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Liquid-gas phase transition in nuclear matter including strangeness
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lSpecial Research Center for the Subatomic Structure of Matter (CSSM) and Department of Physics,
University of Adelaide, Adelaide 5005, Australia
2Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
(Received 23 July 2004; published 22 November 2004

We apply the chiral S{B) quark mean field model to study the properties of strange hadronic matter at finite
temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of
the system cannot remain constant during the phase transition, since there are two independent conserved
chargegqbaryon and strangeness numbén a range of temperatures around 15 MgWecise values depend-
ing on the model usgdhe equation of state exhibits multiple bifurcates. The difference in the strangeness
fraction f between the liquid and gas phases is small when they coexist. The critical temperature of strange
matter turns out to be a nontrivial function of the strangeness fraction.
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I. INTRODUCTION found that the critical temperature decreases with increasing

The determination of the properties of hadronic matter afSYmMMmetry parameter. L
finite temperature and density is a fundamental problem in For strange hadronic matter, the method is similar to that
nuclear physics. In particular, the study of the liquid-gasfor asymmetric nuclear matter. In both cases there are two
phase transition in medium-energy heavy-ion collisions is offonserved charges. Recently, Yaegal. [16] used the ex-
considerable interest. Many intermediate-energy collision extended Furnstahl-Serot-TaggST) model[17] to discuss the
periments have been performétl] to investigate the un- liquid-gas phase transition of strange hadronic matter. The
known features of the highly excitetiot) nuclei formed in  original FST model satisfies the &) chiral symmetry and
such collisiong2,3]. Theoretically, much effort has been de- was first applied to study nuclear matf&8]. In the extended
voted to studying the equation of state for nuclear matter anST model[16], the authors found a so called critical pres-
to discussing the critical temperatufg Recently, Natowitz ~ sure above which the liquid-gas phase transition cannot exist.
et al. obtained the limiting temperature by using a number ofAs a result no critical strangeness fraction was obtained for a
different experimental measuremeiid§. From these obser- given temperature. This critical pressure exists in finite nu-
vations the authors extracted the critical temperature of inficlei together with a limiting temperaturg,,. However, in
nite nuclear mattefT,=16.6+0.86 MeV[5]. We can expect infinite hadronic matter, physically, there should be no such
that further experiments may eventually yield the limiting Critical pressure, since the pressure of the system can be
temperature of hypernuclei and the critical temperature fomuch higher than the critical pressure. For strange matter
infinite strange hadronic matter. It is therefore interesting towvith fs=2, i.e., pure= matter, from Fig. 1 of Ref[16], one
study the liquid-gas phase transition of strange hadronic masees that the pressure does not increase monotonically with
ter theoretically. density. This means that at this temperature grenatter

Exploring systems with strangeness, especially with larggan be in liquid-gas phase coexistence. Therefore, the bin-
strangeness fraction, has attracted a lot of interest in recefdal p-u diagram at temperaturé=10 MeV should termi-
years. Such a system has many astrophysical and cosmologjiate atfs=2. We will reconsider this problem and show how
cal implications and is indeed interesting by itself. There arghe critical strangeness fraction can be obtained.
many theoretical discussions for both strange hadronic mat- To study the properties of hadronic matter, we need phe-
ter [6,7] and strange quark matt¢8—11]. However, most nomenological models since QCD cannot yet be used di-
discussions are at zero temperature. The properties of stranggctly. The symmetries of QCD can be used to constrain the
hadronic matter at finite temperature have not been studie@adronic interactions and models based on (BU
very much yet. Unlike symmetric nuclear matter, for strangexX SU(2)g symmetry and scale invariance have been pro-
hadronic matter, there are two conserved charges, baryqmosed. These effective models have been widely used to in-
number and strangeness. Glendenijitf first discussed the vestigate nuclear matter and finite nuclei, both at zero and at
phase transition with more than one conserved charge in gefinite temperaturg§18-20. Papazoglowet al. extended the
eral and applied it to the possible transition to quark mattechiral effective models to S(3), X SU(3)g, including the
in the core of neutron stars. Miller and Sefb8] discussed baryon octet§21,22. As well as models based on hadronic
asymmetric nuclear matter, which has two conserved chargetegrees of freedom, there are some other models based on
(baryon number and isospinusing the stability conditions quark degrees of freedom, such as the quark-meson coupling
on the free energy, the conservation laws, and the Gibbmodel[23,24, the cloudy bag moddi25], the NJL model
criterion for the liquid-gas phase transition. The liquid-gas[26], and the quark mean field mod&7], etc. Recently, we
phase transition of asymmetric nuclear matter was also digroposed a chiral S@3) quark mean field model and inves-
cussed in effective chiral models in Refd4,15. It was tigated the properties of hadronic matter as well as quark
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matter[28—33. This model is quite successful in describing 1 0 . -
the properties of nuclear mattg28], strange mattef30,31], TE(U*' ap) 8 K

and finite nuclei and hypernuclg2] at zero temperature. In 1 3 v

this paper, we will apply the chiral §8) quark mean field S=-= D o®\%= - (o-a) KO |’
model to finite temperature and study the liquid-gas phase V2 a=0 % \;’E 7%

transition of strange hadronic matter.

The paper is organized as follows. The model is intro-
duced in Sec. Il. In Sec. Ill we use the model to investigate (4)
strange hadronic matter at finite temperature. The numerical
results are discussed in Sec. IV, and Sec. V summarizes our

findings. Tz(wﬂ + P?) p; K:r
8 V
1
Il. THE MODEL V,=—= 2 vi\%= - 1 ,
"2 aE:O g Pu \'_E(w# - p(l)t) Kuo
Our considerations are based on the chira(ZWuark N ‘ —

mean field model{for details see Ref§30,323), which con- K, KMO o
tains quarks and mesons as basic degrees of freedom. Quarks (5)

are confined in baryons by an effective potential. The quark-

meson mteracﬂon and meson self-mteracﬂop are based Q8¢ goscalar and pseudovector nonet mesons can be written
SU(3) chiral symmetry. Through the mechanism of sponta-, o similar fashion.

neous chiral symmetry breaking, the resulting constituent |q total effective Lagrangian has the form
quarks and mesongxcept for the pseudoscalarebtain
masses. The introduction of an explicit symmetry breaking C
term in the meson self-interaction generates the masses of
the pseudoscalar mesons which satisfy partially conserved (6)
axial-vector curren{fPCAC) relations. The explicit symme-
try breaking term of the quark meson interaction leads inwhere.,=qiy*d,q is the free part for massless quarks. The
turn to reasonable hyperon potentials in hadronic matter. Fauark-meson interactiofigy can be written in a chiral S@3)
completeness, we introduce the main concepts of the mod@ivariant way as
in this section.

In the chiral limit, the quark field] can be split into left- T UM — (T
and right-handed party andogr: q=q, +0r. Under SU3), Lam =GV MW+ WM™WL) =0, (WLy1, W
X SU(3)g they transform as

off = £q0+ EqM + Lss + Lyyt ﬁXsB+ [’Ams+ L + L,

8 8
+ \PR'}’#erPR) = gT%\I’<E Oahat iz Wa}\a’)/!s)\l,
A a=0 a=0

0. =La., gr=Rek. D . .
S ay _ a
The spin-0 mesons are written in the compact form B 2\5‘1’(3 Y'v,ha g) WVS"’W‘@I)‘P' ()
8
. 1 . In the mean field approximation, the chiral-invariant scalar
+\ — - a y
M(M?) =2 ill = V2 g)(oﬁi I, (2) mesonLyy and vector mesorty,, self-interaction terms are

written as[30,32

where o? and 72 are the nonets of scalar and pseudoscalar 4

mesons, respectively? (a=1,...,8 are the Gell-Mann ma- Lys=- lkoxz(az + ) + k(02 + )2+ kz(i + §4>
trices, and)\oz\/gl. The alternative plus and minus signs 2 2
correspond toM and M*. Under chiral S3) transforma- 1 A4S o2

;i 4 4. X 4 {

tions, M and M* transform asM —M’'=LMR* and M* +Kaxo?L — Kax — X In At X In 2z (8)
—M* =RM'L*. In a similar way, the spin-1 mesons are in- Xo 0%0
troduced through

1 2
L L8 Lyy= Ei%(miwz +MPp? + MG h°) + Gyl + 6w®p? + p*
L) =2(V,£A)=—= 2 W3ta®\® (3 °
M 2 M M 2\,2 =0 M [ + 2¢4), (9)

with the transformation propertieI§L—>|l’L=LIML+, r#—>rl’b where 6=6/33; oq, {5, and yo are the vacuum expectation
:RrMR+. The matrices, 11, V., andA, can be written in a values of the corresponding mean fielas £, and . The
form where the physical states are explicit. For the scalar antlagrangianC,sggenerates the nonvanishing masses of pseu-
vector nonets, we have the expressions doscalar mesons
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¥l =, me for the baryon energy; is the number of quarks with flavor
Lysg= 5| MzF o+ | V2miFy - TEFW I, (10 i in a baryon with flavorj, with j=N{p,n}, 3{3* 39},

X0 v E{E°, E7}, A, andE; gy is the correction to the baryon en-
leading to a nonvanishing divergence of the axial currentergy which is determined from a fit to the data for baryon
which in turn satisfy the relevant PCAC relations ferand  masses. There is an alternative way to remove the spurious
K mesons. The pseudoscalar and scalar mesons as well as then. motion and determine the effective baryon masses. In
dilaton field y obtain mass terms by spontaneous breaking oRef. [33], the removal of the spurious c.m. motion for three
chiral symmetry in the Lagrangiai8). The masses of the, quarks moving in a confining, relativistic oscillator potential
d, and s quarks are generated by the vacuum expectatiomas studied in some detail. It was found that when an exter-
values of the two scalar mesonsand {. To obtain the cor- nal scalar potential was applied, the effective mass obtained
rect constituent mass of the strange quark, an additional mag®m the interaction Lagrangian could be written as
term has to be added:

Lm = - AMESq (11)

where Szé(l -\gV3)=diag0,0,1) is the strangeness quark whereE® was found to be only very weakly dependent on the
matrix. Through these mechanisms, the quark constituemxternai field strength. We therefore use ELB), with EJQ a

M; =2 nye —E, (18
|

masses are finally given by constant, independent of the density, which is adjusted to
give a best fit to the free baryon masses.
mu:md:—g—iffo and my=-glo+Am, (12 Using the square root ansatz for the effective baryon

mass, Eq.(17), the confining potentialy, is chosen as a
combination of scalafS) and scalar-vecto(SV) potentials

wheregs and Amg are chosen to yield the constituent quark as in Ref.[30]:

mass in vacuum—in our casej,=my=313 MeV andmg
=490 MeV. In order to obtain reasonable hyperon potentials 1

in hadronic matter, it has been found necessary to include an Xc(r) = E[Xf(f) +x5'(n] (19
additional coupling between strange quarks and the scalar

mesonso and{ [30]. This term is expressed as with

Ly = (o +hyjss. (13)

In the quark mean field model, quarks are confined in bary-
ons by the Lagrangiaf.=—W¥ ¥ [with x. given in Eq.
(14) below]. The Dirac equation for the quark fieltt;;, un-
der the additional influence of the meson mean fields, is 1

given by x2V(r) = chrz(l +9°). (21)

[Zia-V+xeln) + pm W =& W, (14) On the other hand, using the linear definition of the effective
wherea=+°y, 8=+, the subscripts andj denote the quark baryon mass, Eq18), the confining potentiat, is chosen to
i (i=u,d,s) in a baryon of typg (j=N,A,3,=), andy.(r)is  be the purely scalar potentigf(r). The couplingk, is taken
a confining potential—i.e., a static potential providing con-ask.=1 GeV fn2, which yields baryon mean square charge
finement of quarks by meson mean field configurations. Theadii (in the absence of a pion cloy84]) around 0.6 fm.

K30 = gr? (20

and

quark effective masmi* and energ)e,* are defined as The properties of infinite nuclear matter and finite nuclei
. i i were calculated with these two treatments of effective baryon
m ==9,0 =9, L+ Mo (159 mass in Ref[35]. As we explained there, the linear definition
and of effective baryon mass has been derived using a systematic
. _ _ relativistic approacii33], while to the best of our knowledge
6 =6-g,0- 9',,545, (16) no equivalent derivation exists for the square root case. For

wheree is the energy of the quark under the influence of thehlgh baryon density, the predictions of these two treatments

meson mean fields. Here,=0 for i=u,d (nonstrange ?:]ect)qu;‘tle gltﬁg(r;?; g%@glpggﬁ'sc.tal %u?r?é't'cfsgh;n%zisczré
quark andmo=Am,=29 MeV fori=s (strange quark Us- rlocL)Jt ;ns);\tz while theI IIinear deflir):it:on of baryon mass qiglds
ing the solution of the Dirac equatiofi4) for the quark ' y y

energye; it has been common to define the effective mass o rzg?r%lje?]l:: O??E:\goar];g[]shégg dgz;gﬁ Qtutﬂgi;gg:gﬁ Brooth_
the baryonj through the ansatz P M- prop

erties of nuclear matter and therefore, for densities lower
M: =\EZ?=(p:Z ) (17)  thanthe saturation density, these two treatments give reason-
i = VEj i c.m/» .. . - .

X X X ably similar results. In this paper, we will discuss the liquid-
whereE,; =Xn; & +E;j gy is the baryon energy ar(quzc_m} is  gas phase transition of strange hadronic matter with both
the subtraction of the contribution to the total energy associtreatments. We prefer the linear form because it has been
ated with spurious center of mass motion. In the expressioderived. The square root case is reported here because it is
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widely used and in fact produces similar results in some 5 . X
regions. However, where they differ we believe that the lin- Kox’¢ = 4ky(a? + £){ = 4ky¢° - ksxoz-—é,x + X_ V2meF,

ear form is the more reliable. 0
i 2': l 2 Za_m@ + E _J.
Ill. STRANGE HADRONIC MATTER AT FINITE - \,Emw " Yo My W sz W)
TEMPERATURE -
. N . =0, (27)
Based on the previously defined interaction, the Lagrang-
ian density for strange hadronic matter is written as where
— . 1 1 1 —
= (i 749, —~ Mgy + 9,000 + =3,Ld"{ + =9, XX () = f [nJ k) +nj(K)]. (28)
2 2 2 E; (k)
1 — — In the above equatiom;(k) and nj(k) are the baryon and

- ZFMVF 4S,MVQLV - gS’ﬂB’yMlpBw'u - ngB’yMwB(bﬂ
+ Ly, 22 1
) (2 nj(k) = : (29)
where expl[E; (k) — v;)/kgT} + 1

_ _ and
Fu,=0,0,-d,w,andS,,=d,¢,~d,b,. (23)

antibaryon distributions, respectively, expressed as

The term Ly, represents the interaction between mesons miK) = 1 (30)
which includes the scalar meson self-interactifgs, the ) exp{[E}(k) + vk TH+ 17

vector meson self-interactiod, and the explicit chiral ,

symmetry breaking temt,sp all defined previously. The The equations for vector mesonsand ¢ are expressed as
Lagrangian includes the scalar mesens, andy, and the ¥

vector mesons and ¢. The interactions between quarks and —zmi,w +4g,0° = > gwp,. (31
scalar mesons result in the effective baryon maddgs Xo I=NAZE

where subscripB labels the baryo8=N,A,3, or . The

interactions between quarks and vector mesons generate the X 3 i

baryon-vector meson interaction. The corresponding vector Xgm¢¢+ 80,4 = .:A%:gibpj’ (32)
coupling constantgf) and gi are baryon dependent and sat- o

isfy the relevant SB) relationships. In fact, we find the wherep; is the density of baryons of type expressed as
following relations for the vector coupling constants:

9 —
s pi= dk KLn;(k) = n;(k)]. (33
= 2 1 = \’2 J sz | |
00 =0, =205 = Sdy andgg = g5 =207 = —do. (24) °
3 2 3 . - "
Let us now discuss the liquid-gas phase transition. For
At finite temperature and density, the thermodynamic postrange hadronic matter, we follow the thermodynamic ap-

tential for strange hadronic matter is defined as proach of Refs[12,13. The system will be stable against
separation into two phases if the free energy of a single
a=- > kBTf dek{In(1 +e (€] (K- vkeT) + In(1 phase is lower than the free energy in all two-phase configu-
i=nas = (2m)° rations. This requirement can be formulated B3]

+ e—[E}(k)wj]/kBT)} - Ly, (25) F(T,p) <(1-MF(T,p") + \F(T,p"), (39
whereE}*(k):\/M}ZHZ2 andg; is the degeneracy of barygn where
(On,z=2,94=1, andgs =3). The quantityy; is related to the p=(1-Np +Np", O0< A <1, (35
usual chemical potentigh; by v;=pu;-g,w-g)¢. The en- . .
ergy per unit volume and the pressure of the system can b ndF is the Helmholtz free energy per unit volume. The two

- —0— - —_ ‘ phases are denoted by a prime and a double prime. If the
ie{;]\ge?)a?in%er%ig)(&ﬂ/aT)+v‘p' andp=-{, wherep, stability condition is violated, a system with two phases is

The mean field equation for mesa@h is obtained by the gnet;]geetcl;cigltl)); L%Vr?drsgﬁé The phase coexistence is governed
formula 92/ d¢;=0. For example, the equations for { are y

deduced as wi(Tp") = (T,p") (=N,A2,E), (36)
2 2 26 4 X 2
kox?o — 4ky(0? + {?) o = 2ky0” = 2Kyl — XY ?mWF,, p'(T,p") =p"(T,p"), (37)
0
) om M where the temperature is the same in the two phases. The
- (1) m,0?—2+ >, _'L<¢]. ) =0, (26)  chemical potentials of the baryons satisfy the following rela-
Xo Jdo  j=NnAzE OO tionship:
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05 : : . ——r—7 0.7
g
2/ 0.6- :
4 / . 4
0.4 L
/7 /o 5 J
— . / ./ 1 — 0.5 )
7 s
£ - . L . £ .
s 03 el 3 oa ]
2 ) AT T ] = ]
= a i i
0.2 / 1 0.3
=0 | ‘
_____ fs=0'5 0.2 4
0 1  fF  ese s e fs=1 - o
-—— f=1.5 0.1 ;
- —f=2
0.0 T T T T T 0.0 T T T T T T T T T
000 002 004 006 008 010 0.12 000 003 006 009 012 0.5
p, (fm®) P (fm®)
FIG. 1. The pressure of strange hadronic matteersus baryon FIG. 2. The pressure of strange hadronic matteersus baryon

density pg with different strangeness fractiori at temperaturd  density pg with different strangeness fractiorig at temperaturel
=15 MeV in the case of the square root ansatz of effective baryorr 15 MeV in the case of the linear definition of effective baryon
mass. mass.

As we pointed out earlier, there are two independent
chemical potentials for the baryons. We now show how the

Therefore, there are only two independent chemical poten-GibbS conditions can be satisfied. As an example, we plot the

tials for the four kinds of baryons. They are determined bycheémical potentials of nucleon antl versusfs at tempera-

- - =3 i

the total baryon densitpg and the strangeness fractidg ;L:qrsa-:e_r{)i'xli\éa?zn?orFlLe;Zl;freﬁE\?ézbgalr\f/g\r{ I]r*nnassmi/ghF{g])reS

which are defined apg=(pn*+pa+pst+p=) and fs=(p,+ . ; . L

+2p0)/p Pa= (Pt patpxtpz) s=(Patps convenience, we use the reduced chemical potential which is
=)/ pp-

defined adu;=u;—M;)). The solid and dashed lines are for
the nucleon and\, respectively. The Gibbs equatiof36)
IV. NUMERICAL RESULTS AND DISCUSSION and (37) for phase equilibrium demand equal pressure and
chemical potentials for two phases with different concentra-
The parameters in this model were determined by the metions. The desired solution can be found by means of the
son masses in vacuum and the properties of nuclear mattgeometrical construction shown in Fig. 3, which guarantees
which were listed in Table | of Ref35]. We now discuss the

pa = s = (un+ pe)/2. (38)

liquid-gas phase transition of strange hadronic matter. In Fig. -27.75 r r r

1, we plot the pressure of the system versus baryon density 1

for various strangeness fractionk at temperatureT -28.004 T
=15 MeV for the square root ansatz of the effective baryon \ 1
mass[Eg. (17)]. For nonstrange hadronic matter, thepg - '28'25'_ \
isotherms exhibit the form of two-phase coexistence with an 3 28,50 \§ ]
unphysical region. The nuclear matter can be in a state of 2 J

liquid-gas coexistence at this temperature. With increasing = -28.755% >
fs, the pressure will increase. At a particular valuef gfthe e l ]
pressure will increase monotonically with increasing density. -47 - - ” -
As we will see later, the strangeness fraction is different in 1 Ll “ -7
the liquid and gas phases. Therefore, the system can still be -484 //’ //’ -7 1
in liquid-gas coexistence, even though the pressure increases T P (:/// ]
monotonically with density. The unphysical region appears Rl PR il
again in the range of 10f;<<1.6. It is obvious that the _50' . . .

behavior of the pressure of strange hadronic matter is not 0.12 0.13 0.14 0.15 0.16
monotonic with fg. For the linear definition of effective f

baryon masg$Eq. (18)], the results are plotted in Fig. 2. At
small strangeness fraction, sy<0.4, there are unphysical FIG. 3. Geometrical construction used to obtain the chemical
regions. In the range 04f;<1.75, the pressure increases potentials and strangeness fractions in the two-phase coexistence at
monotonically with increasing density, while fdg>1.75,  temperatureT=15 MeV and p=0.23 MeV fnT3. The solid and

the unphysical regions appear again. dashed lines are for the nucleon ahdrespectively.
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T T T T T T T T T v T v 0.25 T T T T LI
-334 _ 4
— \\ A
—
~ ]
~ e 0.244 p 1
— 34 ~ -~ ~= - —_ a ¢
% \\\\\\ S QE
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=3 3 2 023 .
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=€ .50 1 ]
\ T 0.22 .
524 .
21 1
.54 . °
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FIG. 4. Geometrical construction used to obtain the chemical F!G. 5. The first binodal curve with smaller strangeness fraction
potentials and strangeness fractions in the two-phase coexistence@t temperatureT=15 MeV. The pointsa through d denote the
temperatureT=15 MeV and p=0.27 MeV fn3. The solid and liquid-gas phase transitiod is the critical point.
dashed lines are for the nucleon afdrespectively.

of the system continues to increase, the system will leave the
the same pressure and chemical potentials of the nucleon amslo-phase region at poird. The gas phase disappears and
A in the two phases with differerft. Due to the chemical the system is entirely in the liquid phase. This kind of phase
relationship between the baryons, the chemical potentials dfansition is different from the normal first order phase tran-
> and = are also the same in the two phases. sition where the pressure remains constant during the phase

For asymmetric nuclear matter, there is only one kind oftransition. If the strangeness is larger than 0.24, there is no
solution which satisfies Eqé36) and(37) at the given pres- phase transition between liquid and gas phases. Therefore,
sure and temperature. For hadronic matter, there is anoth&r a given temperature there exists a critical strangeness
solution of the Gibbs equations with higher pressure at thdraction, above which the system can only be in the gas
same temperature. We show in Fig. 4 the chemical potentialghase. In other words, for a system with a fixed strangeness
versusf, at pressurgp=0.27 MeV fni® with the same tem- fraction fq there exists a critical temperature, above which
perature as in Fig. 3. From the geometrical construction, onghe system cannot change completely into the liquid phase
can see that the difference &f between the two phases is however large the pressure.
very small. We can discuss in some detail the reason why The solutions shown in Fig. 4 with higher strangeness
there is only one solution for asymmetric nuclear matter andraction form another binodal curve and we plot it in Fig. 6.
two solutions for strange hadronic matter. This is because foAs in Fig. 5, there are two branches divided by the critical
asymmetric nuclear matter witv=(p,~pp)/(pa+pp), the
a-dependence behavior of the pressure is monotonic—as can 0.285 T T T T T T
be seen clearly in Fig. 3 of Refl4]. However, in the case of B
strange hadronic matter, the dependencdds not mono- ]
tonic. For example, for temperatuiie=15 MeV, the point
where dp/dpg=0 appears in two regions of, i.e.,
0<f,<0.2 and 1.6<fs<1.6. This means that the system
can be in the liquid-gas coexistence phase.

The pairs of solutions shown in Fig. 3 with small strange-
ness fraction form a binodal curve which is plotted in Fig. 5.
There is a critical pointA where the pressure is about
0.244 MeV fm2 with the corresponding strangeness fraction
fs=0.24. The binodal curve is divided into two branches by
the critical point. One branch corresponds to the high density ] ]
(liquid) phase; the other corresponds to the low dengiag c
phase. Assume the system is initially prepared in the low 0.265
density(gas phase withfs=0.2. When the pressure increases 10 11 12 13 14 15 16 17
to some value, the two-phase region is encountered at point f
and a liquid phase d with a low fg begins to emerge. As the
system is compressed, the gas phase evolves from pint FIG. 6. The second binodal curve with larger strangeness frac-
¢, while the liquid phase evolves fromto d. If the pressure tion at temperaturd=15 MeV.B andC are the critical points.

0.280 1 4

0.275 4 4

p (MeVim®)

0.270 4 4
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' ) ' ) ' ) only be in the gas phase. When 1:04,<1.66, the system
can be in a state of liquid-gas coexistence, while for
fs>1.66, the system can once again only be in the gas phase.
The critical temperature for strange hadronic matter \ith
=2 is about 13.6 MeV. For the case of the linear definition of
effective baryon masg,; decreases with increasirgif fgis
smaller than 1.1. Ifgis larger than 1.1T, increases witfg

till fs=2.0. Compared with the square root catgchanges
more quickly withfg in this case. The highest and lowdst
values are 17.9 and 12.0 MeV with the correspondige0
andfs=1.1.

T,(MeV)

V. SUMMARY

In this paper, we applied the chiral 8) quark mean
v T v T . T . field model to investigate the properties of strange hadronic
0.0 0.5 1.0 18 20 matter at finite temperature and density. All the parameters
f have been determined in earlier papers and there is no further
parameter to be adjusted. The model works very well at zero
FIG. 7. The critical temperatur, versus strangeness fraction temperature. The saturation properties and compression
fs. The solid and dashed lines correspond to the square root amhodulus of nuclear matter are reasonable. The hyperon po-
linear case, respectively. tentials are close to the empirical values for strange hadronic
_ _ o matter. The results of finite nuclei and hypernuclei are also
pointsB andC. One branch is for the liquid phase; the other ¢ongistent with the experiments. In this paper, the liquid-gas
is for the gas phase. One can see that the differendg of phase transition of strange hadronic matter was studied in
between liquid and gas phase is very small. At the criticakhis model. For strange hadronic matter, there are two inde-
points B and C the strangeness fraction is about 1.04 andyendent conserved charges. The system will be in liquid-gas
1.66, respectively. If is smaller than 1.04 but larger than yhase coexistence if the pressure and the chemical potentials
0.24, orfs>1.66, the system can only be in the gas phase. At g the baryons are the same in the two phases. During the
the critical pomtsB andC, the strangengss fraction of |IC{UIq. phase transition, the strangeness fracfipof liquid and gas
and gas phases is the same. The liquid-gas phase transitiqigases is different and changes during the phase transition,
at these two points are the same as in symmetric nuclegfqgh the totaf, is conserved. We found that there are two
matter. The pressure stays constant &ndoes not change  pranches of solutions which satisfy the Gibbs equations at
during the phase transition. _ . some range of temperature. One corresponds to the phase
For the linear case, there are also two kinds of solutiong-ansition at smallf,, while the other corresponds to the
which satisfy the Gibbs equations Bt 15 MeV. However,  yhase transition at largl, For the square root ansatz of the
the third critical pointC disappears because it moves to theggfective baryon mass, there are three critical strangeness
point with f;=2. This is because at this temperature the sySfactions during 14.6:T< 15.3 MeV. For the linear defini-
tem can be in two-phase coexistence whigh 1.75. This o of effective mass, there are two critical points when
can be seen clearly from Fig. 2 where_ the unphysical regioq s o« T< 159 MeV since the third one disappears and
exists for very large strangeness fractign moves to the point witli;z=2. The difference ofin the two
Therefore, for the case of the square root ansatz, altgspases is small, especially in the case of higher strangeness
gether there are three critical strangeness fractions fog5ction. The critical temperaturg, does not change mono-
strange hadronic matter at temperattirel5 MeV, while for tonically with f. For the square root case, fif<0.65 or
the linear d.e_finition. of the e_ffective baryon mass, there arefs> 1.3, T, decreases, while for 0.65f,<1.3, T, increases
only two critical points. In Fig. 7, we plot the critical tem- it increasingf.. For the linear casdl, first decreases and
perature versus strangeness fraction. For the square root caggan increases with increasifig The minimum critical tem-
the critical temperature first decreases with increading perature is about 12.0 MeV with=1.1.
When 0.65< f;<1.3, T, increases with.. For fg greater than

1.3, T. decreases with f; again. In the range
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