STRATEGIES FOR CONSTRAINED OPTIMISATION

G. MCC. Haworth ${ }^{I}$
Reading, England

Abstract

The latest 6-man chess endgame results confirm that there are many deep forced mates beyond the 50 -move rule. Players with potential wins near this limit naturally want to avoid a claim for a draw: optimal play to current metrics does not guarantee feasible wins or maximise the chances of winning against fallible opposition. A new metric and further strategies are defined which support players' aspirations and improve their prospects of securing wins in the context of a k-move rule.

1. INTRODUCTION

Endgame tables (EGTs) have to date not acknowledged the FIDE 50-move rule of Article 9.3. It is irrelevant for all but 8 of the 3- to 5 -man endgames. Further, EGT authors share an interest with chess composers in the absolute capabilities of the chessmen. They have reasonably not given priority to FIDE's flexible rule which has indeed changed five times (see below) and whose detail has been difficult to implement.

However, recent progress on 6-man endgames (Nalimov, Wirth and Haworth, 1999; Hyatt, 2000; Karrer, 2000; Tamplin, 2000; Thompson, 2000) has renewed interest in having endgame data which serves both the practical player and the theoretician. The deeper maximum-depth wins imply that the 50 -move rule will become a more frequent consideration. Let a won position be termed a k-win if k is the least integer for which optimal play would not risk a draw claim under a k-move rule. About half of the 6 -man endgames computed to date feature k-wins with $k>50$. Currently, practical players may be said to have two objectives:

- to win positions which are k-wins for $k \leq 50$ without risking a 50 -move draw claim, and
- to maximise the probability of winning a k-win position for $k>50$.

These objectives are addressed here. Section 2 questions the appropriateness of the rule given a demonstrably effective aggressor. Section 3 introduces a number of metrics that define varieties of optimal play. Section 4 shows the value of the now disused metric Depth to Zeroing move ${ }^{2}$ (DTZ). Section 5 defines the new metric Depth by the Rule (DTR) and describes algorithms for generating DTR data. Section 6 demonstrates the failings of a naive strategy for using DTR and defines further strategies using DTR and DTZ data.

2. HISTORY OF THE RULE

Ruy López suggested a 50 -move limit in Article 17 of his Chess Code of 1561, perhaps in the interests of his fellow coffee-house professionals who played for wagers. The 1883 London Tournament's rules, the basis of FIDE's rules today, were the first to state that a P-push or capture would zero the count.

In 1974, FIDE first enabled the 50 -move rule to be varied. They did so with 100 -move clauses, in 1978 for KNNKP (Troitzkiĭ, 1906-1910, 1934), in 1982 for $\operatorname{KRP}(\mathrm{a} 2) \mathrm{KbBP}(\mathrm{a} 3)$ following the Timman-Velimirović game (Van den Herik, Herschberg and Nakad, 1987), and in 1984 for KRBKR (59) (Croskill, 1864; Nunn, 1994). They did not meet all the requirements defined by Roycroft (1984) at the first opportunity.

By 1988, computer results, albeit single-sourced, were plentiful (Thompson, 1986) and endgame-specific limits were suggested. However, FIDE adopted a simpler stance, replacing the 100 -move clauses by a 75 -move allowance for just the six endgames KBBKN (Roycroft, 1983), KNNKP, KQKBB, KQKNN, KQP(x7)KQ and KRBKR (Kažíc, 1989; Mednis, 1989). KRPKBP with blocked Pawns ceased to be an exception.

[^0]Following Stiller's (1991) discovery that KRBKNN's maximum depth is 223, FIDE gave up the chase and restored the 50-move limit for all endgames in 1992 (Herschberg and Van den Herik, 1993). KRNKNN then took the record phase length to 243 (Stiller, 1996) and this could well be extended by 7 -man pawnless endgames. More details of some games and studies associated with the 50-move rule are in Appendix B.

Clearly a balance has to be struck between the extremes of denying players attainable wins and requiring the opposition to be eternally vigilent in a drawn position. Today, the main concerns are social ones for the welfare of defenders and tournament directors who wish to run their events to a schedule (Levy and Newborn, 1991): however, it is clear that these need not apply to computer-assisted play. There is an argument for waiving the 50 -move rule where a player can demonstrably achieve a theoretical win. An EGT is currently the only way to establish theoretical position values and benchmark the aggressor's effectiveness. Certainly, computers with EGTs can play won or drawn positions quickly, even if they initially assume a fallible opponent and take time to choose between equi-optimal moves (Levy, 1991). Other means of winning effectively may be created in the future. To deny players the opportunity of achieving complex wins foreshortens the domain of chess itself. It prevents us from seeing immaculate play building on the smallest of advantages and exploring the deep space of the endgame where humans may never go without the vehicle of perfect information.

3. METRICS FOR OPTIMALITY

Table 1 refines a previously published version (Nalimov et al., 1999) and contains a systematic notation to describe the various optimisation goals and related concepts. It provides a way of referring to and comparing different metrics, position depths, endgame tables, maximal depths, types of optimality and minimax strategies. Each strategy selects a subset of equi-optimal moves: one strategy may win where another draws. The actual line of play is determined by both sides' respective strategies and their ultimate choice of equi-optimal moves.

Goal	GZ	GC	GM	GR
Goal Description	Zero move-count in maximin no. of moves	'Conversion', i.e., mate, capture or P-conversion in maximin no. of moves	$\begin{gathered} \text { Mate } \\ \text { in } \\ \text { maximin } \\ \text { no. of moves } \end{gathered}$	Mate within k-move rule \ldots with maximin k
Reference player	PZ	PC	PM	PR
Metric	DTZ	DTC	DTM	DTR
Position depth	$\mathrm{dz}, \mathrm{dz}_{\mathrm{i}}$	$\mathrm{dc}, \mathrm{dc}_{\mathrm{i}}$	$\mathrm{dm}, \mathrm{dm}_{\mathrm{i}}$	$\mathrm{dr}, \mathrm{dr}_{\mathrm{i}}$
Endgame Table	EZ	EC	EM	ER
Maximal depth	mxZ	mxC	mxM	mxR
Type of optimality	Z-optimal	C-optimal	M-optimal	R-optimal
Minimax Strategy ... move-subset chosen	SZ	SC	SM	SR
Example EG tables by:				
Thompson (1986)	KxPKx, $\mathrm{x}=\mathrm{Q}, \mathrm{R}$	5-man	3-\& 4-man	3-man
Tamplin (2000); Thompson (2000)	none	5-\& 6-man	3-\& 4-man	3-man
Stiller (1989, 1991, 1992, 1996)	none	5-\& 6-man	none	none
Hyatt (2000); Nalimov (2000)	none	none	3- to 6-man	3-man
Wirth (1999)	none	KPPKP, KQQKQQ	3-\& 4-man	3-man

Table 1: Endgame goals and associated concepts.

For pawnless endgames, $\mathrm{DTC} \equiv \mathrm{DTZ}$ and $\mathrm{SC} \equiv \mathrm{SZ}$. The notation allows for more comprehensive goals. Let the nested strategy $S X_{I} X_{2} \ldots X_{n}$ be defined as subsetting the available moves with strategies $\mathrm{SX}_{1}, \mathrm{SX}_{2}, \ldots, \mathrm{SX}_{\mathrm{n}}$ in turn. A line $X-Y$ is an optimal line of play where White is reference player PX using strategy SX and Black is reference player PY using strategy SY. Appendix A shows Black, then White, having to choose between Cand M-optimal play as they approach the events of force conversion and mate.

For a specific k-win position P , a strategy SY is said to $(k$-) succeed on P if each move chosen by SY avoids the risk of a k-move draw claim. If not, SY (k-)fails on P and SY risks a draw claim on any positions from which Y-optimal play can arrive at P. Let σ denote any move-subsetting strategy. If SY succeeds on P, SY σ succeeds on P. However, as position Q-NN2 of Table 2 demonstrates, if SYo succeeds on P, SY may still fail. Let $S A \geq$ $S B$ denote that if strategy SA fails, strategy SB fails; SY $\sigma \geq S Y$. Let $\mathrm{SA}>\mathrm{SB}$ denote that $\mathrm{SA} \geq \mathrm{SB}$ and that SA sometimes succeeds where SB fails.

Key	Position	stm	Val.	DTZ	DTC	DTM	DTR	Notes
				ply	ply	ply	ply	
Maximal Positions								
mxNN-P1	6N1/8/7p/8/8/8/3N1k2/7K	w	1-0	?	228	229	?	(Dekker, 1990). max DTM pos. ... 24. ... h4 \{NN-P2\}
mxQ-NN	7Q/8/8/8/4n3/2k5/8/3K3n	b	1-0	126	126	144	126	(Nunn, 1994, p. 307). ... 14. ... Kc6 \{Q-NN1\}
mxQP-Q1	8/q7/P6k/Q7/8/8/8/6K1	w	1-0	141	213	235	141	(Thompson, 1986, p. 138). max DTZ wtm KQPKQ win
mxRN-NN	6N1/5KR1/2n5/8/8/8/2n5/1k6	w	1-0	485	485	523	485	(Thompson, 2000). max DTC/DTM wtm KRNKNN win
Positions to test strategies								
NN-P2	8/8/4k3/8/7p/6KN/6N1/8	W	1-0	?	180	181	?	$h 3$ needed before move 75...6 62. ... Kel \{NN-P3\}
NN-P3	8/8/8/8/7p/1N1K4/7N/4k3	w	1-0	≤ 24	104	105	?	SZ succeeds; SC, SM fail with 63. Nd2 \{NN-P4\}
NN-P4	8/8/8/8/7p/3K4/3N3N/4k3	b	'1-0'	35	103	104	?	63... Kf2 forces h3 to at least m80 and a draw claim
QP-Q2	8/8/P7/6k1/3q4/8/4Q1K1/8	w	1-0	99	171	193	99	(Thompson, 1986, p. 138 after 21. ... Qd4)
QP-Q3	K7/7k/P7/8/6q1/2Q5/8/8	w	1-0	1	17	41	?	(Thompson, 1986, p. 138 after 70. ... Kh7)
QBB-N1	6Q1/8/8/1n6/8/7K/7B/k6B	w	1-0	2	2	7	5	PM-PM: 1. Be5+ Nd4 2. Bxd4 Kb1 3. Qb3+ Kcl 4. Be3\#.
QBB-N2	8/8/8/1n6/8/7K/k6B/7B	w	1-0	103	103	127	103	\{QBB-N1\} PC-PC: 1. Qa2+ Kxa2 \{QBB-N2\}
Q-NN1	8/8/2k5/8/4n3/3Q2n1/8/4K3	w	1-0	99	99	117	99	PMC-PCM: 1. Qd4 ... to 37... Ka4 \{Q-NN2\}
Q-NN2	8/8/1n1K4/n1Q5/k7/8/8/8	w	1-0	25	25	41	25	SC, SMC succeed with Qg1; SM fails with Qc3/Qf2/Qg1
Miscellaneous								
NN-P5	7k/5K2/8/4N1N1/8/8/7p/8	b	1-0	1	1	2	1	The defender is forced to effect the conversion

Table 2: Illustrative chess positions.

4. ENDGAMES DEEPER THAN 50 MOVES

Below is a list of known endgames with k-wins for $k>50$ (Thompson, 1986, 2000; Van den Herik et al., 1987; Stiller, 1989, 1991, 1992, 1996; Dekker, Van den Herik and Herschberg, 1990; Wirth, 1999; Hyatt, 2000; Lincke, 2000; Nalimov, 2000; Tamplin, 2000). Obtrusive forces are in italics: $m x R$ is in brackets.

5 man KBBKN (66), KBNKN (77), KNNKP (70+), KQKBB (71), KQKNN (63), KQRKQ (60), KRBKR (59), KQPKQ with wP on a6 (71), a7 (69), b3 (51), b6 (61), b7 (55), c3 (53), d3 (54), d4 (64), d6 (58).
6 man KBBBKR (69), KBBNKR (68), KNNNKB (92), KNNNKN (86), KQBKRR (85), KQKBBB (51+), KQKBBN (63+), KQNKRR (153), KQNNKQ (72), KQRKQB (73), KQRKQN (71), KQRKQR (92), KRBKBB (83), KRBKBN (98), KRBKNN (223), KRBNKQ (99), KRNKBB (140), KRNKBN (190), KRNKNN (243), KRP(a2)KbBP(a3) (54+), KRRBKQ (82), KRRKRB (54), KRRKRN (73), KRRNKQ (101), KRRRKQ (65).

Zeroing move, Conversion and Mate are increasingly distant goals. While the corresponding minimax strategies SZ, SC and SM are highly correlated, one strategy can preclude another. A focus on the longer-term objectives can extend the first phase beyond 50 moves but equally, an exclusive focus on the first phase can overextend a subsequent phase. In practice, players today have a choice only of tables providing DTC data (Thompson, 1986; ChessBase, 2000) or DTM data (Hyatt, 2000; Nalimov, 2000); no DTZ data is easily available for P-endgames. Table 2, which collates all positions cited in this paper, gives examples of blind adherence to strategies SZ, SC or SM missing 50-wins, starting with three first-phase failures.

The KQKNN position Q-NN1 (Tamplin, 2000) leads with MC-optimal play to position Q-NN2 on move 38. With just 13 moves left and all required for conversion, strategy SM selects 38. Qc3, Qf2 and Qg1 of which only Qg 1 is C-optimal: SM therefore fails. Strategy SMC succeeds by narrowing the choice to Qg 1 .

The maximal KNNKP position mxNN-P1 (Dekker, Van den Herik and Herschberg, 1990) leads by MC-CM play to NN-P2 after 24. ... h4. White must now force $h 3$ by move 74. However, at position NN-P3, the SC and SM strategies dictate 63 . Nd2 leading to position NN-P4. This allows 63 Kf2, postponing $h 3$ until move 80. Strategies SC and SM therefore fail but Dekker et al. imply that strategy SZ forces $h 3$ in time to win NN-P3.

The KQPKQ position QP-Q3 is the result of 49 moves of Z-optimal play from QP-Q2 (Thompson, 1986, p. 138 after 21. ... Qd4) but could equally well have been the result of 49 moves of C-optimal play from another position. Strategy SZ succeeds just in time with 50 . a7 but SC and SM fail by dictating 50 . Kb8.

The KQBBKN position QBB-N1 shows that strategy SZ, far from being a panacea, also fails. It misses the four-move mate, sacrifices the Queen unnecessarily and leaves a second phase of 52 moves. Perhaps one should never resign against a computer. Line f of Appendix A features a more benign knight sacrifice.

The positions above show SM, SC and SZ failing individually. However, with mleft denoting the number of moves left in the current phase, the following non-minimax strategies optimise against longer-term goals but safeguard the length of the current phase. They are defined in terms of the subset of moves they return:

```
SZ' \equiv{move to P}(d\mp@subsup{z}{i}{\prime})|d\mp@subsup{z}{i}{}\leqmleft - 1}
S\sigma*}\equiv\mathrm{ if dz> mleft then SZ else SZ' }\sigma..\mathrm{ e.g., SC*, SM* and SMC* }\equiv(\textrm{SMC}\mp@subsup{)}{}{*}.\textrm{S}\mp@subsup{\sigma}{}{*}\geq\textrm{S}\sigma\mathrm{ but SZ }\mp@subsup{\sigma}{}{*}\equiv\textrm{SZ}\sigma
SA
```

SM* and SA_{1} succeed on the positions above but it is conjectured that they fail to win some winnable positions and that a metric recognising a k-move rule explicitly is needed. For example, KBBKNN has mxM $=106$ moves and $m x Z=38$ moves (Stiller, 1996); 24% of wtm positions are wins and 65% of these have $d m>50$. It converts to KBBKN which has $d z>50$ for some 11.16% of White wins. Let the KBBKN wins for White be partitioned into sets $\mathrm{W}(d z \leq 50)$ and $\mathrm{D}(d z>50)$. Let three subsets of KBBKNN wins be defined as follows:
$\mathrm{A} \quad \equiv\left\{\mathrm{P} \mid \mathrm{P}\right.$ is a Wh. win: Wh. cannot mate in KBBKNN but can force P to $\mathrm{P}_{\mathrm{w}} \in \mathrm{W}$ in $d z_{w} \leq 50$ moves $\}$
$\mathrm{B} \equiv\left\{\mathrm{P} \mid \mathrm{P}\right.$ is a Wh. win: Wh. cannot mate in KBBKNN but can force P to $\mathrm{P}_{\mathrm{d}} \in \mathrm{D}$ in $d z_{d} \leq 50$ moves $\}$
$\mathrm{AB} \equiv\left\{\mathrm{P} \mid \mathrm{P} \in A \cap B, d m>50\right.$ and $d z_{d} \leq d z_{w}$ implying $\left.d z=d z_{d} \leq 50\right\}$, see Figure 1.

Figure 1: Winning a 'difficult' position P in KBBKNN.

For any $\mathrm{P} \in \mathrm{AB}, \mathrm{SA}_{1} \equiv \mathrm{SC} \equiv \mathrm{SC}$ * because $d m>50$: this strategy fails because unconstrained C-optimal play could arrive at position P_{d}. Neither is SM^{*} constrained to avoid P_{d}. However, P can be won in two phases of \leq 50 moves by conversion to a position P_{w} in W and then to mate in KBBK . The positions in set AB require a more circuitous route to secure the win, i.e., constrained optimisation that recognises the 50 -move rule.

The same scenario may occur before the long phases of KQPKQ , corresponding to pawn positions $\mathrm{a} 6, \mathrm{a} 7, \mathrm{~b} 3$, $\mathrm{b} 6, \mathrm{~b} 7, \mathrm{c} 3, \mathrm{~d} 3, \mathrm{~d} 4$ and d6. The position sets equivalent to A, B and AB above are also more easily computed.

Let $\mathrm{G}(d r, b m)$ be the goal of ending a phase by converting to a position with $\mathrm{DTR}=d r$ in $b m$ moves or less. Figure 2 illustrates a scenario in which various goals may be achieved, some requiring more moves than others. The initial default goal is $\mathrm{G}_{1}(50,50)$. However, an initial DTR of 30 implies that $\mathrm{G}_{2}(30,30)$ is achievable. Further goals $\mathrm{G}_{3}(25,43)$ and $\mathrm{G}_{4}(22,56)$ are also achievable although the last is beyond the 50 -move limit.

As already observed, strategy SZ may not win under the minimal k-move rule possible. Equally, conversions to lower DTR values than the phase's initial $d r$ may be achievable by extending the current phase beyond $d r$ moves but not beyond the k-move limit. Section 6 returns to this scenario and considers how White, traditionally pursuing a win, can narrow down its choice of moves while also managing a risk, which is in fact present, that the latest $\mathrm{G}(d r, b m)$ goal may be missed.

Figure 2: Phase-ending goals $\mathrm{G}_{\mathrm{i}}(d r, b m)$.

5. THE DTR METRIC AND ENDGAME TABLE

The 50 -move rule generalises to the k-move rule and suggests metric DTR as follows:
a position's Depth by the Rule, DTR, is the least k for which the position can be won without the risk of a draw claim under a k-move rule.

It immediately follows that $d z \leq d c \leq d m, d z \leq d r \leq d m$, and that a position can be moved to the next phase in at most a further $d r$ moves, leaving a position with DTR $\leq d r$. Further, a position's $d r$ satisfies:

- $d r=\max [d z, \min (d r$ of won successors) $)$ for side-to-move, stm, wins
- $d r=\max [d z, \max (d r$ of lost successors) $)$ for stm losses

The data for metric DTR is stored in endgame table ER. $\mathrm{ER} \equiv \mathrm{EM}$ for $\mathrm{K} x \mathrm{~K}$ where $x=\mathrm{Q}, \mathrm{R},(\mathrm{B}, \mathrm{N})$,BB or BN . When computing ER for an endgame, it is assumed that table EZ already exists and that ER has already been computed for subsequent phases of play following a pawn-push or capture.

5.1 Algorithm AL1: generating table ER from table EZ

The formulae above suggest a straightforward, if relatively inefficient, algorithm AL1 for generating an EGT table ER from the table EZ. The figure 50 does not feature and the table ER can be used under any k-move rule.

```
\{initialise\} ChangeFlag \(\leftarrow\) True; for \(i=1\) to index_range do ER[i] \(\leftarrow\) EZ[i] end_do;
    max_next_dr \(=\max (\mathrm{mxR}\) of a subgame of this endgame) \(\{d r \geq\) max_next_dr \(\Rightarrow d r=d z\}\);
\{cycle \(\}\) while ChangeFlag \(=\) True do ChangeFlag \(\leftarrow\) False;
    for \(i=1\) to index_range do
            if \(d r<\) max_next_dr\(\wedge \mathrm{ER}[\mathrm{i}] \neq \mathrm{Draw} \wedge \mathrm{ER}[\mathrm{i}] \neq\) Broken \(^{3}\) then
            if position(i) is an stm win then \(d r 2=\max (E Z[i], \min (E R[j]\) of won successors)) end_if;
            if position(i) is an stm loss then \(d r 2=\max (E Z[i], \max (E R[j]\) of successors)) end_if;
            if \(d r 2 \neq \mathrm{ER}[i]\) then \(\mathrm{ER}[\mathrm{i}] \leftarrow d r 2\); ChangeFlag \(\leftarrow\) True end_if;
        end_if ;
    end_do; end_do \(\left\{\right.\) end: ER is now the definitive ER table with ER \(\left.[\mathrm{i}] \equiv d r_{i}\right\}\)
```

Note that it is sometimes necessary to adjust an original $d z$ value more than once. For example, the position QBB-N1 would start with $d r=d z=2$ plies, would then be given $d r=103$ plies and finally $d r=5$ plies. The same is true in the Edwards/Nalimov DTM algorithm. For QBB-N1, $d m=105$ plies and later $d m=7$ plies.

With $d r>k$, the ER table can be used by the infallible attacker to minimise $d r$ and give a fallible opponent an opportunity to lower $d r$. Conversely, if $d r \leq k$, an infallible defender can maximise $d r$ and give a fallible opponent an opportunity to raise $d r$.

5.2 Algorithm AL2: generating table ER by modified retro-method

The algorithm AL2 for constructing the endgame table ER is based on the established retro-search algorithm (Thompson, 1986, 1996; Nalimov et al., 1999) used in the past to create EZ and EC tables to the DTZ and DTC metrics respectively. It is now more convenient to think of depth in plies and assume a $2 k$-plies rule. The modified algorithm introduces two constraints. First, it considers only conversions to i-plies-wins with $i \leq 2 k$ and its retro-search only reaches back to positions with $d z \leq 2 k$ plies.

The following definitions are used:
$\mathrm{C}_{0}=$ \{subgame positions $\mathrm{P} \mid$ the stm is mated $\}$
$\mathrm{C}_{\mathrm{i}}=$ \{subgame positions $\mathrm{P} \mid \mathrm{P}$ is an h-plies win for $h \leq i$, i.e., no phase has more than h plies \}
$\mathrm{M}=\{$ endgame positions $\mathrm{P} \mid$ the stm is mated $\}: \mathrm{X}_{\mathrm{i}, 0}=\mathrm{M}$.
$\mathrm{W}_{\mathrm{i}}=$ \{endgame positions $\mathrm{P} \mid$ the stm, winning, can mate or move to a won $\mathrm{P}^{\prime} \in \mathrm{C}_{\mathrm{i}}$ in one ply \}
$\mathrm{L}_{\mathrm{i}}=$ \{endgame positions $\mathrm{P} \mid$ the stm, losing, must move to a lost $\mathrm{P}^{\prime} \in \mathrm{C}_{\mathrm{i}}$ in one ply\} see, for example, position NN-P5 or QBB-N1 after 1. Qa2+. $\mathrm{X}_{\mathrm{i}, 1}=\mathrm{W}_{\mathrm{i}} \cup \mathrm{L}_{\mathrm{i}}$.
$\mathrm{X}_{\mathrm{i}, \mathrm{j}}=$ \{endgame positions $\mathrm{P} \mid$ stm can force or must allow conversion to a P in C_{i}, or mate, in $\leq j$ plies\}

[^1]Imagine that the algorithm is divided up into phases and that the i th phase finds those positions in, say, KBBKNN which can be won under an i-plies rule. Each phase starts by identifying the mates in KBBKNN. Then it identifies those boundary positions which can be or must be converted in one ply to mate or to a valuepreserving subgame position, also winnable under an i-plies rule. The phase then computes just $i-1$ cycles of retro-search, each one identifying positions one ply deeper into KBBKNN.

Given a set X of positions in an endgame, let the functions $\mathbf{W}(\mathrm{X}), \mathbf{L}(\mathrm{X}), \boldsymbol{\Pi}(\mathrm{X})$ and $\boldsymbol{\Sigma}(\mathrm{X})$ be defined as:

```
\(\mathbf{W}(\mathrm{X})=\left\{\right.\) positions \(\mathrm{P} \mid\) the winner, to move, can move to some won \(\left.\mathrm{P}^{\prime} \in \mathrm{X}\right\}: \mathbf{W}(\mathrm{X} \cup \mathrm{Y})=\mathbf{W}(\mathrm{X}) \cup \mathbf{W}(\mathrm{Y})\)
\(\mathbf{L}(\mathrm{X})=\left\{\right.\) positions \(\mathrm{P} \mid\) the loser, to move, must move to some \((\) lost \(\left.) \mathrm{P}^{\prime} \in \mathrm{X}\right\}: \mathbf{L}(\mathrm{X} \cup \mathrm{Y})=\mathbf{L}(\mathrm{X}) \cup \mathbf{L}(\mathrm{Y})\)
\(\boldsymbol{\Pi}(\mathrm{X})=\mathbf{W}(\mathrm{X}) \cup \mathbf{L}(\mathrm{X}):\)
    \(\boldsymbol{\Pi}(\mathrm{X} \cup \mathrm{Y})=\mathbf{W}(\mathrm{X} \cup \mathrm{Y}) \cup \mathbf{L}(\mathrm{X} \cup \mathrm{Y})=\mathbf{W}(\mathrm{X}) \cup \mathbf{W}(\mathrm{Y}) \cup \mathbf{L}(\mathrm{X}) \cup \mathbf{L}(\mathrm{Y})=\boldsymbol{\Pi}(\mathrm{X}) \cup \boldsymbol{\Pi}(\mathrm{Y})\)
\(\Sigma(\mathrm{X})=\mathrm{X} \cup \boldsymbol{\Pi}(\mathrm{X}): \Sigma(\mathrm{X} \cup \mathrm{Y})=\mathrm{X} \cup \mathrm{Y} \cup \boldsymbol{( \mathrm { X }} \cup \mathrm{Y})=\mathrm{X} \cup \mathrm{Y} \cup \boldsymbol{\Pi}(\mathrm{X}) \cup \boldsymbol{( \mathrm { Y }})=\boldsymbol{\Sigma}(\mathrm{X}) \cup \boldsymbol{\Sigma}(\mathrm{Y})\)
```

It follows that $\mathrm{X}_{\mathrm{i}, \mathrm{j}+1}=\boldsymbol{\Sigma}\left(\mathrm{X}_{\mathrm{i}, \mathrm{j}}\right), \mathrm{X}_{\mathrm{i}, 2 \mathrm{j}}=\boldsymbol{\Sigma}^{2 \mathrm{j}-1}\left(\mathrm{X}_{\mathrm{i}, 1}\right)$ and that the set of h-plies wins for $h \leq i$ is the set $\mathrm{X}_{\mathrm{i}, \mathrm{i}}$. The set of i-plies wins is $\mathrm{X}_{\mathrm{i}, \mathrm{i}}-\mathrm{X}_{\mathrm{i}-1, \mathrm{i}-1}$ and the set of k-wins is $\mathrm{X}_{2 \mathrm{k}, 2 \mathrm{k}}-\mathrm{X}_{2 \mathrm{k}-2,2 \mathrm{k}-2}$.

Figure 3: Algorithm AL2 for computing endgame table ER, phase i.

It is obvious that each phase recomputes much of what has been computed before. Further, the function $\boldsymbol{\Pi}(\mathrm{X})$ makes random access to data, particularly expensive when confirming that the loser is forced to move to some position in X. There is however an opportunity to exploit previous data to increase efficiency, reducing the use of Π at the expense only of some sequential access to and manipulation of interim sets of results.

5.3 Using known subsets of $\mathbf{X}_{\mathrm{i}, \mathrm{j}}$

Let $\mathrm{X}_{\mathrm{i}, \mathrm{j}} \equiv \varnothing$ for $\mathrm{i}<0$ and $\mathrm{j}<0 . \mathrm{X}_{\mathrm{i}, 0}=\mathrm{M}$. Note that $\mathrm{X}_{\mathrm{i}, \mathrm{j}}$ is not defined for $j>i$.
Let $Y_{i, j}=X_{i, j}-X_{i, j-1}$ and $Z_{i, j}=Y_{i, j}-Y_{i-1, j}$. Then $Y_{i, j} \subseteq Y_{i-1, j} \cup Z_{i, j}$ and $X_{i, j}=X_{i, j-1} \cup Y_{i, j}=X_{i, j-1} \cup Y_{i-1, j} \cup Z_{i, j}$. Note that, because a position may be in $\mathrm{Y}_{\mathrm{i}-1, \mathrm{j}} \cap \mathrm{X}_{\mathrm{i}, \mathrm{j}-1}$, it is possible that $\mathrm{Y}_{\mathrm{i}-1, \mathrm{j}}-\mathrm{Y}_{\mathrm{i}, \mathrm{j}} \neq \varnothing$.
The computation of $\mathrm{X}_{\mathrm{i}, \mathrm{j}}$ involves only the computation of $\Pi\left(\mathrm{Z}_{\mathrm{i}, \mathrm{j}-1}\right)$ for $j<i$ and $\Pi\left(\mathrm{Y}_{\mathrm{i}, \mathrm{j}-1}\right)$ for $j=i$, see Figure 4:

$$
\begin{aligned}
& X_{i, j}=\boldsymbol{\Sigma}\left(\mathrm{X}_{\mathrm{i}, \mathrm{j}-1}\right)=\boldsymbol{\Sigma}\left(\mathrm{X}_{\mathrm{i}, \mathrm{j}-2} \cup \mathrm{Y}_{\mathrm{i}, \mathrm{j}-1}\right)=\boldsymbol{\Sigma}\left(\mathrm{X}_{\mathrm{i}, \mathrm{j}-2}\right) \cup \boldsymbol{\Sigma}\left(\mathrm{Y}_{\mathrm{i}, \mathrm{j}-1}\right)=\mathrm{X}_{\mathrm{i}, \mathrm{j}-1} \cup \boldsymbol{\cup}\left(\mathrm{Y}_{\mathrm{i}, \mathrm{j}-1}\right) \text {, i.e., } \mathrm{X}_{\mathrm{i}, \mathrm{i}}=\mathrm{X}_{\mathrm{i}, \mathrm{i}-1} \cup \boldsymbol{\Pi}\left(\mathrm{Y}_{\mathrm{i}, \mathrm{i}-1}\right) . \\
& X_{i, j}=\boldsymbol{\Sigma}\left(X_{i, j-1}\right)=\boldsymbol{\Sigma}\left(X_{i, j-2} \cup Y_{i, j-1}\right)=\boldsymbol{\Sigma}\left(X_{i, j-2} \cup Y_{i-1, j-1} \cup Z_{i, j-1}\right) \\
& =\boldsymbol{\Sigma}\left(\mathrm{X}_{\mathrm{i}, \mathrm{j}-2} \cup \mathrm{X}_{\mathrm{i}-1, \mathrm{j}-2} \cup \mathrm{Y}_{\mathrm{i}-1, \mathrm{j}-1} \cup \mathrm{Z}_{\mathrm{i}, \mathrm{j}-1}\right) \text { because } \mathrm{X}_{\mathrm{i}-1, \mathrm{j}-2} \subseteq \mathrm{X}_{\mathrm{i}, \mathrm{j}-2} \\
& =\boldsymbol{\Sigma}\left(\mathrm{X}_{\mathrm{i}, \mathrm{j}-2} \cup \mathrm{X}_{\mathrm{i}-1, \mathrm{j}-1} \cup \mathrm{Z}_{\mathrm{i}, \mathrm{j}-1}\right)=\boldsymbol{\Sigma}\left(\mathrm{X}_{\mathrm{i}, \mathrm{j}-2}\right) \cup \boldsymbol{\Sigma}\left(\mathrm{X}_{\mathrm{i}-1, \mathrm{j}-1}\right) \cup \boldsymbol{\Sigma}\left(\mathrm{Z}_{\mathrm{i}, \mathrm{j}-1}\right)=\mathrm{X}_{\mathrm{i}, \mathrm{j}-1} \cup \mathrm{X}_{\mathrm{i}-1, \mathrm{j}} \cup \boldsymbol{\Pi}\left(\mathrm{Z}_{\mathrm{i}, \mathrm{j}-1}\right) . \\
& Y_{i, j}=\left[X_{i-1, j} \cup \boldsymbol{\Sigma}\left(Z_{i, j-1}\right)\right]-X_{i, j-1}=\left[X_{i-1, j-1} \cup Y_{i-1, j} \cup \boldsymbol{\Sigma}\left(Z_{i, j-1}\right)\right]-X_{i, j-1}=\left[Y_{i-1, j} \cup \boldsymbol{\Sigma}\left(Z_{i, j-1}\right)\right]-X_{i, j-1} . \\
& Z_{i, j}=Y_{i, j}-Y_{i-1, j}=\boldsymbol{\Sigma}\left(Z_{i, j-1}\right)-X_{i, j-1}-Y_{i-1, j} .
\end{aligned}
$$

Figure 4: Subsetting $X_{i, j}$ to minimise use of function Π.

6. USES OF THE DTR DATA

Let us suppose, as is usual, that White is pursuing a win under a k-move rule against a possibly fallible player. For convenience, moves will be numbered from l in the current phase. The following notation is used:

```
k indicates the k-move rule in force: currently, FIDE has set k=50 for all endgames
mplayed the history factor, the number of white moves played in this phase
mleft the number of white moves left before the risk of a draw claim; mleft =k-mplayed
P(dr,dz)\quada wtm position P with depths dr in metric DTR and dz in metric DTZ
CP the set {P
CQ the subset {\mp@subsup{P}{i}{}\inCP|d\mp@subsup{z}{i}{}\leqmleft - 1}: }\varnothing\subseteqCQ\subseteqCP
G}(d\mp@subsup{r}{j}{},b\mp@subsup{m}{j}{})\mathrm{ the jth goal, to conclude the phase by conversion with DTR dr on or before move bm
gi index of the last goal defined
CR the subset {P
```

As any strategy $S \sigma$ can be transformed into a strategy $S \sigma^{*}$ considering only those moves that safeguard the first phase, it is assumed below that $d z \leq m l e f t$.

6.1 The minimax strategy SR

The equivalent of the strategies SM, SC and SZ in Table 1 is SR which selects \{move to $\mathrm{P}_{\mathrm{i}}\left(d r_{i}, d z_{i}\right) \mid d r_{i} \leq d r_{j}$ \} as the set of options. The two ways in which SR and SR* fail suggest the definition of a range of strategies which leave a wider choice of moves available. It is assumed that the opponent is playing to maximise DTR.

In the example of Figure 2 with a 50 -move rule, the default goal $\mathrm{G}_{1}(50,50)$ is immediately superceded by $\mathrm{G}_{2}(30,30)$ before White's first move. With 18 moves played, the position $\mathrm{P}(25, d z)$ implies a potential goal $\mathrm{G}_{3}(25,43)$. This, if reached, will also safeguard the win at the expense of more moves in the current phase. Strategy SR always aims for the lowest $d r$ and therefore, in effect, adopts goal $\mathrm{G}_{3}(25,43)$.

As position QBB-N1 of Table 1 shows, albeit with the entirely hypothetical targets of $d r=3$ and $d z=1$, White may have to choose between its $d r$ and $d z$ targets in position $\mathrm{P}(d r, d z)$. It cannot necessarily achieve both and in the event of conflict, will safeguard the current phase in an S σ^{*} strategy. Figure 5 shows that after 28 moves, a feasible move, apparently compatible with the $d r$ target and $d z$ constraint, is in fact a wrong choice. It leads to conversion positions with $d r \leq 25$ but these are not only beyond move 43 but beyond move 50 . The $d r$ target would therefore have to be abandoned with unpredictable consequences. This demonstrates that there is a risk which is not present with the DTM, DTC and DTZ metrics: the aggressor may stray off the winning line.

After 33 moves, in position $\mathrm{P}(22, d z)$, SR again adopts the implied goal $\mathrm{G}_{4}(22,56)$. This, in the worst case, is not achievable until after Black claims a 50-move draw. The risk of failing to win in this way is easily avoided by strategies which do not adopt goals with $b m>50$.

Figure 5: Winning, incorrect and over-reaching lines of play.

The following measures are suggested to lower the residual risk of a draw claim when using SR^{*} :

- avoid subsetting the moves offered by SR^{*}, e.g., by minimum $d z$
- instead, search forward a number of plies continuing to subset options with SR^{*}
- if the lowest visible $d r$ in unattainable within k moves, relax the $d r$ goal.

Given the failings of SR^{*}, a range of strategies SR_{a} is defined, featuring constraints on the $d r$ attempted.

6.2 The $\mathbf{S R}_{\mathrm{a}}$ Strategies

Four strategies are defined differing in the criteria applied to potential goals before they are adopted as actual goals. All strategies adopt the default goal $\mathrm{G}_{1}(k, k)$ in the context of a k-move rule, even though it might not be achievable against infallible play. SR^{*} above is equivalent to $\mathrm{SR}_{4} *$ below. In summary:

- $\quad \mathrm{SR}_{1}$ focuses only on goal $\mathrm{G}_{1}(k, k)$, in effect, providing a fixed filter on the move options
- SR_{2}, given goal $G_{i}\left(d r_{i}, b m_{i}\right)$, adopts $G_{j}\left(d r_{j}, b m_{j}\right)$ provided $d r_{j}<d r_{i}$ and $b m_{j} \leq b m_{i}: \mathrm{SR}_{2} \geq \mathrm{SR}_{1}$
- SR_{3}, given goal $G_{i}\left(d r_{i}, b m_{i}\right)$, adopts $G_{j}\left(d r_{j}, b m_{j}\right)$ provided $d r_{j}<d r_{i}$ and $b m_{j} \leq k: \mathrm{SR}_{3} \geq \mathrm{SR}_{1}$
- $\quad \mathrm{SR}_{4}$, given goal $G_{i}\left(d r_{i}, b m_{i}\right)$, adopts $G_{j}\left(d r_{j}, b m_{j}\right)$ provided $d r_{j}<d r_{i}$.

Where SR_{2} and SR_{3} adopt a new goal, they confirm that the aggressor has a winning line and the effect of any previous, suboptimal choices of move may be ignored. Returning to the example of Figure 2, SR_{1} uses only goal $G_{1}, S R_{2}$ uses G_{1} and $G_{2}, S R_{3}$ uses $G_{1}-G_{3}$ and $S R_{4}$ uses $G_{1}-G_{4}$.

6.3 An algorithm for the SR_{a}

The algorithm, written for the attacker, returns a subset $C M$ of moves. To guard against DTR $>k, C M$ is first defined to be the same subset which strategy SR will return, i.e., those moves with minimal $d r$.

```
\{initialise: \(a \equiv d r\) focus is assumed set \} high_value \(=10^{9}\);
    if mplayed \(=0\) then \(G_{I} \leftarrow G_{l}(k, k)\); \(g i \leftarrow 1\) end_if;
\(\{\) step 1: in case \(d r>k\}\)
    \(C M \leftarrow\left\{P_{i} \mid P_{i}\right.\) is selected by strategy SR \(\}\)
\{step 2: re-adopt a previous goal if this exists and the current goal is clearly unattainable\}
    while \(C R=\varnothing \wedge g i>1\) do \(g i \leftarrow g i-1\);
\{step 3: if possible, set a stronger goal from those implied by the current move options\}
    if \(a \neq 1 \wedge C R \neq \varnothing\) then
        \(d r m i n=\min \left\{d r_{i} \mid P_{i}\left(d r_{i}, d z_{i}\right) \in C R\right\} ;\)
            if mplayed \(+1+d r m i n \leq b m \_l i m i t(a)\) then add_new_goal(G, \(\left.g i\right)\) end_if
        end_if;
\{step 4: if possible, subset to \(P_{i}\) not excluding the current goal\}
    if \(C R \neq \varnothing\) then \(C M \leftarrow C R\);
```

where $b m_{-}$limit $(a) \equiv$ begin if $a=1,2,3$ or 4 then $k, b m_{g i}, k$ or high_value respectively end_if and $a d d _$new_goal $(G, g i, \ldots) \equiv$ begin $g i \leftarrow g i+1 ; G_{g i}=G_{g i}(d r m i n, d r m i n+m p l a y e d+1)$ end

6.4 Examples of SR_{a} in use

SR_{1} succeeds where SZ fails on position $\mathrm{QBB}-\mathrm{N} 1$ of Table 1 and positions $\mathrm{P} \in \mathrm{AB}$ in Figure 1. Strategy SA_{1} of section 4 can be strengthened to:

$$
\mathrm{SA}_{2} \equiv \text { if } d m \leq m l e f t \text { then SM else if } d c \leq m l e f t \text { then } \mathrm{SR}_{\mathrm{a}} \mathrm{C} \text { else } \mathrm{SR}_{\mathrm{a}} \mathrm{ZCM}^{*}
$$

The example of Figure 6 shows that goals $G_{1}-G_{5}$ have been logged starting with the default goal $G_{1}(50,50)$. After Black's first move, the goal can be improved to ' 45 by move 45 ' and later to ' $44 / 43$ by 45 ' and ' 41 by 44^{\prime}. With White about to play its $17^{\text {th }}$ move in the phase, three scenarios labeled a, b and c are portrayed. For each, a single move to a position $P_{\alpha}(d r, d z)$ is indicated, implying a potential goal which may or may not be adopted. SR_{2} will adopt goal $\mathrm{G}_{\mathrm{a}}(23,40)$ but not G_{b} or G_{c} as these may only be achievable after the current goal horizon of move $44 . \mathrm{SR}_{3}$ will adopt G_{a} and $\mathrm{G}_{\mathrm{b}}(29,46)$ as the latter is theoretically achievable before 50 moves elapse. S_{4} will adopt any of $G_{a}-G_{c}$, possibly over-reaching with goal G_{c} and being forced back to a previous goal or to strategy SZ.

Figure 6: Example game phase with various destination positions $P_{\alpha}(d r, d z)$ and implied goals $G_{\alpha}(d r, b m)$.

7. SUMMARY

The basic minimax strategies SM and SC currently in use can fail in the context of the 50 -move rule by allowing unnecessary draws. Even strategy SZ can fail by minimising the length of the current phase of play at the cost of an over-long subsequent phase. More complex nested strategies such as SMC, SCM and SZCM improve the minimax approach. The non-minimax strategies such as SZ^{\prime} and SMCZ^{*} also require no more than the relatively easy production of the endgame tables EZ to the DTZ metric for P-endgames.

However, the general k-move rule suggests a new metric DTR. It is conjectured that strategies using metrics which do not recognise this rule explicitly will eventually fail. The endgames KQPKQ and KBBKNN may well harbour positions which demonstrate this. The endgame table ER may be generated by various methods, the most complex approach striving for greater efficiency.

Both the naive minimax strategy SR and its stronger derivative SR* can fail in two ways. Therefore, a range of four strategies SR_{a} has been defined, using both DTR and DTZ information to provide a wider choice of moves. The SR_{a} can be used iteratively in a focussed conventional search. In the absence of empirical data, the author believes that the repeated use of $\mathrm{SR}_{3} *$ in a search will be more effective than strategy $\mathrm{SR}_{3} \mathrm{ZCM}$.

Experiments to verify the power of the $\mathrm{SR}_{\mathrm{a}}{ }^{*}$ strategies require actual EZ and ER tables. The author therefore invites others in this field to produce such tables. The prime candidates are the deep 5-man endgames and those 6 -man endgames which can precede them, as listed in Section 4.

8. ACKNOWLEDGMENTS

First, my thanks to the authors of the endgame tables - Stephen Edwards, Eugene Nalimov, Lewis Stiller, Ken Thompson and Christoph Wirth. Experience to date confirms the accuracy and efficiency of these tables. My thanks also to Helmut Conrady, Peter Karrer, Tim Krabbé, Thomas Lincke, John Roycroft, John Tamplin and Ken Thompson for occasional dialogue. Finally, my thanks to the referees and editor for their particularly useful comments on the early drafts.

9. REFERENCES

ChessBase (2000). http://www.chessbase.com/. CD publisher of Nalimov and Thompson endgame tables.
ChessLab (2000). http://chesslab.com/. Database of 2 million games dating from 1485.
Croskill (1864). The rook and bishop against rook. The Chess Player's Magazine, Vol. 2, pp. 305-311.
Dekker, S.T., Herik, H.J. van den and Herschberg, I.S. (1990). Perfect Knowledge Revisited. Artificial Intelligence, Vol. 43, No. 1, pp. 111-123.
Herik, H.J. van den, Herschberg, I.S. and Nakad, N. (1987). A Six-Men-Endgame Database: KRP(a2)KbBP(a3). ICCA Journal, Vol. 10, No. 4, pp. 163-180.

Herschberg, I.S. and Van den Herik, H.J. (1993). Back to Fifty. ICCA Journal, Vol. 16, No. 1, pp. 1-2.
Hyatt, R. (2000). ftp://ftp.cis.uab.edu/pub/hyatt/TB/. Server providing Nalimov's EG statistics and tables.
Kažíc, B.M. (1989). The 50-Move Rule Adapted (2). ICCA Journal, Vol. 12, No. 2, p. 123.

Levy, D. (1991). First among equals. ICCA Journal, Vol. 14, No. 3, p. 142.
Levy, D. and Newborn, M. (1991). How Computers Play Chess. Freeman \& Co. ISBN 0-7167-8121-2 (pbk.), esp. pp. 128-152.
Lincke, T. (2000). http://wwwjn.inf.ethz.ch/games/chess/statistics/chs_statistics.html. DTC win and draw statistics for 3-man to 6-man endgames.
Mednis, E. (1989). The 50-Move Rule Adapted (1). ICCA Journal, Vol. 12, No. 2, p. 123.
Nalimov, E.V., Wirth, C., and Haworth, G.McC. (1999). KQQKQQ and the Kasparov-World Game. ICCA Journal, Vol. 22, No. 4, pp. 195-212.

Nalimov, E.V. and Heinz, E.A. (2000). Space-Efficient Indexing of Endgame Databases for Chess. Advances in Computer Games 9, (eds. H. J. van den Herik and B. Monien). Institute for Knowledge and Agent Technology (IKAT), Maastricht, The Netherlands. To appear.

Nefkens, H.J.J. (1991). How to Win with a Knight Ahead. ICCA Journal, Vol. 14, No. 4, pp. 201-203.
Nunn, J. (1994). Secrets of Pawnless Endings. B.T. Batsford, London. ISBN 0-7134-7508-0.
Roycroft, A.J. (1983). A Prophecy Fulfilled. EG, Vol. V, No. 74, pp. 217-220.
Roycroft, A.J. (1984). A Proposed Revision of the '50-Move Rule'. ICCA Journal, Vol. 7, No. 3, pp. 164-170.
Roycroft, A.J. (1986). Adjudicate This!! EG, No. 83, p. 22.
Roycroft, A.J. (1988). Expert against the Oracle. Machine Intelligence 11 (eds. J.E. Hayes, D. Michie and J. Richards) pp. 347-373. Oxford University Press, Oxford. ISBN 0-1985-3718-2.
Stiller, L.B. (1989). Parallel Analysis of Certain Endgames. ICCA Journal, Vol. 12, No. 2, pp. 55-64.
Stiller, L.B. (1991). Some Results from a Massively Parallel Retrograde Analysis. ICCA Journal, Vol. 14, No. 3, pp. 129-134.
Stiller, L.B. (1991b). Karpov and Kasparov: the End is Perfection. ICCA Journal, Vol. 14, No. 4, pp. 198-201.
Stiller, L.B. (1992). KQNKRR. ICCA Journal, Vol. 15, No. 1, pp. 16-18.
Stiller, L.B. (1996). Multilinear Algebra and Chess Endgames. Games of No Chance (ed. R.J. Nowakowski), pp. 151-192. MSRI Publications, v29, CUP, Cambridge, England. ISBN 0-521-64652-9.

Tamplin, J. (2000). http://chess.liveonthenet.com/chess/endings/index.shtml. Position evaluation via Karrer's KQQKQP $\approx / K Q P K Q P \approx$ sub-EGTs, Nalimov's 3-6-man EGTs and Thompson's 5-man EGTs and maximals.
Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal, Vol. 9, No. 3, pp. 131-139.
Thompson, K. (1996). 6-Piece Endgames. ICCA Journal, Vol. 19, No. 4, pp. 215-226.
Thompson, K. (2000). http://cm.bell-labs.com/cm/cs/who/ken/chesseg.html. 6-man EGT maximal positions, maximal mutual zugzwangs and endgame statistics.

Troitzkiĭ, A.A. (1906-1910) Serialised analysis of KNNKP. Deutsche Schachzeitung.
Troitzkǐ̆, А.А. (1934). Два коня против пешек (теоретический очерк). Сборник шахматных этюдов, pp. 248-288. Leningrad. [Dva Konya protiv pešek. Sbornik šakhmatnykh étyudov.] Partly republished (1937) in Collection of Chess Studies, with a Supplement on the Theory of the End-Game of Two Knights against Pawns. (trans. A.D. Pritzson), David McKay Company, the latter again re-published (1985) by Olms, Zürich.
Wirth, C. and Nievergelt, J. (1999). Exhaustive and Heuristic Retrograde Analysis of the KPPKP Endgame. ICCA Journal, Vol. 22, No. 2, pp. 67-80.

APPENDIX A: TYPES OF OPTIMAL PLAY

These optimal lines proceed from the maximal KRNKNN position mxRN-NN of Table 1. A published line (Stiller, 1996) is, up to and including move 205w, both C-C optimal as intended and M-M optimal. First Black and then White must choose between C-optimal and M-optimal moves, their choices eventually defining four different types of optimal line. Different equi-optimal choices would of course produce different specific lines.

Figure 7: Both sides eventually choose between C- and M-optimal play

The following notation is used to indicate various properties of the moves:
' only X-optimal move, given strategy SX; " only value-preserving move; ${ }^{\circ}$ only legal move; [..., ...] equioptimal moves; ${ }^{\mathrm{n}}$ one of n equi-optimal moves; -n a move suboptimal by n moves; ${ }^{\mathrm{v}}$ value-changing move.
a) $\{\mathrm{C}-\mathrm{C}$ and $\mathrm{M}-\mathrm{M}$ line $\}$ 1. Ke6" Nb4' 2. Ke5" Nd3' 3. Ke4" Nf2' 4. Kf3" 205. Re5' Nec7' 206. Nd6' Nb4' 207. Re4' \{and now Black must choose between C- and M-optimality: $5 \mathrm{k} 2 / 2 \mathrm{n} 5 / 3 \mathrm{~N} 4 / 6 \mathrm{~K} 1 / 1 \mathrm{n} 2 \mathrm{R} 3 / 8 / 8 / 8+207 \mathrm{~b}$ \}.
b) \{C-CM and M-CM line\} 207... Nbd5' 208. Re1' Kg7 [Nb4, Nb6, Nc3] 209. Kf5' Kf8' 210. Ke5' Nb4' 211. Rf1+' Ke7' 212. Rf7+' Kd8º 213. Nb7+' Kc8' 214. Nc5' Nb5' 215. Rg7 [Rh7] Kd8' 216. Rb7' Nc6+' 217. Ke6' Kc8' 218. Rh7' Nb4' 219. Na4' Na6' 220. Kd5' Nbc7+' 221. Kd6' Ne8+' 222. Ke7' Nec7' 223. Rh6' Nb8' 224. Nb6+' Kb7 225. Nc4' Nc6+' 226. Kd7 [Kd6] Nb8+' 227. Kd6' Nba6' 228. Rh7' Kc8' \{and now White must choose between C- and M-optimality: $2 \mathrm{k} 5 / 2 \mathrm{n} 4 \mathrm{R} / \mathrm{n} 2 \mathrm{~K} 4 / 8 / 2 \mathrm{~N} 5 / 8 / 8 / 8+229 \mathrm{w}\}$.
c) \{CM-CM line\} 229. Na5' Kd8' 230. Nc6+' Kc8' 231. Ne7+' Kd8' 232. Nd5' Ne8+' 233. Kc6' Nb8+' 234. Kb5' Nd6+' 235. Kc5' Nc8' 236. Rh8+' Kd7º 237. Nf6+' Kc7' 238. Rh7+' Kd8' 239. Rb7' Na6+' 240. Kc6' Ne7+' 241. Kb6' Nb4' 242. Rd7+' Kc8² 243. Rxe7' \{KRNKN\} Nc6 [Nd5] 244. Kxc6' Kb8' 245. Kb6' Kc8² 246. Re8\#' 1-0.
d) \{MC-CM line\} 229. Rh1' Kd8' 230. Rh8+' Ne8+${ }^{\circ}$ 231. Ke6' Nc7+' 232. Kf7' Kd7' 233. Rh6" Nd5' 234. Ne5+" Kd8' 235. Rh2' Ndc7' 236. Rh8' Kc8' 237. Rh6' Kd8' 238. Nc4' Kc8' 239. Rg6' Kb8' 240. Ke7' Kc8' 241. Ne3' Kb8' 242. Kd8' Kb7² 243. Kd7 [Nc4] Kb8 ${ }^{3}$ 244. Rb6+' Ka7' 245. Rb1' Ka6² 246. Nc4' Ka7' 247. Rb2' Ka6' 248. Kc6' Ka7' 249. Nb6' Kb8' 250. Nd7+' Ka7' 251. Rb4² Ka8² 252. Ra4+' Na6º 253. Rxa6\#' \{KRNKN\} 1-0.
e) $\{\mathrm{C}-\mathrm{MC}$ and $\mathrm{M}-\mathrm{MC}$ line $\}$ 207. ... Nba6' 208. Kf5' Nc5' 209. Re2' N5e6' 210. Ke5' Nd8' 211. Rf2+' Ke7' 212. Nf5+' Ke8' 213. Re2' Nb5' 214. Kd5+' Kf7' 215. Rf2' Kg6' 216. Nh4+' Kh5' 217. Ng2' Nc3+' 218. Kd4' Nb5+' 219. Ke5' Kg6' 220. Rf6+' Kg7' 221. Nf4' Nf7+' 222. Ke6" Nd4+' 223. Ke7" Ne5' 224. Nh5+' Kh7' 225. Ra6' Kg8' 226. Kd6' Nf7+' 227. Kd5' Nb5' 228. Rc6' Kf8' 229. Rc5' Na7 [Nbd6] 230. Ra5' Nc8' 231. Ke6' Nd8+' 232. Kd7" Nd6' 233. Ra1' N8b7' 234. Kc7' Ke8 [Ke7, Kf7] 235. Nf4' Ke7 [Kf7] 236. Re1+' Kf7 [Kf6] 237. Nd5' Kg6' 238. Rf1' Kg5' \{8/1nK5/3n4/3N2k1/8/8/8/5R2+239w ... and now White must choose between Cand M-optimality\}.
f) \{CM-MC line\} 239. Nb6 [Ne3] Kg4' 240. Rc1' Kf5 ${ }^{3}$ 241. Nc4' Ne4' 242. Kxb7' \{KRNKN\} Nc5+' 243. Kc6' Nd3' 244. Ra1' Ke4 [Nf4] 245. Ra4' Nf4' 246. Kd6 [Nd2+] Kd3 [Ne2] 247. Ke5 Ng6+' 248. Kf5' Nh4+' 249. Kg4' Ng6' \{dm = 18\} 250. Ra7' Kxc4' \{KRKN, $d m=20\}$ 251. Kf5" Nh4+ 252. Ke4" \{and mate, m270\} 1-0.
g) \{MC-MC line\} 239. Kc6 ${ }^{4}$ Kg6' 240. Nc7' Kg7' 241. Ne6+' Kg6' 242. Kc7' Kh6' 243. Rg1' Kh5' 244. Kc6 Kh6' 245. Ng7 [Nf4] Kh7' 246. Nh5' Kh6' 247. Nf6' Nf7 [Nf5] 248. Kxb7' \{KRNKN\} Ng5' 249. Kc7 [Kc6] Nf3' 250. Rg8' Ne5' 251. Kd6' Ng6' 252. Ke6' Kg5' 253. Nd5' Kh5' 254. Kf6' Kg4' 255. Rxg6+ \{KRNK\} Kf3' 256. $\mathrm{Ke}^{2}{ }^{2} \mathrm{Ke} 2^{2}$ 257. Ke4' Kd2' 258 . Rg2+' Kd1' 259. Nb4 $4^{4} \mathrm{Kc}^{2} 260 . \mathrm{Kd} 3^{\prime} \mathrm{Kb} 1^{\prime}$ 261. Kc3' Ka1 262. Rg1\#' 1-0.

APPENDIX B: SOME MONSTERS OF THE DEEP

This appendix notes some games (ChessLab, 2000) and positions associated with the 50 -move rule.
‘KBBKN’ (Roycroft, 1986) b7/b1K5/8/3P4/3k4/8/8/8+w. 1. d6' Kc5" 2. d7' Bb6+" 3. Kc8' Kc6" 4. d8=N+' \{dc $=57$ moves $\} \mathrm{Kb}^{\prime \prime} 5$. Nb7' Ba7" $6 . \mathrm{Kc} 7{ }^{\prime} \mathrm{Ka} 6^{\prime} 7$. Nd6' and White can get to the Kling-Horwitz position.
'KBBKN'. Pinter-Bronstein (1977, ECO B14, $1 / 2-1 / 2), 8 / 2 \mathrm{~b} 5 / 8 / 3 \mathrm{~b} 2 \mathrm{k} 1 / 8 / 4 \mathrm{~K} 3 / 8 / 4 \mathrm{~N} 3+68 \mathrm{w}\{d c=54 \mathrm{~m}, d m=66 \mathrm{~m}\}$. The 44 -move win from move 70 would have just beaten a 50 -move draw claim. However, Pinter was allowed to set up Kling-Horwitz positions on moves 71,90 and 112 in the $\mathrm{b} 2, \mathrm{~g} 2$ and b 7 corners respectively and could have taken more moves doing so (Roycroft, 1988). A draw was agreed on move 117.

KBNNKR. Karpov-Kasparov (1991, ECO E97, ½ $2^{1 / 2}$), $\{63$. Kxh4\} 3r4/8/2B2k2/8/5N1K/3N4/8/8/+63b $\{=\}$. In 51 moves, Kasparov never allowed a win (Stiller, 1991b) and set up a stalemate finish with a Rook sacrifice.

KQNKQ. Ljubojevic-Hjartarson (1991, ECO A22, ½-1/2), \{70. Qxg5+\} 6k1/3q4/8/6Q1/6N1/7K/8/8+70b: $\{=\}$. Contrary to Nefkens (1991), Black's defences slip on move 88 but White misses the win on the next move. On move 117, Black sets up a mate for White which is then promoted to just two moves beyond the draw claim.

KQPKQ. Wegner-Johnsen (1991, ECO D30, $1 / 2-^{-1 / 2}$), $\{126 . .$. a2 $\}$ 8/8/7K/3q4/k7/8/p7/1Q6+127w. The game entered KQPKQ with move 53 w . Although $d c=13 \mathrm{~m}$ and $d m=28 \mathrm{~m}$, a ' 75 -move' draw resulted on move 201.

KRBKR (Croskill, 1864). k7/6R1/2K5/8/2B5/8/8/7r+w (RB-R1) and 1k6/8/2K5/8/2B3R1/8/7r/8+w (RB-R2). Croskill incorrectly claimed $d c=57$ for RB-R1 $(d c=49)$ but then arrived at RB-R2 for which he gave the correct $d c=51$ and an almost correct line: "a high point of $19^{\text {th }}$ century endgame analysis" (Nunn, 1994, p. 232).

KRBKR. Deep Thought - Fishbein (1988, ECO C69, 1-0), \{58. Rxc4\} k7/1r6/8/8/2R2B2/8/5K2/8+58b $\{=\}$. Black's defence slips after 12 moves. This leaves a 13-move win and resignation follows on move 81.

KRBKR. Nikolic-Arsovic (1989, ECO E95, $1 / 2-1 / 2$), \{167. Bxd5\} 8/8/8/1r1B3R/3K1k2/8/8/8+167b $\{=\}$. This is the longest game on record. White misses wins on moves 201, 238, 239, 241, 244 and 255 with depths $d c=4$, $9,3,3,9$ and 20 respectively ...
4k3/5R2/3K4/3B48/8/8/3r4+201w: 201. $\mathbf{R g} 7^{v}$ (201. Rf^{3} Rd4 202. Ra2 Kf8 203. $\mathrm{Rg}^{\prime \prime \prime} \mathrm{Ke}^{7}$ 204. $\mathrm{Rg} 8 \#^{\prime}$). 4r3/8/8/k2B4/3K4/8/1R6/8+239w: 239. Rb77 (239. Kc5" Rc8+ [Re3] 240. Bc6" Ka6 241. Ra2\#').

KRP(a2)KbBP(a3). Timman-Velimirović (1979, ECO D30, 1-0), 8/8/4k3/2R5/7b/p2K4/P7/8+64b. Won on move 103, this game brought about the 100 -move allowance for this ending (Van den Herik et al., 1987).

POST-PUBLICATION NOTE

The iteration formulae for DTR defined in Section 5, and algorithms AL1 and A12, are incorrect.
The correction was published in:
Haworth, G.McC. (2001). Depth by The Rule, ICGA Journal, Vol. 24, No. 3, p. 160.
Examples of positions where $\mathrm{SC}^{-}, \mathrm{SM}^{-}$and SZ^{-}all fail to defend a win have been published in:
Tamplin, J.A. and Haworth, G.McC. (2003). Chess Endgames: Data and Strategy. Advances in Computer Games 10, Graz, Austria (eds. H.J.van den Herik, H. Iida and E.A. Heinz), pp. 81-96. Kluwer Academic Publishers, Norwell, MA. ISBN 1-4020-7709-2.

Bourzutschky, M.S., Tamplin, J.A. and Haworth, G.McC. (2004). Chess Endgames: Data and Strategy, 2. Journal of Theoretical Computer Science (to appear).

[^0]: ${ }^{1}$ ICL, Sutton's Park Avenue, Sutton's Park, Reading, Berkshire, RG6 1AZ, UK: guy.haworth@icl.com
 ${ }^{2}$ A zeroing move is defined as one which zeroes the move count by FIDE Article 9.3, i.e., a pawn push, capture or mate. A phase of play is defined as a sequence of moves starting just after and ending with a zeroing move.

[^1]: ${ }^{3}$ A table entry is marked broken if it corresponds to a clearly illegal position, an unwanted position or no position.

