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1. Introduction

In the last years progress has been made to improve our understanding of QCD Green’s func-
tions in different gauges. This is important, because it might allow us someday to describe all
hadronic features in the continuum directly in terms of those functions. A deeper knowledge of
QCD Green’s functions would help us also to understand the basics of nonperturbative phenomena
like gluon and quark confinement or dynamical chiral symmetry breaking from first principles. For
example, the realization of the Kugo-Ojima confinement scenario [1] in QCD in covariant gauges
is encoded in the infrared behavior of the gluon and ghost 2-point functions. Therefore, the in-
vestigation of QCD Green’s functions is not only of interest for a coherent description of hadronic
states but also for an understanding of confinement.

At large (Euclidean) momenta QCD Green’s functions can be described in terms of perturba-
tion theory. However, at intermediate and low momenta nonperturbative methods are indispensable
to arrive at a complete picture. There are different approaches to deal with nonperturbative QCD,
but they all have their own limitations. Therefore, a comparison of results is important. For exam-
ple, studies of truncated Dyson-Schwinger equations (DSEs) for the gluon and ghost propagators in
Landau gauge came to the conclusion that at very low momenta these propagators are governed by
power laws with interrelated exponents which then results in a coupling constant running to a non-
trivial infrared fixed point [3]. This infrared behavior has been confirmed independently by studies
of exact renormalization group equations [4] and investigations based on the Fokker-Planck-type
diffusion equation of stochastic quantization [5]. At intermediate momenta, however, predictions
e.g. based on DSE studies are uncertain due to the truncations involved, but in this region lattice
Monte Carlo (MC) simulations can help.

2. Lattice results for the gluon and ghost propagators

We have performed MC simulations in the quenched approximation of SU(3) lattice gauge
theory at four values of the coupling constant (β = 5.7, 5.8, 6.0, 6.2) using the standard gluonic
Wilson action. Thereby, the lattice size ranged between 164 and 564. To study also the influence
of fermions we have analyzed gauge field configurations generated with N f = 2 dynamical flavors
of clover-improved Wilson fermions using the same gauge action1. All gauge configurations have
been fixed to Landau gauge by maximizing the Landau gauge functional

FU [g] =
1

4V ∑
x

4

∑
µ=1

ReTr gUx,µ with gUx,µ = gx Ux,µ g†
x+µ̂

(2.1)

using either over-relaxation or Fourier-accelerated gauge-fixing. Of course, the maxima are not
unique, but we will neglect the influence of Gribov copies in the following. The reader is referred
to Ref. [6] for a more systematic account of the Gribov ambiguity in this context.

After gauge-fixing we have calculated the gluon and ghost propagators on all (gauge-fixed)
configurations. The definition of both Green’s functions and their dressing functions is standard
and our notation can be found in detail in Ref. [7]. To reduce finite volume and discretization
effects we have applied cone and cylinder cuts to our data [8].

1Those configurations were provided to us by the QCDSF collaboration.
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Considering first the quenched case, in Fig. 1
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Figure 1: The ghost dressing function J for the
quenched case as a function of the momentum q2.
The line represents a fit of a power law to the data
at q2 < q2

c resulting in the exponent κ ≈ 0.2.

we show data for the ghost dressing function J(q2)
(renormalized at µ = 4 GeV) as a function of the
momentum q2. As expected the ghost dressing
function seems to diverge at vanishing momen-
tum. We have tried to fit the infrared power law
as expected from DSE studies to our data. How-
ever, within the region of lower momenta a power
law does not describe the data that well. The
ghost dressing function seems to increase loga-
rithmically as the momenta become small. In any
case, the infrared exponent extracted from the fit,
κ ≈ 0.2, is much smaller then it is expected to
be, namely κ ≈ 0.59 [5, 9]. With respect to our
data for the gluon propagator, shown in Fig. 2,
we think that we are still not in a region of mo-
menta where the mentioned infrared power law can be verified. For this the gluon propagator D
has to vanish at zero momentum which cannot be concluded from our current data (see Fig. 2). To
what extent finite volume effects can be blamed for such a (different) behavior found on the lattice
needs to be clarified in future yet.

To improve our understanding of lattice Landau gauge theory we have also studied the influ-
ence of (clover-improved) Wilson fermions on the ghost and gluon propagators. We find that the
ghost propagator stays almost unchanged if fermions are added to the gauge action. In contrast to
this, fermions affect the gluon propagator at large and intermediate momenta, in particular where
the gluon propagator exposes its characteristic enhancement compared to the free propagator. To
illustrate this, in Fig. 3 we show our data for the gluon dressing function obtained for quenched and
full QCD.

As a part of the project we also performed simulations at β = 6.0 using large asymmetric
lattice sizes, namely 163×128 and 243×128. By comparing the data obtained on these lattices for
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Figure 2: The (quenched) gluon propagator D as a
function of q2.
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Figure 3: The gluon dressing function Z for the
quenched and unquenched case as a function of q2
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Figure 4: The upper panel shows the zero three-
momentum propagator C(t) of the gluon fields in
quenched QCD at β = 6.0 for a 484 lattice as a func-
tion of time. In the lower panel the same data are
shown, however, as logC(t) for C(t) > 0.
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Figure 5: The same as in the left figure, however,
for the gluon propagator in full QCD on a 243×48
lattice for one particular mass ma.

the ghost and gluon propagators to our results using symmetric lattices (e.g. 484) we found large
systematic effects at low momentum due to the asymmetry involved, in particular, for the lowest
on-axis momenta along the elongated ’time’ direction.2 It is not excluded that sensible results at
lower momenta for the gluon and ghost propagators can be extracted from asymmetric lattices by
careful extrapolations. Attempts in that directions are made e.g. in [10].

3. Confinement criterion I: Violation of reflection positivity

In view of the general objectives of this project it is also important to check whether our data
for the propagators satisfy necessary criteria for confinement. For example, the gluon propagator
has to violate reflection positivity, because otherwise gluons could be interpreted in terms of stable
particle states.3 To check whether reflection positivity is violated by the gluon propagator we have
calculated the space-time (lattice) correlator at zero spatial momentum as function of time

C(t) :=
1√
LT

LT−1

∑
k4=0

D(~0,k4)exp
{

2πik4t
LT

}
(3.1)

using our data for the gluon propagator D(~0,k4). The result for the quenched case (β = 6.0, 484

lattice) is shown in Fig. 4. Obviously, reflection positivity is violated in a finite range of t. The
same holds in the unquenched case as can be seen in Fig. 5, even though the lattice size in this case
is too small such that the data do not bend over towards zero at larger t as in the quenched case
(Fig. 4). Note that we have seen this happening also in our quenched data at β = 6.0 using a 324

lattice (not shown).

2For more details about this but also other systematic effects have a look at the Ph.D. thesis [7] of one of us.
3Note that the ghost propagator violates reflection positivity trivially and hence ghosts are explicitly unphysical.
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4. Confinement criteria II: The Kugo-Ojima confinement parameter

Another criterion for confinement for QCD in covariant gauges was given by Kugo and Ojima
long time ago [1]. According to their scenario colored asymptotic states, if any, cannot be detected
in the physical subspace due to the quartet mechanism. This is realized if a function u(p2), defined
as [2, 11] ∫

d4x eip(x−y)
〈

Dae
µ ce(x)g f bcdAd

ν(y)c̄c(y)
〉

=:
(

δ
µν −

pµ pν

p2

)
δ

ab u(p2), (4.1)

has the zero-momentum limit
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ũ(p2, µ2), β = 6.0
5.8

Figure 6: Data of u(p2,µ2) at β = 5.8 and 6.0 are
shown using squares. Additionally, data of ũ are
shown at the same β values (circles). All data re-
fer to the same quenched configurations on a 324

lattice and are renormalized at µ = 4 GeV as de-
scribed in [7]. Lines are drawn to guide the eye.

u := lim
p2→0

u(p2) =−1 . (4.2)

In Landau gauge this limit is connected to an in-
frared diverging ghost dressing function J through
[2]

J(p2) =
1

1+u(p2)+ p2v(p2)
p2→0−→ 1

1+u
.

(4.3)
Here v(p2) is an unknown function of p2 (see [2]
for a definition). We have made an attempt to con-
firm the realization of the limit in Eq. (4.2), not
only by giving numerical evidence for a diverging
ghost dressing function (see above), but also by
estimating u(p2) itself at different momenta p2 in
our lattice simulations4. Our estimates of u(p2),
renormalized at µ = 4 GeV, are shown in Fig. 6 as a function of p2. There we also show data of
the ghost dressing function (renormalized at the same µ) in the form of an asymptote ũ defined as

ũ(p2,µ
2) :=

1
J(p2,µ2)

−1 . (4.4)

Obviously, ũ(p2) and u(p2) are different at finite momentum, but according to Eq. (4.3) u(p2) has
to reach asymptotically ũ(p2) in the zero momentum limit. From our data shown in Fig. 6 we can
confirm that the difference |u(p2)− ũ(p2)| diminishes with decreasing momentum, even though an
extrapolation of the given data to vanishing momentum is difficult to perform. For this, the explicit
momentum dependence of u has to be known. Since u(p2) seems to continuously approach ũ(p2)
with decreasing momentum and, by definition, ũ(p2) is minus one at vanishing momentum for a
diverging ghost dressing function our studied momentum range of u at least does not exclude the
expected zero momentum limit (see Eq. (4.2)).

5. The running coupling constant

Given the dressing functions of gluon and ghost propagators a running coupling constant

αs(q2) = αs(µ
2)Z(q2,µ

2)J2(q2,µ
2) (5.1)

4For details on our estimation and renormalization of u(p2) on the lattice we refer to Ref. [7].
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based on the ghost-gluon-vertex can be calculated.
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Figure 7: The running coupling αs(q2) as a func-
tion of the momentum q2.

This definition relies on the assumption that in
Landau gauge this vertex stays bare also beyond
perturbation theory. We have given numerical ev-
idence in quenched and unquenched SU(3) lattice
gauge theory confirming that the vertex renormal-
ization constant Z̃1 ≈ 1 in a (asymmetric) MOM
scheme where the gluon momentum equals zero
(see [7, 12]). Similar results indicating this, di-
rectly and indirectly, were presented in lattice stud-
ies of quenched SU(2) gauge theory [13], but also
within the DSE approach [14]. Thus the definition
of αs(q2) according to Eq. (5.1) is valid at least in
that scheme.

In Fig. 7 we show our current data of αs in the quenched case. One clearly sees it increasing
towards lower momenta as long as q2 > 0.3 GeV2. After passing a maximum at q2 ≈ 0.3 GeV2 it
decreases. We have found the same behavior on our sets of dynamical gauge configurations (see
e.g. Fig. 4 in Ref. [12]). Therefore, on the basis of the present data we cannot confirm αs(q2) to
approach a non-trivial infrared fix-point, even less monotonously from below as expected from
DSE studies. The reason for this is still unclear, however, in the light of the DSE results on a torus
this might be a finite volume effect which we are unable to resolve at the present stage.

Apart from the low-momentum region it is also interesting to look at αs(q2) at larger momenta
and to fit the corresponding 1-loop and 2-loop expressions to the data. This is shown in Fig. 8 for
the quenched (l.h.s.) and unquenched case (r.h.s.). Obviously, the data follow the one and two-
loop expression in the marked interval. However, large discretization errors are visible. Therefore,
simulations at smaller lattice spacings are worthwhile in order to get more reliable values of Λ.
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Figure 8: The running coupling αs at large momenta for the quenched (left) and unquenched case (right).
Since discretization errors are quite large we used only data from the 484 (243 × 48) lattice at β = 6.0
(β = 5.29, ma = 0.0138) to fit the 1-loop and 2-loop expressions of αs to the data on the left (right) hand
side of this figure.
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6. Conclusions
We have studied different aspects of lattice Landau gauge theory using MC simulations of

quenched and full QCD. Thereby, we have mainly focused on the momentum dependence of the
gluon and ghost propagators. We have demonstrated here for the first time that our lattice results for
both propagators are consistent with different criteria for confinement, even though we could not
confirm the infrared behavior as anticipated from DSE studies. Whether the gluon propagator at
zero momentum vanishes in the limit of infinite volume or not has to be clarified in future studies.

We could demonstrate that (dynamical) clover-improved Wilson fermions affect the gluon
but only negligibly the ghost propagator. Importantly, the influence of fermions on the infrared
behavior of both propagators seems to be small.

On the basis of our present data for αs we cannot confirm it to approach a non-trivial infrared
fix-point monotonously from below. In any case, our data at larger momenta agree with the 1-loop
and 2-loop expressions of αs, even though simulations at larger β are worthwhile to perform to
suppress discretization effects and to obtain more reliable results for Λ.

All simulations were performed on the IBM pSeries 690 at HLRN and on the MVS-15000BM at the
Joint Supercomputer Center (JSCC) in Moscow. This work was supported by the DFG under the contract
FOR 465 (Forschergruppe Lattice Hadron Phenomenology), by the DFG-funded graduate school GK 271
and with joint grants DFG 436 RUS 113/866/0 and RFBR 06-02-04014. We thank the QCDSF collaboration
for providing us their unquenched configurations which we could access in the framework of the I3 Hadron-
Physics initiative (EU contract RII3-CT-2004-506078). We are grateful to Hinnerk Stüben for contributing
parts of the program code. A. St. acknowledges discussions with Lorenz von Smekal.
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