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Liquid-gas phase transition in nuclear matter including strangeness

P. Wang,1 D. B. Leinweber,1 A. W. Thomas,1,2 and A. G. Williams1
1Special Research Center for the Subatomic Structure of Matter (CSSM) and Department of Physics,

University of Adelaide, Adelaide 5005, Australia
2Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

(Received 23 July 2004; published 22 November 2004)

We apply the chiral SU(3) quark mean field model to study the properties of strange hadronic matter at finite
temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of
the system cannot remain constant during the phase transition, since there are two independent conserved
charges(baryon and strangeness number). In a range of temperatures around 15 MeV(precise values depend-
ing on the model used) the equation of state exhibits multiple bifurcates. The difference in the strangeness
fraction fs between the liquid and gas phases is small when they coexist. The critical temperature of strange
matter turns out to be a nontrivial function of the strangeness fraction.

DOI: 10.1103/PhysRevC.70.055204 PACS number(s): 21.65.1f, 12.39.2x, 11.30.Rd

I. INTRODUCTION

The determination of the properties of hadronic matter at
finite temperature and density is a fundamental problem in
nuclear physics. In particular, the study of the liquid-gas
phase transition in medium-energy heavy-ion collisions is of
considerable interest. Many intermediate-energy collision ex-
periments have been performed[1] to investigate the un-
known features of the highly excited(hot) nuclei formed in
such collisions[2,3]. Theoretically, much effort has been de-
voted to studying the equation of state for nuclear matter and
to discussing the critical temperatureTc. Recently, Natowitz
et al.obtained the limiting temperature by using a number of
different experimental measurements[4]. From these obser-
vations the authors extracted the critical temperature of infi-
nite nuclear matter,Tc=16.6±0.86 MeV[5]. We can expect
that further experiments may eventually yield the limiting
temperature of hypernuclei and the critical temperature for
infinite strange hadronic matter. It is therefore interesting to
study the liquid-gas phase transition of strange hadronic mat-
ter theoretically.

Exploring systems with strangeness, especially with large
strangeness fraction, has attracted a lot of interest in recent
years. Such a system has many astrophysical and cosmologi-
cal implications and is indeed interesting by itself. There are
many theoretical discussions for both strange hadronic mat-
ter [6,7] and strange quark matter[8–11]. However, most
discussions are at zero temperature. The properties of strange
hadronic matter at finite temperature have not been studied
very much yet. Unlike symmetric nuclear matter, for strange
hadronic matter, there are two conserved charges, baryon
number and strangeness. Glendenning[12] first discussed the
phase transition with more than one conserved charge in gen-
eral and applied it to the possible transition to quark matter
in the core of neutron stars. Müller and Serot[13] discussed
asymmetric nuclear matter, which has two conserved charges
(baryon number and isospin), using the stability conditions
on the free energy, the conservation laws, and the Gibbs
criterion for the liquid-gas phase transition. The liquid-gas
phase transition of asymmetric nuclear matter was also dis-
cussed in effective chiral models in Refs.[14,15]. It was

found that the critical temperature decreases with increasing
asymmetry parametera.

For strange hadronic matter, the method is similar to that
for asymmetric nuclear matter. In both cases there are two
conserved charges. Recently, Yanget al. [16] used the ex-
tended Furnstahl-Serot-Tang(FST) model[17] to discuss the
liquid-gas phase transition of strange hadronic matter. The
original FST model satisfies the SU(2) chiral symmetry and
was first applied to study nuclear matter[18]. In the extended
FST model[16], the authors found a so called critical pres-
sure above which the liquid-gas phase transition cannot exist.
As a result no critical strangeness fraction was obtained for a
given temperature. This critical pressure exists in finite nu-
clei together with a limiting temperatureTlim. However, in
infinite hadronic matter, physically, there should be no such
critical pressure, since the pressure of the system can be
much higher than the critical pressure. For strange matter
with fs=2, i.e., pureJ matter, from Fig. 1 of Ref.[16], one
sees that the pressure does not increase monotonically with
density. This means that at this temperature pureJ matter
can be in liquid-gas phase coexistence. Therefore, the bin-
odal p-m diagram at temperatureT=10 MeV should termi-
nate atfs=2. We will reconsider this problem and show how
the critical strangeness fraction can be obtained.

To study the properties of hadronic matter, we need phe-
nomenological models since QCD cannot yet be used di-
rectly. The symmetries of QCD can be used to constrain the
hadronic interactions and models based on SUs2dL

3SUs2dR symmetry and scale invariance have been pro-
posed. These effective models have been widely used to in-
vestigate nuclear matter and finite nuclei, both at zero and at
finite temperature[18–20]. Papazoglouet al. extended the
chiral effective models to SUs3dL3SUs3dR, including the
baryon octets[21,22]. As well as models based on hadronic
degrees of freedom, there are some other models based on
quark degrees of freedom, such as the quark-meson coupling
model [23,24], the cloudy bag model[25], the NJL model
[26], and the quark mean field model[27], etc. Recently, we
proposed a chiral SU(3) quark mean field model and inves-
tigated the properties of hadronic matter as well as quark
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matter[28–32]. This model is quite successful in describing
the properties of nuclear matter[28], strange matter[30,31],
and finite nuclei and hypernuclei[32] at zero temperature. In
this paper, we will apply the chiral SU(3) quark mean field
model to finite temperature and study the liquid-gas phase
transition of strange hadronic matter.

The paper is organized as follows. The model is intro-
duced in Sec. II. In Sec. III we use the model to investigate
strange hadronic matter at finite temperature. The numerical
results are discussed in Sec. IV, and Sec. V summarizes our
findings.

II. THE MODEL

Our considerations are based on the chiral SU(3) quark
mean field model(for details see Refs.[30,32]), which con-
tains quarks and mesons as basic degrees of freedom. Quarks
are confined in baryons by an effective potential. The quark-
meson interaction and meson self-interaction are based on
SU(3) chiral symmetry. Through the mechanism of sponta-
neous chiral symmetry breaking, the resulting constituent
quarks and mesons(except for the pseudoscalars) obtain
masses. The introduction of an explicit symmetry breaking
term in the meson self-interaction generates the masses of
the pseudoscalar mesons which satisfy partially conserved
axial-vector current(PCAC) relations. The explicit symme-
try breaking term of the quark meson interaction leads in
turn to reasonable hyperon potentials in hadronic matter. For
completeness, we introduce the main concepts of the model
in this section.

In the chiral limit, the quark fieldq can be split into left-
and right-handed partsqL andqR: q=qL+qR. Under SUs3dL

3SUs3dR they transform as

qL8 = LqL, qR8 = RqR. s1d

The spin-0 mesons are written in the compact form

MsM+d = S ± iP =
1
Î2

o
a=0

8

ssa ± ipadla, s2d

wheresa and pa are the nonets of scalar and pseudoscalar
mesons, respectively,la sa=1, . . . ,8d are the Gell-Mann ma-
trices, andl0=Î2

3I. The alternative plus and minus signs
correspond toM and M+. Under chiral SU(3) transforma-
tions, M and M+ transform asM→M8=LMR+ and M+

→M+8=RM+L+. In a similar way, the spin-1 mesons are in-
troduced through

lmsrmd =
1

2
sVm ± Amd =

1

2Î2
o
a=0

8

svm
a ± am

adla s3d

with the transformation propertieslm→ lm8 =LlmL+, rm→ rm8
=RrmR+. The matricesS, P, Vm, andAm can be written in a
form where the physical states are explicit. For the scalar and
vector nonets, we have the expressions

S =
1
Î2

o
a=0

8

sala =1
1
Î2

ss + a0
0d a0

+ K*+

a0
− 1

Î2
ss − a0

0d K*0

K*−
K̄*0 z

2 ,

s4d

Vm =
1
Î2

o
a=0

8

vm
ala =1

1
Î2

svm + rm
0d rm

+ Km
*+

rm
− 1

Î2
svm − rm

0d Km
*0

Km
*−

K̄m
*0 fm

2 .

s5d

Pseudoscalar and pseudovector nonet mesons can be written
in a similar fashion.

The total effective Lagrangian has the form

Leff = Lq0 + LqM + LSS + LVV + LxSB+ LDms
+ Lh, + Lc,

s6d

whereLq0= q̄igm]mq is the free part for massless quarks. The
quark-meson interactionLqM can be written in a chiral SU(3)
invariant way as

LqM = gssC̄LMCR + C̄RM+CLd − gvsC̄LgmlmCL

+ C̄RgmrmCRd =
gs

Î2
C̄So

a=0

8

sala + io
a=0

8

palag5DC

−
gv

2Î2
C̄So

a=0

8

gmvm
ala − o

a=0

8

gmg5am
alaDC. s7d

In the mean field approximation, the chiral-invariant scalar
mesonLSS and vector mesonLVV self-interaction terms are
written as[30,32]

LSS = −
1

2
k0x2ss2 + z2d + k1ss2 + z2d2 + k2Ss4

2
+ z4D

+ k3xs2z − k4x4 −
1

4
x4 ln

x4

x0
4 +

d

3
x4 ln

s2z

s0
2z0

, s8d

LVV =
1

2

x2

x0
2smv

2v2 + mr
2r2 + mf

2f2d + g4sv4 + 6v2r2 + r4

+ 2f4d, s9d

whered=6/33; s0, z0, and x0 are the vacuum expectation
values of the corresponding mean fieldss, z, and x. The
LagrangianLxSB generates the nonvanishing masses of pseu-
doscalar mesons
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LxSB=
x2

x0
2Fmp

2Fps + SÎ2mK
2FK −

mp
2

Î2
FpDzG , s10d

leading to a nonvanishing divergence of the axial currents
which in turn satisfy the relevant PCAC relations forp and
K mesons. The pseudoscalar and scalar mesons as well as the
dilaton fieldx obtain mass terms by spontaneous breaking of
chiral symmetry in the Lagrangian(8). The masses of theu,
d, and s quarks are generated by the vacuum expectation
values of the two scalar mesonss andz. To obtain the cor-
rect constituent mass of the strange quark, an additional mass
term has to be added:

LDms
= − Dmsq̄Sq, s11d

whereS= 1
3sI −l8

Î3d=diags0,0,1d is the strangeness quark
matrix. Through these mechanisms, the quark constituent
masses are finally given by

mu = md = −
gs

Î2
s0 and ms = − gsz0 + Dms, s12d

wheregs andDms are chosen to yield the constituent quark
mass in vacuum—in our case,mu=md=313 MeV andms
=490 MeV. In order to obtain reasonable hyperon potentials
in hadronic matter, it has been found necessary to include an
additional coupling between strange quarks and the scalar
mesonss andz [30]. This term is expressed as

Lh = sh1s + h2zds̄s. s13d

In the quark mean field model, quarks are confined in bary-

ons by the LagrangianLc=−C̄xcC [with xc given in Eq.
(14) below]. The Dirac equation for the quark fieldCi j , un-
der the additional influence of the meson mean fields, is
given by

f− iaW ·¹W + xcsrd + bmi
*gCi j = ei

*Ci j , s14d

whereaW =g0gW , b=g0, the subscriptsi and j denote the quark
i si =u,d,sd in a baryon of typej s j =N,L ,S ,Jd, andxcsrd is
a confining potential—i.e., a static potential providing con-
finement of quarks by meson mean field configurations. The
quark effective massmi

* and energyei
* are defined as

mi
* = − gs

i s − gz
i z + mi0 s15d

and

ei
* = ei − gv

i v − gf
i f, s16d

whereei is the energy of the quark under the influence of the
meson mean fields. Heremi0=0 for i =u,d (nonstrange
quark) andmi0=Dms=29 MeV for i =s (strange quark). Us-
ing the solution of the Dirac equation(14) for the quark
energyei

* it has been common to define the effective mass of
the baryonj through the ansatz

Mj
* = ÎEj

*2 − kpj c.m.
*2 l, s17d

whereEj
* =oinijei

* +Ej spin is the baryon energy andkpj c.m.
*2 l is

the subtraction of the contribution to the total energy associ-
ated with spurious center of mass motion. In the expression

for the baryon energynij is the number of quarks with flavor
i in a baryon with flavor j , with j =Nhp,nj, ShS± ,S0j,
JhJ0,J−j, L, andEj spin is the correction to the baryon en-
ergy which is determined from a fit to the data for baryon
masses. There is an alternative way to remove the spurious
c.m. motion and determine the effective baryon masses. In
Ref. [33], the removal of the spurious c.m. motion for three
quarks moving in a confining, relativistic oscillator potential
was studied in some detail. It was found that when an exter-
nal scalar potential was applied, the effective mass obtained
from the interaction Lagrangian could be written as

Mj
* = o

i

nijei
* − Ej

0, s18d

whereEj
0 was found to be only very weakly dependent on the

external field strength. We therefore use Eq.(18), with Ej
0 a

constant, independent of the density, which is adjusted to
give a best fit to the free baryon masses.

Using the square root ansatz for the effective baryon
mass, Eq.(17), the confining potentialxc is chosen as a
combination of scalar(S) and scalar-vector(SV) potentials
as in Ref.[30]:

xcsrd =
1

2
fxc

Ssrd + xc
SVsrdg s19d

with

xc
Ssrd =

1

4
kcr

2 s20d

and

xc
SVsrd =

1

4
kcr

2s1 + g0d. s21d

On the other hand, using the linear definition of the effective
baryon mass, Eq.(18), the confining potentialxc is chosen to
be the purely scalar potentialxc

Ssrd. The couplingkc is taken
askc=1 GeV fm−2, which yields baryon mean square charge
radii (in the absence of a pion cloud[34]) around 0.6 fm.

The properties of infinite nuclear matter and finite nuclei
were calculated with these two treatments of effective baryon
mass in Ref.[35]. As we explained there, the linear definition
of effective baryon mass has been derived using a systematic
relativistic approach[33], while to the best of our knowledge
no equivalent derivation exists for the square root case. For
high baryon density, the predictions of these two treatments
are quite different. Many physical quantities change discon-
tinuously at some critical density in the case of the square
root ansatz, while the linear definition of baryon mass yields
continuous behavior for high density nuclear matter. Both
treatments of the spurious c.m. motion fit the saturation prop-
erties of nuclear matter and therefore, for densities lower
than the saturation density, these two treatments give reason-
ably similar results. In this paper, we will discuss the liquid-
gas phase transition of strange hadronic matter with both
treatments. We prefer the linear form because it has been
derived. The square root case is reported here because it is
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widely used and in fact produces similar results in some
regions. However, where they differ we believe that the lin-
ear form is the more reliable.

III. STRANGE HADRONIC MATTER AT FINITE
TEMPERATURE

Based on the previously defined interaction, the Lagrang-
ian density for strange hadronic matter is written as

L = c̄Bsigm]m − MB
* dcB +

1

2
]ms]ms +

1

2
]mz]mz +

1

2
]mx]mx

−
1

4
FmnF

mn −
1

4
SmnS

mn − gv
Bc̄BgmcBvm − gf

Bc̄BgmcBfm

+ LM , s22d

where

Fmn = ]mvn − ]nvm andSmn = ]mfn − ]nfm. s23d

The term LM represents the interaction between mesons
which includes the scalar meson self-interactionLSS, the
vector meson self-interactionLVV, and the explicit chiral
symmetry breaking termLxSB, all defined previously. The
Lagrangian includes the scalar mesonss, z, andx, and the
vector mesonsv andf. The interactions between quarks and
scalar mesons result in the effective baryon massesMB

* ,
where subscriptB labels the baryonB=N,L ,S, or J. The
interactions between quarks and vector mesons generate the
baryon-vector meson interaction. The corresponding vector
coupling constantsgv

B andgf
B are baryon dependent and sat-

isfy the relevant SU(3) relationships. In fact, we find the
following relations for the vector coupling constants:

gv
L = gv

S = 2gv
J =

2

3
gv

N andgf
L = gf

S =
1

2
gf

J =
Î2

3
gv

N. s24d

At finite temperature and density, the thermodynamic po-
tential for strange hadronic matter is defined as

V = − o
j=N,L,S,J

gjkBT

s2pd3E
0

`

d3kWhlns1 + e−fEj
* skd−n jg/kBTd + lns1

+ e−fEj
* skd+n jg/kBTdj − LM , s25d

whereEj
*skd=ÎMj

*2 +kW2 andgj is the degeneracy of baryonj
(gN,J=2, gL=1, andgS=3). The quantityn j is related to the
usual chemical potentialm j by n j =m j −gv

j v−gf
j f. The en-

ergy per unit volume and the pressure of the system can be
derived as«=V−s1/Tds]V /]Td+n jr j and p=−V, wherer j

is the baryon density.
The mean field equation for mesonfi is obtained by the

formula ]V /]fi =0. For example, the equations fors ,z are
deduced as

k0x2s − 4k1ss2 + z2ds − 2k2s3 − 2k3xsz −
2d

3s
x4 +

x2

x0
2mp

2Fp

− S x

x0
D2

mvv2]mv

]s
+ o

j=N,L,S,J

]Mj
*

]s
kc jc jl = 0, s26d

k0x2z − 4k1ss2 + z2dz − 4k2z3 − k3xs2 −
d

3z
x4 +

x2

x0
2SÎ2mk

2Fk

−
1
Î2

mp
2FpD − S x

x0
D2

mff2]mf

]z
+ o

j=L,S,J

]Mj
*

]z
kc jc jl

= 0, s27d

where

kc̄ jc jl =
gj

p2E
0

`

dk
k2Mj

*

Ej
*skd

fnjskd + n̄jskdg. s28d

In the above equation,njskd and n̄jskd are the baryon and
antibaryon distributions, respectively, expressed as

njskd =
1

exphfEj
*skd − n jg/kBTj + 1

s29d

and

n̄jskd =
1

exphfEj
*skd + n jg/kBTj + 1

. s30d

The equations for vector mesonsv andf are expressed as

x2

x0
2mv

2v + 4g4v3 = o
j=N,L,S,J

gv
j r j , s31d

x2

x0
2mf

2f + 8g4f3 = o
j=L,S,J

gf
j r j , s32d

wherer j is the density of baryons of typej , expressed as

r j =
gj

p2E
0

`

dk k2fnjskd − n̄jskdg. s33d

Let us now discuss the liquid-gas phase transition. For
strange hadronic matter, we follow the thermodynamic ap-
proach of Refs.[12,13]. The system will be stable against
separation into two phases if the free energy of a single
phase is lower than the free energy in all two-phase configu-
rations. This requirement can be formulated as[13]

FsT,rd , s1 − ldFsT,r8d + lFsT,r9d, s34d

where

r = s1 − ldr8 + lr9, 0 , l , 1, s35d

andF is the Helmholtz free energy per unit volume. The two
phases are denoted by a prime and a double prime. If the
stability condition is violated, a system with two phases is
energetically favorable. The phase coexistence is governed
by the Gibbs conditions

m j8sT,r8d = m j9sT,r9d s j = N,L,S,Jd, s36d

p8sT,r8d = p9sT,r9d, s37d

where the temperature is the same in the two phases. The
chemical potentials of the baryons satisfy the following rela-
tionship:
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mL = mS = smN + mJd/2. s38d

Therefore, there are only two independent chemical poten-
tials for the four kinds of baryons. They are determined by
the total baryon densityrB and the strangeness fractionfs,
which are defined asrB=srN+rL+rS+rJd and fs=srL+rS

+2rJd /rB.

IV. NUMERICAL RESULTS AND DISCUSSION

The parameters in this model were determined by the me-
son masses in vacuum and the properties of nuclear matter
which were listed in Table I of Ref.[35]. We now discuss the
liquid-gas phase transition of strange hadronic matter. In Fig.
1, we plot the pressure of the system versus baryon density
for various strangeness fractionsfs at temperatureT
=15 MeV for the square root ansatz of the effective baryon
mass[Eq. (17)]. For nonstrange hadronic matter, thep-rB
isotherms exhibit the form of two-phase coexistence with an
unphysical region. The nuclear matter can be in a state of
liquid-gas coexistence at this temperature. With increasing
fs, the pressure will increase. At a particular value offs, the
pressure will increase monotonically with increasing density.
As we will see later, the strangeness fraction is different in
the liquid and gas phases. Therefore, the system can still be
in liquid-gas coexistence, even though the pressure increases
monotonically with density. The unphysical region appears
again in the range of 1.0, fs,1.6. It is obvious that the
behavior of the pressure of strange hadronic matter is not
monotonic with fs. For the linear definition of effective
baryon mass[Eq. (18)], the results are plotted in Fig. 2. At
small strangeness fraction, sayfs,0.4, there are unphysical
regions. In the range 0.4, fs,1.75, the pressure increases
monotonically with increasing density, while forfs.1.75,
the unphysical regions appear again.

As we pointed out earlier, there are two independent
chemical potentials for the baryons. We now show how the
Gibbs conditions can be satisfied. As an example, we plot the
chemical potentials of nucleon andL versusfs at tempera-
ture T=15 MeV and pressurep=0.23 MeV fm−3 with the
square root ansatz for the effective baryon mass in Fig. 3(for
convenience, we use the reduced chemical potential which is
defined asm̃ j =m j −Mj). The solid and dashed lines are for
the nucleon andL, respectively. The Gibbs equations(36)
and (37) for phase equilibrium demand equal pressure and
chemical potentials for two phases with different concentra-
tions. The desired solution can be found by means of the
geometrical construction shown in Fig. 3, which guarantees

FIG. 1. The pressure of strange hadronic matterp versus baryon
densityrB with different strangeness fractionsfs at temperatureT
=15 MeV in the case of the square root ansatz of effective baryon
mass.

FIG. 2. The pressure of strange hadronic matterp versus baryon
densityrB with different strangeness fractionsfs at temperatureT
=15 MeV in the case of the linear definition of effective baryon
mass.

FIG. 3. Geometrical construction used to obtain the chemical
potentials and strangeness fractions in the two-phase coexistence at
temperatureT=15 MeV and p=0.23 MeV fm−3. The solid and
dashed lines are for the nucleon andL, respectively.
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the same pressure and chemical potentials of the nucleon and
L in the two phases with differentfs. Due to the chemical
relationship between the baryons, the chemical potentials of
S andJ are also the same in the two phases.

For asymmetric nuclear matter, there is only one kind of
solution which satisfies Eqs.(36) and(37) at the given pres-
sure and temperature. For hadronic matter, there is another
solution of the Gibbs equations with higher pressure at the
same temperature. We show in Fig. 4 the chemical potentials
versusfs at pressurep=0.27 MeV fm−3 with the same tem-
perature as in Fig. 3. From the geometrical construction, one
can see that the difference offs between the two phases is
very small. We can discuss in some detail the reason why
there is only one solution for asymmetric nuclear matter and
two solutions for strange hadronic matter. This is because for
asymmetric nuclear matter witha=srn−rpd / srn+rpd, the
a-dependence behavior of the pressure is monotonic—as can
be seen clearly in Fig. 3 of Ref.[14]. However, in the case of
strange hadronic matter, the dependence onfs is not mono-
tonic. For example, for temperatureT=15 MeV, the point
where ]p/]rB=0 appears in two regions offs, i.e.,
0, fs,0.2 and 1.0, fs,1.6. This means that the system
can be in the liquid-gas coexistence phase.

The pairs of solutions shown in Fig. 3 with small strange-
ness fraction form a binodal curve which is plotted in Fig. 5.
There is a critical pointA where the pressure is about
0.244 MeV fm−3 with the corresponding strangeness fraction
fs=0.24. The binodal curve is divided into two branches by
the critical point. One branch corresponds to the high density
(liquid) phase; the other corresponds to the low density(gas)
phase. Assume the system is initially prepared in the low
density(gas) phase withfs=0.2. When the pressure increases
to some value, the two-phase region is encountered at pointa
and a liquid phase atb with a low fs begins to emerge. As the
system is compressed, the gas phase evolves from pointa to
c, while the liquid phase evolves fromb to d. If the pressure

of the system continues to increase, the system will leave the
two-phase region at pointd. The gas phase disappears and
the system is entirely in the liquid phase. This kind of phase
transition is different from the normal first order phase tran-
sition where the pressure remains constant during the phase
transition. If the strangeness is larger than 0.24, there is no
phase transition between liquid and gas phases. Therefore,
for a given temperature there exists a critical strangeness
fraction, above which the system can only be in the gas
phase. In other words, for a system with a fixed strangeness
fraction fs there exists a critical temperature, above which
the system cannot change completely into the liquid phase
however large the pressure.

The solutions shown in Fig. 4 with higher strangeness
fraction form another binodal curve and we plot it in Fig. 6.
As in Fig. 5, there are two branches divided by the critical

FIG. 4. Geometrical construction used to obtain the chemical
potentials and strangeness fractions in the two-phase coexistence at
temperatureT=15 MeV and p=0.27 MeV fm−3. The solid and
dashed lines are for the nucleon andL, respectively.

FIG. 5. The first binodal curve with smaller strangeness fraction
at temperatureT=15 MeV. The pointsa through d denote the
liquid-gas phase transition.A is the critical point.

FIG. 6. The second binodal curve with larger strangeness frac-
tion at temperatureT=15 MeV. B andC are the critical points.
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pointsB andC. One branch is for the liquid phase; the other
is for the gas phase. One can see that the difference offs
between liquid and gas phase is very small. At the critical
points B and C the strangeness fraction is about 1.04 and
1.66, respectively. Iffs is smaller than 1.04 but larger than
0.24, orfs.1.66, the system can only be in the gas phase. At
the critical pointsB andC, the strangeness fraction of liquid
and gas phases is the same. The liquid-gas phase transitions
at these two points are the same as in symmetric nuclear
matter. The pressure stays constant andfs does not change
during the phase transition.

For the linear case, there are also two kinds of solutions
which satisfy the Gibbs equations atT=15 MeV. However,
the third critical pointC disappears because it moves to the
point with fs=2. This is because at this temperature the sys-
tem can be in two-phase coexistence whenfs.1.75. This
can be seen clearly from Fig. 2 where the unphysical region
exists for very large strangeness fractionfs.

Therefore, for the case of the square root ansatz, alto-
gether there are three critical strangeness fractions for
strange hadronic matter at temperatureT=15 MeV, while for
the linear definition of the effective baryon mass, there are
only two critical points. In Fig. 7, we plot the critical tem-
perature versus strangeness fraction. For the square root case,
the critical temperature first decreases with increasingfs.
When 0.65, fs,1.3,Tc increases withfs. For fs greater than
1.3, Tc decreases with fs again. In the range
14.6,T,15.3 MeV, there are three critical strangeness
fractions for a given temperature. For example, atT
=15 MeV, the three critical values offs are about 0.24, 1.06,
and 1.66. If 0.24, fs,1.04, the strange hadronic matter can

only be in the gas phase. When 1.04, fs,1.66, the system
can be in a state of liquid-gas coexistence, while for
fs.1.66, the system can once again only be in the gas phase.
The critical temperature for strange hadronic matter withfs
=2 is about 13.6 MeV. For the case of the linear definition of
effective baryon mass,Tc decreases with increasingfs if fs is
smaller than 1.1. Iffs is larger than 1.1,Tc increases withfs
till fs=2.0. Compared with the square root case,Tc changes
more quickly with fs in this case. The highest and lowestTc
values are 17.9 and 12.0 MeV with the correspondingfs=0
and fs=1.1.

V. SUMMARY

In this paper, we applied the chiral SU(3) quark mean
field model to investigate the properties of strange hadronic
matter at finite temperature and density. All the parameters
have been determined in earlier papers and there is no further
parameter to be adjusted. The model works very well at zero
temperature. The saturation properties and compression
modulus of nuclear matter are reasonable. The hyperon po-
tentials are close to the empirical values for strange hadronic
matter. The results of finite nuclei and hypernuclei are also
consistent with the experiments. In this paper, the liquid-gas
phase transition of strange hadronic matter was studied in
this model. For strange hadronic matter, there are two inde-
pendent conserved charges. The system will be in liquid-gas
phase coexistence if the pressure and the chemical potentials
of all the baryons are the same in the two phases. During the
phase transition, the strangeness fractionfs of liquid and gas
phases is different and changes during the phase transition,
though the totalfs is conserved. We found that there are two
branches of solutions which satisfy the Gibbs equations at
some range of temperature. One corresponds to the phase
transition at smallfs, while the other corresponds to the
phase transition at largefs. For the square root ansatz of the
effective baryon mass, there are three critical strangeness
fractions during 14.6,T,15.3 MeV. For the linear defini-
tion of effective mass, there are two critical points when
12.0,T,15.9 MeV since the third one disappears and
moves to the point withfs=2. The difference offs in the two
phases is small, especially in the case of higher strangeness
fraction. The critical temperatureTc does not change mono-
tonically with fs. For the square root case, iffs,0.65 or
fs.1.3, Tc decreases, while for 0.65, fs,1.3, Tc increases
with increasingfs. For the linear case,Tc first decreases and
then increases with increasingfs. The minimum critical tem-
perature is about 12.0 MeV withfs=1.1.
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FIG. 7. The critical temperatureTc versus strangeness fraction
fs. The solid and dashed lines correspond to the square root and
linear case, respectively.
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