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The Kugo–Ojima confinement criterion and its relation to the infrared behaviour
of the gluon and ghost propagators in Landau gauge QCD are reviewed. The real-
ization of this confinement criterion (which in Landau gauge relates to Zwanziger’s
horizon condition) results from quite general properties of the ghost Dyson–
Schwinger equation. The numerical solutions for the gluon and ghost propagators
obtained from a truncated set of Dyson–Schwinger equations provide an explicit
example for the anticipated infrared behaviour. These results are in good agree-
ment, also quantitatively, with corresponding lattice data obtained recently. The
resulting running coupling approaches a fixed point in the infrared, α(0) = 8.9/Nc.
Solutions for the coupled system of Dyson–Schwinger equations for the quark, gluon
and ghost propagators are presented. Dynamical generation of quark masses and
thus spontaneous breaking of chiral symmetry is found. In the quenched approx-
imation the quark propagator functions agree well with those of corresponding
lattice calculations. For a small number of light flavours the quark, gluon and
ghost propagators deviate only slightly from the quenched ones. While the posi-
tivity violation of the gluon spectral function is apparent in the gluon propagator,
there are no clear indications of positivity violations in the Landau gauge quark
propagator.

1. Gluon confinement in Landau gauge and the ghost

propagator

The success of perturbative QCD for hadronic reactions at high energies

provides compelling evidence that QCD is the correct theory of strong

interactions and that all hadrons are made of quarks and the particles
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gluing them together, the gluons. However, we need the hypothesis of

confinement in order to rescue the success of QCD. Over the last decades

there have been many attempts to prove confinement from QCD. Despite

these efforts it is fair to say that the phenomenon of confinement is still

little understood: an undisputable mechanism responsible for this effect

has not been found yet. Furthermore, we may even face the challenge that

nowadays’ formulation of quantum field theory is not sufficient to tackle

this problem successfully: it seems not even clear, at present, whether the

phenomenon of confinement is at all compatible with a description of quark

and gluon correlations in terms of local fields.

There is a number of criteria which signal unambigously the occurrence

of confinement. One line of research starts from the expectation that the

two-point correlation functions of QCD, the quark, gluon and ghost prop-

agators, are likely to provide some clues to the underlying structures of

the theory which are responsible for confinement. And indeed, it has been

argued1 that in Faddeev–Popov quantized Landau gauge QCD the infrared

behaviour of the ghost propagator is related to both, the Kugo–Ojima con-

finement criterium2 and the Gribov–Zwanziger horizon condition3,4.

Kugo and Ojima2 have shown that a physical state space containing

only colourless states is generated, if two conditions are satisfied: First, one

should not have massless particle poles in transverse gluon correlations and,

second, one needs well-defined, i.e. unbroken, global colour charges. The

second condition can be related to the behaviour of the ghost propagator in

Landau gauge. For it to be satisfied, the propagator must be more singular

than a massless particle pole in the infrared1.

Gribov’s horizon condition is connected to the gauge fixing ambiguities

in the linear covariant gauge3. Ideally one would eliminate Gribov copies

along gauge orbits by a restriction of the functional integral of the QCD

partition function to the so-called fundamental modular region. This part

of configuration space lies inside the first Gribov region, a convex region

in gauge field space which contains the trivial configuration A ≡ 0. At the

boundary of the first Gribov region, the lowest eigenvalue of the Faddeev–

Popov operator approaches zero. Entropy arguments have been employed

to reason that the infrared modes of the gauge field are close to this Gribov

horizon4. As the ghost propagator is the inverse of the Fadeev–Popov

operator we therefore encounter the presence of the Gribov horizon in the

infrared behaviour of the ghost: The ghost propagator is required to be

more singular than a simple pole if the restriction to the Gribov region is

correctly implemented. Furthermore, by the same entropy arguments, the
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gluon propagator has to vanish in the infrared4.

At this point it is interesting to note that employing Stochastic Quan-

tiziation instead of the Faddeev–Popov formalism avoids the Faddeev–

Popov determinant and thus the Gribov problem completely. The ghosts

being absent the above picture seems to be impossible to be realized. Never-

theless one finds essentially the same infrared behaviour for the propagator

of the transverse gluons whereas the longitudinal gluons (which are absent

in Faddeev–Popov–Landau gauge) take over the role of the ghosts5. There-

fore the following generic picture in covariant gauges seems likely: Negative

metric states like ghosts and/or longitudinal gluons are long-ranged whereas

the propagator for transverse gluons vanishes for long distances.

To summarize this mechanism for gluon confinement: an infrared en-

hanced propagator for ghosts (or longitudinal gluons) leads to an infrared

vanishing (or, at least, infrared finite) tranverse gluon propagator. As

demonstrated below such a gluon propagator leads to violation of positivity

in the spectral function for transverse gluons and thus describes confined

transverse gluons. Speaking somewhat sloppily: In Landau gauge QCD the

gluons are confined by the Faddeev–Popov ghosts which are the long-range

correlations of the theory.

2. Verifying the Kugo-Ojima Confinement Criterion

As confinement in covariant gauges is correlated to infrared singularities we

have the need for a continuum-based non-perturbative method. The frame-

work we have chosen to investigate the behaviour of the propagators of

QCD are the Dyson–Schwinger equations (DSEs) for the QCD propagators

(for recent reviews see e.g. refs.6,7). Being complementary to lattice Monte

Carlo simulations which have to deal with finite-volume effects, DSEs allow

for analytical investigations of the infrared behaviour of correlation func-

tions. In Landau gauge we have the particularly simple situation that the

ghost-gluon vertex does not suffer from ultraviolet infinities. Based on this

observation one can use the general structure of the ghost DSE, the proper-

ties of multiplicative renormalizability and the assumption that all involved

Green’s functions can be expanded in a power series to show that the Kugo–

Ojima criterion as well as the Zwanziger’s horizon condition are satisfied8,9.

Furthermore, it has been shown that the infrared behaviour of the ghost

and the gluon propagators are uniquely related: Defining ghost and gluon

renormalization functions, Z(k2) and G(k2), respectively, from the propa-

gators DGluon

µν (k2) =
(

δµν − kµkν

k2

)

Z(k2)/k2 and DGhost(k2) = −G(k2)/k2,
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one obtains:

Z(k2) ∼ (k2)2κ and G(k2) ∼ (k2)−κ. (1)

The corresponding gluon propagator is thus infrared vanishing or, at least,

infrared finite.

A further interesting consequence is the fact that the corresponding

powers in the running coupling (as extracted from the ghost-gluon vertex)

exactly cancel and one obtains an infrared fixed point for the coupling, see

the next section.

3. Propagators of Yang–Mills theory: Ghosts and Gluons

Above we have deduced the qualitative infrared behaviour of QCD prop-

agators applying only general principles. To obtain detailed information

on the propagators of Landau gauge QCD from the DSEs they have to be

truncated, and, even more severe, ansätze for the vertices have to be made.

The resulting closed system of equations can be solved both, analytically

in the infrared and numerically for non-vanishing momenta. The consid-

erations presented in the previous section suggest that for small momenta

the ghost loop dominates in the gluon DSE. Assuming this dominance, ef-

fects from a wide class of possible dressings for the ghost-gluon vertex have

been investigated9 and found to be of negligible influence to the qualitative

findings. Thus, for the purpose of this talk we concentrate on the simplest

of these truncation schemes10,11. It employs a bare ghost-gluon vertex, a

dressed three-gluon vertex and neglects four-gluon vertices. In addition,

as confinement is expected to be present in the pure Yang–Mills sector of

QCD we will couple in the quarks at a later stage.

A coupled system of gluon and ghost DSEs has been studied for the

first time in ref.12. In this investigation the three-point functions have

been modeled such that the Slavnov–Taylor identities have been fulfilled to

high degree of accuracy. On the other hand, technical simplifications like

approximating the angular integrals in the DSEs had to be employed. A

study beyond Landau gauge is given in ref.13. There it is shown that the

diagrams involving four-gluon vertices cannot be neglected in the analytical

extraction of the infrared behaviour of the gluon and ghost propagators in

the so-called Curci–Ferrari gauges if bare vertex functions are used. As a

side result it has been demonstrated that in linear covariant gauges the as-

sumption of infrared dominance of the ghost loop is, at least, self-consistent.

The truncation scheme of refs.10,11 provides the correct one-loop anoma-

lous dimensions of the ghost and gluon dressing functions, G(k2) and Z(k2),
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respectively, and thus correctly describes the leading logarithmic behaviour

of the propagators in the ultraviolet. Furthermore, this scheme reproduces

the infrared exponents found in refs.9,14:

Z(k2) ∼ (k2)2κ and G(k2) ∼ (k2)−κ with κ = (93−
√

1201)/98 ≈ 0.595.

These exponents are close to the ones extracted from lattice

calculations15,16,17. Interestingly enough they are also close to the ones

obtained in a comparable truncation scheme in stochastically quantized

Landau gauge Yang–Mills theory for the transverse and the longitudinal

gluons5.

In Fig. 1 the numerical solutions for the gluon and ghost dressing func-

tions for the colour group SU(2) are compared to those obtained from re-

cent lattice calculations17. Differences mainly occur for the gluon dressing

function in the region around its maximum, i.e. somewhat below one GeV.

These can be attributed to the omission of the two-loop diagrams in the

DSE truncation. Given the limitations of both methods the qualitative and

partly even quantitative agreement is remarkable.
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Figure 1. Solutions of the Dyson–Schwinger equations (labeled DSE) compared to re-
cent lattice results for two colours17.

4. Infrared behaviour of the running coupling

The running coupling can be defined non-perturbatively as follows12,18:

α(k2) = α(µ2)Z(k2; µ2)G2(k2; µ2) (2)

where the dependence of the propagator functions on the renormalization

point have been made explicit. An important point to notice in the results
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described above is the unique relation between the gluon and ghost infrared

behaviour. As explained the structure of the ghost DSE and the non-

renormalization of the ghost-gluon vertex require that in Landau gauge the

product Z(k2)G2(k2) goes to a constant in the infrared. The DSE result

for the running coupling can be seen in Fig. 2.
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Figure 2. The strong running coupling from the DSEs and the two fits given in ref.18.

The analytically obtained value for the fixed point of the running cou-

pling in the infrared is9

α(0) =
4π

6Nc

Γ(3 − 2κ)Γ(3 + κ)Γ(1 + κ)

Γ2(2 − κ)Γ(2κ)
≈ 2.972

for the gauge group SU(3) in this truncation scheme. Corrections from

possible dressings for the ghost-gluon vertex have been found to be such that

2.5 < α(0) ≤ 2.97. The maximum at non-vanishing momenta seen in our

result for the running coupling results in a multi-valued beta-function. On

the other hand, it appears in a region where the above comparison to lattice

data suggests that our results are least reliable. (The physical scale has been

fixed by requiring the experimental value α(M2

Z = (91.2GeV)2) = 0.118.)

We have therefore summarized our result for the running coupling in two

monotonic fit functions, see ref.18 for more details.

5. Propagators of QCD: Ghost, Glue and Quark

In the quark DSE as well as in the quark loop of the gluon DSE the quark-

gluon vertex enters. Very recently lattice results for the quark-gluon vertex
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became available19. However, at present the statistical errors of such sim-

ulations are too still large to use the lattice results as guideline in the

construction of reliable ansätze for the quark-gluon vertex. Meanwhile, we

proceed with assuming that the quark-gluon vertex factorizes as follows20,

Γν(q, k) = V abel
ν (p, q, k)W¬abel(p, q, k), (3)

with p and q denoting the quark momenta and k the gluon momentum.

Here, a non-Abelian factor W¬abel multiplies the Abelian part V abel
ν , which

carries the tensor structure of the vertex. For the latter we choose a

construction21 successfully used in QED, see e.g. ref.22.

The Slavnov–Taylor identity for the quark-gluon vertex implies that

W¬abel(p, q, k) has to contain factors of the ghost renormalization function

G(k2). Due to the infrared singularity of the latter the effective low-energy

quark-quark interaction is infrared enhanced as compared to the interac-

tion generated by the exchange of an infrared suppressed gluon. There-

fore the effective kernel of the quark DSE contains an (integrable) infrared

singularity20. Further constraints imposed on W¬abel(p, q, k) are such that

(i) the running coupling as well as the quark mass function are, as required

from general principles, independent of the renormalization point and (ii)

the one-loop anomalous dimensions of all propagators are reproduced.
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Figure 3. The quark propagator functions in quenched approximation as well as for
three massless flavours compared to the lattice data of ref.23.
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In Fig. 3 we compare our results for the quark propagator S(p) =
Z(p2)

ip/ + M(p2)
in quenched approximation as well as for three massless

flavours with lattice data23. As one sees the DSE results nicely agree

with the one from the lattice. Furthermore, for the considered number

of flavours the quenched approximation works well. (Also the gluon and

the ghost functions remain almost unchanged20.)

In Fig. 4 we display the result of a possible test on positivity violations in

the gluon and quark propagators for two choices of the quark-gluon vertex.

Loosely speaking, negative values for the one-dimensional Fourier trans-

forms of propagators are sufficient to demonstrate the positivity violations

related to confinement. Whereas previous findings for the gluon propagator

are confirmed herewith also beyond quenched approximation we have not

been able to demonstrate positivity violation for the quark propagator.
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Figure 4. The one-dimensional Fourier transforms of the gluon propagator, D(−t, ~p2),
and the vector part of the quark propagator, σV (−t, ~p2), are shown. We observe violation
of reflection positivity for the gluon propagator but not for the quark propagator.

6. Conclusions

We have verified the Kugo–Ojima confinement criterion by studying the

gluon, ghost and quark Dyson–Schwinger equations of Landau gauge QCD

employing analytical as well numerical techniques. The resulting infrared

behaviour of gluon and ghost propagators, namely a highly infrared singular

ghost and an infrared suppressed gluon propagator, is related to the Gribov–

Zwanziger horizon condition. The solution for these propagators has then

been used to calculate a non-perturbative running coupling for all spacelike



Presented at the Conference Confinement V, Gargnano, Italy, September 10-14, 2002

momentum scales.

Dynamical chiral symmetry breaking is manifest in the obtained solu-

tions for the quark propagator. Hereby only carefully constructed vertex

ansätze have been able to generate masses in the typical phenomenologi-

cal range of 300 − 400 MeV. The agreement with lattice data in quenched

approximation confirms the quality of our truncation and in turn it shows

that chiral extrapolation on the lattice works well. In the unquenched case

including the quark-loop in the gluon equation with Nf = 3 light quarks we

obtain only small corrections compared to the quenched calculations. For a

larger number of light flavours (Nf > 6) we have indications that the cou-

pled system is changed qualitatively, and that the Kugo–Ojima confinement

criterion may cease to be valid.

We tested the gluon and quark propagators for positivity violations.

We confirmed previous findings that the gluon propagator shows violation

of reflection positivity. We could not find similar violations for the quark

propagator. With the results obtained so far we cannot exclude positivity

violation for the quarks, however, one might take our result as a further

indication that (in Landau gauge) the confinement mechanism for quarks

differs qualitatively from the one for transverse gluons.

Studies of the gluon, ghost and quark Dyson–Schwinger equations at

non-vanishing temperatures (for first results see ref. 24) and quark densities

are under way. Main goals are hereby to clarify the relation between de-

confinement and chiral restauration and to possibly find the deconfinement

criterion related to the Kugo–Ojima criterion.
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