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Analysis and Modeling of Control Tasks
in Dynamic Systems

Rasmus K. Ursem, Thiemo Krink, Mikkel T. Jensen, and Zbigniew Michalewicz

Abstract—Most applications of evolutionary algorithms deal
with static optimization problems. However, in recent years, there
has been a growing interest in time-varying (dynamic) problems,
which are typically found in real-world scenarios. One major
challenge in this field is the design of realistic test-case gener-
ators (TCGs), which requires a systematic analysis of dynamic
optimization tasks. So far, only a few TCGs have been suggested.
Our investigation leads to the conclusion that these TCGs are
not capable of generating realistic dynamic benchmark tests.
The result of our research is the design of a new TCG capable of
producing realistic nonstationary landscapes.

Index Terms—Adaptive control, dynamic problems, real-world
problems, test-case generator.

I. INTRODUCTION

T HE ULTIMATE goal in the design of optimization tech-
niques is their application to real-world problems. How-

ever, evolutionary algorithms (EAs) have been applied mainly
to static problems even though most real-world problems con-
sist of components that change over time. EAs have particularly
great potential to tackle dynamic problems compared to other
iterative search techniques. The primary advantage is that EAs
maintain a population of solutions, rather than just a single so-
lution. This provides the potential for a diversity of approaches
to problem solving. When the problem changes, to cite a cliché,
we do not have all of our “eggs in one basket.” If the constraints
change and make one solution infeasible, perhaps another rea-
sonable solution in the population will still be feasible. We can
examine each solution in the population and determine if any of
the currently available alternatives are of value. Further, each so-
lution offers a starting point for discovering new solutions given
whatever change has occurred. We do not have to rely on only a
single starting point and we certainly do not have to recompute a
new solution starting fromtabula rasa. If there are any similari-
ties between the old problem and the new problem, it is possible
that these will be reflected in the solutions that are present in the
population.

Most studies on optimization of dynamic problems fall in one
of two categories. They either describe how to handle a specific
real-world problem or they introduce novel methods for opti-
mization of dynamic problems. The test problems used in the
latter group are often standard problems like the time-varying
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Fig. 1. (a) Observation problem. Environment influences the system. Observer
does not affect the system. (b) Control problem. Environment affects the system.
Controller and the system interact. Decisions made by the controller affects the
system.

knapsack problem or a variant of the peak-tracking problem.
Recently, authors have suggested new test-case generators
(TCGs) for implementing peak-tracking problems ([1]–[4]).
These TCGs are based on deterministic or stochastic updating
of peak characteristics such as position, height and width.
Although the introduction of these TCGs was important, no
research has been conducted to thoroughly evaluate how well
they reflect characteristic dynamics of real-world problems.

Many dynamic problems can be viewed as either observation
or control problems. The main difference between these two
types of classes is the feedback from the controller to the system
(see Fig. 1).

The objective in observation problems is either to predict
and report the values of certain system variables (prediction
models) or to process sampled data (signal processing). The dif-
ference between these two subclasses is that prediction models
use observations from the past to predict the future, whereas
signal processing focuses on the extraction of information
from recorded data. Typical examples for prediction models
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are weather forecasting, stock value prediction, and server
failure prediction. Signal processing deals with tasks such as
speech recognition and noise filtering. EAs have been applied
successfully to several observation problems (e.g., [5]–[7]).

In control problems, a controller has to operate a system and,
in many cases, meet a certain output goal. The input for this
process is provided by sensors that measure the state of the
system and its environment. In other words, there is a feedback
loop in which the controller changes the system variables that it
uses as its own input. If the EA is running while the system is
being controlled, it actually has the interesting consequence that
the search itself changes the fitness landscape. EAs have been
used to control several dynamic systems (e.g., [8]–[13]).

The recently proposed TCGs focus on how the landscape
changes instead of the underlying dynamics. Whether or not
these TCGs can model any real-world problems is still an open
question; however, since no control parameters are fed back into
any of the TCGs, they certainly do not model control problems.

The focus in this paper is on control problems. Note that
an observation problem can be viewed as a control problem
without controllable parts. The paper is organized as follows.
Section II discusses general characteristics of control problems.
Section III contains a description of a model for control prob-
lems. Section IV presents the new TCG and Section V covers
its implementation details. Section VI provides an extended ex-
ample (the greenhouse production model) and Section VII sum-
marizes the results from this study. A general discussion of
EA-related control strategies is given in Section VIII. Finally,
Section IX concludes the paper.

II. CHARACTERISTICS OFCONTROL PROBLEMS

A fundamental understanding of typical dynamics in
real-world control problems is essential when designing
realistic TCGs. The main motivation for our research was
to propose a framework for analyzing general characteristics
of real-world problems and to suggest a new TCG capable
of modeling realistic dynamic problems. In the process of
developing the framework, we studied several examples from
biology, computer science, engineering, and economics. Based
on this study, we suggest to classify control problems into three
categories.

1) Demand Meeting:The objective in demand meeting is
the efficient management of resources while matching a
certain level of demand from the environment. The focus
is more on meeting the demand than on having an efficient
production. For instance, it is better that the production at
a powerplant is stable at a sufficient level than having an
insufficient production at a lower cost. Another type of
demand meeting problems involves the management of
buffers while meeting a demand. A typical example is the
inventory problem in which a stock has to be managed
to provide a demanded resource such as steel for a car
production.

2) State Stabilization:State stabilization is a special case of
demand meeting without buffering. The main task is to
anticipate changes in the state and to act accordingly in
advance. Conclusively, a successful stabilization requires

Fig. 2. Controller and the system being controlled.u(t) is the control signal
vector at timet, x(t) is the system state vector, andy(t) is the system output.

Fig. 3. Controller, the system, and the environment.u(t) is the control signal
vector at timet, v(t) is the environement state vector,x(t) is the system state
vector, andy(t) is the system output.

that the environment is quite predictable and its overall
influence on the system is not too stochastic. The autopi-
loting of an aircraft and the well-known pole balancing
problem are examples of state stabilization problems.

3) Interacting Agents and Competition Systems:This class
is characterized by coadaptive processes, where the suc-
cess of an agent depends directly on the actions of another
agent and vice versa. The agent control is either direct,
such as in robot control, or indirect by modification of
the agent’s environment. Typical examples are competing
companies and coevolutionary systems in biology, such
as the epidemic control of diseases by vaccination (di-
rect control) and elimination of transmitting hosts, such
as mosquitos (indirect control).

A realistic TCG for control problems must be able to generate
changing landscapes that correspond to problem characteristics
in at least one of these categories.

III. M ODEL FORCONTROL PROBLEMS

The traditional engineering approach to control problems is
to view the problem as an interaction between the controller and
the system being controlled (see Fig. 2). The control signals
at time are represented by the vector , the system state
is modeled by the vector and the system output vector is

. There are several issues, e.g., analog-digital conversion
and sample rate, to consider when dealing with real systems (see
[14] for a general introduction to control theory). To fully model
a real system, its environment often has to be modeled as well
(see Fig. 3).

In summary, the model consists of the following four compo-
nents, which we illustrate by a greenhouse control problem.

First, the environment is the immediate surroundings that af-
fect the system. The environment state represents the vari-
ables needed to model the nearby environment and other ex-
ternal components that influence the system. The greenhouse
environment consists of sunlight intensity, outside temperature
and market prices (crop, oil for heating, CO).

Second, the system is the components that are directly in-
fluenced by the controller. Its internal state is modeled by the
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system state vector . The system state in the greenhouse ex-
ample consists of the internal temperature, COlevel and the
amount of grown crops.

Third, the performance of the system is determined by the
quality of the system behavior in response to a certain objective,
e.g., deviation from a reference value. The performance in the
greenhouse is defined as the income from the grown crops minus
the expenses used in the production.

Fourth, the controller consists of a decision maker and a
vector of control signals . The decision maker determines
the control signals based on information from the environment,
the system, and the recorded performance. In the greenhouse
example, the amount of heating, ventilation, and COinjection
are controlled directly. The optimal greenhouse control will
maximize the profit by minimizing the production costs and
maximizing the production.

The change of the system state is usually modeled by a
number of difference equations of the form

(1)

where is the th system variable, is the update
function, is the time, is the length of a time step, and,

, and are the control signals, the system state, and the
environment state of previous time steps (sometimes several
steps in the past), respectively. Many physical systems can
be described by nonlinear differential equations, which can
be approximated by difference equations using the Euler or,
preferrably, the Runge–Kutta method [15]. In this case, the
update function of (1) is defined according to the used
approximation method.

In general, it is not straightforward to draw the line between
the system environment, the system, and the controller. A
bottom-up strategy might be the best way to describe a control
problem. The first step is to identify all relevant variables
related to each part of the problem and the performance.
There are two kinds of relevant variables: those with direct
influence on the system state and those that are relevant for the
decision making process in the controller. The next step is to
assign each variable to a part of the model (control, system,
or environment). This decision should be based on the factors
that determine the value of a variable: 1) control state variables
can be fully controlled; 2) system state variables are directly
influenced by the control, as well as other factors from the
environment or the system itself; and 3) environment variables
cannot be controlled, but might influence the system.

IV. NEW TCG

The goal in introducing a new TCG was to allow easy im-
plementation of realistic benchmark problems. To achieve this,
we focused on the underlying mechanisms that generate a time-
varying fitness landscape, rather than the “landscape-oriented”
change of peak characteristics as implemented by other TCGs.
Furthermore, we emphasized that the problem analysis should
support the implementation of the problem in the new TCG. The
secondary goal was to propose a flexible TCG, which would
support both a set of standard benchmark problems and allow
the implementation of realistic real-world control problems.

(a)

(b)

Fig. 4. a = [10; 5],A = [0; 0:01], b = [],B = [], g(t) = 1. (a) No phase
shift (t = 0). (b) Phase shift (t = 30).

A TCG-modeled problem is defined by the control, system,
and environment variables. Further, the performance is defined
as a fitness function of the variables.1 Central to our new TCG
are a number of properties that characterize the dynamics of the
variables in the system and the environment state. A property
that affects the future value of a variable is called an effector.
Properties associated with each variable are domain, periodicity,
stochasticity, drift, and dependency; the last four are effectors.
Each system and environment variable requires the specification
of all these properties, whereas the control variables are only de-
fined by the domain. The properties of the variables are defined
as follows.

Domain: The domain of a variable defines its set of pos-
sible values; it is characterized by the type (categories, discrete
values, continuous values) and the range of values.

Periodicity: This property describes the temporal correlation
between successive values of a variable, i.e., whether the value
of the variable follows a repeating pattern.

This property can be modeled by a Fourier function

(2)

where , , , and are parameter vectors for the generated
periodic function. To model fluctuations in the period length, we
replaced the normal linearly increasing timewith an artificial
nonlinearly increasing time . In each time step, the artificial
time is increased by a small positive value, which is calculated

1A multiobjective control problem can be implemented by specifying mul-
tiple fitness functions.
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(a)

(b)

Fig. 5. (a) Periodic function with constant period lengtha = [10; 4], A =
[0; 0:01], b = [], andB = [], t = 0 and (b)g(t) = 1.

by a “time advancement function” . The new artificial time
is defined as . The phase of the periodic function
(2) can be shifted by setting the initial valueof the artificial
time . Fig. 4 illustrates a simple periodic function with and
without phase shift.

A periodic function with fixed period length can be modeled
by defining as a constant function such as ,

, or . A decreasing period length can be mod-
eled with an increasing function. Figs. 5–7 illustrate three
periodicity effectors with the corresponding time advancement
functions.

Since the TCG variables might require different time ad-
vancement function, each TCG variable has its own artificial
time and time advancement function.

A periodicity effector is, thus, defined by six parameters, the
four vectors , , , , which contain the constants for the
function, the initial artificial time , and finally the time ad-
vancement function . A combination of a multiple periodic
functions can be modeled by specifying more values in the pa-
rameter vectors.

Stochasticity: The stochasticity effector models the inherent
randomness in a variable. The effector generates random num-
bers according to a stochastic distribution, e.g., the normal dis-
tribution, the uniform distribution, or the binomial distribution.
The stochasticity effector is an expression consisting of an ar-
bitrary combination of distribution functions and plain arith-
metics. For instance, 0 0.5 1.5 generates a normal dis-
tributed number based on mean 0 and a uniform distributed vari-
ance between 0.5 and 1.5.

In some cases, a slowly changing stochastic effector (i.e., an
effector in which the value at time is correlated to the value
at time ) is needed. To model stochastics, such as random walk,

(a)

(b)

Fig. 6. (a) Periodic function with linearly decreasing period length
a = [10; 4],A = [0; 0:01], b = [], B = [], andt = 0 and (b) increasing
time-advancement functiong(t) = 0:005t.

(a)

(b)

Fig. 7. Periodic function (a) with sinusoidal changing period length
a = [10; 4], A = [0; 0:01], b = [], B = [], andt = 0 and (b) periodic
time-advancement functiong(t) = 0:5 + 0:25 sin(0:02t).

a number of effectors implementing this idea are available in the
TCG.

Drift: Drift is present in a variable if the value of the variable
has a tendency to change toward one direction only. An illustra-
tive example for drift is the wear out of machinery. A special
case of this is buffer drift, where a variable represents a stock
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(a)

(b)

Fig. 8. Two examples of drift functions. (a)D(t ) = 1=
p
t + 1with constant

period lengthD (t) = 100 and (b)D(t ) = 1=
p
t + 1 with variable period

lengthD (t) = N(100; 20).

Fig. 9. Problem modeled as a network of variables.

of some sort, which is emptied gradually. From time to time the
stock may be refilled, which increases its value temporarily.

The drift effector consists of a drift function . The drift
function can be any expression that defines how the variable is
affected by drift. In the drift function, measures the time since
the beginning of a drift period. Buffered drift is modeled by
resetting when a drift period is completed. The length of a drift
period is determined by an additional function , which
can be any expression based on plain arithmetics and stochastic
functions. Fig. 8 illustrates two drift functions.

Dependency:The relation between variables is modeled by a
network that describes the dependencies in the modeled system.
Fig. 9 illustrates an example of a network of variables (to
are the control variables, to denote the system variables,
and to are the environment variables).

The arcs represent relationships between variables. For in-
stance, the arc from to indicates that affects .

Fig. 10. Variable connected to internal and external effectors. (w . . .w are
the system or environment variables affecting the variable.)

An important aspect of the dependency representation is
to distinguish between external and internal effectors. The
external effectors represent the influence from external non-
modeled events and cover the criteria stochasticity, drift, and
periodicity. The internal effectors model the interplay between
identified variables and cover the dependency criterion. The
interplay between a variable and its neighbors is illustrated in
Fig. 10. The value of each variable is modified by a number of
inputs from external and internal effectors. Furthermore, the
variable affects other variables by its output effectors.

The new value of the variable is calculated by a function of
the internal and external input effectors. The variables are up-
dated in parallel, i.e., the values of all variables at time are
calculated on the basis of the values at time.

V. IMPLEMENTATION AND USE OF THETCG

The TCG consists of a simulation shell that contains the cur-
rent simulation step, the step length , the global time , an
array for the performance measures, and three arrays for the
control, system, and environment variables. The global time is
defined as . Any TCG variable is modeled by a data
structure that contains its current value, a record of past values,
the domain of the variable and the parameters for drift, stochas-
ticity, and periodicity. Moreover, the data structure contains a
number of internal variables that are used for management of
the TCG variables (calculation of new state, resetting, etc.).

The following are procedures for updating the TCG variables.

1) Update, FinalizeUpdate: Updatecalculates the values
from the periodicity, stochasticity and drift functions.
These values are used to calculate the new value of
the TCG variable, which is stored internally until all
variables have been calculated for the next time step.
The TCG then performs the parallel update by calling
FinalizeUpdatefor each of the system and environment
variables.FinalizeUpdatethen copies the new value to
the internal variable holding the current value.

2) BackupValue, RestoreValue:These methods are used to
backup and restore the value of the TCG variable and all
its internal variables. Since the TCG must evaluate the
controllers from the same starting state, the complete state
of the TCG must be stored and restored between each
evaluation.
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Fig. 11. Pseudocode for the UpdateTCG procedure.

Fig. 12. Pseudocode for the GetFitness procedure.

3) SetValue, GetValue, ResetValue:Set and get the value of
the variable.ResetValuesets the variable to the value of
the initial state of the TCG ( ).

The following are procedures for operating the TCG.

1) UpdateTCG:This procedure updates the state of the TCG
for a given number of time steps. The update is based on
control values from the controller passed to the procedure.
The pseudocode for the procedure is listed in Fig. 11.
First, the TCG advances the simulation step by one and
the global time by . Then it acquires the control values
from the given controller and sets the corresponding con-
trol variables. Afterwards, the TCG calculates the new
values for the system and environment variables. Finally,
the TCG updates the states by calling theFinalizeUpdate
for each of the TCG variables.

2) BackupTCGState, RestoreTCGState:These procedures
backup and restore the state of all variables in the TCG.
They are used byGetFitnessto ensure that the controllers
are evaluated from the same starting position.

3) ResetTCG:Resets the TCG to the initial state ( ) by
calling ResetValue on all variables.

4) GetFitness and CalcFitness:In order to calculate the fit-
ness of a controller the TCG simulates the system for a
given number of time steps. In this processGetFitness
measures the performance in each time step, which fi-
nally is combined to a single fitness value by theCalcFit-
nessprocedure. The mapping from performance measure-
ments to the fitness value has to be defined as a part of the
input to the TCG, because it varies from system to system.
The pseudocode forGetFitnessis listed in Fig. 12.

Fig. 13 illustrates an example of how the TCG can be used in
connection with an EA. In this example, the EA evaluates the
evolved controllers for three time steps. Then the EA selects the

Fig. 13. Example of an EA using the TCG.

(a)

(b)

(c)

Fig. 14. Example of state-space exploration at TCG-timet = 0, t = h, and
t = 2h. Thin lines represent controller exploration of the current time step, thin
dotted lines are previous explored control strategies, and thick lines are actual
control as it was performed by the selected controller.

best controller and uses it to control the system for one time step.
Finally, the evolutionary operators generate the next generation
of controllers.

Fig. 14 illustrates the exploration that an EA carries out
through the first three time steps. In each time step, the con-
trollers are evaluated from the same starting state, which is the
state determined by the best controller of the previous iteration.
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TABLE I
VALUES AND FUNCTIONS FOR DOMAIN, PERIODICITY, AND STOCHASTICITY

“ ” in the “Init” column indicates that the initial value is calculated from the update rule of the variable.

VI. GREENHOUSEPRODUCTION MODEL

This section demonstrates the potential of the new TCG by
an implementation of a greenhouse model. Although the model
is a simplification, it is sufficient to demonstrate the capability
of the new TCG and produce dynamic landscapes which cannot
be achieved with existing TCGs for dynamic problems.

The greenhouse is modeled as follows.

1) Control variables:

a) heating ;
b) ventilation ;
c) addition of carbon dioxide .

2) System variables:

a) temperature inside the greenhouse ;
b) carbon dioxide level inside the greenhouse ;
c) amount of grown crop .

3) Environment variables:

a) temperature of the greenhouse environment ;
b) sunlight intensity ;
c) market prices of:

i) the crop ;
ii) the oil for the heating ;
iii) the CO gas .

4) Performance:

a) profit .
In the model, each day corresponds to 100 TCG time steps

and one “year” corresponds to ten days. This short year was
chosen to have a quick variation from summer to winter,
meaning shorter simulation runs. The short year in the model is
acceptable because the day-to-day correlation is not important.

Domain: All variables are real valued. Their domains are
specified in Table I.

Periodicity: The variables , , and are pe-
riodic. and reflect the daily and seasonal changes
of sunlight and temperature, while follows the seasonal
change in vegetable prices. This was modeled by a periodic ef-
fector of two overlaid cosine functions with different angular
velocities. The parameters are listed in Table I. For , the

values are , , , and
, which correspond to the periodic function in (3). The

phase for is shifted slightly compared to , which is
to model the time it takes the sun to heat the environment. This
is achieved by letting the artificial time of start at the
value and advancing it by 1 in every time step of the
TCG

(3)
Stochasticity: All the environment variables are influenced

by some degree of stochasticity. However, values only change
marginally between two time steps. For instance, the outside
temperature does not change much from minute to
minute.

The stochastic component of the environment variables is
modeled by adding a small random value to the value from the
previous time step. The following is the stochasticity effector
for :

(4)

where 0.5 0.5 generates a uniformly distributed number
between 0.5 and 0.5. Table I contains the functions for the
stochasticity effectors. The max and min functions ensure
that the stochastic values stay in fixed intervals. The first
stochastic values are calculated by setting ,

, , , and
.

Drift: Drift is not present in any of the variables.
Dependency:The relationship between the variables is illus-

trated in Fig. 15.
The environment variables are updated according to

(5)

(6)
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Fig. 15. Dependencies in the greenhouse model.

Fig. 16. Three of the environment variables of the greenhouse system.

(7)

(8)

(9)

The functions , and refers to the
periodic and stochastic values for the calculation of at
time step (see Table I).

Fig. 16 illustrates the values of , , and . Each
time step represents a period of ten days. The crop price shows a
clear seasonal variation, while sunshine and temperatures show
a daily and seasonal variation with small stochastic variation.

The system variables depend on each other, on the environ-
ment variables, and on the control variables. They are updated
incrementally using difference equations of the form

where is either , , or .

TABLE II
CONSTANTS FOR THEDEPENDENCYFUNCTIONS

Equation (10) displays the function for the temperature in
the greenhouse ( )

(10)

where is controlled by the heating and the venti-
lation . The ventilation can be used to control the heat ex-
change with the environment. The minimal heat exchange rate is
the constant , which models the insulation value of the glass in
the greenhouse. The greenhouse is also heated by the sun.
The temperature increase caused by the sun is scaled by the con-
stant , which models how dependent the greenhouse tempera-
ture is on the sunlight intensity. The constants for all dependency
functions are listed in Table II.

The change of COis modeled by

(11)
where models the rate of COconsumption by the plants.
is the environmental COlevel. The CO level decreases when
the plants grow. It can be increased by injecting CO( ) or
by ventilation ( ), whenever the inside COlevel is lower
than the environmental level. In the latter case, this also affects
the indoor temperature ( ).

The growth of the plants is limited by the amount
of available resources. Necessary resources are carbon dioxide
( ), sunlight ( ), and temperature ( ), which may
not be too cold or hot. The first three lines of the definition of

(12) yield a positive value if the necessary resources
are available and the temperature allows the crops to grow. The
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Fig. 17. Controls found by the GA over a period of 200 time steps
(representing two days). Controls follow a pattern of cool nights with the
heating turned on and warm sunny days with ventilation and COsupply.

fourth line is negative if the temperature is either too high or
too low

(12)

where is the maximal growth allowed by the temperature,
is the optimal temperature for growth, is the maximal amount
of CO that can be consumed by the plants,is the maximal
sunlight intensity that can be used by the plants, andis the
rate of decrease in plant-biomass when the temperature is too
extreme.

The profit in a time step is defined by

The initial values of the variables at time step are shown in
Table I. The initial values of the environment variables need not
to be specified explicitly, because they are calculated directly
from the periodicity and stochasticity of the variable.

In the investigations of the greenhouse example, we used a
standard GA to search the space of possible control settings.
The TCG was connected with the standard GA as described in
the previous section (see Fig. 13). For each individual, a control
setting was simulated for six time steps. The best of these set-
tings was then used to control the greenhouse for one time step.

Figs. 17 and 18 show the control and system variables over
200 time steps. At night (TCG time step 150), the heating is
turned on to avoid freezing damage to the crop. At dawn (TCG
time step 170), the COsupply is turned on to support plant
growth, while the heating is kept on to rapidly increase the tem-
perature so the optimal growth conditions are reached as fast
as possible. When the temperature is high enough (time step
185), the heating is turned off and ventilation is turned on to
keep the temperature down, as the greenhouse is heated by the
sun. Late afternoon (time step 220), when the sunshine inten-
sity decreases, the COsupply is turned off and ventilation is

Fig. 18. Some of the system variables and the performance (profit) over a
period of 200 time steps. Greenhouse temperature is much warmer during the
day than at nighttime. COlevel follows this pattern, since it is raised by the
controller to allow maximal growth. There is a profit in the daytime, while at
night money is lost by the expenses of heating.

Fig. 19. Expected profit in the next six timesteps. Ventilation was fixed at the
value determined by the controller.

Fig. 20. Fitness landscape from the greenhouse example. Heating was fixed at
the value determined by the controller.

increased. This is a cheaper way of supplying COwhen the
temperature outside is not too low and a moderate quantity of
CO is needed. After sunset (time step 240), the temperature
in the greenhouse decreases toward the damaging level of the
crops. The heating is then turned on and the cycle is repeated.

Sample plots of the optimization landscape are shown in
Figs. 19 and 20. The figures show the expected profit for the
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next six time steps (not the long term profit). Since the green-
house is a three-dimensional control problem ( , ,
and ), one of the variables had to be fixed to produce the
plots. The fixed variable was set to the best value suggested by
the GA.

Fig. 19 illustrates the profit as a function of COinjection
( ) and amount of heating ( ); the amount of ventilation
( ) was fixed.

In connection with the design of the greenhouse example,
we developed a simple rule-based controller that implemented
three simple rules: 1) turn up the heat if it is too cold inside; 2)
ventilate if it is too hot; and 3) inject COif the level inside is
too low. This simple controller performed poorly in the sense
that the profit was low and the crops had a tendency to die.
Interestingly, the corresponding fitness landscapes were mainly
plane-like surfaces tilted toward one of the corners. Hence, the
best possible control was to set heating, ventilation, and CO
injection to either zero or maximum. These results indicate
that poor control leads to simple fitness landscapes, where the
optimal control strategy is a corner point in the search space
spanned by the control variables.

VII. D ISCUSSION OF THEGREENHOUSEMODEL

Our studies of real-world problems was motivated partly by
the desire to get a general understanding of the shape and dy-
namics of their fitness landscapes. Observations from the green-
house example provided a number of preliminary results. The
shape of the landscape is obviously related to the number of op-
timal control settings at a given time step. However, even though
two good alternative settings are available, they might not re-
sult in a fitness landscape with two peaks. An example from
the greenhouse is the following. Assume that the indoor and
outdoor temperature are both near the optimal temperature for
crop growth. The crops consume COwhen they grow, which
lowers the internal COlevel. To compensate for the consumed
CO , the controller can either inject expensive COor increase
the ventilation, which will provide free COat a lower pace.
This seems like two alternative strategies; however, because the
CO injection and amount of ventilation are continuous vari-
ables, an infinite number of intermediate strategies exists. In the
current implementation of the greenhouse, these mixed strate-
gies correspond to a ridge in the fitness landscape with the two
extreme strategies at each end of the ridge. Two local optima
might appear if a nonlinear relationship between the COprice
and the amount of injected COis present. In this case, it might
be optimal to use either a large amount of COor to avoid a
CO injection completely. Nonlinear relations are common in
real-world problems. An example is a bulk discount agreement
for the unit price of a resource. Another feature that will result in
a multimodal control problem is discrete decision making where
intermediate solutions are infeasible. For instance, if a robot has
to pass an obstacle, the controller can either decide to go left or
right.

VIII. D ISCUSSION OFEVALUATION AND CONTROL STRATEGIES

The evaluation of individuals in real-world problems intro-
duces some technical difficulties. It could be dangerous, expen-

sive, or too time-consuming to evaluate all individuals in the real
system. For instance, it is clearly not an option to let a low-fit
individual control a nuclear power plant. Instead, a sufficiently
accurate model2 has to be used for the evaluation process.

The use of models to simulate real-world systems introduces
several design issues that play an important role in the choice
of algorithm, population size, representation, etc. The most im-
portant issue is the maximal allowed response time, which de-
fines how fast the controller must react to ensure proper and
safe system control. For instance, driving a car requires rapid
responses, which need not be as important in other problems
such as the greenhouse. The main problem is that the calculation
time for the response might be so long that the system state has
changed substantially, thereby making the difference between
the model and the real system too large.

There are several ways to use an EA for control problems. The
simplest possible is to evolve the control signals directly. This
approach is not used widely, mainly because it requires a quite
long response time, because of the time-consuming evolution
of the control signals. However, the strategy has been used to
control a multiple-burner boiler system [11], a sugar beet press
[12], and a greenhouse [10]. In more advanced applications, the
EA acts as the tuning algorithm for another control strategy.
There are several techniques such as fuzzy control, neural net
control, genetic programming control, and rule-based control
(see [8] and [17]). EAs have also been used to tune traditional
engineering controllers such as the well-known PID controller
(e.g., [18]).

Another interesting aspect of EA-related control strategies is
the possibility of evolving controllers while the system is being
controlled. If a better controller is evolved, it takes over the con-
trol of the real system. This technique allows the controller to
adapt better to the system and thereby compensate for long-term
effects such as wear out of machinery.

IX. CONCLUSION AND FUTURE WORK

In this paper, we investigated the internal structure and mech-
anisms of dynamic real-world problems. The main motivation
was the need for realistic test problems for optimization of dy-
namic systems, which are essential for proper evaluation and
comparison of EAs. In this context, we suggested a novel TCG
for control problems that model the system, its controller, and
its environment. We demonstrated the potential of our new TCG
in a simple modeling example of a crop-producing greenhouse.
The resulting fitness landscapes looked surprisingly different
from landscapes that can be generated with traditional TCGs.
The landscapes had ridge-like asymmetric peaks with concave
or convex faces, plateaus, and sharp edges (see Figs. 19 and 20).
When the control process was far off from the optimum, the
fitness landscapes turned into simple inclined planes. In close
vicinity of the optimum, the shape of the landscape changed into
more complicated structures.

It seems that the TCGs introduced in [1]–[4] are of little value
for modeling realistic dynamic problems. This conclusion is
based on the four following observations.

2EAs offer an interesting way to improve a system model by online modifi-
cations, e.g., see [16].
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First, the recently introduced TCGs do not model the interac-
tions between the system components. Instead, the TCGs create
artificial dynamic problems where the shape and dynamics of
the fitness landscape are introduced without any justifying rela-
tion to any real problem.

Second, even if the old TCGs could approximate the un-
derlying dynamics by imitating the corresponding landscape,
one has to analyze the landscape of the real system to imitate
it properly. To get an idea of the shape of the fitness land-
scape, a model often has to be developed and implemented,
which will make the later imitation of the landscape rather
pointless.

Third, the current technical capabilities of the previous TCGs
are too limited to produce even simple landscapes like the ones
found in the greenhouse example.

Fourth, the previously introduced TCGs do not allow the
optimization algorithm to affect the shape of the fitness land-
scape. This has the consequence that control problemscannot
be modeled.

These limitations are not present in our TCG, mainly be-
cause the landscapes are aresult of a dynamic system model
that mimics the behavior of a real system.

In our future work, we plan to concentrate on a few issues;
these include: 1) development of test problems for each of the
three general classes mentioned in the introduction3 ; 2) inves-
tigation of discrete dynamic problems such as scheduling and
permutation-based problems; and 3) revision and extension of
the modeling framework and the TCG.
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