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Abstract

This paper considers the combination of two familiar,
but hitherto incompatible, arithmetic techniques:
optimised squaring and precomputing partial products.

Optimised squaring reduces the total accumulation
effort required for squaring when compared with
multiplication, by removing repeated digit products from
the accumulation tree.

Iterative implementations of integer multiplication, in
which each partial product is evaluated and accumulated
in turn, can often be accelerated by precomputing the set
of partial products and accumulating these as required.
Iterative implementations of optimised squaring cannot
benefit from the same straightforward technique. 

In this paper a new algorithm for optimised squaring is
developed which reconciles the these two techniques and
which is an improvement over squaring by multiplication
for some platforms. The result is of significance for the
implementation of public key cryptography on smart cards
or other small footprint devices.

1.  Introduction

The implementation of most public key cryptosystems
involves the evaluation of modular powers such as

 where A, B and N are all long integers: often
1024-bits or more [1]. The exponentiation step is
invariably implemented as a series of multiplications and
squares and while techniques exist to reduce the number of
multiplications, the number of squares is always
approximately equal to the length of the exponent in bits
[2]. It is not surprising, therefore, that squaring and
modular squaring of integers has become a very important
problem.

More and more frequently, the platforms required to
implement these cryptographic functions are low power,
small footprint devices such as smart-cards, mobile
phones or PDAs. At such long wordlengths, and with
limited hardware resources, a full array multiplier is not

A
B

 mod N

feasible. Instead, multiplication and squaring must be
performed by multiprecision software or in an iterative
fashion using a long hardware accumulator [3].

In this environment, old techniques such as
multiplication using precomputed partial products and
optimised squaring take on new relevance. These two
techniques, described in more detail in the subsequent
section, can each be used to accelerate long-integer
squaring; however, they cannot be combined in any
straightforward manner. In Section 2 a new means of
combining these two techniques is developed. Section 3
reports on an implementation of this technique. Execution
times are discussed for an assembly language
implementation on an ARM6 processor without a
hardware multiplier.

2.  Problem definition

I consider squaring the binary integer:

 with .

A sliding-window digit-set conversion is applied to A
during the square such that A is converted to the
representation:

.

The digits  belong to the redundant set of odd digits
(and zero)  where m is the window
size in bits. This representation is used instead of a non-
redundant higher radix as the sliding window form yields
fewer non-zero digits on average and hence reduces the
number of non-zero partial products to accumulate (as
applied to multiplication in [5]). The combination of
optimised squaring with sliding windows is considered in
[6]. The current paper takes this result a step further and
incorporates precomputed partial products into the
scheme.

The squaring algorithm developed here is intended for
a platform capable of adds and shifts but without a
hardware multiplier.
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2.1. Multiplying with precomputed partial 
products

The multiplication  can be expressed as a sum of
shifted partial products:

.

The partial products  can be computed as required,
or precomputed once for all digit values and then
accumulated. The latter scheme will be more efficient for
long wordlengths and will represent a considerable saving
if the generation of  is expensive (as it will be if there
is no hardware multiplier).

For an add and shift based system, the partial products
can be precomputed and stored

in  steps using the iteration
.

2.2. Sliding window conversion

Conversion to the redundant digit set
can be performed by scanning the

bits of A starting with the least significant bit and
progressing to the left. If the bit being scanned, αi, is zero,
then the converted digit  is also set to zero. If 
then  is set to the value of the m-bit string

:

The subsequent digits  up to  are set to
zero and scanning is resumed at .

A non-redundant radix  representation of A would
have on average  non-zero digits.
The sliding window conversion results in 
non-zero digits on average.

Rather than store the converted representation of A it is
more convenient and efficient to perform the conversion
during the square: at iteration i the converted digit  is
found and then the partial product  is accumulated.

2.3. Optimised squaring

Optimised squaring is based on the observation that
when squaring using multiplication, most of the required
digit products are repeated twice [4]. For example, in the
evaluation of  the digit products  and 
(where ) are both required but will be equal. Array
implementations, or multiprecision software, can take
advantage of this by accumulating the shifted digit product

. In this way the total number of digit products to
evaluate and accumulate is approximately halved. In
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practice the speed-up obtained is somewhat less than two.
In [7] the time for a square is 0.57 times that of a
multiplication. In [8] the speed-up factor is between 0.7
and 0.85.

Figures 1, 2 and 3 show the development of an
alternative that is more applicable to an architecture based
on a long accumulator. The familiar schoolbook form of
multiplication is shown in Figure 1. In Figure 2 the partial
product terms in the tableau have been re-arranged so that
repeated digit products are accumulated together. A
further rearrangement of the tableau in Figure 3
demonstrates an optimised form involving the
accumulation of long ‘partial squares’  (defined
below).

Figure 1. Operand scanning square C = A2 .

Figure 2. Re-arranged partial product tableau.
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Figure 3. An optimised form of squaring.

The optimised square shown in Figure 3 can be
described by the following iteration:

(1)

where .

The term  is a truncated version of A obtained by
shifting A by i digits to the right (and discarding any digits
shifted to the right of the radix point). Equation 1 shows
that at each iteration, A is truncated and a multiple of the
truncated result, , is accumulated. Note that this
form of optimised squaring, rather than reducing the
number of partial products to accumulate, reduces the
average length of the partial products; however, it is not
obvious that the partial products  can be readily
calculated from a precomputed, un-truncated value, .

Before proceeding it will be helpful to define some new
terminology. In the subsequent development the terms

 will be referred to as partial squares. The partial
square  will be given the symbol . This is formed
by taking the top  digits of A and multiplying the
result by j:

.

Where multiples of A are precomputed, they will be
called precomputed multiples and are given the symbol

:

.

In the development that follows it is also important to
retain the distinction between the original bits of a non-
redundant binary representation of A and the redundant
digits of A that result from the sliding window conversion.
Recall that  is the ith bit of a non-redundant binary
representation of A and  is the ith digit of A after digit set
conversion.
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2.4. Optimised squaring with precomputed partial 
products

The problem of combining optimised squaring, sliding
window conversion and partial product precomputation
can now be expressed for the new iteration (Equation 1)
and the new notation. At iteration i of the square, the digit

 is determined from the bits . A partial
square is then formed from A shifted to the right and
multiplied by . The final step of the ith iteration is to
accumulate the partial square into the partial result.

However, as discussed in the next section, there are two
problems to be overcome with this naive formulation: the
first is due to the changing representation of A during the
square; and the second is in obtaining correct partial
squares from the precomputed multiples.

3.  Problems and solutions

3.1. Sliding windows and optimised squaring

At iteration i the sliding window conversion may
change the value of the ith bit of A, , to the digit  and
correct for this change by adjusting the digits of A to the
left. Thus the value of  also changes. In the new
representation, the previous digits  to  and the
values  to  remain unchanged; hence, the existing
partial result from the previous iteration is valid for the
new representation.

Figure 4 demonstrates the remaining problem: as the
digit set conversion is applied to , the value of 
changes and if the partial square  was
precomputed based on the original value of  then it
will not be correct following the conversion.

Figure 4. The value of Ai+1 changes following 
conversion of ai (using m = 3).

To overcome this problem note that when a non-zero
digit  is selected, it is such that the subsequent digits

 all become zero. None of the other

Significance ai +5 ai +4 ai +3 ai +2 ai +1 ai ai -1 ai -2

Prior to Conversion of ai

A = ... 1 0 1 0 1 0 ...

Ai +1 = ... 1 0 1 0

Following Conversion of ai

A = ... 1 0 0 0 5 0 ...

Ai +1 = ... 1 0 0 0
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ai
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ai
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digits in  are changed. Following the selection of 
we have  and  is unchanged
by the conversion. 

The iteration of Equation 1 can be modified so that
iteration i accumulates the partial square . This
has the advantage that is unchanged since the
beginning of the square. The modified iteration is:

. (2)

3.2. Obtaining partial squares from precomputed 
multiples.

Equation 2 shows that iteration i of the square
accumulates the partial square  where this is
formed from A shifted -bits to the right and then
multiplied by . However, as demonstrated in Figure 5,
this is not the same as shifting the precomputed multiple

 by  digits to the right. If precomputation is
to work then it must be possible to quickly determine the
partial square  from the precomputed multiple

.

Figure 5 demonstrates the problem with combining
precomputed partial products with optimised squaring: the
value of the partial square A7,5 is not a trivial truncation of
the precomputed multiple 5A.

The remaining question is: given a set of precomputed
multiples , is it possible to quickly determine the
partial squares ?
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3.3. Solution

Consider the evaluation of the precomputed multiple
 for an odd value of  from

 

using the binary addition shown in Figure 6. In this
diagram, the shaded cells show the addition required to
determine . Observe that:

. (3)
In this equation the term  is readily

available from the table of precomputed multiples and
given that we are using a sliding window conversion, the
bit  can be determined from . It remains to
compute the unknown carry term . Figure 7 shows
the generation of this term. Examination of this figure
gives the following equation for :

(4)
In Equation 4, the term  is unknown and  is not

readily available. Let us use  to denote the
minimum possible value for . This occurs when

 and :
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Figure 5. A problem: the required partial square is not a trivial truncation of a precomputed multiple.

Figure 6. A binary addition to find  from  and the carry bits that are generated.

Significance a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

Pre-computation
0 0 0 1 1 0 1 1 0 1 0 0 1 1

1 0 0 0 1 0 0 0 0 1 1 1 1 1

Iteration i = 4 with m = 3
0 0 0 1 1 0 1 0 0 5 0 0 0 3

0 0 0 1 1 0 1

1 0 0 0 0 0 1
Note that these two shaded terms

are not equal.1 0 0 0 1 0 0

... ... ...

... ... ...

... ... ... ... ... ... ... ... ...
... ... ...

(Carry Bits)
... ... ... ... ... ...

... ...

A A0 1,  ==

5A A0 5,  ==
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. (5)
Similarly, the maximum  occurs when

, and  where the latter
represents the maximum possible carry out from the
addition of  binary terms. Thus:

. (6)
Consideration of Equation 5 and Equation 6 gives

. Therefore, application of
Equation 5 yields a value for  that is either correct or
too small by 1.

Returning to Figure 7, observe that:

 
where  is the -th bit of .

Manipulation of this equation yields:

. (7)
So Equation 5 gives a value for  that is too small

by at most 1 and Equation 7 reveals if the correct value of
 is odd or even. Combining these two determines
 exactly.

Although the analysis has been quite involved, it leads
to a useful conclusion: given the correction terms 
and , the partial square  can be quickly
determined from the precomputed multiple . The
entire procedure for optimised squaring with unsigned
sliding windows and precomputed partial squares is
summarised below. Note that the two correction terms of
Equation 3 have been combined into a single term t thus:

.

1. Precompute the table of partial squares  for
 where  and

.
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2. Precompute a correction table 
for  from:

(8)
3. Apply the iteration from Equation 2. At iteration i, to

find , determine the correction term:

 

where  is the -th bit of . This gives 
the partial square:

.

An example of an optimised square is provided in
Figure 8.

4.  Evaluation and conclusions

This optimised squaring algorithm was implemented in
assembly language for an 25MHz ARM6 processor
without a hardware multiplier. For 512-bit squares (as
required for 1024-bit RSA using the Chinese Remainder
Theorem), the optimal trade-off between precomputation
and evaluation time occurred with . In this case
optimised squaring took on average 796 µs and required
2304 32-bit words of memory storage for precomputed
partial squares and temporary results. Further increases in
window size increase the storage requirement and
precomputation effort and result in an overall increase in
average evaluation time.

Optimised squaring achieves a small improvement over
multiplication for which the best average time was 863 µs
for  and required 2176 words of data memory. In
this case optimised squaring has improved the time over
squaring using multiplication by a factor of 0.92. 

Selection of smaller windows with 
significantly reduces the storage requirement for a small
loss of speed. In this case squaring takes 829 µs and
requires 1216 words of data storage. Multiplication takes
895 µs and requires 1088 words of data storage. Here
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Figure 7. A section Figure 6 showing the generation of the unknown carry bit ci+m. 
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optimisation has improved the delay for squaring by a
factor of 0.93.

Note that these comparisons are between multiplication
using precomputed partial products and sliding windows
and optimised squaring using precomputed partial
products and sliding windows. Unfortunately, this for this
combination of enhancements the benefit of optimised
squaring is less than the theoretical speed improvement of
0.5 and also less than the 0.85 improvement reported in
[8]. This is due to constant cost factors such as loop
overhead as well as the cost of dealing with the correction
factors. Nonetheless, a speed-up is obtained.

It is possible to extend this work to use a signed sliding
window conversion to the digit-set

. In this case only the positive
precomputed multiples need be stored with negative
partial squares being subtracted from the partial result.
The derivation of the algorithm follows the unsigned case
presented here but must deal with an extra correction
factor that results from the selection of negative digits. In
this case the best compromise between evaluation time,
precomputation time and memory consumption for 512-bit
squaring time occurred with  — squaring took
723 µs compared with 780 µs for multiplication. This was
sufficient for a full 1024-bit signature to be generated in
1.82 seconds using 1984 bytes of data RAM and 1024
bytes of data EEPROM.

I conclude that the combination of optimised squaring
with precomputed partial products is useful for some
platforms, particularly where a fast multiplier is not
available and arithmetic must be performed by an iterative
procedure of additions and shifts.

ai 0 1 3 … 2, m 1–, , ,{ }±∈

m 5=
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.

Figure 8. An example of optimised squaring using precomputed partial products.

Find A2 using optimised squaring and sliding windows with m = 3:

Pre-compute Stage. A table of pre-computed multiples is evaluated and stored. The correction values tmin(j) can also 
be determined in advance of the square.

A = A0, 1 = 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1

3A = A + 2A = A0, 3 = 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1

5A = 3A + 2A = A0, 5 = 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1

7A = 5A + 2A = A0, 7 = 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1

Using Equation 8 for tmin(j) gives:

tmin(1) = 0, tmin(3) = 1, tmin(5) = 3, tmin(7) = 6

Evaluate Stage. Sliding windows with m = 3 are applied to determine the non-zero digits ai. For each non-zero digit a 
partial square is evaluated by truncating one of the precomputed multiples and applying a correction. The accumulation 

of partial squares is shown below.

Apply sliding windows gives i = 0, ai = 1, A = 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1

t = tmin(1) + d3⊕α3⊕(tmin(1) mod 2) = 0 + 1⊕1⊕0 = 0

Find A3, 1 = (A0, 1 >> 3) - t = 1 0 0 1 1 1 1 0 0 1 1

Apply sliding windows gives i = 3, ai = 3, A = 0 0 0 1 0 0 1 1 1 1 0 0 0 3 0 0 1

t = tmin(3) + d6⊕α6⊕(tmin(3) mod 2) = 1 + 1⊕0⊕1 = 1

Find A6, 3 = (A0, 3>> 6) - t = 1 1 1 0 1 1 0 1 0

Apply sliding windows gives i = 7, ai = 7, A = 0 0 0 1 0 0 1 0 0 7 0 0 0 3 0 0 1

t = tmin(7) + d10⊕α10⊕(tmin(7) mod 2) = 6 + 1⊕1⊕0 = 6

Find A10, 7 = (A0, 7 >> 10) - t = 1 1 1 1 1 1

Apply sliding windows gives i = 10, ai = 1, A = 0 0 0 1 0 0 1 0 0 7 0 0 0 3 0 0 1

t = tmin(1) + d13⊕α13⊕(tmin(1) mod 2) = 0 + 1⊕1⊕0 = 0

Find A13, 1 = (A0, 1 >> 13) - t = 1

Apply sliding windows gives i = 16, ai = 1, A = 0 0 0 1 0 0 1 0 0 7 0 0 0 3 0 0 1

t = tmin(1) + d16⊕α16⊕(tmin(1) mod 2) = 0 + 0⊕0⊕0 = 0

Find A16, 1 = (A0, 1>> 16) - t = 0

Accumulation. The partial squares and digit squares (ai
2) are accumulated to determine the final result.

a0
220 1

+ A3,1 24 1 0 0 1 1 1 1 0 0 1 1

+ a3
226 1 0 0 1

+ A6,3 210 1 1 1 0 1 1 0 1 0

+ a7
2214 1 1 0 0 0 1

+ A10,7 218 1 1 1 1 1 1

+ a10
2220 1

+ A13,1224 1

+ a13
2226 1

= A2 = 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 1
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