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Spectral properties of the Landau gauge Faddeev-Popov operator in lattice gluodynamics
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(Received 26 October 2005; published 11 January 2006)
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Recently we reported on the infrared behavior of the Landau gauge gluon and ghost dressing functions
in SU�3� Wilson lattice gluodynamics with special emphasis on the Gribov problem. Here we add an
investigation of the spectral properties of the Faddeev-Popov operator at � � 5:8 and 6:2 for lattice sizes
124, 164 and 244. The larger the volume the more of its eigenvalues are found accumulated close to zero.
Using the eigenmodes for the spectral representation it turns out that for our smallest lattice O�200�
eigenmodes are sufficient to saturate the ghost propagator at lowest momentum. We associate excep-
tionally large values of the ghost propagator to extraordinary contributions of low-lying eigenmodes.

DOI: 10.1103/PhysRevD.73.014502 PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Aw
I. INTRODUCTION

The infrared suppression of the gluon propagator on the
one hand and the enhancement of the ghost propagator at
low momentum on the other are closely related to the
Gribov-Zwanziger horizon condition [1–3] as well as to
the Kugo-Ojima confinement criterion [4]. Zwanziger [1]
has worked out that the continuum behavior of both propa-
gators in Landau gauge are consequences of restricting
gauge fields to the Gribov region �, where the Faddeev-
Popov operator is non-negative. In general, for a given
gauge field a gauge orbit has more than one intersection
(Gribov copy) within �. However, in the infinite volume
limit expectation values taken over arbitrary representa-
tives of � are predicted to be equal to those over the
fundamental modular region �, the set of gauge fields
being absolute maxima of the Landau gauge functional
defined below. On a finite lattice, however, this equality
cannot be expected [1]. Therefore, the Gribov ambiguity
has to be explored in detail on finite lattices before drawing
any conclusion about the infrared behavior of the propa-
gators mentioned. In previous investigations [5–7] the
influence of Gribov copies on the Landau gauge ghost
and gluon propagators was studied in detail both for
SU�2� and SU�3�. Whereas the gluon propagator was not
seen to be influenced by the choice of gauge copies the
ghost propagator turned out to be clearly copy-dependent
in the limit of small momenta.

In the present letter we are asking, how the singular
behavior of the ghost propagator is related to the spectrum
of the Landau gauge Faddeev-Popov (F-P) operator. It is
exactly there that the Gribov ambiguity must become
visible. We will demonstrate that the low-lying eigenvalues
move towards zero as the volume increases and that their
values are sensitive to the choice of Gribov copies. We will
also discuss the localization properties of the correspond-
ing eigenmodes. The mode expansion of the momentum
space ghost propagator will be shown to converge the
slower the higher the momentum is. Returning to the
problem of exceptionally large values of the ghost propa-
gator (‘‘exceptional configurations’’), discussed in [5,6],
06=73(1)=014502(8)$23.00 014502
we can show that they are related to strong contributions of
the lowest eigenmodes. For the sake of completeness we
remind of a recent investigation of the spectrum of the
Coulomb gauge F-P operator [8].

We introduce relevant definitions and notations in
Sec. II. Simulation details are given in Sec. III. In
Sec. IV the spectral properties of the F-P operator are
discussed. Configurations with exceptionally large values
for the ghost propagator are studied in Sec. V. In Sec. VI we
will draw our conclusions.

II. DEFINITIONS

In order to study the ghost propagator using lattice
simulations one has to fix the gauge for each thermalized
SU�3� gauge field configuration U � fUx;�g. We apply the
Landau gauge condition which can be implemented as a
search for a gauge transformation g � fgxg

Ux;� !
gUx;� � gxUx;�g

y
x��̂; gx 2 SU�3�

that maximizes the Landau gauge functional

FU�g� �
1

4V

X

x

X4

��1

ReTrgUx;� (1)

while keeping the link variables Ux;� fixed.
The functional FU�g� has many different local maxima.

When the lattice volume V is enlarged for a fixed inverse
coupling constant � or, alternatively, � is decreased, more
and more of these maxima become accessible by an iter-
ative gauge-fixing process starting from various initial
random gauge transformations. The set of gauge copies
fgUg which correspond to different (local) maxima of
FU�g�, where U is kept fixed, are called Gribov copies in
analogy to the Gribov ambiguity in the continuum [3]. All
Gribov copies belong to the gauge orbit created by U and
satisfy the differential (lattice) Landau gauge transversality
condition �@�gA���x� � 0 where

�@�gA���x� �
X

�

�gA��x� �̂=2� � gA��x� �̂=2��: (2)
-1 © 2006 The American Physical Society
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Here gA��x� �̂=2� defines the non-Abelian gauge poten-
tial on the lattice, i.e.

gA��x� �̂=2� �
1

2i
�gUx;� �

gUyx;��
��������traceless

: (3)

In the following, we will drop the label g for convenience,
i.e. we assume U to satisfy the Landau gauge condition
such that g � 1 maximizes the functional in Eq. (1) rela-
tive to the neighborhood of the identity.

The F-P operator is the Hessian of the gauge functional
Eq. (1) and can be expressed in terms of the (gauge-fixed)
link variables Ux;� as

Mab
xy �

X

�

Aabx;��x;y � B
ab
x;��x��̂;y � C

ab
x;��x��̂;y (4)

with

Aabx;� � ReTr�fTa; Tbg�Ux;� �Ux��̂;���;

Babx;� � 2 	ReTr�TbTaUx;��;

Cabx;� � 2 	ReTr�TaTbUx��̂;��:

Here Ta (a � 1; . . . ; 8) denote the generators of the su�3�
Lie algebra satisfying Tr�TaTb� � �ab=2.

For each maximum of the gauge functional FU�g� the
corresponding F-P operator has only positive eigenvalues
�i > 0, �i � 1; . . . ; 8V � 8�, besides of its eight trivial zero
modes, i.e. the gauge-fixed field configurationsU lie within
the Gribov region �. We expect that the spectral properties
of the F-P operator differ for different Gribov copies. This
should have consequences for the ghost propagator. We
will exploit the spectral representation of the inverse of the
F-P operator for a given gauge field U in terms of its real
(ascendent) eigenvalues �i and its (normalized) eigenvec-
tors ~�i�x� in coordinate space

�M�1�U��abxy �
XN

i�1

�a
i �x�

1

�i
�b
i �y�: (5)

The eigenvectors are given at each lattice point x as
8-component color vectors ~�i with components �a

i �x�.
They are normalized such that

P
xj
~�i�x�j2 � 1. Taking

their Fourier transformed vectors ~�i�k� for momenta k� 2
��L�=2;�L�=2� and averaging over a Monte Carlo (MC)
generated ensemble of gauge field configurations we have
computed the ghost propagator from truncated mode ex-
pansions

Gn�q� � hG�kjn�iMC (6)

where

G�kjn� �
1

8

Xn

i�1

1

�i
~�i�k� 	 ~�i��k� (7)

denotes the contribution of the eigenvalues and eigen-
modes on a given gauge field configuration. Here the vector
014502
and scalar product notation refers to the color indices. The
Fourier momenta k� are related to the physical momenta
q� by

q��k�� � �2=a� sin��k�=L��

with a and L� denoting the lattice spacing and the linear
lattice extension, respectively.

If for the whole ensemble of configurations all N �
8�V � 1� nontrivial eigenvalues and eigenvectors were
known, the ghost propagator would be determined com-
pletely, i.e. G�q� � GN�q� at all momenta. We will check
the convergence with respect to the order n by comparing
the truncated propagator Gn�q� with the full one, G�q�,
obtained by inverting M for a set of plane wave sources
(with ~k � 0) orthogonal to the trivial zero-modes. For
details we refer to Ref. [5].

From Eq. (7) it is evident that the low-lying eigenvalues
and eigenvectors have a dominating impact on the ghost
propagator. However, for a finite lattice size it is not a
priori obvious what fraction of the F-P spectrum is respon-
sible for the enhancement of the ghost propagator at the
smallest available momenta. Zwanziger has argued that the
F-P operator has very small eigenvalues [1]. In particular, it
should have a high density ���� of eigenvalues per unit
Euclicean volume at the Gribov horizon (for � > 0). This
causes the ghost propagator to diverge stronger than 1=q2

at q � 0 [1]. We estimate the eigenvalue density � at small
� by

���� �
h��; �� ���

N��
; (8)

the average number h of eigenvalues per gauge-fixed con-
figuration within the interval ��; �� ��� divided by the
bin size ��. For normalization the denominator N � 8V
has been chosen, since the F-P matrix is a N 
 N sparse
symmetric matrix with N linearly independent eigenstates.
Note, the trivial zero modes are described by a 8����-peak
at � � 0.
III. SIMULATION DETAILS

For the purpose of this study we have analyzed pure
SU�3� gauge configurations thermalized with the standard
Wilson action at two values of the inverse coupling con-
stant � � 5:8 and 6:2. Cycles of one heatbath and four
micro-canonical over-relaxation steps were used for ther-
malization. As lattice sizes we used 124, 164 and 244. To
each thermalized configuration U a set of Ncp random
gauge transformations was assigned. Each has served as
a starting point for a gauge-fixing procedure. We have
applied standard over-relaxation with over-relaxation pa-
rameter tuned to w � 1:63. Keeping U fixed this iterative
procedure generates a sequence of gauge transformations
with increasing values of the gauge functional (Eq. (1)).
Thus, the final Landau gauge is iteratively approached until
-2
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the stopping criterion in terms of the transversality (see
Eq. (2))

max
x

Tr�@�gA��x�@�gAy��x��< 10�14 (9)
0

0.2 124

0

0.2

164

0

0.2

0.4

h
(

,
λ

λ
+

)
∆

244

0.4

0.6

244

β = 6.2

β = 6.2

β = 6.2

β = 5.8
was fulfilled. Consequently, each random start leads to its
own local maximum of the gauge functional. However,
certain extrema of the functional are found multiple times.
This happened frequently for the 124 lattices, but rather
seldom on larger ones. Note, we used the worst local
violation of transversality as stopping criteria which at a
first glance seems to be very conservative. However, we
have found that the precision of transversality is crucial for
the final precision of the ghost propagator at low
momentum.

In order to study the dependence on Gribov copies, for
each U that copy with largest functional value—among all
Ncp gauge-fixed ones — was stored, labeled as best copy
(bc). The larger Ncp, the bigger the likeliness that this copy
represents the absolute maximum of the functional in
Eq. (1), at least with respect to the observable in question.
Indeed, with an increasing number Ncp of inspected gauge
copies for each U, the expectation values of the ghost and
gluon propagator evaluated on bc copies is found to con-
verge more or less rapidly [5]. The first gauge copy was
also stored, labeled as first copy (fc). Obviously, this copy
is as good as any other arbitrarily selected one.

On those ensembles of fc and bc gauge-fixed configura-
tions the low-lying eigenvalues � of the F-P operator and
the corresponding eigenmodes have been separately ex-
tracted, where we used the parallelized version of the
ARPACK package [9], PARPACK. To be specific, the
200 lowest (nontrival) eigenvalues and their corresponding
eigenfunctions have been calculated at � � 6:2 using the
lattice sizes 124 and 164 (see Table I). On the 244 lattice,
due to restricted amount of computing time, only 50 ei-
genvalues and eigenmodes have been extracted at the same
�. In addition, 90 eigenvalues have been calculated on a
244 lattice at � � 5:8 providing us with an even larger
physical volume. This allows us to check whether low-
lying eigenvalues are shifted towards �! 0 as the physical
volume is increased.
TABLE I. Statistics of the data used in our analysis. The last
column lists the number of eigenvalues extracted separately on
fc and bc copies ofU. At � � 6:2 the corresponding eigenmodes
were calculated, too.

No. � lattice # conf # copies # eigenvalues

1 6.2 124 150 20 200
2 6.2 164 100 30 200
3 6.2 244 35 30 50
4 5.8 244 25 40 90
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IV. THE SPECTRAL PROPERTIES OF THE F-P
OPERATOR

A. The spectrum of the low-lying eigenvalues

Let us first discuss the distributions of the lowest �1 and
second lowest �2 eigenvalue of the F-P operator. These are
shown for different volumes in Fig. 1. There h��; �� ��
refers to the average number (per configuration) of eigen-
values found in the intervall ��; �� ��. Open (full) bars
refer to the distribution on fc (bc) gauge copies.

From Fig. 1 it is quite obvious that both eigenvalues �1

and �2 are shifted to lower values as the physical volume is
increased. In conjunction the spread of � values is de-
creased. This would be even more obvious, if we had
shown both distributions as functions of � in physical units.
It is also visible that the two low-lying eigenvalues �fci
(i � 1; 2) on fc gauge copies tend to be lower than those on
bc copies. However, this holds only on average as can be
seen from Fig. 2. There the differences �bc1 � �

fc
1 of the

lowest eigenvalues on fc and bc gauge copies are shown for
different lattice sizes at � � 6:2 and 5:8. It is quite evident
that there are few cases where �bc1 < �fc1 , even though
Fbc � Ffc always holds for the gauge functional.

In addition we have checked how the average values h�i
of the eigenvalue distributions tends towards zero as the
0

0.2

0 0.02 0.04
λ1

0 0.02 0.04
λ2

FIG. 1 (color online). The frequency h��� per configuration of
the lowest (left panels) and second lowest (right panels) eigen-
value � of the Faddeev-Popov operator is shown. Filled boxes
represent the distribution obtained on bc gauge copies, while
open ones represent those on fc copies.
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FIG. 2 (color online). The differences �bc1 � �
fc
1 of the lowest F-P eigenvalues calculated on bc and fc representatives for each

gauge configuration are shown. From left to right the lattice sizes are 124, 164 and 244 at � � 6:2 and 244 at � � 5:8.
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linear extension aL of the physical volume is increased. As
in our previous study [5] we followed Ref. [10] to fix the
lattice spacing a. For � � 5:8 and 6.2 we used
a�1 � 1:446 GeV and 2.914 GeV, respectively, using the
Sommer scale r0 � 0:5 fm.

If the low-lying eigenvalues are given in physical units it
turns out that the average values of their distributions tend
towards zero stronger than 1=�aL�2. In fact, using the
ansatz

f�aL� �
C

�aL�2�"
(10)

to fit the data of h�ii=a2 for different �aL�, a positive " is
found. The parameter of these fits are given in Table II and
in Fig. 3 we show the data and the corresponding fitting
functions. There one clearly sees, the low-lying eigenval-
ues not only approach zero, but also become closer to each
other with increasing aL. We have addressed the latter
issue by fitting the differences �h�i�1i � h�ii�=a2 of adja-
cent average values using the same ansatz Eq. (10). In
Table II we give the parameter of those fits.

As mentioned in Sec. II the eigenvalue density ���� is of
particular interest. We have estimated this quantity accord-
ing to Eq. (8) where the bin sizes have been reasonably
adjusted for the different volumes. In Fig. 4 the estimates
are shown for two values of �. There one clearly sees the
eigenvalue density close to � � 0 becomes a steeper func-
TABLE II. The parameter C and � from fitting either the
averages h�ii=a2 or the differences of adjacent average values
h�i�1i=a

2 � h�ii=a
2 of the corresponding eigenvalue distribu-

tions to the ansatz f�aL� � Ci=�aL�2��i .

a2f�aL� C � 	2=NDF

h�1i 0.120(3) 0.16(4) 0.7
h�2i 0.165(4) 0.24(5) 1.8
h�5i 0.290(1) 0.45(4) 3.5
h�2i � h�1i 0.045(2) 0.47(9) 0.4
h�3i � h�2i 0.051(1) 0.88(8) 0.2
h�4i � h�3i 0.033(1) 0.62(33) 2.0
h�5i � h�4i 0.037(1) 0.89(1) 0.003
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tion of � as the physical volume becomes larger. It is
remarkable that the increase going from � � 6:2 to � �
5:8 on a 244 lattice is even larger than going from 124 to
244 at � � 6:2, although in both cases the physical volume
is increased by a factor of about 16.

B. Localization properties

Together with the low-lying eigenvalues the correspond-
ing eigenvectors ~��x� have been extracted as well. It is
interesting to evaluate for each vector the inverse partici-
pation ratio (IPR). The IPR is defined as

IPR � V
X

x

j ~��x�j4 with V � L4

and is a measure for the localization of an eigenvector. It
0

0.1

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

〈λ

1/ (aL) [fm−1]

λ1
λ2
λ5

λ20

FIG. 3 (color online). The average values h�ii=a2 (scaled to
physical units) of the eigenvalues �i �i � 1; 2; 5; 20� are shown
vs the inverse of the linear lattice extension aL. Only eigenval-
ues on bc copies are shown. The lines represent fits to the data
using the ansatz a�2h�ii � Ci=�aL�

2��i .
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FIG. 5 (color online). The relative distribution h of IPR values of t
eigenmodes are shown. Note there is a logarithmic scale for h�IPR
boxes refer to distributions on bc gauge copies, while open ones co

0
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(λ
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×

01
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λ

β = 5.8 244

β = 6.2 244
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FIG. 4 (color online). The eigenvalue density � for bc copies
as a function of � estimated on 124 and 164 lattices at � � 6:2
and on a 244 lattice for � � 6:2 and 5:8. Bin sizes have been
chosen as small as possible for each lattice size. The points mark
the middle of each bin and the lines are to guide the eye.
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enables us to distinguish between eigenmodes with ap-
proximately uniformly distributed values of j ~��x�j2

(IPR � 1 . . . 2) and specific ones with a small number of
sites x having large modulus squared j ~��x�j2 (IPR

O�100�). Note, the eight (trivial) zero modes (� � 0) of
the F-P operator give all IPR � 1.

From Fig. 5 we learn that the majority of eigenvectors of
the Faddeev-Popov operator is not localized. However,
some large IPR values have been found associated with
modes among the 10 lowest nonzero eigenmodes. This
becomes more likely as the volume is increased. So far
we have no physical interpretation what causes the stronger
localization in these rare cases.

C. What fraction of the F-P spectrum is dominating the
ghost operator?

As we have mentioned in Sec. II there is an obvious way
to construct the ghost operator, if all eigenvalues �i of the
F-P operator and the corresponding eigenvectors ~�i�k� in
momentum space would be available. However, their de-
termination for each configuration is numerically too
demanding.

Restricting the sum in Eq. (7) to the n lowest eigenvalues
and eigenvectors (n� N � 8V � 8), we can figure out to
80

n=10-20

10 20 30 40
IPR

n=20-50

β = 6.2

β = 6.2

β = 6.2

10 20 30 40
IPR

β = 5.8

he 10 (left), the 10 to 20 (middle) and the 20 to 50 (right) lowest
�. Each row corresponds to one pair of � and lattice size. Filled
rrespond to fc copies.
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FIG. 6 (color online). The ratio of the truncated ghost propa-
gator Gn�q� (in terms of the n lowest F-P eigenmodes and
eigenvalues) to the full estimate G�q� (taken from [5]) shown
as a function of n for the lowest (q1) and second lowest (q2)
momentum. The inverse coupling is � � 6:2 and the lattice size
ranges from 124 to 244. The data refer to bc copies.
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what extent these modes, i.e. the corresponding estimator
Gn�q� in Eq. (6), saturate the full ghost propagator G�q�
obtained independently for a set of momenta by inverting
the F-P matrix on plane waves. See our recent study [5] for
the data of G�q�.

This saturation is shown in Fig. 6 for the lowest q1 and
the second lowest momentum q2 available on different
lattice sizes for � � 6:2. There the values of Gn�q� have
been divided by the values for the full propagator G�q� in
order to compare the saturation for different volumes.
Since ~�i�k� has been obtained by a fast Fourier trans-
formation of the eigenvector ~�i�x�, all lattice momenta k
are available. Thus Gn�q� refers to the average over all k
giving raise to the same momentum q. The full propagator
values G�q� at q1�k� and q2�k�, however, refer to the
averages over lattice momenta k � ��1; 0�; 0; 0� and to k �
�1; 1; 0; 0�, respectively.

Let us consider first the lowest momentum q1. We ob-
serve from Fig. 6 that the approach to convergence differs,
albeit slightly, for the three different lattice sizes. The
relative deficit for n < 50 rises with the lattice volume.
For n > 100 the rate on a 164 lattice is even a bit larger than
that on a 124 lattice. Unfortunately, there are no data
available for n > 50 on the 244 lattice. However, for the
124 and 164 lattices the rates of convergence are about the
same. For example, taking only 20 eigenmodes one is
definitely far from saturation (by about 50%) whereas
150 . . . 200 eigenmodes are sufficient to reproduce the
ghost propagator within a few percent. In other words,
the ghost propagator at lowest momentum on a 124 (164)
014502
lattice is formed by about 0:12% (0:03%) of the lowest
eigenvalues and eigenfunctions of the F-P operator.

For the second lowest momentum q2 the contribution of
even 200 eigenmodes is far from being sufficient to ap-
proximate the propagator.

V. THE PROBLEM OF EXCEPTIONAL
CONFIGURATIONS

We turn now to a peculiarity of the ghost propagator at
larger � of which we have reported in [5]. It was also seen
by two of us in an earlier SU�2� study [6]. While inspecting
our data we found, though rarely, that there are exception-
ally large values in the Monte Carlo (MC) time histories of
the ghost propagator at lowest momentum. Those values
are not equally distributed around the average value, but
rather are significantly larger. For details we refer to
Ref. [5].

We have tried to find a correlation of such exceptionally
large values in the history of the ghost propagator with
other quantities measured in our simulations. For example
we have checked whether there is a direct correlation
between the values of the ghost propagator G�k� as they
appear in the MC time histories (see e.g. Fig. 5 in [5]) and
the lowest eigenvalue �1 of the F-P operator.

In Fig. 7 we show such correlation in a scatter plot for
different lattice sizes at � � 5:8 and 6:2. There each entry
corresponds to a pair ��1; G�k��measured on a given gauge
copy of our sets of fc and bc copies. It is visible in that
figure, gauge copies giving rise to an extremely large MC
value for the ghost propagator are those with very low
values for �1. This holds for the 124 and 164 lattice.
However, a very low eigenvalue is not sufficient to obtain
large MC values forG�k� as can be seen in the same figure.
It is not excluded that such gauge copies with extremely
small eigenvalues would turn out to be exceptional for
another realization of lowest momentum q�k� than those
two we have used. This might explain why some configu-
rations with extremely small lowest eigenvalues were not
found to be exceptional with respect to the ghost propa-
gator at k � �1; 0; 0; 0� and k � �0; 1; 0; 0�.

In the light of Eq. (7) it is not adequate to concentrate
just on the lowest eigenvalues. Instead, one can monitor the
contribution of a certain number of eigenvalues �i and
eigenmodes ~�i�k� to the ghost propagator at some momen-
tum in question. Therefore, we have compared the trun-
cated sums G�kjn� according to Eq. (7) with the MC
history values of the full ghost propagator G. In fact, we
show in the scatter plots in Fig. 8 the ratios G�kjn�=G�k�
versus G�k� for n � 10 and for various lattice sizes.

Obviously there is a strong correlation between the
chosen group of low-lying modes and the MC time history
values of the full ghost propagator. Indeed, if we consider
values G�k�> 15 to be exceptional in the left-most panel
(124 lattice) we find that the contribution of the 10 lowest
modes amounts to more than 75% of the actual value of the
-6
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ghost propagator. On the opposite, for low G�k� values the
main contributions come necessarily from the higher
eigenmodes, while the 10 lowest modes contribute a minor
part only. A similar but less dominant contribution of the
10 lowest modes is found for the time histories produced
on larger lattices (164; 244).

VI. CONCLUSIONS

In this paper we have investigated the spectral properties
of the F-P operator and their relation to the ghost propa-
gator in SU�3� Landau gauge. The configurations under
examination have been generated on a 244 lattice at
� � 5:8 and on 124, 164 and 244 lattices at � � 6:2.

As expected from Ref. [1] we have found that the low-
lying eigenvalues are shifted towards � � 0 as the volume
is increased. The result is an eigenvalue density ����
becoming steeper rising close to � � 0. We have also
shown that the Gribov ambiguity is reflected in the low-
lying eigenvalue spectrum. In fact, the low-lying eigenval-
ues extracted on bc gauge copies are larger on average than
those on fc copies. Thus better gauge-fixing (in terms of the
gauge functional) inhibits the above-mentioned tendency,
keeping the gauge-fixed configuration slightly away from
the Gribov horizon.

The study of the ghost propagator in terms of the eigen-
values and eigenmodes of the F-P operator reveals that
there is a dominance of the low-lying part of the spectrum
at lowest momentum. About 200 eigenmodes are sufficient
014502
to reconstruct the asymptotic result up to a few percent at
the lowest momentum on a 124 lattice at � � 6:2. With
respect to the whole set of 8�124 � 1� nontrivial eigenval-
ues, this is a fraction of about 0:12%. For larger volumes
the number of necessary eigenmodes seems to be some-
what larger. For the next higher momentum, saturation
needs a much bigger part of the low-lying spectrum.

On average the F-P eigenmodes are not localized, how-
ever, few large values have been seen among the lowest
eigenmodes which so far could not be correlated to other
measured quantities.

Analogously with observations made in Ref. [6] we have
reported recently [5] on exceptionally large values in the
Monte Carlo history of the ghost propagator. These we
have seen at � � 6:2 and only for some lattice momenta k
realizing the lowest physical momentum q�k�. In the study
at hand we have shown that these outliers can be assigned
to the contribution of the ten lowest F-P eigenmodes to the
ghost propagator at this particular k.
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