

 Copyright © 2008 IEEE. Reprinted from
International Symposium on Cluster Computing and the Grid

(6th : 2006: Singapore)

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of

any of the University of Adelaide's products or services. Internal or
personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

http://digital.library.adelaide.edu.au/dspace/items-by-author?author=International+Symposium+on+Cluster+Computing+and+the+Grid+%286th+%3A+2006%3A+Singapore%29
http://digital.library.adelaide.edu.au/dspace/items-by-author?author=International+Symposium+on+Cluster+Computing+and+the+Grid+%286th+%3A+2006%3A+Singapore%29

Compilation of XSLT into Dataflow Graphs for Web Service Composition

Peter M. Kelly, Paul D. Coddington, and Andrew L. Wendelborn
School of Computer Science

University of Adelaide
South Australia 5005, Australia

{pmk,paulc,andrew}@cs.adelaide.edu.au

Abstract

Our current research into programming models for par-
allel web services composition is targeted at providing
mechanisms for obtaining higher throughput for large scale
compute and data intensive programs that delegate part of
their computation to services, and making it easier to de-
velop such applications. The ability to invoke multiple ser-
vice calls at one time on different machines enables differ-
ent portions of the program to be executed concurrently. We
are addressing this through an implementation of an exist-
ing functional language, XSLT. Our implementation uses a
dataflow execution model, and includes a compiler to build
dataflow graphs from XSLT source code. This paper de-
scribes the execution model used to obtain parallelism and
compose web services, as well as the compilation process
used to create the dataflow graphs. Our aim with this paper
is to present the design of our system and demonstrate that
XSLT provides a suitable model for distributed execution
and parallel composition of web services.

1 Introduction

The recent popularity of grid computing and web ser-

vices has seen the emergence of systems for web service

composition, also known as orchestration. This is an ap-

proach to writing high-level programs which integrate the

functionality provided by different services to develop ad-

ditional features on top of what any of these services can

provide by themselves. It is similar to the idea of shared li-

braries in traditional programming languages, where devel-

opers make use of API calls provided by libraries. Appli-

cations that compose different web services together can be

arbitrarily complex. However, many languages promoted

for this purpose to date provide only limited control con-

structs, making it hard to include complex application logic

in the composition itself.

We are developing a programming environment for cre-

ating service composition programs which aims to provide a

more powerful programming model. To do this, we are im-

plementing XSLT, a functional language designed for pro-

cessing XML data. In order to support large scale appli-

cations with complex and demanding compute and data re-

quirements, we are targeting our implementation at parallel

execution. This is important for many applications which

require multiple remote web service operations to be in

progress at a time, so that the work of the application can be

divided up between machines in a grid to increase through-

put. Examples of such applications include those used in

the areas of engineering simulations, scientific experiments,

and financial analysis, all of which deal with large amounts

of data.

As a functional language, XSLT is a desirable choice

for developing parallel applications, because the parallelism

can be determined implicitly by the compiler. The lack of

side effects means that out-of-order evaluation is possible,

and it is thus possible for multiple parts of a program to

be executing concurrently. The automatic parallelisation of

code that we describe in this paper relieves the programmer

from having to manually deal with things like threads, crit-

ical sections, and message passing. Parallel programs writ-

ten in the functional style can thus be much simpler than

those written in imperative languages as these details are

abstracted away by the underlying language implementa-

tion.

Our parallel execution model is based on the concept

of dataflow computation [7], in which a program is repre-

sented as a directed graph, with nodes representing compu-
tational entities, and the edges between them indicating the

flow of data. A computational entity can be any type of op-

eration which consumes data, performs some computation

on it, and produces a result. In our model, this includes both

built-in and user-defined functions, as well as web service

calls. A dataflow program, in our model, can consist of op-

erations that are performed by the language implementation

itself, such as those used for arithmetic and string manipula-

tion, or operations that are provided by web services on re-

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

mote machines. The integration between these two types of

operations results in a programming and execution environ-

ment that, from the programmer’s point of view, provides a

seamless way of dealing with local and remote processing.

2 Related work

Some approaches have been taken to date towards im-

proving performance of XSLT programs through paral-

lelism. The work described in [2] achieves this by executing

multiple copies of a program sequentially; however this ap-

proach only benefits cases where there are many instances

of a small program being run, not one large program. A

commercial parallel XSLT processor is available from Con-

formative Systems [4], although no technical details on the

implementation are available. Work has been done on par-

allelising XQuery [11], a language that has a lot in common

with XSLT.

Applications of the dataflow execution model to web

service composition include Triana [12] and Taverna [14].

Both of these use the model to enable multiple web ser-

vice operations to be executed in parallel. However, they

require the programmer to work directly with the dataflow

representation, which for large programs can become cum-

bersome to work with. BPEL (Business Process Execution

Language) [5] is an imperative language designed for web

service composition which also supports parallelism. How-

ever, the parallel sections of the program must be explicitly

specified, and if the code is written incorrectly, it is easy to

introduce race conditions and non-deterministic behaviour.

A common approach used in dataflow systems is to com-

pile a higher level language into the dataflow representa-

tion, which avoids the need for the programmer to explicitly

specify the parallelism. In contrast to imperative languages,

this translation is more readily achievable for functional lan-

guages, which are side-effect free, and thus do not depend

on global state. Languages for which dataflow compilers

have been developed include APL [13], V [10], ALFL [6],

and Lazy ML [1].

3 Overview of XSLT

Extensible Stylesheet Language Transformations

(XSLT) [18] is a language specifically designed for pro-

cessing XML data. All variables, as well as function

parameters and return types, are defined in terms of XML

Schema [15]. Simple types consist of the common types

present in other languages such as integers, floats and

strings, while data structures are represented as trees of

XML elements. It is a pure functional language, restricted

to consuming input data and producing output data, and

there is no notion of global state. All functions are

side-effect free, and variables are single-assignment only.

The core language concept in XSLT is that of a sequence
constructor, a group of statements which are evaluated to

produce a list, or sequence, of values. Each item in a se-

quence may be either an atomic value or a node in an XML

tree. Each statement in the sequence constructor produces

zero or more sequence items, and the sequences produced

by each statement are concatenated together to form the

result of the sequence constructor. Some types of state-

ments such as loops and conditionals may themselves con-

tain other sequence constructors, in a similar manner to the

concept of basic blocks found in imperative languages.

Many statements take a parameter specified as an XPath

expression [16], which runs a query over a tree of nodes

and produces a sequence of items. The result of this ex-

pression affects the way in which the statement is eval-

uated, such as determining which branch of a condi-

tional statement is evaluated, or the sequence over which

loop iteration occurs. For example, the path expres-

sion department/employee[@role=’Manager’]
returns all employee elements that have a role attribute

of “Manager”.

During execution of a program there is the concept of dy-
namic context. This is a set of implicitly defined variables

which are related to the current input data being processed.

It includes the context item, which is a value that refers to

the item for which the current block of code, such as a loop

body or template, was invoked. The position of the context

item and the size of the sequence in which that item resides

also forms part of the dynamic context. Certain statements

cause the dynamic context to temporarily change - for ex-

ample, when a loop is evaluated, in which case the context

item is set to the current item in the input sequence.

There are two ways of modularising code in an XSLT

program: functions and templates. Functions in XSLT are

just like those in other languages; each has a name and a

set of parameters, and returns a result. The function body

consists of a sequence constructor that can contain any set

of statements. All functions are side-effect free; there is no

global state that they can modify, and a function can only

compute a result based on the values passed in as param-

eters. This means that a function is guaranteed to return

the same result each time it is called with a particular set

of parameters. This is a key feature of the language which

enables out-of-order evaluation and parallelism.

Templates are similar to functions, except the way they

are invoked is different. They effectively act as tree transfor-

mation rules, mapping a pattern to a set of statements to be

evaluated when that pattern is found. Execution of an XSLT

program begins by taking an input XML document, and ap-

plying the set of templates to the elements that are encoun-

tered. Template rules typically match different portions of

the document based on element names, but more complex

patterns are also possible. When a pattern matches, the tem-

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

plate is called, and the result of the evaluation is combined

with the results of other templates to form the output of the

program.

Our implementation of XSLT is targeted at web service

composition. Our decision to use XSLT for this purpose

was based on two key features of the language: the type sys-

tem, and the functional semantics. The use of XML schema

for defining all types of data handled by a program provides

a good match with WSDL, the language used for defining

web service interfaces [9]. The functional nature of the lan-

guage also makes automatic parallelisation easy, which for

imperative languages is difficult to achieve [3]. We support

web service composition by extending the language with

additional mechanisms to associate certain function calls

with web service operations; the programmer can then in-

voke web service operations using the standard function call

mechanisms in a transparent manner.

One implication of our model is that we also assume the

web services that are composed are stateless; however, for

the types of applications we are targeting with our system,

this does not impose any serious constraints. We are pri-

marily targeting applications that involve processing of raw

data to produce results, such as those used in science and

engineering for performing simulations and analysing data

collected from experiments.

4 Dataflow model

Our execution model is based on dynamically unfolding

dataflow graphs. The program is first compiled into a set of

static graphs, each of which corresponds to a block of code

within the program, such as a function, template, or loop

body. At runtime, a new copy of the graph is instantiated

whenever that code block is to be executed. When a graph

is instantiated, an activity is created for every operation in

the graph. Each activity has pointers to the destination ac-

tivities to which the output values should be sent, in accor-

dance with the structure of the static graph. The activities

are placed in a pending set, and when each receives the ap-

propriate number of input tokens, it fires. Upon firing, the

operation is performed, the output values are produced, and

the activity is removed from the set. The output values get

transmitted to the input ports of the activities that are con-

nected to the one that just fired.

A simple block of code with no loops or function calls

only requires one graph instantiation. As each activity is

fired, subsequent activities become enabled, and fire, pro-

ducing their output values which flow through the graph.

Loops are handled by creating a new copy of the graph

corresponding to the loop body for each item in the list of

values to be iterated over. Function calls are handled by

creating a new copy of the graph built from the function

body; this allows recursion to be supported. Parallelism is

achieved by executing different loop iterations and function

calls on separate machines. A scheduler is responsible for

deciding which activities should be assigned to which ma-

chines, based on CPU load and other information; the de-

tails of this are outside the scope of this paper.

The static graphs from which the activities are instanti-

ated are built by the compiler from the XSLT source. Each

operation in a graph has one or more input ports, and one

or more output ports. We use a data driven, or eager eval-

uation strategy; the availability of input data causes output

data to be produced.

The compilation process, described in Section 5, parses

the source code and builds the static graphs from which the

runtime activities are instantiated. A program is passed to

the dataflow execution engine in the form of a set of static

graphs, with one marked as the initial graph. This is like

the main function in C; it is instantiated first, and from

there it makes calls to other functions which get activated

as described above.

4.1 Data tokens

Each input port and output port of an operation is as-

signed a type. The set of types that can be assigned to a

port is defined by the XPath data model [17]. These include

atomic types, such as integers or strings, as well as complex

data structures represented as trees of XML elements. Each

type may also have an occurrence indicator associated with

it, which indicates the number of values that can be con-

tained within a sequence that matches the type. If present,

this is either * (zero or more), + (one or more), or ? (zero

or one).

A data token may represent either a single item or a se-

quence of items. Sequences are handled like lists in Lisp;

a token can represent a cons-like pair with left and right
pointers to other tokens. Each of these tokens may be a sin-

gle item, or another pair. Sequences can thus be represented

as a tree, with the branches corresponding to pairs, and the

leaves corresponding to the actual values in the sequence.

Unlike Lisp, the XPath data model does not allow nested

lists; a tree of pair tokens is treated as a flat sequence of

values.

When a token is transmitted from the output port of one

operation to the input port of another operation, this token

may represent either a single item or a (possibly empty) se-

quence. Whether or not it is possible to produce or consume

a sequence of items is dependent upon the nature of the op-

eration. Some expect exactly one item to be present in the

token, while others allow a different range. This is deter-

mined by the occurrence indicator of the type associated

with the port. These type associations are checked during

compilation where possible, and in other cases at runtime.

Tokens are immutable; once created, they cannot be

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

modified. Instead of changing a token, it is necessary to

create a new one, which may contain copies of the parts of

the old token that don’t need to be changed. Due to the way

we implement reference sharing among token copies, this

is necessary to ensure that the semantics of the execution

model allow for deterministic parallel evaluation, which is

why each token is treated as a fixed value.

4.2 Operators

Most operations in our dataflow model follow the simple

convention that in order to fire, they must receive a token on

all of their input ports, and once they have completed, pro-

duce a token on a single output port. These operations are

implemented internally as C++ functions, which take the set

of input values as parameters, and return the value to be sent

on the output port. There are, however, a number of special

operators which have different semantics. These need to be

handled specially by the interpreter. Most of these are stan-

dard dataflow operators used for control purposes, with a

few that are specific to our implementation. These special

operators are as follows:

• DUP duplicates an input token. It has one input port on

which to receive the token, and two output ports upon

which copies of the token are produced.

• CONSTANT produces a specific value on its single

output port; this value is assigned statically to the op-

eration during compilation. It has a single input port

on which it receives a value to trigger firing of the op-

eration; this value is ignored.

• SPLIT enables conditional control flow. It has two

input ports, one of which accepts a data value of any

type, and the other which accepts a boolean value used

for control. Upon firing, the data token is produced on

only one of the two output ports; the choice of which

port to use is determined by the control value.

• MERGE takes the first value that arrives on either of

its two input ports, and passes it along on its single

output port. It is used in combination with SPLIT to

handle conditionals.

• CALL dynamically instantiates a set of activities for

a dataflow graph corresponding to a specific function,

the name of which is assigned to the operation dur-

ing compilation. The CALL operator has one input

port for each parameter to the function, plus an addi-

tional input for a token representing the dynamic con-

text structure. The single output port from the CALL

is connected to another operation in the graph which

will receive the result of the function. At runtime,

the activity corresponding to the RETURN operation

in the function body is connected directly to the desti-

nation of the CALL. Both user-defined functions and

templates are handled in this manner.

• MAP is similar to the CALL operation, except that if

the input token is a sequence of items, then the func-

tion is instantiated once for each item. At runtime, a set

of SEQUENCE activities are dynamically created and

connected together such that they take input from the

RETURN activity of each function instantiation and

produce a list of result values that is in the same order

as the input sequence passed to MAP. This result se-

quence is passed to the operation to which the output

port of the MAP node is connected. MAP can be used

to invoke subgraphs compiled for loop bodies, path ex-

pressions, and filter predicates, which are essentially

treated the same as functions from the perspective of

the dataflow interpreter.

• SEQUENCE takes as input left and right tokens and

produces a pair token pointing to these. A set of SE-

QUENCE operations connected in series can be used

to produce a list of items from individual values.

• PASS has one input port and output port, and simply

passes the input token along verbatim.

• SWALLOW has one input port and no output ports.

It just consumes the value passed to it. Both PASS

and SWALLOW are generally used to simplify cer-

tain steps of the compilation and provide no real useful

function at runtime. They can be optimised away in

most cases.

• RETURN provides identical functionality to the PASS

operation, except it is used differently at runtime.

When a CALL operation instantiates a function graph,

it connects the instantiated RETURN activity to the ac-

tivity corresponding to the destination operation that

was connected to the CALL in the compiled graph.

• CTXITEM is used to extract the context item from the

dynamic context information. The input token to this

operation is expected to be a collection of information

about the dynamic context, and the output is the con-

text item component of this collection.

• WSCALL invokes a web service operation. The in-

put messages to the service are taken from the tokens

received on the input ports. The request is sent asyn-

chronously, and while the operation is being performed

on the remote host, other operations can continue to

execute locally, as long as they have no data depen-

dencies on the result of the service operation. This

allows the possibility of multiple service calls to be in

progress at the same time. Upon receiving the response

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

from the service, the result is transmitted on the output

port.

4.3 Support for distributed execution

Our dataflow model supports distributed execution of

programs in two ways: through activity distribution, and

web service invocation. As mentioned above, whenever a

graph of activities is instantiated at runtime, it is possible

for those activities to be assigned to different machines on

a network. Loop bodies, function calls, and independent

portions of a block of code can thus be executed indepen-

dently, as long as there are no data dependencies between

them. By running an instance of the execution engine on

each machine in a grid, execution of the program can be

parallelised.

Web service invocation allows functionality provided by

remote services to be incorporated into the program. From

the perspective of the dataflow model, a call to a web ser-

vice is treated as a special type of activity, which gets han-

dled by submitting a SOAP request to the service. The de-

tails of how that service is implemented are transparent to

the dataflow interpreter; the remote machine executes what-

ever code is sitting behind the service interface and returns

a result. Parallelism is obtained by making multiple web

service calls in parallel, each of which may potentially be

provided by a different machine. Multiple outstanding web

service calls can be in progress at any given point in time

during execution. Other parts of the program which do not

depend on the results of a given operation can continue ex-

ecution while the call is in progress, and once the call com-

pletes, those activities which do have a data dependency on

the web service call operation can be fired.

Our current implementation of this model only supports

sequential execution of a graph on a single machine, al-

though parallel web service invocation can occur through

the use of asynchronous messaging. We have chosen this

model specifically with distributed execution in mind as we

intend to implement this in the next stage of our develop-

ment. The purpose of this paper is to present an overview

of the execution environment and compilation process in

our system; a detailed evaluation and performance analysis

will be provided once we have the distributed implementa-

tion completed. We also intend to investigate a variety of

scheduling strategies for distributed web service composi-

tion, an area which has been given little attention to date in

the research community.

5 Compilation process

Initially, the compiler parses the source code for an

XSLT program and produces a syntax tree. This tree in-

cludes XPath expressions that are specified on attributes of

various XSLT statements. Internally, the compiler treats

these as one language rather than two, and both XSLT se-

quence constructors and XPath expressions are represent

in a similar manner. The parser also supports an alterna-

tive syntax we have developed [8] which represents these

constructs in a more consistent manner than the traditional

XSLT/XPath combination. The compiler recursively pro-

cesses this tree, creating a new graph for each function, and

then building up portions of the graph for each node in the

tree.

Initially, when a function graph is created, there is an

input node and a RETURN node. As the tree is processed,

additional nodes are added between these two, so that at the

end, the output of the last statement in the function points

to the RETURN operator.

The input node takes a token representing the dynamic

context, which is a structure containing information such

as the current item, the length of the input sequence, and

the position of the current item within the sequence. Some

language constructs, such as the current item expression

(.), and path expressions, require the current item to be

extracted from this structure, which is achieved by adding

a CTXITEM operator to the graph. Other operators de-

pend on the dynamic context for other purposes, such as

the position() function, which returns the position of

the current item in the input sequence. The dynamic con-

text is passed as input to these directly without the use of

the CTXITEM operation. Whenever a template is invoked,

the a new dynamic context is created representing the node

that the template applies to.

Because of the use of a data driven evaluation strategy,

all nodes must have at least one input, so that it is possible

for them to be fired. Thus, even if an operation does not

require inputs, such as a constant, or a function with no pa-

rameters, it is necessary to create an input port for that node

and connect it to another node, in order to control when it

is fired. In this case the input value is just consumed and

silently ignored; it does not matter what value is passed in

as it is essentially just a control dependency.

The following sections describe how each of the main

XSLT and XPath language constructs are compiled into

graphs. Due to space restrictions we only give simple ex-

amples for each. A more complex example, which demon-

strates the the parallel composition of web services using

this model, is given in [8].

5.1 Constants

These are the most straightforward to compile. A sin-

gle node is inserted into the graph representing the CON-

STANT operation, and the numerical or string value of the

constant is set on the node. An input edge is added to con-

nect this node into the graph so that it will fire upon receipt

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

of a token, however at runtime the value of this input token

is ignored and the constant is sent on the output edge.

5.2 Binary operators

Operators such as +, -, and, or, = and < have subgraphs

compiled for both the left and right expressions. A DUP op-

erator is added, which feeds into each of the subgraphs. The

output of each subgraph is connected to the binary operator.

The graph compiled for the expression 2 + 3 would look

like this:

DUP

2

3

+

5.3 Conditionals

There are three types of conditionals: XSLT’s if and

choose statements, and XPath’s if expressions. All have

the same semantics, with the exception that the XSLT if
statement does not allow an else branch. Conditionals are

handled using a pair of SPLIT and MERGE operations. A

DUP is added at the start, one output of which gets fed di-

rectly into the first input port of the SPLIT, to get passed

on as the input to whichever branch is to be evaluated. The

second output of the DUP is fed into the subgraph which

is compiled to evaluate the conditional. The subgraphs

compiled for the true and false branches each take input

from one of the SPLIT’s output ports; at runtime, the port

on which the SPLIT outputs a token will determine which

of these branches gets activated. In the case of multiple

branches, false branch is just treated as another conditional

and compiled recursively.

<choose>
<when test="position() > 4">
yes

</when>
<otherwise>
no

</otherwise>
</choose>

conditional

true branch

false branch

DUP

DUP

SPLIT

position

4

"yes"

"no"

MERGE

>

5.4 Element constructors

An element creation statement, specified either by a

literal result element, or by using an expression such as

<element name=’’...’’>, is created using the EL-

EMENT operation. This has two input ports; the first re-

ceives the name of the element as a string, and the other

takes a sequence of items representing the child elements

and text nodes, as well as attributes to be added to the el-

ement. For each of these two ports, a subgraph is com-

piled corresponding to child statements of the element con-

structor and the specified element name expression. In the

case of literal elements, the name is just a string constant,

however the <element> statement allows the name to be

computed from an expression. The example below specifies

a literal result element with one attribute and containing a

single text node. The SEQUENCE operator in the graph

constructs a list containing the attribute and text node in a

manner similar to Lisp’s cons operator, and outputs a sin-

gle data token representing this list.

<book author="George Orwell">
Animal Farm

</book>

DUP "book"

DUP

ELEMENT

DUP

"Animal Farm"

"author"

"George Orwell"

SEQUENCE

ATTRIBUTE

name expression

element content

5.5 Loops

XSLT’s for-each statement and XPath’s for con-

struct need to be handled specially. These can cause the

contained block of code to be executed an arbitrary number

of times. Because our execution model is based on activ-

ities that fire once, and parallelism is achieved by having

separate activities dynamically instantiated and assigned to

different machines, it is necessary to compile the loop body

into a separate graph. A MAP operator is then used to take

the sequence of values to be processed and instantiate a

copy of the graph for each one.

The select attribute of the <for-each> statement,

or its equivalent bracketed expression in an XPath for con-

struct, is compiled into a subgraph which produces a se-

quence of values to be passed into the MAP operator. In

this example, the built-in RANGE operation is used to cre-

ate a sequence of values from 1 to 10, and the subgraph

compiled for the loop body doubles each of these. Thus,

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

the output of the MAP operator is a data token representing

the sequence of values from 2 to 20, going up in increments

of 2. The context item (.) corresponds to the value passed

in to the current loop iteration, and must be extracted from

the dynamic context value using the CTXITEM operator in

the subgraph.

<for-each select="1 to 10">
<sequence select="2 * ."/>

</for-each>

*

subgraph1

RETURNDUP

2

CTXITEM

DUP

1

10

RANGE MAP(subgraph1)

5.6 Path expressions

Expressions of the form a/b are compiled using the SE-

LECT operation. The input to this operation is assumed to

be a sequence of XML nodes, extracted from the dynamic

context using the CTXITEM operation. The SELECT oper-

ation takes this sequence, checks each of the nodes against

the node test, and outputs a sequence containing the match-

ing nodes.

In path expressions with multiple steps, each step is eval-

uated once for every item in the sequence returned by the

previous step. The expression expr1/expr2 would cause

expr2 to be evaluated once for each item returned by expr1,

in a similar manner to a loop. These types of expressions

are compiled by building a separate graph from the latter

expression, and using a MAP operation to invoke this graph

for each element in the earlier expression. The following

example demonstrates this:

<sequence select=’’a/b’’>

subgraph1

CTXITEM SELECT(b) RETURN

DUP

CTXITEM

MAP(subgraph1)

SELECT(a)

As a more complex example, consider a path expression

where the last step performs some computation. In this case,

the position of the context item is extracted and multiplied

by two. This results in subgraphs being constructed for the

second and third steps. The path evaluation process involves

processing each of these steps in turn; this is handled by

invoking the appropriate subgraph for each item passed into

the two steps.

<sequence select="a/b/(position()*2)"/>

*DUP

position

2

RETURN

CTXITEM SELECT(b) RETURN

DUP

DUP

MAP(subgraph2)

CTXITEM

MAP(subgraph1)

SELECT(a)

subgraph1

subgraph2

5.7 Filter expressions

Expressions of the form a[b] are handled using the

FILTER operation. This operates in a similar manner to

path expressions; however, with a filter expression, the re-

sult of the predicate is used to determine which elements of

the sequence produced from the preceding expression are

included in the result. As the predicate expression can be

arbitrarily complex, and must be executed once for each

item in the sequence, it is compiled into a separate graph in

the same manner as for path expressions. A FILTER opera-

tion is added after the MAP; the output sequence of boolean

values from the MAP operation is passed into the first input

port of the FILTER, and a copy of the original sequence, ob-

tained by an additional DUP, is passed into the second input

port. The result of the FILTER operation is to select those

items in the original sequence for which the corresponding

predicate evaluates to true.

<sequence select="b[position() mod 2=0]"/>

DUP

DUP

0 RETURN

position

2

=

MOD

DUP

CTXITEM

MAP(subgraph1)

SELECT(b) DUP

FILTER

subgraph1

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

5.8 Template application

The implicit template application that occurs at the

start of the program or the explicit application via the

<apply-templates> statement is treated as an if state-

ment containing multiple branches, each of which tests for

a specific template rule. Template rules are tested in priority

order, so that those which have have been assigned a higher

priority are checked first, and only if they do not match will

the lower priority rules be used.

5.9 Function calls

A call is handled by adding a single node to the graph

which represents the function call. This is either a CALL

or WSCALL operator for user-defined functions and web

service operations, as described in Section 4, or an inter-

nal operator corresponding to one of the built-in functions

defined by the language specification.

A subgraph is compiled for each expression passed as a

parameter to the function. For functions that take a single

parameter, the output port is connected directly to the in-

put for the subgraph; for multiple parameters, the appropri-

ate number of DUP nodes is created, and the output ports

of these are fed in to the parameter subgraphs. The func-

tion call node has one input port for each parameter, and

the output port of each subgraph is connected to the corre-

sponding input port. For built-in functions which need the

dynamic context, this is treated as an additional parameter

to the function.

5.10 Type conversion

Both built-in and user-defined functions in XSLT, as well

as web service operations defined in WSDL, can associate

specific types with their parameters and return values. If a

particular type is expected by a function, and a value of a

different type is passed in, then the value must be converted

to the required type. If a conversion is possible, then it is

handled by the language automatically, and the programmer

is not required to manually cast. Attempts to pass in a value

of a type for which no conversion is possible result in run-

time errors.

In order to ensure a function receives input values of the

correct types, it is necessary to perform this conversion be-

fore the function is called. This is handled by the final

stage of the compilation process, which traverses through

the graph produced in the first stage and adds type con-

version operation nodes where necessary. During the first

stage, as the graph is constructed, nodes are annotated with

type information indicating the types that they expect on

their input ports and produce on their output ports. To de-

cide where type conversion operations are needed, each pair

of connected input and output nodes is checked to see if the

types match. If the type produced by the output is the same

as or a subtype of the type expected on the input port, then

no conversion is necessary. Otherwise, a conversion node

is added between the two. Because conversions are added

only when necessary, connected nodes in the graph that are

known to have compatible types do not incur the overhead

of performing the checks and conversions at runtime.

6 Future work

The previous sections have explained the work we have

done to date which we are using as the basis for our paral-

lel implementation of XSLT. Our current implementation

serves as a demonstration of the concepts, and provides

a foundation upon which additional improvements will be

built. It consists of code for parsing XSLT source code,

compiling it into a dataflow graph, and executing it using

a sequential interpreter. However, there is not yet support

for the parallelism and distribution that we are targeting our

implementation at, and this is the major focus of the next

stage of our work. Having solved the initial problems of

designing an execution model and compilation process, we

are now concentrating on six key areas of research:

• Distributed execution of dataflow graphs. We will ex-

plore the use of a set of interpreters running on separate

machines to execute the compiled dataflow graphs.

• Scheduling of activities to machines. This ties in with

the distributed execution, and will involve an investi-

gation of various dynamic scheduling algorithms.

• Instruction clustering. This involves grouping related

instructions together in order to reduce the granularity

of the graph dealt with by the scheduler.

• Improved parallelism. The current model forces all pa-

rameters to a function to be computed before the func-

tion is called. We will investigate optimisations to the

graph structure which relaxes this restriction.

• Streaming processing of XML data. By making the

flow of data through a program explicit, our model

lends itself to the possibility of processing data as it

arrives, without having to wait for all input to be avail-

able before the first activity is fired.

• Formal definition of compilation process. This would

provide a more concise and accurate definition of the

language transformation, and could possibly be imple-

mented in XSLT itself.

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

7 Conclusion

We are currently developing an implementation of XSLT

which enables parallel execution of programs and support

for web services. This paper has explained the execution

model of our system, and given details of the compilation

process. Our work to date has focused on the translation

of XSLT programs into dataflow graphs and developing a

sequential implementation of the execution engine. In the

future we intend to build on this by creating a distributed

version of the interpreter which can execute the compiled

dataflow graphs in parallel.

As a functional language, XSLT lends itself to automated

parallelisation. Many other languages used for web service

composition do not provide the same level of support for

parallelism, requiring instead that it be specified manually

by the programmer. Our approach makes the programmer’s

task easier by automatically executing sections of code in

parallel wherever possible. Because the dataflow model

makes data dependencies explicit, it is always possible to

determine when it is safe to execute an operation based on

whether or not its required data has arrived. This is in con-

trast to languages with explicit parallelism which require

the programmer to carefully manage access to shared vari-

ables to avoid non-deterministic behaviour.

It is hoped that our work will contribute to the field of

web service composition by providing an effective way to

compose web services in parallel. We also see our system

being applicable to the problem of large-scale processing of

XML data by executing XSLT programs in parallel across a

set of machines in a cluster or grid. It is our belief that these

two features, combined, will provide a powerful and easy-

to-use development environment for creating distributed ap-

plications based on modern XML and web services tech-

nologies.

Further information about this project is available at

http://gridxslt.sourceforge.net/.

References

[1] L. Augustsson. A compiler for lazy ML. In LFP ’84: Pro-
ceedings of the 1984 ACM Symposium on LISP and func-
tional programming, pages 218–227, New York, NY, USA,

1984. ACM Press.

[2] M. Barreiro, J. L. Freire, V. M. Gulias, and J. J. Sanchez.

Exploiting sequential libraries on a cluster of computers. In

Erlang Workshop, in connection with PLI 2001, Sept. 2001.

[3] P. Briggs. Automatic parallelization. ACM SIGPLAN No-
tices, 31(4):11–15, 1996.

[4] J. Derrick. Cost effective XML processing in the datacenter.

In XML Europe 2004, Amsterdam, The Netherlands, Apr.

2004.

[5] T. A. et. al. Business Process Execution Language for Web

Services version 1.1. http://ifr.sap.com/bpel4ws/, May 2003.

[6] B. Goldberg. Buckwheat: graph reduction on a shared-

memory multiprocessor. In LFP ’88: Proceedings of the
1988 ACM conference on LISP and functional program-
ming, pages 40–51, New York, NY, USA, 1988. ACM Press.

[7] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in

dataflow programming languages. ACM Computing Surveys
(CSUR), 36(1):1–34, 2004.

[8] P. M. Kelly, P. D. Coddington, and A. L. Wendelborn. Dis-

tributed, parallel web service orchestration using XSLT. In

1st IEEE International Conference on e-Science and Grid
Computing, Melbourne, Australia, Dec. 2005.

[9] P. M. Kelly, P. D. Coddington, and A. L. Wendelborn. A

simplified approach to web service development. In 4th Aus-
tralasian Symposium on Grid Computing and e-Research
(AusGrid 2006), Hobart, Australia, Jan. 2006.

[10] S. Kusakabe, T. Nagai, Y. Yamashita, R. Taniguchi, and

M. Amamiya. A dataflow language with object-based ex-

tension and its implementation on a commercially available

parallel machine. In ICS ’95: Proceedings of the 9th in-
ternational conference on Supercomputing, pages 308–317,

New York, NY, USA, 1995. ACM Press.
[11] X. Li, R. Ferreira, and G. Agrawal. Compiler support for

efficient processing of XML datasets. In ICS ’03: Proceed-
ings of the 17th annual international conference on Super-
computing, pages 42–52, New York, NY, USA, 2003. ACM

Press.
[12] S. Majithia, I. Taylor, M. Shields, and I. Wang. Triana as a

graphical web services composition toolkit. In S. J. Cox, ed-

itor, Proceedings of UK e-Science All Hands Meeting, pages

494–500. EPSRC, CD-Rom only, Sept. 2003.
[13] A. S. Mazer. A dataflow-based APL for the hypercube. In

Proceedings of the third conference on Hypercube concur-
rent computers and applications, pages 505–512, New York,

NY, USA, 1988. ACM Press.
[14] T. Oinn, M. Addis, and J. F. et. al. Delivering web service

coordination capability to users. In Proceedings of the 13th
international World Wide Web conference on Alternate track
papers & posters, pages 438–439, New York, NY, USA,

2004. ACM Press. http://taverna.sf.net.
[15] W3C. XML Schema part 0: Primer second

edition. W3C Recommendation, Oct. 2004.

http://www.w3.org/TR/xmlschema-0/.
[16] W3C. XML path language (XPath) 2.0. W3C Working

Draft, Apr. 2005. http://www.w3.org/TR/xpath20/.
[17] W3C. XQuery 1.0 and XPath 2.0 data model. W3C Working

Draft, Apr. 2005. http://www.w3.org/TR/xpath-datamodel/.
[18] W3C. XSL transformations (XSLT) version 2.0. W3C

Working Draft, Apr. 2005. http://www.w3.org/TR/xslt20/.

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)
0-7695-2585-7/06 $20.00 © 2006 IEEE

	cover_36011
	36011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

