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Abstract

Deep learning has achieved state-of-the-art 
results in a variety of tasks such as classifying 
images and driverless cars. In this paper, I used 
deep learning to understand consumer product 
interests. One of the main goals for advertisement 
agencies is to develop mathematical models to 
predict whether consumers will click on their 
advertisement. Achieving the highest click 
prediction rate means that these agencies can pay 
to place their online advertisements effectively 
to target people most interested in their product. 
Most existing approaches are based on logistic 
regression or regression tree models (Trofi mov, 
Kornetova, & Topinskiy, 2012). The model based 
on deep learning will be discussed to predict the 
click rate. The data was from the iPinYou com-
petition, where competitors are tasked to build a 
model that would achieve a high click through 
rate (CTR). iPinYou provides advertisement data 
from nine companies. For each instance in the 
data, various attributes of the person that the elec-
tronic advertisement was sent to were provided 
as well as if the person clicks on the advertise-
ment. I started with exploratory data analysis by 
splitting data into different seasons, aggregating 
different advertisers, and cleaning and generating 
new attributes. I tested my predictive power using 
a convolutional neural net and a multiple layer 
perception model. It was shown that the deep 
learning models have a competitive predictive 
power and, at the same time, more interpretable 
for further analysis.
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INTRODUCTION

Today, we are constantly sent advertisements and 
information in forms of e-mail, mail, and online 
advertisements. Usually, these advertisements are 
sent to everyone within a company’s reach, whether 
or not users are interested in their content. At the 
present time, this marketing is getting more selective 
with developments in targeted advertising and con-
tent recommendations that provide advertisements 
that are more relevant to the user. Models to predict 
whether a user is going to click on an advertisement 
are built using regressions and decision trees. We 
will look into data provided by iPinYou, a demand 
side platform (DSP) that hosts advertisements, and 
build models for user advertisement clicks with 
competitive predictive power to current regression 
and tree methods. The two models I will introduce 
are the multilayer perceptron and the convolutional 
neural network. 

Multilayer Perceptron

Multilayer perceptrons (MLP) use a set of weights 
and transformation functions to convert the data in 
the input layer to a prediction in the output or soft-
max layer. Since these models can virtually represent 
any function (Hornik, Stinchcombe, & White, 1989), 
I used it to represent a function to transform the 
features extracted from the data set into a prediction 
of a user click. The basic structure of this model 
(see Figure 1) involves taking in inputs from the 
data attributes and passing them through an activa-
tion function using a combination of the inputs and 
weights to produce an output. Many of these basic 
perceptron models can be joined to create a MLP by 
connecting the outputs of one Perceptron to the input 
of another to create a more expressive model.

Figure 1. Simple perceptron mode with the input 
attributes f and weights w that result in the output.
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advertisements. Each advertiser’s log had attributes 
such as date, time, user IP, city, region, and the 
dimension of the advertisement of the targeted cus-
tomer. Each entry also indicated whether or not the 
advertisement was clicked; the testing data had some 
extra attributes as well. 
 
When I obtained this data, I had to prepare the data 
set in such a way that it could be used by my models. 
Some of the attributes in the logs were combined, 
hashed, alphanumeric, or simple were not present. 
The inputs for the models have to be numeric values, 
so the data had to be transformed and vectorized. 
Once the data was prepared, I built predictive MLPs 
and CNNs for each advertiser.

Data Parsing

There are a lot of potential attributes to use, and I 
started by parsing the useable attributes available. 
However, some of the values in the data were null or 
hashed by iPinYou before they put out the data, mak-
ing the data hard to use. These values were removed 
from the attribute set.
 
My second task was the breakdown the remaining 
attributes into discrete and usable features. Some 
of these attributes included timestamps, which had 
to be broken down into individual components, 
and grouped targeted customer’s information, 
which contained operating system and web browser 
information of the device where the advertisement 
was displayed.

 

Obtaining the final weights to make the prediction, 
if a user is clicking the advertisement, was done 
through backpropogation (Rumelhart, Hinton, & 
Williams, 1986). With enough examples and iter-
ations through a model training set, the MLP had 
better predictions over time. 

Convolutional Neural Networks

I also wanted to use convolutional neural networks 
(CNN), as they are known to detect and use features 
present in the data. This is done by taking the inputs, 
the data attributes, in a matrix grid arrangement and 
generating patterns that are applied to each section 
of the input matrix to calculate new attributes called 
feature maps (Simard, Steinkraus, & Platt, 2003). 
These feature maps indicate the presence of the pat-
tern in each part of the input matrix, and sent to the 
next layer where more patterns are applied to create 
more feature maps and so on. Eventually, all these 
values of the resulting matrices are fed into a stan-
dard MLP, which uses the new attributes calculated 
through the multiple feature maps, to make a predic-
tion (see Figure 2).

METHODOLOGY
Data Overview

When obtaining the files from iPinYou, I was provid-
ed the training data to train my models and testing 
data to see how well the models performed on data 
the models have not seen. I was given data logs for 
nine different advertisers for which iPinYou hosted 

Figure 2. Basic CNN structure, with the input matrix containing the attributes, which filters are applied on to generate 
feature maps. These feature maps may be pooled to reduce the dimensionality of the model. Then, I fed the resulting 
matrices to the MLP.
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the advertisement height and width were used as 
standard advertisement sizes (see Figure 3).  

I used the CNN architecture later on to leverage 
these correlations, but for the MLP I kept all attri-
butes and parsed features that I made in order to 
observe performance given the number of attributes 
that I originally had to drop.
 
I then had to normalize all my input attributes as I 
wanted the models to differentiate between the val-
ues of the attributes and not consider attributes better 
if their raw value from the data is higher. This was 
done by subtracting the attribute with the mean attri-
bute value and dividing the result by the attribute’s 
standard deviation.

Data Selection

When training the models, another issue to overcome 
was how few positive click examples the training sets 
had. For example, in the dataset for advertiser 1458, 
one of the nine advertisers used for initial testing, 
only 0.08% of the training examples were positive. 
When training most models under these circumstanc-
es, it may take a long time for the model to converge, 
as these examples rarely come around in order to 
make updates to the model. Using the training set di-
rectly with the models provided poor results in terms 
of converging time. 
 
To counter the poor performance, I performed a  
combination of oversampling and undersampling. 
This involved extracting all positive click data in-
stances from the training data. I then undersampled 
the negative nonclick examples to about 200,000 
instances in order to reduce the time it took to train. 
I then performed oversampling by repeatedly mixing 
the positive instances extracted with the undersam-
pled negative instances to create a training data set. 

Scoring Selection

With an artificial training set, I also had to determine 
how I would score a model. While the most common 
method is model accuracy given the true instance 
label of click versus nonclick, this was not advisable 
in the imbalanced data set. Given a base model that 
always predicted no click, which is the most common 
occurrence in the data, I would get a model accuracy 
of 99.92% for advertiser 1458. Any significant per-
formance increases from this model would be hard 
to distinguish as I would have to look at the narrow 
window between 99.92% and 100%. A common way 
to score these models with unbalanced data is to use 
the area under the curve (AUC) of the receiver  

Now that I had some more distinct features, I had to 
further encode some of the attributes to work with 
the deep learning models. For the targeted custom-
er’s city and region, I performed a one hot encoding, 
where I had a vector with the length of the attribute’s 
unique values. For this vector, all the values were 
zero except for the one value that I observed in the 
current data row, which was indicated as active by 
a one in that position. This was similarly done for 
other discrete attributes, such as the operating system 
and web browser, since there were multiple values 
for those. In theory, I should have also done this for 
the different parts of the targeted customer’s hashed 
values, since those are unique. I did not proceed with 
those due to considerations of the model complexity. 
 
I wanted to change most of these values to a one 
hot encoding because, when I trained the models, I 
did not want specific values that represent the data 
attributes to have additional weight in our models 
just because they were labeled with a higher number 
in the original data creation process. Since all values 
are either zero or one, this mitigated the problem.
 
I also had to deal with high correlations between the 
features. Since these models had to take in unique 
features and attributes to generate weights and pre-
dictions, I wanted to minimize the features that may 
be represented with multiple attributes as it increases 
how the models would weight those similar attri-
butes if they continued to reoccur. For example, city 
locations were always correlated with their respective 
regions in China, or common dimensions between 

Figure 3. Example correlations for advertiser 1458, with 
red being positive and blue being negative correlation. 
To the right are the confidence ellipses.
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Typically, the pattern weights are initialized from the 
normal distribution, which works well when working 
with image and sound data to detect important  
features. Since the patterns were applied to the text 
data, I used the normal initialization but also experi-
mented with uniformly initializing all pattern weights 
to 1, indicating that all values calculated in the 
convolution will be weighted equally. Using these two 
methods, I saw little difference in performance re-
sults and decided to adhere to former normal method 
for identifying significant combinations of features. 
 
Originally, when I wanted to use CNN for click 
prediction, I relied on randomly shuffling the attri-
butes in the input matrix. I also tried to subjectively 
arrange the attributes such that attributes were close 
to related attributes. Finally, I arranged the final 
attributes that covaried as I thought that running the 
patterns over related attributes would generate better 
attributes to use in the MLP.
 
When decided the structure of the CNN model,  
I proceeded with two convolution layers (see  
Table 2). Since this model was relatively small,  
when I did convolve, I did not have to pool or 
subsample the resulting feature maps.

RESULTS

I kept the same model structure for the MLP and  
the CNN when training and testing on different 
advertisers. I had high ROC scores for advertisers 
1458, 3358, 3427, and 3476, but the rest were close to 
insignificant (see Table 3). The large discrepancy in 
performance was mostly due to some advertiser data 
sets used different segmentation systems when gen-
erating the logs (Zhang, Yuan, Wang, & Shen, 2014), 
thus yielding vastly lower scores given the same 
models. Another explanation was that the underlying 
attributes that would be need to predict clicks were 
not present in the iPinYou data for those advertisers.
 
Analyzing the two sets of scores, I saw that I got very 
similar performance using both models. This indi-
cated that convolutions and feature mappings within 
the CNN contributed little to the overall performance 
of the model. This meant that the process of going 
through the convolutions transformed the existing 
input data but generated little extra feature informa-
tion that would have improved predictive power at 
the MLP stage. 
 
Reviewing the resulting weights of the models on the 
MLP side, I summed over the weights assigned to 
the different attributes posttraining to get an idea of 
which attributes were more significant than others. 

operating characteristic (ROC). This method mea-
sures how a model performs by taking into account 
the true positive rate and the false positive rate. The 
true positive rate is the proportion of the positive 
examples correctly estimated as positive over all the 
positive data. The false positive rate indicates the 
proportion of the negative examples that were clas-
sified as positive over all negative data points. Then, 
these rates are computed at various thresholds to pro-
duce a curve, which I integrate. This gives us a better 
understanding if the positive examples attempted to 
be predicted along with the negative, with an AUC 
ROC score of 0.5 being the baseline for a random 
predictor (Aidos, Duin, & Fred, 2013).

MLP Trials

For MLP construction, I had to determine the form 
of my network. In other words, how many individual 
perceptrons I was going to use in each layer and how 
many layers would be present between the attribute 
inputs and the final prediction. A common technique 
is to keep a nonincreasing number of perceptrons in 
each subsequent layer (Zhang, Du, & Wang, 2016). 
Through trials, I observed that moving past one or 
two layers (called hidden, as they are not directly ob-
served) of perceptrons provides diminishing returns 
in model predictive power. I settled with two layers 
to give the model enough expressivity to represent 
the underlying structure of the true click prediction 
model. I had a final count of 515 attributes, which 
I used to generate the first layer of perceptrons and 
built two more layers before the softmax layer, which 
output the probability of a click from a training ex-
ample (see Table 1).

CNN Trials

The CNN trials had to follow a similar procedure as 
the MLP trials. I had to determine a structure of the 
CNN and determine various parameters while run-
ning it. The CNN architecture was a new challenge 
regarding how to initialize the patterns and arrange 
the input data. 

MLP Model

Input Layer 1 × 515

Hidden Layer 1 515 × 400

Hidden Layer 2 400 × 400

Softmax Layer 400 × 2

Table 1. MLP model structure that included multiple 
layers before the final softmax layer, which outputs a 
probability for click and for no click.
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data cleaning and parsing. Given all the attributes, I 
had to remove some that were unusable and split and 
vectorize the rest to create new features. From there, 
I had to standardize each of these features to prevent 
inherent bias in the models. Once I had the data for-
matted the way I was going to use it, I had to divide 
it using a combination of oversampling and under-
sampling to generate a better training set from which 
my models could better train due to the imbalance in 
positive data.
 
Building the models involved decisions for the struc-
ture of the model in terms of number of layers, nodes 
per layer, and pattern structure for the CNN. The 
models performed about the same, indicating that 
features generated from the convolutions in the CNN 
were not contributing any extra information to the 
model in comparison to using the standard features 
generated from parsing through the MLP. I attributed 
some of the prediction power to the region and city 
feature present in the original data. 
 
Further work in this project would involve imple-
menting other models, such as Radial Basis Neural 
Networks and Factorization Machines, which have 
been proven to work in anomaly detection problems 
and click prediction, respectively. I also could have 
encoded all the hashed data and used larger training 
sets to generate the most accurate models given the 
data. The models performed well on some advertiser 
data, but having these extra implementations and 
analytical edge could improve my results further. 
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I found that the most influential weights related to 
region and city for most advertisers. This may be due 
to the popularity or the need of those products there.

CONCLUSION

Today’s digital providers are benefiting from  
understanding consumer interests in terms of  
advertisement targeting. From the consumer’s  
perspective, this advancement is also important:  
We are used to getting spammed with junk or irrel-
evant advertisements. Having more interesting and 
relevant advertisements will help us better select our 
products. Most of the DSPs that host and bid to put 
advertisements on websites are using more advanced 
predictive models to predict clicks from targeted 
users in order to maximize revenue. 
 
The most common models used today are decision 
trees and regression models. I tried to determine 
how today’s deep learning models would handle 
similar tasks. A large portion of this task involved 

Table 3. Final ROC AUC scores for the CNN and MLP 
models for the advertisement companies given.

Table 2. CNN model structure, which includes the different layers and the dimensions on each layer. Input and output  
components represent number of feature maps in CNN/nodes in MLP while height and width represent sizes of  
corresponding CNN matrices.

CNN Model

Layer Input Components Output Components Height Width

Convolution Layer 1 1 - 5 103

Transition Pattern Shape 1 7 3 3

Convolution Layer 2 7 - 3 101

Transition Pattern Shape 7 7 3 3

Hidden Layer 1 693 600 - -

Hidden Layer 2 600 500 - -

Softmax Layer 500 2 - -

Advertiser CNN ROC Score MLP ROC Score

1458 0.935388217853 0.931179830257

2259 0.515805702202 0.528410074345

2261 0.505143481136 0.498935607046

2821 0.514514351067 0.524985237434

2997 0.515771349444 0.503525281223

3358 0.850326610922 0.850720642117

3386 0.566418771409 0.568017099443

3427 0.868989286527 0.853056041602

3476 0.777973272777 0.788934173874
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