pseudothecia, asci/ascospore development, and consequently percentage of fertile 

pseudothecia were assessed similar to the 2014 trial. 

 

3.2.5 Statistical analysis 

 

 In both 2014 and 2015 trials, leaf area data were averaged within treatments and 

analyzed with a one-way ANOVA using a generalized linear model procedure (PROC 

GLM) of SAS v9.3 (SAS Institute). Means were separated according to Fisher’s 

protected LSD test at P=0.05 using SAS v9.3 (SAS Institute). Total pseudothecia data 

were averaged within means, subjected to log transformation (logx+1), and analyzed with 

a one-way ANOVA using a generalized linear model procedure (PROC GLM) of SAS 

v9.3 (SAS Institute). Means were separated using a Fisher’s protected LSD test at P=0.05 

using SAS v9.3 (SAS Institute). 

 

3.3 Results 

 

 Naturally infected leaves collected for both trial years all had greater than 20% 

scab severity in the fall. Weather during the experiment (October to May) was relatively 
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similar between the years (Fig. 3.1). Though in the 2015 the month of treatment 

application (October) had much more rain recorded than the 2014 trial (Fig. 3.1). 

  

3.3.1 2014 trial results 

 

 Visual inspection of scanned images (Fig 3.2) suggested that select adjuvants 

enhanced leaf litter decomposition. However, none of the adjuvant/urea combinations 

resulted in a statistically significant reduction in the leaf litter compared to urea alone 

(Fig. 3.3A). With the exception of Latron B-1956 alone, all adjuvants alone reduced the 

leaf litter compared to urea alone (Fig. 3.3A). Adjuvants when combined with urea did 

not significantly reduce the amount of pseudothecia compared to urea alone (Fig. 3.3B). 

Li700 alone was comparable to urea in reducing pseudothecia numbers (Fig. 3.3B). 

Li700 plus urea, Bond Max plus urea, and Wet Betty plus urea all significantly reduced 

the percentage of fertile pseudothecia compared to urea alone (Fig. 3.3C). Most notable is 

the result that when Bond Max and Wet Betty were added to urea, asci were not 

developed (0% fertile pseudothecia, Fig. 3.3C, 3.4). 

 

3.3.2 2015 trial results 

 

Leaf litter decomposition differed slightly between apple cultivars. For McIntosh, 

all adjuvants alone reduced the leaf litter as well as urea alone (Fig. 3.5A). Li700 plus 

urea and Wet Betty plus urea significantly reduced the leaf litter compared to urea (Fig. 

3.5A). For Gala, all adjuvants except Latron B-1956 reduced the leaf as well as urea 

alone (Fig. 3.5B). Li700 plus urea, Bond Max plus urea, and Wet Betty plus urea 

significantly reduced the leaf litter compared to urea alone (Fig. 3.5B). For both 

McIntosh and Gala cultivars, all adjuvants in combination with urea reduced the number 

of pseudothecia compared to urea alone (Fig. 3.5C,D). For McIntosh, only Latron B-1956 

reduced the number of pseudothecia as well as urea alone (Fig. 3.5C). Wet Betty when 

combined with urea significantly decreased the number of pseudothecia more than the 
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other adjuvant and urea combinations (Fig. 3.5C). For Gala, only Bond Max alone was 

comparable to urea in reduction of number of pseudothecia (Fig. 3.5D). For both cultivars 

Li700 plus urea, Bond Max plus urea, and Wet Betty plus urea decreased the percentage 

of fertile pseudothecia greater than urea alone (Fig. 3.5E,F). For Gala, Li700, Latron B-

1956, and Wet Betty alone reduced the percentage of fertile pseudothecia as well as urea 

alone (Fig. 3.5F).   

 

3.4 Discussion 

 

 Though the preliminary study conducted in 2014 lacked statistical significance, 

likely due to the small sample size, the visual data suggests that the incorporation of 

adjuvants to urea may improve apple scab management. The larger study performed in 

2015 found that select adjuvants have the potential to hasten urea-driven leaf litter 

decomposition and reduction of V. inaequalis inoculum. Most notably, adjuvants Wet 

Betty or Li700 when combined with urea significantly increased leaf decomposition and 

reduced number and fertility of pseudothecia. Wet Betty and Li700 are classified as 

penetrants, which means they induce movement of chemicals into plant tissue (Hazen, 

2000). Because urea is effective at decomposing leaves and inhibiting pseudothecia 

development due to maintaining high nitrogen content in the leaves (Beresford et al. 

2000; Sutton et al. 2000), increasing penetration of urea into leaves would enhance 

treatment efficacy. It was shown by Leece and Dirou (1977), that an organosilicone 

surfactant with penetrant qualities increased the penetration of urea into leaves, which 

resulted in a 15% higher nitrogen content in leaves compared to adjuvants without 

penetrant qualities.  

 Increased nitrogen content in leaves could be only one reason why Wet Betty and 

Li700 had the most significant effect on urea. Temperature may have played a role in 

differentiating adjuvant effects on urea-driven leaf litter decomposition and inoculum 

reduction. In both years the average temperature was low, with temperatures falling 

below 0°C within three weeks of initiation of the field tests. Urea treatments are 

ineffective if the ground freezes too soon after application (Rosenberger, 1996; Sutton et 
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al. 2000; Mac an tSoir et al. 2010). This may have slowed the leaf litter decomposition or 

reduced microbial populations that are antagonistic to V. inaequalis (Ciecierski et al. 

1995), rendering treatments that did not significantly increase nitrogen content ineffective. 

Thus the penetrant adjuvants may have increased uptake of urea and maximized the 

treatment efficacy before the ground froze. 

 Unexpected, but interesting, results in this study were that adjuvants were 

comparable to urea alone in reducing leaf litter and pseudothecia development. Burchill 

and Swait (1977) found similar results using anionic, ionic and cationic surfactants to 

reduce V. inaequalis ascospore dose. Their effect on inoculum reduction was attributed to 

the increase in leaf litter decomposition (Burchill and Swait, 1977). It may be 

hypothesized that certain adjuvants work synergistically with soil microorganisms that 

decompose leaves and are antagonistic to V. inaequalis. More information regarding the 

method in which adjuvants do this is needed to better understand these results.  

 Among other adjuvants, Wet Betty was comparable to urea in both years. In fact, 

in 2015, Wet Betty alone decomposed McIntosh leaf litter to a greater extent than urea 

(Fig. 3.4C). Since Wet Betty is an organic adjuvant, these results suggest that this 

adjuvant could be an acceptable alternative to urea applications in organic orchards. 

These findings are consistent with observations reported by Bengsston et al. (2009) that 

found yucca, a plant extract and the active ingredient in Wet Betty, significantly reduced 

germination and penetration of conidia of V. inaequalis in apple leaves. The authors did 

note that yucca had a lesser effect on post-penetration stages, such as stroma formation 

(Bengsston et al. 2009). Since pseudothecia eventually develop from stroma (MacHardy 

et al. 2001), this could explain why Wet Betty had a lesser effect on pseudothecia 

reduction in comparison to leaf litter decomposition. The greater effect on leaf litter 

reduction could also be due to the organic plant material present in Wet Betty promoting 

microorganism populations in the soil that decompose leaf litter. However, this is 

speculative and more research into this method is needed to better understand the benefits 

of using Wet Betty in organic orchards.  

 Overall, the addition of certain adjuvants, such as Wet Betty or Li700, to urea 

may reduce the initial inoculum of V. inaequalis, which could potentially delay an apple 
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scab epidemic (Gadoury and MacHardy 1986). A delay of a scab epidemic may have 

several benefits to apple disease management. First by postponing the initial infection 

past the point when apples and leaves are most susceptible to V. inaequalis (Rosenberger 

and Cox 2012), and secondly, a delay in a scab epidemic could save fungicide sprays 

(Gadoury and MacHardy 1986; MacHardy et al. 1993). Delaying infection past the point 

of high susceptibility would decrease primary and consequently secondary infections 

(Rosenberger and Cox 2012). This would decrease disease incidence during the growing 

season and potentially reduce fungicides needed for adequate scab management 

throughout the summer (Rosenberger and Cox 2012).  

Delaying an apple scab epidemic would be important to growers who own high 

inoculum orchards because these growers typically need to begin fungicide applications 

earlier and use higher rates of fungicides throughout the season (Rosenberger and Cox 

2012). If these growers rely on captan for scab management during the season, they may 

run the risk of exceeding the ten applications at a 4.5 kg/ha rate per season restriction that 

is set on captan (Rosenberger 2009). Therefore, the incorporation of select adjuvants with 

urea could decrease the management problems associated with high inoculum orchards 

by postponing the initial infection of V. inaequalis and reducing the primary and 

consequently secondary inoculum. This would reduce disease pressure and decrease the 

need for frequent applications of high rates of fungicides. Ultimately this may allow 

growers to use restricted fungicides, like captan, all season and still maintain adequate 

control. 

  



 

 

82 

Bibliography 

 

American Society for Testing and Materials (ASTM). 1999. Standard terminology 

relating to agricultural tank mix adjuvants. Annual Book of ASTM Standards. Ed 

1519-95. 11(05):905-906. 

 

Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., and Parr-

Dobrzanksi, B. 2002. The strobilurin fungicides. Pest Manag. Sci. 58:649-662. 

 

Bengtsson, M., Wulff, E. Lyngs Jørgensen, H.J., Pham, A., Lübeck, M., and Hockenhull, 

J. 2009. Comparative studies on the effects of yucca extract and acibenzolar-S-methyl 

(ASM) on inhibition of Venturia inaequalis in apple leaves. Eur. J. Plant. Pathol. DOI 

10.1007/s10658-008-9405-z. 

 

Beresford, R.M., Horner, I.J. and Wood, P.N. 2000. Autumn-applied urea and other 

compounds to suppress Venturia inaequalis ascospore production. New Zealand Plant 

Protection. 53:387-392. 

 

Burchill, R.T. 1968. Field and laboratory studies of the effect of urea on ascospore 

production of Venturia inaequalis (Cke) Wint. Ann. Appl. Biol. 62:297-307. 

 

Burchill, R.T. and Swait, A.A.J. 1977. Eradication of the perithecia stage of apple scab 

with surfactants. Ann. Appl. Biol. 87:229-231. 

 

Ciecierski, W., Cimanowski, J. and Bielenin, A. 1995. Effect of urea application on 

ascospore production of Venturia inaequalis. Int. Conf. on Integrated Fruit 

Production 422:395-396. 

 

Gadoury, D.M., and MacHardy, W.E. 1982. Preparation and interpretation of squash 

mounts of pseudothecia of Venturia inaequalis. Phytopathology. 72:92-95. 



 

 

83 

Gadoury, D.M., and MacHardy, W.E. 1986. Forecasting ascospore dose of Venturia 

inaequalis in commercial apple orchards. Phytopathology. 76:112-118. 

 

Gent, D. H., Schwartz, H. F., and Nissen, S. J. 2003. Effect of commercial adjuvants on 

vegetable crop fungicide coverage, absorption, and efficacy. Plant Dis. 87:591-597. 

 

Goldsworthy, M.C., Dunegan, J.C. and Wilson, R.A. 1949. Control of apple scab by 

ground and tree applications of eradicant fungicides. Plant Dis. Rep. 33:312-318. 

 

Hazen, J. L. 2000. Adjuvants: Terminology, classification, and chemistry. Weed Tech. 

14(4):773-784. 

 

Holb, I.J., Heijne, B., Withagen, J.C.M., Gall, J.M., and Jerger, M.J. 2005. Analysis of 

summer epidemic progress of apple scab at different applr production systems in the 

Netherlands and Hungary. Phytopath. 95:1001-1020. 

 

Jamar, L. 2011. Innovative strategies for the control of apple scab (Venturia inaequalis 

[Cke.] Wint.) in organic apple production. Doctoral thesis. Agricultural Sciences and 

Biological Engineering, Universite de Liège, Belgium. 

 

Jones, A. L. and Walker, R. J. 1976. Tolerance of Venturia inaequalis to dodine and 

benzimidazole fungicides in Michigan. Plant Dis. Rep. 60:40-44. 

 

Kadow, K.J. and Hopperstead, S.L. 1941. Ground sprays aid in control of apple scab. 

(Abstr.) Phytopathology 31:13. 

 

Keitt, G.W. 1930. Fall applications of fungicides in relation to apple-scab control. 

(Abstr.) Phytopathology 20:122. 



 

 

84 

Köller, W., Parker, D. M., Turechek, W. W., Avila-Adame, C., and Cronshaw, K. 2005. 

A two-phase resistane response to Venturia inaequalis populations to the QoI 

fungicides kresoxim-methyl and trifloxystrobin. Plant Dis. 88:537-544. 

 

Kuck, K. H., Scheinpflug, H., and Pontzen, R. 1995. DMI fungicides. 205-258 in: 

Modern selective fungicides, 2nd ed. H. Lyr, ed. Gustav Fischer Verlag, Jena, 

Germany. 

 

Leece, D.R. and Dirou, J.F. 1997. Organosilicone and alginate adjuvants evaluated in 

urea sprays foliar-applied to prune trees. Communications in Soil Science and Plant 

Analysis. 8(2):169-176. 

 

Mac an tSoir, S. Cooke, L.R. and Mc Cracken A.R. 2010. The effects of leaf litter 

treatments, post-harvest urea and ommision of early season fungicide sprays on 

overwintering of apple scab on Bramley’s Seedling grown in a maritime environment. 

Irish Journ. of Agric. and Food Research. 49:55-66.  

 

MacHardy, W.E., Gadoury, D.M., and Rosenberger, D.A. 1993. Delaying the onset of 

fungicide programs for control of apple scab in orchards with low potential ascospore 

dose of Venturia inaequalis. Plant Dis. 77:372-375.  

 

MacHardy, W.E. 1996. Apple Scab: Biology, Epidemiology, and Management. American 

Phytopathological Society, St. Paul. MN. 

 

MacHardy, W. E., Gadoury, D. M., and Gessler, C. 2001. Parasitic and biological fitness 

of Venturia inaequalis: relationship to disease management strategies. Plant Dis.  

85(10):1036-1051. 

 

 



 

 

85 

McKay, A.H., Hagerty, G. C., Follas, G. B., Moore, M.S., Christie, M.S., and Beresford, 

R.M. 2011. Succinate dehydrogenase inhibitor (SDHI) fungicide resistance 

prevention strategy. New Zealand Plant Protection, 64, 119-124.Meszka, B. and 

Bielenin. 2006. Non-chemical possibilities for control of apple fungal diseases. 

Phytopathol. Pol. 39:63-70. 

 

Nicholson, R.L. and Beckerman, J.L. 2008. Towards a sustainable, integrated 

management of apple diseases. Integrated Management of Diseases Caused by Fungi, 

Phytoplasma, and Bacteria. Ed. By Ciancio A and Mukerji KF. Springer, New York, 

NY. Pp 27-42. 

 

Percich, J. A. and Nickelson, L. J. 1982. Evaluation of several funcidies and adjuvant 

materials for control of brown spot of wild rice. Plant Dis. 66:1001-1003. 

 

Rasband, W.S., Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/, 1997-2014. 

 

Rosenberger, D. 1996. A correction and a caution on postharvest urea sprays to control 

scab. Scaffolds Fruit Journal, Geneva, NY, Vol. 5. 

 

Rosenberger, D. 2003. Factors Limiting IPM-Compatibility of New Disease Control 

Tactics for Apples in Eastern United States. Plant Health Program. Available 

http://www.plantmanagementnetwork.org/pub/php/review/2003/ipm/ 

 

Rosenberger, D. 2009. Weak links in current apple disease control strategies. (Abstr.) 

Great Lakes Fruit Workers Meeting, Hudson Valley, New York. 

 

Rosenberger, D. and Cox, K. 2012. Managing apple scab in high inoculum orchards. 

Fruit Notes. 77:16-19. 

 



 

 

86 

Russell, P. E. 1995. Fungicide resistance: Occurrence and management. J. Agric. Sci. 

124:317-323. 

 

Schupp, J., Cheng, L., Stiles, W.C., Stover, E., and Iungerman, K. 2001. Mineral 

nutrition as a factor in cold tolerance of apple trees. New York Fruit Quarterly, 

9(3):17-20. 

Steurbaut, W. 1993. Adjuvants for use with foliar fungicides. Pestic. Sci. 38:85–91. 

 

Sutton, T. B. 1990. Apple Scab. Pages 6-8 in: Compendium of apple and pear diseases. 

A. L. Jones and H.S. Aldwinckle eds. American Phytopathological Society, St. Paul, 

MN.  

 

Sutton, D.K., MacHardy, W.E., and Lord, W.G. 2000. Effects of shredding or treating 

apple leaf litter with urea on ascospore dose of Venturia inaequalis and disease 

buildup. Plant Dis. 84:1319-1326. 

 

Szkolnik, M., and Gilpatrick, J. D. 1969. Apparent resistance of Venturia inaequalis to 

dodine in New York apple orchards. Plant Dis. Rep. 53:861-864. 

 

Thompson, W. M., Nissen, S. J., and Master, R. A. 1996. Adjuvant effects on 

imazethapyr, 2,4-D and picloran absorption by leafy spurge (Euphorbia esula). 

Weed Sci. 44:469-475. 

 

Vincent, C., Rancourt, B., and Carisse, O. 2004. Apple leaf shredding as a non-chemical 

tool to manage apple scab and spotted tentiform leafminer. Agr. Eco. and Environ. 

104:595-604. 

 

Wood, P.N. and Beresford, R.M., 2000. Avoiding apple bud damage from autumn- urea 

for black spot (Venturia inaequalis) control. N.Z. Plant Prot. 53: 382.  

  



 

 

87 

3.5 Tables and Figures 
 
Table 3.1: List of materials used in this study to reduce V. inaequalis inoculum. 

Trade 
name 

Active ingredient Concentration
/379 L 

Manufacturer Classification 

Urea, 
Granular  
46-0-0 

Nitrogen 20 kg Agrium Fertilizer 

Li700 Phosphatidylcholine, 
methylacetic acid, and 
alkyl polyoxyethylene 
ether 

0.3 L Loveland 
Industries 

Acidifier, 
penetrant, drift 
reduction 

Bond 
Max 

Alcohol ethoxylate, 
1,2-propanediol, and 
synthetic latex 

0.4 L Loveland 
Industries 

Spreader-
sticker, 
deposition aid 

Latron 
B-1956 

Modified phthalic 
glycerol alkyd resin 

0.3 L Simplot Grower 
Solutions LLC 

Spreader-sticker 

Wet 
Betty 

Yucca extract, saponin 0.7 L Advanced 
Nutrients 

Organic, wetter, 
spreader, 
penetrant 
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Figure 3.1: Average monthly high, mean, and low temperatures (˚C) and total monthly 

precipitation (cm) throughout the experiments conducted in A, 2014-15 and B, 2014-15. 

Weather data were collected by the Meig’s Weather Station at the Throckmorton-Purdue 

Agricultural Center. 
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Figure 3.2: Images showing the leaf litter degradation of 40 leaves per treatments in 

response to various adjuvant and urea treatments in 2014. Treatments are A, Water; B, 

Li700; C, Bond Max; D, Latron B-1956; E, Wet Betty; F, Urea; G, Li700 + urea; H, 

Bond Max + urea; I, Latron B-1956 + urea; and J, Wet Betty + urea. 
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Figure 3.3: Effect of adjuvants on A, leaf area of overwintered scab-infected McIntosh 

leaves, B, V. inaequalis pseudothecia present in sampled leaves, and C, percent fertile 

pseudothecia on scab-infected McIntosh leaves overwintered at Meig’s Farm, at the 

Throckmorton Purdue Agricultural Center in Lafayette, IN, 20141. 
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Figure 3.4: Micrographs showing the development of the pseudothecia and ascospores of 

the fungus Venturia inaequalis in response to various adjuvant and urea treatments in 

2014. Treatments are A, Water; B, Li700; C, Bond Max; D, Latron B-1956; E, Wet 

Betty; F, Urea; G, Li700 + urea; H, Bond Max + urea; I, Latron B-1956 + urea; and J, 

Wet Betty + urea. 
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Figure 3.5: Effect of adjuvants on percent leaf area of overwintered of A, scab-infected 

McIntosh leaves and B, scab-infected Gala leaves, on V. inaequalis pseudothecia present 

in sampled in C, scab-infected McIntosh leaves and D, scab-infected Gala leaves, and 

percent fertile pseudothecia on E, scab-infected McIntosh leaves and F, scab-infected 

Gala leaves overwintered at Meig’s Farm, Throckmorton Purdue Agricultural Center in 

Lafayette, IN, 20151. 
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Figures 2.1; 2.2; 2.3; 2.4; 2.5; 
1 Data was subject to arcsin transformation before statistical analysis and are displayed as 

back transformed units of means. Treatments denoted with the same letter are not 

significantly different at P=0.05 as determined by a Fisher's Protected LSD test 

performed after a one-way ANOVA. 
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Figures 3.1; 3.2; 
1 Number of pseudothecia data was subject to log transformation before statistical 

analysis and are displayed as back transformed units of means. Percent fertile 

pseudothecia was subject to arcsin transformation before statistical analysis and are 

displayed as back transformed units of means. Treatments denoted with the same letter 

are not significantly different at P=0.05 as determined by a Fisher's Protected LSD test 

performed after a one-way ANOVA.  
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Table A1: Effect of adjuvants and captan on apple scab (V. inaequalis), bitter rot 

(Colletotrichum spp.), and phytotoxicity incidence and severity on Golden Delicious and 

Honeycrisp apples at Meig’s Farm, at the Throckmorton Purdue Agricultural Center in 

Lafayette, IN, 2013. 

  Scab Bitter rot Phytotoxicity 
Cultivar 

Treatment Timingz 
% 

incidence 
% 

severity 
% 

incidence 
% 

severity 
% 

incidence 
% 

severity 
Golden Delicious        

No treatment --- 2.2ayx 1.0a 2.6a 5.0b 0.0 0.0 
Captan  1C->11C 0.6a 1.0a 1.8a 22.5b 0.0 0.0 
Li700 1C->11C 4.7a 1.5a 5.7a 3.8b 3.3a 10.0a 
Bond Max 1C->11C 0.0a 0.0a 3.3a 5.0b 3.3a 10.0a 
Attach 1C->11C 5.0a 3.0a 0.6a 5.0b 15.0b 6.7a 
Latron B-1956 1C->11C 3.3a 2.8a 3.5a 8.3b 3.3a 10.0a 

Captan plus:        
Li700 1C->11C 2.0a 1.0a 1.3a 5.0b 6.0a 12.5a 
Bond Max 1C->11C 3.9a 3.7b 1.7a 3.5a 7.5a 6.3a 
Attach 1C->11C 1.5a 2.3a 2.8a 4.7b 15.6b 10.8a 
Latron B-1956 1C->11C 0.8a 5.0b 0.0a 0.0a 18.0b 12.5a 

Honeycrispw        
No treatment --- 0.0a  0.0a 1.5b 10.0b 0.0 0.0 
Captan  1C->8C 0.0a 0.0a 0.0a 0.0a 0.0 0.0 
Li700 1C->8C 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 
Bond Max 1C->8C 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 
Attach 1C->8C 0.0a 0.0a 1.0a 40.0b 0.0a 0.0a 
Latron B-1956 1C->8C 0.1a 0.5a 0.0a 0.0a 0.0a 0.0a 

Captan plus:        
Li700 1C->8C 0.0a 0.0a 0.0a 0.0a 0.0a 0.0a 
Bond Max 1C->8C 0.1a 0.2a 1.0a 10.0b 0.4a 4.0b 
Attach 1C->8C 0.1a 1.0a 0.0a 0.0a 0.8a 3.8b 
Latron B-1956 1C->8C 0.0a 0.0a 0.0a 0.0a 0.2a 1.5b 

 z Treatments applied: 1C (1st cover) = 24 May; 2C (2nd cover) = 4 Jun; 3C (3rd cover) = 
17 Jun; 4C (4th cover) = 28 Jun; 5C (5th cover) = 11 Jul; 6C (6th cover) = 23 Jul; 7C (7th 
cover) = 6 Aug; 8C (8th cover) = 16 Aug; 9C (9th cover) = 30 Aug; 10C (10th cover) = 13 
Sept; 11C (11th and final cover) = 25 Sept. 
y All data are displayed as means and were subject to arcsin transformation prior to 
statistical analysis using the statistical software SAS 9.3 
x Column numbers followed by the same letter are not significantly different at P=0.05 as 
determined by Fisher's Protected LSD test performed after a one-way ANOVA.  
wHoneycrisp apple scab, bitter rot, and phytotoxicity incidence means are count data not 

percentages.
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Table A2: Effect of adjuvants and captan on apple scab (V. inaequalis), bitter rot 

(Colletotrichum spp.), and phytotoxicity incidence and severity on Golden Delicious and 

Honeycrisp apples at Meig’s Farm, at the Throckmorton Purdue Agricultural Center in 

Lafayette, IN, 2014. 

  Scab Bitter rot Phytotoxicity 
Cultivar 

Treatment Timingz 
% 

incidence 
% 

severity 
% 

incidence 
% 

severity 
% 

incidence 
% 

severity 
Golden Delicious        

No treatment --- 100.0dyx 73.4d 6.7c 2.5b 0.0 0.0 
Captan  B->10C 36.9b 8.9b 0.8abc 0.2a 0.0 0.0 
Li700 B->10C 99.9d 51.9c 1.0abc 0.2a 0.0a 0.0a 
Bond Max B->10C 100.0d 57.7c 4.8bc 0.9ab 0.0a 0.1ab 
Attach B->10C 100.0d 55.9c 6.1c 0.7ab 0.0a 0.0a 
Latron B-1956 B->10C 99.8d 46.9c 0.6abc 0.1a 0.3a 0.0a 

Captan plus:        
Li700 B->10C 11.0a 1.7a 0.1a 0.0a 4.8b 0.6bc 
Bond Max B->10C 18.2a 1.3a 0.1a 0.0a 4.7b 0.9c 
Attach B->10C 74.9c 11.2b 0.1a 0.1a 1.0ab 0.3abc 
Latron B-1956 B->10C 19.4a 1.0a 0.4ab 0.0a 3.6b 0.5bc 

Honeycrisp        
No treatment --- 4.7d 0.1 43.1b 9.6cd 0.0 0.0 
Captan  B->8C 0.1abc 0.0 8.3a 4.2ab 0.0 0.0 
Li700 B->8C 4.2d 0.1 30.5b 11.9cd 0.3a 0.3a 
Bond Max B->8C 2.5cd 0.1 44.5b 25.7d 0.3a 0.3a 
Attach B->8C 3.6d 0.3 45.0b 20.8cd 0.4ab 0.1a 
Latron B-1956 B->8C 1.9abc 0.1 35.3b 18.6ab 0.4ab 0.4ab 

Captan plus:        
Li700 B->8C 0.0a 0.0 1.5a 0.3a 1.2abc 0.4ab 
Bond Max B->8C 0.0a 0.0 2.7a 1.0a 2.1bc 1.4b 
Attach B->8C 0.0a 0.0 5.6a 5.1ab 1.0abc 0.5ab 
Latron B-1956 B->8C 0.0a 0.0 9.3a 4.1ab 3.0c 0.7ab 

z Treatments applied: B (bloom) = 30 Apr; PF (petal fall) = 12 May; 1C (1st cover) = 22 
May; 2C (2nd cover) = 5 Jun; 3C (3rd cover) = 18 Jun; 4C (4th cover) = 2 Jul; 5C (5th 
cover) = 14 Jul; 6C (6th cover) = 25 Jul; 7C (7th cover) = 8 Aug; 8C (8th cover) = 19 Aug; 
9C (9th cover) = 2 Sept; 10C (10th and final cover) = 16 Sept. 
y All data are displayed as means and were subject to arcsin transformation prior to 
statistical analysis using the statistical software SAS 9.3.  
x Column numbers followed by the same letter are not significantly different at P=0.05 as 

determined by Fisher's Protected LSD test performed after a one-way ANOVA. 
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Table A3: Effect of adjuvants and captan on apple scab (V. inaequalis), bitter rot 

(Colletotrichum spp.), and phytotoxicity incidence and severity on Honeycrisp apples at 

Meig’s Farm, at the Throckmorton Purdue Agricultural Center in Lafayette, IN, 2015.  

  Scab Bitter rot Phytotoxicity 
         

Treatment Timingz 
% 

incidence 
% 

severity 
% 

incidence 
% 

severity 
% 

incidence 
% 

severity 
No treatment --- 2.7a 0.2abc 52.3f 29.0d 0 0 
Captan  B->9C 2.4a 0.2abc 24.5cde 20.4bcd 0 0 
Li700 B->9C 1.0a 0.2abc 49.9f 26.4cd 0.1ab 0.0ab 
Bond Max B->9C 1.7a 0.4bc 33.1def 22.3bcd 0.0a 0.0a 
Attach B->9C 2.2a 0.1abc 38.7def 24.2bcd 0.0a 0.0a 
Latron B-1956 B->9C 2.7a 0.7c 47.4ef 31.2d 0.4abc 0.1ab 

Captan plus:        
  Li700 B->9C 0.8a 0.1ab 4.0ab 4.2a 0.4abc 0.1ab 
Bond Max B->9C 0.1a 0.0a 3.3a 2.4a 1.4bc 0.2b 
Attach B->9C 0.5a 0.1abc 19.0bcd 11.5abc 0.1ab 0.1ab 
Latron B-1956 B->9C 0.0a 0.0a 9.6abc 2.4a 1.5c 0.2b 

z Treatments applied: B (bloom) = 23 Apr; PF (petal fall) = 6 May; 1C (1st cover) = 19 
May; 2C (2nd cover) = 19 May; 3C (3rd cover) = 9 Jun; 4C (4th cover) = 23 Jun; 5C (5th 
cover) = 2 Jul; 6C (6th cover) = 16 Jul; 7C (7th cover) = 30 Jul; 8C (8th cover) = 11 Aug; 
9C (9th cover) = 24 Aug. 
y All data are displayed as means and were subject to arcsin transformation prior to 
statistical analysis using the statistical software SAS 9.3.  
x Column numbers followed by the same letter are not significantly different at P=0.05 as 

determined by Fisher's Protected LSD test performed after a one-way ANOVA. 
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Table A4: Effect of adjuvants on urea-driven reduction of V. inaequalis pseudothecia and 

urea-driven leaf litter decomposition of scab-infected McIntosh leaves at Meig’s Farm, at 

the Throckmorton Purdue Agricultural Center in Lafayette, IN, 2014. 

Treatment No. pseudotheciaz Leaf area (cm2)y 

Control (H2O) 145ax 286.86a 
Urea  10de 85.73cde 
Li700 15cd 169.11bc 
Bond Max 19b 137.85bcd 
Latron B-1956 39b 199.16ab 
Wet Betty 18bc 119.94bcde 

Urea plus:   
Li700 11e 30.54e 
Bond Max 13e 40.49e 
Latron B-1956 11de 63.89de 
Wet Betty 5e 24.95e 
z Data was subject to log transformation before statistical analysis. Data are displayed as 
back transformed units of means.  
y Data are displayed as means and were analyzed using the statistical software SAS 9.3.  
x Column numbers followed by the same letter are not significantly different at P=0.05 as 
determined by a Fisher's Protected LSD test performed after a one-way ANOVA. 
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Table A5: Effect of adjuvants on urea-driven reduction of V. inaequalis pseudothecia and 

on percent urea-driven leaf litter decomposition of scab-infected McIntosh leaves and 

scab-infected Gala leaves at Meig’s Farm, Throckmorton Purdue Agricultural Center in 

Lafayette, IN, 2015. 

Cultivar  
   Treatment No. pseudotheciaz Leaf area lost (%)y 

McIntosh     
Control (H2O) 114dx 48.5a 
Urea  44c 62.3bcd 
Li700 114d 59.0bcd 
Bond Max 104d 57.3abc 
Latron B-1956 72cd 55.2ab 
Wet Betty 107d 64.3cd 

Urea plus:   
Li700 13b 77.5e 
Bond Max 18b 66.4d 
Latron B-1956 15b 67.3d 
Wet Betty 3a 85.5e 

Gala     
Control (H2O) 210dx 50.8ab 
Urea  77c 61.0bc 
Li700 205d 55.7abc 
Bond Max 142cd 51.2ab 
Latron B-1956 229d 48.0a 
Wet Betty 172d 56.9abc 

Urea plus:   
Li700 27b 77.2d 
Bond Max 22ab 77.9d 
Latron B-1956 22ab 66.4cd 
Wet Betty 13a 77.8d 

z Data was subject to log transformation before statistical analysis. Data are displayed as 
back transformed units of means. 
y Data are displayed as means and was obtained by measuring leaf area before and after 
overwintering on the orchard floor to analyze total leaf percent area lost. 
x Column numbers followed by the same letter are not significantly different at P=0.05 as 
determined by a Fisher's Protected LSD test performed after a one-way ANOVA 
performed using the statistical software SAS 9.3. 
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Chapter 3: Quantifying the effect of adding adjuvants to urea using PAD.  

To quantify the effect that adjuvant additions to urea could have on apple scab 

management, the number of days a scab epidemic could be delayed due to treatments was 

calculated. This was calculated using the potential ascospore dose (PAD) previously 

published (Gadoury and MacHardy, 1986). However, because the calculation of PAD 

included factors not measured in this study we were unable to calculate the true PAD. 

Instead we extrapolated from data used in the studies conducted by Gadoury and 

MacHardy (1986) and MacHardy et al. (1993). In these studies, PAD is a measure of the 

potential ascospores that may present in an orchard (Gadoury and MacHardy, 1986), thus 

we used percent fertile pseudothecia per treatment as a similar measurement to PAD in 

our study. Using our modified ranking system of percent fertile pseudothecia, any 

pseudothecia that had developing ascospores present were considered fertile under the 

assumption that in the future they had the potential to produce mature ascospores and 

contribute to primary infection. This may overestimate the potential inoculum present, so 

actual reduction of inoculum due to the addition of adjuvants to urea may be greater than 

what we calculated in this study.  

 Using percent fertile pseudothecia produced in each treatment, we calculated the 

percent decrease of fertile pseudothecia between treatments. For example, in the 2015 

trial on McIntosh leaves, the percent fertile pseudothecia produced in the control 

treatment when scored was 79%; 22% of the pseudothecia in the urea treatment were 

fertile; 3% of the pseudothecia in the Li700 plus urea treatment were fertile; and 6% of 

the pseudothecia in the Wet Betty plus urea treatment were fertile (Table 3.2). Therefore, 

the amount urea, Li700 plus urea, and Wet Betty plus urea treatments reduced fertile 

pseudothecia compared to the control were 72%, 96%, and 92%, respectively. Using 

PAD we may be able to quantify how much reduction in fertile pseudothecia, or potential 

ascospores, may influence disease epidemics and consequently disease management.  

 PAD is used to estimate the onset of scab epidemics and adjust fungicide spray 

programs (Gadoury and MacHardy, 1986). To calculate the number of days an epidemic 

could be delayed, the authors used a formula published by Van der Plank (1963) that 

defined the mathematical relationship between inoculum and disease development 
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(Gadoury and MacHardy, 1986). One of the variables in this formula was the ratio of the 

amount of inoculum before eradication to the amount of inoculum surviving eradication 

(Gadoury and MacHardy, 1986). In their study they used a constant PAD of 98,388 

ascospores per square meter per year as the amount of inoculum before eradication and 

recorded PAD’s from real orchards as their amount of inoculum surviving eradication 

(Gadoury and MacHardy, 1986). We aligned our variables similarly to assign the percent 

fertile pseudothecia in the control treatment as our amount of inoculum before eradication, 

and the percent fertile pseudothecia in urea, adjuvant, and adjuvant plus urea treatments 

as the amount of inoculum surviving eradication.  

 Using data published by MacHardy et al. (1993), we used the delay of epidemic 

values corresponding to the percent reduction of fertile pseudothecia calculated in our 

study from both Gala and McIntosh trials. For example, 72%, 96%, and 92% reduction of 

PAD corresponds to the amount of fertile pseudothecia were reduced by urea, Li700 plus 

urea, and Wet Betty plus urea treatments compared to the control in our 2015 McIntosh 

trial. We were able to extrapolate that urea alone would delay apple scab epidemic 0-3 

days, whereas Wet Betty plus urea would delay an epidemic 3-6 days, and Li700 plus 

urea would cause a delay of 4-8 days, depending on cultivar. 
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