
Using Ontologies to Support Customisation and Maintain Interoperability in
Distributed Information Systems with Application to the Domain Name System

Nickolas J. G. Falkner Paul D. Coddington Andrew L. Wendelborn
School of Computer Science, The University of Adelaide, Adelaide, South Australia 5005

E-mail: jnick@cs.adelaide.edu.au

Abstract

Global distributed systems must be standards-based to
allow interoperability between all of their components.
While this guarantees interoperability, it often causes lo-
cal inflexibility and an inability to adapt to specialised local
requirements. We show how local flexibility and global con-
sistency can coexist by changing the way that we represent
these systems. The proven technologies already in use in
the Semantic Web, to support and interpret metadata anno-
tation, provide a well-tested starting point. We can use OWL
ontologies and RDF to describe distributed systems using a
knowledge-based approach. This allows us to maintain sep-
arate local and global operational spaces which, in turn,
gives us local flexibility and global consistency. The anno-
tated and well-defined data is better structured, more easily
maintained and less prone to errors since its purpose can be
clearly determined prior to use. To illustrate the application
of our approach in distributed systems, we present our im-
plementation of an ontologically-based Domain Name Sys-
tem (DNS) server and client. We also present performance
figures to demonstrate that the use of this approach does not
add significant overhead to system performance.

1 Introduction

We have developed a general approach to modelling dis-
tributed systems ontologically using knowledge domains[4,
5]. This was initially developed by identifying the key struc-
tures storing information in large-scale distributed systems
and representing these within an ontology. Further work led
to the development of a more complex ontological model
that captures the relationships between data, the represen-
tation of data and the operational semantics of the transfor-
mation of that data by the server.
In this paper we describe how we have taken an ex-

isting widely distributed service, the Domain Name Sys-

tem (DNS), and extended its existing functionality using
knowledge domains. This allows for interoperation of stan-
dard and non-standard system components through seman-
tic alignment and also facilitates automated semantic anno-
tation. This also can assist in the formation and efficient use
of semantically-based virtual organisations.
The DNS[9, 10] stores and provides mappings as a

global and hierarchical system, employing distributed man-
agement, extensive use of caching and a strong standards-
based model for making changes to the system. The most
commonly used of these mappings is the mapping from IP
address to computer name and vice versa. There are many
others available but, whenever a new one is added, the defin-
ing standards must be altered and the new change imple-
mented across all of the deployed servers and clients. The
standards-based model is slow to provide changes and final
implementation can also take considerable time.
We describe data in terms of its structure and its repre-

sentation. Data in servers exists in stored mode, in the defin-
ing files or database, and in transit-mode, where it is mod-
ified or encapsulated for transmission to a client or server.
Thus we need to know both how the data is stored and how it
must be transformed and represented at each point in its life
cycle. The key concept is that both of these can be mutable
depending on who is requesting the information or what a
local site wants to do in response to a request, having iden-
tified the request issuer.
We also use knowledge domains to describe behaviour

as operational semantics without having to recode the un-
derlying server. Our example describes those aspects that
we wish to keep for all DNS participants (the global com-
munity) but also allows the description of those aspects that
we wish to modify locally. Our model is characterised by
the description of the logical and representational aspects of
the DNS, as well as the operational semantics. This leads
towards a flexible description of server behaviour. These
operational semantics describe DNS operation - how is the
data to be manipulated, under what circumstances and do
we add or manipulate metadata?

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

Why change or augment the DNS, when it is so widely
and successfully deployed? The first reason is that it is very
easy to misconfigure a DNS server and any mechanism that
prevents or limits misconfiguration is valuable. A poorly
designed or misconfigured query agent can cause a great
deal of additional traffic through querying all possible re-
sponders simultaneously or repeating queries to servers that
have already indicated that they do not have the answer.
To counter this, we can strictly specify protocol and con-
trol standards to minimise non-conforming behaviour. The
strict centralised control of the specification of the DNS can
detect errors in implementation but any extensions beyond
the standard would, correctly, be identified as errors against
the central description and ignored.
The second reason to make changes to such a well-

established system is that, while the provider of information
may not have an interest in semantic annotation or provide
different data delivery options, downstream handlers may
wish to annotate records or receive information in different
ways. Recasting the DNS in terms of knowledge domains
allows reasoning-based service alterations without neces-
sarily requiring recoding. We also gain the significant ad-
vantage that we can separate core activity from the extended
feature set and allow reconfiguration without breaking the
standards.
In this paper, we describe our approach for recasting a

distributed system in terms of knowledge domains and im-
plementing this using shareable ontologies. We illustrate
our approach with our implementation of a core set of the
DNS, using DNS resource records. The implemented sys-
tem conforms to global standards and also provides a set of
local extensions to allow additional mappings or new be-
haviours for a well-defined group of nodes. We provide
performancemeasurements to show that we can provide the
additional functionality without significant penalty.

2 Background

The DNS can provide name to IP address mappings
(A records), IP address to name mappings (PTR records),
canonical names (CNAME records) for IP addresses so that
multiple names map to one IP address, facilities to support
global e-mail (MX records), location of name servers (NS
records) and, more recently, even the location of particular
network services within a domain (SRV records) [7]. These
resource records make up the heart of DNS and are all found
within the zone files that provide the DNS data that name
servers in turn provide in response to client requests.
DNS has three major components, described in RFC

1034 [9]. These are the domain name space itself, name
servers, and resolvers. Resolvers query name servers to re-
solve client requests and are usually found at system level.
Within the domain name space, zone files are used to

store the data associated with a particular domain. A zone
file is composed of resource records. Resource records
(RRs) store information about the owner, the type of re-
source, the time to live, the protocol family and the type-
dependent format data. RR Type Numbers are used to iden-
tify the payload of a message sent to or from a DNS server.
Rather than use the mnemonic ‘A’ or ‘PTR’ to identify the
record, a pre-defined table of mappings from name to num-
ber is used and this number is used to identify the payload.

2.1 Key technologies

Semantic annotation is the addition of metadata that de-
scribes the meaning, purpose or function of data in a system,
where the metadata is specifically associated with data that
already exists in, or is being added to the system. A signifi-
cant advantage of extending the DNS with semantic annota-
tion is that a large number of applications across the Internet
could use this metadata to store or derive information that
would normally be stored out-of-band. This extension al-
lows the integration of the DNS with other systems that can
use or add annotation to provide additional services to their
user community. Such annotation allows the integration of
the DNS into the framework of the Semantic Web without
using wrapper software.
The Semantic Web uses the Resource Description

Framework (RDF) and RDF Schema to define its compo-
nent resources [8, 1]. RDF is a triple-based representation
that stores triples in the form (subject, predicate, object).
The subject of one triple can be the object of another triple
so quite large, and complex, relationships can be encoded.
RDF Schema defines the relationships between RDF items,
including domain and range of properties and subclasses.
The Web Ontology Language (OWL) [11] is built on the

Resource Description Framework (RDF), which is in turn
built on XML [14], and is a W3C standard for produc-
ing web ontologies. In essence, XML describes the data,
RDF describes the relationships between data and OWL
provides a framework for more advanced reasoning and the
inference of additional properties or memberships over the
data. OWL extends the functionality of RDF to describe
cardinality, transitive properties and the explicit statement
of class and individual equivalence. OWL has three distinct
sub-languages, OWL-Lite, OWL-DL and OWL-Full, which
provide varying levels of expressiveness and decidability,
depending on user requirement. OWL ontologies can be
referenced remotely and extended at the remote site very
simply, providing that the URI of the original ontology is
known. The formal semantics of OWL also provide a mech-
anism for deriving the literal consequences of information
contained in the ontology - facts which are not contained
within the ontology but which are entailed by the ontology.
The semantic web builds on the World Wide Web

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

(WWW) by associating metadata with the data stored on
the WWW to allow improved reuse and data sharing [6].
Metadata relationships, classes and properties can be cap-
tured in taxonomies or, with the formal specification of class
relationships and detailed metadata characteristics, as on-
tologies. The semantic web allows the use of metadata to
place a structure on the data stored and used within a sys-
tem, and to show the relationships with the data’s accom-
panying metadata. Ontologies can then be used to interpret
and classify the metadata.

2.2 Motivation

The data stored in the DNS is not overly human-friendly
nor, beyond commented annotations in the zone files, can
it easily be annotated as a large amount of the metadata as-
sociated with the data is entirely implicit. This limits the
potential re-use and integration of the stored mappings and
DNS facilities by other services that could take advantage of
an annotated data stream. Increasingly, metadata is required
for the more efficient use of data.
Currently, we cannot add additional mappings or fea-

tures without either requiring a global change to the sys-
tem or risking losing our ability to interoperate with other
system members. There is no mechanism that allows DNS
behaviour to be altered on a site-by-site basis for individual
hosts while remaining strictly compliant with the defining
standards required by all other sites and hosts. In this con-
text, a site is a logical entity: it could contain one machine,
several machines in one location or the machines of an en-
tire company, spread nationally or globally. It is a close ap-
proximation to the notion of a virtual organisation (VO) re-
ferred to in Grid computing. In this paper, we show how to
describe such behaviour at whatever size or nature of site is
required. Existing work applying ontologies to the DNS [2]
does not address the management of the information con-
tained within the DNS.

3 Ontological representation of the DNS

We now briefly discuss our approach, starting with a de-
scription of the record handling requirements of the DNS.
RFC 1035[10] defines the RDATA component of resource
records, the component of the record that is returned in re-
sponse to a query. All RRs have the same top level format
with varying RDATA elements. Resource records are trans-
mitted in the DNS message format [10].
We consider such records to have a logical relationship

between themselves and the parent notion of a resource
record. They also have a structural representation that de-
fines how the value stored in the mapping is to be sent to a
resolver or a server. In the case of an A record, this is a 32-
bit internet address. In the case of a TXT record, this is a set

of one or more <character-string>s, where a <character-
string> is defined as a contiguous set of characters with-
out interior spaces, or as a string enclosed in double-quotes.
The behaviour of the server when a request is received is
defined by its operational semantics - how it handles the in-
coming byte stream and produces a locally coherent request
that it can then answer, recode and then send back to the
requester.
We analysed all of the data structures and available

record types, to produce an ontology that could by used as
input to a modified DNS server[5]. This provides contextual
information on the type and nature of data and simplifies the
annotation process. Ontologically stored data is also sig-
nificantly more human readable because well-named OWL
and RDF tags clearly describe the roles of classes and prop-
erties. Traditionally, annotation in DNS is carried out using
comments embedded in zone files. These are human read-
able but are not made available by the server. With anno-
tation, human-friendly comments are parsed in and made
available by the server in association with the standard data
streams.
This illustrates the capability of the approach to provide

more configurable access to the data stored within a sys-
tem. Rather than being able to only generate a single logical
stream of data, ontological configuration can allow a num-
ber of different data streams, with or without annotation,
to provide the information to the client in the most useful
form. Because the ontology can be used to describe the
communication protocols, as well as the data structures and
relationships, we can also make the data available in a vari-
ety of formats. In the DNS, for example, we could make the
data available in DNS message format, SOAP or XHTML -
depending on the client’s requirements.

4 Semantic representation of the DNS

It was quickly apparent that producing an ontology that
dealt only with data was restricting the potential benefits of
this approach. Our first modified DNS server was, other
than the format of its zone files, a standard DNS server.
We began to look at the other possibilities of ontologies,
in particular using an ontology to describe the behaviour of
the server. In this section we discuss the representation of
server behaviour, rather than just the data, and justify our
language choices for the ontology and the representation of
server behaviour.
We can use an ontology to represent correct server be-

haviour. To do so, we classify behaviours into classes and
denote properties to show transitions between different be-
havioural states. We can marry this with the description of
data and data relationships that is already in the system to
produce a large, three-branch ontology. The three branches
are: the logical relationships between entities, the represen-

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

tational aspects and the operational semantics that describe
the transition from one state to another.
To represent the operational semantics of the DNS, we

chose to use a modified form of the λ-calculus as it is well
understood and provides excellent support for the definition
and graph representation of anonymous functions. These
graph structures can be embedded into RDF graphs and
allow us to associate anonymous function structures with
named functions in the operational semantics graph. Ef-
fectively, the λ-calculus expressions define transformation
functions that rewrite the DNS data to produce a new byte
stream. While we could use XLST, XQuery or XPath to
carry out such transformations, using the λ-calculus allows
us to form a graph that we can insert into the ontologi-
cal representation of operational semantics and maintain an
RDF graph form. This, in turn, allows us simpler mech-
anisms for function application and allows us to use the
simple, yet powerful, reduction rules of the λ-calculus to
simplify expressions while maintaining provably consistent
representations of the same function.
We provide a set of built-in functions, supplied by the

server implementation, that extract class members from an
ontology. These determine if a tested element is a mem-
ber of the specified class and this allows us to provide a
class ‘Internal’ and add members to it, then test in the DNS
server whether a request had come from a client that had
an IP address that was a member of the Internal class. We
also provided built-in functions that retrieve the requester’s
IP address to use for comparison. Thus, a virtual organi-
sation (VO) can set up a virtual domain that spans all of
its members and allows these members to access data and
annotation information that is inaccessible outside the VO.

5 Advantages of representing operational se-
mantics in an ontology

A standards-based system is, beyond conformance to up-
dates in the standard, inflexible in that it may not move out-
side of the standards. The underlying software is often pro-
duced based on the assumptions implicit in the standard.
For example, DNS servers use hard-coded references to re-
source record types since these cannot be added in an ad-
hoc fashion. Adding a newRR requires the insertion of code
and checking that this new code doesn’t cause problems in
the rest of the server. Moving the operational semantics of
data transformation out to an ontology requires only that
the server be able to interpret the ontology and use these
transformations, in addition to any hard-coded segment of
the code. Further changes can be effected by changing the
OWL ontology and reloading it.
The relationships between data can also be exploited

to automatically extract information that is not explicitly
stated. For example, an A record mapping a name to an

IP address could have an inverse relationship, using exist-
ing OWL language features, so that the IP to name mapping
(PTR record) is generated automatically.
The DNS is strongly controlled (through the RFC mech-

anism) and this strong control ensures interoperability be-
tween different servers and clients. However, under the
standardised DNS modification scheme, this control also
means that an RFC process has to be followed to bring about
a global change; this is a slow process. With a knowledge
domain encoding of the DNS system, DNS modification is
no longer a centralised, rigidly controlled and slow process.
At the same time, it still provides core functionality based
upon the RFCs. We support this by explicitly separating
the core and extension ontologies to prevent the accidental
removal of core features.

6 Implementation of an ontologically-based
DNS server

We adapted an existing DNS server to parse XML-based
data files, interpret the ontology and use the existing inter-
nal data structures to store the parsed data. We also imple-
mented explicit user functions, where we could use as much
or as little of the existing DNS implementation to allow the
testing of user functions.
We implemented simple guard statements, conditional

containers and anonymous functions to support simple op-
eration while retaining the cryptographicmechanisms of the
original server for existing authentication mechanisms[12,
3], as these mechanisms are an important part of the secure
mechanisms used to protect and authenticate DNS data and
prevent subversion.
We chose to base our system on the ‘dnsjava’ Java-based

DNS implementation, written by Brian Wellington [13].
This system is a straight-forward implementation of the
DNS RFCs in Java. dnsjava is not a commercial-gradeDNS
server but, because of the programming approach taken,
it was easy to modify while still maintaining the required
DNS functionality. Although the Berkeley Internet Name
Daemon (BIND)was originally considered as a source base,
the method it uses for encoding resource record types de-
pended upon compile time pre-processor statements and
would have required major modification.
The key to our modifications is that dnsjava uses an ab-

stract Record class that all of the RR types extend. In or-
der to remove the dependency on compile-time definition
of RR types, we alter the server to use a GenericRecord
class that extends Record. After instantiation, such a record
is then modified based on information stored in the repre-
sentational ontology to store the correct components of the
correct type. Methods are provided to transfer data to and
from wire format, and to and from String format, as per the
original Record.

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

We also modified the storage of RR type numbers so that
these were read from the ontology, rather than being prede-
fined in a static structure, as is the usual approach.
In our implementation we first produced the OWL files

describing the knowledge domains for the DNS and the in-
stances of the classes giving the zone data for a test domain.
We then used an existing DNS server and implemented an
RDF/XML parser to read in the OWL files. We used this to
demonstrate correct operation of the DNS using ontological
configuration files. We then implemented the operational
semantics knowledge domain as an OWL file and developed
the simple command parser and λ-calculus parser to read in
the functions. We used this to demonstrate new and explic-
itly defined functional behaviour, including adding new RR
Types for a limited domain, and tested that they worked cor-
rectly. We developed a set of ontologically-enhanced tools
that use the ontologies to increase the efficiency of data re-
quests, updates and transmission.
We modified the server to check for the existence of

functional definitions at start-up. Where the resulting ex-
pression could be easily parsed it was pre-reduced, for effi-
ciency, and the result stored. Thus, if a record would always
return data, regardless of who asked for it, then this was
recorded and no further parsing took place in response to
additional queries. Similarly, for a record that never returns
data, we define an associated shortcut that ensured that the
server never parsed it or sent data. Where an expression
could have variable outcomes, these were always parsed
based on the nature, identity and location of the querying
agent - as far as could be determined.

7 Results

The implemented system was designed to show that our
approach can maintain the defined DNS functionality while
allowing ease of extension in a way that does not break the
centrally defined authoritative model.
In order to test our approach, we developed an ontologi-

cally based version of the domain information groper (dig)
tool. dig is used to provide a mechanism for querying and
testing DNS entries. Our dig variant derives its knowledge
of the DNS from ontologies, and can access shared ontolo-
gies to determine the DNS extensions in use by an enhanced
server. We collected performance information by using the
dig tool provided with OS X 10.3.9, also the ontologically
enhanced dig tools, and performing queries against an en-
hanced server and a standard server. dig performs DNS
lookups and displays the answers that are returned. We
changed the operational semantics associated with certain
requests to demonstrate the impact of local-site customisa-
tion for clients that were aware of the change and for clients
that were unaware of the change. We refer to the transfor-
mation between a recognised DNS request and the returned

Experiment Average Time (s) Std Deviation
1a 10.04 0.067
1b 0.085 0.017
2a 0.922 0.027
2b 1.124 0.046
3 1.092 0.024
4 (baseline) 0.089 0.007

Table 1. Performance measurements

response as the functional mapping.
Our test environment consisted of a mix of standard and

enhanced servers and clients. We set out to compare the per-
formance of the interoperation of the two types of software,
and demonstrate their successful interoperation. There were
four basic experiments carried out, with experiments 1 and
2 separated into two further divisions. Functional mappings
could not be changed on a standard server, which is why
experiments 3 and 4 do not have the a and b variants. Each
experiment was conducted 1000 times and the mean and
standard deviation were calculated. Table 1 shows the col-
lected performance measurements.
In experiment 1a, a standard dig tool was used with an

enhanced server and an A record was requested for which
records existed. The functional λ-calculus mapping asso-
ciated with the A record was set to the null mapping, en-
suring that any internal response was mapped to a null re-
sponse. This response was inserted into the DNS message
format and delivered to the querying agent. This demon-
strates what occurs when a bad response, in this case the un-
modified null response, is sent back from a server. The au-
thoritative server had been instructed to return a malformed
response and, after 10 seconds, the query times out, as no
servers have given a response. Experiment 1b shows the
successful interaction of modified and unmodified systems
using a standard dig tool with an enhanced server and re-
questing an A record for which records existed. The func-
tional mapping was set to identity.
Experiments 2a and 2b show the function of the com-

pletely enhanced system, with both client and server hav-
ing full access to the functional specifications of the stored
records. In 2a, the client doesn’t send a request because the
dig tool can read the server’s ontology, determine that the
server will not send an answer and, hence, not send a query
that will receive no answer. In 2b, it can send a request and
does receive an answer, as the functional mapping reverts
to the identity function. It takes approximately 0.6 seconds
for the ontologically-enhanced, Java-based, dig tool to start,
read in the ontology and then start processing the user re-
quest and, taking this into account, it is clear that not send-
ing the request improves the efficiency of the client/server
communication by approximately 100%. In both experi-

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

ments, an ontologically enhanced dig tool was used with an
enhanced server. In 2a, the functional mapping was set to
null and in 2b the functional mapping was set to identity.
Experiment 3 shows the overheads of using the enhanced

dig tool with a standard server. An A record was requested
for which records existed.
Finally, experiment 4 is a traditional DNS client com-

municating with a traditional DNS server. A standard dig
tool was used with a standard server and an A record was
requested for which records existed. Performance is com-
parable with the performance of a standard tool with an en-
hanced server, as in experiment 1b.
From this, we can see that the choice of client and the

implementation of that client may have some effect upon
the overall time taken to resolve a query but problems intro-
duced by misconfigured servers are far more significant.
Correcting such a misconfiguration in a standard server

would take considerable time. Using the enhanced server,
we can resolve a problem causing a 1000-fold delay in a
matter of seconds without significant performance loss.

8 Future Work

We plan to implement all of the DNS RR types as
purely ontologically specified entities rather than entities
with explicitly defined server support. This includes the
crypographically-basedRR types that are crucial for secure
operation, which at present undergo no semantic modifica-
tion.
There is also an issue in advertising the new RR types

where access to the defining ontology is not available. We
are developing a DNS SRV based system that uses adver-
tisements combining ontological statement of the operation
with the location and functional definition of the new RR.

9 Conclusions

Starting from an ontology that represented only the data
in a system, we have shown that an existing knowledge
domain-based representation can be extended to capture the
behaviour of a complex system, such as the DNS, without
loss of functionality or significant performance loss. Addi-
tionally, the underlying data of the system can be more eas-
ily annotated, interpreted and placed into context because
of the rich structure now associated with every item.
Our implementation also shows that the correct repre-

sentation of knowledge domains can be used to define be-
haviour in systems and replace existing system configura-
tion and control mechanisms. Not only is this without loss
of existing function but it provides additional capacity for
expansion and is a potential springboard for the next gener-
ation of annotated, context-aware distributed systems.

We have also discussed why a global system such as
the DNS, which has a great burden of existing implementa-
tions, can make effective use of a local modification strategy
that allows users far more freedom than under the standards
mechanism. However, we have also shown a mechanism
whereby both global and local schemes can happily coexist
and potentially benefit from extensions in either area.
We believe that mechanisms of this type can be used to

integrate older internet technologies with newer distributed
computing initiatives, including the Semantic Web, Grid
and Semantic Grid, without having to expend a vast amount
of effort in developing parallel information mechanisms.

References

[1] D. Brickley and R. V. Guha. RDF Vocabulary
Description Language 1.0: RDF Schema, 2004.
http://www.w3.org/TR/rdf-schema.

[2] C.-S. Chen, S.-S. Tseng, C.-L. Liu, and C.-H. Ou. Building
a DNS Ontology using METHONTOLOGY and Protege-
2000. In Proceedings of 2002 International Computer Sym-
posium: Workshop on Artificial Intelligence, volume 2,
pages 1853–1860, Taiwan, 2002.

[3] D. Eastlake 3rd. Domain Name System Security Extensions.
RFC 2535, 1999.

[4] N. J. G. Falkner. Towards a Semantically Enhanced Inter-
net: Developing an Ontology for the Domain Name System.
Technical Report DHPC-161, The University of Adelaide,
October 2005.

[5] N. J. G. Falkner, P. D. Coddington, and A. L. Wendelborn.
Developing an Ontology for the Domain Name System. In
Proc. of the 4th Intl. Workshop on Web Semantics, Copen-
hagen, 2005. IEEE.

[6] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler. In-
troduction. In Fensel, editor, Spinning the Semantic Web.
MIT Press, 2003.

[7] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for
Specifying the Location of Services (DNS SRV). RFC 2782,
2000. http://www.dns.net/dnsrd/rfc.

[8] F. Manola and E. Miller. The RDF Primer, 2004.
http://www.w3.org/TR/rdf-primer.

[9] P. Mockapetris. Domain Names–Concepts and Facilities.
RFC 1034, 1987. http://www.dns.net/dnsrd/rfc.

[10] P. Mockapetris. Domain Names–Implementation and Spec-
ification. RFC 1035, 1987. http://www.dns.net/dnsrd/rfc.

[11] M. K. Smith, C. Welty, and D. L. McGuin-
ness. OWL Web Ontology Language Guide, 2004.
http://www.w3.org/TR/2004/REC-owl-guide-20040210/.

[12] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Welling-
ton. Secret Key Transaction Authentication for DNS
(TSIG). RFC 2845, 2000.

[13] B. Wellington. dnsjava 1.6.6, 2004.
http://www.dnsjava.org/.

[14] F. Yergeau and et al. eXstensible Markup
Language (XML) 1.0 (Third Edition), 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/.

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

