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Forced solitary waves and fronts past submerged obstacles

B. J. Binder® and J.-M. Vanden-Broeck”

School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom

F. Dias®

Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan,

Cachan, France
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Herein, an efficient numerical method is presented to describe the flow of a liquid in an open
channel with various types of bottom configurations. The method is developed for steady two-
dimensional potential free surface flows. The resulting nonlinear problem is solved numerically by
boundary integral equation methods. In addition weakly nonlinear solutions are derived. New
solutions which complement those of Dias and Vanden-Broeck [J. Fluid Mech. 59, 93-102 (2004)]
are presented. Furthermore some solutions for channel flows past dips in the bottom are
discussed. © 2005 American Institute of Physics. [DOI: 10.1063/1.1992407]

Free solitary waves and fronts have been studied exten-
sively from both an analytical and a numerical point of
view. In contrast, forced solitary waves and fronts, which
occur more often in nature or in experiments, have been
less studied. The paper studies steady nonlinear two-
dimensional open-channel flow past submerged obstruc-
tions. With several obstructions, a lot of configurations
are possible. New configurations are discovered through a
weakly nonlinear analysis of the problem and confirmed
by numerical results.

I. INTRODUCTION

Whereas the study of solitary waves and fronts has been
quite active for the past decades, the study of forced solitary
waves and fronts has been much less extensive. Such forced
waves occur naturally in many physical systems. Here the
emphasis is on steady nonlinear two-dimensional free sur-
face flows past submerged objects. Such flows have been
studied for example by Watters and Street (1964), Forbes
(1981, 1988), Dias and Vanden-Broeck (1989), and Shen
(1995). The monograph by Baines (1995) provides a good
description of analytical and experimental results on forced
free-surface waves, even though it is primarily devoted to
forced waves in stratified flows. The fluid is assumed to be
inviscid and incompressible and the flow to be irrotational. A
typical flow configuration with two submerged objects is
shown in Fig. 1(a). Cartesian coordinates (x*,y") with the x"
axis on the horizontal bottom are defined. As x" — oo, the
flow approaches a uniform stream with constant velocity U
and constant depth H [see Fig. 1(a)]. We define the Froude
number
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U
where g is the acceleration due to gravity. As x* — —c the
flow can be uniform or possess a train of waves. When it is
uniform, the Froude number

" U

"l .

is also introduced, where U" and H" are the uniform velocity
and uniform depth as x"— —.

In the case of one submerged obstacle, four basic flows
have been identified. The first basic flow is supercritical with
F=F">1. The second is subcritical with F<1 and a train of
waves as x — —o (the direction of flow needs then to be
reversed to satisfy the radiation condition). The third is a
hydraulic jump with F>1 and F*<1. The fourth is called a
generalized hydraulic jump and is characterized by F>1 and
a train of waves as x — —o0. The first three basic flows are
classical and the fourth was first calculated by Dias and
Vanden-Broeck (2002). Generalized hydraulic jumps for
flows past one submerged object lack physical meaning be-
cause the waves on the free surface do not satisfy the radia-
tion condition. However Dias and Vanden-Broeck (2004),
guided by experimental results and by the work of Pratt
(1984), showed that these generalized hydraulic jumps can
be used to describe locally the flow past one obstacle when a
second obstacle is placed in the flow. More precisely Dias
and Vanden-Broeck (2004) constructed a “hybrid” flow past
two submerged obstacles which can be viewed as the super-
position of two basic flows past a single obstacle (a subcriti-
cal one and a generalized hydraulic jump). The purpose of
this paper is to examine further flows with two obstacles in
order to classify the possible solutions. Both numerical tech-
niques based on boundary integral equation methods and
weakly nonlinear theories are used. Boundary integral equa-
tion methods have been used by many previous investigators
to compute two-dimensional free-surface flows as in the
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FIG. 1. (a) Sketch of the flow in physical coordinates (x*,y"). (b) Sketch of the flow in the plane of the complex potential (f plane). (c) Sketch of the flow
in the lower half-plane ({ plane). Various points have been labeled along the free surface and the bottom.

present paper, but also to compute two-dimensional axisym-
metric and three-dimensional free-surface flows [see Dias
and Bridges (2005) for a recent review]. They lead to very
accurate solutions because they only require mesh points on
the boundaries. In the following, classical solutions are re-
covered and new “hybrid” flows are discovered.

Il. FORMULATION AND NUMERICAL PROCEDURE

We consider steady two-dimensional potential free sur-
face flows past two submerged obstacles at the bottom of a
channel [see Fig. 1(a)]. The results presented in this paper
are qualitatively independent of the shape of the obstacles.
For simplicity, triangular obstacles with corners #°, 7, tclk’,
£5P, 1, and 15° are chosen. Here “do” and “up” refer to down-
stream and upstream, respectively. Cartesian coordinates
(x",y") with the x" axis along the bottom and the y" axis
directed vertically upwards are introduced. The acceleration
due to gravity g is acting in the negative y* direction. The
flow is assumed to be steady and characterized by a uniform
stream with constant velocity U and constant depth H as x"
— . The reader interested in unsteady flows past distur-
bances is referred to Grimshaw and Smyth (1986). The equa-
tion of the free surface can be written as y'=H+ 7 (x"). We
define dimensionless variables by taking H as the reference
length and U as the reference velocity. Thus we define the
dimensionless coordinates (x,y)=(x",y")/H. The free sur-
face is then described by y=1+7"/H.

The two triangles are assumed to be isosceles triangles
with right angles at their apexes x,:x;k/H, heights hi=hf/H,

and supports [x;—h;,x;+h;], i=1, 2. The dynamic boundary
condition on the free surface gives

1 1 1
5(u2+02)+ﬁy25+ﬁ, (3)
where F is the Froude number defined by Eq. (1). Here u and
v are the horizontal and vertical components of the velocity.

Next we define the potential function ¢, the stream func-
tion ¢, and the complex potential f=¢@+iy. Without loss of
generality we choose =0 on the free surface and ¢=0 at
the point x=0 on the free surface. It follows that )=-1 on
the bottom. The flow domain in the complex f plane is the
strip —1 < <0 [see Fig. 1(b)]. The corners of the triangles
are on the streamline y=—1. The values of ¢ at the apexes
are denoted by ¢;, i=1, 2, and those at the upstream and
downstream corners of the two triangles by ¢ and ¢°, i
=1, 2.

The strip —1<¢<0 is mapped onto the lower half ¢
plane by the transformation

[=a+iB=e™.

4)
The flow configuration in the { plane is shown in Fig. 1(c).
The function 7—i6 is defined by

u—iv=e"

(5)

and we apply Cauchy integral equation formula to the func-
tion 7—i@ in the { plane with a contour consisting of the a
axis and a semicircle of arbitrary large radius in the lower
half plane. Since 7—if— 0 as |{| — o, there is no contribu-
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FIG. 2. Supercritical flows, for F=1.30, h;=h,=0.30, and x;=x,—x;=6.32.
(a) Fully nonlinear free surface profiles. The solid curve has maximum
elevation 0.59 at x=+2.89 and elevation 0.19 at x=0. The broken curve has
maximum elevation 0.18 at x=+3.16 and elevation 0.03 at x=0. The maxi-
mum elevations do not occur exactly above the top of the obstacles. (b)
Values of dy/dx=tan(6) vs y—1=1, showing the fully nonlinear phase tra-
jectories for (a).

tion from the half circle and we obtain (after taking the real
part)

Ha)=— f GO ©)

where A a) and 6(a) are the values of 7and 6 on the « axis.
The integral in Eq. (6) is a Cauchy principal value.

We assume that @>0 (i.e., that @ corresponds to points
on the free surface). The kinematic boundary condition on
the bottom of the channel implies 8(ay)=m/4 for a; <ay
<ay? and for o, <op<a’, 0(ag)=—1/4 for <<y
and @ < ay< @, and #(a,)=0 otherwise. Substituting these
values in Eq. (6) gives

Chaos 15, 037106 (2005)
(a) - 61’)2
(aP - a)(a(ljO -a)

L (- f (a)
-—1In

4 (- a)(a‘zk’ - )

F(a):—iln

0 G-«

We rewrite Eq. (7) in terms of ¢ by using the change of
variables

a=e™, ay=e™. (®)
This gives
1 (e™1 +e™)?
T(¢) =-7 ln up do
4 (™1 4 ™) (™1 + ™)

(67¢2 + eﬁ¢)2

In up do
4 (™ +e™) (™2 + ™)

7 0(p)e™
+ J'_w em/,o _ ewd)d¢0' (9)

Here o ¢)=7(e™®) and 6(¢)=0(e™).
Differentiating Eq. (3) with respect to ¢ and using Eq.
(5) and the identity

1

v, = — - THib 10
Yo u—Iiv ¢ 1o
yields
d 1
627(@% + EE_T(‘ﬁ) sin 6(¢) =0. (1

Equations (9) and (11) define a nonlinear system of
integro-differential equations for 7(¢) and 6(¢) on the free
surface. Once this system has been solved numerically, the
shape of the free surface is obtained in a parametric form by
integrating Eq. (10). This gives

¢
x(d)):f e %) cos O(y)dpy for —o0 < p< oo,
0

(12)

¢
y(p)=1 +J e~ ™% sin B(dg)dpy for —oo < p< 0.

(13)

A. Numerical scheme

Equations (9) and (11) are solved numerically. Equally
spaced mesh points in the potential function ¢ are intro-
duced:

b=[=(N=1D2+I-1]A, I=1,....N. (14)

Here A>0 is the mesh size. The corresponding unknowns
are

91 = 9( ¢’1),

The function 7 is evaluated at the midpoints

I=1,...,N. (15)
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FIG. 3. Supercritical flow, F=1.30, h;=h,=0.30 and jumps jl-=—3hl.2=—0.27. (a) Weakly nonlinear profile. The curve has maximum elevation 0.11 at x;. The
distance between the obstacles is x;=x,—x;=4.22 and the wave amplitude at x=0 is 0.03. (b) Weakly nonlinear phase portrait for (a) showing d»/dx vs 7.
(c) Weakly nonlinear profile. The curve has maximum elevation 0.55 at x;. The distance between the obstacles is x;=x,—x;=4.92 and the wave amplitude at

x=0is 0.19. (d) Weakly nonlinear phase portrait for (c) showing d#n/dx vs 7.

b1+ Pri
bran= T+

I=1,...,.N-1, (16)
by applying the trapezoidal rule to the integral in Eq. (9)
with summation over the points ¢; The symmetry of the
quadrature and of the distribution of the points enables us to
evaluate the Cauchy principal value as if it were an ordinary
integral. The derivative in Eq. (11) is approximated at the
midpoints (16) by using finite differences.

Now the dynamic boundary condition (11) can be satis-
fied at the midpoints (16) and this yields N—1 nonlinear
algebraic equations. In the remainder of the paper we shall
refer to this system of N—1 equations as the system [A].

The values of 6 are known on the bottom ¢=-1. In order
to calculate the size of the triangles we need to evaluate 7on
y=—1. This is done by replacing the change of variables Eq.

(8) by

a=-e"  ay=e™,

(17)

Proceeding as in the derivation of Eq. (9), we obtain

(_ e7r¢1 +e7r<15)2

1

P()=--Tn n =
4 ™ 4+ ™9)(- e 4 e™)|
l (_ eﬂ'zj)2+e'mf>)2

4" N N
(=™ +e™) (- ™2 + ™))

e} €7T¢O
. f (o)

0-
€™t e™

(18)

The values of y on the downstream side of the triangles can
then be obtained by integrating Eq. (10)

1 (#°
¥ () = —~J T g, for < < §L, i=1,2.
2J,
(19)

Equally spaced mesh points between the apexes and the
downstream corners of the triangles are defined by
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FIG. 4. Nonsymmetric supercritical flows for F=1.30, h;=-0.40, h,=0.30, j1=3h%=0.48, and j2=—3h§=—0.27. (a) Fully nonlinear free surface profile.
Maximum elevation 0.18 at x,=3.15 and minimum elevation —0.07 at x;=-2.95, x,=6.10. (b) Values of dy/dx=tan(6) vs y—1=m, showing the fully
nonlinear phase trajectory for figure (a). (c) Weakly nonlinear profile. Maximum elevation 0.11 at x,=2.07 and minimum elevation —0.16 at
x,=-2.21, x,=4.28. (d) Weakly nonlinear phase portrait for (c) showing dn/dx vs 7.

do
5 ¢ - 4, :
=g+ =1 , I=1,...,N?, 20
¢l,1 ¢ ( )(NB— l) ( )
and 7 is evaluated at the midpoints
B B
o+
¢’fl+l/2= ¢l’l—2¢l”+], I=1,...,.N8-1, (21)

by integrating Eq. (18) numerically. Substituting these values
of 7% into Eq. (19) and integrating numerically we obtain
yB(¢). The heights of the two triangles are then given by

hi=y* (),

Similar equations can be derived for the values yg on the
upstream sides of the triangles by using a uniform mesh from
¢P to ¢;. Two other equations are then

i

i=1,2. (22)

VE(#®) =0, i=1,2.

These equations ensure that the obstacles on the channel bot-
tom are isosceles triangles with right angles at the apexes and

(23)

Downloaded 07 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

are particularly important to impose when computing non-
symmetric free surface flows.

Values of x® are also calculated in order to find the po-
sition of the two triangles apexes x;=x5(¢,), i=1, 2, on the
channel bottom. For given values of ¢;, i=1, 2, the distance
between the two triangles is defined by

xg=x—x; =x5(y) = xB(), b < &y.

The system of nonlinear algebraic equations obtained af-
ter discretization is solved by Newton method. Fully nonlin-
ear free surface profiles and fully nonlinear phase trajectories
are discussed and presented in Sec. III.

As we shall see the determination of the number of in-
dependent parameters needed to obtain a unique solution is
often delicate and counter intuitive. It can be found by care-
ful numerical experimentation (fixing too many or too few
parameters fails to yield convergence). An alternative ap-
proach is to perform a weakly nonlinear analysis in the phase
space. This second approach has the advantage of allowing a

(24)
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FIG. 5. Supercritical flows. (a) Fully nonlinear free surface profile for F=1.30, h;=h,=0.30, and x,=1.82. (b) Values of dy/dx=tan(6) vs y—1=17, showing
the fully nonlinear phase trajectory for (a). (¢) Fully nonlinear free surface profile for F=1.35, h;=h,=0.25, and x,=5.52. (d) Values of dy/dx=tan(6) vs

y—1=7 showing the fully nonlinear phase trajectory for (c).

systematic determination of all the possible solutions (within
the range of validity of the weakly nonlinear analysis). Both
approches are used in this paper.

B. Weakly nonlinear theory

Shen (1995), Dias and Vanden-Broeck (2004), and oth-
ers derived a forced Korteweg-de Vries equation (KdV equa-
tion) to model the flow past a disturbance in a channel. They
showed that the forcing can be approximated by a Dirac
delta function under certain assumptions.

Their derivation is based on long wavelength asymptot-
ics. Thus if L denotes a typical horizontal length scale and D
is the constant depth as x"— —o, we introduce the small
parameter e=(D/L)?< 1, the dimensionless spatial variables
(x",y")=(€"x",y")/D, and the free-surface elevation e’
=7'/D. The equation y"=¢"(x") describes the channel bot-
tom in the physical coordinates. The dimensionless equation
of the channel bottom is then y’'=o’(x')=€2¢"(x")/H. In
terms of these dimensionless variables the triangles heights

are h;=h;/D with supports [x/—€"?h;,x/+€"?h], i=1, 2.
The Froude number F is written as F=1+€pu.

Substituting expansions in powers of € into the exact
potential equations (rewritten in terms of the new scaled
variables), the forced KdV equation is derived by equating
coefficients of the powers of e. The forced KdV equation

(rewritten in terms of the variables x=€"%x" and 7=y-1
=en’ used in the nonlinear computations) is
9
nm+5172—6(F—1)77=—30'. (25)

For “local” forcing, the obstacles height is comparable to the
length of the base and the equation y=o(x) of the bottom can
be approximated by the Dirac delta functions

olx) = Q10(x = x1) + Q28(x — x5). (26)

The amplitudes Q; and Q, are determined by the areas of the
triangles by integrating Eq. (26)
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FIG. 6. Supercritical flows, for F=1.30. (a) Fully nonlinear free surface profiles, for h;=h,=0.30 and x,=12.40. The solid curve has elevation 0.41 at x
=0 and wave amplitude 0.06. The broken curve has elevation 0.44 at x=0. (b) Values of dy/dx=tan(6) vs y—1=1, showing the fully nonlinear phase
trajectories for (a). (c) Weakly nonlinear profiles, for h;=h,=0.32, and x,=9.47. The solid curve has wave amplitude 0.06. The broken curve has elevation 0.40

at x=0. (d) Weakly nonlinear phase portrait for (c) showing dn/dx vs 7.

f ox)dx=| [0,8(x—x))+Q0,80x—x))]dx.  (27)
One obtains
Qi=h, i=1,2. (28)
Equations (25), (26), and (28) then give
9
77)()("'5772_6(1:_])7]:0 forx#xi,
nxf) = M) == 30, == 3k} (29)

for i=1, 2. We denote the jump conditions above by j,=
—3hi2. For a “dip” there is a change in sign and the jump
condition is j;=3h>.

In the absence of forcing the KdV equation can be inte-
grated as

n=6(F-1)77-37+C, (30)

where C is a constant of integration. Equation (30) can be
used to draw phase portraits in the phase plane (7, 7,). There
are two fixed points =0 and n=4/3(F-1).

In Sec. III weakly nonlinear phase portraits and weakly
nonlinear free surface profiles are compared with the fully
nonlinear results for supercritical, subcritical and critical
flow.

lll. RESULTS
A. Supercritical flow

For supercritical flow U'=U, H'=H, and F'=F>1.
There is in general a four parameter family of solutions. The
parameters can be chosen as the distance x; between the
obstacles, the heights of the two triangles h;, h,, and the
downstream Froude number F.

In terms of the fully nonlinear formulation, there is a
total of N+4 unknowns ¢:", qﬁ?o, i=1,2and 6, I=1,...,N.

Downloaded 07 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions
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FIG. 7. Nonsymmetric supercritical flow, for F=1.30. (a) Fully nonlinear free surface profile, for ;=0.25, h,=0.30, x;=—6.01, x,=6.05, and x,=12.06. (b)
Values of dy/dx=tan(6) vs y—1=7, showing the fully nonlinear phase trajectories for (a). (c) Weakly nonlinear phase portrait for (a) showing d#n/dx vs 7.
(d) Fully nonlinear free surface profile, for 4;=h,=0.30, x;=-4.03, x,=4.05, and x,=8.08.

The N—1 equations obtained from [A] and Egs. (22) and (23)
yield N+3 nonlinear algebraic equations in terms of the N
+4 unknowns. Forcing the free surface to be flat as x ——
provides the last equation 6;=0. For given values of x,, A,
h,, and F, this system of equations is solved by using New-
ton’s method.

Typical free surface profiles for F=1.30, h;=h,=0.30,
and x,;=6.32 are shown in Fig. 2. These results are similar to
classical supercritical flows past one obstacle. In particular
these are two solutions corresponding to the same values of
F, hy, h,, and x,. It is interesting to note that the maximum
elevation of the solid and broken curves in Fig. 2(a) do not
occur at the same values of x.

The analysis in the phase plane can be described as fol-
lows. We start at the saddle point =0 and move clockwise
on the solitary wave orbit. We then have a first vertical jump
Jj1 onto a periodic orbit. After moving some distance on this
periodic orbit we have a second vertical jump j, back to the
solitary wave orbit and we return to the saddle point 7=0. A
convenient way to construct the

weakly nonlinear solutions is to choose %y, h,, F' and the
value of 7(0) as the basic parameters, see Fig. 3. To compare
with the fully nonlinear solutions, Fig. 2, we choose 7(0)
=0.03 and 7(0)=0.19. This selects the inner orbit by fixing
the smallest value of 7 for which the inner orbit intersects
the 7 axis. The curves in Fig. 2(b) are the fully nonlinear
phase trajectories for the free surface profiles in Fig. 2(a) and
provide a check that the analysis in the phase plane [Figs.
3(b) and 3(d)] is qualitatively correct. The weakly nonlinear
free surface profile [Fig. 3(c)] has maximum elevation 7
=0.55 above the two obstacles which compares well with the
fully nonlinear maximum elevation 7=0.59, solid curve Fig.
2(a).

We note that as #;—0 and h,— 0, the solution of Fig.
3(a) approaches the saddle point of Fig. 3(b) and the flow
reduces to a uniform stream. In that sense the solution of Fig.
3(a) is a perturbation of a uniform stream. Similarly as &,
—0 and h,—0, the solution of Fig. 3(c) approaches the
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FIG. 8. Subcritical flows for F=0.50. (a) Fully nonlinear free surface profile, for #;=0.20, h,=0.10, x,=-1.94, x,=1.95, and x,=3.89. (b) Weakly nonlinear
phase portrait for (a) showing dn/dx vs 7. (c) Fully nonlinear free surface profile, for #;=h,=0.20, x;=-0.52, x,=0.44, and x,=0.96. (d) Weakly nonlinear

phase portrait for (¢) showing dn/dx vs 7.

outer orbit (i.e., the solitary wave solution) in Fig. 3(d). In
that sense the solution of Fig. 3(c) can be viewed as a per-
turbation of a solitary wave.

For given values of the Froude number and triangle
heights the solutions in Fig. 2, as x, increases, approach two
solutions over a single triangle. Such solutions were calcu-
lated by Dias and Vanden-Broeck (1989). This corresponds
in the phase plane of Figs. 3(b) and 3(d) to the inner orbits
getting closer to the solitary wave orbit. As x,; decreases the
inner orbits get closer to the center.

One way to obtain a nonsymmetric free surface profile is
to choose h; # h,, for given values of F and x,. Figure 4(a)
shows a fully nonlinear free surface profile for supercritical
flow with F=1.30 past a dip, #;=—0.40 and a triangle, h,
=0.30 on the channel bottom. It can be viewed as perturba-
tion of a uniform stream. In the phase plane Fig. 4(d), there
is now a vertical jump upwards for a dip and vertical jump
downwards for a triangle. The fully nonlinear phase trajec-
tories, Fig. 4(b), provide a check that the phase space analy-
sis is qualitatively correct.

Two other solutions for fully nonlinear symmetric free
surface profiles without a dip and their corresponding phase
trajectories are shown in Fig. 5. In Fig. 5(c) the elevation of
the free surface at x=0 is approaching a Stokes limiting con-
figuration of 120° with a stagnation point between the two
obstacles. Solutions with stagnation points cannot be accu-
rately calculated with the uniform mesh used in this paper.
However they can be computed by concentrating mesh
points near the stagnation point [see, for example, Hunter
and Vanden-Broeck (1983)].

Supercritical solutions with a train of waves trapped be-
tween the two obstacles were also found [see Figs. 6(a) and
7(a)]. The distance the obstacles are apart determines the
number of waves trapped between the two obstacles and ac-
cording to the weakly nonlinear theory this corresponds to
going several times along the inner orbit.

For the symmetric flow of Fig. 6 (h;=h,), solutions can
be viewed as a matching of a generalized hydraulic rise over
a single triangle with a generalised hydraulic fall over a
single triangle.
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FIG. 9. Subcritical flows for F=0.50 and h;=h,=0.20. (a) Fully nonlinear free surface profile, for x,=-x;=0.51 and x,=1.02. (b) Weakly nonlinear phase
portrait for (a) showing dn/dx vs 7. (c) Fully nonlinear free surface profile, for x;=-2.18, x,=1.94, and x,=4.12. (d) Weakly nonlinear phase portrait for (c)

showing dn/dx vs 7.

These trapped waves can be eliminated midstream by
satisfying

>, 2y°(0)

" 1+y(0) 3D

on the free surface at x=0 [see the broken curve in Fig. 6(a)].
Equation (31) is derived by using the conservation of mass
and the dynamic boundary condition (3). This waveless so-
lution depends on one less parameter and either the Froude
number or the triangles height (h,=h,) comes as part of the
solution.

Using the results of weakly nonlinear theory (29) and
(30), one can show that for a given value of the Froude
number F=1.30 the triangles heights are h;=[(4/9)V2(F
—1)32]"2=0.32 [see the broken curve in Fig. 6(c)], which
compares well with fully nonlinear triangle heights /;=0.30.
The weakly nonlinear free surface elevation n=4/3(F-1)
=0.40 also compares well with the fully nonlinear free sur-
face elevation 7=y—1=0.44 at x=0.

Figure 7(a) is a nonsymmetric supercritical flow with a
train of waves trapped midstream for /; # h, and there is no
waveless solution. Another way to obtain a nonsymmetric
profile is shown in Fig. 7(d), for h;=h,. Here x, is not large
enough to allow a full wavelength on the free surface be-
tween the two obstacles and solutions are non-symmetrical.

B. Subcritical flow

It is well known that subcritical potential flows are not
unique, in the sense that a periodic train of waves can be
added to any subcritical flow, Lamb (1945). A unique solu-
tion can be obtained by imposing the radiation condition
which requires that there is no energy coming from infinity.
This implies that the free surface is waveless upstream and
that waves (if there are any) occur downstream. In Fig. 1(a)
(which assumes a uniform stream as x— o), the flow then
needs to be from right to left (i.e., the direction of the flow
needs to be reversed).
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In general a four parameter family of solutions was
found for subcritical flow past two triangles. These param-
eters can be chosen as the downstream Froude number F, the
triangles heights, %, h,, and the distance x,; between the two
obstacles.

Figure 8(a) is a typical fully nonlinear free surface pro-
file for F=0.50, h;=0.20, h,=0.10, and x;=3.83. In this fig-
ure (as well as in all the others in this section), we have
reversed the flow so that all the profiles in the paper corre-
spond to flow from left to right. There are two trains of
periodic waves differing in amplitude on the free surface.
One is trapped between the two triangles and the other is
downstream of the two triangles.

The analysis in the phase plane can be described as fol-
lows. We start at the center point 7=0 and have a first ver-
tical jump j, onto an inner periodic orbit. After moving
clockwise some distance on this periodic orbit we have a
second vertical jump j, in general onto another periodic, see
Fig. 8(b). We have not compared qualitatively the weakly
nonlinear phase portrait with the corresponding fully nonlin-
ear phase trajectories because the value F=0.50 is not close
to one.

For triangles of the same height h;=h,=0.20 and given
value of the Froude number F'=0.50, there are in general two
trains of periodic waves on the free surface downstream of
the obstructions, similar to those already discussed in Fig.
8(a).

The train of trapped waves can be eliminated by decreas-
ing x;. An example for x,=0.96, F=0.50, and %;=0.20, is
shown in Fig. 8(c). Analysis of the phase space is illustrated
in Fig. 8(d).

Similarly for triangles with h;=h,, the downstream train
of waves can be eliminated by adjusting x,, see Fig. 9(c).
Such solutions for two distributions of pressure with com-
pact support were calculated before by Vanden-Broeck
(2002). This solution depends on one less parameter and x,
comes as part of the solution. If in addition the triangles are
close enough together then both trains of waves can be elimi-
nated as shown in Fig. 9(a).

Figures 8(b), 8(d), 9(b), and 9(d) show that according to
the weakly nonlinear theory, 4, can be different from /4, in
the flows of Fig. 8 but that #;=h, in flows of Fig. 9.

C. Hydraulic jumps

In general there is a four parameter family of solutions
with two trains of periodic waves on the upstream free sur-
face. This flow is illustrated in Fig. 1. The independent pa-
rameters can be chosen as the downstream Froude number F,
the heights of the two triangles 4;, and the distance x,; be-
tween the two obstacles.

If there are waves far upstream on the free surface the
radiation condition is violated, as energy is coming in from
x=-. As shown in Dias and Vanden-Broeck (2004), these
waves can be eliminated far upstream thus making the solu-
tion physically realistic. It is shown in Fig. 10(a).

These solutions only depend on two parameters for ex-
ample h, and h,. The downstream Froude number F and
distance x,; between the triangles are allowed to come as part
of the solution. The equation
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FIG. 10. Hydraulic jumps for F=1.35 and h;=h,=0.30. (a) Fully nonlinear
free surface profile, for x;=-13.75, x,=0.0, and x,=13.75. (b) Values of
dy/dx=tan(6) vs y—1=7, showing the fully nonlinear phase trajectories for
(a). (c) Weakly nonlinear phase portrait for (a) showing d#/dx vs 7.

2
F2 - M (32)
L+ y(=)
has to be satisfied on the upstream free surface as x — —.
Equation (32) is derived by using the conservation of mass
and the dynamic boundary condition (3). A qualitative
weakly nonlinear analysis of the phase space is illustrated in
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FIG. 11. Hydraulic jumps for F=1.30.(a) Fully nonlinear free surface profile, for h,=0.20, h,=0.30, x,=-6.73, x,=0.0, and x,=6.73. (b) Weakly nonlinear
phase portrait for (a) showing d#/dx vs 7. (c) Fully nonlinear free surface profiles, for #,=0.30, h,=0.40, x;,=0.0, x,=6.70, and x;=6.70. (d) Weakly

nonlinear phase portraits for (c) showing dzn/dx vs 7.

Fig. 10(c) and the fully nonlinear trajectory shown in Fig.
10(b) confirms that it is correct.

Figure 11(a) is a new type of solution where the waves
have been eliminated between the two obstacles. There is a
train of waves far upstream. These solutions do not satisfy
the radiation condition as x — —2, but could be made physi-
cally realistic by the introduction of a third disturbance far
upstream. The triangle heights /#; were chosen as the inde-
pendent parameters. The downstream Froude number F and
distance x; between the two obstacles were allowed to come
as part of the solution. Analysis in the phase plane is illus-
trated in Fig. 11(b).

Finally, in Fig. 11(c) another new type of fully nonlinear
solutions is shown. As before there is a four parameter fam-
ily of solutions with waves on the upstream free surface. The
waveless solution depends on one less parameter. Analysis of
these two types of solutions in the phase plane is shown in
Fig. 11(d).

IV. CONCLUSIONS

Supercritical, subcritical, and critical flows over two
obstacles on a channel bottom were considered. Fully non-

linear solutions were calculated by a boundary integral equa-

tion method and weakly nonlinear solutions were derived.
Classical solutions were recovered and new solutions such as
those in Fig. 11 were found. No attempt was made to justify
rigorously the results from the weakly nonlinear analysis.
The problem is to find all flows of sufficiently small ampli-
tude. Without the obstacles, the stationary problem can be

treated as an evolution equation in the unbounded space vari-
able. In the presence of the obstacles, the problem becomes

“nonautonomous” in the sense that the isotropy in the un-
bounded variable is broken by the obstacles. The analysis of

Mielke (1986) could be used to obtain rigorous results.
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