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Abstract—The accurate fitting of a circle to noisy measure-
ments of circumferential points is a much studied problem in
the literature. In this paper, we present an interpretation of the
maximum-likelihood estimator (MLE) and the Delogne–Kåsa
estimator (DKE) for circle-center and radius estimation in terms
of convolution on an image which is ideal in a certain sense. We
use our convolution-based MLE approach to find good estimates
for the parameters of a circle in digital images. In digital images,
it is then possible to treat these estimates as preliminary estimates
into various other numerical techniques which further refine them
to achieve subpixel accuracy. We also investigate the relationship
between the convolution of an ideal image with a “phase-coded
kernel” (PCK) and the MLE. This is related to the “phase-coded
annulus” which was introduced by Atherton and Kerbyson who
proposed it as one of a number of new convolution kernels for
estimating circle center and radius. We show that the PCK is an
approximate MLE (AMLE). We compare our AMLE method to
the MLE and the DKE as well as the Cramér–Rao Lower Bound
in ideal images and in both real and synthetic digital images.

Index Terms—Circle fitting, convolution, Cramér–Rao lower
bound (CRLB), least squares, maximum-likelihood estimation
(MLE).

I. INTRODUCTION

THE accurate fitting of a circle to noisy measurements of
points on its circumference is an important and much-

studied problem in statistics. It often arises in digital image pro-
cessing when circular features in digital images are sought. The
reasons for this range from quality inspection for mechanical
parts [1] to fitting circles for particle trajectories [2], [3]. Circle
fitting also has applications in archaeology [4], microwave en-
gineering [5], and ball detection in robotic vision systems [6].

In the literature, we can identify two basic approaches for
fitting circles. One approach is from a statistical point of view
[1], [7], [8], where the noisy circle points are treated as a list
of measurements; usually real-valued coordinates. The other is
an image based approach such as the circular Hough transform
(CHT) [9], [10] and the phase-coded annulus (PCA) [11], [12].

The first detailed statistical analysis to be published appears
to be that of Chan [13]. He proposes a “circular functional re-
lationship,” which we also use as the basis for our investiga-
tions. In this model, it is assumed that the measurement errors
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are instances of independent and identically distributed (i.i.d.)
random variables. Additionally, the points are assumed to lie
at fixed but unknown angles around the circumference, i.e., not
only are the center and radius of the circle unknown parame-
ters to be estimated, but so are the angles of each circumferen-
tial point. He derives a method to find the maximum-likelihood
estimator (MLE) when the errors have a Gaussian distribution.
This method is identical to the least-squares method of [14]. He
also examines the consistency of the estimator.

Chan and Thomas [15] have investigated the Cramér–Rao
lower bound (CRLB) for estimation in the circular functional
model, but see also [16].

A disadvantage of the MLE is that it can be difficult to an-
alyze. From a numerical point of view, another disadvantage is
that the only known algorithms for computing the MLE are iter-
ative. Furthermore, there are instances in which there is no min-
imum, but rather a stationary point, or several local minima in
the likelihood function [8], [17]. The difficulties with the MLE
were recognized by Kåsa [5], who proposes using a simple es-
timator due to Delogne [18] which is relatively easy to analyze
and also to compute. This estimator has subsequently been in-
dependently rediscovered at least four times [19]–[22].

Berman and Culpin [17] have carried out a detailed statistical
analysis of both the MLE and the Delogne–Kåsa estimator
(DKE). Specifically, they prove some results regarding the
asymptotic consistency and variance of the estimates. Zelniker
and Clarkson [23], [24] examine the properties of the DKE for
fixed (small) sample sizes rather than its asymptotic properties.

Because of the analytical difficulties which are associated
with the MLE for circles, there have been a number of itera-
tive algorithms proposed which calculate the MLE numerically.
Typically, these are based on gradient ascent over the (log) like-
lihood function. The Newton–Raphson (NR) algorithm is an ob-
vious choice but is well known to have a propensity to get stuck
in local minima, diverge to infinity, or enter a limit cycle. This
can be because of the nature of the objective function or the in-
correct or unfortunate choice of starting point. In the case of
circle fitting, it has been shown that NR can easily fail [8], [17].
For this reason, there have been several techniques proposed to
circumvent the convergence difficulties of NR.

Späth [7] provides a descent algorithm for circle fitting. A nu-
merical algorithm is proposes for the MLE which uses two types
of iterating steps, by partitioning the set of parameters. The al-
gorithm is initialized from a point which is evaluated using the
DKE. Späth’s algorithm is not guaranteed to converge, but it
does have the desirable property that the likelihood of its esti-
mate is nondecreasing from iteration to iteration. Chernov and
Lesort [8] propose another algorithm to minimize the objective

1057-7149/$20.00 © 2006 IEEE
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Fig. 1. Two examples of noisy measurements of points on the circumference of a circular arc.

function in [7] which has less chance of diverging and a faster
rate of convergence than the previous mentioned algorithms,
however each iteration is more computationally intensive.

As well as the statistical approach to circle parameter esti-
mation, another setting for circle fitting is to be found in image
analysis. Here, an image of a scene is analyzed to determine
the center and radius of a circular object. Computation is per-
formed on intensities and pixels rather than on a list of individ-
ually detected circumferential points. The CHT is an iterative
approach to circle parameter estimation in digital images in the
sense that it has to be evaluated for each size of circle (normally
in a predetermined range). A three-dimensional (3-D) Hough
accumulator space is chosen where every point in this space rep-
resents a circle of a certain size in – space. The Hough space
can be viewed as an intensity space and the coordinate with the
highest intensity corresponds to the circle estimates. Computa-
tion of the CHT is relatively slow and memory intensive. As
a result, there has been some interest in developing algorithms
that achieve similar or better performance in detection and esti-
mation of circles in images while using less computational and
memory resources. Atherton and Kerbyson [11], [12] state that
the Hough transform can be implemented by convolving a single
circle with an edge magnitude image (matched filtering). They
build on this idea by defining an orientation annulus which de-
tects a range of radii of circles, but also uses edge orientation
information by taking the dot-product between the image edge
orientation and an orientation field within the annulus. A com-
plex PCA is also described which detects a range of radii of
circles by using phase to code for radius. The complex vector
convolution of this annulus with an edge magnitude image re-
sults in a circle detection operation which estimates both the
center and radius of the circle.

The central theme of this paper is to show the overlap be-
tween the statistical viewpoint and the image-based viewpoint.
We show that it is possible to exactly implement the MLE as
well as the DKE in terms of convolution under a certain model
for an ideal image. In our model, an ideal image is an unbounded
image with continuous values in intensity and in spatial coordi-
nates. The measurements of the statistical model are represented
as delta functions within the image model. Although an exact
correspondence between the statistical model and our image
model holds for ideal images, we find that our technique can
also be adapted to digital images to produce coarser estimates,
i.e., within one pixel. However, these can be used as a starting

point for one of the numerical optimization methods if subpixel
accuracy is required.

We also show that an approximate MLE (AMLE) can be de-
veloped for these same ideal images. We show how our AMLE
can be calculated by convolution and it turns out that the convo-
lution kernel is related to the PCA. Moreover, we show through
examples that the AMLE and PCA have advantages in real-
world digital images where the scene contains objects other than
a single circle.

The paper is arranged as follows. In Section II, we provide
a brief overview of the statistical viewpoint background, the
CRLB, the MLE, and we discuss the DKE. In Section III, we
present the necessary background on techniques in image pro-
cessing for the detection of circles and estimation of their pa-
rameters. Section IV defines an ideal image of noisy circumfer-
ential points in order to exactly describe the MLE and DKE via
convolution. In Section V, we define the objective function of the
AMLE. We show the relationship between the objective func-
tion of the AMLE and the objective function of the MLE and
discuss applications to real images. In Section VI, we briefly dis-
cuss the implementation of convolution via the FFT, the memory
requirements of the CHT and AMLE and how to achieve sub-
pixel accuracy. In Section VII, we present simulation results
to compare the AMLE, MLE, Chernov–Lesort (CL) algorithm,
and DKE to the CRLB.

II. STATISTICAL BACKGROUND

A. Chan’s Circular Functional Model

In this section, we briefly present Chan’s circular functional
model [13]. In this model, we assume that the positions of
points on the circumference of a circle are measured. The mea-
surement process introduces random errors so that the Cartesian
coordinates can be expressed as

(1)

Here, is the center of the circle, is its radius,
the are unit vectors and the are in-
stances of random variables representing the measurement er-
rors. They are assumed to be zero-mean and i.i.d. In addition,
we will specify that they are Gaussian with variance .

Fig. 1 shows some data with measurements around a circle
and an arc displaced from the circumference by
noise.
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B. CRLB

In order to statistically analyze the MLE, we make use of
the the CRLB. This provides a theoretical lower bound for the
variance of unbiased estimators for a certain amount of data

and a certain level of noise . The likelihood function for
is as follows:

(2)

The CRLB (see [25]) for Chan’s circular functional model
with Gaussian random variables was derived by Chan and
Thomas [15] (also see [16] for a more straightforward deriva-
tion). It can be shown that the variances for the estimates of
and will lie along the diagonal of the upper 3 3 submatrix
of the inverse of the Fisher information matrix, which amounts
to taking the inverse of

(3)

For equally spaced points around a full circle or circular arc
spanning over an angle , the lower bounds for the variances
of and can be shown to be

and

(4)

where

and

C. Maximum-Likelihood Estimation

By taking the logarithm of (2) and ignoring the constant offset
and scaling, both of which are functions of and only, the
objective function of (2) is the log-likelihood function

(5)

It is not very difficult to show that the values of which mini-
mize (5) are those for which

(6)

Substituting (6) into (5) and simplifying, we obtain

(7)

Next, it can be shown that the radius estimate is the mean of the
distances from each noisy point to the center, or

(8)

(9)

Finally, using (8) and substituting into (7), it is possible to ex-
press the objective function in (5) as

(10)

where is the empirical variance of the .
The objective function of the log-likelihood is difficult to an-

alyze and also to compute numerically [17]. Some examples of
algorithms for computing the MLE numerically can be found in
[7], [8].

D. DKE

The analytical and numerical difficulties with the MLE led
Kåsa [5] to propose the use of a modified objective function,
originally due to Delogne [18], which we can write as

(11)

A partial derivative shows that the sum is minimized when

(12)

Substituting (12) into (11) and simplifying results in the fol-
lowing expression:

(13)

III. IMAGE-PROCESSING BACKGROUND

In this section, we will briefly outline some of the existing
image-analysis algorithms for circle parameter estimation in
digital images.

A. CHT

The CHT [9], [10] is an iterative approach to circle parameter
estimation in images in the sense that it has to be evaluated for
each center and radius in a predetermined range. Since a circle
is characterized by three parameters, a 3-D Hough accumulator
space is chosen where every point in this space represents a
circle of a certain size in – space.
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Fig. 2. Magnitude and phase of the complex convolution of the kernel in (14) with the negative of the image in Fig. 2(a). R was set to 20 and R was set
to 30. (a) Negative of original image. (b) Magnitude (negative). (c) Phase (wrapped).

B. PCA

Atherton and Kerbyson [11], [12] propose a technique based
on convolution. The kernel is a complex PCA that uses phase to
code for a range of radii, to

if
otherwise

(14)
where is the imaginary unit and is defined so that

(15)

The complex vector convolution of this annulus with an edge-
magnitude image results in a circle-detection operation which
uses both edge magnitude information and size information (see
Fig. 2). The phase at the coordinate of the peak in the magnitude
image is substituted into (15) and then it is possible to solve for
the radius. In other words, if

(16)

where is an edge-magnitude image, then

(17)

(18)

C. Orientation Annulus

Another proposition of Atherton and Kerbyson [11], [12] is
the orientation annulus (OA). It is another technique based on
convolution, although the convolution is not with an edge-mag-
nitude image but rather an edge-orientation image. The OA is
designed to detect any circular object in an image whose ra-
dius is within a range of some prescribed values to .
We can describe the OA as a convolution taking place between
a complex image and a complex kernel (although this is not
the way it was originally described in [11], [12]). The complex
image contains the edge-orientation information from the orig-
inal image. The gradient in the direction is encoded in the real

part of the image and the gradient in the direction is encoded
in the imaginary part. The OA kernel is defined as

if

otherwise

The center estimate is obtained by finding that pixel with the
largest absolute real part in the convolution image. It is not pos-
sible to directly obtain a radius estimate using the OA.

IV. MAXIMUM-LIKELIHOOD ESTIMATION VIA CONVOLUTION

In this section, we provide a translation between the statistical
approach and the image-processing approach. Here, the mea-
surements of Chan’s circular functional model are represented
as delta functions in what we call an “ideal image.” It is then
possible to describe maximum-likelihood estimation through a
convolution procedure on the image.

A. Ideal Images

We define an ideal image of our noisy circular points as one
which is unbounded and which is continuous-valued in inten-
sity and in spatial coordinates. Under these conditions, we can
make a connection between statistical estimators and image-
based estimators by considering the data points as two-dimen-
sional (2-D) delta functions, that is, we can consider the image
as a function , where

(19)

If we define a 2-D kernel function

then

(20)

(21)

(22)
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It follows that (10) can be expressed in terms of convolution as
follows:

(23)

That is, (23) is an exact interpretation of (10). The MLE is there-
fore shown to be equivalent to minimizing the intensity of an
image obtained through convolution, i.e.,

provided a minimum exists.

B. Digital Images

For digital images, the assumptions in Section IV-A do not
hold. Digital images have a finite resolution and are only of a
certain size. As a result, our model is not entirely accurate, but
it can still be applied to good effect. If we have a digital image

and a conic kernel (where the square brackets
denote the discretised version of the image in (19)) then we can
still implement the following equation:

(24)

Equation (24) describes the computation of a 2-D intensity
image, the minimum of which will be the coarse center esti-
mate. Subpixel accuracy can be obtained; this will be discussed
in Section VI. By implementing (24) first, we can be more con-
fident that numerical methods will find the globally ML center
estimate. We can then use (8) to obtain the radius estimate,

. In Section VII, we will show that we can achieve subpixel
accuracy on synthetic and real digital images.

C. DKE Via Convolution

It is also possible to express the DKE [24] as a convolution
equation under the assumptions in Section IV-A. Looking at
(13), we can say that

(25)

where . This can be interpreted as a 2-D
intensity image, the minimum of which is the center estimate.
The adaptation to digital images follows the same template as
for the MLE described in Section IV-B.

V. APPROXIMATE MLE

Consider the function

(26)

where is some constant. This is what we call a complex phase-
coded kernel (PCK) that uses phase to code for radius and can be
regarded as another member of a class of kernels which Atherton
and Kerbyson call “PCA.” When this kernel is convolved with

an ideal image, a complex output results whose magnitude can
be interpreted as an intensity image where the coordinate of the
maximum is the circle-center estimate.

We now define a new objective function by taking the
squared magnitude of the convolution of (19) and (26), i.e.,

(27)

(28)

where was defined in (9) and

The Taylor-series approximation of the cosine and sine terms in
(28) is

(29)

Substituting (29) into (28) and simplifying, it is possible to show
that the objective function (27) becomes

(30)

The expression in (30) is a close approximation to the expres-
sion in (10), i.e., the log-likelihood, but with a constant scaling
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Fig. 3. Image and kernel. (a) Original 320� 240 image. (b) Negative of edge-magnitude image. (c) 81� 81 kernel (negative).

and offset factors. Therefore, we have demonstrated an approx-
imate relationship between the PCK and the MLE. The AMLE
is, therefore, computed by maximizing the magnitude of a com-
plex image obtained through convolution with an ideal image.

We propose that the PCK could be applied to digital images
to implement the AMLE, in the same way that was described for
the MLE in Section IV-B. An immediate computational advan-
tage is that the AMLE requires the use of only a single complex
convolution rather than three real convolutions for the MLE. The
size of the circle is then represented by the phase of the complex
convolution at the point where it attains its maximum magni-
tude.

Furthermore, we expect that another advantage of the AMLE
over the MLE when applied to digital images will be a certain
amount of robustness to “interferers”— other points, features, or
objects in the image other than the circle itself. This is because
phase is used to code for radius (26): Circle points are summed
in phase, while noncircle points tend to be summed out of phase.

In practice, a disadvantage of the PCK as we have defined
it above (and which applies equally to the MLE, and indeed to
our statistical model) is that there is no upper bound for the ra-
dius. Thus, there is a question as to how large the PCK should
be made. A practical approach would then appear to be to make
the PCK just large enough to encompass the largest radius which
we could expect to encounter in an image. The kernel size would
of course depend on the particular application. However, would
limiting the kernel size affect the operation of the algorithm?
Fortunately, for the PCK, the answer is no, but we cannot do the
same for the MLE-via-convolution technique without adversely
affecting its performance. This is because the AMLE technique
seeks a maximum in the convolution image, whereas the MLE
technique seeks a minimum. To see how the MLE would be
adversely affected by limiting the size of the kernel, consider
a situation in which there is a pixel in the convolution image,
far from the true center, for which there is only one pixel with
nonzero intensity in the original image within the maximum pre-
scribed radius. From consideration of (24), it can be seen that,
in the convolution image, the intensity must be zero at that point
and therefore an absolute minimum. This cannot happen with a
truncated PCK, and thus the ability to specify a maximum ra-
dius in the PCK can be counted a practical advantage over the
MLE-via-convolution technique.

Indeed, we can also specify a minimum radius using the PCK,
by setting the kernel to zero within this radius. In this case, the
PCK, with proper choice of the parameter , becomes analogous
to the PCA, apart from a phase offset, cf. (14) and (26).

VI. COMPUTATIONAL CONSIDERATIONS

A. Processor and Memory Utilization

Here, we consider the computation time and memory usage of
image-processing algorithms for circle detection and parameter
estimation. Our aim here is to compare the CHT with the other
convolution-based approaches, especially the AMLE/PCK and
the PCA, to obtain coarse center estimates (i.e., to within a
pixel).

First, we compare the memory requirements. If the range of
possible radii is , and the range in the possible coordinates
of the center is and in the coordinates , then the memory
requirement for the CHT is proportional to the product of all
three for the accumulator space. By contrast, the PCK-based ap-
proaches (by which we mean the implementation of the AMLE
through the PCK as well as the PCA) require a kernel of size
proportional to and a convolution image of size propor-
tional to . Hence, if the maximum possible radius is small
with respect to image size then the PCK-based approaches can
require significantly less memory.

As to the computational requirements, both the CHT and the
PCK-based approaches depend on convolution. The PCK and
PCA require only complex convolution, whereas the CHT re-
quires a number of convolutions proportional to . Hence, ex-
cept for very small values of (say one or two), the PCK-
based approaches will require less computation.

As is well known [26], a “brute force” implementation of
convolution for either the CHT or the PCK-based approaches
requires a computation time proportional to the product of the
sizes of the image and the kernel. However, we can make use
of the fast Fourier transform (FFT) to perform convolution very
quickly. When the size (total number of pixels) of the image
and kernel are the same, say , convolution can be performed
in arithmetic operations. When the sizes of the
image and the kernel are significantly different, computational
savings can be achieved through the “overlap-add” or “overlap-
save” algorithms. When the size of the kernel is much smaller
than the size of the image, convolution will not be significantly
faster in the frequency domain. In fact, computation in the fre-
quency domain may be slower for very small kernel sizes.

As an example, consider the 320 240 image in Fig. 3(b) and
the 81 81 kernel in Fig. 3(c). We used the Matlab function

to perform the brute-force convolution of the edge-mag-
nitude image with the kernel and compared that to the FFT tech-
nique. The timings are given in Table I. The FFT technique is
almost nine times faster. We note that we used a 2.40-GHz Intel
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Fig. 4. Simulations results for varying � for an arc length of 180 .

TABLE I
TIMINGS USING MATLAB’S TIC AND TOC FUNCTIONS

Xeon CPU with 1.00 GB of RAM, running Microsoft Windows
Server 2003 and the Matlab version was 6.5.0.180913a.

B. Achieving Subpixel Center Accuracy

In Section IV-B, we showed that implementing (24) on its
own will provide a center estimate to within one pixel. In order
to achieve subpixel accuracy with the AMLE, we must treat
this coarse estimate as a starting place to numerical gradient-
descent (or -ascent) techniques. For the PCK (without radius
constraints), we optimize

(31)

where are the intensity values in the edge-magnitude
image at pixel . For the PCA (or the PCK with radius con-
straints), since we can specify and , we can further
constrain so that

(32)

Equations (31) and (32) can both be optimized using a numer-
ical technique, for instance, the Levenberg–Marquardt (LM) al-
gorithm.

This technique for obtaining subpixel accuracy can be simi-
larly extended to the MLE on digital images.

VII. RESULTS AND SIMULATIONS

Our aim in this section is to show that the AMLE has the “best
of both worlds.” In a statistical setting, we show that the AMLE
does as well as any of the established estimators. In an image-
processing setting, we show that the AMLE, via convolution
using the PCK or PCA, can be computed quickly and is robust
to interference from noncircular objects.

A. Chan’s Circular Functional Model

In order to demonstrate the performance of the AMLE rela-
tive to other estimators in a statistical setting, two sets of simula-
tions were performed. In the first set of simulations, was held
constant and allowed to vary, and vice versa in the second set.
In both sets, the results were obtained by Monte Carlo analysis.

In the first set of simulations, for each value of , the AMLE
(28) was evaluated over 1000 independent trials. In each trial,
the radius was set to 1 and 200 noisy points were
generated in equal angular increments around a half circle to
obtain estimates for the center of the circle and radius . This
was used to generate mean-square error (MSE) values. The stan-
dard deviation, , of the noise was varied from to 0.25 in
equal geometric increments. The AMLE was compared against
the DKE and several methods for numerically evaluating the
MLE: direct application of the LM algorithm on the log-like-
lihood function (here abbreviated as LM), the Späth algorithm
(SPA) and the CL algorithm. The DKE was used to initialize
all other estimators. For the AMLE implementation through the
PCK, the parameter in (26) was set to 1.

The MSE values in and for the AMLE, DKE, SPA, LM
and CL methods are plotted against their corresponding CRLBs
(4) for the same level of noise in Fig. 4 on a logarithmic scale.
It can be seen that as the noise level approaches zero, the
estimators and approach the CRLB. As noise variance in-
creases, the AMLE, SPA, MLE, and CL methods deviate from
the CRLB after the DKE. The poor performance of the DKE
is not surprising. Its shortcomings at high noise levels are well
documented [17], [24]. The results for the AMLE in Fig. 4 are
good as they show that the AMLE’s performance is very sim-
ilar to that of the numerical ML methods. As there is no radius
estimate with the PCK because there is no upper bound for the
radius (see the discussion at the end of Section V), the MSE in

is not plotted for the PCK in Fig. 4(c).
In the second set of simulations, was fixed and was

varied. For each value of , the AMLE, DKE, SPA, LM, and
CL methods were evaluated over 1 000 trials. In each trial, was
set to 0.1 and the number of points were varied from to

and they were generated in equal increments around
the right half of a circle’s circumference to obtain estimates for
the center of the circle and radius . This was used to generate
MSE values.

The MSE values in and for all five methods are plotted
against the corresponding CRLB for each value of in Fig. 5
on a logarithmic scale. Observe that the CRLB for is lower
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Fig. 5. Simulations results for varying N for an arc length of 180 .

than that for . This is because the arc over which the circum-
ferential points were arranged was a right half circle. For this
arc, more localization is possible in than in .

Apart from the DKE, all other methods appear to follow the
CRLB as increases. The results for the DKE are not sur-
prising because the DKE is not asymptotically efficient [17],
[24]. Again, the AMLEs performance is very similar to that of
the ML methods and the results suggest that it may be asymp-
totically efficient. Again, we note that there is no radius estimate
with the PCK and so the MSE in is not plotted for the PCK in
Fig. 5(c).

B. Noisy Circles in Synthetic Digital Images

Having examined performance of the AMLE relative to other
methods in a standard statistical setting, we now turn our atten-
tion to its performance in synthetic and real digital images. For
the first evaluation of the AMLE in digital images, synthetic dig-
ital images of circles were created. A set of simulations was con-
ducted to determine the MSE performance of the AMLE tech-
nique relative to the DKE and numerical MLE techniques. MSE
performance was again evaluated using Monte Carlo analysis.
In each trial, a 128 128 synthetic image was created with 200

noisy points around a full circle with a radius of 32.
The center of the circle was varied randomly from trial to trial so
that each center coordinate was uniformly distributed between
63.5 and 64.5. In forming the digital image, the positions of the
noisy points on the circumference were, naturally, quantised to
the nearest pixel. Where more than one noisy point was quan-
tised to the same pixel, that pixel’s intensity was incremented
appropriately. The standard deviation, , of the noise was varied
from to 1. One thousand trials were conducted (i.e., im-
ages were generated) for each value of .

For each trial image, the AMLE, DKE, and numerical MLEs
were computed. The estimates were each computed in two steps.
First, convolution with an appropriate kernel was performed
as described in Sections IV and V. The convolution yields a
“coarse” estimate to the nearest pixel. Subpixel accuracy is then
obtained using the iterative numerical techniques discussed in
Section VI-B. The astute reader will observe that there is no
reason to take this two-step approach for calculating the DKE,
since this estimate can be computed in closed form. Indeed, it
is the closed-form version of the DKE that was used by the au-
thors in conducting these simulations.

In assessing the MSE results, it is clear that the CRLB
for Chan’s circular functional model is no longer directly
applicable. How then can we know whether an estimator is per-
forming as well as can be hoped? We offer no definitive answer
and the literature is sparse (Vosselman and Haralick [27] is the
only work on this topic of which the authors are aware, and their
results are not directly applicable in this scenario). However,
as a guide to the level of MSE that we might achieve, we offer
the following approximation, which appears to serve well in
practice (as we shall see in Fig. 6). This approximation uses the
CRLB of Chan’s circular functional model as its starting point,
but regards the quantization process in the formation of the
synthetic digital image as an additional and independent noise
source. Since the centers have been chosen randomly in each
trial with respect to the quantization (pixel) boundaries, and
is not too great, this assumption is quite good. The quantization
process is modeled as having zero mean and variance .
Thus, allowing for the additional variance of the quantization,
the CRLB of (4) of Chan’s functional model may be adapted
so that the variances

and

(33)

provide a guide to the MSEs that might be expected from “good”
circle estimators in practice. Observe that, as goes to zero, the
MSE of the estimates will not also go to zero but will plateau
due to the quantization noise.

The MSE values are plotted in Fig. 6 on a logarithmic scale.
Because the noisy points were spaced around a full circle, the
results for have been ommitted as they are not significantly
different to those of . It can be seen that the estimators and

conform closely to the variance guide provided by (33). For
the PCK, there is no radius estimate (that is, not an unambiguous
one) as there is no upper bound for the radius (see the discussion
at the end of Section V) and so the MSE in is not plotted for
the PCK in Fig. 6(b).

In the simulation results presented so far, we have only been
able to demonstrate that the AMLE appears to perform no worse
than estimators that have been established for some considerable
time in the literature. However, an important advantage of the
AMLE over other methods lies in the fact that, as well as being
no worse than traditional estimators in statistical settings and
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Fig. 6. Simulation results for varying � for an arc length of 360 .

Fig. 7. Synthetic digital images with varying amounts of salt and pepper noise added.

in controlled synthetic digital image experiments, the AMLE is
robust to the sorts of interferences that are encountered in real
digital images. A second advantage is that the AMLE can be
computed very quickly. Another experiment on synthetic dig-
ital images was performed which begins to demonstrate these
advantages.

In this second set of simulations on synthetic digital images,
128 128 images were generated in which a circle was drawn
with center (arbitrarily) set to (30.34, 19.51) and radius 16. Al-
though no noise was added to points around the circumference
of the circle, varying amounts of salt-and-pepper noise were
added throughout the image. This is depicted in Fig. 7. Clearly,
this is now a significant departure from Chan’s circular func-
tional model.

For each of these images, the AMLE was compared with
the DKE and the MLE (LM algorithm). In each case, the two-
step approach of convolution followed by subpixel optimiza-
tion was performed, except, as noted above, for the DKE, which
can be computed directly in closed form. The amount of CPU
time required to compute the “coarse” and “fine” estimates was
recorded (for the DKE, only the “fine” estimate computation
time is applicable).

As discussed in Section V, an advantage of the implemen-
tation of the AMLE through convolution is that the PCK can
be trimmed if prior knowledge on the range of possible radii is
at hand. In such cases, the coarse estimation procedure can be
conducted using the PCA. In conducting this set of simulations,

two variants of the AMLE kernel were used. One was the PCK,
which was made large enough to take in the entire image (thus
simulating no prior knowledge of the range of possible radii).
The other was the PCA, in which the kernel was trimmed to
take in only radii between 8 and 24.

In addition to the statistical methods, the CHT was also used
for comparison. Integer search radii in the range from 8 to 24
were used, as for the PCA. No optimization step was performed
to achieve subpixel accuracy from the CHT.

The results, timings (coarse and fine) and errors are summa-
rized in Table II. There are several observations to be made.
First, we notice that the MLE and DKE grossly misestimate
the circle center and radius, regardless of the level of applied
salt-and-pepper noise. This is because the “salt” noise seduces
the center estimate away the true circle center in order to attain
a global minimum in the empirical variance of the radius to
each point (or squared radius in the case of the DKE). The
PCK implementation of the AMLE also exhibits this defect,
although only at the two highest levels of salt-and-pepper
noise. We again note that there is no radius estimate with PCK
for reasons already discussed. However, both the CHT and the
PCA exhibit good and stable estimates of the circle center and
radius at all noise levels. For high levels of noise, it is not clear
if there is any benefit in the subpixel optimization performed
for the PCA.

A clear benefit of the PCA over the CHT is the amount of
CPU time required to compute the estimates. To compute an
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TABLE II
RESULTS, TIMINGS, AND ERRORS FOR THE IMAGES IN FIG. 7

Fig. 8. Performance of the PCA on a real digital image. (a) Negative of edge-magnitude image with circle estimates overlaid. (b) A close-up of Fig. 8(a).

equivalent (coarse) estimate, the PCA requires less than a tenth
of the computation time of the CHT.

C. Photographic Digital Images

To conclude this section, we turn to a couple of examples
on real, photographic digital images, to further illustrate the
AMLE’s robustness and accuracy.

Consider again the image with the basketball in Fig. 3 which
was taken with a common digital web camera. The image is not
of a particularly high quality and when we look at the edge-mag-
nitude image (or, rather, its negative) in Fig. 3(b), we see that
there are plenty of edge points which do not belong to the circle.
With the minimum and maximum radii of the PCA kernel set to

and , respectively, it was convolved
with the edge-magnitude image to obtain a complex image re-
sult. The magnitude of this complex image had a maximum at

position (210, 177), this being the “coarse” center estimate. The
phase of the complex image at this position was then substi-
tuted into (15) in order to solve for the radius. The resulting
radius estimate was . After subpixel optimization,
as discussed in Section VI-B, the center estimate was refined
to (209.7926, 176.8415). This circle is overlayed on top of the
edge magnitude image in Fig. 8. It can be seen that this is visu-
ally a good fit.

As a last example, we compare the AMLE, as implemented
by the PCA, and the orientation annulus (OA). Although the OA
makes use of edge orientation information which is ignored by
the AMLE (in favor of edge magnitude information alone), we
demonstrate that this information is not always used to good ef-
fect, and can in fact be detrimental. Fig. 9(a), shows a case where
the orientation annulus produces a poor result. It shows a tennis
ball against a checkered black-and-white background. Part of
the circumference of the tennis ball in the image is set against
a black background, and part against a white background. The
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Fig. 9. Performance of the OA compared to that of the PCA. (a), (b) OA applied on the image in Fig. 9(a). (c) Magnitude of the PCA applied on the image in
Fig. 9(a)

edge gradient around the circumference is therefore neither di-
rected uniformly inwards nor uniformly outwards. Hence, con-
volution with the OA kernel fails to produce a prominent peak
in the absolute real part. In contrast, the PCA kernel produces
a strong peak in the close vicinity of its true location and, addi-
tionally, a radius estimate of 15.3534 can be directly calculated.
For both the OA and PCA kernels, values of and

were used.

VIII. CONCLUSION

In this paper, we have presented a unified view of estimators
for circle center and radius. We tie together the statistical view-
point, in which a circle is represented as a list of noisy mea-
surements around the circumference, and the image-processing
viewpoint, in which the circle is represented by high-intensity
pixels near the circumference. The maximum-likelihood esti-
mator in Chan’s circular functional model [13] is shown to be
represented in an image-processing context by convolution with
appropriate kernels. The widely-used DKE [5], [18] can be sim-
ilarly represented by convolution.

Further, we show that an AMLE can be developed using a
phase-coded kernel. The AMLE can be made almost identical
in form to the popular PCA [11], [12] when applied to images.

Through simulation studies, we examine the properties of the
MLE and the AMLE both from a statistical viewpoint and an
image-processing viewpoint. We find that the AMLE has virtu-
ally identical properties to the MLE. The AMLE appears to be
statistically efficient whenever the MLE is. When applied to dig-
ital images, the AMLE has several advantages over traditional
image-processing methods such as the CHT [9], [10] and even
the MLE. We demonstrate that it can give excellent subpixel
accuracy, can be computed quickly (by virtue of the implemen-
tation of convolution using the FFT), and, when prior informa-
tion is available to adequately constrain the range of radii, is
highly robust to interference from extraneous edges contributed
by noncircular objects.

The structure of the AMLE and PCA and their robustness
to interference raises the question of whether these estimators
might also be used as detectors. Empirically, the answer is that
they appear to make excellent circle detectors. However, in
future research, the authors will try to quantify their perfor-
mance in this regard. Also, although it appears that the AMLE

is asymptotically efficient, this has not yet been proved. This is
something the authors intend to pursue.
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